

OFFICE OF CLEAN ENERGY DEMONSTRATIONS

FLOW BATTERY BASED LONG DURATION ENERGY STORAGE DEMONSTRATION (CMBlu Energy)

Dan Dobrzynski Argonne National Laboratory Transportation and Power Systems Kevin Gering Idaho National Laboratory Energy Storage Technology **Giovanni Damato** CMBlu Energy Inc. President

Energy Storage Grand Challenge Summit - Aug. 8, 2024

CMBlu Energy

We empower the world with unlimited energy storage inspired by nature.

Organic SolidFlow batteries

Utilize carbon-based molecules and combine elements of solid-state and flow battery technologies to enable a first-of-a-kind energy storage solution.

No Fire or Explosion Risk

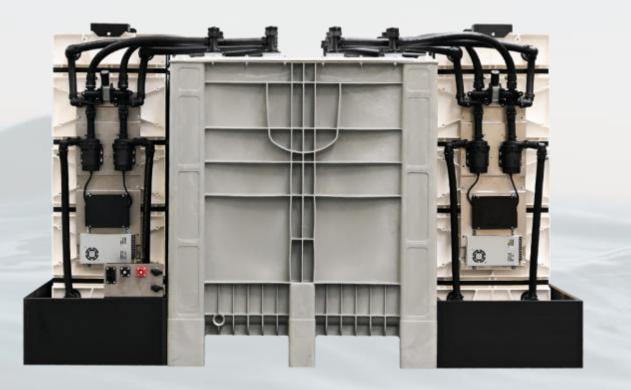
No Toxic Fumes

Moderate pH

No Rare or Conflict Materials

Recyclable and Reusable

Small Modular Footprint


Reliable and Robust Supply Chain

Local, Abundant Materials

Standard Components found in Automotive Industry

5 – 10+ Hour System

10 – 24+ Hour System

- 40 kW, 200 kWh
- Plug & Play
- UL 1973

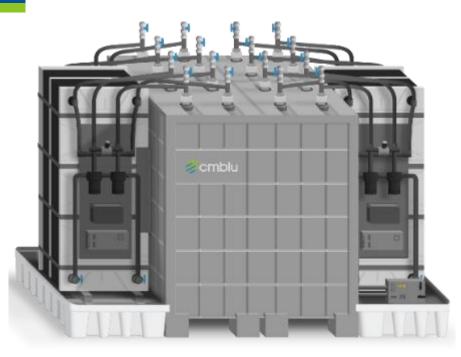
- CE-marked
- Footprint 27ft²
- Stackable =>27ft²/MWh* (Tesla 42ft²/MWh)

- 20 kW, 200 kWh
- Plug & Play
- UL 1973

- CE-marked
- Footprint 22ft²
- Stackable =>22ft²/MWh* (Tesla 42ft²/MWh)

Energy Storage Warehouse

System Overview: Multi-String Configuration


Cycle Life	> 20,000 ⁽¹⁾	
Scalability	Modular & Stackable	
Energy Density	200 Wh/kg	
Storage Time	Multi-hour to days	
Efficiency	Up to ~90%	
Max Capacity	Up to GWh range	
Footprint	27 ft²/MWh	
Commercial Readiness	Q4 2024	

Source: Company estimate, CMBlu Energy company model and TÜV SÜD. (1) CMBlu project life reflects 20 years and 3 cycles per day or 21,000 cycles. Li-ion project life reflects 7,000 cycles and 2 cycles per day / 1 cycle per day over the life of the project for a project life of 10 and 20 years.

DESCRIPTION OF MODULE TESTING MATRIX (INL)

Product specification: CMBlu BESS			
Product Version: prototype			
Project Specifications (8 modules per string)			
Rated Power	120 kW		
Rated Energy Capacity	1200 kWh		
Surge Power	280 kW		
Number of Strings	2 (2 parallel inverters)		
Electrical data per string			
Maximum DC voltage	1150 VDC		
Minimum DC voltage	720 VDC		
Nominal DC voltage	730 - 1130 VDC		
Rated power	60 kW		
Grid connection	480 VAC, +/- 10% @ 60Hz		
Inverter product	PowerBRIC	LS Energy Solutions	
name/type	GEN 2	Final inverter TBD	
Total energy capacity	600 kWh		
Efficiencies per string			
Round-trip efficiency	70 %		
(full cycle) AC-AC			

Our analyses will be supported by our **DeepLynx Digital Twin** architecture and a **techno-economic analysis** on grid stability.

Testing Summary:

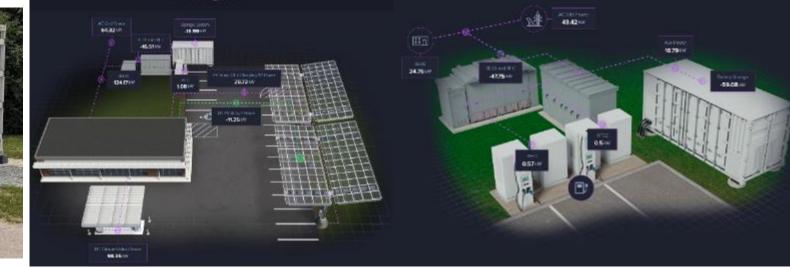
- LDES Performance validation at RT
- LDES Performance evaluation from 10 to 40 °C.
- Cold start vs Warm Standby modes, 10 to 40 °C.
- Simulated field conditions (per EPRI recommendations).

What we Hope to Learn: *Mission Readiness*

- Startup time per mode (cold start versus warm standby),
- Energy delivery and efficiency vs Temperature (10-40°C),
- Energy delivery and efficiency vs Discharge Power.
- Critical Gains: operational envelopes over T, power load, duration etc. that will match capabilities to applications.

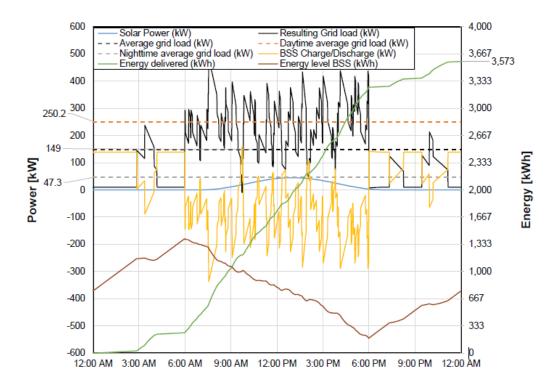
We will help advance TRL from 6 to 7-8 and identify candidate field applications.

IDAHO NATIONAL LABORATORY


CMBIU ENERGY LDES INSTALLATION SITE (ANL) FULL-SCALE UNIT

Smart Energy Plaza

- EV Charging and DER Research Testbed
 - (12) AC Level 2 & (4) DC Chargers
 - (2) DC 350kW Chargers
 - 600kWh BESS to be decommissioned
 - (2) 40kW PV Arrays
- CIP.io Custom open-source IOT backend
- OPAL RT Simulation Platform for HIL experiments


LDES OPERATIONAL EVALUATION (ANL)

General Performance

- Use-case independent performance benchmarking
 - Rated Discharge Power(Sustained/Peak)
 - Rated Charge Power (Sustained/Peak)
 - Charge/Discharge Durations
 - Roundtrip efficiency
 - Start-up/Response times, Ramp Rates

Application and Use-case Testing

- Primary Use-case Enabling EV Fast Charge Site
 - Net Load Limiting defer interconnection upgrade
 - Net Load Peak Limiting demand charge reduction
 - Net Load Energy Shifting Time-of-use cost reduction
- Secondary Use-case #1 EV Fast Charge Resilience
 - Load pickup response to outage
 - Load Following Manage on-site supply/demand balance
 - PV DER and EV Charging

- Secondary Use-case #2 Wholesale Markets
 - Day-ahead energy time-shift
 - Real-time energy time-shift
 - Spinning Reserve
 - Frequency Regulation

To be supported by LCA/TEA tools.

Closing Thoughts.....Community Outreach

Engaging our communities as early as possible

Identify Stakeholders and Community Partners

- Illinois Alliance for Clean Transportation
- Drive Clean Indiana
- ANL's Applied Research, Education & Deployment Group
- ANL's Office of Community Engagement
- Idaho agricultural, rural, tribal and utility stakeholders

Collaborative Efforts

- Understand barriers/concerns for technology adoption/liftoff
- Work together to identify tangible benefits metrics
 - Environmental considerations
 - Enabling EV charging access
 - Grid Resiliency
 - Workforce development opportunities

Host Demo Days

- Host on-site demonstrations community members, local industries, organizations, and stakeholders
- Technology showcase, potential impacts, start the conversation mechanisms for adoption

Thank you for your Attention!

