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Issues with Series-connected Systems
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= Comms typically used since grid voltage is not directly measurable by each converter
= Centralized controls bring single point of failure

" Wiring for top-down controls bring isolation-related issues & noise high dv/dt



What We Will Show Today

= A PLL is not needed for grid synchronization during operation
= Can get automatic voltage & power sharing

= Modularized control is possible



Some Prior Related Works
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= Centralized controls done in many papers such as [1]
= Decentralized controls for islanded setups [2]

= Grid-connected setup but reactive power stability unaddressed [3]

1 Zhao, Wang, Bhattacharya, Huang, “Voltage and power balance control for a cascaded H-bridge converter-basedssolid-state transformer,” TPEL, 2012.
2 He, Li, Liang, Wang, “Inverse power factor droop control for decentralized power sharing in series-connected-microconverters based islanding microgrids,” TIE, 2017.

[3] Hou, Sun, Zhang, Zhang, Lu, Blaabjerg, “A self-synchronized decentralized control for series-connected H-bridge rectifiers,” TPEL, 2019.



System Description
and Model



Setting the Stage for AC Side Modeling
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= Upstream structure abstracted away & focus on one leg of H-bridges from here forward



Setting the Stage for AC Side Modeling

= Upstream structure abstracted away & focus on one leg of H-bridges from here forward



Modulate Switch Terminals to Mimic Thevenin Equivalents
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Equivalent AC Side Model

Power delivered by j-th source

N
ViV ViV
P, = = cos (0 + 0f) — -5 cos (0, + 0f),
J § Zf ( gk f) Zf ( Ja f)
N
ViV . ViV
;= sin (0.5 + 0;) — —==sin (0, + 6;),
QJ ; 7 ( Ik () Z ( ES r)
where

93'_:“ = ﬁj — 9;‘;} Zfiﬁf — f\fTRV -+ ijL.

H-bridge 1

H-bridge 2
P, Q2 Ry

H-bridge N
P!""«"'. Q,N Hv

170

10



Equivalent AC Side Model

Pick virtual resistance s.t. NR, > w,L & we get
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Above relations imply these droop laws for control:
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Stability Analysis
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System Equilibria for Basic Droop + Thevenin Control

Assume steady-state with equal power/voltages Viom
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Small-signal Model for Basic Droop + Thevenin Control

Linearize around steady-state voltages/angles.

Angle stability driven by Q-w droop, estimate @Q as
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Small-signal Model for Basic Droop + Thevenin Control

Plug in droop, ?)H: I{Q(@ — Qyet) » and rework as
gz Ag—l— Béjref.

Eigenvalues of A look like
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New Controller with Basic Droop + Thevenin Control + State-Feedback

Use pole-placement method to stabilize system. Viom

.o ~ ~ —~ i — . M{J"‘KI*"'CS—*_ Vi V2 - L
Rejigger = Af + BQres 95 0 = (A+ F)0+ BQ™ Wy ]'}lecnﬁ{-J AT "B L 0000

A— = ] i
where Q..; = Q* + (kq/Kq)# now gives the setpoint. | |~ ko = /1~ 5. Ty <> EE 1
I{Q —— p.(lg__!_ I — i

Choose diagonal F for decentralized implementation %Pl ~
F = kq _? | (,]_ 7 i @ﬂl’g cos fl,

— Ky | o

0 --- 1

New eigenvalues look like
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Straightforward to pick stabilizing k. See [1] for details.

[1] Dutta, Lu, Mallik, Majmunovic, Mukherjee, Seo, Maksimovic, Johnson, “Decentralized control of cascaded H-bridge inverters for medium-voltage grid integration,” COMPEL, 2020 16



Example Application
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Proposed EV Fast-charging System With Grid Support Functions

= Direct medium-voltage interconnection
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Proposed EV Fast-charging System With Grid Support Functions

= Distributed stationary storage to smooth out grid-side demand & reduce distribution capacity
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Proposed EV Fast-charging System With Grid Support Functions

Dc and ac side controls work together and mimic power low pass filter from grid perspective

EV Fast Charging System
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Proposed EV Fast-charging System With Grid Support Functions

= Distributed stationary storage to provide real /reactive power to support grid

EV Fast Charging System
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Proposed EV Fast-charging System With Grid Support Functions

=  Modular physical structure and with mostly decentralized controls

\

\ EV Fast Charging System
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Simulation of EV Fast-charging System

= Automatic battery balancing controls while charging/discharging stationary storage

= 5 units in series across 4.16 kV grid with total rating of 100 kVA
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Related References from Our Team
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Mallik, Majmunovié, Dutta, Seo, Maksimovic, Johnson, "A Lyapunov-based generalized DC-side controller design for PV-connected systems" ECCE, 2022.

Majmunovié, Mukherjee, Martin, Mallik, Dutta, Seo, Johnson, Maksimovi¢, Dragan, "1 kV, 10-kW SiC-based quadruple active bridge DCX stage in a DC to three-phase
AC module for medium-voltage grid integration" TPEL, 2022.

Dutta, Lu, Majmunovié, Mallik, Seo, Maksimovié, Johnson, "Grid-connected self-synchronizing cascaded H-bridge inverters with autonomous power sharing" ECCE, 2021.
Dutta, Majmunovié, Mukherjee, Mallik, Seo, Maksimovié, Johnson, Brian "A novel decentralized PWM interleaving technique for ripple minimization in series-stacked DC-
DC converters" APEC, 2021.

Mukherjee, Majmunovié, Seo, Dutta, Mallik, Johnson, Maksimovié, Dragan, "A high-frequency planar transformer with medium-voltage isolation" APEC, 2021.

Dutta, Lu, Mallik, Majmunovié¢, Mukherjee, Seo, Maksimovié, Johnson, "Decentralized control of cascaded H-bridge inverters for medium-voltage grid integration”
COMPEL, 2020.

Majmunovié, Mukherjee, Mallik, Dutta, Seo, Johnson, Maksimovié, Dragan, "Soft switching over the entire line cycle for a quadruple active bridge DCX in a DC to three-
phase AC module" APEC, 2020.
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transformerless photovoltaic converters" ECCE, 2019.

Dutta, Mallik, Majmunovié¢, Mukherjee, Seo, Maksimovié, Johnson, "Decentralized carrier interleaving in cascaded multilevel DC-AC converters" COMPEL, 2019.

Mukherjee, Gao, Ramos, Sankaranarayanan, Majmunovié, Mallik, Dutta, Seo, Johnson, Maksimovié, Dragan, "AC resistance reduction using orthogonal air gaps in high
frequency inductors" COMPEL, 2019.

Mallik, Majmunovié, Mukherjee, Dutta, Seo, Maksimovié, Johnson, "Equivalent circuit models of voltage-controlled dual active bridge converters," COMPEL, 2019.
Achanta, Johnson, Seo, Maksimovié, Dragan, "A multilevel DC to three-phase AC architecture for photovoltaic power plants”" TEC, 2018.
Achanta, Sinha, Johnson, Dhople, Maksimovié, Dragan, "Self-synchronizing series-connected inverters" COMPEL, 2018.
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Thanks for your attention!

Brian Johnson

b.johnson@utexas.edu
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