

MERIT: Reliable Medium-Voltage Power (MVP) Building Block

Principal Investigator: Yue Zhao Affiliation: University of Arkansas / NSF I/UCRC GRAPES

NSF I/UCRC: GRid-connected Advanced Power Electronic Systems (GRAPES)

Mission of GRAPES is to accelerate the adoption and insertion of power electronics into the electric grid to improve system stability, flexibility, robustness, and economy.

MV Storage Converter

MV Phase-Current Compensator

National Center for Reliable Electric <u>Power Transmission (NCREPT)</u> 12.000 ft2 lab space

Up to 6MVA 15 kVac

- Utility Companies
- Equipment Manufacturers
- Components Manufacturers

Need for MV Power Electronics

Source: Yole Intelligence: Status of the Power Converter Industry, July 2023, vole Intelligence 2023

Battery Energy Storage Systems Source: Mitsubishi Electric Power Products, Inc.

Prior Research & Challenges

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

Power Cell

Complexity due to the use of LV power modules

Project Summary

- Reliable MVP Reliable Standardized MV Power Building Block
- Standard 100 mm x 140 mm module package to enable wider adoption

 Standard full-bridge topology – the most widely used building block topology for grid-tied MV power electronic systems

3300 V LM CAB600M33LM3 GE17080CDA3

SEMITRANS20 High

High Power next Core (HPnC)

Switching Power (kW)

Project Summary

Performance

Reliability

2000

1500

1000

500

0

Voltage (V)

Testing Conditions: 1800Vdc, 300A, 25C

Project Summary

- Task 1: Design and fabricate an MVP building block using 3.3kV power modules
- Task 2: Performance validation of the prototyped MVP building block
- Task 3: Reliability assessment and data collection

MVP Building Block(s)

4x Modules version MVP+

Module Level Switching Characterizations

 62μ
 64μ
 66μ
 68μ
 7μ
 72μ
 74μ
 76μ

 Turn-off switching transient

Turn-on switching transient

Diode Reverse Recovery

MVP Building Block Testing and Validation

Dual Active Bridge (DAB) Configuration

DAB Design Specification: 1.8 kV DC-Link (@ 100 kW)		
Prim./Sec. Voltage (±10%)	±1.8 kV [1620V 1980V]	
Transformer Turns Ratio Ntr	1:1	
Nominal Power (Expected Eff. 0.95)	100 kW	
Max. Power of DAB in Theory (Nominal Volt., Power Transfer Margin)	130 kW (30 kW)	
Transformer Rated Power (Design)	100 kW	
Switching Freq. fsw	10 kHz	
Series induct. L _{s,max}	311 µH	
Prim./Sec. Side Device	1.8 kV HB	

MVP Building Block Testing and Validation

Thermal Management and Online Monitoring

Case temperature monitoring method

Apply TIM to power module

MVP Building Block Testing and Validation

Measurement	Probe	Specs
All electrical measurements	MSO58/MSO58B	500 MHz Scope
VDC	THD0100	6 kV, 100 MHz differential probe
IDC	701933	Yokogawa 30 A/50 MHz
Line-line voltage	THD0100	6 kV, 100 MHz differential probe
Line current	701931	Yokogawa 500 A/2 MHz
Inductor phase voltage	THD0200	1.5 kV, 200 MHz differential probe
Inductor current	TCP404XL	Tektronix 500 A/2 MHz
Case thermocouples	K1X-WBWX-40G- EX-0.25-PFXX-80-S	Micro Beaded Thermocouple Type K
Temperature measurements	NI 9213 cDAQ	16-Channel, 75 S/s Aggregate, ±78 mV

THANK YOU

This project was supported by the Department of Energy (DOE) -Office of Electricity's (OE), Transformer Resilience and Advanced Components (TRAC) program led by the program manager Andre Pereira (OE), Eric Miller (Office of Energy Efficiency & Renewable Energy), and the Grid Modernization Initiative.

Backup Slides

Acronyms

Insert any acronyms used and the associated definitions here.