FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR

August 21 – August 22, 2024

Welcome to the Summer 2024 FUPWG Seminar – Day 2!

The opening Welcome & Announcements from FEMP will begin at 8:20AM CT

Welcome and Announcements – FUPWG Day 2

John Michael Forrest DOE FEMP Program Manager August 22, 2024

Welcome to FUPWG Day 2!

- Highlights from Day 1
- Thank you to CenterPoint Energy for a great networking event!
- Please wear your badge at all times. Your badge is required for entry.
- Lunch
 - Will not be provided today, but there are several nearby options.
- Special Session 1: Energy Lawyers and Contracting Officers Forum (Open to all FUPWG Attendees) 1:00PM – 2:30PM CT

Slides will be posted to the FUPWG website within 2 weeks.

FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR

August 21 - August 22, 2024

Priority Setting: DOE's Secretary's Performance Contract Challenge

Skye Schell, DOE FEMP on Behalf of the Sustainability Performance Office, Office of Management DOE

Secretary's Performance Contract Challenge

Memorandum signed July 3, 2024

• Requires the Department to

- Leverage \$100M/yr in performance contracts (PC)
 - o IGAs for new projects or task orders
 - ESPC, ENABLE, UESC
 - Leverage all available funding sources PCs, appropriations, AFFECT, developer rebates, etc.
- Integrate performance contracting into facility portfolio planning and budgeting
- Start with the presumption that ECMs will be implemented through PCs; ensures compliance with Energy Act of 2020 requirements
- SPO and FEMP provide support

• Projects will meet DOE sustainability goals

- Net-Zero Buildings (ECMs, electrification)
- CFE (onsite solar PV)
- Resilience (microgrid pilots)

And the second second		The Secretary of Energy Washington, DC 20585 July 3, 2024
		502y 5, 2021
	MEMORANDUM FOI	R THE DISTRIBUTION LIST
	FROM:	JENNIFER GRANHOLM
	SUBJECT:	Maximizing the Use of Performance Contracting

Executive Order (E.O.) 14057, Catalyzing Clean Energy Industries and Jobs Through Federal Sustainability, directs Federal agencies to lead the transition towards a sustainable, secure, and cabon-neutral fluture. The E.O. sets ambitious goals, including achieving 100% carbon pollution-free electricity on a net annual basis by 2030, transitioning to 100% zero-emission vehicle acquisitions by 2035, achieving a 65% reduction in scope 1 and 2 greenhouse gas emissions by 2030 from 2008 levels, and attaining a net-zero emissions building portfolio by 2045. Additionally, the Energy Act of 2020¹ requires Federal agencies to implement 50% of their energy and water conservation measures determined to be life cycle cost-effective through performance contracts within two years of evaluation.

The Department of Energy's (DOE) operations account for approximately 20% of all greenhouse gas emissions from civilian Federal buildings, underscoring our significant responsibility to lead by example to drive change.³ To succeed, we must use all available funding sources to make needed improvements. Performance contracts, including Energy Savings Performance Contracts (ESPC), ESPC <u>ENABLE</u> and Utility Energy Service Contracts (UESC), provide an essential tool for DOE to leverage third-party financing to meet our sustainability and resilience goals. While not cost-free, these tools enable Federal agencies to implement a range of projects with little up-font cost. This is especially important given the competing priorities for appropriated infrastructure funding. DOE's use of performance contracts.

To revitalize the use of performance contracts, I am directing all affected Departmental Elements to integrate performance contracting with their comprehensive facility portfolio planning and budgeting and begin with the presumption that energy conservation measures will be implemented through a performance contract. Other sources of funding will be used if the responsible Departmental Element determines a performance contract is not viable.

 1 Energy Act of 2020, amended 42 U.S.C. § 8253(f)(4). 2 The 20% value is based on Fixcal Year 2022 data reported by DOE sites in the Annual Energy Report compared to data reported to FEMP by all Federal agencies.

Implementation

Currently

- Webinars & training
- Technical assistance, problem solving, facilitate connections with FEMP SMEs
- Support for AFFECT grant applications

Going forward

- CSO kick-off with program offices and FEMP at DOE's Sustainability Summit
- Launch DOE Performance Contract Center of Expertise
 - Leverage DOE's broad expertise (technical, procurement, legal)
 - o Best practices, innovations, solutions
 - Track & maintain progress
- Update ESPC Review Board to reflect current priorities and manage increased project load

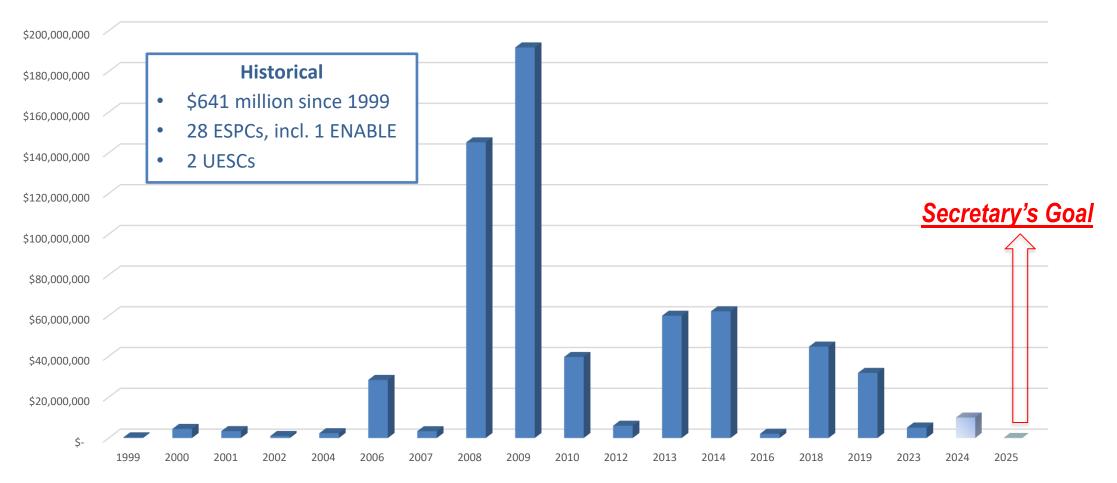
Challenges


Implementation

- Low electricity rates (~\$0.05 kWh)
- Remote locations
- Safety & security requirements

M&O structure

- Complex contract procedures & lengthy approval processes
- Some field offices lack specialized procurement expertise
- Mission takes priority
- National security facilities & sites
- High-energy facilities, incl. particle accelerators & supercomputers



DOE Performance Contract Investment

1999-present (only years with PC activity)

Federal Utility Partnership Working Group August 21–22, 2024 Houston, TX

Preliminary Pipeline

Data not yet finalized

FY 2024-25				
IGA Final or Near-Final	1			
ESCO Selected	1			
NOO/Letter of Interest Under Development	8			
UESC in Development	4			

Thank you

Contact: *Steve Bruno DOE Sustainability Performance Office* <u>sustainability@hq.doe.gov</u>

UNDERSTANDING §179D MAXIMIZATION & ALLOCATION

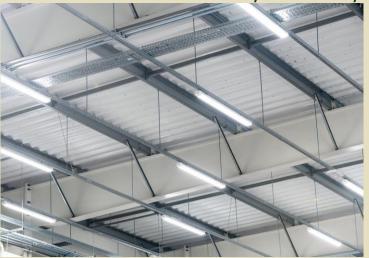
David Diaz, Managing Partner Walker Reid

OUR JOURNEY

9

WHAT IS §179D

WHY §179D IS AN IMPORTANT CONSIDERATION IN PROJECT DEVELOPMENT


HOW CAN §179D BE MONETIZED OR TRANSFERRED (COMPLIANCE AND REASONABLENESS) OPPORTUNITY TYPES

HOW TO GET STARTED!

ESTABLISHED UNDER ENERGY POLICY ACT OF 2005 (EPACT)

PROVIDES FOR A DEDUCTION OF UP TO \$1.80/SF FOR ENERGY EFFICIENT IMPROVEMENTS FOR LIGHTING/HVAC/ENVELOPE:

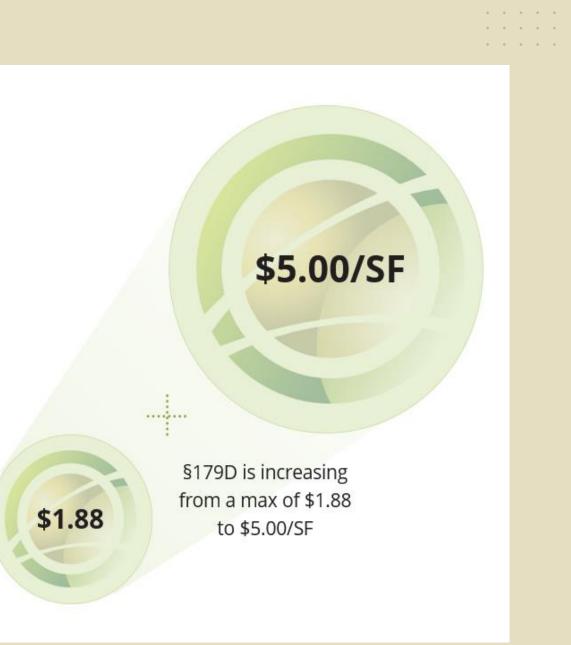
• • • • •

KEY POINTS

- INFLATION REDUCTION ACT CHANGES
- ASHRAE 90.1-2007 IS CURRENT STANDARD
- Maximum Deduction of \$0.50-\$1.00/sf, with a bonus deduction of \$2.50-\$5.00/sf if meets prevailing wage requirements
- Transfer available by tax-exempt entities (SCHOOLS/MUNICIPALITIES/LOCAL GOV/FEDERAL GOVERNMENTS/NON-PROFITS ETC.)
- Safe Harbor for PREVAILING WAGE/apprenticeship IF construction that begins PRIOR 1/30/23

Changes apply to tax years FOR PROJECTS COMPLETED after 12/31/2022

KEY POINTS


IRA 2022 §179D Changes

Key Relevant Changes- for EECBP Placed in service after **1/1/2023**

25% Reduction as starting point, with additional benefit per every percentage point improvement against ASHRAE 90.1 Standard in place 4 years prior to the date in which the building was placed in service.

		Key Relevant Changes- for EECBP Placed in service 1/1/2023		
Prevailing Wage will determine the starting point of the benefit		25% Reduction	Each additional % Point	50% or Higher
Prevailing wage & apprenticeship	Meets	\$2.50/SF	\$0.10/SF	\$5.00/SF
requirements	Does not meet	\$0.50/SF	\$0.02/SF	\$1.00/SF

7

• • • • •

Allocate/Transfer

- Allocation Letter Process
- Responsibilities under the allocation can ONLY be allocated to designers.
- Pitfalls around allocation letters
- Agency Specific requirements
- IRS's definition of Designer Per §179D Rules

A designer is a person that creates the technical specifications for installation of energy efficient commercial building property (or partially qualifying commercial building property for which a deduction is allowed under § 179D). A designer may include, for example, an architect, engineer, contractor, environmental consultant or energy services provider who creates the technical specifications for a new building or an addition to an existing building that incorporates energy efficient commercial building property (or partially qualifying commercial building property for which a deduction is allowed under § 179D). A person that merely installs, repairs, or maintains the property is not a designer.

MONETIZATION

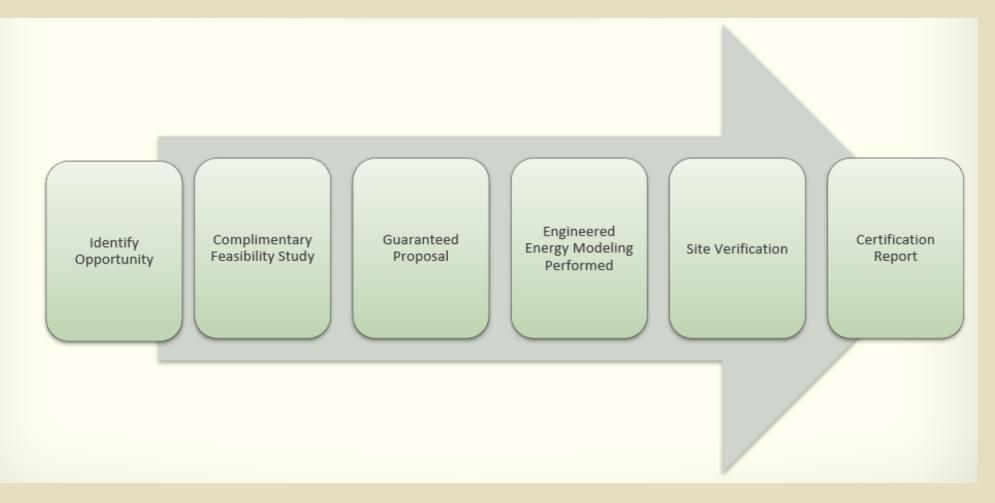
§179D SAMPLE OPPORTUNITY

Project	Square Footage	§179D Tax Deduction Rate	Total Available §179D Deduction	Designer Effective Tax Rate	Available Cash Value
Fed Bldg A	42,500	\$5.36	\$227,800.00	21%	\$47,838.00
Fed Bldg B	28,900	\$5.36	\$154,904.00	21%	\$32,529.84
Fed Bldg C	87,000	\$3.72	\$323,640.00	21%	\$67,964.40
Fed Bldg D	220,000	\$5.36	\$1,179,200.00	21%	\$247,632.00
			Total 179D Tax Deduction		\$395,964.24
			Less Value Guarantee Study		\$22,704.00
			Less Final Certification (At Completion)		\$18,920.00
			Total Remaining Deduction Value		\$354,340.24

§179D SAMPLE CASH SPLIT

total remaining cash value \$354,340.24

Tax Exempt Entites Share	Tax Exempt Entity Share %	Federal Government Benefit	Designer Benefit
Net Value to Tax Exempt Entity	80%	283,472.19	\$70,868.04
Net Value to Tax Exempt Entity	35%	\$124,019.08	\$230,321.16
Net Value to Tax Exempt Entity	30%	\$106,302.07	\$248,038.17


OPPORTUNITY TYPES

- NEW CONSTRUCTION
- ALTERATIONS/ADDITIONS
- RETROFITS/ENERGY SERVICES PROJECTS

PROJECTS THAT DO NOT QUALIFY

- SOFTWARE ONLY PROJECTS
- COMMISSIONING ONLY
- NON ENERGY SAVING MEASURES

OUR PROCESS

GET IN TOUCH

Contact us to get more info:

DDIAZ@walkerreid.com

1225 Broken Sound Parkway Suite C Boca Raton Fl, 33487

800.662.1793

www.walkerreid.com

Defense Logistics Agency Energy

Charlene Woods, Contracting Officer Bob Knudson, Contracting Officer August 2024

Mission & Vision

Mission

The Defense Logistics Agency Energy's mission is to enable mission readiness by providing globally resilient energy solutions to the Warfighter and Whole of Government

Vision

DLA Energy's vision is to be the trusted leader in innovative energy solutions aligned with the speed of change

Carbon Pollution Free Electricity (CFE)

Priorities and Objectives

Priorities for CFE Procurement

- Promote Energy Resilience¹: Support programs and investments that improve energy resilience.
- Advance CFE: Support programs, tariffs, and other initiatives that enable scaled procurement of CFE.
- Secure Fair Pricing: Seek to obtain the lowest reasonable cost for electricity based on procurement structure and local market factors.

Objectives for Market Engagement

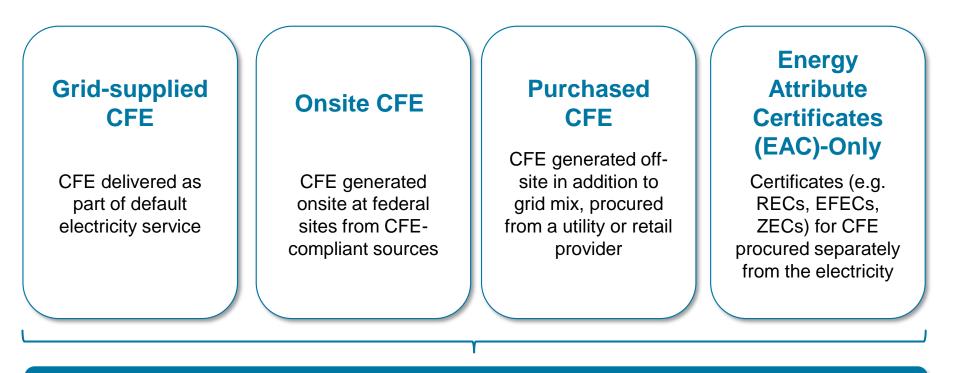
- Enroll in available programs that are compliant with E.O. 14057.
- Work with utilities to develop new CFE programs or products.
- Partner with industry for onsite development, energy efficiency or other CFE related technologies.
- In markets with retail choice, secure additional, cost effective CFE that provides resiliency benefits.

^{1.} Energy resilience is defined as "the ability to avoid, prepare for, minimize, adapt to, and recover from anticipated and unanticipated energy disruptions in order to ensure energy availability and reliability sufficient to provide for mission assurance and readiness, including mission essential operations related to readiness, and to execute or rapidly reestablish mission essential requirements", *10 USC 101(e)(6)*

Commitment to Accelerating the Clean Energy Transition

Carbon Pollution-Free Electricity (CFE) targets in EO 14057

> **100% annual CFE** use by 2030 for the federal government


> **50% hourly matched CFE** use by 2030 for the federal government

Expanded on-site generation at federal sites

1. Includes tidal, wave, current, and thermal 2. Capture and storage of carbon dioxide emissions must meet EPA requirements More information can be found in the Implementing Instructions for Executive Order 14057 Catalyzing Clean Energy Industries and Jobs Through Federal Sustainability

CFE Sourcing Strategies

Agencies are deploying four distinct, additive CFE sourcing strategies to meet 2030 CFE targets

100% CFE on an annual basis

More information can be found in the Implementing Instructions for Executive Order 14057 Catalyzing Clean Energy Industries and Jobs Through Federal Sustainability

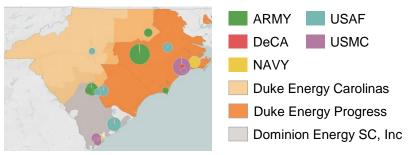
		CFE Requirements Optimize the Impact of CFE Procurements			
	GENERATING TECHNOLOGY	BALANCING AUTHORITY	PLACED IN SERVICE		
CFE Requirement	Produced by zero-carbon sources	Delivered to the same balancing authority as federal facility consumption	Generated by resources placed in service after October 1, 2021		
Rationale	Maximizes impact of electricity decarbonization targets	Ensures that unbundled EACs are physically tied to Scope 2 emissions from electricity	Increases likelihood that CFE is additive to existing decarbonization efforts		

Note: All solicitations must be compliant with all Federal Acquisition Regulations, Defense Federal Acquisition Regulation, and DLA contracting guidelines: Policy and Directives (dla.mil)
Source: EO 14057
WARFIGHTER ALWAYS

Recent DoD CFE Procurements

FPL

FY 2022 consumption¹: 850 GWh **FY 2022 on-site generation**: 10 GWh **FY 2030 grid CFE %:** 45% grid CFE **FY 2030 forecasted CFE need**² : 500 GWh / 200 MW



FPL SolarTogether is a "**subscription**" model that provided an opportunity for cost savings in year 2 of contract

DoD installations in Northwest FL have enrolled in 75 MW of existing capacity in Florida Power & Light (FPL)'s SolarTogether program, **achieving 17% of CFE need in FPL territory**.

DUKE

FY 2022 consumption¹: 1.4 TWh **FY 2022 on-site generation**: 22 GWh **FY 2030 grid CFE %:** 70% grid CFE **FY 2030 forecasted CFE need**² : 450 GWh / 200 MW

DoD contracted with Duke and a third-party developer through a "Sleeved PPA" utility tariff

DLA Energy has executed contracts for offtake from 135 MW of new-build solar capacity (COD 2027), achieving **nearly 70% of DoD's 2030 CFE need in Duke territory**.

1. FY21 meter data from installations, excludes on-site generation, rounded; 2. Remainder after accounting for existing onsite CFE generation and grid-supplied, not accounting for planned onsite CFE generation, rounded

Installation Energy

west H

shutterstock.com - 1786937360

Energy Savings Performance Contracts (ESPCs)

A contract arrangement between a federal agency and an energy service company (ESCO) to implement energy improvements that offset the price of the project

ESPC CFE Highlights

- ✓ Misawa AB: 6MW solar
- ✓ Keesler AFB: 1.5MW solar
- ✓ JB San Antonio: 18MW solar

PPA CFE Highlights

- ✓ Fort Hood: 15MW solar / 50MW wind
 ✓ Vandenberg SFB: 28.2MW solar
- ✓ Fort Detrick:14.6MW solar

Power Purchase Agreements (PPAs) → A contract arrangement in which a third-party developer

installs, owns and operates an energy system on Military Service real property or private property

Utility Energy Service Contracts (UESCs)

- > A contract arrangement between a federal agency and a serving utility for energy demand reduction and energy efficiency improvements
- > The utility assesses the opportunities, designs and installs the project, and fronts the capital costs

Demand Response (DR)

Provides incentives to curtail demand and reduce load during peak periods in response to system market conditions DR Highlights ✓ \$4.6M in FY23 savings

Retail supply contracts

- A contract for the purchase and delivery of competitive energy supplies to the end-use customers
- Includes natural gas, electricity, coal and LNG

Retail Supply Highlights

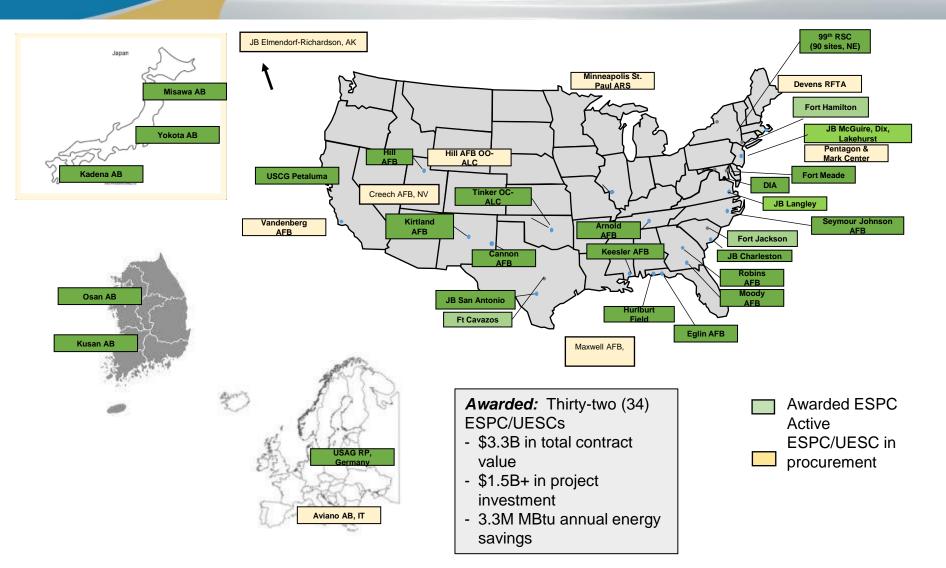
- $\checkmark\,$ ~50M dekatherms of natural gas delivered to 200+ customers across the U.S.
- ✓ ~4.8TWh of electricity procured annually across retail choice markets
- ✓ Coal supply to Alaska installations
- ✓ LNG supply to NS Guantanamo Bay

Renewable Energy Certificates (RECs)

An instrument that conveys attributes about a unit of energy, including the resource used to create it and emissions associated with its production / use

REC Highlights

✓ DLA Energy has Basic Ordering Agreements in place to support customer REC purchases



Installation Energy Program Overview

- ESPC Portfolio:
 - 34 projects supporting Army, USAF, DoD, Army Reserve and USCG locations in CONUS and OCONUS
 - \$3.2B in contract awards supporting \$1.57B in project investment for ~200 ECMs
 - Includes 30MW+ of new renewable energy generation and resiliency measures (microgrid, BESS)
- PPA Portfolio:
 - 3 contracts valued at \$535M supporting Army and Space Force locations in CONUS
 - Includes 57.8MW of on-site solar and 50MW of off-site wind generation installed and the purchase of energy from these resources
- Retail Energy Portfolio:
 - 52 contracts valued at \$1.5B for delivery of electricity, natural gas, and coal to DOD and federal civilian agencies in CONUS
 - 1 LNG contract valued at \$46M supporting Navy in OCONUS

ESPC/UESC Overview

Points of Contact

Charlene Woods Contracting Officer (571) 363-8864 Charlene.Woods@dla.mil Bob Knudson Contracting Officer (571) 363-8842 James.Knudson@dla.mil

FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR

August 21 – August 22, 2024

CASE STUDIES

- 1. Intelligent HVAC Load Management for Energy Efficiency and Resilient Building Operations
- 2. District Geothermal System

Michelle Rodriguez-Pico, Oklahoma Gas & Electric with Kevin Johnson, Honeywell OG/E Honeywell Li Song, University of Oklahoma Tinker Air Force Base (AFB) and University of Miami

SAFETY MOMENT

INTELLIGENT HVAC LOAD MANAGEMENT FOR ENERGY EFFICIENCY AND RESILIENT BUILDING OPERATIONS

Tinker Air Force Base (AFB) Oklahoma Gas & Electric with Honeywell **OG**/**E** Honeywell University of Oklahoma and University of Miami **U**

AGENDA

- Problem Statement
- Technical Objectives
- Technology Description
- Demonstration Site
- Test Results
- Lessons Learns / Current Ops Updates / Future Opportunities

PROBLEM STATEMENT

Department of Defense (DoD) Installations must be able to sustain mission operations in the event of an outage, but current technology (microgrid) is not cost effective or does not provide significant resiliency potential

- Currently, TAC is not connected to the Tinker Distribution Grid and has no other electrical resilience
- An Express Feed project is currently under construction and will physically connect TAC to Tinker Distribution Grid
- The Express Feed is limited to 10 MW, but current loads at TAC can reach 12 MW

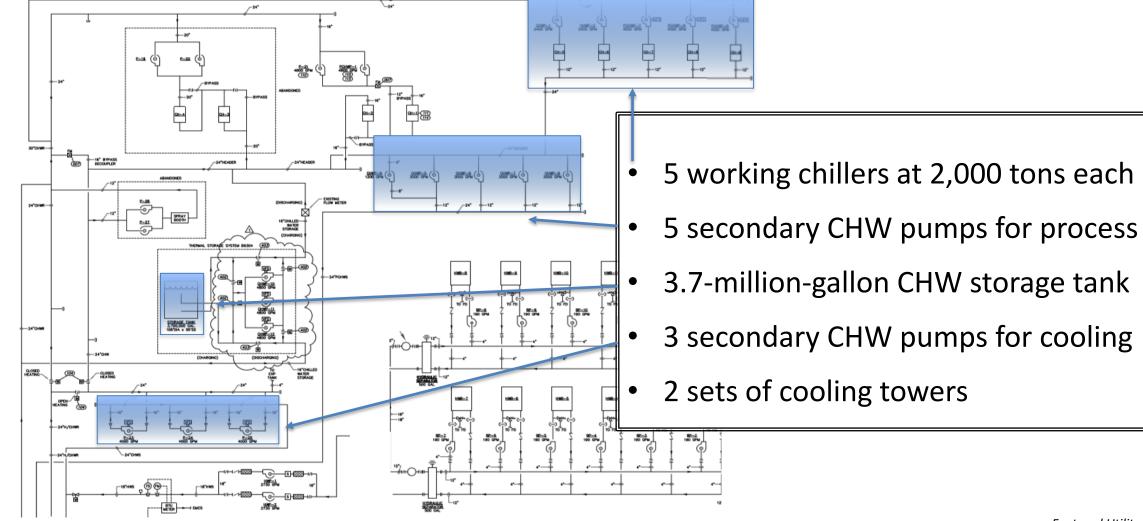
TECHNICAL OBJECTIVES

Goals:

- Enhance energy resilience without significant capital cost
- Improve building energy efficiency while using intelligent HVAC load management

Objectives:

- Evaluate the initial costs and operation and maintenance costs of the load management system.
- Validate the performance through energy savings and demand reduction of the proposed scheme using real-world DoD operating conditions.
- Enable direct technology transfer and commercialization by OG&E which will make the technology available to Tinker AFB and across DoD.


TECHNOLOGY DESCRIPTION

- Demand management through optimal chilled water (CHW) storage tank charging/discharging operation
- Innovative energy-feedback control for air handling units (AHU)
- Energy-efficient HVAC operation sequences to acquire energy savings

DEMONSTRATION SITE

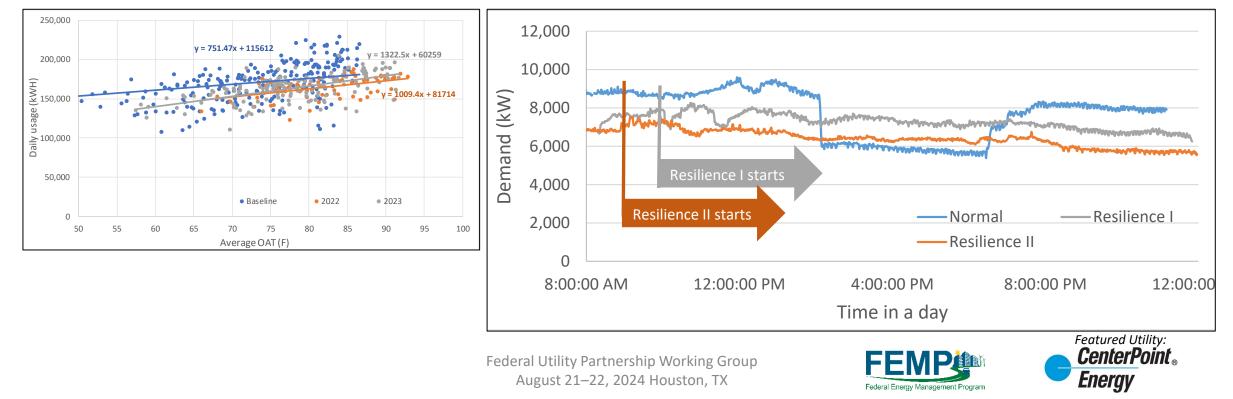
DEMONSTRATION SITE

Air Handling Units (105 ASH units and 9 single duct VAV)

		D

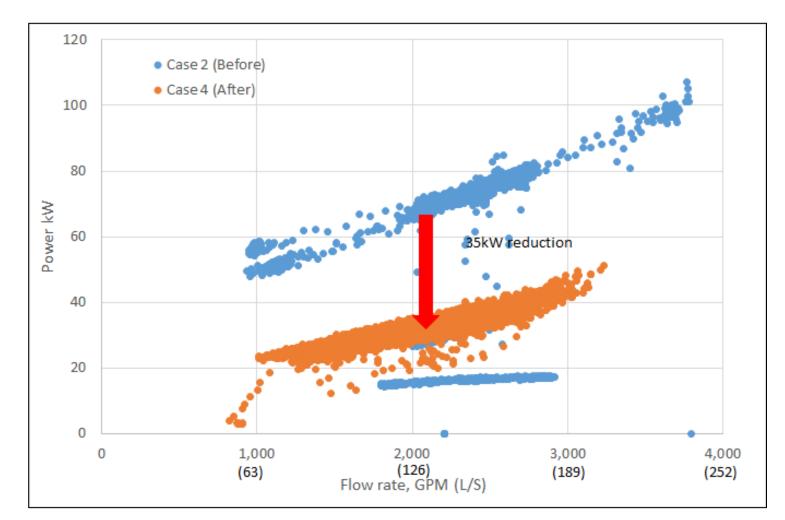
TEST RESULTS – (PO1 to PO7)

Performance Objective	Metric	Success Criteria	RESULTS
PO1: ASH OA/exhaust air	ASH cooling energy	5% reduction compared to baseline	
control	consumption (Ton-h)		MET 5% REDUCTION
PO2: ASH fan speed/supply	ASH fan electricity	40% reduction compared to baseline	OBTAINED 30% REDUCTION
air temperature control	consumption (kWh)		due to limitation of ASH configuration
PO3: Chiller plant pump and	Pump and cooling tower	30% reduction compared to baseline	
cooling tower fan speed	fan electricity consumption		MET 30% REDUCTION
control	(kWh)		
PO4: Overall energy improv.,	Total building electricity	5% reduction compared to baseline and	
including implementation of	consumption (kWh) and	consequential savings to investment	EXCEEDED 7.6% REDUCTION –
FDD and LCC	costs	ratios	payback is around 4.3 years
PO5: Energy feedback	Cooling demand (ton) at	Cooling demand is controlled within a	
control	branches	cooling energy setpoint, such as 90% of	NOT MET
		the peak cooling demand.	due to limitation of ASH configuration
PO6: Energy feedback	Cooling demand (ton) at	Cooling demand is controlled within the	
control with priority index at	branches and zone	cooling energy setpoint, such as 90% of	NOT MET
ASH	temperature setpoint limits	the peak cooling demand	due to limitation of ASH configuration
PO7: Building demand	Total power demand (kW)	17% reduction of peak power	MET 14% reduction
response with thermal storage			(on a mild day)



TEST RESULTS – Performance Data

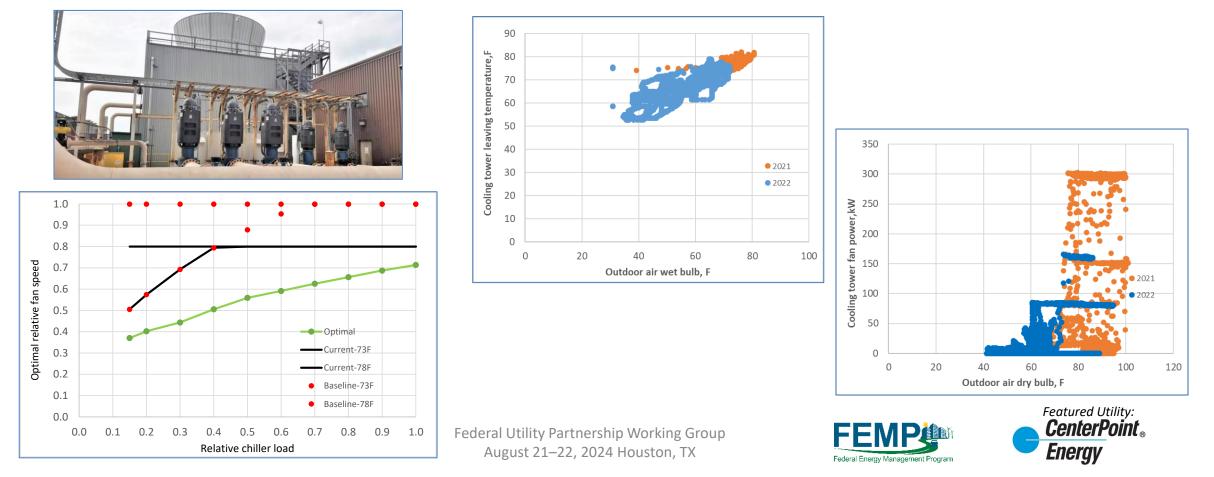
Whole-building level electricity 15-min internal data


- Baseline data = Summer 2020, May 2021, June 2021 and the first half of July 2021.
- Post implementation data: 2022 = mid-July to October / 2023 = until Sept. 27, 2023.
- The percentage savings are 7.7% in 2022 and 7.6% in 2023

TEST RESULTS – (PO3)

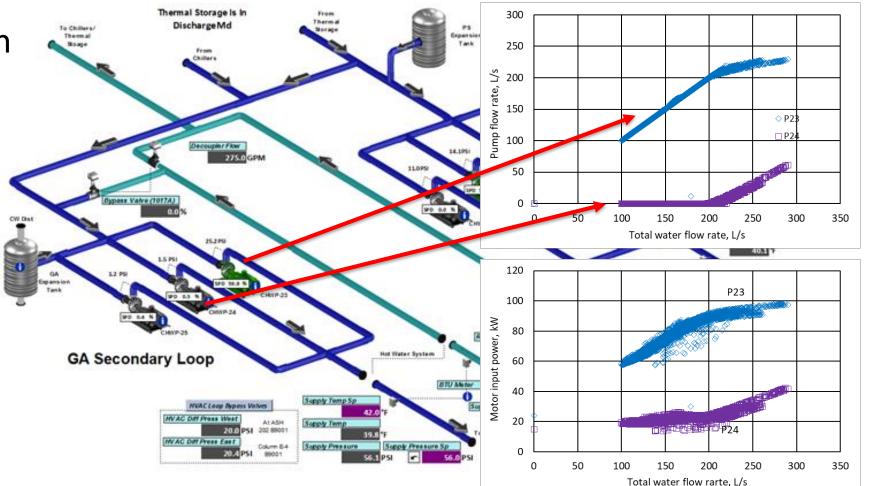
PO3 (CHW pump control):

- Optimize the number of operating pumps
- Reset the pressure differential setpoint



TEST RESULTS – (PO3)

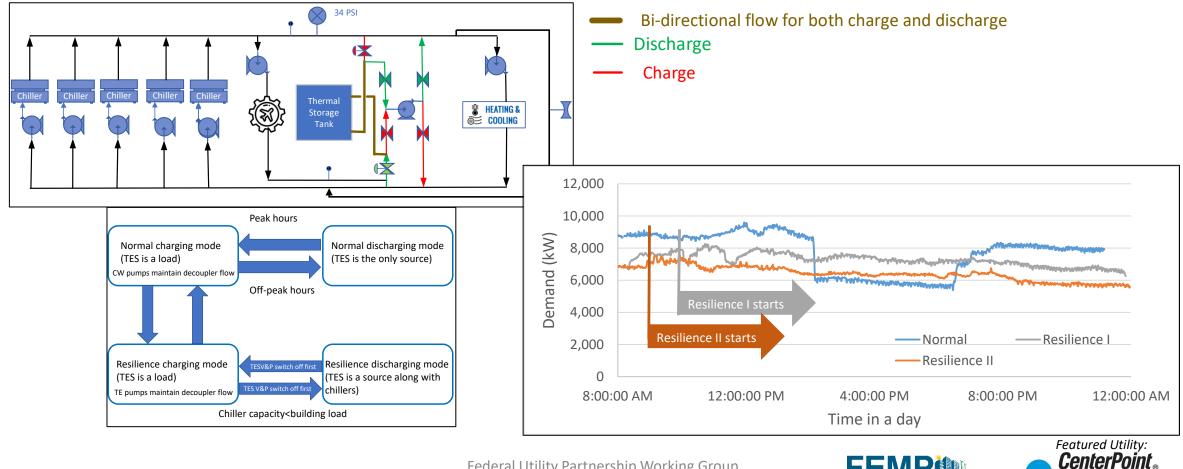
PO3 (Cooling Tower (CT) fan control):


- Optimize the number of CTs / Optimize CT fan speed based on cooling load
- Tower fan power is reduced from 300kW to 150kW / condensing water temp min. change

TEST RESULTS – (PO4)

PO4 (Fault Detection & Diagnostic):

 One of the three HVAC CW
 pumps had different min
 speed settings,
 which resulted
 in 20kW power
 waste



TEST RESULTS – (PO7)

PO7 (Demand control by optimizing thermal storage tank charge & discharge)

Federal Utility Partnership Working Group August 21–22, 2024 Houston, TX

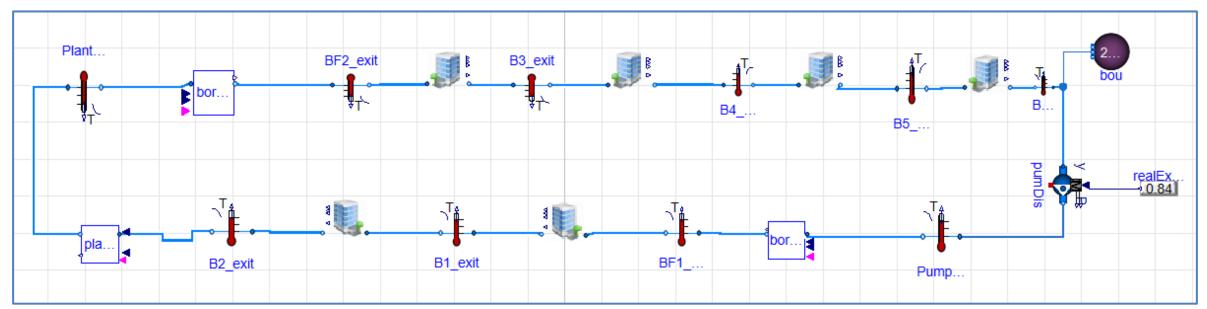
Energy

Federal Energy Management Program

DISTRICT GEOTHERMAL SYSTEM

University of Oklahoma 🕑 University of Miami リ

- 5th Generation District Thermal loop system
- Simulation Based Design and Operation Analysis
- Annual Results
- Future Opportunities



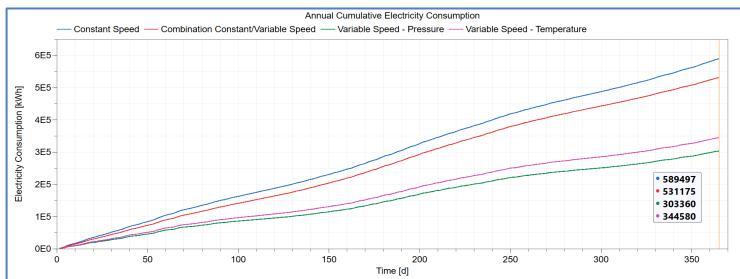
SIMULATION BASED DESIGN and OPERATION ANALYSIS

- **Modelica model** uses a layered approach consisting of the distribution loop, building connection, and heat exchanger levels
- Space heating, cooling, and domestic hot water loads are imported from Energy-Plus models
- Simulations run over the course of a year using typical weather data (TMY3)

ANNUAL RESULTS

Pumping Control Strategies

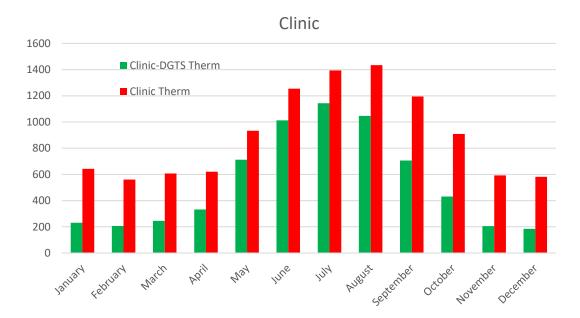
- Constant Speed
- Combination Constant and Variable Speed
- Variable Speed Pressure and Temperature
- Variable Speed Temperature

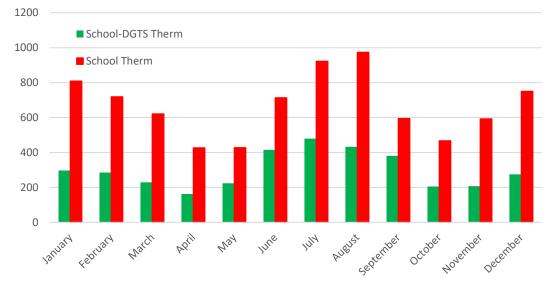

Highlights

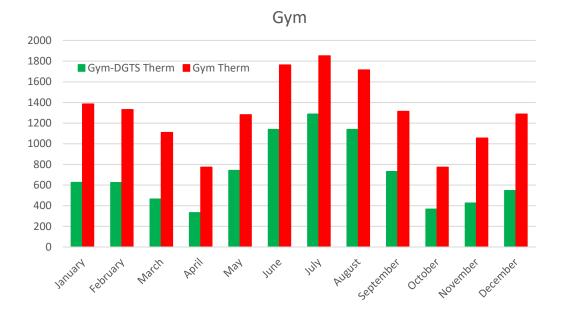
Constant Speed

• 589,500 kWh

Variable Speed – Pressure and Temperature


• 344,700 kWh





COMPARISON WITH THE BASELINE

School

OPEN DISCUSSION

LESSONS LEARNS CURRENT OPERATIONAL UPDATES FUTURE OPPORTUNITIES

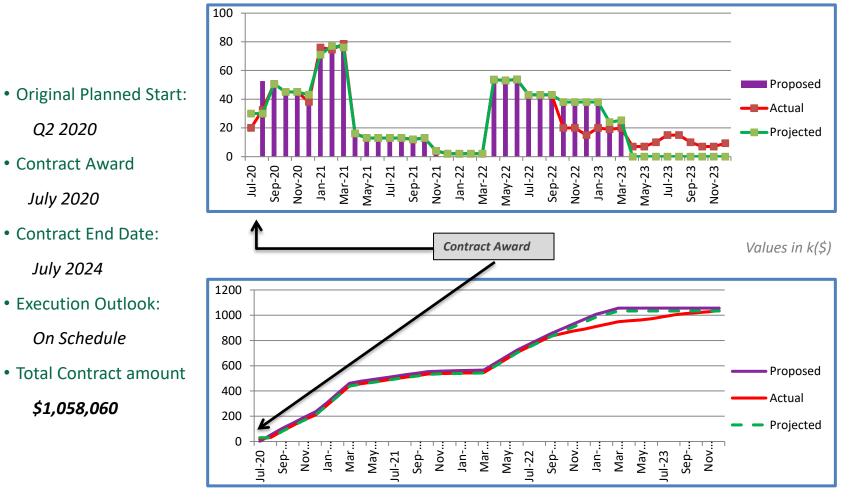
THANK YOU

Tinker Air Force Base (AFB)Oklahoma Gas & ElectricOG/EHoneywell (ESCO Partner)University of OklahomaUniversity of Miami

(Joey Hunter joey.hunter@us.af.mil) (Michelle Rodriguez-Pico <u>rodrigmc@oge.com</u>) (Kevin Johnson <u>Kevin.Johnson@Honeywell.com</u>) (Doctor Song <u>Isong@ou.edu</u>) (Doctor Wang g.wang2@miami.edu)

CASE STUDY #1 TECHNICAL SUPPORT

SCHEDULE OF MILESTONES


Tasks		ear O /20 – 3,				r Two – 3/22)					Three - 10/23)			Year Four
	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	
Demonstration Plan														Year
Algorithm Implementation														
Performance Validatior														Contingency
Commercialization Package														Con
Final Report 🗸														

- Green original schedule
- Yellow adjusted schedule

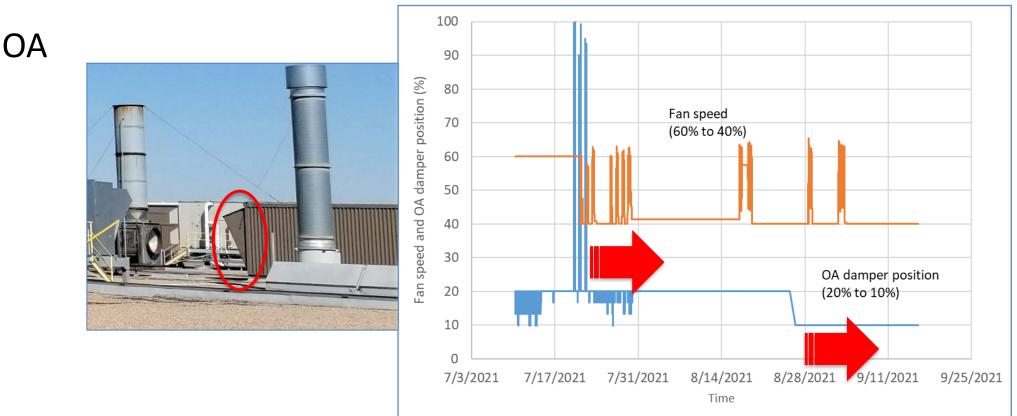
PROJECT FUNDING

Leveraged Project Support

	FY20	FY21	FY22	Task(s) Supported
Tinker AFB – UESC (in \$K)	\$3,240*	\$1,390*	\$0	Controls, sensors & Software installation
OGE – UESC (in \$K)	\$52**	\$26**	\$17**	Project Management
Honeywell – UESC (in \$K)	\$15**	\$12**	\$10**	Local operating support

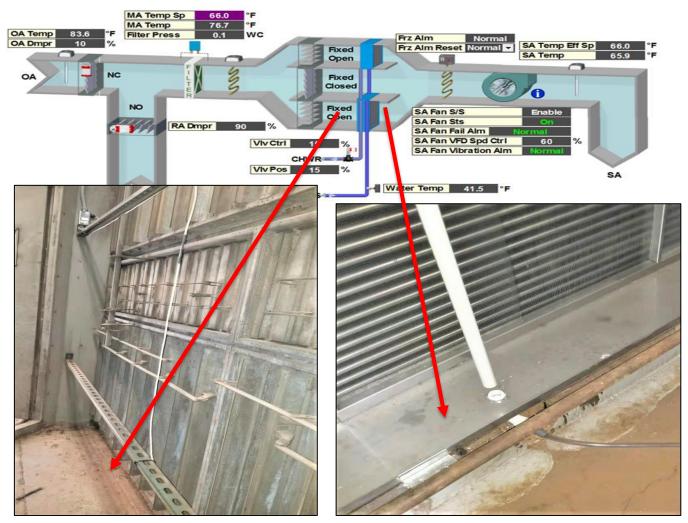
* Direct funding support

** In-kind support



TEST RESULTS – (PO1)

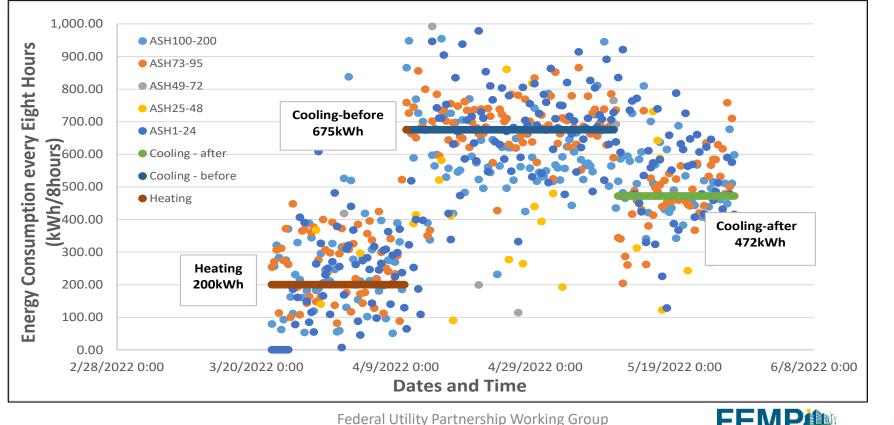
PO1(OA control at ASH units): (0.4*0.1)/(0.6*0.2)=33%


- Reduce OA damper
- Reduce supply airflow

TEST RESULTS – (PO2)

PO2 (Fan speed control at ASH units):

- Original Reduce min fan speed from 60% to 40%
- Challenge raised by AHU configuration
- Alternative solution Maintain 60% min speed, but rotate the 26 ASHs off on a schedule



TEST RESULTS – (PO2)

PO2 (Fan speed control at ASH units):

- Energy baseline collected from last 4 years.
- Collected the fan power from 123 ASH units (30% fan power reduction)

Federal Energy Management Program

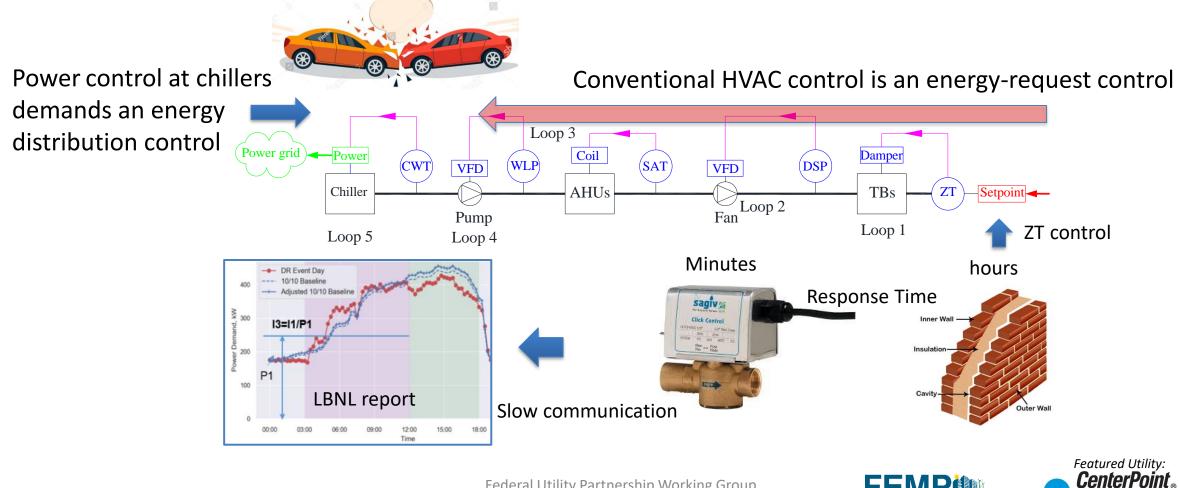
August 21–22, 2024 Houston, TX

TEST RESULTS – (PO5 & PO6)

PO5 (Demand Control - DC) PO6 (DC limited by Room Air Temp):

- Integrated with PO2
- Developed alternating ASHs operation Sch
- Experienced the demand reduction ~200kW
- Enable demand management using return air temperature (comfort index)

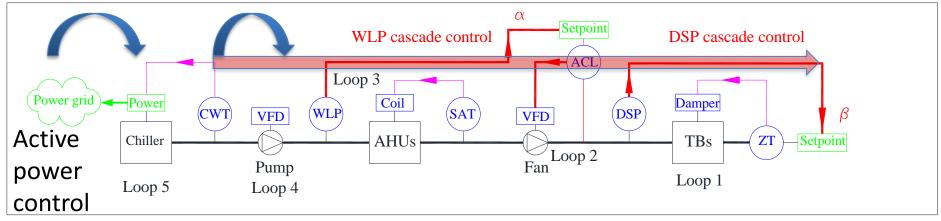
	Schedule 1-off			Schedule 2-off	
Unit name	Design fan power	Design airflow rate	Unit name	Design fan power	Design airflow rate
ASH3	25	28500	ASH2	25	28500
ASH6	25	28500	ASH5	25	28500
ASH9	25	28500	ASH8	25	28500
ASH12	25	28500	ASH11	25	28500
ASH15	25	28500	ASH14	25	28500
ASH18	25	28500	ASH17	25	28500
ASH21	25	28500	ASH20	25	28500
ASH27	25	28500	ASH28	25	28500
ASH33	25	28500	ASH34	25	28500
ASH36	25	28500	ASH37	25	28500
ASH39	25	28500	ASH40	25	28500
ASH42	25	28500	ASH43	25	28500
ASH45	25	28500	ASH46	25	28500
ASH48	25	28500	ASH49	25	28500
ASH54	25	28500	ASH53	25	28500
ASH57	25	28500	ASH56	25	28500
ASH60	25	28500	ASH59	25	28500
ASH63	40	28500	ASH62	40	28500
ASH66	40	28500	ASH65	40	28500
ASH69	40	28500	ASH68	40	28500
ASH76	40	28500	ASH75	40	28500
ASH79	40	28500	ASH78	40	28500
ASH83	40	28500	ASH81	40	28500
ASH86	40	28500	ASH84	40	28500
ASH87	25	28500	ASH88	25	28500
ASH90	60	60000	ASH89	60	60000
ASH92	60	60000	ASH91	60	60000
ASH106	60	50000	ASH105	60	50000
ASH211	missing	missing	ASH212	25	28500


CASE STUDY #2 TECHNICAL SUPPORT

PROBLEM STATEMENT

• Demand control through zone temperature (ZT) reset

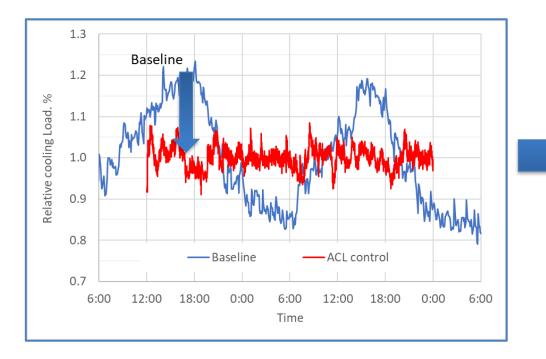
Federal Utility Partnership Working Group August 21–22, 2024 Houston, TX

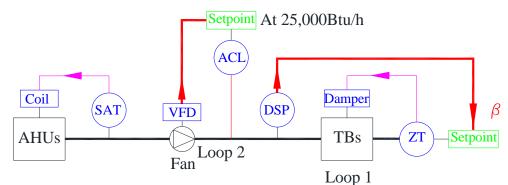

Energy

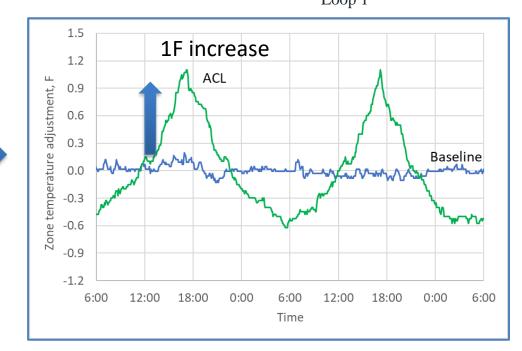
Federal Energy Management Program

PROPOSED ENERGY DISTRIBUTION CONTROL

Control loop	Existing	Proposed
Duct static pressure(DSP)	Supply fan	ZT setpoint (cascade)
Cooling load at AHUs(ACL)	None	Supply fan
Water loop pressure (WLP)	CW pump	AHU cooling setpoint (cascade)
CW temperature (CWT)	Chiller power	CW pump


 $CLG_{stp,i} = \alpha CLG_{design,i}$ $0 \le \alpha \le 1$ Virtual cooling load meter





PRELIMINARY RESULTS AT AHUs

#	Control input	Controlled variable
1	ZT setpoint	DSP
2	Fan speed	Cooling load
3	Valve	Supply Air Temp

GSA Region 7 – Eastern Area CenterPoint UESC

Steve Rutledge, GSA Dan Hill, Energy Systems Group Nick Kehtel, Energy Systems Group Calvin Roberts, CenterPoint Energy

Project Information

- 18 sites, across 8 cities, in 2 states (TX/LA)
 - Total of 3.894M Gross Square Feet
 - 82 different facilities/structures
- UESC Prime: CenterPoint Energy
- ESCO partner: ESG
- Construction Completion: 2024 (est)

Project Objectives

CenterPoint Energy (CNP) made every effort to address General Services Administration's (GSA) following goals within this UESC:

- Focus on sustainability, a clean environment, and healthy employees and communities within a financially compelling project
- Save taxpayer money through better management of federal real estate
- Reduce CO2 emissions and assist in compliance with congressional energy reduction mandates and Executive Orders
- Improve occupant comfort through cost-effective ECMs
- Provide building system and infrastructure improvements that give Facilities Managers better operational control of disparate systems
- Reduce energy use intensity and water use intensity
- Implement utility demand response and rebate programs
- Provide grid-interactive efficient building (GEB) technologies

Solutions Implemented

- Controls Upgrades
- Lighting Upgrades
- Building Envelope Improvements
- Water Conservation
- HVAC Improvements
- Chilled Water Cooling Plant Improvements

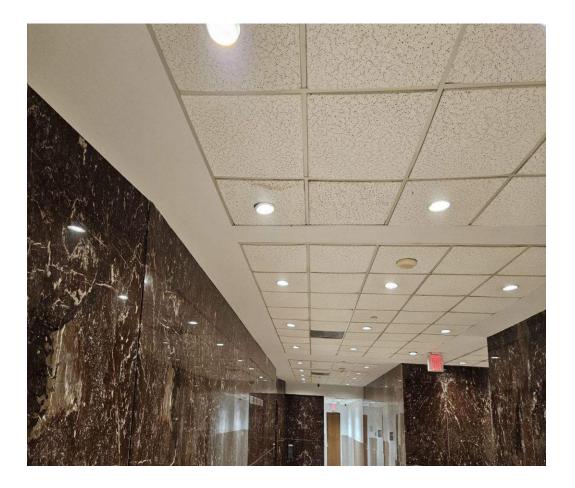
Achievements

- Total Annual Energy Savings: 33,094 Mbtu
- Estimated Annual Carbon Savings: 8.958M lbs/yr
- Estimated Annual \$ Savings: \$1.06M
- Estimated Total Utility Rebates: \$811.8K
- Total Capital Improvement Value: \$19.37M

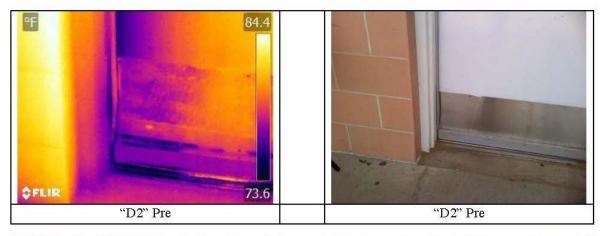
Collaborative Highlights

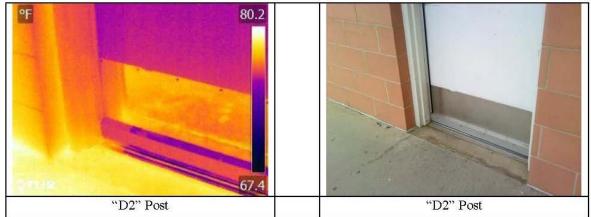
- Developed during the Pandemic Worked around Covid Hot Spots Requiring high level of communication and coordination to minimize disruption to project development
- Unprecedented Inflation and Interest Rate Increases Project development and award occurring as both of the economic factors peaked; Required laser focus on firm price attainment and timing of award to mitigate risk of ECMs being dropped from the project
- CenterPoint divested of Ng assets in Ok and Ar during development. GSA/CNP team focused on additional procurement mechanisms to salvage the ECM scope in these states, thereby maintaining project value for the GSA.

ECM 2.0 Cooling Tower / ECM 3.0 Controls Upgrade



ECM 4.0 AHU Replacement




ECM 5.0 Lighting

ECM 6.0 Building Envelope

ECM 13.0 Water Conservation

FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR

August 21 – August 22, 2024

Federal Fleet and Electric Vehicle Supply Equipment (EVSE)

Mark Singer

Sr. Transportation Analyst

NREL

Electric Vehicles as an Administration Priority

January 27, 2021

GSA, Council on Environmental Quality, and Office of Management and Budget in coordination with DOE, Department of Labor, and Department of Commerce to develop a plan to convert Federal, state, local, and Tribal fleets to zero-emission vehicles (ZEVs)

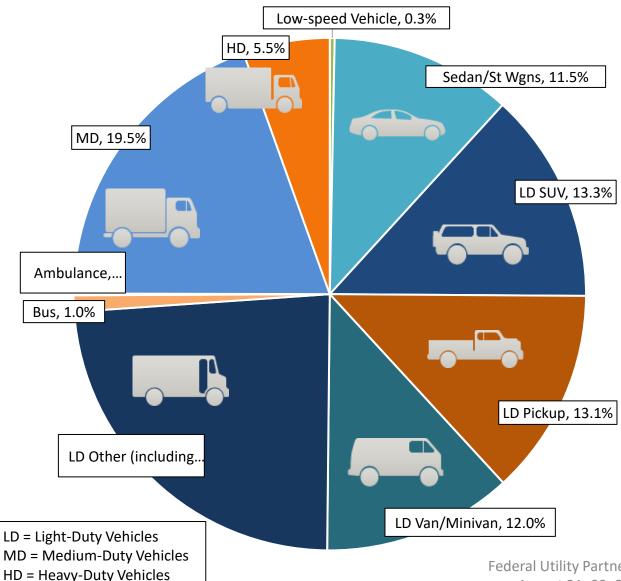
WH.GOV

Executive Order on Catalyzing Clean Energy Industries and Jobs Through Federal Sustainability

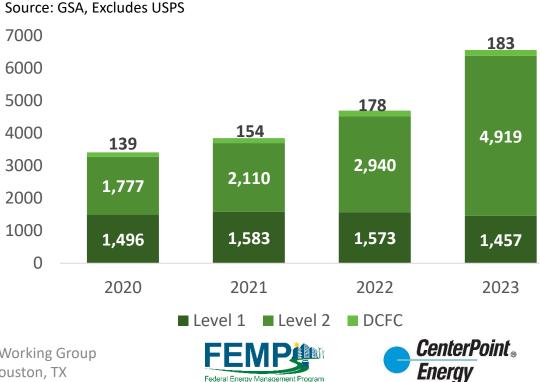
December 8, 2021

Transition to a zero-emission federal fleet

- 100% LD acquisitions by 2027
- 100% MD/HD acquisitions by 2035
- Annual agency ZEV strategic plans



Q


Federal Fleet Electrification is Accelerating (FY23 FAST)

3.6k FY22 ZEV orders (9% of Federal Fleet Purchases)

5.8k FY23 ZEV orders (14% of Federal Fleet Purchases

5.1k FY24 ZEV orders as of 2/29/24 (18% of Federal Fleet Purchases)

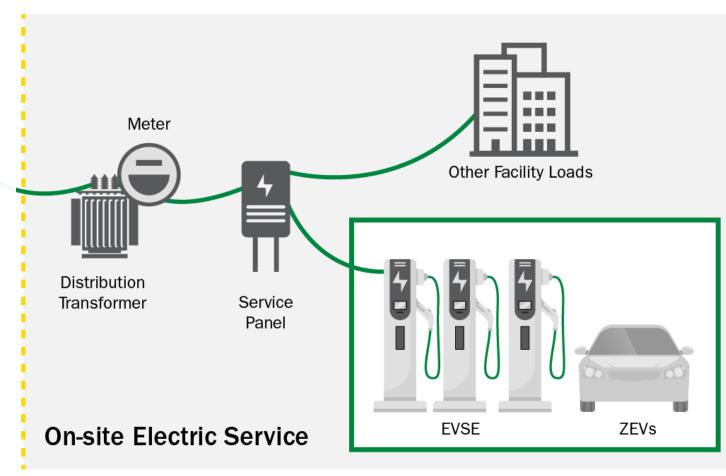
Federal Energy Management Program

Federal Utility Partnership Working Group

August 21–22, 2024 Houston, TX

The transition to ZEVs is about more than just vehicles

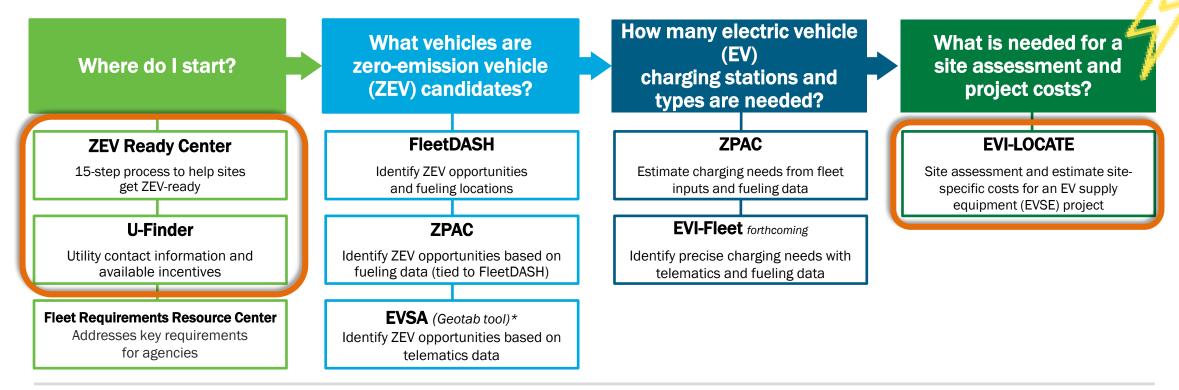
Evaluating EVSE impacts on electrical service equipment


- Facility versus utility equipment ownership

Evaluating EVSE impacts on power requirements

- Power Capacity
- Power Load at the Service Panel Level
- Power Load at the Facility Level

Utility Equipment Upgrades


- Plan for the future
- -Scale back when practical
- -Use managed charging

Federal Fleet Tools

Who should take the lead on using the tool?

EV Champion + EV Champion + EV Champion + Fleet EV Champion + Facilities Manager + Facilities **Fleet Manager Fleet Manager** Source: https://www.energy.gov/femp/overview-zev-ready-federal-fleet-electrification-process Featured Utility: **CenterPoint**

Federal Fleet Email: federal.fleets@nrel.gov

Federal Utility Partnership Working Group August 21–22, 2024 Houston, TX

Energy

Federal Fleet ZEV Ready Center

Centralized access to electrification resources

Integrates with web-based guidance targeted to each stakeholder's needs

Federal Fleet ZEV Ready Center

Federal Energy Management Program

Federal Energy Management Program » Facility & Fleet Optimization » Fleet Electrification & Optimization » Electric Vehicles » Federal Fleet ZEV Ready Center

The Federal Energy Management Program's (FEMP's) Federal Fleet ZEV Ready Center provides a process and guide to help federal fleet and facility managers select and acquire zero-emission vehicles (ZEVs) and electric vehicle supply equipment (EVSE)—or electric vehicle (EV) charging stations—for their fleet.

Overview of the ZEV Ready Fed Fleet Electrification Process

③ LEARN MORE

ZEV Ready Designation Steps

> LEARN MORE

Download the ZEV Ready

Federal Fleets to begin

Tracker and email

the ZEV Ready designation process.

Federal Fleet ZEV Ready Center

ZEV Ready includes 15 process steps organized in 3 phases – Planning, Design, ZEV Active

Planning

Step 1	Step 2	Step 3	Step 4	
ldentify and train team	Align HQ strategy with site planning	Identify ZEV Opportunities	Identify EVS Needs	
Team Ready	Commitment Ready	Vehicle Ready	Charging	
Step 5	Step 6	Step 7		
Initial Utility Coordination	Quick Site Assessment	Coordinate site financial planning with headquarters		
Charging Ready	Charging Ready	Commitment Ready		

https://www.energy.gov/femp/overview-zev-ready-federal-fleet-electrification-process

Federal Utility Partnership Working Group August 21–22, 2024 Houston, TX

Step 15

Support drivers

ZEV Ready

in using ZEVs

and EVSE

No.

When to work with utilities?

Planning & Design:

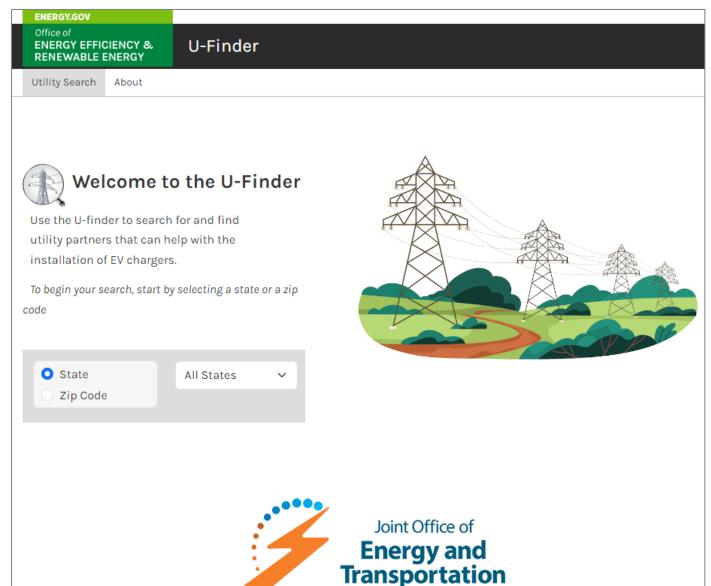
Planning support?Existing load impacts?

Procure & Install:EVSE Incentives?

- EVSE Incentives
 Make ready2
- Make-ready?

Manage Charging:Rate structure?Optimal charging policy?

Throughout EVSE implementation and ZEV expansion

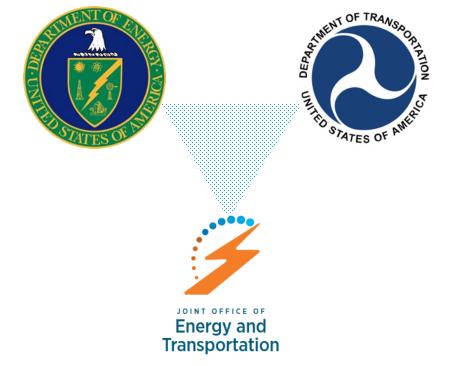


U-Finder: Connect with your utility

Primary goal: Enable electric vehicle supply equipment (EVSE) planning efforts to connect with local utilities.

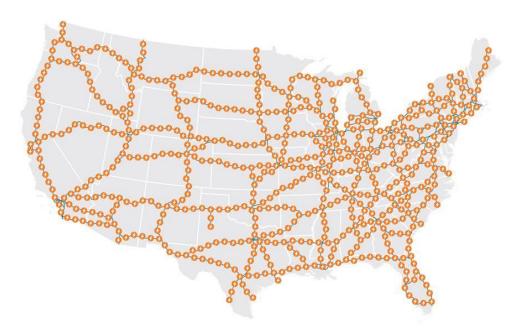
Primary message: Contact your utility early in the process!

Secondary goal: Raise awareness of available local utility incentives.



https://afdc.energy.gov/utility-finder

Joint office Mission and Vision


Mission

To accelerate an electrified transportation system that is affordable, convenient, equitable, reliable, and safe.

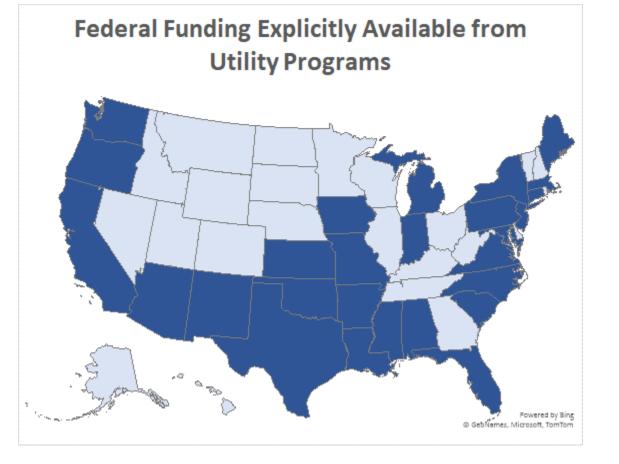
Vision

A future where everyone can ride and drive electric.

U-Finder Utility Partners and Incentives

The American Public Power Association (<u>APPA</u>) represents publicly owned utilities.

The Edison Electric Institute (<u>EEI</u>) association of investor owned utilities.



The National Rural Electric Cooperative Association (<u>NRECA</u>) of cooperative member owned utilities.

Federal Utility Partnership Working Group August 21–22, 2024 Houston, TX

U-Finder Resources

- Incentive and Contact information provided by utility partners
- State government incentive information provided by the <u>Alternative Fuels Data</u> <u>Center Laws and Incentives</u> database
- Clean Cities and Communities Coalition contacts provide local networking opportunity

	ENERGY.GOV								
	Office of ENERGY EFFICIEN RENEWABLE ENER		U-Finder						
	Utility Search Ab	out							
	Current results for Texas								
า	Texas Utilities			s Government ncentives	Clean Cities and Communities				
	Utility name	Jtility na	Q	Utility Ownership	3 selected v	Sort by	Percent of 5 🗸		
	Oncor Electric Delivery Company LLC					Show Incentives			
N Known as Sempra Energy									
	Ownership: Investor (see investor contacts) Percent of Texas Covered: 31% Show Contact Information + Available EV Charger Funding Government or Public Commercial								
		Incentives							
	<u>EVolution</u>								
		EVolution is an education and outreach program with an R&D study embedded in it. The aim is to help inform Fleet							
	customers of utility timelines, costs and other pertanati information before they start their electrficaiton ourney.						ectrficaiton ourney.		

Eligibility: Commercial, Government or Public

Utilities: Share your EV point of contact in the U-Finder

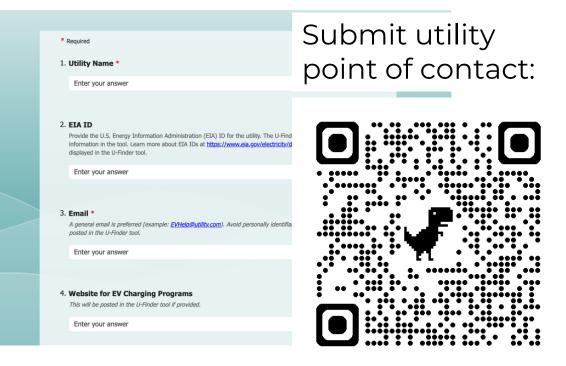
The Joint Office of Energy and Transportation created the <u>U-Finder</u> tool to help prospective EV charging site hosts identify and connect with utilities.

To help site hosts find the appropriate contact, you can provide your utility's EV charging infrastructure contact information to share in the U-Finder.

We recommend a general inbox like *EVHelp@utility.com* to avoid personally identifiable information.

The U-Finder team will review the information and make it available in the tool.

For questions about the U-Finder, contact the <u>Joint Office of Energy and Transportation</u>.


U-Finder

Utility Search Abou

Point of Contact for Electric Vehicle Infrastructure Inquiries

he U-Finder team is collecting contact information to help prospective site hosts, electric vehicle service providers, and customers connect with the right person at their utility when they plan to install electric vehicle (EV) charging equipment. This can help accelerate the engagement process and help utilities reduce time spent routing inquiries.

e this form to share or update the preferred point of contact for customers installing EV charging equipment. The U-Finder team will review this information before posting it. If u have comments or questions, <u>contact the Joint Office of Energy and Transportation</u>.

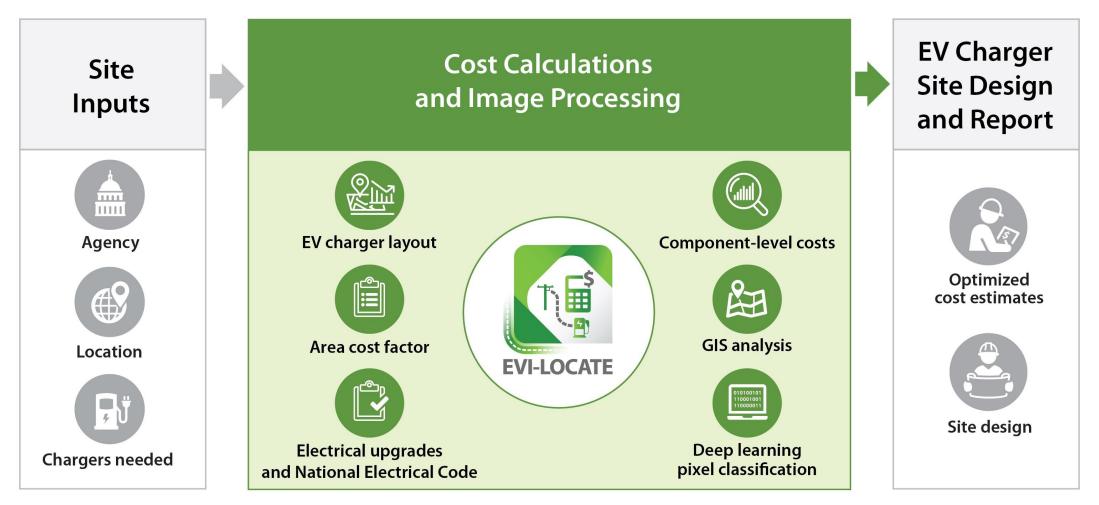
https://afdc.energy.gov/utility-finder/contacts

EVI-LOCATE (Electric Vehicle Infrastructure–Locally Optimized Charging Assessment Tool and Estimator)

Objective: Simplify the EVSE design and cost estimation process with a web tool.

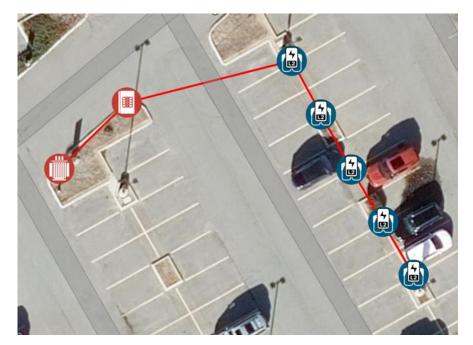
Plan charging station deployments

Assess sitespecific electrical needs


Calculate local project costs

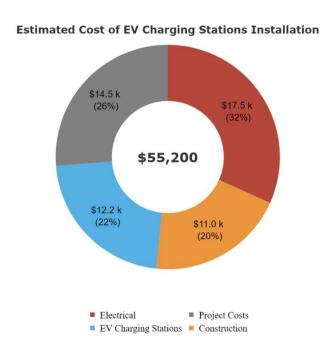
Federal Utility Partnership Working Group August 21–22, 2024 Houston, TX

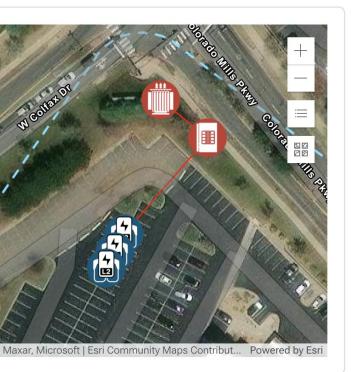
EVI-LOCATE (Electric Vehicle Infrastructure–Locally Optimized Charging Assessment Tool and Estimator)

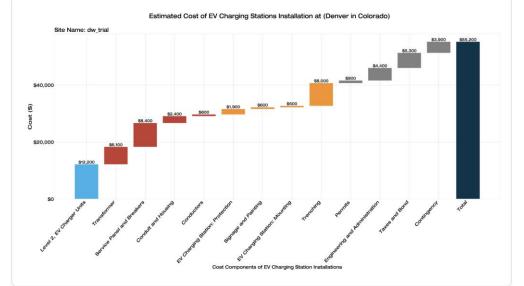

EVI-LOCATE: Build Your Site Plan

Define your site boundary

Plan your charging ports




Define existing infrastructure and determine wiring run

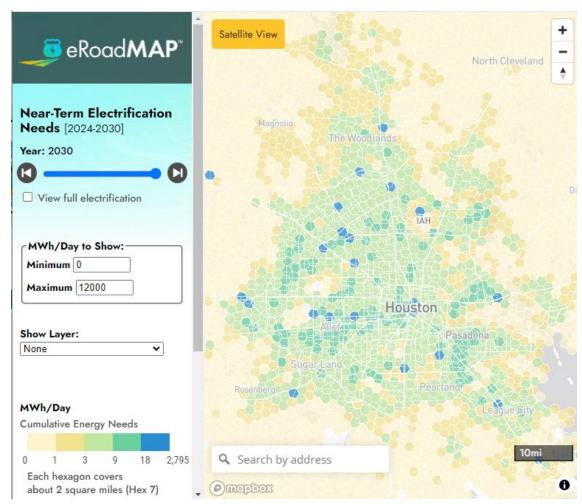


EVI-LOCATE: Detailed Site Plans and Cost Estimates

Website: <u>https://evi-locate.nrel.gov.</u> Email: <u>evi-locate@nrel.gov</u>.

Federal employees can sign up for accounts directly.

Federal contractors email <u>evi-locate@nrel.gov</u> with federal EVI-LOCATE users CCed.



NREL is supporting Electric Power Research Institute (EPRI) eRoadMAP

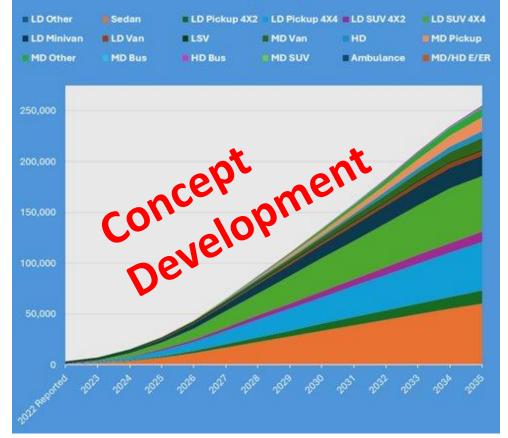
- eRoadMAP is an "online tool for understanding where, when, and how much EV charging load is likely to materialize on the U.S. electric grid." <u>https://msites.epri.com/evs2scale2030</u>
- With support the U.S. DOE Vehicle Technologies Office, NREL is modeling potential fleet electricity demands:
 - Government fleets (Federal, state, and local)
 - Transit buses
 - Port Cargo Handling Equipment
 - Airport Ground Support Equipment

Federal Energy Management Program

Government Fleet Electricity Demand Modeling

Initial investigation of 100% EV scenario:

Assumptions for:


- ZEV efficiency
- Charging power levels
- Charging hourly load profiles by vehicle type

Primary Inputs:

- Current fleet fuel consumption by vehicle type and location
- Aggregating <u>anonymized</u> data for Federal fleets (fleet manager approved), the Energy Policy Act (EPAct) State and Alternative Fuel Provider program, and the Clean Cities and Communities programs

Investigating methods to incorporate volunteered fleet data as available.

EV Inventory Projections

Questions?

Mark Singer

Sr Transportation Analyst | Center for Integrated Mobility Sciences National Renewable Energy Laboratory mark.singer@nrel.gov

> Federal Utility Partnership Working Group August 21–22, 2024 Houston, TX

FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR

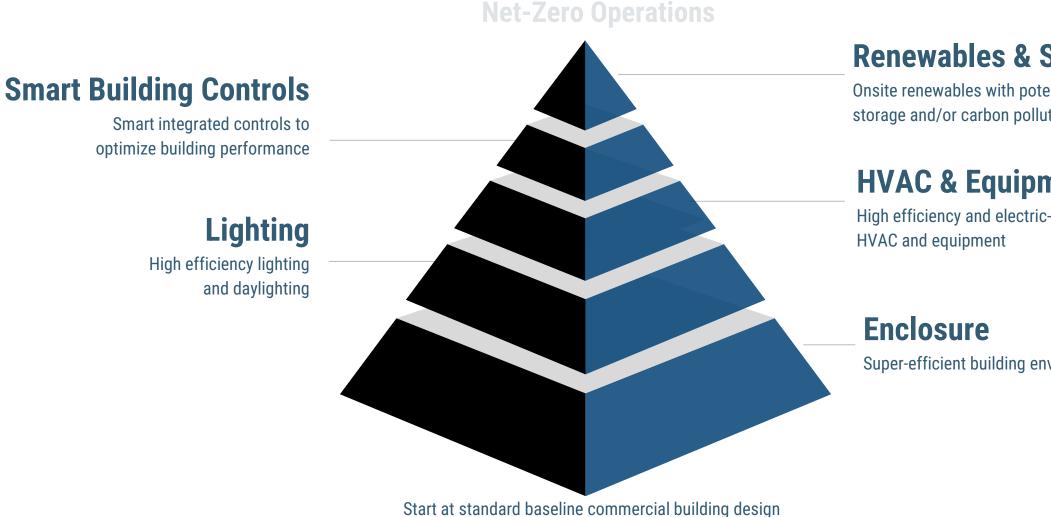
August 21 – August 22, 2024

Incorporating Advanced Technologies in Performance Contracts

Ken Sandler

General Services Administration (GSA)

Office of Federal High-Performance Green Buildings


The Challenge

- Meeting net zero GHG emissions goals requires employing innovative building technologies.
- GSA, DOD and DOE test & verify emerging technologies.
- UESCs & ESPCs are a great foundation but for which we need new approaches to incorporate electrification, etc.
- At GSA Administrator Robin Carnahan's request, we have begun a dialogue with our industry and federal partners.
- What do you see as the barriers and opportunities?

>> Stacking Emerging & Sustainable Technologies

Renewables & Storage

Onsite renewables with potential to add storage and/or carbon pollution-free electricity

HVAC & Equipment

High efficiency and electric-powered

Super-efficient building envelope

Technology Verification at GSA

Center for Emerging Building Technologies

Three programs. One mission. Empowering GSA to invest wisely in next-generation building technologies.

Green Proving Ground

GPG evaluates the real-world performance of emerging building technologies.

Pilot to Portfolio

P2P supports deployment of GPG-proven technologies for new construction, retrofits, and end-of-life replacements.

Applied Innovation Learning Lab

AILL develops a whole-building approach to sustainable operations.

Green Proving Ground (GPG) Objectives

ППГ

Identify promising technologies at the edge of commercialization

Test technology installed in GSA's real estate portfolio and evaluate the ease and effectiveness of installation and operation

Partner with Department of Energy national laboratories to objectively evaluate real-world performance

Identify technologies with broad deployment potential for GSA, share results with federal and commercial real estate communities

GPG Technology Assessment Findings

DoD's Environmental & Energy Technology Programs

Strategic Environmental Research and Development Program

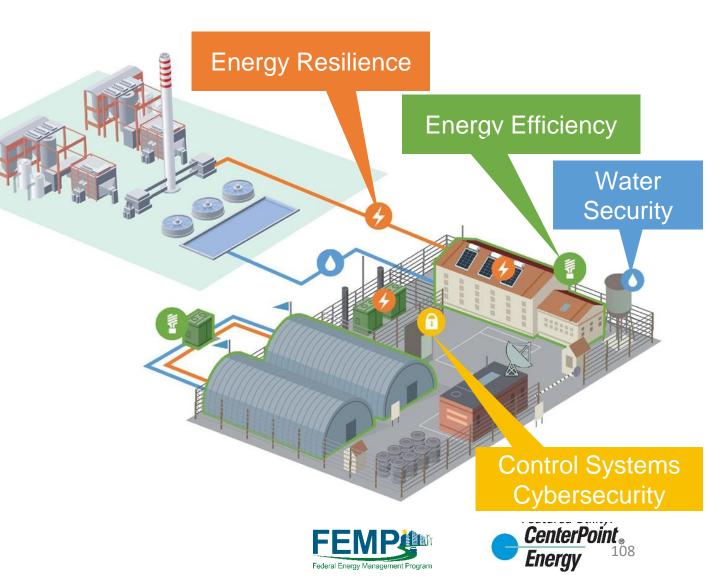
SCIENCE AND TECHNOLOGY

- Fundamental research to impact DoD environmental land management
- Advanced technology development to address near-term needs

Environmental Security Technology Certification Program

DEMONSTRATION/VALIDATION

- Innovative cost-effective environmental and energy technology demonstrations
- Promote technology implementation by direct insertion and partnering with end users and regulators


Featured Utility: CenterPoint

Supporting the Installation Mission

Scope: Improve installation energy and water system resilience, reduce facility-related operational costs and improve building performance to provide safe, healthy and comfortable facilities for our warfighters and civilian staff.

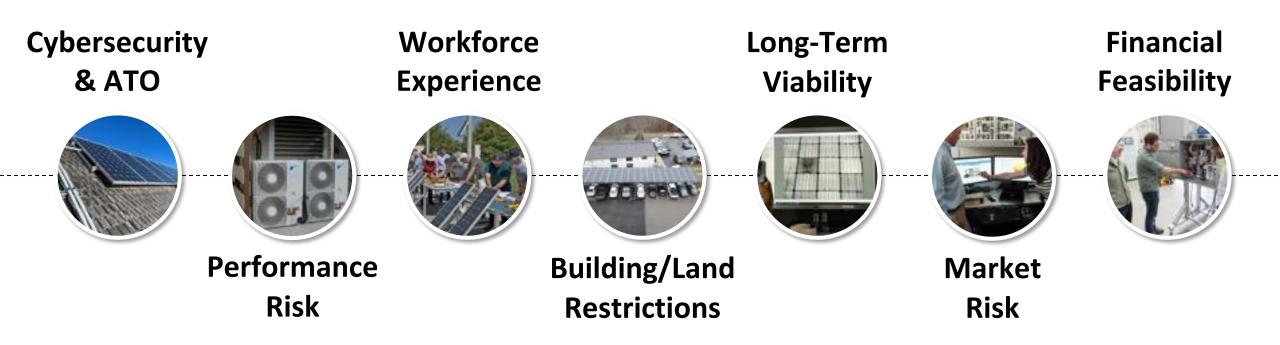
- Ensure critical loads have sufficient, reliable and secure power and water.
- Reduce building and facility operational costs.
- Improve buildings' performance for occupant health, safety, productivity and wellbeing.

Greenovation Summit at NREL, July 18, 2023

- First of its kind event led by GSA with support from DOE and DoD
- Attended by over 100 participants from:
 - Federal Agencies
 - ESCOs
 - GPG and ESTCP Evaluated Technology Vendors

Greenovation: Technologies of Focus

Focus groups brainstormed on top barriers to tech deployment and solutions to overcome them, for 8 technology types:


- Solar PV and Battery Energy Storage Systems
- District Thermal Heat Pumps
- Other Commercial Heat Pumps
- Advanced Water-Side HVAC Technologies
- Advanced Air-Side HVAC Technologies
- EVSE and Bidirectional Charging
- Advanced Energy Management Systems
- Windows and Building Envelope

Barriers to Federally-Validated Technologies

Federal Energy Management Program

Mapping Barriers and Owning Solutions

Barrier	Solution	Owner
Startups and other technology vendors lack familiarity with performance contracts	Free training programs on federal performance contracting processes	GSA and DOE develop and promote trainings
ESCOs can be large and are often fragmented so technology knowledge and communication processes can vary	Increased communication across ESCO teams	ESCOs promote sharing between projects
Long-term O&M strategy is often lacking	Develop and agree to long-term O&M strategy up front in contract	ESCO and government/owner

What Do You Think?

- To advance emerging technology adoption in performance contracts, what new approaches or resources do we need, e.g.:
 Process changes?
 - Support or services?
 - $_{\odot}$ New business models?
 - Additional information or data?
- What are the appropriate roles for key actors (feds, utilities, ESCOs, etc.) to play?
- Top priority actions?
- What can you offer? What capacities and strengths do you have that can be leveraged?

For More Information

$_{\odot}$ GSA Green Proving Ground:

- Kevin Powell, <u>gpg@gsa.gov</u>
- Annual solicitations every summer/fall

o https://gsa.gov/gpg

• DOD ESTCP:

- o Tim Tetreault, timothy.j.tetreault.ctr@mail.mil
- Annual solicitations every January

o https://serdp-estcp.mil/

• Presenter:

 Ken Sandler, PhD, GSA Office of Federal High-Performance Green Buildings, <u>ken.sandler@gsa.gov</u>, 202-280-9670

FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR

August 21 – August 22, 2024

Thank You for Attending the 2024 FUPWG Seminar!

The Energy Lawyers and Contracting Officers Forum begins at 1:00PM CT. Open to all FUPWG attendees!

