

Session 5: TES with HVAC in Today's Market

S4B Annual Meeting – Thermal Energy Storage Integration in Commercial and District Applications

Chair: Dr. Min Gyung Yu, Control System Engineer, PNNL

Presenters: Dr. Tim J. LaClair (NREL), Dr. Marco Pritoni (LBNL), Vishaldeep Sharma (ORNL), Dr. Spencer Dutton (LBNL)

Stor4Build Annual Meeting

August 26–27, 2024 Oak Ridge National Laboratory

Agenda

- Presentation 1: Thermal Energy Storage Evaluation for the California State University Dominquez Hill Campus Central Plant
- Presentation 2: Campus-wide Field Demonstration of Load-shifting, Peak Reduction, and Full Renewable Utilization with Thermal Energy Storage
- Presentation 3: Quick Service Restaurant Walk-in Freezer Demandload Reduction
- Presentation 4: Deployment of a Commercial Packaged Heat Pump and Compact Thermal Energy Storage for Small Buildings
- Q&A

Thermal Energy Storage Evaluation for the California State University Dominguez Hill Campus Central Plant

Presenter: Tim J. LaClair, NREL

Contributors: Korbaga Woldekidan, Zahra Fallahi, Carlo Bianchi

Stor4Build Annual Meeting

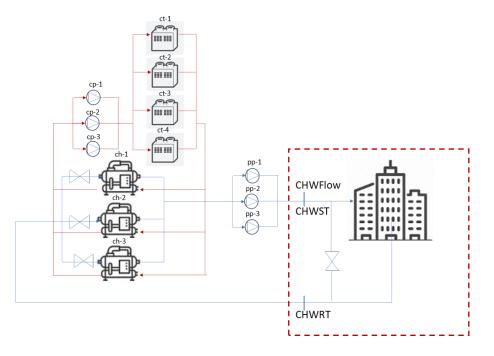
August 26–27, 2024 Oak Ridge National Laboratory NREL/PR-5500-91060

CSU Dominguez Hills Campus TES system

Background: Curtailment of renewable power in California has increased rapidly in recent years, and solutions are being pursued to avoid or reduce curtailment to maximize the use of clean energy sources. California State University Dominguez Hills (CSUDH) seeks to implement a large TES system capable of capturing renewable energy that would otherwise be curtailed with a *goal of storing* sufficient energy within a 5-hour period each day to meet the campus' entire 24-hour heating and cooling needs.

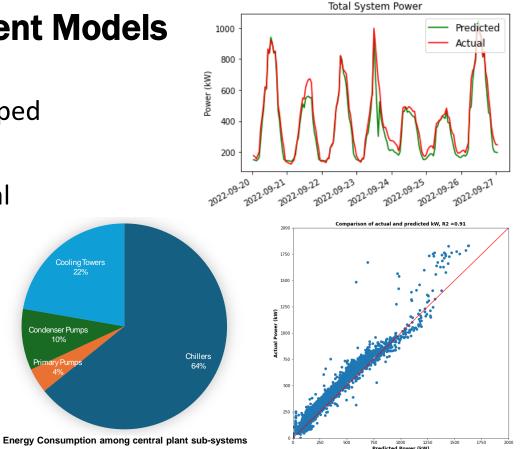
Innovation / approach:

- Evaluation of TES options for both heating and cooling
- This project aims to lay the groundwork for establishing the feasibility of campus-scale TES installations that, if successful, can be deployed across all 23 campuses of the California State University system


Project Objectives

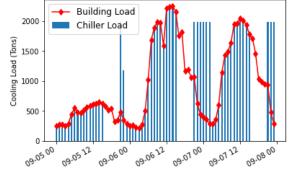
- Develop a framework to establish both the technical and economic potential for installation of an on-campus TES system
 - Enable broader use of renewable energy
 - Provide heating and cooling requirements at the CSU Dominguez Hills campus
- Tool development for sizing and TES load estimation to scale-up the use of this method in other locations
 - Flexible, plug-and-play approach that will enable future feasibility assessments to be performed at other locations
 - Assist other facilities in rapid decision making and deployment by providing a simple analysis framework

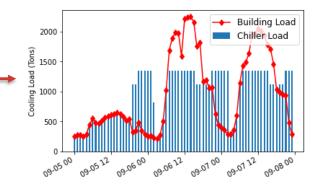
Cooling System Overview


- Provides cooling to 52 AHUs serving 900,000sf of building space
- Comprised of:
 - Three 1000 Ton variable speed electric chillers
 - Three 125 HP variable speed primary pumps
 - Three 100 HP variable speed condenser pumps
 - Four cooling towers (eight 7.5 HP variable speed fans per tower)

Equipment Models

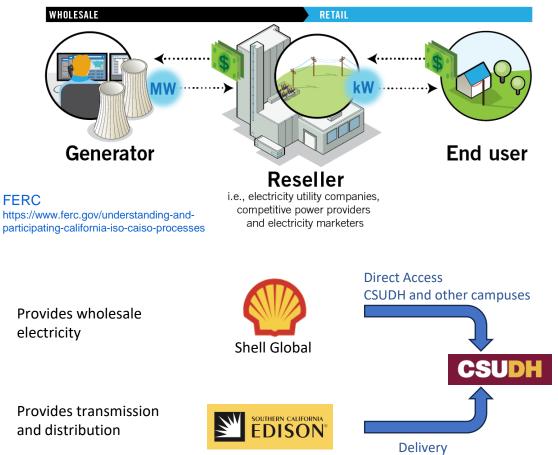
- Empirical sub-models developed to estimate the energy consumption of system components across all normal operating conditions
- Sub-models for:
 - Chillers
 - Chilled water pumps
 - Condenser pumps, and
 - **Cooling towers**




TES Sizing and Operation

Four sizing and operation approaches considered:

- Full storage
 - Shifts the entire on-peak load to off-peak hours and halts chiller operation during peak hours
 - Preferable when on-peak demand charges are high, or the on-peak hours are short
- Load leveling (Partial Storage)
 - Peak hour cooling needs are satisfied by simultaneous operation of chillers and TES.
 - Preferable strategy when the peak cooling load is much higher than the average
- Peak Demand limiting
 - Chillers run at reduced capacity during on-peak hours
- Curtailment hours charging
 - Chillers operate at full capacity during curtailment hours to support the cooling needs during non-curtailment hour
- Additional evaluations considering simultaneous battery operation


(Note: the model considers full campus loads for load shifting, not just the central plant, to maximize cost savings)

Stor4Build

Operational Cost Analysis: Electricity Billing

August 2023
0.097
11.900
August 2023
0.02909 to 0.03020
20.84 to 35.34
SCE (\$128,383) only TOU and Demand Charges 26%
74%
TOU Demand narge (kW) costs, Aug 2023

9

Technoeconomic Analysis

- Cost model developed and validated against past electric bills
- Capital and operational costs evaluated to determine payback for each operating scenario
- Greatest savings achieved using full storage scenario to maximize campus-wide peak demand

TEA results for full storage TES implemented without battery storage:

Tank Size/capacity	1,655,768 Gallon	12,658 ton-hour
Capital Cost	\$3,553,749	
Capital Cost, with IRA	\$2,132,250	40 % discount
Annual operational cost savings*	\$265,046	

Payback period (years):

Discount rate	0.00%	1.00%	2.00%	3.00%	4.00%	5.00%
Payback period, without tax incentives	14	15	16	17	19	21
Payback with 40% IRA tax credit	9	9	9	10	10	10

* Cost evaluation does not include impacts on Shell bill, which is aggregated with other CSU campuses

Final Remarks

Key Findings:

- Detailed model evaluated multiple control strategies for load shifting, and considers campus battery use
- Current tax credits under IRA result in a very favorable payback (9-10 yrs) for full load-shifting campus TES system without a battery, and there is a reasonable payback (14-21 yrs) even without the tax incentive

Next Steps:

- A simplified approach will be developed and validated in FY25 to allow other campuses to complete basic feasibility evaluation with minimal inputs (central plant load profile, electricity rate structure and historical electric loads)
- Results will be expansible across 23 other CSU campuses, and applicable to other district systems

Policy Issues/Potential Concerns:

- Existing utility rate structures effectively discourage the practice of using curtailed electricity to charge TES
- Battery energy storage systems yield similar load shifting capabilities as TES. Existing utility programs and 3rd party offerings can make BES a cheap option, which effectively disincentivizes TES deployment, even though TES is expected to be more favorable from a sustainability perspective over the long run

Campus-wide Field Demonstration of Load-shifting, Peak Reduction, and Full Renewable Utilization with Thermal Energy Storage

S4B Annual Meeting - Integration Thrust Area

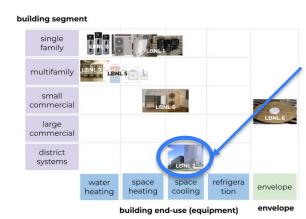
Presenter: Marco Pritoni

Contributors: Donghun Kim (PI), Armando Casillas

Stor4Build Annual Meeting

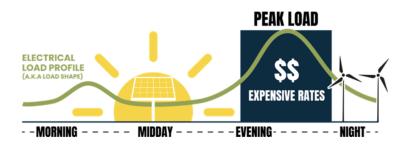
August 26–27, 2024 Oak Ridge National Laboratory

BERKELEY LAB


·····

U.S. DEPARTMENT OF

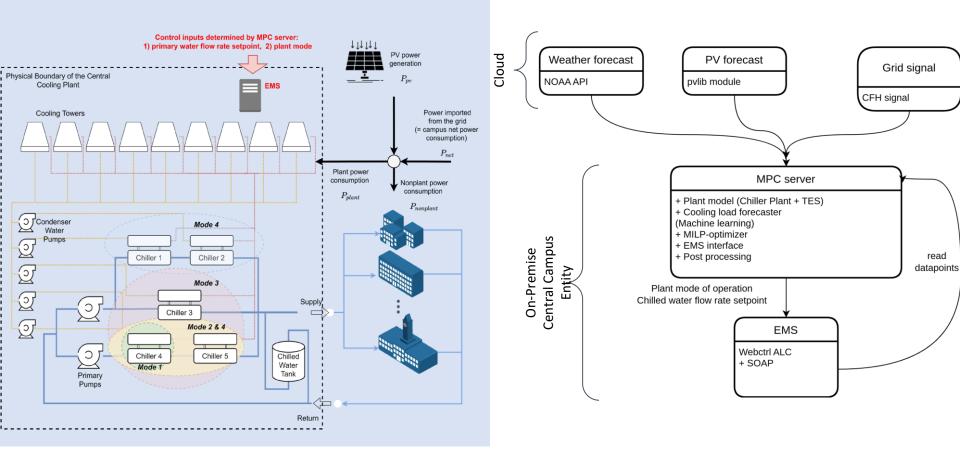
CAK RIDGE


National Laboratory

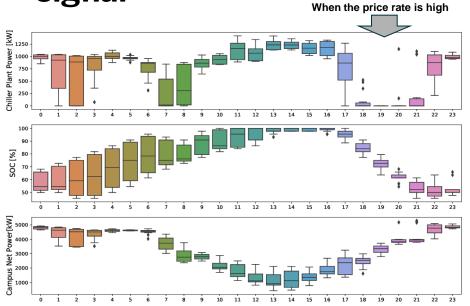
Campus-wide Field Demonstration of Loadshifting, Peak Reduction, and Full Renewable Utilization with Thermal Energy Storage

- Identify, evaluate, develop, and demonstrate pre-commercial, load flexible technologies
- **Standardize the signals** used to communicate dynamic price and GHG information to devices

Sector/Building Type	District Energy Systems
Technology & End Use	Chiller plants, Chilled water tank, PVs
Communications Pathway	price/CO2 signal -> MPC server <-> ALC <-> HVAC
Grid-Edge Benefit	 Automated load shifting in response to grid signals Peak demand reduction Better on-site renewable integration (more use of self generation)
Testing Status (Timeline)	Test performed in summer and winter 2023, continuing in 2024-25

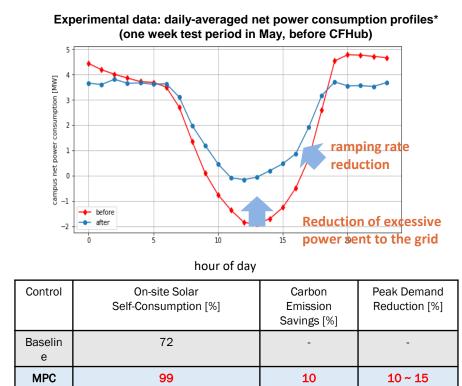

UC Merced:

- 9,000 students, 40 buildings, growing fast
- Chiller plant, 17.6 MW, 5000 ton of refrigeration
- 5MW PV system + 500 kWh battery
- 30,000 ton-hr Chilled Water TES Tank


Research Objectives

- Can we develop and deploy predictive controls that:
 - Owner objectives
 - Maximize PV self consumption
 - Reduce Demand Charges (Utility Bills)
 - Utility objective
 - Respond to Grid Signals (Prices) to reduce pressure on Grid
 Edge
- What are the implementation challenges?
- Is this approach scalable to other campuses?

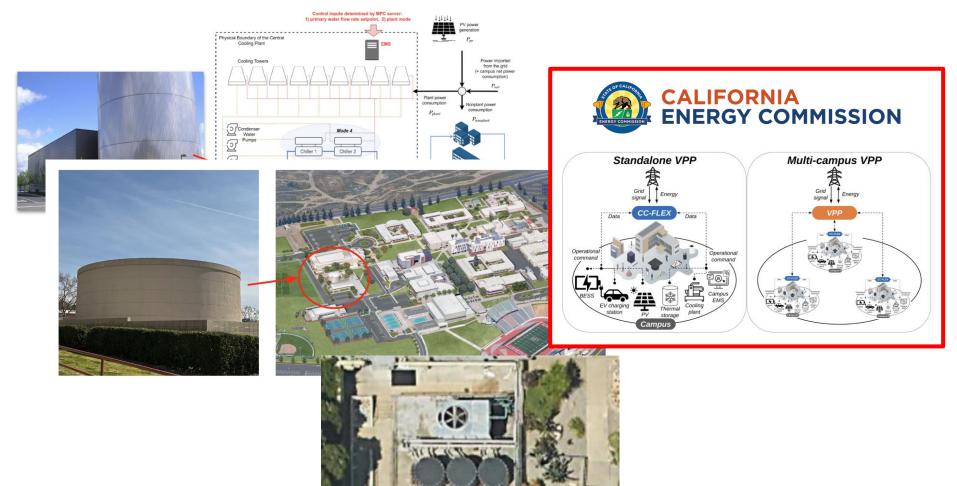
Implementation: Control and Communication Architecture



Field test results with a highly dynamic price signal

The single control deployment achieved a 5 MWh load shift (1.25 MW x 4 hours), which demonstrates great effectiveness

Field test results with a carbon emission signal



17

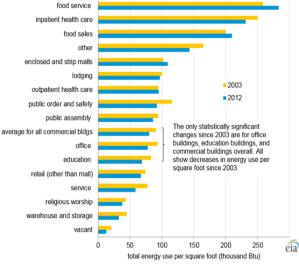
Key Learnings: Challenges Identified

Category	Challenge
Operation restriction	Potential conflicts between MPC decisions and EMS logic
Operation restriction & Safety	Revising EMS logic is practically difficult and it requires identifying potential conflicts after updates, convincing facility manager and operators to accept necessary changes of the EMS, and ensuring operational safety during the MPC demonstration
Safety	Lack of liability by MPC implementer for a potential operation failure during MPC implementation
Others	There are many stakeholders for a large plant operation including logic programmers, IT personnel, facility operators, and facility managers
Customer adoption	Facility operators are not familiar with an advanced control concept since it is not intuitive compared with rule-based control
Customer adoption	Unclear value proposition and/or not enough incentives

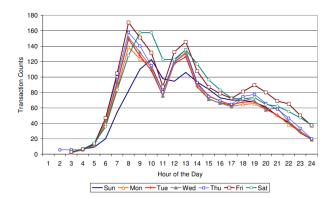
Is This Approach Scalable?

S4B Annual Meeting – Integration Thrust Area

Presenter: Vishaldeep Sharma (PI)

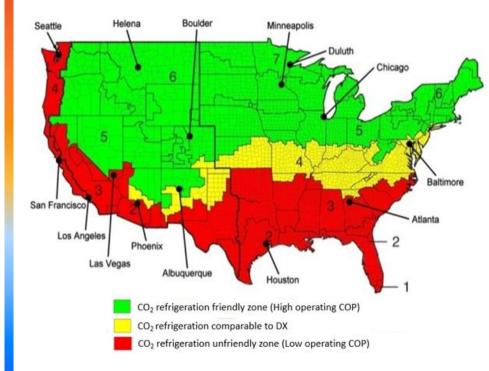

Contributors: Bo Shen, Praveen Cheekatamarla, Navin Kumar

Stor4Build Annual Meeting

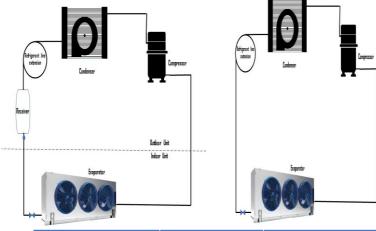

August 26–27, 2024 Oak Ridge National Laboratory

Background

- 275,000 Fast food and Quick service restaurants (QSR)
- Smallest commercial buildings (2500-4500 ft²)
- Most energy intensive buildings/ft²
 - o 24-hour operation
 - Product variation (Hot meals, Ice-creams, dairy frozen food)
 - o Low waste heat potential
- Walk-in Cooler/Freezer
 - o Transition to low GWP refrigerants
 - Current refrigerants R404A (GWP 3922), R448A (GWP 1273)
 - Alternative refrigerants CO₂ (A1), Propane (A3), R454A (A2L) and R454C (A2L)



Source: U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey.

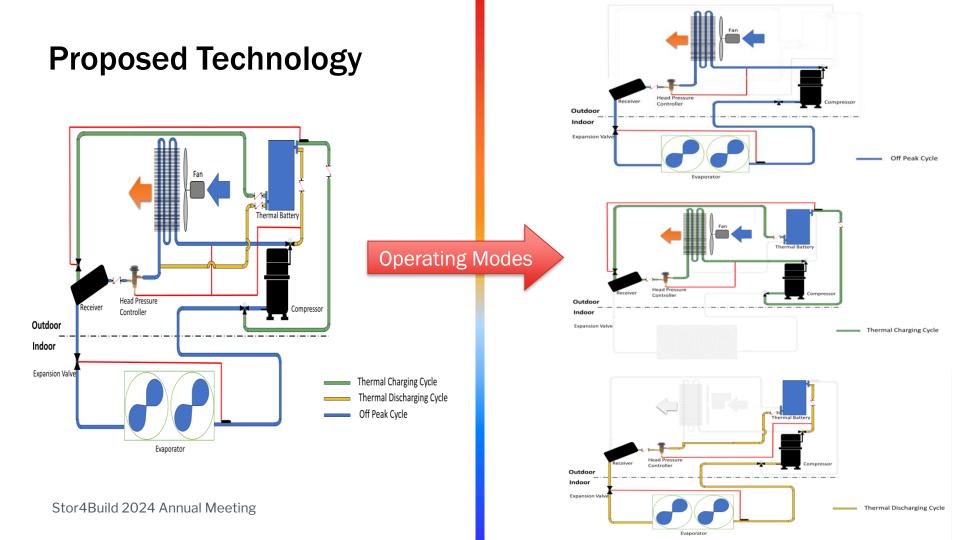

Motivation

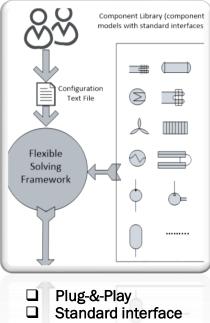
- Energy Efficient Solution for QSR
- CO₂ refrigeration system
 - High Pressure
 - Low critical temperature
 - Ambient temperature sensitivity
 - Booster system vs. DX system
- Flammable refrigerants
 - Charge limitation
 - Safety
- Resilience Maintain cold chain
- Lower operating and food prices

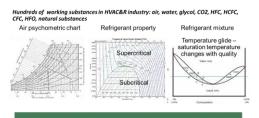
Market Survey

Direct Expansion System

	Receiver		W/O Receiver	
Market Share	90%			10%
Refrigerant Charge	11.1 lbs.		2	2 lbs.
	Walk-in Cooler	Walk-in Freezer	Walk-in Cooler	Walk-in Freezer
Refrigerant Capacity (tons)	0.5	5	0.5	0.3-0.5
Temperature (°F)	5	-20	5	-20
Current Refrigerant	R404A, R448A and R449A			

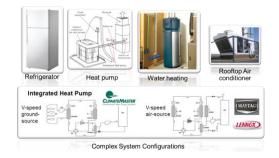




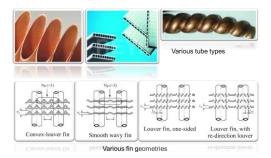


HPDM: a component-based flexible modeling platform

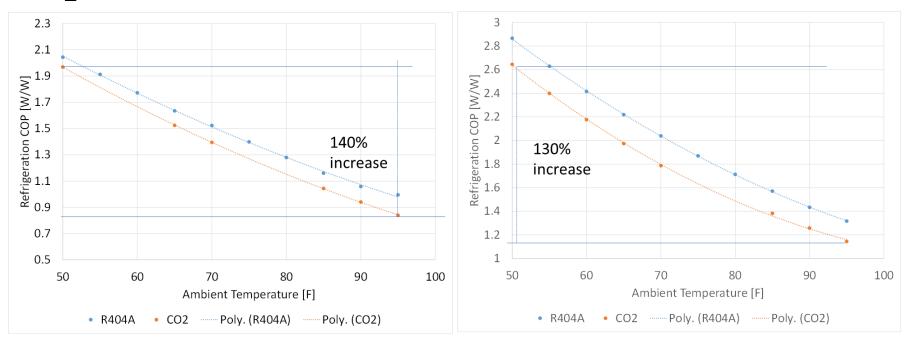
Automatically connect



xt Generation Refrigerants (low global warming - GWP, zero ozone depletion) – tailed system modeling with new refrigerant property, to assess long-term impact Ing life cycle analysis, provide design guidance based on fundamental study.


Universal working fluid property management

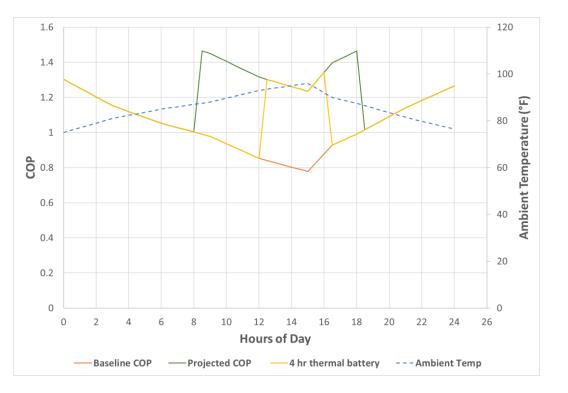
Numerous components



Extensive applications and system configurations

Plenty of tube and fin types

CO₂ vs. R404A



COP at -20°F, low temperature refrigeration, 3 tons DX system COP at 5°F, low temperature refrigeration, 4 tons DX system

Assume compressor isentropic efficiency at 70%, volumetric efficiency at 90%, varying the compressor speed to match the capacity

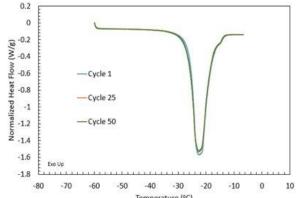
Summer day - Knoxville

- Lower energy performance at higher ambient temperatures
- Utilization of stored energy to maintain optimal ambient temperature (condenser at 50 °F)
- Ability to maintain 30% 40% higher COP

DOE's Decarbonization Roadmap

Cross-Cutting Goals

- Affordability: Utilizing low-cost modular and scalable thermal battery and modular integration technique to reduce the first cost of installation.
- **Resilience:** Thermal battery provides resilience for food storage during unpredicted power outages and environmental stress.
- **Equity:** Electricity for refrigeration is a major operating expense for <u>food bank-</u>related organizations. Thermal batteries could help reduce their operating costs.


Strategic Objectives

- **EE**: Reduce on-site energy use with an optimized, highly efficient thermal battery
- Transform the Grid Edge: Provide ~2 4 peak-load shifting for refrigeration

Next Steps

- Develop and complete modeling
- Reach-out to potential OEMs for CRADA partnership
- Develop thermal battery
- Integrate TES battery with full scale walk-in cooler for performance evaluation

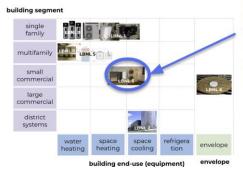
Deployment of a Commercial Packaged Heat Pump and Compact Thermal Energy Storage for Small Buildings

S4B Annual Meeting - Integration Thrust Area

Contributors: Marco Pritoni, Weiping Huang, Armando Casillas, Lazlo Paul, Daniel Sambor (Stanford)

Stor4Build Annual Meeting

August 26–27, 2024 Oak Ridge National Laboratory



Pacific Northwest

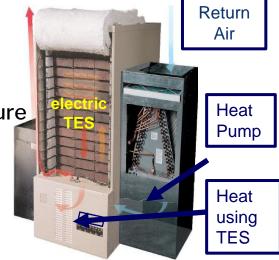


Deployment of a Commercial Packaged Heat Pump and Compact Thermal Energy Storage for Small Buildings

- Identify, evaluate, develop, and demonstrate pre-commercial, load flexible technologies
- **Standardize the signals** used to communicate dynamic price and GHG information to devices

Stor4Build Annual Meeting

August 26–27, 2024 Oak Ridge National Laboratory



Current TES adoption in small commercial buildings is limited

- HP+TES has a great potential to decarbonize : electrification + demand flexibility
- US commercial building HVAC market \$40 billion in 2024, minimal HVAC+TES
 - $\circ\,$ TES for large buildings and campuses market available and cost effective.
 - $\,\circ\,$ Packaged HVAC with TES for small buildings exists, but with electric resistance.
 - iCorps (2019) analysis of market opportunities HVAC+TES:
 - Vertical Packaged Units, good first "minimum viable product"

 very common, and existing systems inefficient
 no TES weight issues if ground mounted
 strong interest with facilities manager.
 - pathway to electrification without infrastructure upgrades
 - conditioning-as-a-service, costs shifted to operational

New HP products have high carbon reduction potential

• New, low-GWP AWHP's offer new opportunities to further reduce carbon emissions, but, current approaches are too expensive and not scalable:

• Custom design and installation costly

 \circ Components currently low volume products

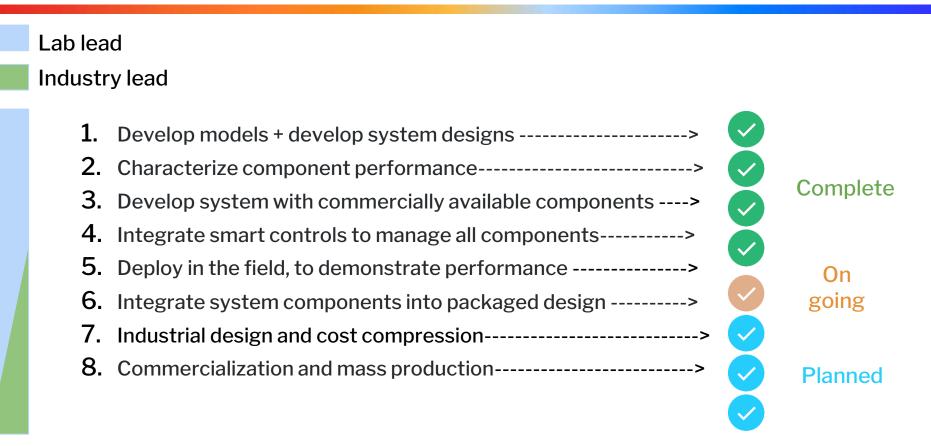
 \circ No smart controls for integrated system

• May require panel/service upgrade


We propose a new technology

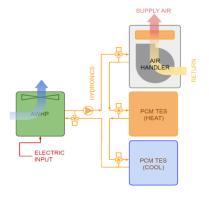
Key design characteristics:

- Integrated components, packaged system that can be mass manufactured like RTU or VPU.
- Integrated controls that communicates with dynamic pricing servers and weather service data to make operational decisions
- **Easy to install,** comes on the back of a truck, attach to air supply and power.
- Modular TES, tailored to meet climate & tariff environment
- Easy to remove for off-site maintenance

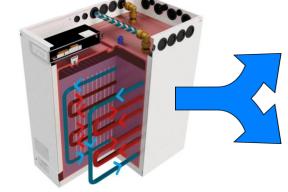

Blueprint strategic objectives met:

- Transform the grid edge, increases demand flexibility
- Accelerate on-site emissions reductions, shifting conditioning loads to align with renewables (demonstrated using DER micro-grid)

Technology development timeline


Modeling and Lab R&D stages completed

Modelica based models, range of applications


FlexLab based component characterization

Charging	
Max HP power	4.8kW_elc
Thermal energy stored (hot)	4.5kWh_thm
COP charge	3.5
Discharging	
Discharge rate (max flow)	2kW_thm
Discharge time	2h
Power during discharge	80W_elc
Peak load reduction	98%

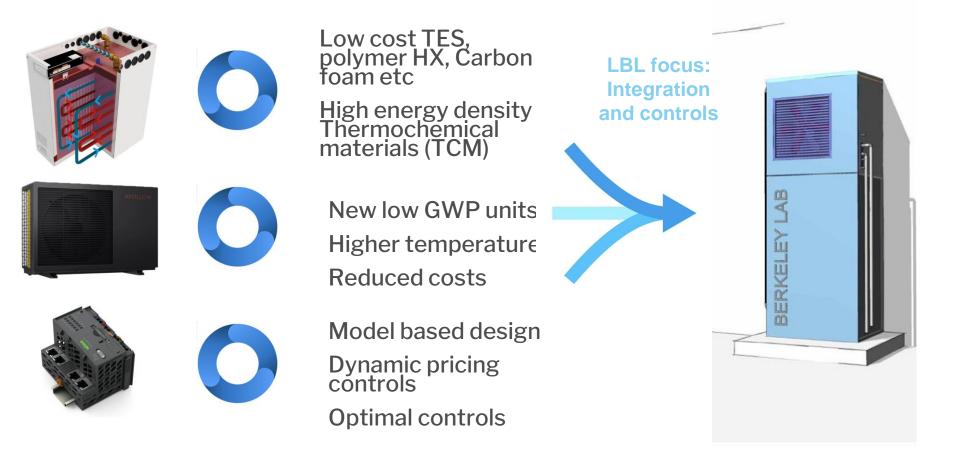
Field deployment w/ Stanford University and DOD

DCI

New CRADA LBNL-Stanford

- Two side-by-side US military forward operating bases. 20' x 20' modular
- Ideal for comparing HVAC-TES with baseline all electric PTAC.
- Site includes DERs: solar, wind, electrochemical battery.

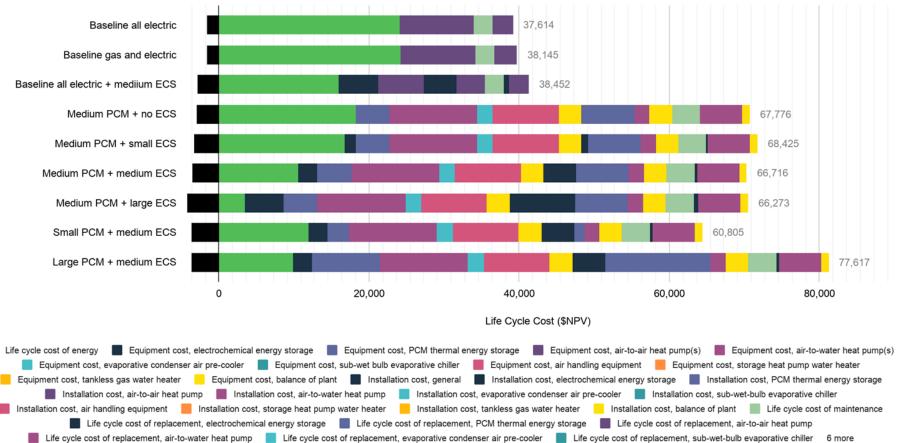
Status update: HP+TES installed and undergoing commissioning


 Aermec AWHP, TES unit installed, commissioning August 2024

Ongoing iterative R&D to reduce cost and improve performances

Acknowledgements

This work is supported by Stor4Build, a multi-lab consortium funded by the U.S. Department of Energy (DOE) Building Technologies Office (Awarded Under Lab Call L095). The consortium is co-led by the National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory (LBNL), and Oak Ridge National Laboratory (ORNL). NREL is operated by Alliance for Sustainable Energy, LLC, for DOE under Contract No. DE-AC36-08G028308; LBNL is managed by the University of California for DOE under Contract No. DE-AC02-05CH11231; and ORNL is managed by UT-Battelle LLC for DOE under contract No. DE-AC05-000R22725. The views expressed herein do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. This work is also supported by the California Energy Commission's Electric Program Investment Charge.


Tim LaClair (NREL): tim.laclair@nrel.gov Marco Pritoni (LBNL): <u>mpritoni@lbl.gov</u> Vishaldeep Sharma (ORNL): sharmav@ornl.gov Spencer Dutton (LBNL): <u>smdutton@lbl.gov</u>

Thank You

Stor4Build Annual Meeting

August 26–27, 2024 Oak Ridge National Laboratory

Life Cycle Costs – Modular Classroom – System Option VSP – Current Cost Estimates – Albuquerque, NM

