PALCE

MERIT PACE Meeting= =
PNNL 7

PNNL Principal Investigator: Rohit Jinsiwale, Wei Du /
PNNL Team: Sheik Mohiuddin, Minghui Lu, Jan Westman, Fahmid Sadeque




MV Converters — Value/Challenges

» Tremendous value: » Challenges:
B Power Density H Control
B Ease of replacement B Coordination
B System Control — P/Q, Voltage, Impedance B [ntegration

B TriPort applications B Vulnerability

B Resource Integration

» Emergent and ensemble behaviors under various
conditions

» Protections schemes/ controllers and their coordination

» Secondary level control to support system level impact

» Control/sensing and coordination ¥ | DISCONNECTION/LOSS OF POWER

» Vulnerability and attack graphs



Impact Analysis

PNNL

» Conduct studies to determine system level impact in
supporting decarbonization, flexibility, stability and
added grid services (power flow control,
voltage/reactive power support, grid-forming
capability, congestion relief).

» Develop secondary control algorithms to support and
coordinate intelligent control of multiple MPSSDs on
the MV grid operating with various objectives.

» Analyze impacts on system level locational pricing
due to added flexibility
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Control and Communication

» Correct control and coordination algorithms for

» Power flow control

» Voltage Control

» Microgrid islanding

» Multiport/ EV charging
» LMP/DLMP levelling

» Telemetry and communication for control
» Protocol stack — DNP3/Modbus

» Attack graphs and vulnerability
» System modes that can be influenced
» Failure modes
» Device vulnerability
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Approach

> Fidelity level
> Realism

» Impact studies
> Vulnerability
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Cyber-Physical twin

Adverse Conditions and Impact
Define Level of Fidelity to Capture Impact

Meaningful Datasets and Experiments



High-Fidelity Cyber-Physical Testbed

1 - Simulators; 2 - Controls & Controllers; 3 — Relays; 4 — Physical subsystems & PHIL; 5§ - Communication network (physical /simulation)
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System Emulation

» Physical Process Emulation
* Hardware-in-the-loop modeling
* 3 Opal-RT simulators with 1/O capabilities (25 + cores)
» Large scale simulation (systems with over 1000 nodes)
+ HVDC emulators (FPGA based emulations)

» SCADA Capability and Automation
- SELRTAC
« OPC Server
»  Support for Modbus, DNP3, and many other protocols
» Multi-vendor power devices (RTU, relays,
meters, microgrid controllers, PMUs)

Model Size (# buses)

11 SEL

« T7ABB

« 5GE

* 4 Siemens
 3other

» 5 Building Controllers (ability to connect with

Annex)
» 12 + many software other PLCs
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» Energy System

SCADA environments

Support for legacy communications
Synchrophasors

Energy Management System

» Attack Scripting
MITRE Framework

Ability to emulate numerous aspects
of the kill chain.

Man-in-the-middle
Command injection

Network Emulation

» Network Virtualization & Emulation
Construct typical network topologies on cloud stack
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High-Fidelity Adaptation

> Develop high-fidelity models for MV converters on PNNL’s
testbed using CPU+FPGA based techniques

>

>
>
>

I
I
» Test novel controls using CHIL approaches :
» Allows real controller code deployment I
I
I
I
I

>

Emulate detailed converter dynamics at high-fidelity on the
FPGA (~10-20 ns)

Emulate control, inputs, grid interfaces on the CPU
Multi-rate simulation with detailed switching dynamics.

Being leveraged to model Solid-state transformers and their,
system level impact (GMLC).
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Inverter behavior can be realistically tested under varying
power system conditions




PNNL Task 1: Survey existing MV
converter topologies and applications

CHE-DAR Movdwle 7

Topology 1
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Source: J. Choi, J. P. Pinto, M. S. Chinthavali and A. Adib, "Medium Voltage Energy Hub Based on Multilevel Cascaded H Bridge-Dual
Active Bridge Back-to-Back Converter for Power Distribution Feeders Interconnection and Multiple Simultaneous Grid Services,"

» Modularity — stacked approach

» Scalability — multi-level to realize MV

» Amenable to trip-port applications
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MV Active Front End Converter

Dual Active Bridee Active Front End Converter: LV

Source: Agarwal, et.al. (2021). Design considerations of 6.5kV enabled three-level and 10kV enabled two-level medium voltage SST

» Lower component count

» Three-phase application specific topology
» Higher device stress



CHB-DAB — Optimized Real-time Models
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» Validated the building block at a 2us timesteps.

L » Validated bidirectional power flow application.
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» Working with partner (OPAL-RT) to realize
stacked MV topology on FPGA

(b) Active Power of Converter2
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Fig: Topology of the 7-level cascaded converter.

Active-reactive power tracking performances.
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The cascaded converter can successfully track the active
and reactive power reference injections into the grid.



MV Converters — EV Charging Applications

S
PWM Rectifier Three-phase DAB EV Charging
DT woltage: 25k Output voltage: 3kV
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» Validated the building block at a 5us
timesteps.

» Validated bidirectional power flow
application.

» Working with partner (OPAL-RT) to
realize stacked MV topology on FPGA

HYPERSIM
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- Time step: 5us

- DAB switching freq.: 20kHz

Rectifier switching freq.: 5kHz
- Transformer ratio 10:1

Medium-voltage grid (LL)
-13.8 kv

DC voltage after PWM rectifier
-25 kv

Output voltage
-3 kv

A resistive load
-75A



High-Fidelity Implementation Techniques

» Focusing on analyzing the computational load to realize building blocks
» Explored CPU + FPGA based modelling capabilities in OPAL-RT platforms.
» Pivoted to eFPGAsim as a platform of choice.
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PNNL/OPAL-RT’s Development Plan for
MERIT SST Topology

RT-LAB-based VSC toolbox HYPERSIM-based VSC toolbox

N AN
-

CPU model FPGA model Controller T ape— Merge the Whole system
proof of development development tost model to test and case
concept and validation P HYPERSIM studies
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4 A Performed initial Currently working Integrate a small-scale Integrate a small- Integrate multiple
benchmarking of on understanding CPU-based RT-LAB scale CPU-based instances of the
Completed capability to fit 3-4 the existing VSC model with the FPGA HYPERSIM model FPGA-based MPSSD

developing 3-phase,
3-stage SST with
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Working on configuring

toolbox
implementation on
the FPGA and

- e e —

implementation to
perform a simple
validation test as a

- e = = —

with the FPGA
implementation to

T

into a larger
HYPERSIM model to

MERIT topology with S o
example controller defaultpOPAgIY-RT implementing cerms e SysEm perform validation perform v:?\lldatlon
control MERIT SST control studies
. J \_ strategy N . N y .

T



Progress: OPAL-RT

» Developed a CPU-based model in Simulink for demonstrating proof of concept
» OPAL-RT’s VSC toolbox example (CPU-based model) was modified to fit one of the MERIT SST topologies
(3-phase, 3-stage)
» Existing control strategy from the example was used to demonstrate stable results
» Work is in progress to implement the control approach used for the MERIT SST topology

Preliminary simulation results
Diagram of MERIT SST Y
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Progress Summary

* Task 1 —Survey MV SST Topologies

* Identified two key topologies of interest that could serve a variety of

system level applications being explored.

* Specific aspects of control and implementation were analyzed and
discussed with vendor partner OPAL-RT to understand high-fidelity
implementation requirements.

* Task 1 Milestones are on schedule
* Task 2 — Survey high-fidelity implementation techniques

* Developed building block models to understand scalability concerns
from a real-time implementation perspective.

* Explored OPAL-RT’s VSC toolbox that can enable building blocks to
be directly implemented in FPGA based environments.

* Currently working on implementing the models using FPGA based
techniques and benchmarking them against models developed on
CPU based platforms.

. . Scheduled
Description .
Completion

PNNL.1.1

PNNL.1.2.

PNNL.1.3.

PNNL.1.4.

Survey existing MPSSD topologies and  On schedule and
applications completed

Survey high-fidelity implementation Initial

techniques to realize MPSSDs in high-  evaluations

fidelity OPAL-RT platforms. completed with
vendor partner.
Implementation
on schedule.

Create an MV network with MPSSDs BP2Q1

modeled at key interfaces like electric

vehicle charging stations, PV+ Storage

applications and as microgrid

interfaces.

Implement a secondary BP2Q2

control/communication framework to

coordinate and control multiple

MPSSDs in PNNL’s testbed.





