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Brian’s IEEE Style Guide

▪ What better place to wear my IEEE Transactions on

Power Electronics shirt than the PACE meeting??
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Issues with Series-connected Systems

▪ Comms typically used since grid voltage is not directly measurable by each converter

▪ Centralized controls bring single point of failure

▪ Wiring for top-down controls bring isolation-related issues & noise high dv/dt
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What We Will Show Today

▪ A PLL is not needed for grid synchronization during operation

▪ Can get automatic voltage & power sharing

▪ Modularized control is possible
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Some Prior Related Works

▪ Centralized controls done in many papers such as [1]

▪ Decentralized controls for islanded setups [2]

▪ Grid-connected setup but reactive power stability unaddressed [3]

1 Zhao, Wang, Bhattacharya, Huang, “Voltage and power balance control for a cascaded H-bridge converter-basedssolid-state transformer,” TPEL, 2012.

2 He, Li, Liang, Wang, “Inverse power factor droop control for decentralized power sharing in series-connected-microconverters based islanding microgrids,” TIE, 2017.

[3] Hou, Sun, Zhang, Zhang, Lu, Blaabjerg, “A self-synchronized decentralized control for series-connected H-bridge rectifiers,” TPEL, 2019. 5
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System Description 

and Model



Setting the Stage for AC Side Modeling

▪ Upstream structure abstracted away & focus on one leg of H-bridges from here forward
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Setting the Stage for AC Side Modeling

▪ Upstream structure abstracted away & focus on one leg of H-bridges from here forward
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Modulate Switch Terminals to Mimic Thevenin Equivalents
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Equivalent AC Side Model

Power delivered by j-th source

where
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Equivalent AC Side Model

Pick virtual resistance s.t. & we get

where & we assume small angle differences.

Above relations imply these droop laws for control:
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Stability Analysis



System Equilibria for Basic Droop + Thevenin Control

Assume steady-state with equal power/voltages

and near unity power factor gives small .

Small reactive power values imply

And solving for voltage gives
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Small-signal Model for Basic Droop + Thevenin Control

Linearize around steady-state voltages/angles.

Angle stability driven by droop, estimate as

and define the vectors

Rewrite equation above as where
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Small-signal Model for Basic Droop + Thevenin Control

Plug in droop, , and rework as

Eigenvalues of A look like

where is a constant. N-1 eigenvalues in LHP when

H bridges may only absorb power. Too restrictive!
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New Controller with Basic Droop + Thevenin Control + State-Feedback

Use pole-placement method to stabilize system.

Rejigger as ,

where now gives the setpoint.

Choose diagonal F for decentralized implementation

New eigenvalues look like

Straightforward to pick stabilizing . See [1] for details.

[1] Dutta, Lu, Mallik, Majmunovic, Mukherjee, Seo, Maksimovic, Johnson, “Decentralized control of cascaded H-bridge inverters for medium-voltage grid integration,‘’ COMPEL, 2020 16
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Example Application



Proposed EV Fast-charging System With Grid Support Functions

▪ Direct medium-voltage interconnection

18



Proposed EV Fast-charging System With Grid Support Functions

▪ Distributed stationary storage to smooth out grid-side demand & reduce distribution capacity
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Proposed EV Fast-charging System With Grid Support Functions

▪ Dc and ac side controls work together and mimic power low pass filter from grid perspective
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Proposed EV Fast-charging System With Grid Support Functions

▪ Distributed stationary storage to provide real/reactive power to support grid
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Proposed EV Fast-charging System With Grid Support Functions

▪ Modular physical structure and with mostly decentralized controls
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Simulation of EV Fast-charging System

▪ Automatic battery balancing controls while charging/discharging stationary storage

▪ 5 units in series across 4.16 kV grid with total rating of 100 kVA
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5. Dutta, Majmunović, Mukherjee, Mallik, Seo, Maksimović, Johnson, Brian "A novel decentralized PWM interleaving technique for ripple minimization in series-stacked DC-

DC converters" APEC, 2021.
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7. Dutta, Lu, Mallik, Majmunović, Mukherjee, Seo, Maksimović, Johnson, "Decentralized control of cascaded H-bridge inverters for medium-voltage grid integration" 

COMPEL, 2020.

8. Majmunović, Mukherjee, Mallik, Dutta, Seo, Johnson, Maksimović, Dragan, "Soft switching over the entire line cycle for a quadruple active bridge DCX in a DC to three-

phase AC module" APEC, 2020.

9. Goodrick, Seo, Mukherjee, Roy, Mallik, Majmunović, Dutta, Maksimović, Johnson, "LCOE design optimization using genetic algorithm with improved component models
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10. Seo, Mukherjee, Roy, Goodrick, Mallik, Majmunović, Dutta, Maksimović, Johnson, "Levelized-cost-of-electricity-driven design optimization for medium-voltage 

transformerless photovoltaic converters" ECCE, 2019.

11. Dutta, Mallik, Majmunović, Mukherjee, Seo, Maksimović, Johnson, "Decentralized carrier interleaving in cascaded multilevel DC-AC converters" COMPEL, 2019.
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14. Achanta, Johnson, Seo, Maksimović, Dragan, "A multilevel DC to three-phase AC architecture for photovoltaic power plants" TEC, 2018.

15. Achanta, Sinha, Johnson, Dhople, Maksimović, Dragan, "Self-synchronizing series-connected inverters" COMPEL, 2018.

16. Achanta, Maksimović, Johnson, "Cascaded quadruple active bridge structures for multilevel DC to three-phase AC conversion" APEC, 2018.



Thanks for your attention!

Brian Johnson 

b.johnson@utexas.edu
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