

Development of Medium Voltage Intelligent Power Stage (IPS) — Phase II

Principal Investigators: Rolando Burgos, Dong Dong Affiliation: Center for Power Electronics Systems (CPES) Virginia Tech

Function of Present and Future Substations

Present Substations

Future Solid State Power Substations (SSPS)

13.8kV

-101

SSPS and the SUPER + IPS Vision

E.g., Silicon-Carbide (SiC) Based IPS Topology

AC-DC

2-level voltage-source

converter with split dc-bus

- DC-DC
 - 3-level buck-boost dc-dc converter
 - Accessible internal dc bus

Specifications

- 50 kW, 75 kVA
- 480 V ac, 60 Hz
- 900 V dc-in
- 500 1,000 V dc-out
- $f_{sw} = 30 \text{ kHz}, \eta = 98 \%$

IPS Demonstration

75 kVA IPS Unit in NEMA Enclosure

Center for Power Electronics Systems

Project Summary

Objective

To showcase the inherent increase in resiliency and reliability that IPS units can bring, not just to IPS-based solid state power substations (SSPS), but to the electrical power system (EPS) where they operate

Scope

- Failure mode and effect analysis (FMEA) of IPS and IPS-based SSPS
- Devising the corresponding protection systems commensurate with their fast dynamics
- Developing the insulation strategy necessary for the IPS unit to operate in electrical systems of up to 33 kV rms
 - The main IPS power supply concept will be developed, which should withstand the peak voltage with respect to ground

Modular Power Conversion Principle— Why?

Principle

>To ease the voltage and current scaling capability of power converters

At the system level

>To improve the flexibility and expedite the integration of electrical systems

E.g., Modular Power Converter Topologies

Modular SiC-based MV Converters

Impedance Measurement Unit (IMU) 10 kV, 120 A, Gen1 SiC MOSFET modules 4.16 kV AC, 2 MVA 3 PEBB units in series or parallel

3-Phase AC-DC MMC 1.7 kV, 200 A SiC MOSFET 1 kV, 200 kW 6 PEBB units in bridge

Center for Power Electronics Systems

16 x 6 kV PEBB

H-Bridge MMC Demo 10 kV, 240 A SiC MOSFET 24 kV DC, 2 MW

Aug. 14, 2024

PACE

Design Challenges in High Power Density Modular Medium Voltage Power Converters

Electromagnetic Compatibility

 Heightened EMI emissions due to the high switching frequency, fast dv/dt, and large parasitic capacitances to ground

CM Ground Currents

Pervasive CM currents that can alter the power flow in the converter operation

Insulation

- Lack of insulation strategies and guidelines compatible with medium-voltage and PWM excitation
- Electromagnetic Devices & Ancillary Circuitry
 - Lack of power components and ancillary circuitry designed to operate in medium-voltage and PWM excitation
 - > E.g., inductors, capacitors, bus bars, interconnects, gate-drivers, sensors, power supplies, controllers

PACE

E.g., Auxiliary Power Architecture of MMC PEBB

Technical Specifications

AC System

Line voltage: 33 kV rms

IPS Auxiliary Power Supply

- Insulation voltage: 50 kV
- Partial Discharge Inception Voltage (PDIV): > 55 kV peak
- Output power: 100 W
- Input voltage: 48 V
- Output: 48 V

PACE

Literature Survey

Series-Parallel Resonant Converter

Center for Power Electronics Systems

Parallel and Coaxial Coils

Multi-Objective Optimization

Aug. 14, 2024

Embedded

Ferrite

Literature Survey—Multi-Stage WPT

- Multi-stage WPT unit with repeater coils
- Compensation via inductor and capacitors can be designed
- Ferrite end-terminal shields

200 kHZ Operating Frequency

. . .

PCB-Embedded Multi-Stage WPT Unit

Next Steps

PCB-Embedded WPT Unit

- Improve coil-to-coil impedance compensation network to increase efficiency and voltage gain
- Optimize design to meet electric field constraints, minimize inputoutput capacitance, and maximize efficiency and power density
- Build and demonstrate power supply

SSPS Impact on Resiliency and Reliability

- Failure mode and effect analysis of the IPS and SSPS
- SSPS and EPS Computer and Real-Time Simulations-Based Resiliency and Reliability Improvement Quantification

ACKNOWLEDGMENTS

This project was supported by the Department of Energy (DOE) -Office of Electricity's (OE), Transformer Resilience and Advanced Components (TRAC) program led by the program manager Andre Pereira (OE), Eric Miller (Office of Energy Efficiency & Renewable Energy), and the Grid Modernization Initiative.

Development of Medium Voltage Intelligent Power Stage (IPS) — Phase II

Principal Investigators: Rolando Burgos, Dong Dong Affiliation: Center for Power Electronics Systems (CPES) Virginia Tech