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Disclaimer 
This work was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their -
employees, nor any of their contractors, subcontractors or their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or any third party’s use or the results of such use of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or any agency 
thereof or its contractors or subcontractors. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or any agency thereof, 
its contractors or subcontractors. 
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Executive Summary 
This R&D roadmap is part of the U.S. Department of Energy’s (DOE’s) pledge to increase 
microelectronics’ energy efficiency 1,000-fold in two decades. With rapidly emerging challenges 
such as the increase in electricity use of data centers, innovations that exponentially increase 
energy efficiency are urgently needed to put microelectronics’ electricity use on a more 
sustainable path (see Figure ES-1). Just as President Kennedy did with his moonshot goal 60 
years ago, DOE pledged to achieve this energy efficiency goal not because it is easy but 
because it is hard.  

Background 
Since the invention of the integrated circuit or “chip” 65 years ago, semiconductor-based 
electronics, or microelectronics, have enabled growth of information technology (IT)—
computing, communication, and other electronics applications. Chip manufacturers now layer 
billions of semiconductor-based switches (i.e., transistors, the foundational unit of electronic 
devices) onto silicon to make the microelectronics that are essential for modern life. IT growth in 
the last century was propelled forward by the biennial doubling of transistor density on chips, 
which led to greater performance and lower cost per function. This tradition of exponential 
performance improvements is why much of the semiconductor industry already sets exponential 
technical goals. For example, the initial pledge signer, Advanced Micro Devices (AMD), had 
already set the goal to increase the efficiency of its chips 30 times by 2025; since signing DOE’s 
pledge, AMD has increased its goal to 100 times by 2027.  

As transistors were miniaturized, chip 
power density initially remained 
constant (Dennard scaling), leading 
to more than doubling energy 
efficiency biennially. By 2005, 
however, this biennial efficiency 
doubling began to slow markedly as it 
reached certain physical limits. The 
slowing of efficiency doubling coupled 
with the rapid rise in energy and 
computation-intensive IT applications, 
has led to sharp increases in global 
IT energy consumption. According to 
the Semiconductor Research 
Corporation (SRC), by 2010, 
global computing energy use 
began to double every 3 years. 

Energy Efficiency Scaling for Two Decades  
The U.S. Department of Energy’s Advanced Materials and Manufacturing Technologies Office 
(AMMTO) launched a national initiative with industry partners, national labs, and academia, 
called Energy Efficiency Scaling for Two Decades (EES2) in 2022. This ambitious program aims 
to double the energy efficiency of microelectronics biennially, targeting a 1,000-fold 

Figure ES 1. SRC energy consumption forecast and the EES2 efficiency 
goal in two energy consumption scenarios 

https://ees2.slac.stanford.edu/doe-ees2-pledge


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  xv 

improvement over two decades. A key component of EES2 is this version 1.0 roadmap, the first 
in a series of research, demonstration, and demonstration (RD&D) roadmaps. This document is 
a product of extensive literature review and energy analysis, collaboration meetings between 
nine working groups, and expert input during the writing process. The working groups met 
monthly, with the organizing committee engaging in literature review and analysis to prepare for 
the following meeting. 

The EES2 roadmap focuses on the largest and fastest growing IT 
energy user, the “compute stack” (see Figure ES-2), which 
comprises everything from devices to software. The stack shown is 
from the seminal DOE report Basic Research Needs for 
Microelectronics (DOE Office of Science, 2018), which extended 
the notion of co-design from simply designing hardware and 
software together to specifically co-designing adjacent layers of the 
hardware with adjacent layers of the software. This roadmap 
examines innovative technologies co-designed by experts on 
different parts of the stack that can exponentially increase 
computing energy efficiency. This roadmap is a first step in a multi-
year research effort to develop and deploy portfolios of cutting-edge 
microelectronics technologies that are 10-, 100-, and even 1,000-
times more energy efficient than the technologies they replace. 
Alone, none of the technologies will achieve the industry-wide 
biennial efficiency doubling leading to the 21 1,000-times goal.  

DOE’s Undersecretary for Energy and Science and the now sixty-
five other external industry-based EES2 pledgers were inspired to 
work toward this goal and join the roadmap effort on the strength of 
DOE’s 2021–2022 “Semiconductor R&D for Energy Efficiency” 
virtual workshop series and its 2022 sponsored assessment of 
computing energy use (Shankar and Reuther 2022), which contributed additional insight on how 
the stack could be co-designed with rigorous analysis of computing performance using the 
metrics of energy per bit, per instruction, and per application. 

Strategies for Efficiency First 
To directly support the goals of EES2, co-design strategies are prioritized to optimize for 
efficiency first. Simply put, this means that where multiple properties are desired for a given 
technology solution, energy efficiency should be the first property for optimization in the co-
design. In addition, three sub strategies emerged related to the three different energy metrics for 
the near-, mid-, and long-term, as shown in Figure ES-2. 

Near-Term: Optimization of Energy per Instruction/Operation 

EES2-sponsored analysis by Stanford Linear Accelerator Center (SLAC) (Shankar and Reuther 
2022) showed large variation in energy per instruction or operation for different types of 
computational tasks. This suggests that a chip design strategy that ensures instruction 
complexity for a given task is as low as possible is the correct “efficiency first” hardware co-
design strategy. Graphic processing units (GPUs) for gaming and artificial intelligence (AI) are a 
successful example of an approach of this type.  

Figure ES-1. Compute 
Stack. Source: DOE Office of 

Science, 2018 
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Mid-Term: Device-Level Innovations To Minimize Energy Use per Bit 

Because they are so foundational, innovations at the device level, especially with transistors, 
are critical. In the near- and mid-term, the EES2 roadmap highlights innovations that sharpen 
the subthreshold swing slope and lower switching voltage, such as tunnel field-effect transistors 
(TFETs). In the mid- to long-term, device level innovations from quantum and nature-inspired 
computing will be critical for widespread advances from 100x to 1,000x energy efficiency. 

Long-Term: Full-Stack Software-Driven Co-design To Minimize Energy per Application  

The goal of full-stack co-design has yet to be implemented. This strategy is accelerating toward 
this goal by focusing on a subset of full-stack co-design that is software-driven, requiring that 
hardware developers understand what the software needs to do, and software designers 
understand the needs of hardware. Full implementation would require a major change in 
pedagogy and curriculum since software and hardware engineers have become more and more 
specialized in recent decades. But in the meantime, steps in this direction include specifying in 
algorithms that do not require high precision to save energy. Figure ES-2 illustrates the 
interaction between different layers of the compute stack, the timeline for the innovation, and the 
correlated energy metric.  

 
Figure ES-2 Relationship of compute stack elements to achieving energy efficiency goals with different time 

frames 

Expanding Co-Design for the Compute Stack Stack Working Groups 
When the concept of co-design was first applied to microelectronics, it simply meant the 
integration of hardware and software design in computing. Compute is the largest 
microelectronics system energy user—hence the focus of this roadmap. As the complexity of 
the compute stack grew (see Figure ES-3 left side), numerous subcategories of hardware and 
software were developed. In order to achieve the benefits of co-design envisioned by DOE in its 
seminal Basic Research Needs for Microelectronics (2018) report, co-design for energy 
efficiency must ensure that adjacent elements of the stack work together. AMMTO’s DOE 
partners in SC defined co-design in this 2018 report as “where each of the technical abstraction 
layers in modern computer system design (the compute stack), from fundamental materials 
research through applications, inform and engage other abstraction layers.” Furthermore, “co-
design activities largely occur between adjacent technology abstraction layers (e.g., between 
materials and devices or computer architects and software designers).” Therefore, the initial four 

https://science.osti.gov/-/media/bes/pdf/reports/2019/BRN_Microelectronics_rpt.pdf
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EES2 working groups (WGs) were assembled, as shown in Figure ES-3, to ensure co-design 
among adjacent layers. 

Pledger Experience Led to Inclusion of Enabling Layers of Co-Design 
EES2 industry and laboratory pledging partners with experience in the rapidly growing data 
center sector also urged the inclusion of power in the WGs’ co-design approach. Thus, a Power 
and Control Electronics WG was added. In addition, since the National Institute of Standards 
and Technology (NIST) had been involved with pre-EES2 efficiency efforts—and the EES2 
team knew the importance of metrology to keep track of efficiency goals—a Metrology and 
Benchmarking WG was included from the beginning. Finally, the analysis EES2 was conducting 
in parallel with the WGs showed that manufacturing energy use, complexity, and chemical 
intensity also had begun to rise rapidly in recent years, so a Manufacturing Energy Efficiency 
and Sustainability WG was included.   

Early in the process, the working groups realized that past efforts at co-design had not generally 
involved software for hardware, such as the proprietary electronic design automation (EDA) 
software used to design circuits. To rectify this issue, the Circuits and Architectures WG began 
to meet with other WGs. In 2018, the co-design was mainly between adjacent layers, but by 
2023, it had become clear that every aspect of the compute stack, plus every aspect of the 
enablers, needed to be aligned to minimize energy use.  

 
Figure ES-3. Organization of the EES2 working groups 

With the help of cross cutting pledgers such as SRC and IEEE (the world’s largest professional 
society), an Education and Workforce Development WG was formed. A co-design focus 
between working group areas is essential to make the rapid efficiency progress needed for 
biennial efficiency doubling and to ensure that the effort is both technically feasible and 
commercially viable.  

https://live-slac-microelectronics-d9.pantheonsite.io/sustainable-computing/energy-efficient-and-sustainable-computing
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The general scope of each WG is described in the following section. 

Compute Stack Co-Design Working Groups 
The Materials and Devices group tackled energy efficiency through materials and devices, 
such as carbon nanotubes and spintronic memory. This included scalability, thermal 
management, and interface issues in current materials. 

The Circuits and Architectures group worked to overcome the challenges of slowing planar 
geometric scaling of transistors and memory. This group pioneered alternative, energy-efficient 
designs in processors and memory systems, including compute-in-memory technologies. 

The Advanced Packaging and Heterogeneous Integration group at the next level up in the 
compute stack, worked on advanced thermal management techniques, and optimizing data 
movement strategies such as optical interconnects.  

The Algorithms and Software group emphasized software-driven co-design and were inspired 
by natural systems such as dragonflies and human brains to benchmark neuromorphic 
algorithms matched directly with accelerator hardware. 

Table ES-1. Condensed Focus Areas for Energy Efficiency and their Manufacturing Challenges & Solutionsa  

Focus Areas for Energy Efficiency Manufacturing Challenges & Solutions 

Materials and Devices (Mid-Term) 

Innovate in materials such as 2D materials, 
carbon nanotubes (CNTs), and ferroelectric 
materials for future CMOS alternatives. 

Address production and integration challenges by investing in 
scalable high-quality material manufacturing and creating 
industry-wide standards and protocols. 

Circuits and Architectures (Near-Term) 

Enhance energy efficiency in compute 
architectures and memory technologies. 

Prioritize advanced electronic design automation (EDA) and 
new architectures integrated with algorithms to optimize power 
distribution and increase energy efficiency, backed by 
continued investment in novel device technologies. 

Advanced Packaging and Heterogenous Integration (Near-Term) 

Develop vertically integrated, energy-efficient 
3D technology stacking. 

Pair novel technologies with state-of-the-art 
processors/memories to show durability and enhance intra-
chip energy efficiency, improving EDA for system-level cooling 
and interconnect scaling. 

Algorithms and Software (All Time Scales but Especially Long-Term) 
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a For complete list, refer to Table 85. 

Crosscutting Co-Design Working Groups (Also Known as Enablers) 
The Power and Control Electronics group focused on enhancement and innovation of power 
delivery systems on chip as well as in energy intensive applications such as data centers. 

The Manufacturing Energy Efficiency and Sustainability group looked at the correlation 
between less efficient products and less efficient manufacturing processes to make them. The 
group also explored other energy-related environmental impacts of manufacturing. 

The Metrology and Benchmarking group defined measurement and benchmarking standards 
necessary to evaluate emerging microelectronic technologies.  

The Education and Workforce Development group took advantage of the compelling EES2 
benefits to the planet for efforts to convince policy makers and potential new industry 
employees. 

Table ES-2. Condensed Focus Areas for Energy Efficiency and Their Grand Challenges and Solutionsa 

Innovate in machine learning algorithms and 
software that efficiently support diverse 
computing architectures. 

Develop machine learning optimization through meta-learning 
and exploit massively parallel computing systems more 
effectively, using advanced parallelization of code. 

Focus Areas for Energy Efficiency Manufacturing Challenges and Solutions 

Power and Control Electronics (Very Near-Term) 

Enhance power delivery and control across 
microelectronics to data centers by migrating 
loads to higher-efficiency regions and utilizing 
renewable resources. 

Develop resource-aware scheduling strategies and implement 
advanced co-design tools to optimize power provisioning and 
thermal management, reducing overall energy consumption. 

Manufacturing Efficiency and Environmental Sustainability (Near-Term) 

Improve manufacturing processes to lower 
greenhouse gas emissions and energy 
consumption. 

Introduce alternative gases and processes with lower 
environmental impacts and invest in alternate lithography 
technologies like nanoimprint lithography (NIL) for energy-
efficient manufacturing. 

Metrology and Benchmarking (All Time Scales) 

Advance metrology by integrating AI/ML in 
nondestructive, high-resolution techniques to 
evaluate complex structures and materials 
accurately. 

Establish comprehensive benchmarking standards and 
develop advanced metrology tools for real-time analysis, 
bridging the gap between traditional methods and the needs 
of emerging technologies. 

Education and Workforce Development (All Time Scales but Especially Long-Term) 
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a For complete list, refer to Table 86. 

Key Technologies Identified 
Figure ES-4 graphically illustrates some promising technology options identified in this roadmap 
by adjacent co-design approaches to the compute stack, sorted by working group.  

 

Figure ES-4. Key energy-efficient technologies for industry researchers to beat in each epoch 

The figure illustrates one of two major criteria used by the working groups in evaluating 
candidate EES2 technologies: factor of efficiency improvement based on energy metrics (e.g., 
energy per bit, energy per switch, memory access) compared to state-of-the-art technologies. 
Note the semi-log tick marks where the efficiency factor increases logarithmically to the right. 

Note that these technologies do not in any way represent a government plan for energy 
efficiency. Rather these technologies and the technology areas from which they spring are 
technologies with “energy efficiency to beat.” Rather than being a plan or even a forecast, the 
roadmap seeks to provide benchmarks that will inspire technology developers to apply the 
recommended efficiency first design principles and possibly prove wrong dire predictions for 
future computing energy use.  

Next Steps 
This version 1.0 of the EES2 roadmap is the end of the beginning of a two-decade effort to take 
energy efficiency scaling from historical fact to future reality. The demand for computing and the 
critical need to curb emissions require an acceleration and expansion of current initiatives.  

Cultivate a skilled workforce attuned to the 
demands of energy-efficient microelectronics 
and sustainability. 

Align educational outcomes with industry needs, implement 
targeted training programs, and promote inclusivity to build a 
diverse workforce capable of driving global innovation. 
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In addition to the roadmap, DOE intends for the EES2 partners to begin a cycle of challenging 
one another on increasingly ambitious energy efficiency goals. For example, AMD has already 
begun to challenge the industry on AI chip efficiency—and a response from other AI chip 
makers is hopefully forthcoming soon. Other non-roadmap EES2 activities planned for the 
pledgers include the establishment of a testing facility to measure the relative efficiency of highly 
energy-intensive software (e.g., AI training, Transformer) due to the emergence of many 
different AI chip architectures. Such a testing facility would also verify the orders of magnitude 
efficiency improvements of AMMTO and other government funded hardware, such as TFET and 
neuromorphic chips.  

Finally, AMMTO hopes that the EES2 partners will continue to document and learn from 
microelectronics’ past and forecasted future ability to enable all sectors of the economy to 
become more energy efficient and sustainable. EES2 partners will also continue to identify and 
publicize the problems solved and the opportunities offered by the roadmap 1.0 and the analysis 
performed for EES2. A surge in energy use forecasted for data centers is the first of many 
challenges to which the EES2 community will forcefully respond. Future potential energy-use 
surges related to communications (such as those that may accompany 6G+) will also be 
identified, documented, learned from, and publicized by the EES2 community as it evolves from 
a government-led organization to one that is privately led. 

While this report documents myriad potential efficiency improvements across 55 technologies, 
achieving their full benefits requires an integrated approach that emphasizes software-driven 
co-design across the entire technology stack. Ultimately, EES2 hopes to reboot the energy 
efficiency doubling pace of Dennard scaling doubling efficiency every two years—with the goal 
of reaching 1,000 times more in the next 20 years. 

Plans for roadmap 2.0 are already underway. As DOE and its partners recruit more industrial, 
academic, and national laboratory members for the EES2 innovation ecosystem, the initiative 
will not only have more policy impact, but it will also boast even broader technical expertise 
among the WGs. Now that the first roadmap is published, EES2 will actively turn to broaden its 
recruiting into new microelectronics application sectors, such as communications. In addition, 
while EES2 started with electronics and electrons, it will also broaden to promising new 
information carriers, such the photons used in optoelectronics and photonics. EES2 already 
includes pledgers whose research includes long-term transformational technology areas such 
as quantum computing as well as the latest advances in nature-inspired architectures. EES2 will 
work with these pledgers to help recruit additional pledgers from their respective sectors and to 
attract more volunteers for the version 2.0 WGs. 

Although much can change before the start of version 2.0 of the roadmap in spring 2025, future 
WGs will continue to build upon a solid base of peer-reviewed research while continuing to work 
with EES2 pledgers to lower barriers toward immediate deployment of technologies for biennial 
microelectronics energy efficiency doubling. This dual R&D and deployment strategy ensures 
flexibility and responsiveness to emerging technologies and market shifts, thereby fostering a 
sustainable evolution of the microelectronics sector. 

As the EES2 Initiative continues to grow and build momentum for massive improvements in 
computing energy efficiency, the EES2 team will work further with stakeholders in 
microelectronics and related applications to develop the technology base and to assess 
progress toward the goal every 2 years.   
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This roadmap is not intended to serve as a forecast or to pick winners and losers among 
technologies. Rather, it is the opening salvo in a new energy efficiency “space race,” where 
instead of outer space, the EES2 team explores the fascinating realm of increasingly tiny and 
ultra energy efficient information systems. The roadmap sets a high bar to challenge and 
motivate technology developers and to counteract grim forecasts that humanity cannot achieve 
the clean energy transition due to rising computing energy use trends. The semiconductor 
industry’s inspiring past successes in improving energy efficiency indicate that ambitious EES2 
efficiency goals can be met as well. Let’s do it now. 
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1 Introduction 
The semiconductor manufacturing industry makes the integrated circuits, or chips, that drive 
innovation and productivity throughout the global economy. The U.S. Department of Energy 
(DOE) has significant expertise and experience with the semiconductor industry and has led 
related research on everything from specialized chips to artificial intelligence. Both DOE’s 
semiconductor expertise and semiconductor-based technologies themselves are critical for its 
missions in national security, scientific research, and clean energy technologies. 

1.1 Background 
The U.S. economy was damaged when southeast-Asia-dominated semiconductor supply chains 
for chips were severely disrupted during the pandemic. For example, the Federal Reserve 
estimated that, due to the chip supply shortage, the slowdown in U.S. automobile manufacturing 
alone cost the U.S. economy nearly $240 billion, or more than 1% of the U.S. gross domestic 
product (GDP). In response, the White House commissioned a Supply Chain Report that 
included a report chapter on semiconductors led by DOE (Mann and Putsche 2022), which 
showed that the U.S. semiconductor manufacturing industry had shrunk to only 10% worldwide 
manufacturing. The chapter also showed that the last time the U.S. civilian government had 
been involved in the semiconductor industry—in the 1990s, when it provided billions for the 
SEMATECH consortium—the U.S. accounted for more than 37% of semiconductor 
manufacturing. In August 2022, the Administration signed the CHIPS and Science Act into law.   

As public support grew for government support of the domestic semiconductor industry, so did 
discussions among federal agencies about investment in semiconductor research and 
development (R&D). AMMTO’s predecessor office--the Advanced Manufacturing Office—
sponsored a series of virtual workshops on Semiconductor R&D for Energy Efficiency. In 
September 2022, DOE launched the Energy-Efficiency Scaling for 2 Decades (EES2) initiative 
for the semiconductor industry and its major energy using applications. DOE’s intent in 
developing EES2 was to have a simple goal to drive research progress. In November 2022, 
DOE’s Advanced Materials and Manufacturing Technologies Office (AMMTO) launched the 
EES2 R&D Roadmap effort that resulted in this report.  

This version 1.0 roadmap focuses on the largest and fastest growing semiconductor 
application—computing. As detailed in the next section, the historical semiconductor scaling that 
inspired energy-efficiency scaling applied only to chip energy use. With energy-efficiency 
scaling, DOE hopes to drive innovation across the entire compute stack from transistors to 
software. Subsequent roadmaps will apply this broad principle to other fast-growing 
microelectronics-based applications, such as communications.  

1.1.1 Moore’s Law  
The semiconductor manufacturing industry is unique compared to traditional manufacturing 
industries since its key product’s performance improvements—including the size, cost, density, 
and speed of components over the past half century—increase exponentially. Hence, the 
exponential trends of the semiconductor industry must be plotted on a semi-log-scale plot where 
time in years on the horizontal axis is on a linear scale and the vertical axis is on a logarithmic 
scale with each notch representing an order of magnitude increase. The classic example of 
such a trend is Moore’s Law, where the number of transistors on an integrated circuit (IC) or 
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chip doubles about every two years. While originally Moore's Law was simply an observation by 
Intel founder Gordon Moore of a trend based on his experience in manufacturing—not a law of 
physics—it has served the semiconductor industry well as a unifying benchmark. However, 
Moore’s Law needed to evolve (e.g., from two-dimensional [2D] to three-dimensional [3D]) to 
continue. Predictions beginning decades ago that Moore’s law was ending proved premature. 
For example, in late 2023, chips were launched with more than 100 billion transistors, 
continuing the biennial efficiency doubling trend. 

1.1.2 Dennard Scaling and the Initiative 
The scaling relationship that ended about two decades ago was Dennard scaling. When 
transistors were planar (i.e., 2D), Robert H. Dennard showed that as the number of transistors 
on a chip doubled, their power use remained constant. This doubling of transistors on a chip of 
the same size does not increase the power it uses because power use stays in proportion with 
area, while both voltage and current scale downward with length. As a result, energy efficiency 
of chips following Moore’s Law doubled every 2 years until Dennard scaling ended.  

Most experts say that Dennard scaling ended between 2005 and 2006. As the voltage needed 
to switch the transistor steadily declined (as transistors used less power), it neared the limit 
where random thermal noise could also cause unintentional switching (i.e., classical “leakage” 
of current). Additionally, as transistor dimensions dropped to the nanoscale, quantum tunnelling 
(i.e., quantum leakage) began to occur. Both types of leakage also cause the chip to heat up, 
which further decreased its energy efficiency due to the additional energy needed to keep the 
chip cool. The end of Dennard scaling was one of several factors that contributed to the 
beginning of exponential growth in computing electricity use that became noticeable by 2010.  

1.1.3 Why 20 Years? Why 1,000 Times? 
During the three decades or so of Dennard scaling, semiconductor chips had biennial efficiency 
doubling. Even after this, continuing innovation driven by Moore’s law maintained efficiency 
doubling, although at a slower pace. The EES2 goal is based on the notion that a simple goal 
such as Moore’s Law can be a driver of progress and a unifying theme for the industry. The 20-
year duration of the EES2 goal is a result of the desire to be 1,000 times more energy efficient 
using the same efficiency doubling that worked previously for the industry. As shown in Table 1, 
1,000 times (actually 1,024 times) is simply the mathematical result of doubling something 10 
times: 210=1,024 over 20 years.  

Table 1. 20 Years of Biennial Energy Efficiency Doubling 

Year n=number doublings Energy Efficiency: 2n 

2 1 2 
4 2 4 
6 3 8 
7 ~10 times 
8 4 16 

10 5 32 
12 6 64 
13 ~100 times 
14 7 128 
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16 8 256 
18 9 512 
20 10 1,024 (~1,000 times) 

 

The 1,000 times rationale is similarly straightforward based on the question: where do we want 
to be in 2043? Figure 1 shows 
an upper curve efficiency 
scenario for EES2 deployment 
that has energy use flattening 
onto a trajectory parallel to the 
global energy consumption. A 
more optimistic EES2 efficiency 
deployment scenario is 
depicted as a lower curve 
returns to mid-2010’s energy 
use over time. The industry can 
achieve 1,000 times because it 
has done so before. The 
continuation of Moore’s Law is 
the result of numerous 
innovations in thin film, 
lithography, and various other 
microscale manufacturing processes. The EES2 initiative seeks to turn this innovation engine 
toward efficiency. The EES2 Analysis, the EES2 predecessor workshops, and this roadmap 
show that this can be done. 

1.1.4 Linear Versus Exponential Growth 
Understanding the distinction between linear and exponential growth is crucial for understanding 
why computing and communication electricity use—currently still just a few percent of electricity 
use—could very rapidly become difficult to sustain economically or environmentally. While linear 
growth is intuitive and manageable, exponential growth is not. For example, if the doublings 
shown in the rightmost column of Table 1 were instead for electricity growth, what seemed like a 
nonproblem in years 1–10 would begin to become an issue in years 11–15 and become a 
serious problem verging on emergency as the unit of growth doubled from 256 to 512 and 
increased again to 1024 in years 16–20. Since exponential growth is so nonintuitive, key graphs 
depicting exponential growth in this report (e.g., Figure 1 for Moore’s law and Figure 1 showing 
the Semiconductor Research Corporation (SRC) analysis and the EES2 goals) show all the 
zeros of the actual number rather than using shorthand exponential notation (e.g., 
1,000,000,000 rather than 109). Space considerations prevent the avoidance of exponential 
notation in many other key plots of the report, but readers are advised to keep Table 1 in mind 
when interpreting them. 

1.1.5 History of the Pledge and Pledgers 
EES2 counters unsustainable exponential growth in electricity demand with exponential growth 
in efficiency. The need for this concerted joint industry-government was first articulated on Jan. 
12, 2022, when DOE announced its goal to increase microelectronics (and its applications’) 

Figure 1. The 2023 version of the SRC computing energy use forecast 
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energy efficiency by 1,000 times in 20 years or less. “Or less” is an important part of the goal 
since preliminary EES2 analysis was already showing that the doubling time for AI computing 
electricity use was beginning to shorten. From the outset, the EES2 team knew that the EES2 
efficiency doubling time might need to shorten if demand accelerated. As a result, another key 
part of the EES2 initiative involves partnering with data collection agencies (e.g., U.S. Energy 
Information Administration [EIA]) on more comprehensive collection of microelectronic 
applications’ (e.g., computing and communication) energy use. DOE also announced its intent 
to work with industry on joint R&D road mapping based on DOE’s new concept of energy 
efficiency scaling. DOE then developed the concept of the EES2 pledge to organize this effort. 

By September 2022, DOE, together with an initial group of 20 other organizations, pledged to 
cooperate on identifying solutions to drive energy efficiency scaling by developing the first EES2 
roadmap and by the end of 2023. These partners also pledged to cooperate on updates needed 
to the pledge and the roadmap and to catalyze deployment of the technology solutions identified 
in the roadmap(s). The number of signatories of the EES2 cooperation pledge more than tripled 
since then to 65 organizations at the time of this writing, with the current EES2 Pledgers listed in 
the acknowledgements of this report. 
The EES2 cooperation pledge reads as follows. 

We the undersigned agree to cooperate: 

• To document and learn from the extraordinary record of microelectronics’, including 
power electronics’, energy efficiency, such as increases greater than 1,000,000 times in 
energy efficiency since the invention of the transistor nearly 75 years ago. 

• To document and learn from microelectronics’ past and forecasted future ability to 
enable all sectors of the economy to become more energy efficience and sustainable. 

• To identify and publicize problems solved and opportunities offered by microelectronics’ 
Energy Efficiency Scaling over 2 Decades (EES2). 

• To publicize and identify sources to fund version 1.0 (2022–2023) of the EES2 RD&D 
roadmap. 

• To participate in version 2.0 (2024–2025) of the AMMTO-led EES2 RD&D roadmap. 

• To explore formation of a partnership, perhaps “EES2 Allies,” that enable the EES2 
1,000 times efficiency goal by leading EES2 RD&D roadmapping after 2025 and by 
catalyzing the deployment of cost-effective technologies, including power electroncs, 
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needed to stay on the EES2 path of doubling microelectronics’ energy efficiency every 2 
years. 

We do this because: 

• Microelectronics’ life cycle energy use is rapidly becoming unsustainable as 
microelectronics demand begins to outpace continuing efficiency improvements due to 
burgeoning computing, communication, and electrification demands. 

• EES2 is a key organizing principle that aims to help meet new energy demands. 

• The EES2 is a technology leadership path that provides economic and other public 
benefits. 

To achieve the EES2 goal, this version 1.0 roadmap identifies numerous candidate technologies 
to beat that were identified by working groups comprising paired elements of the compute stack. 

It’s important to note that the EES2 version 1.0 WG volunteers may not have had (or have been 
able to share) all the technology insights developed by their respective organizations, and that 
not every single member of the semiconductor innovation ecosystem was represented in our 
working groups. Nevertheless, the “technologies to beat” are meant to represent an aggressive 
challenge to the entire computing innovation ecosystem—especially amongst its highly 
competitive industry members—to foster rapid change and a refocus on efficiency; to boldly 
outdo each other, and even themselves, in technological innovation.  

1.1.6 Analysis Metrics: Energy per Bit, Instruction, and Application 
In the EES2 analysis of the headroom for efficiency innovation (see Figure 2) we used three 
metrics: energy per bit, energy per instruction, and energy per application to identify 
opportunities, we also used them whenever possible in benchmarking technology candidates. 
The first metric, energy to flip a bit, is the lowest energy and has historically been the driver of 
pre-2005 microelectronics efficiency gains. 
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Figure 2. Analysis of the opportunity space for energy efficiency (from bits to bitcoin) according to the bits, 
instructions and application metrics. Source: Shankar 2022 

Figure 4 and the analysis that accompanied it show that instructions are the new “low-hanging 
fruit” of potential microelectronics efficiency gains. 

Instructions  
This category of innovation potential focuses on reducing the 1,000,000-times difference 
between the highest and lowest energy per instruction—and then using in algorithms and 
software the lowest energy operation possible. For example, the energy hungry inference part of 
an AI calculation can often use far less precise instruction types. The “efficiency first” strategy is 
to ensure each instruction maximizes its contribution to overall system performance while 
minimizing energy consumption. A very high leverage approach identified by the WGs would be 
to provide electronic design automation (EDA) firms the tools (e.g., SLAC’s CompJoule tool) to 
optimize for efficiency first. Given the path-dependence of some designs, such a tool could 
rapidly accelerate the deployment of more energy efficient EDA into the innovation ecosystem. 

Bits  
These are the fundamental units of data within electronic systems. The focus is on new 
materials and devices that increase efficiency of how bits are manipulated and transferred 
through transistors. Co-design enables the development of transistors that are precisely tuned 
to software requirements, reducing unnecessary energy expenditure. It also facilitates the 
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creation of data pathways that are optimized for specific data processing tasks, reducing latency 
and energy per bit. Additionally, co-design supports the integration of cutting-edge transistor 
technologies like fin field-effect transistors (FinFETs) and gate-all-around transistors, which offer 
superior control over electricity flow and significantly minimize leakage currents at smaller 
scales.  

Applications  
System energy use is captured by the energy per application metric to perform a particular task. 
Software-driven co-design of complex applications such as those involving AI or eventually 
quantum computing is the major opportunity. Note that NLP—now known as large language 
models—exceed the next closest application by more than 1,000,000 times. 

1.2 Scope of the Problem 
1.2.1 Scaling Problems and Innovations to Overcome Them 
As illustrated by historical 
data in Figure 3 (Rupp 
2022), microelectronics 
exponential performance 
improvements or “scaling” of 
various performance 
indicators have been fairly 
flat for decades. Although 
most began to plateau in the 
mid-2000—for example, 
clock speeds at 3 
gigahertz—single-thread 
performance (blue dots) 
continued to improve 
although much more slowly 
(10 times over two decades). 
Power per die (red dots at 100 watts) seems to have plateaued even earlier in the late 1990s. 
The fast innovating semiconductor community responded to these varied trends with new 
innovations such as architectures involving exponentially increasing numbers of logical cores 
(black dotted trend of Figure 3). Multiple cores and other innovations allowed CPU performance 
to continue improve at an exponential pace because Moore’s Law still holds (orange dots).  

 

Figure 3. 50 years of microprocessor trend data. Original data up to the 
year 2010 collected and plotted by Horowitz et al; new plot and data 

collected for 2010–2021 by Rupp 2022 

 



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  8 

These developments have effectively ended 
the era of consistent single-CPU performance 
enhancement with each new generation of 
processors, at least under current 
technological paradigms. The continuation of 
Moore’s Law since allowed the exponential 
increase in the number of cores per die, 
spreading computational load (and heat) 
around the die with active thermal 
management and clock throttling to keep total 
dissipated power within thermal design limits. 

The Memory Wall Problem 
The scaling problems began to cause 
divergence in the progress curves of memory 
versus logic. While processor logic speed 
increased rapidly pre-2005, progress in 
memory speed (bandwidth and especially 

latency) lagged, as illustrated in Figure 4. (Hennessey and Patterson 2019). Since 2005, 
multicore processors have given rise to new complexity in coordinating the data movements of 
simultaneously executing threads across multiple cores while maintaining memory coherency. 
This divergence has given rise to the "memory wall" problem, where the speed of data transfer 
between memory and logic components has become a significant bottleneck, limiting overall 
system performance. As a result, these disparities in scaling relationships are not only 
presenting new challenges and driving innovative approaches in the design and operation of 
microelectronic devices, but they are also exacerbating the problem of energy efficiency in the 
semiconductor industry. 

1.2.2 The S-Curve   
The “memory wall” and other limitations within the current scaling paradigms make clear that the 
next wave of microelectronic innovations will demand interdisciplinary expertise. The rapid 
advancements that have defined the semiconductor industry are reaching an inflection point, 
reminiscent of the stages described by the S-curve model in technology adoption (see Figure 5). 
This model not only reflects the developmental stages of technology, but also signals the 
evolving demands on the workforce that support it. Initially, industry emphasis is on innovation 
and high energy consumption, but as technologies progress along the S-curve, the industry 
must recalibrate to focus on performance 
optimization, efficiency, and sustainable 
practices. This transition carries significant 
implications for workforce development, 
calling for a comprehensive revamp of 
traditional educational programs to face the 
upcoming challenges and opportunities in the 
industry. 

If EES2 is to succeed multiple areas of 
semiconductor design and manufacture for 

 
Figure 4. The gap between processor performance 

and DRAM latency. Latency is the time between 
processor memory requests and data return. Source: 

Hennessey and Patterson 2019 

 

 

Figure 5. S-curve model 
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EES2 technologies will be on the rapid growth part of S-curve. Educators must work closely with 
innovators to rapidly reshape, update, and make full-stack codesign a key part of in shaping a 
curriculum that also integrates multiple disciples—for example, the principles of power 
efficiency, heat management, and parallel processing architectures, thereby enabling students 
to become highly innovative workers and innovators in the semiconductor manufacturing and 
design industries. 

1.2.3 Major Sources of Computing Energy Use 
Various hardware advancements and their associated energy demands have significantly 
contributed to the overall energy use in computing. As advanced machine learning AI 
technologies become increasingly complex, they require not just extensive computational 
resources but also more specialized hardware. These components, while designed for efficiency 
in certain tasks, still contribute to the overall energy footprint due to their need for high power to 
perform trillions of operations per second. 

Cryptocurrency mining exemplifies this trend, where the specialized application-specific 
integrated circuit (ASICs) consume vast amounts of electricity to sustain continuous, intensive 
computation. These devices, with billions of transistors packed into a single chip, are pushing 
the limits of energy efficiency in semiconductor technologies. 

The hardware underpinning cloud computing infrastructure also plays a significant role in energy 
usage. Data centers, now equipped with servers featuring high-density chips and advanced 3D 
heterogeneous integration to manage the massive data processing requirements, have seen an 
escalation in energy consumption. Innovations such as System on a Chip (SoC) and advanced 
memory technologies have mitigated some of this increase, but the sheer volume of processing 
offsets these improvements. 

Moreover, the proliferation of Internet of Things (IoT) devices and the rollout of 5G networks add 
to energy use. While each individual sensor, actuator, or communication module in IoT solutions 
might consume little energy, the aggregate energy required to support billions of these devices 
globally is substantial. Additionally, the infrastructure supporting 5G networks, despite being 
more energy-efficient on a per-bit basis, is expected to increase overall energy consumption 
due to the sheer increase in data rates and network density. 

1.2.4 Estimation of Inefficiencies 
A wide-ranging study of energy efficiency in computing and losses compared to fundamental 
limits has been conducted by Shankar (Shankar and Reuther 2022; Shankar 2023). He 
surveyed the energy intensity per instruction for the top 500 supercomputers for some widely 
reported benchmarks as well as for some of the largest-scale applications, including 
cryptocurrency mining and natural language processing machine learning applications. Shankar 
then compared those application-level energy measurements to the energy used by lower-level 
individual machine instructions, biological systems (brains), and the fundamental 
thermodynamic limit. As shown in Figure 6, energy use varies massively.  
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The high energy cost of memory access has been shown by measurements by Horowitz (Han 
et al. 2016) for a 45-nm process and later updated with a comparison to a 7-nm process (Jouppi 
et al. 2021) with results as shown in Figure 7. 

Figure 7(a) compares the energy cost of the 45-nm and 7-nm processes and shows that for 
every processor instruction, the energy is reduced for the smaller geometry process. The cost of 
external DRAM access, however, remains the same. When compared to the energy cost of on-
chip instructions in Figure 7(b), the off-chip DRAM access is 185,000 times more energy than 
the least costly INT8 ADD instruction and about 1,000 times more costly than the most complex 
compute instructions. Note that in Figure 7(b), the energy cost of operations for each process 
node is normalized with the energy of an Int8 operation (0.03 pJ for the 45nm node and 0.007 
pJ for the 7nm node).  

Figure 6. Scale of energy use from bits to applications. Source: Jouppi et al. 2021 for INT8, FP64, SRAM and 
DRAM access; Shankar 2023 for the remaining values 
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Computation inevitably involves data movement into and out of DRAM and longer-term storage. 
Data movement is generally much more energetically expensive than the computations, so 
approaches to reduce the energy cost of data movement—as well as to avoid data movement 
when possible—are key pathways for energy savings. 

At its core, the reason computers use energy is straightforward. Digital circuits are like light 
switches, turning on and off to represent the 1-second and zero-second in computer language. 
The energy needed to flip these switches depends on a few things: the electrical pressure 
(voltage), how much electrical storage capacity there is (capacitance), and how fast the 
switches are flipping (frequency). Conductors in circuits have inherent “parasitic” capacitance 
simply due to the presence of charge in neighboring conductors, and this capacitance is 
proportional to the conductor length. The 8 kilobits (kB), 32 kB, and 100 kB SRAM listed in 
Figure 7 correspond to the first, second, and third level on-chip cache memories, organized at 
progressively further distances from the core and therefore with progressively higher latency 
and energy costs. 

This roadmap seeks to comprehensively identify opportunities for reduced energy intensity in all 
aspects of microelectronics. The twin issues of the high energy cost of memory access and the 
latency of access are recurring underlying motivations for many topics throughout this roadmap, 
with numerous approaches for improvement. Fortuitously, solutions to reduce energy consumed 
by memory access are also solutions to address the key bottleneck in speed, and thus also 
improve overall compute performance.  

1.2.5 Efficiency First  
Powerful computational tools and decades of manufacturing knowledge now enable approaches 
that compare “efficiency first” designs (e.g., using advanced technologies such as those in this 
roadmap) to conventional designs and achieve EES2 goals without compromising performance. 
During the course of this roadmap, it became clear that efficiency optimization along another 
axes (i.e., thermal and mechanical considerations in addition to electronic) was needed to 
prevent the performance demands of ever tinier next generation microelectronics from 

 

Figure 7. Energy cost for various operations. Source: Jouppi et.al, 2021. 
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contributing to electricity demand problems. While thermal and mechanical dimensions had 
previously been considered, including them at the very outset—for example, combining 
electronic, thermal, and mechanical modelling—still needs to be done. 

1.2.6 Energy Use and Sustainability in Semiconductor Manufacturing 
Semiconductor manufacturing has become more energy intensive in recent years due to the 
growing demand for advanced, high-performance chips and the complexities inherent in their 
production. The manufacturing process, characterized by steps like material deposition, 
lithography, etching, and polishing, has become more demanding with the introduction of 
advanced processing technology such as extreme ultraviolet lithography (EUV). This 
intensification in manufacturing complexity not only escalates energy consumption but also 
heightens the sustainability concerns associated with semiconductor production. 

Key sustainability issues in semiconductor manufacturing include the use of potent greenhouse 
gases like SF6, NF3, and perfluorocarbons in etching processes, and the presence of PFAS 
materials in standard processing equipment. Additionally, the high demand for ultrapure water, 
exacerbated by a fivefold increase in water usage over the past decade (Crawford, King, and 
Wu 2023), poses significant environmental challenges. With many new fabrication facilities 
located in water-insecure regions like Arizona and northern Taiwan, the industry’s water usage 
is a growing concern. 

1.3 Key Concepts for Microelectronic Energy Efficiency 
In the EES2 roadmap, co-design emerges as a pivotal R&D strategy essential for catalyzing 
significant advancements in energy efficiency within the microelectronics sector. This 
comprehensive approach synthesizes hardware and software design processes from the initial 
stages, ensuring every component is optimized for minimal energy use while upholding high 
performance. This strategic integration results in systems that are efficiently tailored to the 
evolving demands of contemporary technology applications. 

1.3.1 Co-Design Process 
Co-design is not just a design technique, it is foundational to our strategic approach. Here is an 
example of a co-design process: 

• Requirement Analysis: Stakeholders collaboratively define and align on system 
requirements, establishing clear objectives for performance and efficiency. 

• Concurrent Design: Teams from two adjacent parts of the stack develop their designs 
in parallel, enabling real-time adjustments and optimization based on mutual feedback, 
which ensures that both aspects evolve together seamlessly. 

• Prototyping and Testing: Early and iterative testing of integrated prototypes allows for 
quick identification and correction of inefficiencies, ensuring that the final product 
functions as intended in real-world conditions. 

• Optimization and Refinement: Continuous refinement based on testing feedback 
allows for the enhancement of system efficiency and functionality, ensuring that the 
designs meet the standards set by the roadmap. 

This structured approach to co-design directly supports a roadmap’s goals by promoting rapid 
innovation and implementation of energy-efficient technologies, also ensuring that 
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developments are not only technically feasible but also commercially viable and ready to meet 
the challenges posed by an energy-intensive technological landscape. 

1.4 Organization of the Work 
The “compute stack” describes the hierarchy of layers responsible for 
the development of computational systems, as shown in Figure 8. In 
order to achieve the benefits of co-design envisioned by DOE in its 
seminal Basic Research Needs for Microelectronics (DOE Office of 
Science, 2018) report, co-design for energy efficiency must ensure 
that adjacent elements of the stack work together. AMMTO’s DOE 
partners in the Office of Science defined “co-design” in this 2018 
report as “where each of the technical abstraction layers in modern 
computer system design (the compute stack), from fundamental 
materials research through applications, inform and engage other 
abstraction layers.” Furthermore, “co-design activities largely occur 
between adjacent technology abstraction layers (e.g., between 
materials and devices or computer architects and software 
designers).” Interdisciplinary co-design is an efficiency imperative. 
This report reinforces and extends the SC recommendations by 
providing an order in which co-design needs to be implemented (e.g. 
efficiency first and for energy intensive applications, major waste heat 
reduction first). For instance, the development of IBM's NorthPole 
chip required a holistic approach, integrating breakthroughs across 
circuits, architecture, and algorithms (Modha et al. 2023). This 
approach creates electronics that are not only cutting-edge but also 
sustainable in their energy usage.  

The EES2 program has effectively divided its scope into eight 
specialized working groups to enable a comprehensive and 
collaborative approach to achieve its goal. For a detailed exploration 
of the microelectronic domain, the initiative has been further partitioned into two categories as 
depicted in Figure 8, namely: Compute Stack and Microelectronic Enablers. Each working group 
within the “stack” addresses a layer of the computing stack, with a central focus on energy 
efficiency. Concurrently, the Enabler category concentrates on enabling technologies, 
approaches, and workforce, paying specific attention to their manufacturing processes and the 
energy consumption involved in their computation and operation, including aspects like data 
center function and energy transport among others. 

Figure 8. The compute stack. 
Source: DOE Office of Science 

2018 
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Figure 9. 2022–2023 organization of the EES2 working groups. 

The general scope of each WG is described in the following section. 

1.4.1 Compute Stack 
The Materials and Devices group focuses on contemporary challenges in device technology, 
evaluating innovative materials like carbon nanotubes, and pioneering devices such as 
spintronic memory. They also address existing issues encompassing current materials, 
including scalability, contact resistance, and thermal attributes. Given that materials and devices 
are fundamental to all semiconductor products, key areas of examination include interfaces, 
interconnects, CMOS compatibility, and novel devices, particularly those leveraging unique 
switching mechanisms. As Moore's Law decelerates, the discovery of new materials, switching 
mechanisms, and devices is crucial to meet the efficiency targets of EES2. 

The Circuits and Architectures group seeks energy efficiency gains in the fundamental 
building block circuits (transistors, memory cells, etc.) as well as in their organization into an 
architecture (processors, domain-specific accelerators, high bandwidth memory, etc.). Energy 
efficiency improvements have primarily come through geometric scaling of the transistor and 
memory cell. However, since scaling is slowing, this group is focusing on systemic issues, and 
energy-efficient parallel technologies of processors and memory as well as compute-in-memory 
technologies for enhancing energy efficiency and performance. 

The Advanced Packaging and Heterogeneous Integration group emphasizes energy-
efficient strategies in integrated circuits and packaging. This is achieved through heterogeneous 
integration, optical interconnects, and thermal mitigation, utilizing cutting-edge materials and 
novel packaging techniques. Given that data movement is an energy-intensive operation, this 
focus provides tangible energy efficiency solutions for semiconductor products. Key areas of 
consideration include industry standards, optimized thermal management, chiplet-based 
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integration, reduction of critical dimensions to silicon fabrication sizes, and innovation in 
interconnects and input/output systems. 

The Algorithms and Software group focuses on optimizing energy efficiency of 
microelectronics through strategic utilization of algorithmic design and software development. 
Examples include bio-inspired/neuromorphic algorithms and algorithmic improvements coupled 
to accelerator hardware. The group’s aim is to champion the energy efficiency goal within 
software without compromising computational operations. 

1.4.2 Microelectronic Enablers 
The Power and Control Electronics group focuses on enhancement and innovation of power 
delivery systems spanning from microelectronics to large data centers. Their concentration lies 
in exploring economically viable and efficient design solutions, which range from the 
implementation of wide-bandgap devices in switching power supplies to formulating strategies 
for optimizing renewable energy use and reducing carbon in energy supplies to data centers to 
improved thermal management strategies for lower overall energy consumption of the data 
center(s). Understanding that efficient power delivery and control are critical for information-
communication technologies, the group acknowledges that managing where, when, and how 
power is delivered to devices can minimize energy consumption and is integral to handling 
large-scale renewable resources and electric transport. Key areas of interest include power 
management, thermal mitigation technologies, pioneering devices, power leakage, and power 
conditioning circuits and components. 

The Manufacturing Energy Efficiency and Sustainability group focuses on optimization of 
energy efficiency and promotion of sustainability in the manufacturing process, especially in 
response to the rising wave of manufacturing facilities spurred by the CHIPS and Science Act. 
The Act's core objective is to repatriate manufacturing of microelectronics. As discussed above, 
manufacturing-related energy usage escalates with each new iteration of advanced 
semiconductor technology. In response to this, key areas of interest include alternatives for 
energy-intensive extreme ultraviolet lithography, lower greenhouse gas-emitting dry etch gases, 
and the implementation of sustainable manufacturing practices. 

The Metrology and Benchmarking group identifies measurement, characterization, and 
benchmarking needs for the technologies discussed in other working groups. Recognizing the 
intricacy of burgeoning integrated circuits and microelectronic systems, this focus is essential for 
the identification of pioneering metrology technologies and strategies for future systems. As 
semiconductor products increase in complexity, the importance of metrology in understanding 
process variability, device function, and troubleshooting amplifies. Benchmarking becomes 
crucial in defining appropriate metrics for energy efficiency and in comparing extant and 
emerging technologies. Areas of interest include innovative metrology methods and tools, 
suitable metrics for each level of the microelectronic stack, and standards stipulated by NIST, 
inclusive of those provided for energy efficiency by DOE. 

The Education and Workforce Development group develops strategies to ensure a well-
qualified workforce is available not only to support the growth of the domestic microelectronics 
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industry, but also to lead global innovation in microelectronics technology, especially as it 
pertains to energy efficiency in microelectronics and computational systems. 

1.4.3 Cross-Collaboration 
Although the work was organized by the groups listed above, many of the ideas documented in 
the roadmap are inherently interdependent and require input from multiple working groups. For 
example, the most impactful implementation of carbon nanotube field-effect transistors 
(CNTFETs) is in monolithic 3D integration with emerging memory elements and circuit 
architecture. This requires direct innovations from the Materials and Devices, Circuits and 
Architectures, Advanced Packaging and Heterogeneous Integration, Metrology and 
Benchmarking, Manufacturing, and Algorithms and Software working groups. In this way, 
demonstration and implementation of the ideas from each working group may require 
innovations from multiple working groups simultaneously. To address this interdependency, 
team members had opportunities throughout the roadmap development process to discuss 
cross-cutting opportunities, seek input from other working groups, and coordinate results in 
each technologies action plan.  

1.5 Methodology  
This roadmap is a product of extensive literature review and energy analysis, nine working 
group collaboration meetings, and expert input during the writing process. The working groups 
met monthly, with the organizing committee engaging in literature review and analysis to 
prepare for the following meeting. Table 2 and the description below provide a general overview 
of the roadmapping process. Some working groups may have differed through the series of 
meetings based on progress and the nature of the topics within each group.  

The roadmap formally launched in September 2022 with a pair of meetings—the first to 
introduce the EES2 pledge and inaugurate its first 20 signers, and the second to discuss energy 
efficiency considerations of microelectronic devices and identify key technological 
advancements needed to achieve the EES2 goal. The input gathered during these events along 
with post-meeting literature review established the working group topics, which were formalized 
in a meeting held in November 2022. Those that participated in the meeting identified the 
working groups to which they were interested in contributing. 

Starting in January 2023, each working group met monthly to explore various aspects related to 
the working group topic. January 2023 featured the announcement of a detailed roadmap 
schedule and strategy, and participant discussions served to determine the general scope of 
each working group. Working group members were nominated by the pledging organizations 
and self-selected the working groups supported according to expertise and interest. Some more 
active members were invited by DOE or volunteered to act as co-chairs of the working groups. 

In February 2023, the third meeting built upon the previous by centering around specific energy 
efficiency technologies. In many cases, the working group proposed more technologies than the 
working group could effectively discuss and characterize throughout the rest of the working 
group meetings, so the group prioritized what they thought were the most promising 
technologies. The number of technologies that were deprioritized depended on the size of the 
working group. Working group members were also asked to estimate projected energy 
efficiency contribution and timeline for achievement of that contribution. These estimates were 
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only meant to gauge an approximate number on the potential efficiency improvement and in 
most cases, highlighted the need for deeper analysis.  

The fourth meeting functioned as an intensive session for the working group to continue the 
discussions from the previous month. Working group members broke up into small groups to 
research and analyze existing literature and data to refine initial energy efficiency estimates for 
the down-selected technologies. The need for an additional working group focused on workforce 
development was also discussed. 

The fifth meeting, held in April 2023, was dedicated to identifying challenges that may arise in 
the development and implementation of the proposed technologies solutions. A secondary 
purpose of the fifth meeting was the official establishment of the newly founded workforce 
development working group.  

In May 2023, the sixth meeting focused on a discussion of R&D solution pathways for the 
challenges that were identified in the previous meeting, and the seventh meeting in June 
reviewed and discussed the input collected from the previous meetings and made any 
adjustments necessary. If time allowed, working groups also started on action plans.  

Held in July 2023, the eighth meeting was dedicated to developing an action plan for each 
technology or to address key challenges. Working group members, once again, broke up into 
small groups to flesh these out. Groups continued to collaborate offline after the eighth meeting 
to continue to make progress prior to the ninth and final meeting, which was held in August. This 
meeting, the small groups finished up their action plans and presented them for feedback from 
the broader group.  

Writing of the roadmap began in September 2023, with working group facilitators drafting 
sections pertaining to their respective groups. Drafts were distributed to working group chairs 
and participants for comment, and support staff were tasked with drafting introductory and 
overview sections of the roadmap. 

Table 2. Workshop Series Used to Establish the Targeted Technologies and Associated Solution Pathways 
and Action Plans for thie Roadmap 

WG Meeting Timing Topic(s) of Discussion 

1 November 2022 Working group topics and membership 
2 January 2023 Working group charters and processes 

3 February 2023 Key energy-efficient technologies, prioritization, and efficiency 
estimates 

4 March 2023 State of the art, baseline energy consumption, and future projections  
5 April 2023 Efficiency improvement challenges  
6 May 2023 Pathways for advancement 
7 June 2023 Review and refinement 
8 July 2023 Action planning 
9 August 2023 Action planning, review, and refinement 
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The technologies in this roadmap are assessed against two metrics, timeline to maturity and 
impact. Timeline to maturity corresponds to the time required to achieve a technology readiness 
level (TRL) of 6. Tailored definitions of TRLs for the microelectronics industry are detailed in 
Figure 10. Technologies already at TRL 6 are included for their potential energy efficiency 
improvements, despite not being incumbent technologies. Impact is measured by comparing 
future performance in an energy metric against current technology (e.g., energy per bit, energy 
per switching, memory access, etc.). While true impact from the technologies contained in the 
roadmap will be dependent on commercialization and deployment, non-technical and market 
forces play an outsize role in determining this timeline. Therefore, the roadmap does not attempt 
to estimate when this will occur, nor which technologies should be addressed next. Instead, the 
roadmap compiles promising energy-efficient technologies and approaches and highlights the 
technical challenges and potential solution pathways to achieve technical readiness for 
commercialization, if so desired by industry. 

 
Figure 10. Definitions for technology readiness levels for the microelectronics industry as used in this report 

1.6 Related Work 
Roadmapping has a long tradition in the semiconductor industry, with industry-led groups 
coordinating on shared efforts to pursue early-stage R&D, standardize equipment, and reduce 
capital expenditures while propelling the technology forward in keeping with Moore’s Law. There 
are several important roadmapping activities being undertaken today to facilitate technological 
progress in the post-Dennard scaling era. The following subsections list and describe the scope 
of the most prominent roadmaps.  

1.6.1 International Roadmap for Devices and Systems 
The International Roadmap for Devices and Systems (IRDS) (IRDS 2022), the most long-
standing roadmap in the industry, evolved from the predecessor International Technology 
Roadmap for Semiconductors (ITRS). Even earlier, a 1965 paper by Gordon Moore laid out the 
observation known as Moore’s Law (Moore 1965). Moore’s paper established a tempo of 
technology advancement for the semiconductor industry, but it was not until 1991 that a formal 
roadmap document (the ITRS) was developed by the U.S. semiconductor industry community. 
From this beginning, in keeping with the expansion of the industry globally, the roadmap grew 
into an international effort. The ITRS was updated annually through 2015 but was then 
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supplanted by the IRDS, which had a broader scope that encompassed electronic devices and 
systems. The intent of the IRDS roadmap is to provide a basis to facilitate cooperation by 
academic, manufacturing, supply, and research organizations, specifically:  

• To identify key trends related to devices, systems, and all related technologies by 
generating a roadmap with a 15-year horizon. 

• To determine generic devices' and systems' needs, challenges, potential solutions, and 
opportunities for innovation. 

• To encourage related activities worldwide through collaborative events, such as related 
IEEE conferences and roadmap workshops. 

1.6.2 Heterogeneous Integration Roadmap 
The Heterogeneous Integration Roadmap (HIR) (HIR 2022) is a collaborative effort between 
several IEEE technical societies—the IEEE Electronics Packaging Society (EPS), the IEEE 
Electron Devices Society (EDS), and the IEEE Photonics Society—as well as the industry group 
SEMI and the ASME Electronic and Photonic Packaging Division (EPPD). Like the IRDS (from 
which it is an outgrowth), the HIR provides guidance for the global electronics industry regarding 
projected technology capabilities, needs, and opportunities. The HIR provides: 

• A forecast of industry requirements to maintain the pace of progress for the industry and 
user community over a 15-to-25-year horizon. 

• Identification of difficult challenges that must be addressed to meet these industry 
requirements, with identified research needs and potential solutions. 

1.6.3 2030 Decadal Plan for Semiconductors 
Published in January 2021, the 2030 Decadal Plan for Semiconductors by the Semiconductor 
Research Corporation (SRC 2021) was instrumental in motivating the work that has resulted in 
this EES2 roadmap. The decadal plan outlined key research priorities for the semiconductor and 
computer industries. It followed a June 2020 report by the Semiconductor Industry Association 
(SIA) calling for a 3-fold increase in federal investment in semiconductor R&D to stimulate U.S. 
economic growth and job creation, complementing it with specific goals and quantitative targets 
(SIA 2020). The decadal plan identified five seismic shifts that will influence the industry: 

• Analog hardware will enable machine intelligence systems. 

• Growing demand for memory will outstrip global supply, creating opportunities for new 
memory and storage solutions. 

• Growing demand for communication capacity to keep up with data generation rates will 
drive communication technology development. 

• Emerging security challenges in highly interconnected systems and in AI systems will 
drive security technology development. 

• Ever-rising energy demands for computing will necessitate new computing paradigms 
with dramatically improved energy efficiency. 
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1.6.4 Microelectronic and Advanced Packaging Technologies Roadmap 
The ongoing microelectronic and advanced packaging technologies (MAPT) roadmap (MAPT 
2023) effort is led by SRC as an expansion of the 2030 decadal plan. MAPT is a 
multidisciplinary strategy addressing advanced packaging, 3D integration, EDA, nanoscale 
manufacturing, new materials, and energy-efficient computing, with the aim of assuring future 
design, development, and manufacturing of heterogeneously integrated chips in the U.S. and 
like-minded nations. The MAPT Roadmap outlines research priorities and challenges that must 
be addressed to ensure sustainable growth and innovation, and focuses explicitly on energy 
sustainability, environmental sustainability, and workforce sustainability. 

1.6.5 National Strategy on Microelectronics Research 
The White House Office of Science and Technology Policy (OSTP) and its National Science and 
Technology Council (NSTC) created—as required by the first CHIPS authorization in 2021—a 
Subcommittee on Microelectronics Leadership (SML) that was tasked with providing a National 
Strategy on Microelectronics Research (NSTC 2024). The Office of Science represented DOE 
in the strategy development effort. The National Strategy identified the following goals to guide 
agency efforts in microelectronics research: 

• Enable and accelerate research advances for future generations of microelectronics. 

• Support, build, and bridge microelectronics Infrastructure from research to 
manufacturing. 

• Grow and sustain the technical workforce for the microelectronics R&D to manufacturing 
ecosystem. 

• Create a vibrant microelectronics innovation ecosystem to accelerate the transition of 
R&D to the U.S. industry. 

In the national strategy, improving energy efficiency was mentioned as being “increasingly 
essential for sustainability” and as an important research focus in numerous areas. AMMTO’s 
Semiconductor R&D for Energy Efficiency workshop series was also referenced in the national 
strategy. 

1.6.6 How This Complements Prior Roadmaps and Strategies 
The EES2 roadmap complements the roadmaps and strategies listed above. Whereas the prior 
reports encourage energy efficiency qualitatively, the EES2 roadmap has quantitative goals for 
energy efficiency. It also uses a common factor—the energy efficiency improvement factor—to 
compare technologies, as well as the three specific energy metrics: energy per bit, instruction, 
and application.  

With several EES2 pledging institutions and individual WG participants also involved in other 
roadmap efforts, cross-pollination is another complementary area. For example, SRC, the first 
EES2 pledger, provided early and valuable input to the EES2 roadmap process, and the EES2 
team likewise has provided input to the MAPT effort. Most of the WG members are also active 
in at least one other collaborative microelectronics innovation ecosystem effort, such as 
standards-setting committees, technical societies and councils, and community-organized 
conferences, thus bringing a wider perspective and greater industry connectivity to the team. 
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2 Technologies for the Compute Stack 
This chapter discusses the hierarchical layers of the microelectronics compute stack and 
highlights the energy efficiency potential for the technologies within each. The sub-sections are 
a summary of the input gathered from working group deliberations over the roadmapping period. 
Each sub section is first framed within the context of microelectronics and makes connections to 
the broader EES2 goal. This sets the stage for an in-depth analysis of each technological area. 

Key technological domains are identified, with their functionality thoroughly explored alongside 
potential improvement strategies. Precise metrics and projected timelines are provided for each 
technology's path towards maturity and deployment with emphasis on the future initiatives 
needed to achieve these outlined objectives. 

2.1 Materials and Devices 
In 2024, the metal-oxide-semiconductor field-effect transistor (MOSFET) is the foundation for 
logic and memory devices, serving as the backbone of traditional computing technologies. The 
complementary metal-oxide-semiconductor (CMOS) process, which pairs complementary and 
symmetrical MOSFETs, has been the standard implementation of MOSFETs for decades. As 
CMOS technologies progressed below 10-nm, short channel effects, which result in high 
standby power consumption and low drive current, became the dominant factor impeding 
continued scaling (Lee et al. 2015). These short channel effects led to intense interest in 
alternative device technologies in parallel with CMOS scaling. Examples of alternative device 
technologies include novel channel materials, device architectures, and switching mechanisms.  

To overcome the limitations of Si 
CMOS scaling, there are generally 
two approaches: CMOS-extension 
and Beyond-CMOS (or CMOS-
replacement) technologies (Hiramoto 
2009; see Figure 11). CMOS-
extension technologies utilize 
thermionic emission to switch charge 
states using either innovative 
materials or device architectures. In 
contrast, Beyond-CMOS strategies 
employ unconventional transport 
mechanisms, such as tunneling, or 
rely on effective carriers distinct from 
charge, such as spin.  

Innovative materials technologies—
such as 2D materials, carbon 
nanotubes, spintronics, and ferroelectrics—primarily impact the bit level. These materials serve 
as the foundation for developing advanced transistors, including traditional FETs, TFETs, and 
Si-GAA transistors, which are crucial for enhancing energy efficiency and performance at the bit 
level. By fundamentally improving the properties of transistors, these materials play a pivotal 

 
Figure 11. Technology options for new information processing 

technologies. Source: Hiramoto 2009  
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role in the efficient manipulation and storage of bits, laying the groundwork for more energy-
efficient and high-performance computing architectures. 

Working group methodology  
The working group focused on addressing the 
contemporary challenges in device technology (Si 
scaling) and evaluating innovative materials and emerging 
devices (see Table 3). Challenges associated with these 
alternatives—including scalability, contact resistance, 
interfaces, and CMOS compatibility—were also 
addressed.  

Figure 12 summarizes the potential energy efficiency 
improvement factor and timeline for demonstration of the 
prioritized technologies. The y-axis represents the 
potential energy efficiency improvement factor, which is 
quantified based on the energy savings achieved when 
transitioning from the incumbent technology to the 
alternative in logarithmic scale. The x-axis, on the other 
hand, denotes the years it takes for this specific 
technology to reach TRL 6. For more information on 
TRL6, refer to section 1.5. The references for each 
technology are included in the detailed write-ups that can 
be found in the following sections.  

A systematic benchmarking effort is needed to objectively 
compare the technologies proposed in this chapter. Furthermore, as the lowest rung on the 
compute stack, system-level efficiency impacts from innovations stemming from this working 
group must be carefully evaluated.   

 

Figure 12. Potential efficiency improvement factor and timeline for selected technologies proposed by the 
Materials and Devices working group 

Technology 

2D materials 

CNTFET 

CNT memory 

Spintronic/magnetoelectric logic 

Spintronic memory 

Ferroelectric memory   

Tunnel field effect transistor 

Silicon gate-all-around 

Analog devices for neuromorphic 

Novel interconnects and contacts 

Novel interlayer dielectrics 

Table 3. Promising Energy-Efficient 
Materials and Device Technologies. 
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Key Takeaways 
Table 4 summarizes the most significant identified energy efficiency opportunities that can be 
achieved through advances in materials and devices. 

Table 4. Key Takeaways for Energy Efficiency Opportunities in Materials and Devices 

Technology 
Group Key Opportunities for Energy Efficiency 

CMOS-Extension 

 

• Si-GAA transistors offer energy efficiency gains along with other 
performance improvements, including faster switching speeds and 
reduced channel leakage. It is currently on the path to being fully 
realized and integrated into systems, replacing FinFETs, by 2025.   

Beyond-CMOS: 
Conventional 
Carrier and 
Transport 

 

 

 

• 2D Materials, such as TMDCs, are atom-thick layers with unique 
properties like high electron mobility and thermal conductivity. 2DFETs 
can offer energy efficiency improvement over traditional silicon-based 
FETs by reducing total capacitance and operating voltage, as well as 
reducing device density due to their thin-layered structure. 

• CNTs have unique material properties such as high electron mobility 
and ultrathin 1D structure. CNT-based devices, especially CNT memory, 
also exhibit outstanding current density and minimal parasitic effects. 
Their high carrier mobility and near-ballistic carrier transport allow 
CNTFETs to mitigate short channel effects present in silicon MOSFETs, 
significantly enhancing computational energy efficiency. 

• Ferroelectric FET (FeFET) enable non-volatile memory with lower write 
energy. Hafnia-based FeFETs stand out for their nondestructive read, 
fast switching, scalability, and potential for multibit operation, offering 
significant advantages over traditional memory technologies. 

Beyond-CMOS: 
Alternative Carriers 
and Transport 

 

 

 

• Spintronic devices utilize the electron's charge and spin to enable low 
power consumption and high endurance electronic circuits with the 
added advantage of non-volatility, offering competitive performance for 
both logic and memory applications. 

• Tunnel FETs (TFET) leverage quantum tunneling for carrier transport, 
enabling steeper subthreshold slopes and lower operating voltages.  

• Emerging devices and materials for analog computing, such as 
memristors, have the potential to transform computational methods. 
These devices leverage a variety of materials, including organic 
materials that mimic neuroplasticity and mixed ion-electron conductors 
that facilitate brain-like processing.  

Device Integration 
Materials 

 

 

 

• Integration of novel materials for interconnect and ILD can reduce 
resistive loss and capacitive delay, leading to improvements in energy 
efficiency, performance enhancement, and higher device density. 

• ILDs with lower κ-values are essential to minimize crosstalk and delay 
time. Innovative materials with structural, thermal, and chemical 
integrity, along with mechanical hardness and minimal leakage, are 
needed. 

• There is a concerted push towards interconnect and contact metals, 
such as ruthenium, which have lower mean free paths and are less 
affected by boundary scattering. Research is also looking into 
barrierless alternatives and novel contact materials to overcome metal-
induced gap states and reduce contact resistivity. 
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Grand challenges 
The major challenges for achieving energy efficiency gains in microelectronics materials and 
devices include: 

• Achieving consistent manufacture of high-purity and high-quality materials—such as 2D 
materials, carbon nanotubes (CNTs), and magnetic materials—for energy-efficient 
microelectronic devices. 

• Identifying and developing processing methods to enable integration of new materials.  

• Benchmarking emerging devices and material technologies against a consistent set of 
metrics and test protocols.  

• Establishing R&D testbeds or prototyping facilities to demonstrate emerging device 
concepts and materials.  

• Evaluating fundamental and interfacial properties (thermal stability, conductivity, contact 
resistance, etc.) of emerging materials and heterostructures and understanding their 
implications on device behavior. 

• Bridging the knowledge gap between material science and device engineering through 
cross-disciplinary collaboration among material scientists, device engineers, and 
system architects to foster holistic understanding and create highly efficient, scalable, 
and reliable devices. 

• Developing and leveraging high-fidelity device modeling and system simulation 
platforms that consider nuanced behavior of materials to accelerate R&D.  
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2.1.1 2D Semiconductor Materials 
Two-dimensional (2D) semiconductor materials generally consist of one-to-three atom-thick 
layers, forming covalently bonded lattice structures. Many 3D semiconductor materials include 
surfaces with dangling bonds, which are unbonded atoms at the surface that can create reactive 
sites. In contrast, 2D semiconductor materials generally have saturated bonding configurations 
with minimal dangling bonds. This characteristic can contribute to their unique electronic, 
mechanical, and optical properties (Allain et al. 2015). The absence of dangling bonds in 2D 
semiconductor materials ensures that their surfaces are smooth and uniform, which minimizes 
electron scattering and enhances electrical conductivity. By reducing reactive sites that could 
otherwise trap electrons or degrade the material's properties over time, the absence of dangling 
bonds in 2D semiconductor materials is critical for the development of high-performance 
energy-efficient devices as it allows for faster electron transport and improved device reliability. 
Furthermore, 2D materials are adept at operating at lower voltage levels without compromising 
on speed, offering a promising avenue for reducing energy use in computing and electronic 

Figure 13. Selected 2D materials and their bandgap. Source: Chaves et al. 2020 
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devices. For example, graphene, a single layer of carbon atoms arranged in a hexagonal lattice, 
exhibits extraordinary properties, including exceptional electron mobility, mechanical strength, 
and thermal conductivity. The discovery of the benefits of graphene spurred interest in a whole 
class of monolayer 2D materials, each with its own unique properties and potential applications. 

Although graphene exhibits excellent properties suitable for transistors, it lacks an innate 
bandgap. To introduce a bandgap, graphene must be fashioned into nanoribbons. However, this 
modification can lead to complications stemming from edge scattering effects and a significant 
decrease in carrier mobility, eliminating graphene as a candidate for FET and limiting it to use in 
interconnects and applications where switching is not the primary concern, such as thermal 
management (Lin et al. 2010). Thus, there has been a shift in focus to other 2D semiconductor 
materials, predominantly transition metal dichalcogenides (TMDCs) and hexagonal boron nitride 
(h-BN) with innate bandgap ranging from 0.3 to 6 eV (see Figure 13), which is suitable for 
conventional CMOS applications such as logic and memory (Chaves et al. 2020). With a layer-
dependent tunable bandgap and strong light-matter interaction, 2D materials are also suitable 
for diverse optical devices such as photodetectors, modulators, lasers, and light-emitting diodes. 

Logic and Memory 
The evolution of the electronics industry has 
largely been propelled by scaling of the 
contacted gate pitch (CGP) and metal pitch 
(MP). This scaling has consistently enabled 
platforms with superior performance and 
optimized power consumption. However, 
achieving further area reductions 
isincreasingly challenging due to processing 
limitations and intrinsic device constraints. 
One major component of CGP scaling in 
silicon-based technology, the gate length, 
appears to plateau beyond the 3-nm node, as 
depicted in Figure 14 (Ahmed et al. 2020). As 
the gate length diminishes, a thinner channel 
becomes essential to keep short channel 
effects under control. 2D-FETs have the 
potential to prolong geometric scaling by 
overcoming traditional scaling challenges 
associated with these short channel effects 
due to their innate channels, enhanced 
electrostatic control, and superior theoretical 
mobilities. To demonstrate the advantages of 
2D-FETs, Interuniversity Microelectronics 
Centre (IMEC) has demonstrated a circuit-level power-performance-area evaluation at 2 
nanometers between stacked 2D-nanosheets and Si-based counterparts. The results shown in 
Figure 14 indicate an ~18% reduction in total capacitance (less energy required to switch a 
transistor on/off) and ~22% improvement in drain current, which indicates lower operating 
voltage (Ahmed et al. 2020). From these results, we can assume roughly 1.2 times the energy 
efficiency improvement for 2D materials. 

Figure 14. Si NS-FET versus 2D-FET. (a) Drain current 
improvement and (b) capacitance improvement. Source: 

Ahmed et al. 2020 
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Several pressing challenges remain before this 2D-FET technology can be commercialized. 
Most prominent among those challenges are material growth and transfer, which are detailed 
below. Ultimately, to realize 2D-FETs, 2D materials are needed that are stable to the 
environment, not adversely affected by edge scattering, and also CMOS- and HVM-compatible. 
The knowledge gained from previous efforts with graphene and TMDCs may be helpful in 
investigating other 2D materials. 

Applications in Neuromorphic Computing 
2D materials, notably transition metal dichalcogenides (TMDCs), have a tunable bandgap, 
which allows for dynamic control over charge transport, enabling multi-level storage in analog 
memory devices. 2D materials have imperfections that serve as charge trapping sites, and with 
external voltage, these sites can hold charge, modifying the device's conductance for analog 
storage (Cao et al. 2020). The nature of these traps, however, can be tailored by adjusting 
defect characteristics. 2D materials (as well as other materials) also display resistive switching, 
where resistance changes with applied voltage (M. Wang et al. 2018). This behavior, influenced 
by factors like metal ion movement or charge dynamics at defects, can result in varied 
resistance states for broader analog data representation. Furthermore, 2D materials show 
promising retention times (>10 years), which are crucial for the longevity of stored states in 
analog memories (Rehman et al. 2020).  

Challenges and Solution Pathways for 2D Semiconductor Materials 
Material Growth  

Monolayer 2D devices have garnered attention through significant lab-scale demonstrations, 
predominantly involving single-TMDC flakes. However, for these 2D materials to be broadly 
adopted, the development of wafer-scale growth of 2D films is needed. In Figure 15, three main 
techniques for producing high-quality monolayer TMDCs are shown: powder-based chemical 
vapor deposition (CVD), metal-organic CVD (MOCVD), and molecular beam epitaxy (MBE) 
(Briggs et al. 2019). 

Powder-based CVD is preferable for research applications because of its low manufacturing 
cost in synthesizing high-quality, defect-free TMDCs (Liu et al. 2015). However, source 
concentrations cannot be independently adjusted, which restricts the potential of power-based 
CVD for producing large-area TMDCs. 

For the commercialization of 2D TMDCs, MOCVD and MBE are the preferred pathways. 
MOCVD offers tight control over domain sizes and density, thanks to its precursor switching and 
pulsing techniques. On the other hand, MBE heats ultra-pure sources in Knudsen effusion cells, 
directing beams of atoms or molecules onto a heated substrate. Due to the exceptionally pure 
materials and ultra-high vacuum conditions, MBE excels at producing high-quality, expansive 
2D TMDCs (Yue et al. 2017). However, MBE for TMDCs faces challenges due to the high vapor 
pressure of sulfur, which limits its application mainly to selenides and tellurides, barring a few 
exceptions. 
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While MOCVD and MBE hold promise for synthesizing large-area 2D TMDCs, several 
challenges must be addressed before they can be widely adopted for these materials. With their 
high-vacuum and ultra-high vacuum environments, these techniques come at a higher cost 
compared to other methods. Furthermore, their inherent complexity—coupled with concerns 
over scalability, growth rate, and consistent production of defect-free large areas--poses 
significant barriers. For precise parameter control, robust modeling and simulation practices are 
still in development. 

Material Transfer 

Once high-quality, defect-free monolayer 2D materials are produced, an efficient, high-quality, 
and repeatable transfer technique is needed for device fabrication. Presently, the transfer of 2D 
materials often involves the use of hazardous chemicals, including hydrofluoric acid (HF), 
hydrochloric acid (HCl), and nitric acid (HNO3) (Elías et al. 2013). Not only are these substances 
environmentally unfriendly, but they also compromise the quality of the film during the process. 
Strong bases like potassium hydroxide (KOH) and sodium hydroxide (NaOH) have been 
explored as alternatives, but these etchants can similarly degrade the film quality and impair 
device performance due to their high corrosiveness and inadvertent doping effects (Wang et al. 
2014). Research on a suitable transfer methodology is still ongoing. For example, the ultrasonic 
bubbling transfer method utilizes microbubbles produced by ultrasonication to lift the film from 
the substrate (Ma et al. 2015). However, this technique can introduce cracks and wrinkles to the 
transferred film. Regardless of approach, the transfer process must be CMOS-compatible to 
leverage existing processes and tools for wafer fabrication. 

 

Figure 15. Overview of synthesis techniques of single to few layer TMDC flakes. Source: Briggs et al. 
2019 
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Action Plan for 2D Semiconductor Materials 
Table 5. Action Plan for 2D Semiconductor Materials 

Scope 

Technology for 
Energy Efficiency: 2D material-based devices, primarily TMDCs and h-BN 

Technology of Interest: Logic 

Challenges Solution Pathways 

• Develop process for scalable synthesis and post-growth 
transfer (if needed) of 2D materials and post. 

• Maintain consistent thickness of 2D materials. 

• Minimize defects in 2D materials. 

• Alleviate thermal stability and contact resistance issues at 2D 
materials interfaces. 

• Transition to other 2D materials (away from graphene) 
with innate bandgaps suitable for various applications, 
including Stanford University’s Nano-Engineered 
Computing Systems Technology (N3XT). 

• Leverage 2D-FETs for further device miniaturization and 
enhanced energy efficiency. 

• Investigate key TMDC growth techniques: powder-based 
CVD, MOCVD, and MBE. 

• Address challenges in transferring high-quality 2D 
materials using innovative methods. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

Discovery and characterization 
Electrical conductivity, 

bandgap measurement, 
mechanical strength 

Establish standardized characterization 
protocols 1–2 

Bandgap engineering Bandgap values, uniformity 
across samples 

Achieve tunable bandgap ranges 
suitable for semiconducting 

applications 
2–3 

Research on production 
techniques 

Rate of synthesis, purity, 
defect density 

Develop methods for large scale 
production with less than 1% defect 

density 
3–5 

Transfer Technique 
Development 

Quality retention post-
transfer, throughput 

Refine transfer methods to maintain 
>95% quality retention 1–2 

Commercialization roadmap Cost per area, scalability 
metrics 

Reduce production cost by 50%, 
create a scalable commercial process 4–6 

Integration with current 
technologies 

Compatibility, performance 
benchmarks 

Integrate with existing CMOS 
processes with demonstrated 

performance benefits 
3–4 

End-to-end testing Device failure rates, 
performance metrics 

Achieve less than 5% device failure 
over standard testing procedures 2–3 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 

• Synthesize high-quality, scalable 2D materials. 

• Develop transfer methods preserving material integrity. 

• Innovate in device integration and performance testing. 

End Users/Original Equipment 
Manufacturers (OEMs) 

• Specify performance and integration requirements. 

• Pilot test new 2D material-based components. 

• Provide feedback for material and device optimization. 

Academia 

• Conduct fundamental research on 2D materials. 

• Explore novel properties and potential applications. 

• Collaborate on translating lab-scale successes to industry-scale processes. 

Required Resources Cross Collaboration Needs of Working Groups 
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• Advanced material synthesis equipment. 

• High-precision characterization tools. 

• Funding for interdisciplinary research and development 
projects. 

• Circuits and Architectures: Optimize the interplay between 
algorithmic design, software, and hardware for enhanced 
energy efficiency. 

• APHI: Ensure novel materials are integrated into next-
generation packaging solutions. 

• MEES: Integrate 2D materials into current infrastructure. 

 

2.1.2 Carbon Nanotube-Based Devices  
Single-wall carbon nanotubes (CNTs) have unique characteristics—including ultrathin (1D) 
body, high and symmetric electron and hole mobility (Franklin et al. 2012a), outstanding current 
density, and very low parasitic—that make them promising materials for transistors that are 
more energy-efficient than conventional Si CMOS.  

CNTs come in two electrical types, semiconducting and metallic, determined by their chirality. 
As shown in Figure 16, 
CNT chirality is defined by 
the rolling angle of a 
graphene sheet into a 
CNT. Uncontrolled growth 
of CNT results in 
approximately two-thirds of 
grown CNTs being 
semiconducting and one-
third metallic. CNT 
diameters vary from 
roughly 0.7–3 nanometers, 
and the bandgap of 
semiconducting CNTs 
approximately follows 0.9 
eV/diameter. Therefore, 
variations in diameter can 
significantly influence the 
characteristics of CNT-
based devices, particularly affecting threshold voltage and off-current due to thermally excited 
charge carriers. 

Conductivity in CNT is sensitive to impurities and defects that cause scattering. With their 
single-atom thickness, external adsorbents and contamination directly influence carriers through 
scattering but also by gating semiconducting CNTs. This makes CNTs candidates for single-
molecule sensors but also raises contamination as a key issue. Contaminants introduce 
significant hysteresis through charge traps that fill slowly, leading to low yield, high device 
variability, and performance degradation. While significant progress has been made in 
controlling the chirality and diameter of CNT material while keeping it clean, challenges remain. 
Requirements for material purity (including chirality) and quality (e.g., lack of defects and 
consistent length) will vary for different classes of devices (logic and memory-for-compute), as 
detailed in the proceeding sections.  

Figure 16. Graphene lattice with chiral angle and vector for CNT. Two 
dominant CNT configurations (armchair and zigzag) are shown. Source: Ávila 

and Lacerda 2008 
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While the benefits of CNT-based devices are clear, most research has been in laboratory 
settings. Commercialization requires more research, testing, and progress before justifying new 
facilities or risking contamination of current, expensive, and entrenched semiconductor 
processes and equipment.  

2.1.2.1 Carbon Nanotubes Field-Effect Transistors 
In CNT field-effect transistors (CNTFETs), CNTs are used as the channel material where an 
applied gate field lowers the barrier for carrier injection from metal contacts. Due to their ultra-
thin 1D geometry and high carrier mobility, CNTs overcome short channel effects that hamper 
Si MOSFETs below the 10nm node. CNTs also demonstrate near-ballistic carrier transport, 
further amplifying their value for energy-efficient computation. To date, several groups have 
demonstrated the potential for CNTFETs in various devices, including complementary devices 
(Ding et al. 2012; Han et al. 2013) and devices with channel lengths scaled below 9nm (Franklin 
et al. 2012b) and operating voltage below 0.5 V (Wei et al. 2013). However, these 
demonstrations typically rely on a single transistor or a few CNT transistors, and CNT-material 
production is the critical bottleneck to commercialization. The next major step is to demonstrate 
these characteristics with CNT-dense devices that are comparable or better than Si.  

To be competitive with 2nm silicon technology, CNTFETs require >99.9999% semiconducting 
CNTs, a diameter of < 1.2nm for low off-current, and a density of >125 CNTs/μm2 (IRDS 2022). 
The CNTs must also be sufficiently long and free of contaminants. These requirements are far 
more stringent than those needed for CNT memory, RF CNTFETs, and CNT-based sensors. 
Atomic-level control of CNT production is paramount to the demonstration of CNTFETs for logic.  

First-generation CNT devices will use metal interconnects like Si CMOS, where most energy is 
lost in chips. Thus, the energy improvement over current silicon technology (Si FinFET) will be 
modest (~3 times). However, the ability of CNTFETs to be stacked and monolithically 3D-
integrated is where they truly provide efficiency benefits. Aly et al. proposed a novel computing 
approach (Nano-Engineering Computing Systems Technology [N3XT]) that monolithically 
integrates logic and memory, leveraging CNTFETs as the logic component, and shows a 1,000x 
improvement in energy-delay product compared with conventional Si technology (Aly et al. 
2015).  

Table 6. Energy Impact and Timeline Estimates for Carbon Nanotube Field-Effect Transistors 

Studies like these (and many more) convey the potential impact of CNTFETs. However, 
significant challenges remain. 

Challenges and Solution Pathways for Carbon Nanotube Field-Effect Transistors 
Carbon Nanotube Material Production 

Currently, there are three dominant methods of producing CNTs for electronics, each method 
has its own challenges.  

Technology Expected 
Performance 

Commercial 
Benchmark 

Product 

Commercial 
Benchmark 

Energy Impact 
Factor 

Timeline for  
TRL 6 

CNTFET (logic)  0.2 pJ/cycle SiGe FinFET or 
GAA-FET 0.6 pJ/cycle 3 3–5 years 
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CVD Growth With a Catalyst  

CNT growth via CVD produces pristine/contamination-free and high-performance CNTs but has 
not yet shown adequate chirality and diameter control for digital applications. Early CVD growth 
using iron catalyst and other materials yielded CNTs with varying diameters and a mix of 
semiconducting and metallic tubes (Molckovsky et al. 2019). Current efforts have used 
controlled catalyst size to selectively grow CNTs in a narrow diameter distribution and used 
CVD conditions to drive higher semiconducting CNT yield. While progress has been made, 
more work is needed to fine-tune the process and increase selectivity and CNT density. More 
broadly, CNT CVD growth is not well understood, and fundamental experimental and modeling 
efforts are needed to accelerate progress.  

Purification Through Polymer-Conjugation Sorting  

CNT purification with polymer conjugation was pioneered by Mark Hersam and Mike Arnold at 
Northwestern University nearly 20 years ago. The polymers differentially bind to CNTs by 
diameter and chirality, allowing them to be separated in solution via one or more cycles of 
ultracentrifugation. Enriched semiconducting purity CNTs can then be distributed from solution 
on wafer, either without order or aligned using varying methods including floating evaporative 
self-assembly (Brady et al. 2016). Selectivity of >99.99% semiconducting purity and sufficient 
density for digital applications has been shown, but the processing results in damage and short 
tubes. While significant progress has been made using this method—including the first 100 GHz 
(Rutherglen et al. 2019) and THz CNTFET (Z. Zhang et al. 2023) demonstrations—the complete 
removal of the polymer wrapping remains a key challenge that continues to hinder device 
performance.  

Purification Using Nonpolymer-Conjugation Sorting  

Post-growth on-wafer purification involves removing the metallic CNTs from pristine CVD-grown 
tubes directly on a wafer. This method utilizes the electrical or optical response of the CNTs 
themselves to identify and remove the metallic CNTs. The electrical response is used in VLSI-
compatible metallic CNT removal (VMR), which removes metallic CNTs in formed CNTFETs by 
flowing current through them with the semiconducting CNTs turned off by a sufficient gate 
voltage. The current in the metallic CNTs can be either sufficient to destroy the CNTs like a fuse 
or sufficient to heat and thereby pattern a masking layer, leaving the metallic CNTs exposed to 
etch chemistry (Shulaker et al. 2015). The primary challenge with this approach has been 
degrading the remaining semiconducting CNTs, thereby degrading CNTFET performance. 
Rapid progress is now being made using the optical response of CNTs. Here, like in electrical 
heating post-CNTFET formation, selective heating of metallic CNTs through electromagnetic 
energy absorption in the RF (Xie et al. 2014) or visible/IR (Du et al. 2014) ranges have been 
demonstrated. 

Regardless of approach, continued and sustained R&D of CNT material production to fabricate 
CNTFETs that meet digital logic requirements is needed.  
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Contact Resistance 
In addition to CNT material production, contact resistance is another fundamental materials 
challenge holding CNTFETs from their theoretical/projected potential. Because ballistic 
transport with extremely low resistance can be achieved for CNT lengths below 40nm, the 
contact resistance ultimately determines CNTFET performance for scaled devices (Franklin et 
al. 2014). The best CNTFET contacts allow for much lower bias voltages and thereby significant 
energy savings over Si. As with Si, the choice of metals and heat treatments can vary these 
resistances across a few orders of magnitude. Broadly, the interaction and transport 
phenomena at the CNT-metal interface are not well understood. Previous studies (Franklin et al. 
2014; Pitner et al. 2019) investigating side contacts, varying overlap, and carbide formation with 
various metals have generated useful insights. Most studies were carried out on single-CNT 
devices, and devices with sufficient, dense CNTs will likely have a distribution of overlaps and 
resistances. A more fundamental understanding of interface and transport behavior may 
ultimately accelerate the time to a feasible solution. As such, ab initio modeling of the CNT-
metal interface and experimental validation on high-density CNTFETs is a key pathway. Other 
solutions include experimental study of new metals, including carbide-based materials and work 
function matching.  

Dielectric Materials 
Consistent with silicon-based FETs, high-k gate dielectrics are needed for sufficient gate 
capacitance and current control in CNTFETs. Identifying the appropriate gate dielectric material 
and processing steps remains an open challenge. Atomic layer deposition (ALD) is the 
dominant method and aluminum, hafnium, and zirconium-based dielectrics have been explored. 
Owing to the geometry and chemistry of (subject), conformal, uniform growth on CNTs has been 
difficult. An additional complexity for CNTFETs is the potential for uncontrolled, secondary 
reactions of the ALD precursor and the CNTs (Simmons et al. 2006), resulting in unexpected 
and degraded CNTFET performance. Various strategies, such as self-assembling monolayers 
prior to deposition, have been employed to mitigate this problem with varying results.  

Dielectrics have also been found to dope CNTs, reflecting the CNT-dielectric interface 
properties. Typically, CNTFETs are p-type devices at ambient conditions, but recent studies 
have shown n-type behavior using hafnium dioxide (HfO₂), thought to be due to the positive 
fixed charges at the CNT-HfO2 interface (Moriyama et al. 2010). This finding provides a pathway 
to enable complementary CNT devices through dielectric doping in the spacer region through 
the right material combination. Regardless of gate or spacer dielectric, further research is 
necessary to refine deposition techniques for CNTFETs. This includes exploring requisite pre-
treatments and post-processing steps aimed at minimizing CNT damage or contamination. 
Additionally, an in-depth examination of material chemistry is essential to develop CNTFETs 
that feature high-density CNT arrays. 

Device Performance, Modeling, and Simulation 
A consistent device model is needed to allow system simulations for CNTFETs. While several 
compact models for CNTFETs have been created, consistent device designs and data are 
needed for parameter extraction, most of which come from university labs at present. A 
consistent fabrication capability and large datasets are also necessary, which is only possible in 
industrial facilities with process control. In fact, because there are no clear winners in any of the 
core CNTFET components (e.g., CNT production, dielectrics, contacts, device architecture), it is 
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a challenge to generate a compact model that holistically considers all combinations. At present, 
each model consists of the components that the modeler finds appropriate or most promising. 
Until these pieces are firmed up, a consistent model may be difficult to formulate.  

Foundry/Process Integration 
The way in which CNTFETs will be integrated with existing foundry and CMOS processes is still 
an open question. Contamination stemming from CNTs and their likely contact metals is a 
serious concern for industry. While the general processing steps (e.g., lithography, deposition, 
or etch strip) for a CNTFET are not significantly different from CMOS, changes will be required 
to accommodate the materials used in these processes and may require a parallel set of 
processing tools. As a first step in facilitating this transition, a collaboration between CNTFET 
developers and commercial R&D facilities—like Skywater, SUNY NanoTech, and IMEC—with 
the goal of developing a process design kit (PDK) for CNT-based devices, would accelerate 
progress. It should be noted that CNT-CMOS co-fabrication was done at Skywater through the 
DARPA ERI program. While the project was ultimately unsuccessful due to insufficient system-
level performance resulting from poor CNT material, it nevertheless provides a blueprint for how 
CNTs can be integrated into a fab.  

Action Plan for Carbon Nanotube Field-Efficient Transistors 
Table 7. Action Plan for Carbon Nanotube Field-Efficient Transistors 

Scope 

Technology for   
Energy Efficiency: CNTFETs 

Technology of interest Logic 

Challenges Solution Pathways 

• Achieve consistent CNT quality for improved device energy 
efficiency. 

• Develop dielectrics for "CNT doping" to boost device 
performance. 

• Understand CNT-metal interfaces for charge transfer. 

• Ensure device performance for real-world applications. 

• Bridge the gap between lab innovations and mass production. 

• Continue to develop primary CNT manufacturing pathways 
(listed above). 

• Leverage advanced dielectrics and spacers to tune and 
enhance device performance and energy requirements. 

• Complete a comprehensive and fundamental study of 
contact metals and CNT.  

• Develop compact models for accurate simulation and 
design. 

• Scale CNT technologies for integration with current 
manufacturing processes. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

Improving CNT material 
production 

Semiconducting to metallic 
CNT ratio 

>99.99% 
>99.9999% 

1–3 
3–5 

Current per CNT >15 uA/CNT 1–3 

CNT density 100 CNTs/um 3–5 

Explore dielectric materials and 
deposition techniques  

Breakdown field (gate) 6 MV/cm 1–3 
Effective oxide thickness 

(gate) 3nm 1–3 

Dielectric constant (spacer) SiOx or better 1–3 

Doping (spacer) Effective field of ±1V normalized by an 
EOT similar to the gate 1–3 

Improving contact resistance Resistance <30 kOhm/CNT across devices 1–3 
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CNTFET performance 

Energy delay product 10x improvement over Si-GAA 3–5 

Gate resistance <5 kOhm/CNT contact 
3–5 for e-beam, 
many more for 

EUV 
Introduction of CNT material into 

multi-user commercial R&D 
foundry 

Throughput 1,000 wafers/month without 
degradation in material properties 3–5 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 

R&D companies 
• Develop CNT material and devices. As of this writing, the authors are aware of only 4 U.S. 

startups doing active CNT development (versus dozens 10+ years ago): Aligned Carbon, 
Carbon Technology, Nantero, and SixLine. 

Commercial R&D foundries 
• Fabricate devices, develop PDKs, and complete electrical characterization (commercial R&D 

foundries). 

Academia 
• Engage in fundamental materials and device research, modeling, and simulation. 

• Develop and conduct advanced metrology. 

Required Resources Cross Collaboration Needs of Working Groups 

• Material simulation: ab initio calculation for CNT-metal contact 
interface. 

• Circuit modeling and simulation: compact models and system 
models. 

• Facilities, including access to nanofabrication foundries, 
advanced nanoscale metrology, and electrical testing 
capabilities.  

• Circuits and Architectures: Evaluate benefits of monolithic 
3D integration of CNTFETs; modeling and simulation of 
system level performance from device characteristics.  

• Metrology and Benchmarking: Evaluate and understand 
CNT contamination (atomic scale) and its impacts on 
device performance, benchmark CNTFET performance. 

 

Carbon Nanotube Memory 
Unlike logic, memory applications have significantly less stringent requirements for CNT-based 
devices. CNT memory (e.g., NRAM from Nantero) utilizes a mat of CNTs that deflect and open 
a gap between electrodes when a voltage is applied. This gap creates a sufficient change in 
resistance between the two electrodes to register a 0 or 1. The CNT mat is produced via 
commercial fab standard spin coating and annealing. Because CNTs in this configuration are 
multi-layered and are not channel materials, requirements for uniformity in chirality and 
selectivity (semiconducting vs. metallic) are relaxed.  

The current instantiation of CNT memory (NRAM) is a single-layer, 2-gigabit capacity memory 
on a 22nm die. NRAM’s performance is comparable to existing DRAM products, but its non-
volatile nature significantly enhances efficiency, reducing power consumption by an average of 
33% in the DDR4 performance in active. Research indicates that approximately 50% of DRAM 
in data centers is idle, consuming 30% of the power used during active periods. Substituting 
DRAM with NRAM could lead to an average power saving of 15% in idle due to NRAM’s lower 
idle power requirements (Zhang et al. 2014). Additionally, NRAM's non-synchronous bank-level 
operations for reading and writing, coupled with a GHz clock only present in interface circuitry, 
further reduce active power consumption. Nvidia's research suggests that smaller data 
accesses (512B or 256B) are more efficient in GPUs, occurring 80% of the time. NRAM's 
adaptability with flexible page sizes (down to 256 bits) and the ability to handle multiple pages 
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simultaneously can lead to a 75% power reduction during these frequent operations (Chatterjee 
et al. 2017). 

Table 8 estimates energy impact and timeline for comparing NRAM and DDR4 DRAM in 
2Kbit/page mode.  

Table 8. Energy Impact and Timeline Estimates a for Carbon Nanotube Memory 

Metric NRAM DDR4 DRAM Impact Factor Timeline for TRL 6 

Energy per bit 5 fJ/bit 7 fJ/bit 1.4x 

3 years 

Non-volatile Yes No - 

Latency 5 ns 15 ns 3x 

Frequency 64 GB/s 64 GB/s 1x 

Active power 260 mW 408.3 mW 1.6x 

Idle power 0.8 mW 85.5 mW 106x 
a Source: Micron Technology 2017 

Challenges and Solution Pathways for Carbon Nanotube Memory 

Foundry/process integration and contamination 
At present, NRAM processes and materials have been defined and fab integration remains the 
dominant challenge in bringing NRAM to market. Unsurprisingly, concerns over contamination 
have barred access to fabs. Contamination tests have been completed and previous NRAM 
runs in R&D fabs have had no issues. Ultimately, fab runs at leading edge nodes are needed to 
identify areas of further development to continue moving this technology forward. 

Action Plan for Carbon Nanotube Memory 
Table 9. Action Plan for Carbon Nanotube Memory 

Scope 

Technology for   
Energy Efficiency: CNT memory 

Technologies of Interest: Memory 

Challenges Solution Pathways 

• Secure access to manufacturing facilities for CNT technology to 
demonstrate technology at leading edge nodes. 

• Scale technology to relevant memory capacity/density. 

• Alleviate CNT contamination concerns through BEOL short 
loops and post-process contamination characterization. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

Complete specification for non-
volatile DRAM replacement 

JEDEC approval of the 
DRAM specs 
CXL specs 
UCIe specs 

DDR5/DDR6 SDRAM 
HBM4/HBM5 

CXL 
UCIe 

2–4 

Fab integration CNT fabrication process in 
current infrastructure 

Deployment and adoption of CNT 
fabrication process in current 
infrastructure from industry 

1 
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Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 
• Integrate CNT process and materials into fab operations. 

• Integrate CNT memory into product. 

End Users/OEMs • Define requirements for various applications. 

Academia 
• Define standards for certain applications (e.g., data security). 

• Develop standards that comprehend CNT memory semantics. 

Required Resources Cross Collaboration Needs of Working Groups 

• Production of NVM technology in commercial fabs. 

• Integration of NVM technology with existing systems. 

• Circuits and Architectures: Develop comprehension and 
application of CNT memory to memory protocol.  

• APHI: Provide chiplet support and integration for NVM 
devices. 

 

2.1.3 Spintronic Devices 
Spintronic materials, the building blocks for spin transport-based electronic devices, rely on an 
electron’s charge, as well as its magnetic spin to perform computations and store data. These 
materials offer the potential for circuits that can achieve low power consumption and high 
endurance, with competitive read and write performance. While ideal spintronic devices promise 
negligible standby power dissipation, practical implementations have yet to achieve this due to 
perfect spin polarization or detection efficiencies. Current state-of-the-art spintronic devices, as 
demonstrated by Ikeda et al., achieve on-off ratios of 7:1 at room temperature. While not 
approaching the on-off ratios of experimental CMOS technologies, these 7:1 at room 
temperature ratios still mark a significant advance owing to their non-volatility (Ikeda et al. 
2007). This inherent non-volatility in spintronic devices is a distinct advantage over CMOS with 
respect to energy efficiency because it enables data retention without power. Recent advances 
in 300 mm processing and manufacturing tools have led to the availability of spintronics 
manufacturing capacity within back-end-of-line facilities at leading semiconductor foundries (Lee 
et al. 2018). 
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A key focus for researchers in recent years 
has been to address the challenge of high 
switching error rates in spintronics (Sun et al. 
2022). Both memory and logic devices in this 
field rely on precise control over electron 
spins to perform dependable data read and 
write operations. While factors like thermal 
noise and spin-orbit interactions can introduce 
variability in these spin states, innovative 
solutions are being developed to minimize 
errors during state transitions (Tan et al. 
2021). Despite these challenges, the 
technology’s substantial energy efficiency and 
scaling benefits remain promising, and 
spintronics continue to offer opportunities for 
advancing energy-efficient microelectronics. 

2.1.3.1 Spintronic Logic 

Spintronic logic uses an electron’s intrinsic spin to 
encode data in nanoscale magnets, including single 
domain magnets or, alternatively, non-uniform 
magnetic textures like magnetic domain walls, spin 
waves, and magnetic skyrmions. These data 
elements can be written using spin-polarized 
currents, as well as various electrostatic gating-
induced effects, such as voltage-control of magnetic 
anisotropy, voltage-control of interlayer exchange 
coupling, and magnetoelectric reversal of exchange 
bias. The data state can be read out either by 
integrating the data element into a magnetic tunnel 
junction or by the spin Hall voltage generated in an 
adjacent spin-orbit coupling layer.  

Generally, there are two types of spintronic logic 
devices: current-controlled and voltage-controlled. 
Voltage-controlled devices are orders of magnitude 
more energy-efficient than current-controlled and are 
the preferred type. Voltage-controlled 
magnetoelectric spintronic logic devices (e.g., 
MESO) have the potential for 30x (or more) 
improvement over CMOS. However, many of the devices are reliant on ferromagnetic materials, 
which are slower than CMOS since moving spin textures (e.g., domain walls) or switching the 
magnetization of a single-domain element is slower than charging the gate capacitors. Thus, 
more recent work focuses on magnetoelectric transistors without ferromagnetism.   

 

Figure 17. Comparison of energy and delay of a 32-bit 
adder among various charge- and spin-based devices. 

Benchmarks show performance and switching energy 
versus delay time. Source: Pan and Naeemi 2018 
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Figure 18. The magnetoelectric FET with 
performance shown for a channel with a spin-
orbit splitting of only 100 meV. With a channel 
of 0.5 eV spin-orbit splitting the on/off ratio might 

approach 104 (Dowben et al. 2018) 
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Structurally, magnetoelectric transistors are quite straightforward, as shown in Figure 18. 
Magneto-electric FETs can streamline a full adder from 28 transistors to merely eight device 
elements, which could lead to a considerable reduction in energy costs and an increase in 
operational speed (Sharma et al. 2020). However, more complex structures pose integration 
challenges with current CMOS technologies (Mahmood et al. 2021). Despite these hurdles, 
recent strides have been made in developing magnetoelectric or multiferroic non-volatile 
technologies, which have the potential to transform the landscape of electronics (Manipatruni et 
al. 2019; Vaz et al. 2021; Kosub et al. 2015; Kosub et al. 2017; Mahmood et al. 2021; He et al. 
2022).   

Table 10. Energy Impact and Timeline Estimatesa for Spintronic Logic 

Technology Expected 
Performance 

Commercial Benchmark 
Product 

Commercial 
Benchmark 

Energy 
Impact 
Factor 

Timeline for 
TRL 6 

Spintronic 
(Logic) 50 fJ/switch CMOS HP 100 fJ/switch 2 10 years 

a Source: Puebla et al. 2020 

Challenges and Solution Pathways for Spintronic Logic 
Switching Error 

In Boolean logic, write error rates of approximately 10-15 are required for reliable device function 
(Manipatruni et al. 2019). As a standalone, spintronic devices fall short with typical error rates 
around 10-5 or worse (Manipatruni et al. 2018). Furthermore, if integrating with CMOS, the 
discrepancy in on/off will cause significant switching errors. 

One key strategy to address these issues involves the exhaustive exploration of alternative 
materials and switching mechanisms with the potential for a thousandfold energy reduction. A 
rigorous approach would entail computational modeling to identify materials most likely to 
achieve the requisite low error rate, followed by experimental validation. This process would 
include initial film measurements and subsequent prototyping to empirically validate switching 
performance. Additionally, a comprehensive understanding of materials, defects, 
inhomogeneities, and process issues is essential for identifying the root causes of switching 
errors.  

Energy To Switch Magnetization 

Improving the energy efficiency of switching mechanisms in spintronic devices requires both 
material and architectural innovation. Various magnetoelectric materials are being studied for 
their potential to minimize leakage and reduce coercive voltage. Component magnetic materials 
must be identified that can be heterogeneously integrated into a layered structure for optimal 
performance, while also considering scalability. 

Currently, MESO and other logic devices could benefit from four classes of materials: (1) spin-
orbit coupling materials for spin-to-charge conversion, (2) magnetoelectric materials for charge-
to-spin conversion, (3) interconnects scalable to nanoscale widths, and (4) nanomagnets 
(Manipatruni et al. 2019). For magneto-electric FET, the key challenges are finding a spin-orbit 
coupling material for the semiconductor channel with large spin orbit coupling and a 
demonstration that the magneto-electric can be scaled to small volumes and low coercive 
voltage while still retaining fidelity to 400 K. Material selection should account for attributes like 
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coupling strength, temperature stability, scalability, chemical resilience, and non-volatility. 
Considerable R&D efforts are needed to achieve this goal. 

Fabrication 

Fabrication of spintronic logic devices presents challenges, especially when targeting integration 
with established CMOS technology. Material contamination is of note. During the ion milling 
stages of fabrication, contamination can lead to the shorting of the oxide tunnel barrier, which is 
crucial for the spintronic memory/logic read-out circuit. This problem becomes pronounced 
when forming both memory and logic devices on CMOS substrates. The introduction of new 
materials often necessitates specialized buffer layers or substrates. Moreover, these materials 
might require high-temperature processing, rendering them incompatible with the amorphous or 
polycrystalline texture of existing surface materials, such as TEOS or metallized via stub.  

One possible pathway to advance spintronic devices within the CMOS framework is the 
development of CMOS-based test vehicles. An exemplary initiative is the Daffodil chip at NIST. 
This chip delivers a flexible design intended to enable research and development into two-
terminal resistive memory and selector devices and can make assessments of write-energy, 
write-delay, and switching error metrics across diverse prototypes, thereby evaluating 
integration-level performance (Hoskins et al. 2021). This chip can integrate spintronic device 
arrays in the BEOL on CMOS reticles. To ensure the viability of this integration, it is vital to 
pinpoint small-batch tape-out opportunities and leverage the appropriate circuit topologies to 
efficiently integrate BEOL spintronic devices with CMOS. Opportunities like the Google-NIST 
partnership, Nanotechnology Accelerator Program, will deliver even more test vehicles that 
could help researchers transition new spintronic materials and spintronic logic devices using an 
industrially relevant platform (Google Open Source Blog 2022). 
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Action Plan for Spintronic Logic 
Table 11. Action Plan for Spintronic Logic 

Scope 

Technology for  
Energy Efficiency: Spintronic logic device 

Technology of Interest: Logic 

Challenges Solution Pathways 

• Reduce switching error rates, error rates around 10-15 for 
reliable operation are required. 

• Integrate spintronics with CMOS technology, addressing poor 
on/off ratios of standalone spintronic devices. 

• Identify and utilize materials and mechanisms that can 
significantly reduce the energy required to switch magnetization 
in spintronic devices. 

• Address nanofabrication intricacies, including contamination 
issues during ion milling and the incompatibility of new 
materials with established CMOS processes. 

• Explore alternative materials and switching mechanisms 
through computational modeling and empirical validation 
to achieve low switching error rates. 

• Develop magnetoelectric materials to improve energy 
efficiency, focusing on leakage minimization and 
reduction of coercive voltage. 

• Advance CMOS-compatible test vehicles like the Daffodil 
chip at NIST for research and development of two-
terminal resistive memory and selector devices. 

• Leverage small-batch tape-out opportunities and 
appropriate circuit topologies for efficient BEOL 
integration of spintronic devices with CMOS. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

Material selection for switching 
error Switching Error Rate 1 in 1015 5 

Energy efficiency of spintronic 
devices 

Energy to Switch 
Magnetization < 100 aJ/switch 5–10 

Integration with CMOS 
technology Successful Demonstration BEOL integration with CMOS 5–10 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • Fund academia and start-ups (e.g., Intel through SRC funded materials and benchmarking 
work. 

End Users/OEMs 
• Develop specialized synthesis or patterning tools to accommodate diverse materials.  

• Develop new patterning IP due to cross-junction type stacks. 

Academia 
• Simulate and demonstrate materials and devices. 

• Test materials and devices (includes materials growth, device fabrication, and testing over 
millions of cycles). 

Required Resources Cross Collaboration Needs of Working Groups 

• Testing capabilities, develop metrology and infrastructure. 

• Access to small sample prototypes. Small number of runs on 
their equipment for demonstration on their platforms. 

• Supplements to academia to upgrade current infrastructures. 

• Circuits and Architectures: Develop novel approach to 
integrate with CMOS.  

• Metrology and Benchmarking: Measure materials.  
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Spintronic Memory 
At its core, spintronic memory relies on 
precise manipulation of electron spins for 
data storage. In spintronic memory, the 
orientation of the spins can be aligned or 
anti-aligned. These alignments represent 
the binary states (0 and 1) of digital data. 
Because the magnetic states are 
inherently stable without the need for a 
continuous power supply, the data remains 
"non-volatile" or persistent even when the 
device is powered off. Non-volatility is a 
key parameter for energy-efficient 
computing and AI hardware. One 
technology that offers non-volatility and 
endurance (Bhatti et al. 2017) is spintronic 
memory realized with magnetic tunnel 
junctions (MTJs). In MTJs, the 
magnetization orientation of a soft 
magnetic layer is switched utilizing spin-transfer-torque (STT) by a current that is polarized by 
the reference (or hard) magnetic layer, whose magnetization orientation is fixed (Slonczewski 
1996). The problem, however, is that such spin-transfer-torque magnetic random-access 
memory (STT-RAM) devices require ∼100 fJ/bit to switch (Nowak et al. 2016), which is 1,000 
times more than the ∼100 aJ energy required to switch CMOS devices (Datta, Diep, and Behin-
Aein 2015). Furthermore, the need for large currents to switch MTJs necessitates the use of 
CMOS devices with larger node sizes, thus impeding the scaling of this technology. But if the 
switching current can be reduced by approximately one-half, these devices can be integrated 
with smaller CMOS devices, which would make MTJ MRAM competitive or superior to 
embedded DRAM and SRAM at the last level cache (Worledge 2022). This possibility motivates 
a search for more energy-efficient and low current switching mechanisms to reverse the 
magnetization while simultaneously keeping the switching error low.  

Table 12. Energy Impact and Timeline Estimates for Spintronic Memory 

Technology Expected 
Performance 

Commercial 
Benchmark 

Product 

Commercial 
Benchmark 

Energy Impact 
Factor 

Timeline for  
TRL 6 

Spintronic 
(Memory) 100 aJ/bit STT-MRAM 100 fJ/bit 1,000 10 years 

 

Some of the key methods studied as an alternative to conventional STT-MRAM include spin 
orbit torque (SOT) (Liu et al. 2012) and voltage control methods, which include direct voltage 
control of magnetic anisotropy (Kanai et al. 2012) and strain-mediated voltage control 
(Atulasimha and Bandyopadhyay 2010). Additionally, there are other emerging techniques 
being explored to enhance the functionality and efficiency of spintronic devices. 

Figure 19. Write energy vs. write delay for various types 
of spintronic memory cells. Star shows the desired target 

(Pan and Naeemi 2017) 
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Applications in Neuromorphic 
Computing 
Nonvolatility and nonlinear 
magnetization dynamics in 
spintronic materials, such as those 
found in STT-MRAMs and MTJs, 
are quintessential for the 
development of neuromorphic 
analog devices because they 
enable the emulation of complex 
synaptic and neuronal 
functionalities, akin to biological 
counterparts (Vincent et al. 2015; Borders et al. 2017). Non-volatility ensures that these devices 
retain information without a constant power supply, mirroring the human brain’s energy-efficient 
information retention, which is vital for instant-on capabilities and reducing power-intensive 
operations. The non-linear response of these spintronic materials is analogous to biological 
synapses, whose strength is modulated by the timing and frequency of neural signals, thereby 
enabling synaptic plasticity, which is central to learning and memory. Furthermore, the potential 
for three-dimensional stacking of spintronic devices echoes the dense neural networks of the 
brain, allowing for a compact yet complex network that facilitates vertical communication, which 
optimizes both space and functionality for advanced neuromorphic computing architectures 
(Grollier et al. 2020). 

The primary challenge to realize MTJ crossbar arrays is the relatively low resistance ratio 
between the on/off states, making it difficult to read the junction state. Addressing this challenge 
calls for both material advancements to increase resistance variations and the design of efficient 
low-power circuits for state reading (Parkin et al. 2004). Given that spintronic behavior can be 
predictively described based on physical phenomena, implementation for neural networks is 
achievable (LeCun, Bengio, and Hinton 2015).  

Challenges and Solution Pathways for Spintronic Memory 
While spintronic memory is more mature than spintronic logic, the development of spintronic 
memory still faces its own set of challenges.  

Switching Error 

While memory inherently has a more forgiving threshold for switching error compared to logic—
owing to its primary role in data storage and retrieval versus the real-time computational 
demands of logic devices—this tolerance narrows considerably as device dimensions diminish 
and industry pushes for enhanced memory density and energy efficiency. Stochastic processes 
and thermal fluctuations can interfere with the accurate switching of electron spins, failing to 
change the magnetic state as intended. Such switching errors compromise the reliability of the 
memory. The leading commercialized STT-MRAM technology currently exhibits a switching 
error rate of 10-6. The newer magnetoelectric (ME) spintronic devices are comparable to 
conventional SRAM at 10-14 with the additional advantage of being non-volatile (Manipatruni et 
al. 2017). Despite being a relatively recent area of study, ME devices harness electric fields to 
adjust the topologically protected spin current in the semiconductor channel. This mechanism 

Figure 20. STT-MRAM device structure. Source: MRAM-info 2023  
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affords ME devices advantages in terms of reduced power consumption and enhanced 
switching speeds compared to conventional STT-MRAM that depends on spin-polarized 
currents. To achieve better switching error, R&D is focused on identifying optimal magnetic 
materials with minimized variability and exceptional thermal stability. Efforts are also directed 
towards refining the geometry of MTJs for improved stability, implementing error correction 
codes for post-event error mitigation, and utilizing sophisticated simulation tools, allowing 
researchers to gain deeper insights into the root behaviors contributing to switching errors. 

Energy and Current to Switch Magnetization 

Alternative magnetic order, such as ferromagnetic and antiferromagnetic configurations, can 
offer several advantages over existing spintronic memories, including those based on 
ferromagnetic materials and MTJs. Antiferromagnetic materials, when integrated with SOT 
mechanisms or voltage-switched schemes, demonstrate potential for ultra-fast switching with 
minimal energy costs. Furthermore, recent works suggest that there are suitable room-
temperature readout mechanisms for antiferromagnet-based non-volatile memory (Xiong et al. 
2022).  

Key areas to explore include identification of materials and processing to fabricate double-
barrier magnetic tunnel junctions (Hu et al. 2015; Khanai et al. 2021), the use of voltage-
modulated perpendicular magnetic anisotropy (Bi et al. 2017), and voltage-modulated exchange 
coupling (Zhang et al. 2022). Other worthwhile areas to explore include spin-transfer torque for 
switching, as well as spin-orbit torque combined with spin-transfer torque switching (Grimaldi et 
al. 2020).  

Action Plan for Spintronic Memory 
Table 13. Action Plan for Spintronic Memory 

Scope 

Technology for  
Energy Efficiency: Spintronic memory, specifically MTJs for non-volatile memory 

Technology Interest: Memory 

Challenges Solution Pathways 

• Reduce energy and current requirements for switching MTJs in 
Spin-Transfer-Torque Random Access Memory (STT-MRAM). 

• Reduce switching error rates. 

• Address scaling challenges for spintronic memories in reducing 
switching energy and current. 

• Explore alternative magnetic orders and materials, like 
antiferromagnetic and ferrimagnetic, to reduce switching 
energy and enhance stability. 

• Develop and utilize spin-orbit torque (SOT) and voltage-
switched mechanisms for efficient and fast switching. 

• Identify optimal magnetic materials with minimized 
variability for better switching accuracy. 

• Explore double-barrier magnetic tunnel junctions and 
voltage-modulated anisotropy or exchange coupling for 
efficient switching. 

• Investigate system-level changes, including stochastic 
MTJ operation for energy efficiency, and MTJ use in 
compute-in-memory systems. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

Switching error reduction Switching error 1 in 106 5–10 

Energy efficiency improvement Energy to switch  
magnetization 100 aJ/switch 5–10 
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Switching current reduction Current to switch 
magnetization 100 µA or less 5–10 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • Fund academia and start-ups. 

End Users/OEMs • Develop capabilities for manufacturing scaled devices. 

Academia 
• Simulate and demonstrate materials and devices. 

• Test materials and devices (includes materials growth, device fabrication, and testing over 
millions of cycles). 

Required Resources Cross Collaboration Needs of Working Groups 

• Facilitation of international collaborations while protecting US 
IP or sharing IP equitably. 

• Fabrication, characterization, and testing capabilities. 

• Amortizing design and R&D, including industry scale fabrication 
equipment, in critical areas. 

• Supplements to academia to upgrade current infrastructures. 

• Test bed development. 

• Circuits and Architectures: Develop novel approach to 
integrate with CMOS.  

• Metrology and Benchmarking: Measure materials.  

 

2.1.4 Ferroelectric Memory/Ferroelectric Field-Effect Transistors 
Ferroelectric materials are nonvolatile, exhibiting spontaneous polarization of discrete, stable, or 
metastable states without an applied electric field. In ferroelectric materials, it is possible to 
switch between polarization states using an electric field, forming the basis of ferroelectric 
memory devices (Rabe et al. 2007). The field where the polarization switches to the opposite 
state is known as the coercive field. Over the past couple of decades, ferroelectric memories 
have been intensely studied as a replacement or supplement to existing memory technologies. 
Compared with other non-volatile alternative memory technologies, such as phase change 
memory and resistive memory, ferroelectric memories require lower write energy, making them 
more attractive as a more energy efficient competitive memory technology (Hwang and 
Mikolajick 2019).  

Ferroelectric field-effect transistors (FeFETs), which incorporate a ferroelectric oxide or organic 
ferroelectric between the channel and gate electrode, utilize the permanent polarization of the 
ferroelectric material to enable memory capabilities. Compared with perovskite-based FRAM, 
hafnia FeFETs provide numerous advantages, including nondestructive read, fast switching, 
scalability, high coercive field, and CMOS compatibility. Hafnia FeFETs have also achieved the 
smallest physical gate lengths of reported FeFETs (Mueller, Slesazeck, and Mikolajick 2019). 
This advancement in FeFET technology is pivotal as it contributes significantly to the 
development of more energy-efficient computing systems. 

Ferroelectricity has also been observed or predicted in other materials as possible alternatives 
to hafnia-based and organic ferroelectrics. These include films made of wurtzite-structured 
materials and 2D van der Waals materials (Liu et al. 2021; Blinov et al. 2000; H. Wang et al. 
2018; Si et al. 2018; Guan et al. 2020). Table 14 provides a comparison of hafnia-based 
FeFETs with incumbent technology. While state-of the-art (22-nm node), hafnia-based FeFETs 
do not provide improvement in the write energy per bit, compared to embedded SRAM at the 7-
nanometer node, SRAM is volatile, lacks multibit operation, and has high standby power. This 
leads to performance degradation in energy consumption at the system level when standby is 
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frequent, such as in applications at the edge. By contrast, hafnia-based FeFETs have low 
standby power, multibit operation potential, and much smaller cell size (10–30 F2) enabling 
monolithic 3D integration of FeFETs in the back-end-of-line (BEOL) for compute-in-memory 
architecture, with significant area, energy, and latency benefits. With this configuration, Dutta 
demonstrated 3 times’ improvement in energy efficiency (TOPS/W) of a 3D monolithically 
integrated 22 nm BEOL FeFET (2 bit per cell) compared against 7-nm SRAM (Dutta et al. 
2020), with potential up to 10 times’ improvement with a 4-bit cell. Moreover, for storage 
applications, FeFETs can provide up to 1,000 times benefits in energy performance compared 
with Flash (SONOS). 

Table 14. Energy Impact and Timeline Estimatesa for FeFETs 

Technology Expected 
Performance 

Commercial 
Benchmark 

Product 

Commercial 
Benchmark 

Energy Impact 
Factor 

Timeline for  
TRL 6 

FeFET 1 fJ/bit 
eSRAM 1 fJ/bit 1 10 years 
eFlash 

(SONOS) 1,000 fJ/bit 1,000 10 years 
a Source: Khan, Keshavarzi, and Datta 2020 

More recently, ferroelectric tunnel junctions (FTJ) have been studied as a more energy efficient 
emerging memory technology. As seen in Figure 21, FTJ is an ultra-thin ferroelectric film 
sandwiched between asymmetric electrodes or interfaces. Polarization states are determined by 
non-volatile modulation of the barrier height. The ferroelectric dipole orientation ultimately 
determines the high or low resistance state and can be read non-destructively. To date, 
research activity has largely been only in academic settings, on perovskite-based ferroelectrics, 
and on single devices. More work is needed to better understand the ferroelectric/metal 
interfacial properties, deviations between experimental data and modeled behavior, scalability, 
CMOS compatibility and the potential for hafnia-oxide-based ferroelectrics for the tunnel junction 
(IRDS 2021; Garcia and Bibes 2014). The potential for organic ferroelectrics gating a narrow 
channel transistor also requires further study (Xia and Hu 2022; Kang et al. 2019; Zheng et al. 
2009).  

 
Figure 21. Operating principles of ferroelectric memory. Source: Mikolajick et al. 2021 
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The working group deliberations primarily focused on FeFETs as a promising energy-efficient 
memory technology; the sections below, therefore, only pertain to the challenges, solution 
pathways, and action planning for FeFETs.  

Applications in Neuromorphic Computing 

The switchable electrical polarization in ferroelectric materials allows them to mimic the synaptic 
weights inherent to brain function. This polarization arises from the formation of stable electric 
dipoles within their non-centrosymmetric crystal structures. The capacity for controlled and 
incremental switching in ferroelectric materials makes them prime candidates for neuromorphic 
architectures, potentially enabling energy-efficient and high-density computational paradigms. 

Key challenges include: achieving uniform polarization behavior at the nanoscale, especially in 
devices less than 100nm in size; extending lifetime, particularly in silicon-based FaFET devices 
given their limited cycling endurance (Christensen et al. 2022); and optimizing the current 
density and reading speed in ferroelectric tunneling junctions (FTJ), which is complex and often 
influenced by the thickness of the ferroelectric layer and the intricacies of multi-layer stacks 
(Slesazeck and Mikolajick 2019). 

Addressing these challenges requires a combination of material science innovations and a 
deeper understanding of their intrinsic properties. Potential solutions include the stabilization of 
specific ferroelectric phases in crystallized thin films, introducing dopants, and epitaxial growth 
of monocrystalline layers. In the context of FTJs, understanding domain wall motion might lead 
to more refined and analog switching behaviors. Additionally, the exploration of newer materials, 
with combined ferroelectric and piezoelectric properties, can further expand the horizon for 
neuromorphic applications. 

Challenges and Solution Pathways for Ferroelectic Memory/FeFETs 
Device Characteristics: Endurance, Retention, and Write Voltage 

Compared with SRAM and DRAM, FeFETs have the advantage of being non-volatile, smaller in 
cell size, and more energy efficient in standby power. Compared to Flash, FeFETs have 
superior cycling and the potential for deeper scaling. For example, Hafnia-based FeFETs have 
been demonstrated at the 22nm node for silicon-on-insulator (SOI) (Khan et al. 2020; Dunkel et 
al. 2017). However, reliability challenges, related to endurance and retention, are the major 
barriers yet to be addressed.  

FeFETs are becoming an advantageous alternative to existing memory technologies due to 
their compact size and energy efficiency. Recent studies have demonstrated Si-channel, hafnia-
based FeFETs with 105-109 cycles for deterministic switching, which (while better than Flash) 
does not compare to SRAM (>1016). Reduced cycling can be attributed to the degradation of the 
ferroelectric and interfacial layers (notably, the interfacial layer (IL) formed between the 
ferroelectric (FE) and the Si channel). In hafnia-based FeFETs with Si channels, the 
mechanisms of charge trapping and trap generation at interfaces (FE-IL and IL-Si) are 
particularly important. Charge trapping and de-trapping play a crucial role in defining the read 
speed, particularly influencing the read-after-write latency. This inferior switching speed to 
conventional SRAM is primarily due to the slow kinetics involved in neutralizing charged 
interfacial states. These states act as a screen, effectively masking the polarization inherent to 
the ferroelectric material, thereby impacting the overall speed and efficiency of the reading 
process (Wang et al. 2021). Compounding this issue, retention and endurance can be inversely 
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related, depending on the operation mechanism, such that strategies to improve one can 
degrade the other. 

Write voltage is another FeFET characteristic that must be addressed to be a truly competitive 
technology. Although oxide channel FeFETs have achieved 1.6V (Dutta et al. 2022), at present, 
typical FeFET write voltage is <4V, compared with <1V for both SRAM and DRAM. At these 
voltages, FeFET is not compatible for logic. Write voltage is ultimately dependent on coercive 
voltage (the voltage to switch a polarization state) of the ferroelectric layer. Thus, endurance, 
retention, and write voltage are intrinsically tied through the materials and material combinations 
of the channel and gate stack.  

High mobility and disorder-tolerant oxide semiconductor channel materials integrated with ultra-
thin (e.g., sub-5nm) ferroelectric layers may improve endurance and lower write voltage. 
Previous studies have shown promise for n-type tungsten oxide and indium tin oxide (Dutta et 
al. 2022), but p-type oxide channel is severely lacking. R&D solutions are needed for p-type 
oxide channel materials (for CMOS) that exhibit good stability and electrical performance. 
Furthermore, defect-enhanced leakage current and/or threshold voltage instability are major 
challenges that also need to be addressed through R&D. Gating a two-dimensional electron gas 
with a ferroelectric may also be worthwhile due to higher channel mobilities and increased on/off 
ratios.  

Atomic layer deposition (ALD) research--both modeling and experimental approaches—was 
proposed as a possible pathway towards fabrication of FeFETs with ultra-thin hafnia-based 
ferroelectric layers for CMOS-compatible logic voltages with good endurance and retention 
properties. Film growth by ALD is also highly desired for process integration in advanced CMOS 
nodes. Density functional theory (DFT) can be leveraged to identify chemical pathways and 
growth mechanisms to better understand the structure and characteristics of films and 
interfaces and design better stacks and processes. Experiments could then test and validate 
these approaches. Plasma-enhanced ALD was noted as a potential solution for BEOL 
integration of hafnia-based FeFETs because it lowers post-deposition annealing requirements, 
changes the phase transformation sequence of the ferroelectric, and controls heterogeneity in 
dopant and defect concentrations, among other factors (Yu et al. 2022).  

Working group members also proposed adopting a more practical, results-oriented strategy: a 
complete full understanding of the underlying principles governing device function might not be 
essential, but exploring pathways that show improved and promising results could still drive 
ongoing R&D. Ultimately, to overcome issues related to the endurance-retention trade-off and 
the write voltage, it is crucial to develop optimized stack designs and materials. Whether these 
advancements come from theoretical or empirical research, potential optimized solutions might 
involve tailored polarization hysteresis, reduced trap density, or innovative stack architectures. 

Materials-Related Challenges  

Throughout working group deliberations, several materials-related challenges emerged, listed 
below:  

• Control/selection of the desired phase of a ferroelectric material during device 
processing and field cycling. 

• BEOL-compatible transistors to support monolithic 3D integration. 



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  52 

• Contact between channel material and ferroelectric (FeFET). 

• Contact between metal electrode and ferroelectric material. 

• CMOS-compatible ferroelectric materials. 

• Leakage at ferroelectric domain walls. 

Challenges associated with controlling and selecting the desired phase of the ferroelectric 
material are related to those of BEOL-compatible transistors. To enable monolithic 3D 
integration, FeFET process flow temperatures must be kept below 400°C (for those using 
conventional rapid thermal annealing), mitigating any deleterious effects on FEOL transistors 
and structures. Above this temperature, electro-migration, damage to underlying dielectric 
materials, and changes in dopant profiles become a concern. While the deposition temperature 
of the ferroelectric material commonly deposited by ALD for hafnia-oxide based ferroelectrics is 
below this limit, subsequent annealing to achieve the desired phase for ferroelectricity via 
crystallization—typically through wafer-scale rapid thermal annealing— is above 400°C. Any 
further processing after this phase has been established must be below the annealing 
temperature so the ferroelectric material retains its characteristics and does not revert to a more 
stable phase.  

New approaches (e.g., new materials, localized annealing, and/or dopants) are needed to 
address these challenges. A Stanford-SLAC project is developing a holistic BEOL-compatible, 
ML-guided process integration approach to control the HfO2-ZrO2 (HZO) ferroelectric phase at 
temperatures compatible with CMOS-BEOL integration. This approach includes a novel, non-
equilibrium flash annealer; electrical characterization (e.g., endurance and fatigue) and 
structural characterization (e.g., using XRD and TEM); real-time x-ray synchrotron 
measurements of behavior; and ML-assisted process exploration (Karigerasi et al. 2022; Biswas 
et al. 2021). Significant attention is being given to organic ferroelectric memory as well (Asadi 
2010) since it is considered to be very scalable (Blinov et al. 2000). 

Contact between channel and ferroelectric, and between metal and ferroelectric, may be 
addressed through fundamental interfacial studies and experimental approaches. Modeling and 
characterization can provide fundamental understanding of interfacial phenomena and structural 
information to inform and guide experimental approaches. Experimental approaches can include 
co-optimizing gate electrode material and ALD growth conditions, as well as novel post-
processing techniques (e.g., localized annealing) to reach the desired characteristics.  

Before the discovery of hafnia-based and organic ferroelectrics (Zheng et al. 2009), ferroelectric 
materials (primarily PZT-based perovskites) were not CMOS-compatible. As noted in the 
introduction to this chapter, given the existing CMOS infrastructure, any viable future solution for 
ferroelectric-based devices must be CMOS-compatible.  

Leakage at domain walls, caused by structural defects in the material, may lead to performance 
and efficiency degradation in oxide ferroelectric devices. For example, it is thought that these 
play a role in wake-up phenomenon, fatigue, and delay. However, because of the complexity of 
the ferroelectric material systems, including meta-stable phases and the transformation between 
these phases under external field, this is an area of intense research with many open questions 
as to its true effects on ferroelectric device performance (Saini et al. 2023; Stolichnov et al. 
2018; S. Zhang et al. 2023; Lee et al. 2020). 
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Action Plan for Ferroelectric Memory/FeFETs 
Table 15. Action Plan for Ferroelectric Memory/FeFETs. 

Scope 

Technology for  
Energy Efficiency: FeFET   

Technology of Interest: Memory  

Challenges Solution Pathways 

• Overcome volatility and multi-state storage limitations in 3D 
integrated non-volatile memory systems. 

• Achieve high density and low switching energy while ensuring 
CMOS logic voltage compatibility. 

• Enhance endurance and power efficiency for deeply scaled 
memory technologies. 

• Address retention and rad-hard issues of 3D monolithic 
integration. 

• Develop high-mobility, disorder-tolerant oxide 
semiconductors with thin ferroelectric layers for improved 
endurance. 

• Innovate ALD deposition techniques and materials, like 
HfO2-based ferroelectrics, for better scalability and 
stability. 

• Optimize thermal processing through advanced 
crystallization techniques. 

• Focus on R&D for process-property relationships to fine-
tune ferroelectric capacitors and FeFETs for deep scaling. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

Enhance the interface between 
ferroelectric materials and 

channel for durable cycle life. 
Electric field cycling 1010 to 1012 cycles 

5 years for initial 
improvements,  
5–10 years for 

advanced targets 

Innovate materials and design 
for lower write voltages and 
improved channel material 

stability. 

Required voltage for reliable 
switching 1.2V and 0.7V 

5–10 years, with 
current 

technology at 
1.5V 

Develop solutions for reducing 
write energy in ferroelectric 

devices. 

Energy consumed per bit 
during write operations Less than 1 fJ/bit 5–10 

Advance deposition methods 
and optimize thermal processing 

for FeFET integration. 

Structural and electrical 
properties of ferroelectric 

transistors 
  5–10 

Improve the electrical 
characteristics of ferroelectric 
devices for efficient operation. 

Electrical performance 
parameters like 

transconductance and Hall 
measurements 

--Subthreshold swing of  
65–70 mV/decade 

--Carrier mobility to n-type 50 cm2/Vs 
at Vt stress + 1.2V 

--Reduce hysteresis to below 20 mV 

2–5 for 
subthreshold 

swing 
5 for n-type 

10 for p-type 
2–5 for reduction 

hysteresis 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 
• Provide advanced materials and devices structures for testing. 

• Utilize extensive contact with industry partners. 

End Users/OEMs 

• Innovate metrology tools specific for ferroelectric memory. 

• Define performance requirements and validation protocols. 

• Collaborate on testbeds for ferroelectric memory applications. 

Academia 

• Develop new materials.  

• Research into new characterization methods for ferroelectric materials. 

• Develop AI/ML techniques for predictive metrology. 
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Required Resources Cross Collaboration Needs of Working Groups 

• Access to advanced metrology equipment and facilities. 

• Funding for long-term research and development. 

• Collaboration platforms between industry, academia, and 
national labs.  

• APHI: Focus on 3D device structure to integrate 
ferroelectric memory. 

• Circuits and Architectures: Develop new computing 
paradigms to ensure compatibility with next-gen computer 
near memory architectures and neurocomputing chips. 

• Algorithms and Software: Facilitate configurable hardware 
for efficient algorithm mapping, maximizing the energy 
efficiency gains in computational applications. 

• MEES: Adopt low-temperature synthesis techniques like 
flash lamp annealing to enhance fabrication process. 

 

2.1.5 Tunnel Field-Effect Transistors 
Subthreshold Slope Sharpening Transistor Technologies 
A major impetus for exploring Beyond-
CMOS technologies such as alternative 
switching methods (e.g., quantum 
tunnelling) is their potential to achieve an 
order of magnitude (~10x) increase in 
energy efficiency by steepening the 
subthreshold slope that defines the 
transition between the transistor’s off and 
on states. In a MOSFET, the subthreshold 
swing (SS), the inverse of the subthreshold 
slope, is usually limited to 60 mV/decade 
at room temperature (see Figure 22). This 
limitation is often referred to as the 
Boltzmann tyranny (Pananakakis et al. 
2023).  

At the same current, steepening the slope 
of I-V curve for on/off reduces the 
switching voltage. Additionally, because 
the power used by the transistor is proportional to the square of the voltage, reducing voltage is 
a powerful energy efficiency lever (e.g., reducing voltage by a factor of 3 reduces the power by 
9 times). However, during the roadmap process, it became clear that Beyond-CMOS switching 
technologies were not the only way to sharpen the subthreshold slope. For example, since this 
limit is related to thermal excitation of electrons in the MOSFET at room temperature, the 60 
mV/decade limit also can be overcome in conventional CMOS by running the transistor at 
cryogenic temperatures (Södergren et al. 2023). Some academic research further shows that 
ultrathin dielectrics and ultrathin devices in general may enable better control of mobile charge 
and current, thus also steepening the slope (Cristoloveanu and Ghibaudo 2022). 

TFET 

Tunnel field-effect transistors (TFETs) are a promising alternative to traditional MOSFETs for 
continuing to decrease the voltage of operation, thus improving energy efficiency (Seabaugh 

Figure 22. Subthreshold Slope of I/V on/off curve for 
typical FET and subthreshold sharpening tech (e.g. 

TFET).  Source: Cristoloveanu et al. 2016 
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and Zhang 2010). In recent years, TFET has advanced rapidly as scientists focus on optimizing 
their performance and overcoming existing limitations. Most notably, the breakthrough to 
achieve steeper subthreshold slopes and lower operating voltages came from successful 
integration of novel materials, such as 2D materials and heterojunctions (Kanungo et al. 2022). 

Compared with MOSFETs, TFETs rely on a fundamentally different mechanism for carrier 
transport: MOSFETs switch by modulating thermionic emission over a barrier, where thermal 
excitation of carriers limits the steepness of the turn-on current. TFETs, on the other hand, 
switch by modulating quantum tunneling through a barrier. Tunneling is enabled by the overlap 
of electron-like and hole-like wavefunctions through an energy barrier. The successful 
transmission through the energy barrier is dependent on the mass of the particle, the thickness 
of the barrier, and relative energy levels. Notably, this process is independent of thermal 
excitation, allowing TFETs to operate with much steeper turn-on, which, in turn, enables lower 
operating voltages than MOSFETs and significant energy savings.  

 

 
Figure 23. Device operation of a tunnel field-effect transistor (TFET). (a) the schematic of a TFET cross section 

and band diagram along the channel in on and off states and (b) comparison between TEFET and MOSFET 
operation principle. Source: Agha et al. 2021 

For conventional silicon FETs, subthreshold slope is fundamentally limited by thermal energy 
fluctuations and is fixed at 60 mV/decade. Conversely, because carrier transport in TFETs is 
ultimately dependent on its wavefunction and not constrained by thermal energy, TFETs can 
theoretically achieve significant improvements, with variables like band mass and defect density 
limiting the subthreshold slope (Lu and Seabaugh 2014). Taking a modestly aggressive 
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subthreshold slope of 20 mV/decade, this translates to roughly 10 times improvement in power 
consumption and energy efficiency compared with conventional FETs (IRDS 2020).   

Table 16. Energy Impact and Timeline Estimatesa for TFETs 

Technology Expected 
Performance 

Commercial 
Benchmark 

Product 

Commercial 
Benchmark 

Energy Impact 
Factor 

Timeline for  
TRL 6 

TFET 0.5 fJ/bit 5nm Si FinFET 7.02 fJ/bit 14 5 years 

a Source: Huang et al. 2017 

However, several challenges must be addressed for TFETs to achieve their theoretical 
performance and be a viable alternative to incumbent technology. These challenges can be 
grouped into two categories: device performance and manufacturability. The same band-to-
band tunneling (BTBT) mechanism that enables TFETs to have 10 times improvement in energy 
efficiency introduces low ON-state current. And the fabrication of high-performance devices has, 
thus far, relied on unconventional means, with conventional manufacturing methods having 
yielded only poor-performance devices, which highlights the challenges of developing a process 
suitable for conventional CMOS processes and equipment.  

To date, there have been limited successful demonstrations of TFETs that meet targets for 
on/off ratio, on-state current, and threshold voltage. Innovations in materials (Nazir, Rehman, 
and Park 2020), device structure, and manufacturing approaches are needed for TFETs to truly 
be a viable alternative.  

Challenges and Solution Pathways for Tunnel Field-Effect Transistors 
Low On-State Current 

Since transistor speed is determined by current density, TFETs must have comparable current 
to MOSFETs while continuing to maintain a steep subthreshold slope to be a competitive 
alternative technology. To enhance the on-state current in TFETs, various techniques have 
been proposed, including gate and spacer engineering, band engineering, and innovative TFET 
structures. Examples of innovative TFET structures include vertical TFET, stacked gate 
junction-less TFET, and SOI-TFET with interface trap charges (Choi and Lee 2010; Eyvazi and 
Karami 2020; Rahi, Asthana, and Gupta 2017; Mitra and Bhowmick 2019; Kao et al. 2012). 
Traditional approaches to enhancing the on-state current have focused on improved 
electrostatic design and band engineering in a traditional transistor geometry. Gate engineering 
approaches enhance on-state current by leveraging a multi-metal gate to improve electrostatic 
control over the tunneling interface. This approach effectively changes the work function along 
the channel length and modulates the distance between the conduction band of the channel and 
the valence band of the source (Nigam, Kondekar, and Sharma 2016; Kumar et al. 2020). By 
comparison, spacer engineering entails separation of the gate terminal from the drain and 
source regions using spacers. Coupled with high-K value, spacers reduce channel resistance, 
thereby improving on-state current. Band engineering, through heterostructure and material 
design, can be used from the energetics to the carrier masses to manipulate the quantum 
mechanical variables underlying band-to-band tunneling.  
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While these approaches can improve on-state current for traditional horizontal TFETs, they will 
always have less current than MOSFETs of the same geometry. Conventional MOSFETs have 
an uninterrupted channel where charge carries flow between source and drain. TFETs, on the 
other hand, rely on tunneling through a barrier, across an interrupted channel and, therefore, will 
always sustain less current given other operating constraints (e.g., off-state current).  

Some recent research focuses on vertical geometry that enables many parallel tunneling 
channels across the gate length, increasing the total current of the device. These device 
structures universally rely on tunneling between a buried layer of charge and a gated surface 
layer, so the 
tunneling region is 
not only the width 
of the channel but 
also the length of 
the gate, effectively 
doubling the 
relevant 
dimensionality 
(Revelant et al. 
2014). This 
geometry 
introduces 
requirements for 
even stronger 
electrostatic control 
by leveraging 
quantum confinement to define the buried layer, such as with a stack of 2D materials (Kanungo 
et al. 2022). An alternative approach is being explored in a Sandia National Laboratories project 
that couples atomically precise manufacturing techniques with a vertical TFET design to 
simultaneously improve subthreshold slope and device current. An atomically abrupt 2D layer of 
dopants is created at the surface of silicon to define the source contract using a process called 
atomically precise advanced manufacturing (APAM). The source is then buried in intrinsic 
silicon to define the channel and a gated drain layer is created over it.  

Subthreshold Slope 

Though TFETs can theoretically achieve subthreshold slopes that exceed Si MOSFETs, this 
has been hard to achieve in practice (Avci, Morris, and Young 2015), primarily due to limitations 
in standard manufacturing. Using conventional manufacturing techniques, the doping profile of 
the source is diffused, due to diffusion during activation. This diffuse dopant profile essentially 
produces an overlapping sequence of turn-on currents corresponding to different dopant 
densities. The first of these may have a very steep subthreshold slope but supports very little 
current. Those later in the sequence may support significant current but have a subthreshold 
slope that is masked by the earlier curves. These sequences combine to produce a poor 
subthreshold slope that can be much worse than the thermal limit for MOSFETs.  

Figure 24. Enhanced ON current and subthreshold slope with atomically precise 
advanced manufacturing (APAM). Source: Kaarsberg, Misra, and Shimizu 2023 
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Alternatively, processes like band-to-trap tunneling compete with band-to-band tunneling and 
can also produce overlapping turn-on curves that deteriorate the subthreshold slope or produce 
unacceptably high off-state current. Understanding the role of defects in TFETs is a significant 
area of need, starting with the metrology required to monitor their creation and evolution in 
fabrication.  

APAM, as previously noted, can fabricate abrupt doping profiles to mitigate this issue. Layered 
heterostructures of 2D materials take an alternative route to providing abrupt charge profiles. 
However, other solution pathways are needed and may again rely on numerous engineering 
approaches to the gate, source, and dielectric regions.   

Manufacturability 

Manufacturability is also becoming an issue central to TFET development, such as wafer-scale 
uniformity of tunnel junction formation. Device-to-device variations across the wafer will result in 
variations in electrical characteristics, including subthreshold slope and ON-state current, 
resulting in poor yield, unexpected device performance, and challenges with circuit design. 
Modeling and experimental validation can mitigate some of these issues and will be especially 
important for transitioning to high-volume manufacturing. Extensive measurements from actual 
devices can help develop, feed into, and refine process and device models. A key area of need 
is the development of tunnel junction-specific metrology so that processes can be refined and 
monitored.  

In other situations, a needed tool or process may not yet exist. Taking APAM as an example, 
transitioning this process to high-volume manufacturing will require the development of a tool 
that can accomplish the surface cleaning, doping, and silicon capping at high throughput and 
wafer scale. Development of a tool to support APAM TFET with unknown commercialization 
prospects is a hard sell. However, identifying more near-term applications can jumpstart 
engagement with tool developers. 

While incumbent manufacturing approaches have yielded poor-performance devices, 
manufacturing/fabrication innovations, like APAM and other previously discussed engineering 
approaches seek to overcome these limitations. However, the best performing devices still 
require the incorporation of the many innovations made in high-volume manufacturing with 
these new techniques. Thus, a significant milestone is that these new techniques be 
manufacturable at the wafer scale and compatible with existing infrastructure, or they will 
ultimately become dead ends. 

To date, there is no clear winner in the TFET process flow (e.g., materials, structures), so the 
process requirements to establish a fab process are not yet known. Efforts up to now have 
primarily focused on improving device performance at the lab scale, but practical factors like 
manufacturability, lab-to-fab transition, and process development/integration now need to be 
considered.   
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Action Plan for TFETs 
Table 17. Action Plan for TFETs 

Scope 

Technology for 
Energy Efficiency: TFET 

Technology of Interest: Logic 

Challenges Solution Pathways 

• Increase ON-state current. 

• Achieve competitive subthreshold slope (<60 mV/dec). 

• Develop processes that are compatible with existing CMOS 
manufacturing processes. 

• Explore engineering approaches (e.g., gate and spacer 
engineering), and structural modifications (e.g., vertical 
TFET), to improve electrostatic control and ON-state 
current. 

• Leverage new techniques (e.g., atomically precise 
advanced manufacturing) for abrupt dopant profiles to 
reduce subthreshold slope.  

• Achieve wafer-scale uniformity in tunnel junction 
formation for consistent device performance. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

Validation of device model for 
TFETs Material parameters validation of both modeling and 

experimental 2–3 

Control junction abruptness and 
doping densities limits eV/nm >0.1 2–3 

Establish good DC device 
metrics 

High ON current: µA/µm >100 4 

Low OFF current: nA/µm <1 4 

Low SS slope: mV/decade <20 4 

Establish good high speed circuit 
metrics 

Operating voltage & speed:  
V, ps <0.3, <100 6 

Assess scalability of TFETs Area <50 nm2 6 

Feasibility of TFET-based 
memory 

Equal state retention to 
CMOS SRAM retention rate matching CMOS SRAM 6 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • Develop TFET-specific fabrication tools and processes. 

End Users/OEMs • Integrate TFETs into low-power devices and systems. 

Academia • Engage in fundamental research on TFET materials, interfaces, and device physics. 

Required Resources Cross Collaboration Needs of Working Groups 

• Device models validated by experiments. 

• Combine novel techniques with cutting edge fab tools. 

• Engagement between academia/national labs and industry. 

• Materials and Devices: Develop novel TFET materials. 

• Circuits and Architectures: Integrate TFETs into existing 
systems. 

• Metrology and Benchmarking: Tailor measurement 
techniques to TFETs. 

 

2.1.6 Silicon Gate-All-Around Transistors 
Gate-all-around (GAA) transistors build on the successes of classical, two-dimensional planar 
transistors, as well as the more recently dominant fin field-effect transistors (FinFETs). Whereas 
planar designs had the transistor’s gate positioned along one side of the channel it modulates, 
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and FinFETs improved upon this approach by wrapping around a raised fin-like channel on 
three sides, GAA transistors exhibit gate designs that fully wrap around the device’s channels. A 
general schematic of all three transistor types is presented in Figure 25 to show the different 
relationships between their respective gates and channels.  

 
Figure 25. Typical source, drain, and gate arrangements for planar, FinFET, and GAA transistors. Source: 

Semiconductor Engineering 2023 

While specific design details of GAA transistors can differ somewhat by manufacturer, designs 
generally involve silicon nanosheets or nanowires stacked vertically and passing through a high-
k metal gate, such that the gate surrounds these small channels on all sides. These stacked 
nanosheets/wires are formed through alternating layers of epitaxially grown silicon (Si) and 
SiGe, with the latter layers containing only small concentrations of germanium. These 
interspersed SiGe layers are then selectively etched away later in the fabrication process and 
replaced by the transistor’s high-k dielectric metal gate (Mukesh and Zhang 2022). The 
thicknesses and widths of these layers of Si and SiGe can be carefully controlled, allowing 
manufacturers to vary their designs to optimize for properties such as higher drive current (using 
wider nanosheets) or more energy-efficient power consumption (using narrower nanosheets) 
(Hofman 2022). Multiple stacked nanosheets/wires must be implemented within a GAA 
transistor’s design to gain performance advantages over current FinFET designs, and some of 
the challenges that result from trying to create these very precise stacks are discussed further 
below.  

However, the all-around design of these gates in GAA transistors can afford significant benefits 
and scaling advantages relative to current FinFET designs. GAAs are in the process of 
superseding FinFETs as the dominant technology for high-performance logic, offering benefits 
such as modest improvement in switching energy (Huang et al. 2017; Barraud et al. 2017) 
(Table 18), faster switching speeds, lower current/power usage, greater transistor density, and 
reduced channel leakage (Alcorn 2023). The channel thicknesses created in FinFETs are 
defined (and, in turn, limited) by lithographic resolution, while the gate structure of GAA designs 
affords greater control over the channel and more opportunities for channel length scaling—and 
thus greater potential transistor density (Singh 2021), allowing for continued dimensional 
improvements. GAA transistors can also be manufactured at an acceptable price point for 
chipmakers, such that they are expected to see wide-ranging application in—among other 
applications--AI systems, gaming, graphics, medical and automotive technologies, and 
advanced 5G networks.  
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Table 18. Energy Impact and Timeline Estimatesa for Si-GAA 

Technology Expected 
Performance 

Commercial 
Benchmark 

Product 

Commercial 
Benchmark 

Energy Impact 
Factor 

Timeline for  
TRL 6 

5nm Si-GAA 6.94 fJ/bit  5nm Si FinFET 7.02 fJ/bit 1.1 Current 

a Source: Huang et al. 2017 

While FinFETs have played a leading role in high-performance logic through the 2010s up to the 
present day, there are limits as to how tall the fins can be and how many can be placed next to 
one another without negative electrical effects (Hofman 2022). For example, 3nm FinFETs have 
been fabricated, but there are prohibitive issues with current leakage and short-channel effects 
as FinFET devices get progressively smaller while attempting to continue the dimensional 
scaling of Moore’s law (Singh 2021).  

Moving from FinFETs’ fin-based design to stacked, fully surrounded nanosheets has been done 
to help mitigate these electrical effects, and GAA technologies have been in development for 
decades. Toshiba demonstrated the first GAA transistor back in 1988, called the Surrounding 
Gate Transistor, and IBM has been working on their GAA devices and the accompanying 
nanosheet technology for over a decade (Singh 2021). But the first significant performance 
benchmarking of GAA transistors has come out in the past five years (Mukesh and Zhang 
2022).  

The latest International Roadmap for Devices and Systems (IRDS™) confirmed IEEE’s earlier 
prediction that FinFETs would gradually be usurped by GAA devices in high-performance logic, 
with a transition beginning around 2022 and expected to be fully realized in 2025 (IRDS 2022). 
Samsung began 3nm chip production using their Multi-Bridge-Channel FET (MBCFET™) GAA 
technology around mid-2022 (Samsung Semiconductor 2022). A recent IMEC roadmap for 
transistors projects a transition timeline like that of IEEE’s IRDS, expecting higher-volume GAA 
production from Samsung and Intel in 2024, followed by TSMC’s GAA production in 2025 
(Alcorn 2023).  

Both the IRDS and IMEC roadmaps expect GAA transistors to be a crucial component of at 
least the next few generations of logic. Other technologies with potential to play a role further 
down the line include complementary FET (CFET) transistors (Alcorn 2023), vertical-transport 
FETs, and stacked transistors (Mukesh and Zhang 2022). And though the default channel 
material in GAA devices is silicon, there are other semiconductive materials under review that 
could eventually play a role within GAA transistors and/or other transistor technologies. 
Examples of other semiconductive materials under consideration include InGAAs and other III-V 
semiconductors (Semiconductor Engineering 2023), molybdenum disulfide, graphene, and 
indium oxide (Mukesh and Zhang 2022).  

Challenges and Solution Pathways for Si-GAA 
Since Si-GAA was identified as a promising energy-efficient technology, the discussion below is 
primarily based on a review of existing work due to the high motivation and intensive R&D 
already occurring in industry.  
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Many of the pathways for development of GAA transistors have been relatively well-established 
from preceding FinFET designs. Common components between GAAs and FinFETs include the 
shallow trench isolation, high-k metal gate, source/drain epitaxial elements (Mukesh and Zhang 
2022), and pillar patterning. Initial fabrication of GAA’s alternating Si and SiGe 
nanosheets/nanowires is considered generally straightforward. For the SiGe layers, decreasing 
concentrations of germanium helps to minimize defects such as lattice distortion, but increasing 
concentrations of germanium makes it easier to etch these layers away later in the process and 
limit erosion of the purely silicon nanosheets (Semiconductor Engineering 2023). Most current 
challenges with GAA technologies stem from this tradeoff in the latter steps in the production 
process, such as etching away the SiGe layers from between the Si channels and depositing 
the gate’s high-k metal and dielectric materials.  

 “A Review of the Gate-All-Around Nanosheet FET Process Opportunities” by Sagarika Mukesh 
and Jingyun Zhang at IBM Research provides a thorough picture of GAA transistors’ remaining 
technological challenges, which are summarized below. 

The “fat-fin” effect of GAA nanosheets (known as sub-fin leakage for FinFETs) results from an 
increased capacitance in the area below the stacked nanosheets. This effect is generally 
mitigated by adding a SiGe layer with a higher concentration of germanium at the bottom of the 
stack and then selectively etching it away and replacing it with a full bottom dielectric isolation 
layer to minimize channel leakage. The “narrow sheet effect,” in contrast, results from the 
thinness of the silicon nanosheets and involves a decreased mobility of electrons/holes due to 
combinations of phonon scattering and surface roughness. These narrow sheet effects can 
typically be offset by increasing the nanosheet’s width. Similarly, a third challenge—
accommodating multiple threshold voltages, as generally required by industry—results from the 
minimal space between these stacked nanosheets that is available to deposit work function 
metals. Proposed solutions include alternative etching methods and/or increasing the 
nanosheets’ spacing.  

Overall, GAA architecture includes various “unique design knobs” that allow for manufacturers 
to negotiate these various performance tradeoffs. Processing challenges for these layered 
nanosheets were categorized by researchers as either mechanical stability, device variability, 
thermal intermixing, or self-heating effects. For self-heating, research into these effects is 
ongoing (and includes novel substrates like diamond on silicon), but solutions more appropriate 
to high-volume production are still under investigation as the technology proceeds into smaller 
and smaller dimensions. 

Action Plan for Si-GAA 
Table 19. Action Plan for Si-GAA 

Scope 

Technology for  
Energy Efficiency: Si-GAA 

Technology of Interest: Logic 

Challenges Solution Pathways 



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  63 

• Manage “fat-fin” effects to minimize channel leakage. 

• Counter narrow sheet effects impacting electron/hole mobility. 

• Accommodate multiple threshold voltages within tight 
nanosheet spacings. 

• Address mechanical stability, device variability, thermal 
intermixing, and self-heating effects during processing. 

• Utilize higher germanium concentration SiGe layers for 
ease of selective etching. 

• Offset narrow sheet effects by adjusting nanosheet width. 

• Explore alternative etching methods and increasing 
nanosheet spacing. 

• Continue research into novel substrates and high-volume 
production solutions for thermal management. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

Transition to GAA transistors for 
high-performance logic X Factor 1.6x improvement over FinFET Immediate to 5 

Addressing “fat-fin” and “narrow 
sheet” effects Leakage Minimize channel leakage Immediate to 5 

Achieving multiple threshold 
voltages with tight nanosheet 

spacings 
Voltage control Multiple threshold voltages within GAA 

design Immediate to 5 

Mitigating self-heating and 
thermal management challenges Thermal management Effective heat dissipation Immediate to 5 

Integration of GAA transistors 
into industry applications Integration success Widespread application in AI, medical, 

and automotive technologies Immediate to 5 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • Develop and optimize GAA transistor manufacturing. 

End Users/OEMs • Implement GAA transistors in high-performance logic applications. 

Academia • Research options for overcoming physical challenges and device variability. 

Required Resources Cross Collaboration Needs of Working Groups 

• Advanced material synthesis facilities. 

• High-precision etching and patterning equipment. 

• Novel substrate materials for thermal management studies. 

• APHI, Circuits and Architectures, and Materials and 
Devices: Address integration and performance 
optimization. 

 

2.1.7 Emerging Devices and Materials for Analog Computing 
To bridge the gap between conventional computing and neuromorphic computing, analog 
devices emerge as the prime technology choice. Analog devices differ fundamentally from their 
digital counterparts in that they process continuous signal values. Unlike digital devices that 
encode information into discrete states, typically represented by 0s and 1s, analog devices can 
handle an infinite range of values and provide a more natural and efficient way of simulating 
biological neural networks. They also have the potential to be integrated seamlessly with current 
CMOS technology, adding the capability for brain-like computation and storage within a single 
unit.  

While there are numerous types of analog devices, this discussion will focus on several key 
types that have been the subject of extensive deliberation among the working group. These 
devices—memristors, organic semiconductors (OSCs), and mixed ion-electron conductors 
(MIECs)—are integral to advancing the capabilities of analog circuits within neuromorphic 
computing. Memristors, with their ability to remember previous states of electrical resistance, 
serve as the cornerstone for creating artificial synapses, thereby enabling the emulation of 
synaptic plasticity critical for learning and memory in neuromorphic systems. OSCs contribute to 
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the analog device landscape with their flexibility, low cost, and biocompatibility, which are 
advantageous for organic neuromorphic circuits that require low-power, flexible computing 
substrates. Meanwhile, MIECs offer a dual conduction mechanism that is pivotal for memristive 
devices due to their ability to emulate the ionic motion akin to biological synapses, thus adding 
another layer of biomimicry to analog neuromorphic devices. These components are integral to 
the analog paradigm, each addressing different aspects of the neuromorphic challenge and 
collectively moving the field closer to achieving brain-like computational efficiency within a 
silicon-based technology framework. 

The integration of analog devices in neuromorphic computing is not just a matter of 
transplanting existing technology into new applications. It requires a fundamental rethinking of 
device architecture and operation to harness the full potential of analog computation. As we 
explore these new horizons, the Circuits and Architecture section of the roadmap provides a 
more detailed examination of how neuromorphic devices can contribute to system-level energy 
savings and the broader implications for higher-level systems and architectures. 

Memristor 
Silicon-based devices struggle to replicate the complex dynamics of biological processes 

efficiently. Two of these challenges are of note: 1) 
the number of connections between individual 
switching elements: a neuron has thousands of 
connections while a transistor only has two, and 2) 
storage of data: conventional silicon devices store 
data separately from logic operations, whereas 
neurons perform both computation and storage 
functions (U.S. Department of Energy, Office of 
Energy Efficiency & Renewable Energy 2021). In 
response to these limitations of silicon-based 
devices, the development of memristive device 
represents a pivotal shift towards emulating the 
more intricate and energy-efficient functionalities 

of the human brain, bridging the gap between traditional computing architectures and the 
dynamic capabilities of biological neural networks. 

A memristive device (or memristor) is a two-terminal electronic component that regulates the 
flow of electric current in a circuit and remembers the amount of change that has previously 
flowed through it (Yang, Strukov, and Stewart 2013). The key property of a memristor is its 
ability to retain its resistance state even when power is turned off (non-volatility), which makes it 
an attractive device for neuromorphic computing applications (Xiao et al. 2023). In biological 
systems, synaptic weights between neurons adjust over time based on activity, a process that 
underlies learning and memory. The resistance states can be adjusted to mimic synaptic 
weights, and the ability of memristors to change and remember these states can be used to 
simulate synaptic plasticity, the strengthening or weakening of synapses based on activity. For 
these reasons, memristors, typically in crossbar arrays (see Figure 26), are mainly studied as 
an analog device for neuromorphic computing.  

Expected performance for memristor devices leveraging novel materials are typically on the 
order of 1 fJ/switch or spike (Zhu et al. 2020). Typical silicon-based neuromorphic systems 

 
Figure 26. Basic schematic of memristors in 

crossbar arrays. Source: Yadav et al. 2023 

Horizontal wires

MemristorsVertical wires
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utilize FinFET technology in GPUs (see Table 20). While a device-level comparison indicates 
only modest energy impact, the true energy-efficiency impact is derived from the neuromorphic 
computing architecture that these devices enable. A more complete discussion of neuromorphic 
computing is provided in the Circuits and Architectures section.   

Table 20. Device-Level Energy Impact and Timeline Estimatesa for Analog Devices for Neuromorphic 
Computing. 

Technology Expected 
Performance 

Commercial 
Benchmark 

Product 

Commercial 
Benchmark 

Energy Impact 
Factor 

Timeline for  
TRL 6 

Analog for 
Neuromorphic 1 fJ/bit 5nm Si FinFET 7.02 fJ/bit 7 10 years 

a Source: Huang et al. 2017 

A broad range of materials with different maturity levels have been explored, some of which are 
summarized below. 

Organic materials 
Owing to their ample free volume, organic semiconductors (OSCs) are characterized by their 
low switching energies, remarkable tunability, and efficient ion migration. Central to their appeal 
for neuromorphic computing is their ability to emulate neuroplasticity at a single unit level, with a 
wide range of synaptic switching mechanisms. These mechanisms range from two-terminal 
devices employing filament formation and charge trapping to advanced three-terminal systems 
such as ion-gated electrochemical transistors (van de Burgt et al. 2017). 

However, OSCs for neuromorphic computing face several challenges. Speed optimization 
remains a top priority. The intrinsic rate limitations of OSCs, stemming from their slow charge 
carrier mobility, result in a longer response time compared to their inorganic counterparts. 
Endurance is also a concern due to repetitive conduction. Issues also arise in enhancing device 
density, especially given the incompatibilities between OSCs and certain solvents used in 
photolithography (Zakhidov et al. 2011). Integrating these organic devices with traditional binary 
digital systems presents further hurdles, mainly due to the low degradation temperature 
(>150°C) of OSCs, while the traditional nanofabrication process for annealing Cu interconnects 
requires ~400°C (Christensen et al. 2022). Environmental factors—such as exposure to 
moisture or oxygen—alongside intrinsic electronic stability issues, amplify these challenges 
(Keene et al. 2019). 

By identifying and fine-tuning rate limitation of 
organic materials, the speed of these devices 
can be improved. To improve device density, 
novel fabrication processes have been proposed 
that are capable of accurately fabricating OSCs 
in vertical architectures (Lenz et al. 2019). 
Moreover, refining the crystallinity of OSCs, in 
tandem with advanced encapsulation techniques 
(see Figure 27), presents a compelling approach 
to mitigate stability issues (Keene et al. 2019; Go 
et al. 2020). 

Figure 27. Novel encapsulation strategy.Source: 
Keene et al. 2019  
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Mixed ion-electron conductors (MIECs) 
Mixed ion-electron conductors (MIECs)—most commonly oxides such as cerium oxide, 
amorphous gallium oxide, and lanthanum nickel oxide—are unique materials capable of 
simultaneously conducting ions and electrons. This dual conduction mechanism is particularly 
useful in memristors. By utilizing the ionic motion within MIECs, memristors can emulate the 
gradual strengthening and weakening of synaptic connections (Shenoy et al. 2014). 

Challenges include device variability, arising from the inherent inhomogeneities and defects in 
MIEC materials, which leads to inconsistent device behavior (Narayanan et al. 2015). 
Additionally, the long-term stability and endurance of MIEC-based devices can be compromised 
due to repetitive ion movement, which may induce degradation or drift in the device's 
performance over time (Burr et al. 2013). Finally, the speed of ionic movement, in comparison to 
electron motion, can also limit the device's switching speed, potentially slowing down 
computations in neuromorphic circuits. 

To address these challenges, dopants or novel MIEC compounds can be used to enhance ion 
mobility and reduce undesired defects (Liu and Wang 2020). Device architecture can also be 
optimized to mitigate degradation, for instance, by implementing protective barrier layers that 
minimize detrimental ion migration (Yoon, Oh, and Park 2022). Additionally, hybrid device 
designs, which combine the benefits of MIECs with other materials or mechanisms, provide 
pathways to harness the advantages of ionic conduction while offsetting its limitations (Maas et 
al. 2020).  

Action Plan for Emerging Devices and Materials for Analog Computing 
Table 21. Action Plan for Emerging Devices and Materials for Analog Computing 

Scope 

Technology for 
Energy Efficiency: Emerging Devices and Materials for Analog Computing 

Technology of Interest: Neuromorphic   

Challenges Solution Pathways 

• Identify and synthesize materials for analog devices compatible 
with CMOS processes. 

• Reduce power usage to match biological systems' efficiency. 

• Integrate analog devices for neuromorphic architectures. 

• Leverage foundry expertise in memory technologies like 
resistive random-access memory (RERAM) for 
neuromorphic device development. 

• Create PDKs and leveraging multi-material accelerators 
for diverse computing applications. 

• Advance spiking neural network implementations for real-
time learning and adaptability. 

• Enhance computational models to closely mirror the 
physics of biological systems, such as using carbon 
nanotube networks for processing. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

R&D for neuromorphic materials 
Neuromorphic functionality 
such as multistate memory 
and nonlinear activation. 

Identify memristive materials with 
switching energy < 100 aJ/bit and 
spiking network frequency > GHz 

3–5 

Commercialization Feasibility 
Analysis 

Endurance, lifecycle, cost-
effectiveness 

Achieve >1010 cycles and reduce the 
cost to approximately $10/synaptic 

cycle 
3–7 

Large-Scale Neuromorphic 
System Integration 

Scalability to simulate a large 
number of neurons 

Implement systems with ~1011 
synthetic neurons 5–10 
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Hybrid Integration with Existing 
Technologies 

Integration efficacy with 
current tech 

Develop high-performance devices for 
edge computing under 100 mW 5–10 

High-Performance Computing 
(HPC) and Data Center Adoption 

Neuromorphic computing at a 
massive scale 

Integration in systems requiring >1015 
synthetic neurons for advanced 

scientific computation 
10–15 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • Build up new infrastructure for fabrication and define requirements. 

End Users/OEMs 
• Implement neuromorphic computing solutions, provide feedback. 

• Develop new deposition, lithography, and metrology equipment. 

Academia • Increase R&D efforts on emerging materials. 

Required Resources Cross Collaboration Needs of Working Groups 

• Collaboration between academia and industry. 

• Seed funding for startups. 

• EDA tools. 

• Open-source design tools. 

• Circuits and Architectures: Define material 
properties/metrics requirements. 

• Algorithms and Software: Define how close to brain 
inspired computing is required vs more general 
distributed computing architecture. 

• APHI: Define metrics in thermal heat transfer and develop 
material integration methodology. 

• Metrology and Benchmarking: define metrics and develop 
metrology methods for this technology. 

 

2.1.8 Novel Materials for Silicon Scaling 
As contemporary CMOS technology continues to scale beyond 3nm, the parasitic delay and 
dissipation from conventional interconnect materials increasingly dominate overall transistor 
performance. At the same time, as feature sizes (e.g., trenches, vias) approach the limits of 
existing fabrication equipment, issues like electromigration and crosstalk become more 
problematic. Thus, there is intense research, and high industry motivation, into identifying novel 
materials and process schemes for the integration of contacts in the middle-of-line (MOL) 
processes and interconnects and intermetal dielectrics in the backend of line (BEOL) processes. 
Not only does this integration offer the prospect of performance enhancement and allow for 
smaller device dimensions, but it also offers potential energy efficiency improvements by 
reducing resistive loss and capacitive delay.  

One of the most pressing challenges is determining which novel materials ensure CMOS 
compatibility and seamless integration. Given the extensive array of potential material options, 
down-selection is a daunting task. It’s a complex problem, primarily because there are no clear 
“winners” in material choices; the suitability and tradeoffs often vary on a case-by-case basis 
depending on specific applications and technological frameworks. The subsequent sections 
summarize the challenges and prospective solutions for interlayer dielectrics (ILD), 
interconnects, and contacts. 

2.1.8.1 Interlayer Dielectric (ILD) 
The interlayer dielectric (ILD) is an insulating layer used between interconnect layers in the 
BEOL. The primary function of the ILD is to electrically isolate the layers to minimize crosstalk 
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and ensure accurate circuit behavior. Additionally, the ILD offers thermal management and 
structural support for further processing.  

In conventional CMOS devices, ILD primarily consists of silicon dioxide (SiO2) and its 
derivatives, such as fluorosilicate glass (FSG) or carbon-doped silicon oxide (CDO). These 
materials work well due to their reliable dielectric properties and CMOS compatibility. However, 
as device nodes advance and dimensions shrink, these materials are increasingly prone to 
breakdown under electric fields. Moreover, these materials’ higher parasitic capacitance 
contributes signifiantly to the overall delay time and switching energy. Thus, there is a need for 
novel ILD materials with lower dielectric constants (κ-values).  

Table 22. Important Properties for Materials in Low-κ Applicationsa 

Structural Electrical Mechanical Chemical 
• Small, closed pores 
• Thickness uniformity 
• No channel 

continuity 

• Low κ  
• Low leakage current 
• Low charge trapping 
• Low dielectric loss 
• High breakdown 

resistance 

• High Young’s modulus 
• High hardness 
• Low residual stress 
• High thickness threshold 
• High adhesion strength 

• Low moisture absorption 
• No metal corrosion 
• No fluorine/chlorine loss 
• Etch selectivity 
• Good chemical/thermal stability 

a Source: Hatton et al. 2006 

Novel ILD Materials 

Ideally, ILD materials have very low κ-value while also exhibiting the following charateristics: 
structural, thermal, and chemical integrity; sufficient hardness; a large band gap for minimal 
leakage; and compatibility with existing manufacturing processes. (Ryan et al. 2003). In reality, 
the industry transitioned from SiO2 to various other materials (Table 23) over the past couple of 
decades that were sufficient, but not ideal, including FSG for the 180nm node and SiCOH for 
the 120nm and 90nm nodes. At the advanced nodes, the industry is focused on porous organo-
silicon ILDs. Despite its favorable dielectric constant, process integration, as detailed below, is a 
major challenge. Further R&D to identify alternative ILD options and process integration 
pathways are needed.  

Table 23. Dielectric Constants of Various Contemporary Low-κ Materialsa 

Classification Material Fabrication Dielectric Constant (κ) 
Silicon dioxide Si0₂  CVD 3.9–4.5 

Silsesquioxane-based 
Hydrogen-Silsesquioxane (HSSQ) Spin-on 2.9–3.2 
Methyl—Silsesquioxane (MSSQ) Spin-on 2.6–2.8 

Silica-based 
FSG CVD 3.2–4.0 
SiCOH CVD 2.7–3.3 

Porous 

 

Porous HSSQ Spin-on 1.7–2.2 
Porous MSSQ Spin-on 1.8–2.2 
Porous SiCOH Spin-on/CVD 1.5–2.5 

Air gaps Air — 1.0 
a Source: Sekhar 2012 
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Integration With CMOS 

The transition from silicon dioxide to alternative ILD materials has added complexity to their 
integration process. Despite their low κ-values, ILDs are mechanically weak, lack thermal 
stability, and have diminished adhesive strength, making them susceptible to trapping chemicals 
and delaminating. This adhesive weakness often stems from a high carbon concentration during 
the PECVD process. One mitigation involves depositing an initial oxide layer to enhance the 
film's adhesion. However, the PECVD process often induces plasma-related damage (PID) that 
weakens the film both mechanically and thermally, making it more hydrophilic. The copper-
integrating dual-damascene process is particularly vulnerable to introducing PID at multiple 
stages. To mitigate PID, alternative precursor and deposition techniques are being explored, 
with the pore stuffing method—employing materials like PMMA to shield the surface—emerging 
as a promising solution (see Figure 28) (Zhang et al. 2015). 

Action Plan for Interlayer Dielectrics 

Table 24. Action Plan for Interlayer Dielectrics 

Scope 

Technology for   
Energy Efficiency: Interlayer dielectrics 

Technologies of Interest: Novel materials for silicon-based logic devices 

Challenges Solution Pathways 

• Achieve ultra-low κ-values while ensuring mechanical integrity 
and thermal stability. 

• Balance dielectric properties with structural and mechanical 
robustness. 

• Address integration challenges with CMOS processes, including 
thermal and plasma-induced damages. 

• Down-scale pore size without compromising dielectric 
properties. 

• Develop novel materials and deposition methods to 
create stable, low-κ porous ILDs. 

• Optimize pore size and distribution to ensure structural 
integrity and low dielectric constants. 

• Innovate integration techniques to mitigate plasma-
induced damage and improve film adhesion. 

• Explore the use of protective materials during fabrication 
to prevent damage to porous structures. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

Discover novel oxide with air 
gaps Experimental validation Meet metal compatibility requirements 2+ 

Lab demonstration Dielectric constant κ < 2.5 5 

Mechanical testing Mechanical strength > 4 Gpa 5 

Dielectric breakdown analysis in 
capacitors Electric field vs. thickness High breakdown resistance 5 

BEOL processing compatibility Materials compatibility Compatible with sub-400°C processes 5 

Develop novel deposition 
methods Deposition techniques Suitable precursors for low-κ ILDs 5 

Identify etching processes for 
ILD Etching efficiency Minimize defect and maintain low-κ 5 

Test material robustness Accelerated lifetime Comparable to industry standards 5 

Figure 28. Schematic of pore stuffing method.Source: Zhang et al. 2015  
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Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 
• Develop and supply novel low-κ ILD materials. 

• Collaborate on the integration of these materials into existing fabrication lines. 

End Users/OEMs • Provide specification for device performance that drive the requirements for ILD material 
properties and feedback on the integration impact. 

Academia 
• Increase R&D on new ILD materials, explore innovative integration techniques, and 

contribute to understanding the science behind material behavior and process 
development. 

Required Resources Cross Collaboration Needs of Working Groups 

• Collaboration between academia and industry. 

• National lab with EWD effort to bring in more experts. 

• Access to CMP resources. 

• Circuits and Architectures: Define material properties and 
metrics requirements. 

• Metrology and Benchmark: Develop methods to research 
lower dimension materials. 

 

2.1.8.2 Interconnects and Contacts 
Contacts and interconnects form the backbone of multi-layered microelectronic chips, ensuring 
a coherent flow of data and power. Interconnects are the horizontal and vertical conductive 
pathways that link the various components on a chip, ensuring smooth communication and 
power distribution. Contacts connect the interconnects to the transistor switch itself. For different 
physical reasons, as the dimension of interconnects and contacts decreases, the dissipation 
associated with them increases. This dissipation was much less than that from the transistors 
for decades but has grown to be comparable to the dissipation in the transistor itself. The 
integration of novel materials into interconnects and contacts offers a promising avenue to not 
only address dissipation but also improve the overall performance, reliability, and longevity of 
next-generation microelectronic devices. 

Novel Interconnects 

The ohmic dissipation in metal interconnects necessitates the use of metals with lower resistivity 
and prompted the move from aluminum to copper decades ago. As the dimension of these 
interconnects shrink, grain boundaries and boundary scattering plays as much a role as the bulk 
resistivity and motivates the search for metals without grain problems and with a low mean free 
path. This issue has led to significant research into metals like ruthenium, which have slightly 
worse bulk resistivity than copper but with short mean free paths that limit the effect of boundary 
scattering. Ideal materials also need to be compatible with the dual damascene process, where 
a barrier protects the ILD, and the interconnect metal fills both the vertical vias and the 
horizontal trenches that form the wiring layer. The tightest geometry comes from the vertical part 
of the interconnect: the interlayer via, which is discussed below.  

As silicon continues to scale, the liner/barrier’s thickness in the interlayer via for Cu 
interconnects becomes the bottleneck for further miniaturization. Liners that are applied post-
barrier enhance adhesion between the metal and the barrier, act as a precursor for subsequent 
metal deposition, and support electromigration resistance. Ta/TaN is the incumbent liner/barrier 
for the Cu dual damascene process, and TaN’s barrier thickness of 0.8nm has been 
demonstrated without compromising its efficacy (Witt et al. 2018). Switching to Co or Ru from 
the Ta further improves TaN barrier integrity (Witt et al. 2018).  
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While a Ru/TaN combination can achieve 
linewidths down to 2nm, the drive for 
further miniaturization sparked interest in 
barrierless alternatives (Wu et al. 2018), 
including Co, Ru, Ir, Rh, Mo, and W. These 
metals enable both hybrid metallization 
and semi-damascene processes. Co and 
Ru have garnered substantial experimental 
validation. Because these processes 
enable higher aspect ratio lines, it reduces 
resistance, and in turn, improves energy 
efficiency. Figure 29 shows Cu's 
resistance becoming higher than Ru and 
Co at smaller dimensions (van der Veen et 
al. 2018). 

Recent innovations have explored the 
potential of 2D materials, such as 
graphene and MoS2, as alternatives to 
traditional barriers (Nogami et al. 2021; Lo 
et al. 2018). These materials may hold 
promise for enabling a new generation of 
metals that could surpass the performance of copper. 

Action Plan for Novel Interconnects 
Table 25. Action Plan for Novel Interconnects. 

Scope 

Technology for 
Energy Efficiency: Novel interconnects and vias  

Technologies of Interest: Novel materials for silicon-based logic devices 

Challenges Solution Pathways 

• Reduce energy consumption of traditional interconnects and 
improve signal transmission. 

• Address issues with the increased resistivity and reduced fill in 
copper vias as CMOS technology scales down to 3nm and 
beyond. 

• Integrate novel materials for interconnects and vias with 
existing production technologies. 

• Explore new low-resistivity, high-thermal conductivity 
metals (e.g., ruthenium, molybdenum) and compounds for 
interconnects. 

• Investigate materials like graphene and TMDCs as 
alternatives to traditional barriers in vias. 

• Implement semi-damascene processes for via filling to 
achieve higher aspect ratio lines and reduce resistance. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

Develop models to find alloys 
with optimal resistivity and 

thermal conductivity 

Resistivity and Thermal 
Conductivity 

Lower than known single-element 
metals 2 

Differentiate grain, edge, and 
bulk resistance in nanowires 

Grain, Edge, and Bulk 
Resistance 

Techniques that provide clear 
resistance differentiation 2 

Figure 29. Logarithmic comparison of the damascene line 
resistance vs. the total conductor cross-sectional area of 
Ru, Co, and Cu nanowires.Source: van der Veen et al. 2018 
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Perform lab tests on nanowire 
resistance with potential low rho-

lambda metals 

Nanowire Resistance and 
Contact Resistance 

< 200 Ohm-microns for contact 
resistance 5 

New methods for depositing low-
resistivity materials 

Deposition Technique 
Efficiency Successful integration with CVD/ALD 5 

BEOL process compatibility with 
new interconnect materials 

Compatibility with BEOL 
Oxides & Thermal Properties High compatibility ratings 5 

Test accelerated lifetime of new 
interconnect materials for 

robustness 

Accelerated Lifetime Testing 
Results 

Performance on par with current 
standards 5 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 
• Develop new materials and processes for advanced interconnects and vias. 

• Supply the semiconductor industry with innovative materials and solutions that meet 
advanced performance specifications. 

End Users/OEMs 
• Provide specifications and performance requirements for new devices. 

• Integrate and test new interconnect and via technologies in finished products. 

Academia 
• Increase R&D effort on the properties of new materials. 

• Collaborate on developing new methodologies for material synthesis and integration and 
contribute to workforce education and training. 

Required Resources Cross Collaboration Needs of Working Groups 

• Collaboration between academia and industry. 

• National lab with EWD effort to bring in more experts. 

• Access to innovative materials. 

• Investment in laboratory facilities, testing equipment, and 
simulation tools for material development and device 
integration. 

• Circuits and Architectures: Define material 
properties/metrics requirements. 

• Metrology and Benchmark: Develop methods to research 
lower dimension materials. 

 

Novel Contacts 

Contacts refer to the regions where an interconnect makes a direct electrical connection to an 
active device region, such as the source, drain, and gate of a transistor. Contacts allow for the 
transfer of electrical signals and power between the transistor (or other active device) and the 
interconnecting metal layers. The ohmic dissipation from contacts depends on the area of the 
contact and becomes larger as transistor dimensions shrink. This dissipation is significant since 
contacts are the largest feature of transistors in leading technologies. Integration of novel 
contact materials has the potential to drastically reduce contact resistivity, enhance electron 
transport, and minimize leakage currents. Such advancements can lead to significant 
improvements in energy efficiency and overall device performance. 
According to IRDS 2022, in some current technologies, the series resistance can degrade the 
saturation current by 40% (IRDS 2022). As the gate pitch continues to scale, the repercussions 
on the drive current due to external resistance are expected to intensify. This scaling, combined 
with the anticipated rise in interconnect resistance, requires a drastic decrease in device contact 
resistance. PMOS devices, which use holes as carriers, require metal contacts with a high work 
function to reduce the Schottky barrier for holes, whereas NMOS devices, which employ 
electrons as carriers, need metals with a lower work function. In practice, the Schottky barrier 
height (SBH) is set by the metal-induced gap states (MIGS) and not the metal work function.  
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A fundamental understanding of the variables underlying MIGS is needed to identify or engineer 
contact materials to overcome MIGS. Another pathway is to explore other contact materials—like 
semimetals and metal-insulator-semiconductor (MIS) contacts—that may be able to inhibit or 
mitigate MIGS altogether. Once promising materials or approaches are identified, practical 
challenges like process integration and compatibility must be considered.  

Action Plan for Novel Contacts 
Table 26. Action Plan for Novel Contacts. 

Scope 

Technology for 
Energy Efficiency: Novel contacts 

Technologies of Interest: Novel materials for silicon-based logic devices 

Challenges Solution Pathways 

• Minimize contact resistivity as device dimensions shrink. 

• Align metal work functions with semiconductor energy levels to 
mitigate Schottky barriers. 

• Manage metal-induced gap states (MIGS) that affect Fermi-
level pinning and contact performance. 

• Integrate new contact materials with current manufacturing 
processes. 

• Employ MIS contacts with ultra-thin dielectrics to reduce 
SBH. 

• Research and deploy semimetals or other innovative 
materials that can potentially inhibit MIGS. 

• Complete a systematic study of MIGS to understand and 
engineer their influence on SBH and contact resistance. 

• Develop compatible fabrication techniques for novel 
contact materials within existing semiconductor 
manufacturing workflows. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

Identify novel materials with 
potential to decrease contact 

resistivity and compatibility with 
PMOS and NMOS applications 

Contact resistivity and work 
function compatibility 

Contact resistivity < 10 µΩ·cm 
Compatible work function for PMOS 

and NMOS 
3–5 

Design and test MIS contacts to 
reduce SBH, as well as 

engineering solutions for MIGS 

SBH reduction and MIGS 
control 

SBH < 0.3 eV 
Effective mitigation of MIGS effects 3–5 

Develop prototypes with novel 
contact materials and MIS 

structures 

Electrical performance and 
interface quality of prototypes 

Prototype contacts meeting or 
exceeding current industry standards 

(10–100 µΩ·cm) 
5–7 

Integration with advanced FET 
technologies 

Compatibility and 
performance in FinFETs and 

GAA-FETs 

Demonstration of integration without 
performance loss 2–4 

Commercialization and 
manufacturability testing 

Process integration success 
and yield rate 

Demonstration of scalability and 
reliability in manufacturing 3–5 

Performance and reliability 
analysis 

Long-term stability and failure 
rates 

Failure rates below industry-standard 
thresholds; extended device lifetimes 2–3 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 

• Develop and supply innovative materials that meet the specific resistivity and work function 
requirements for advanced contacts.  

• Engage in R&D for scalable production methods of new contact materials and integration 
technologies. 

End Users/OEMs 

• Provide performance specifications and reliability requirements for contacts in various 
applications.  

• Test and validate the new contact technologies in real-world scenarios to provide feedback 
for further development. 
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Academia 

• Conduct fundamental research on material properties, contact interface physics, and novel 
contact architectures.  

• Collaborate with industry partners for knowledge transfer and to guide research towards 
commercially viable solutions. 

Required Resources Cross Collaboration Needs of Working Groups 

• Advanced material synthesis facilities. 

• High-resolution characterization tools for material analysis. 

• Computational resources for modeling and simulation. 

• Fabrication facilities for prototype development. 

• Algorithms and Software: Develop predictive models for 
contact performance and to simulate the effects of new 
contact materials on overall device efficiency. 

• APHI: Integrate new contact materials into multi-chip 
modules. 

• Circuits and Architectures: Evaluate how new contact 
materials affect the performance of circuits and overall 
system architecture, including their impact on signal 
integrity and speed. 

 

2.1.9 Conclusion for Materials and Devices 
The advancements discussed in the Materials and Devices chapter are fundamental to the 
EES2 roadmap's mission to significantly reduce energy consumption across various sectors, 
from consumer electronics to large-scale data centers. The integration of novel materials such 
as 2D materials, CNTs, and ferroelectric materials, alongside advancements in transistor 
technologies from traditional device structure to Si-GAA, is vital for energy efficiency 
improvement. 

Addressing the challenges of thermal stability, conductivity, and contact resistance is essential 
and requires robust collaboration between materials science and device engineering, fostering a 
co-design approach across working groups. New materials must be seamlessly integrated into 
systems to create more energy-efficient next-generation devices. To achieve this, Metrology 
and Benchmarking group is crucial to develop standardized testing protocols and precise 
measurement techniques, ensuring material innovations are rigorously evaluated and reliably 
transitioned from benchtop discoveries to industry-standard solutions. 

To achieve our EES2 energy efficiency goals, strategic investment in the Materials and Devices 
is crucial for mid-term success. By advancing technologies such as tunnel field-effect transistors 
(TFETs) and leveraging innovative materials like 2D materials and carbon nanotubes (CNTs), 
we can significantly reduce energy consumption at the bit level. These advancements in MnD 
are essential for driving the next wave of energy efficiency improvements, laying the hardware 
foundation for a more sustainable future in microelectronics. 

With the urgent need to deploy advanced energy-efficient devices due to escalating 
environmental concerns, EES2 has set TRL 6 as the baseline for the deployment of these 
advanced technologies. This target highlights the necessity for accelerated research and 
development, the establishment of industry-wide benchmarks, and the development of 
dedicated testbeds to validate and expedite the market adoption of emerging technologies. 
Engaging all stakeholders—from policymakers to industry leaders—is crucial to ensure that the 
pace of innovation matches the pressing timelines for achieving energy sustainability and 
environmental preservation. 



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  75 

2.1.10 Materials and Devices References 
Agha, Firas Natheer Abdul-Kadir, Yasir Hashim, and Waheb Abduljabbar Shaif Abdullah. 2021. 
“Temperature Characteristics of Gate All Around Nanowire Channel Si-TFET.” Presented at the 
5th International Conference on Electronic Design (ICED). Perlis, Malaysia. 
https://doi.org/10.1088/1742-6596/1755/1/012045. 

Ahmed, Z., A. Afzalian, T. Schram, D. Jang, D. Verreck, Q. Smets, P. Schuddinck, et al. 2020. 
“Introducing 2D-FETs in Device Scaling Roadmap using DTCO.” Presented at the 2020 IEEE 
International Electron Devices Meeting (IEDM). San Francisco. 
https://doi.org/10.1109/IEDM13553.2020.9371906. 

Alcorn, Paul. 2023. “Imec Reveals Sub-1nm Transistor Roadmap, 3D-Stacked CMOS 2.0 
Plans.” Tom’s Hardware. Published May 26, 2023. https://www.tomshardware.com/news/imec-
reveals-sub-1nm-transistor-roadmap-3d-stacked-cmos-20-plans. 

Allain, A., J. Kang, K. Banerjee, and A. Kis. 2015. “Electrical contacts to two-dimensional 
semiconductors.” Nature Materials. Vol. 14 (Issue 12): pg 1195–1205. 
https://doi.org/10.1038/nmat4452. 

Aly, M.M.S., M. Gao, G. Hills, C.-S. Lee, G. Pitner, M.M. Shulaker, T.F. Wu, et al. 2015. 
“Energy-Efficient Abundant-Data Computing: The N3XT 1,000x.” Computer. Vol. 48 (Issue 12): 
pg 24–33. https://doi.org/10.1109/MC.2015.376. 

Asadi, Kamal. 2010. “Organic non-volatile ferroelectric memories and opto-electronics.” 
https://www.researchgate.net/publication/42788130_Organic_non-
volatile_ferroelectric_memories_and_opto-electronics. 

Atulasimha, J., and S. Bandyopadhyay. 2010. “Bennett Clocking of Nanomagnetic Logic Using 
Multiferroic Single-Domain Nanomagnets.” Applied Physics Letters. Vol. 97 (Issue 17): 173105. 
https://doi.org/10.1063/1.3506690. 

Avci, U.E., D.H. Morris, and I.A. Young. 2015. “Tunnel Field-Effect Transistors: Prospects and 
Challenges.” IEEE Journal of the Electron Devices Society. Vol. 3 (Issue 3): pg 88–95. 
https://doi.org/10.1109/JEDS.2015.2390591. 

Ávila, Antonio Ferreira, and Guilherme Silveira Rachid Lacerda. 2008. “Molecular Mechanics 
Applied to Single-Walled Carbon Nanotubes.” Materials Research. Vol. 11 (Issue 3): pg 325–
333. http://dx.doi.org/10.1590/S1516-14392008000300016. 

Barraud, S., V. Lapras, B. Previtali, M.P. Samson, J. Lacord, S. Martinie, M.-A. Jaud, et al. 
2017. “Performance and Design Considerations for Gate-All-Around Stacked-NanoWires FETs.” 
Presented at the 2017 IEEE International Electron Devices Meeting (IEDM). San Francisco. 
https://doi.org/10.1109/IEDM.2017.8268473. 

Bhatti, Sabpreet, Rachid Sbiaa, Atsufumi Hirohata, Hideo Ohno, Shunsuke Fukami, and S.N. 
Piramanayagam. 2017. “Spintronics based random access memory: a review.” Materials Today. 
Vol. 20 (Issue 9): pg 530–548. https://doi.org/10.1016/j.mattod.2017.07.007. 

Bi, Chong, Congli Sun, Meng Xu, Ty Newhouse-Illige, Paul M. Voyles, and Weigang Wang. 
2017. “Electrical Control of Metallic Heavy-Metal—Ferromagnet Interfacial States.” Phys. Rev. 
Appl. Vol. 8 (Issue 3): 034003. https://doi.org/10.1103/PhysRevApplied.8.034003. 

https://doi.org/10.1088/1742-6596/1755/1/012045
https://doi.org/10.1109/IEDM13553.2020.9371906
https://www.tomshardware.com/news/imec-reveals-sub-1nm-transistor-roadmap-3d-stacked-cmos-20-plans
https://www.tomshardware.com/news/imec-reveals-sub-1nm-transistor-roadmap-3d-stacked-cmos-20-plans
https://doi.org/10.1038/nmat4452
https://doi.org/10.1109/MC.2015.376
https://www.researchgate.net/publication/42788130_Organic_non-volatile_ferroelectric_memories_and_opto-electronics
https://www.researchgate.net/publication/42788130_Organic_non-volatile_ferroelectric_memories_and_opto-electronics
https://doi.org/10.1063/1.3506690
https://doi.org/10.1109/JEDS.2015.2390591
http://dx.doi.org/10.1590/S1516-14392008000300016
https://doi.org/10.1109/IEDM.2017.8268473
https://doi.org/10.1016/j.mattod.2017.07.007
https://doi.org/10.1103/PhysRevApplied.8.034003


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  76 

Biswas, Arpan, Anna N. Morozovska, Maxim Ziatdinov, Eugene A. Eliseev, and Sergei V. 
Kalinin. 2021. “Multi-objective Bayesian optimization of ferroelectric materials with artificial 
control for memory and energy storage applications.” Journal of Applied Physics. Vol. 130 
(Issue 20): 204102. https://doi.org/10.1063/5.0068903. 

Blinov, L.M., Vladimir M. Fridkin, Sergei P. Palto, A.V. Bune, P.A. Dowben, and Stephen 
Ducharme. 2000. “Two-dimensional ferroelectrics.” Physics-Uspekhi. Vol. 43 (Issue 3): pg 243. 
http://dx.doi.org/10.1070/PU2000v043n03ABEH000639. 

Borders, William A., Hisanao Akima, Shunsuke Fukami, and Satoshi Moriya. 2017. “Analogue 
Spin–Orbit Torque Device for Artificial-Neural-Network-Based Associative Memory Operation.” 
Applied Physics Express. Vol. 10 (Issue 1): 013007. http://dx.doi.org/10.7567/APEX.10.013007. 

Brady, Gerald J., Austin J. Way, Nathaniel S. Safron, Harold T. Evensen, Padma Gopalan, and 
Michael S. Arnold. 2016. “Quasi-ballistic carbon nanotube array transistors with current density 
exceeding Si and GaAs.” Science Advances. Vol. 2 (Issue 9). 
https://doi.org/10.1126/sciadv.1601240. 

Briggs, Natalie, Shruti Subramanian, Zhong Lin, Xufan Li, Xiaotian Zhang, Kehao Zhang, Kai 
Xiao, et al. 2019. “A roadmap for electronic grade 2D materials.” 2D Materials. Vol 6 (Issue 2): 
022001. http://dx.doi.org/10.1088/2053-1583/aaf836. 

Burr, G.W., K. Virwani, R.S. Shenoy, G. Fraczak, C.T. Rettner, A. Padilla, R.S. King, et al. 2013. 
“Recovery Dynamics and Fast (sub-50ns) Read Operation with Access Devices for 3D 
Crosspoint Memory Based on Mixed-Ionic-Electronic-Conduction (MIEC).” Presented at the 
2013 Symposium on VLSI Technology. Kyoto, Japan. 
https://ieeexplore.ieee.org/document/6576688. 

Cao, Guiming, Peng Meng, Jiangang Chen, Haishi Liu, Renji Bian, Chao Zhu, Fucai Liu, and 
Zheng Liu. 2020. “2D Material Based Synaptic Devices for Neuromorphic Computing.” 
Advanced Functional Materials. Vol. 31 (Issue 4): 2005443. 
https://doi.org/10.1002/adfm.202005443. 

Chatterjee, N., M. O’Connor, D. Lee, D.R. Johnson, S.W. Keckler, M. Rhu, and W.J. Dally. 
2017. “Architecting an Energy-Efficient DRAM System for GPUs.” Presented at the 2017 IEEE 
International Symposium on High Performance Computer Architecture (HPCA). Austin, TX. 
https://doi.org/10.1109/HPCA.2017.58. 

Chaves, A., J.G. Azadani, H. Alsalman, D.R. da Costa, R. Frisenda, A.J. Chaves, S.H. Song, et 
al. 2020. “Bandgap engineering of two-dimensional semiconductor materials.” npj 2D Materials 
and Applications. Vol. 4 (Article no. 29). http://dx.doi.org/10.1038/s41699-020-00162-4. 

Choi, W. Y., and W. Lee. 2010. “Hetero-Gate-Dielectric Tunneling Field-Effect Transistors.” 
IEEE Transactions on Electron Devices. Vol. 57 (Issue 9): pg 2317–2319. 
https://doi.org/10.1109/TED.2010.2052167. 

Christensen, Dennis V., Regina Dittmann, Bernabe Linares-Barranco, Abu Sebastian, Manuel 
Le Gallo, Andrea Redaelli, Stefan Slesazeck, et al. 2022. “2022 roadmap on neuromorphic 
computing and engineering.” Neuromorphic Computing and Engineering. Vol. 2 (Issue 2): 
022501. http://dx.doi.org/10.1088/2634-4386/ac4a83. 

https://doi.org/10.1063/5.0068903
http://dx.doi.org/10.1070/PU2000v043n03ABEH000639
http://dx.doi.org/10.7567/APEX.10.013007
https://doi.org/10.1126/sciadv.1601240
http://dx.doi.org/10.1088/2053-1583/aaf836
https://ieeexplore.ieee.org/document/6576688
https://doi.org/10.1002/adfm.202005443
https://doi.org/10.1109/HPCA.2017.58
http://dx.doi.org/10.1038/s41699-020-00162-4
https://doi.org/10.1109/TED.2010.2052167
http://dx.doi.org/10.1088/2634-4386/ac4a83


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  77 

Cristoloveanu, S., J. Wan and A. Zaslavsky. 2016. "A Review of Sharp-Switching Devices for 
Ultra-Low Power Applications," in IEEE Journal of the Electron Devices Society, vol. 4, no. 5, 
pp. 215-226, Sept. 2016, http://doi.org/10.1109/JEDS.2016.2545978 

Cristoloveanu, S., Gérard Ghibaudo. 2022. “Breaking the subthreshold slope limit in MOSFETs.” 
Science Direct. Vol. 198: 108465. https://doi.org/10.1016/j.sse.2022.108465 

Datta, S., V.Q. Diep, and B. Behin-Aein. 2015. “What constitutes a nanoswitch? A perspective.” 
In Emerging Nanoelectronic Devices, Chapter 2, edited by A. Chen, J. Hutchby, V. Zhirnov, and 
G. Bourianoff. New York: Wiley. https://doi.org/10.48550/arXiv.1404.2254. 

Ding, Li, Shibo Liang, Tian Pei, Zhiyong Zhang, Sheng Wang, Weiwei Zhou, Jie Liu, and Lian-
Mao Peng. 2012. “Carbon nanotube based ultra-low voltage integrated circuits: Scaling down to 
0.4 V.” Applied Physics Letters. Vol. 100 (Issue 26): 233116. https://doi.org/10.1063/1.4731776. 

Dowben, P. A., C. Binek, K. Zhang, L. Wang, W.-N. Mei, J.P. Bird, U. Singisetti, et al. 2018. 
“Towards a Strong Spin–Orbit Coupling Magnetoelectric Transistor.” IEEE Journal on 
Exploratory Solid-State Computational Devices and Circuits. Vol. 4 (Issue 1): pg 1–9. 
https://doi.org/10.1109/JXCDC.2018.2809640. 

Du, Frank, Jonathan R. Felts, Xu Xie, Jizhou Song, Yuhang Li, Matthew R. Rosenberger, 
Ahmad E. Islam, et al. 2014. “Laser-induced nanoscale thermocapillary flow for purification of 
aligned arrays of single-walled carbon nanotubes.” ACS Nano. Vol. 8 (Issue 12): pg 12641–
12649. https://doi.org/10.1021/nn505566r. 

Dunkel, Stefan, Martin Trentzsch, Ralf Richter, Peter Moll, Christine Fuchs, Oliver Gehring, M. 
Majer, et al. 2017. “A FeFET based super-low-power ultra-fast embedded NVM technology for 
22nm FDSOI and beyond.” Presented at the 2017 IEEE International Electron Devices Meeting 
(IEDM). San Francisco. https://doi.org/10.1109/IEDM.2017.8268425. 

Dutta, S., H. Ye, W. Chakraborty, Y.-C. Luo, M. San Jose, B. Grisafe, A. Khanna, et al. 2020. 
“Monolithic 3D Integration of High Endurance Multi-Bit Ferroelectric FET for Accelerating 
Compute-In-Memory.” Presented at the 2020 IEEE International Electron Devices Meeting 
(IEDM). San Francisco. https://doi.org/10.1109/IEDM13553.2020.9371974. 

Dutta, S., H. Ye, A.A. Khandker, S.G. Kirtania, A. Khanna, K. Ni, and S. Datta. 2022. “Logic 
Compatible High-Performance Ferroelectric Transistor Memory.” IEEE Electron Device Letters. 
Vol. 43 (Issue 3): pg 382–385. https://doi.org/10.1109/LED.2022.3148669. 

Elías, Ana Laura, Néstor Perea-López, Andrés Castro-Beltrán, Ayse Berkdemir, Ruitao Lv, 
Simin Feng, Aaron D. Long, et al. 2013. “Controlled Synthesis and Transfer of Large-Area WS2 
Sheets: From Single Layer to Few Layers.” ACS Nano. Vol. 7 (Issue 6): pg 5235–5242. 
https://doi.org/10.1021/nn400971k. 

Eyvazi, K., and M. A. Karami. 2020. “A New Junction-Less Tunnel Field-Effect Transistor with a 
SiO2/HfO2 Stacked Gate Oxide for DC Performance Improvement.” Presented at the 28th 
Iranian Conference on Electrical Engineering (ICEE). Tabriz, Iran. 
https://doi.org/10.1109/ICEE50131.2020.9260621.  

Franklin, Aaron D., George S. Tulevski, Shu-Jen Han, Davood Shahrjerdi, Qing Cao, Hong-Yu 
Chen, H.-S. Philip Wong, and Wilfried Haensch. 2012a. “Variability in Carbon Nanotube 

http://doi.org/10.1109/JEDS.2016.2545978
https://doi.org/10.1016/j.sse.2022.108465
https://doi.org/10.48550/arXiv.1404.2254
https://doi.org/10.1063/1.4731776
https://doi.org/10.1109/JXCDC.2018.2809640
https://doi.org/10.1021/nn505566r
https://doi.org/10.1109/IEDM.2017.8268425
https://doi.org/10.1109/IEDM13553.2020.9371974
https://doi.org/10.1109/LED.2022.3148669
https://doi.org/10.1021/nn400971k
https://doi.org/10.1109/ICEE50131.2020.9260621


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  78 

Transistors: Improving Device-to-Device Consistency.” ACS Nano. Vol. 6 (Issue 2): pg 1109–
1115. https://doi.org/10.1021/nn203516z. 

Franklin, Aaron D., Mathieu Luisier, Shu-Jen Han, George Tulevski, Chris M. Breslin, Lynne 
Gignac, Mark S. Lundstrom, and Wilfried Haensch. 2012b. “Sub-10 nm Carbon Nanotube 
Transistor.” Nano Letters. Vol. 12 (Issue 2): pg 758–762. https://doi.org/10.1021/nl203701g. 

Franklin, Aaron D., Damon B. Farmer, and Wilfried Haensch. 2014. “Defining and Overcoming 
the Contact Resistance Challenge in Scaled Carbon Nanotube Transistors.” ACS Nano. Vol. 8 
(Issue 7): pg 7333–7339. https://doi.org/10.1021/nn5024363. 

Garcia, V., and Manuel Bibes. 2014. “Ferroelectric tunnel junctions for information storage and 
processing.” Nature Communications. Vol. 5 (Article no. 4289). 
https://doi.org/10.1038/ncomms5289. 

Go, Gyeong-Tak, Yeongjun Lee, Dae-Gyo Seo, Mingyuan Pei, Wanhee Lee, Hoichang Yang, 
and Tae-Woo Lee. 2020. “Achieving Microstructure-Controlled Synaptic Plasticity and Long-
Term Retention in Ion-Gel-Gated Organic Synaptic Transistors.” Advanced Intelligent Systems. 
Vol. 2 (Issue 11): 2000012. https://doi.org/10.1002/aisy.202000012. 

Google Open Source Blog. 2022. “Google and NIST Partner on Nanotechnology Development 
Platform.” Published September 13, 2022. https://opensource.googleblog.com/2022/09/google-and-
nist-partner-on-nanotechnology-development-platform.html. 

Grimaldi, E., V. Krizakova, G. Sala, et al. 2020. “Single-shot dynamics of spin–orbit torque and 
spin transfer torque switching in three-terminal magnetic tunnel junctions.” Nature 
Nanotechnology. Vol. 15: pg 111–117. https://www.nature.com/articles/s41565-019-0607-7. 

Grollier, J., D. Querlioz, K.Y. Camsari, et al. 2020. “Neuromorphic Spintronics.” Nature 
Electronics. Vol. 3: pg 360–370. http://dx.doi.org/10.1038/s41928-019-0360-9. 

Guan, Zhao, He Hu, Xinwei Shen, Pinghua Xiang, Ni Zhong, Junhao Chu, and Chungang Duan. 
2020. “Recent Progress in Two-Dimensional Ferroelectric Materials.” Advanced Electronic 
Materials. Vol. 6 (Issue 1): 1900818. https://doi.org/10.1002/aelm.201900818. 

Han, S.-J., H. Oida, H. Park, J.B. Hannon, G.S. Tulevski, and W. Haensch. 2013. “Carbon 
nanotube complementary logic based on Erbium contacts and self-assembled high purity 
solution tubes.” Presented at the 2013 IEEE International Electron Devices Meeting. 
Washington, DC. http://dx.doi.org/10.1109/IEDM.2013.6724664. 

Hatton, Benjamin D., Kai Landskron, William J. Hunks, Mark R. Bennett, Donna Shukaris, 
Douglas D. Perovic, and Geoffrey A. Ozin. 2006. “Materials Chemistry for Low-k Materials.” 
Materials Today. Vol. 9 (Issue 3): pg 22–31. https://doi.org/10.1016/s1369-7021(06)71387-6. 

He, Keke, Bilal Barut, Shenchu Yin, Michael D. Randle, Ripudaman Dixit, Nargess 
Arabchigavkani, Jubin Nathawat, et al. 2022. “Graphene on Chromia: A System for Beyond-
Room-Temperature Spintronics.” Advanced Materials. Vol. 34 (Issue 12): 2105023. 
http://dx.doi.org/10.1002/adma.202105023. 

Hiramoto, T. 2009. “Transistor Evolution for CMOS Extension and Future Information 
Processing Technologies.” Presented at the 2009 International Workshop on Junction 
Technology. Kyoto, Japan. https://doi.org/10.1109/IWJT.2009.5166205. 

https://doi.org/10.1021/nn203516z
https://doi.org/10.1021/nl203701g
https://doi.org/10.1021/nn5024363
https://doi.org/10.1038/ncomms5289
https://doi.org/10.1002/aisy.202000012
https://opensource.googleblog.com/2022/09/google-and-nist-partner-on-nanotechnology-development-platform.html
https://opensource.googleblog.com/2022/09/google-and-nist-partner-on-nanotechnology-development-platform.html
https://www.nature.com/articles/s41565-019-0607-7
http://dx.doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1002/aelm.201900818
http://dx.doi.org/10.1109/IEDM.2013.6724664
https://doi.org/10.1016/s1369-7021(06)71387-6
http://dx.doi.org/10.1002/adma.202105023
https://doi.org/10.1109/IWJT.2009.5166205


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  79 

Hofman, Sander. 2022. “What is a gate-all-around transistor?” ASML. Published October 3, 
2022. https://www.asml.com/en/news/stories/2022/what-is-a-gate-all-around-transistor. 

Hoskins, Brian, Wen Ma, Mitchell Fream, Osama Yousuf, Mathew Daniels, Jonathan Goodwill, 
Advait Madhavan, et al. 2021. “A System for Validating Resistive Neural Network Prototypes.” 
Presented at ICONS 2021: International Conference on Neuromorphic Systems 2021 (Article 
no. 26). Published October 13, 2021. https://doi.org/10.1145/3477145.3477260. 

Hu, G., J.H. Lee, J.J. Nowak, J.Z. Sun, J. Harms, A. Annunziata, S. Brown, et al. 2015. “STT-
MRAM with Double Magnetic Tunnel Junctions.” Presented at the 2015 IEEE International 
Electron Devices Meeting (IEDM). Washington, DC. https://doi.org/10.1109/IEDM.2015.7409772. 

Huang, Y.-C., M.-H. Chiang, S.-J. Wang, and J.G. Fossum. 2017. “GAAFET Versus Pragmatic 
FinFET at the 5nm Si-Based CMOS Technology Node.” IEEE Journal of the Electron Devices 
Society. Vol. 5 (Issue 3): pg 164–169. https://doi.org/10.1109/JEDS.2017.2689738. 

Hwang, Cheol Seong, and Thomas Mikolajick. 2019. “Ferroelectric Memories.” In Advances in 
Non-Volatile Memory and Storage Technology, Second Edition, edited by Blanka Magyari-Köpe 
and Yoshio Nishi, 393–441. Woodhead Publishing. ISBN: 9780081025840. 
https://doi.org/10.1016/B978-0-08-102584-0.00012-7. 

Ikeda, S., et al. 2007. “Magnetic Tunnel Junctions for Spintronic Memories and Beyond.” IEEE 
Transactions on Electron Devices. Vol. 54 (Issue 5): pg 991–1002. 
https://doi.org/10.1109/TED.2007.894617. 

IRDS. 2020. International Roadmap for Devices and Systems (IRDS™) 2020 Edition. Institute of 
Electrical and Electronic Engineers (IEEE). https://irds.ieee.org/editions/2020. 

IRDS. 2021. International Roadmap for Devices and Systems: 2021 Update Beyond CMOS. 
IEEE. https://irds.ieee.org/images/files/pdf/2021/2021IRDS_BC.pdf. 

IRDS. 2022. International Roadmap for Devices and Systems: 2022 Edition. IEEE. 
https://irds.ieee.org/images/files/pdf/2022/2022IRDS_BC.pdf. 

Kaarsberg, Tina, Shashank Misra, and Kenta Shimizu. 2023. “Manufacturing an Extremely 
Efficient Transistor for Decarbonization.” U.S. Department of Energy (DOE), Advanced 
Manufacturing Office (AMO). Sandia National Laboratories/Energetics Incorporated. Accessed 
December 2023. https://aceee.org/sites/default/files/pdfs/sis21/panel-2/Kaarsberg.pdf. 

Kanai, S., M. Yamanouchi, S. Ikeda, Y. Nakatani, F. Matsukura, and H. Ohno. 2012. “Electric 
Field-Induced Magnetization Reversal in a Perpendicular-Anisotropy CoFeB-MgO Magnetic 
Tunnel Junction.” Applied Physics Letters. Vol. 101 (Issue 12): 122403. 
https://doi.org/10.1063/1.4753816. 

Kang, Minji, Sang-A Lee, Sukjae Jang, Sunbin Hwang, Seoung-Ki Lee, Sukang Bae, Jae-Min 
Hong, et al. 2019. “Low-Voltage Organic Transistor Memory Fiber with a Nanograined Organic 
Ferroelectric Film.” ACS Appl. Mater. Interfaces. Vol. 11 (Issue 25): pg 22575–22582. 
https://doi.org/10.1021/acsami.9b03564.  

Kanungo, S., G. Ahmad, P. Sahatiya, et al. 2022. “2D Materials-based Nanoscale Tunneling 
Field Effect Transistors: Current Developments and Future Prospects.” npj 2D Materials and 
Applications. Vol. 6 (Article no. 83). https://doi.org/10.1038/s41699-022-00352-2. 

https://www.asml.com/en/news/stories/2022/what-is-a-gate-all-around-transistor
https://doi.org/10.1145/3477145.3477260
https://doi.org/10.1145/3477145.3477260
https://doi.org/10.1109/IEDM.2015.7409772
https://doi.org/10.1109/JEDS.2017.2689738
https://doi.org/10.1016/B978-0-08-102584-0.00012-7
https://doi.org/10.1109/TED.2007.894617
https://irds.ieee.org/editions/2020
https://irds.ieee.org/images/files/pdf/2021/2021IRDS_BC.pdf
https://irds.ieee.org/images/files/pdf/2022/2022IRDS_BC.pdf
https://aceee.org/sites/default/files/pdfs/sis21/panel-2/Kaarsberg.pdf
https://doi.org/10.1063/1.4753816
https://doi.org/10.1021/acsami.9b03564
https://doi.org/10.1038/s41699-022-00352-2


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  80 

Kao, K.-H., et al. 2012. “Optimization of Gate-on-Source-Only Tunnel FETs With Counter-
Doped Pockets.” IEEE Transactions on Electron Devices. Vol. 59 (Issue 8): pg 2070–2077. 
https://doi.org/10.1109/TED.2012.2200489. 

Karigerasi, Manohar, et al. 2022. “Simulation-Guided Thermal Process Discovery for Flash 
Lamp Annealing Crystallization of On-Chip HfO2-ZrO2 Ferroelectric Memories.” Presented at the 
2022 MRS (Materials Research Society) Spring Meeting. Honolulu, HI. 
https://www.mrs.org/meetings-
events/presentation/2022_mrs_spring_meeting/2022_mrs_spring_meeting-3664701. 

Keene, Scott Tom, Armantas Melianas, Yoeri van de Burgt, and Alberto Salleo. 2019. 
“Mechanisms for Enhanced State Retention and Stability in Redox-Gated Organic 
Neuromorphic Devices.” Advanced Electronic Materials. Vol. 5 (Issue 2): 1800686. 
https://doi.org/10.1002/aelm.201800686. 

Khan, A.I., A. Keshavarzi, and S. Datta. 2020. “The future of ferroelectric field-effect transistor 
technology.” Nat Electron. Vol. 3: pg 588–597. https://doi.org/10.1038/s41928-020-00492-7. 

Khanai, Pravin, Bowei Zhou, Magda Andrade, Yanliu Dang, Albert Davydov, Ali Habiboglu, 
Jonah Saidian, et al. 2021. “Perpendicular Magnetic Tunnel Junctions with Multi-interface Free 
Layer.” Applied Physics Letters. Vol. 119 (Issue 24): 242404. https://doi.org/10.1063/5.0066782. 

Kosub, Tobias, Martin Kopte, Florin Radu, Oliver G. Schmidt, and Denys Makarov. 2015. “All-
Electric Access to the Magnetic-Field-Invariant Magnetization of Antiferromagnets.” Phys. Rev. 
Lett. Vol. 115 (Issue 9): 097201. https://doi.org/10.1103/PHYSREVLETT.115.097201. 

Kosub, T., M. Kopte, R. Hühne, et al. 2017. “Purely antiferromagnetic magnetoelectric random 
access memory.” Nat Commun. Vol. 8: 13985. http://dx.doi.org/10.1038/ncomms13985. 

Kumar, S., Y. Singh, B. Singh, and P.K. Tiwari. 2020. “Simulation Study of Dielectric Modulated 
Dual Channel Trench Gate TFET-Based Biosensor.” IEEE Sensors Journal. Vol. 20 (Issue 21): 
pg 12565–12573. https://doi.org/10.1109/JSEN.2020.3001300. 

LeCun, Y., Y. Bengio, and G. Hinton. 2015. “Deep Learning.” Nature. Vol. 521: pg 436–444. 
https://doi.org/10.1038/nature14539. 

Lee, C.-S., E. Pop, A.D. Franklin, W. Haensch, and H.-S.P. Wong. 2015. “A Compact Virtual-
Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime—Part I: Intrinsic 
Elements.” IEEE Transactions on Electron Devices. Vol. 62 (Issue 9): pg 3061–3069. 
https://doi.org/10.1109/TED.2015.2457453. 

Lee, K., et al. 2018. “22-nm FD-SOI Embedded MRAM Technology for Low-Power Automotive-
Grade MCU Applications.” Presented at the 2018 IEEE International Electron Devices Meeting 
(IEDM). San Francisco. https://doi.org/10.1109/IEDM.2018.8614566. 

Lee, Hyun-Jae, Minseong Lee, Kyoungjun Lee, Jinhyeong Jo, Hyemi Yang, Yunseok Kim, 
Seungchul Cha, Umesh Waghmare, and Jun Hee Lee. 2020. “Scale-free ferroelectricity induced 
by flat phonon bands in HfO2.” Science. Vol. 369 (Issue 6509): pg 1343–1347. 
https://doi.org/10.1126/science.aba0067. 

Lenz, J., F. del Giudice, F.R. Geisenhof, et al. 2019. “Vertical, electrolyte-gated organic 
transistors show continuous operation in the MA cm^−2 regime and artificial synaptic behavior.” 
Nat. Nanotechnol. Vol. 14: pg 579–585. https://www.nature.com/articles/s41565-019-0407-0. 

https://doi.org/10.1109/TED.2012.2200489
https://www.mrs.org/meetings-events/presentation/2022_mrs_spring_meeting/2022_mrs_spring_meeting-3664701
https://www.mrs.org/meetings-events/presentation/2022_mrs_spring_meeting/2022_mrs_spring_meeting-3664701
https://doi.org/10.1002/aelm.201800686
https://doi.org/10.1038/s41928-020-00492-7
https://doi.org/10.1063/5.0066782
https://doi.org/10.1103/PHYSREVLETT.115.097201
http://dx.doi.org/10.1038/ncomms13985
https://doi.org/10.1109/JSEN.2020.3001300
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/TED.2015.2457453
https://doi.org/10.1109/IEDM.2018.8614566
https://doi.org/10.1126/science.aba0067
https://www.nature.com/articles/s41565-019-0407-0


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  81 

Lin, Y-M., C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill, and Ph. Avouris. 
2010. “100-GHz transistors from wafer-scale epitaxial graphene.” Science. Vol. 327 (Issue 
5966): pg 662.  

Liu, Bilu, Mohammad Fathi, Liang Chen, Ahmad Abbas, Yuqiang Ma, and Chongwu Zhou. 
2015. “Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device 
Characteristics and Growth Mechanism Study.” ACS Nano. Vol. 9 (Issue 6): pg 6119–6127. 
https://doi.org/10.1021/acsnano.5b01301. 

Liu, Luqiao, Chi-Feng Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman. 2012. “Spin-
Torque Switching with the Giant Spin Hall Effect of Tantalum.” Science. Vol. 336 (Issue 6081): 
pg 555–558. https://doi.org/10.1126/science.1218197. 

Liu, Z.-C., and L. Wang. 2020. “Applications of Phase Change Materials in Electrical Regime 
From Conventional Storage Memory to Novel Neuromorphic Computing.” IEEE Access. Vol. 8: 
pg 76471–76499. https://doi.org/10.1109/ACCESS.2020.2990536. 

Liu, Xiwen, D. Wang, K.-H. Kim, K. Katti, J. Zheng, P. Musavigharavi, J. Miao, E.A. Stach, R.H. 
Olsson III, and D. Jariwala. 2021. “Post-CMOS Compatible Aluminum Scandium Nitride/2D 
Channel Ferroelectric Field-Effect-Transistor Memory.” Nano Letters. Vol. 21 (Issue 9): pg 
3753–3761. https://doi.org/10.1021/acs.nanolett.0c05051. 

Lo, C.-L., K. Zhang, R.S. Smith, K. Shah, J.A. Robinson, and Z. Chen. 2018. “Large-Area, 
Single-Layer Molybdenum Disulfide Synthesized at BEOL Compatible Temperature as Cu 
Diffusion Barrier.” IEEE Electron Device Letters. Vol. 39 (Issue 6): pg 873–876. 
https://doi.org/10.1109/LED.2018.2827061. 

Lu, H., and A. Seabaugh. 2014. “Tunnel Field-Effect Transistors: State-of-the-Art.” IEEE Journal 
of the Electron Devices Society. Vol. 2 (Issue 4): pg 44–49. 
https://doi.org/10.1109/JEDS.2014.2326622. 

Ma, D., J. Shi, Q. Ji, et al. 2015. “A universal etching-free transfer of MoS2 films for applications 
in photodetectors.” Nano Research. Vol. 8: pg 3662–3672. http://dx.doi.org/10.1007/s12274-015-
0866-z. 

Maas, Klaasjan, Edouard Villepreux, David Cooper, Carmen Jiménez, Hervé Roussel, Laetitia 
Rapenne, Xavier Mescot, Quentin Rafhay, Michel Boudard, and Mónica Burriel. 2020. “Using a 
Mixed Ionic Electronic Conductor to Build an Analog Memristive Device with Neuromorphic 
Programming Capabilities.” Journal of Materials Chemistry C. Issue 2. 
http://dx.doi.org/10.1039/C9TC03972D. 

Mahmood, Ather, Will Echtenkamp, Mike Street, Jun-Lei Wang, Shi Cao, et al. 2021. “Voltage 
Controlled Néel Vector Rotation in Zero Magnetic Field at CMOS-Compatible Temperatures” 
(Version 1). Research Square. Published March 15, 2021. https://doi.org/10.21203/rs.3.rs-
38435/v1. 

Manipatruni, Sasikanth, Dmitri E. Nikonov, Ramamoorthy Ramesh, Huichu Li, and Ian A. 
Young. 2017. “Spin-Orbit Logic with Magnetoelectric Nodes: A Scalable Charge Mediated 
Nonvolatile Spintronic Logic.” arXiv. Last modified March 5, 2017. 
https://doi.org/10.48550/arXiv.1512.05428. 

https://doi.org/10.1021/acsnano.5b01301
https://doi.org/10.1126/science.1218197
https://doi.org/10.1109/ACCESS.2020.2990536
https://doi.org/10.1021/acs.nanolett.0c05051
https://doi.org/10.1109/LED.2018.2827061
https://doi.org/10.1109/JEDS.2014.2326622
http://dx.doi.org/10.1007/s12274-015-0866-z
http://dx.doi.org/10.1007/s12274-015-0866-z
http://dx.doi.org/10.1039/C9TC03972D
https://doi.org/10.21203/rs.3.rs-38435/v1
https://doi.org/10.21203/rs.3.rs-38435/v1
https://doi.org/10.48550/arXiv.1512.05428


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  82 

Manipatruni, S., D.E. Nikonov, and I.A. Young. 2018. “Beyond CMOS computing with spin and 
polarization.” Nature Physics. Vol. 14: pg 338–343. http://dx.doi.org/10.1038/s41567-018-0101-4. 

Manipatruni, S., D.E. Nikonov, C.C. Lin, et al. 2019. “Scalable energy-efficient magnetoelectric 
spin–orbit logic.” Nature. Vol. 565: pg 35–42. https://www.nature.com/articles/s41586-018-0770-2. 

Micron Technology, Inc. 2017. “TN-40-07: Calculating Memory Power for DDR4 SDRAM.” Technical 
Note. Accessed January 26, 2024. https://www.micron.com/-
/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf. 

Mikolajick, T., S. Slesazeck, H. Mulaosmanovic, M.H. Park, S. Fichtner, P.D. Lomenzo, and M. 
Hoffmann. 2021. “Next Generation Ferroelectric Materials for Semiconductor Process 
Integration and Their Applications.” Journal of Applied Physics. Vol. 129 (Issue 10): 100901. 
https://doi.org/10.1063/5.0037617. 

Mitra, Suman Kr., and Brinda Bhowmick. 2019. “Impact of Interface Traps on Performance of 
Gate-on-Source/Channel SOI TFET.” Microelectronics Reliability. Vol. 94: pg 1–12. 
https://doi.org/10.1016/j.microrel.2019.01.004.  

Molckovsky, A., et al. 2019. “Bridging the Gap between Performance and Energy-Efficiency in 
Emerging Applications.” ACM Transactions on Design Automation of Electronic Systems. Vol. 
24 (Issue 5, Article 54). doi:10.1145/3350663. 

Moriyama, N., Y. Ohno, T. Kitamura, S. Kishimoto, and T. Mizutani. 2010. “Change in Carrier 
Type in High-k Gate Carbon Nanotube Field-Effect Transistors by Interface Fixed Charges.” 
Nanotechnology. Vol. 21 (Issue 16): 165201. https://doi.org/10.1088/0957-4484/21/16/165201. 

MRAM-info. 2023. “STT-MRAM.” Accessed December 2023. https://mram-info.com/stt-mram. 

Mueller, Johannes, Stefan Slesazeck, and Thomas Mikolajick. 2019. “Ferroelectric Field Effect 
Transistor.” In Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices, 
edited by Uwe Schroeder, Cheol Seong Hwang, and Hiroshi Funakubo, pg 451–471. Woodhead 
Publishing Series in Electronic and Optical Materials. Woodhead Publishing. ISBN: 
9780081024300. https://doi.org/10.1016/B978-0-08-102430-0.00022-X. 

Mukesh, Sagarika, and Jingyun Zhang. 2022. “A Review of the Gate-All-Around Nanosheet FET 
Process Opportunities.” Electronics. Vol. 11 (Issue 21): 3589. 
https://doi.org/10.3390/electronics11213589. 

Narayanan, P., et al. 2015. “Exploring the Design Space for Crossbar Arrays Built With Mixed-
Ionic-Electronic-Conduction (MIEC) Access Devices.” IEEE Journal of the Electron Devices 
Society. Vol. 3 (Issue 5): pg 423–434. https://doi.org/10.1109/JEDS.2015.2442242. 

Nazir, Ghazanfar, Adeela Rehman, and Soo-Jin Park. 2020. “Energy-Efficient Tunneling Field-
Effect Transistors for Low-Power Device Applications: Challenges and Opportunities.” ACS 
Applied Materials & Interfaces. Vol. 12 (Issue 42): pg 47127–47163. 
https://doi.org/10.1021/acsami.0c10213.  

Nigam, Kaushal, Pravin Kondekar, and Dheeraj Sharma. 2016. “Approach for Ambipolar 
Behaviour Suppression in Tunnel FET by Workfunction Engineering.” Micro & Nano Letters. Vol. 
11 (Issue 8): pg 460–464. https://doi.org/10.1049/mnl.2016.0178. 

http://dx.doi.org/10.1038/s41567-018-0101-4
https://www.nature.com/articles/s41586-018-0770-2
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://doi.org/10.1063/5.0037617
https://doi.org/10.1016/j.microrel.2019.01.004
https://doi.org/10.1088/0957-4484/21/16/165201
https://mram-info.com/stt-mram
https://doi.org/10.1016/B978-0-08-102430-0.00022-X
https://doi.org/10.3390/electronics11213589
https://doi.org/10.1109/JEDS.2015.2442242
https://doi.org/10.1021/acsami.0c10213
https://doi.org/10.1049/mnl.2016.0178


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  83 

Nogami, T., et al. 2021. “Electromigration and Line Resistance of Graphene Capped Cu Dual 
Damascene Interconnect.” Presented at the 2021 IEEE International Electron Devices Meeting 
(IEDM). San Francisco. https://doi.org/10.1109/IEDM19574.2021.9720525. 

Nowak, J.J., et al. 2016. “Dependence of Voltage and Size on Write Error Rates in Spin-
Transfer Torque Magnetic Random-Access Memory.” IEEE Magnetics Letters. Vol. 7 (Article no. 
3102604): pg 1–4. https://doi.org/10.1109/LMAG.2016.2539256. 

Pananakakis, G., Gérard Ghibaudo, and Sorin Cristoloveanu. 2023. “Detailed comparison of 
threshold voltage extraction methods in FD-SOI MOSFETs.” ScienceDirect. Vol. 209: 108764. 
https://doi.org/10.1016/j.sse.2023.108764. 

Pan, C., and A. Naeemi. 2017. “Nonvolatile Spintronic Memory Array Performance 
Benchmarking Based on Three-Terminal Memory Cell.” IEEE Journal on Exploratory Solid-State 
Computational Devices and Circuits. Vol. 3: pg 10–17. 
https://doi.org/10.1109/JXCDC.2017.2669213. 

Pan, C., and A. Naeemi. 2018. “Complementary Logic Implementation for Antiferromagnet 
Field-Effect Transistors.” IEEE Journal on Exploratory Solid-State Computational Devices and 
Circuits. Vol. 4 (Issue 2): pg 69–75. https://doi.org/10.1109/JXCDC.2018.2878635. 

Parkin, S., C. Kaiser, A. Panchula, et al. 2004. “Giant Tunnelling Magnetoresistance at Room 
Temperature with MgO (100) Tunnel Barriers.” Nature Materials. Vol. 3: pg 862–867. 
http://dx.doi.org/10.1038/nmat1256. 

Pitner, Gregory, Gage Hills, Juan Pablo Llinas, Karl-Magnus Persson, Rebecca Park, Jeffrey 
Bokor, Subhasish Mitra, and H.-S. Philip Wong. 2019. “Low-Temperature Side Contact to 
Carbon Nanotube Transistors: Resistance Distributions Down to 10 nm.” Nano Letters. Vol. 19 
(Issue 2): pg 1083–1089. https://doi.org/10.1021/acs.nanolett.8b04370. 

Puebla, J., J. Kim, K. Kondou, et al. 2020. “Spintronic Devices for Energy-Efficient Data Storage 
and Energy Harvesting.” Communications Materials. Vol. 1 (Issue 24). 
http://dx.doi.org/10.1038/s43246-020-0022-5. 

Rabe, Karin M., Matthew Dawber, Céline Lichtensteiger, Charles H. Ahn, and Jean-Marc 
Triscone. 2007. “Modern Physics of Ferroelectrics: Essential Background.” In Physics of 
Ferroelectrics: A Modern Perspective, edited by Karin M. Rabe, Charles H. Ahn, and Jean-Marc 
Triscone, pg 1–30. New York: Springer. http://dx.doi.org/10.1007/978-3-540-34591-6_1. 

Rahi, S.B., P. Asthana, and S. Gupta. 2017. “Heterogate Junctionless Tunnel Field-Effect 
Transistor: Future of Low-Power Devices.” Journal of Computational Electronics. Vol. 16: pg 
30–38. https://doi.org/10.1007/s10825-016-0936-9.  

Rehman, Muhammad Muqeet, Hafiz Mohammad Mutee Ur Rehman, Jahan Zeb Gul, Woo 
Young Kim, Khasan S. Karimov, and Nisar Ahmed. 2020. “Decade of 2D-materials-based 
RRAM devices: a review.” Science and Technology of Advanced Materials. Vol. 21 (Issue 1): pg 
147–186. https://doi.org/10.1080/14686996.2020.1730236. 

Revelant, A., et al. 2014. “Electron-Hole Bilayer TFET: Experiments and Comments.” IEEE 
Transactions on Electron Devices. Vol. 61 (Issue 8): pg 2674–2681. 
https://doi.org/10.1109/TED.2014.2329551. 

https://doi.org/10.1109/IEDM19574.2021.9720525
https://doi.org/10.1109/LMAG.2016.2539256
https://doi.org/10.1016/j.sse.2023.108764
https://doi.org/10.1109/JXCDC.2017.2669213
https://doi.org/10.1109/JXCDC.2018.2878635
http://dx.doi.org/10.1038/nmat1256
https://doi.org/10.1021/acs.nanolett.8b04370
http://dx.doi.org/10.1038/s43246-020-0022-5
http://dx.doi.org/10.1007/978-3-540-34591-6_1
https://doi.org/10.1007/s10825-016-0936-9
https://doi.org/10.1080/14686996.2020.1730236
https://doi.org/10.1109/TED.2014.2329551


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  84 

Rutherglen, C., A.A. Kane, P.F. Marsh, et al. 2019. “Wafer-scalable, aligned carbon nanotube 
transistors operating at frequencies of over 100 GHz.” Nature Electronics. Vol. 2: pg 530–539. 
https://www.nature.com/articles/s41928-019-0326-y. 

Ryan, E.T., A.J. McKerrow, J. Leu, and P.S. Ho. 2003. “Materials Issues and Characterization of 
Low-k Dielectric Materials.” In Low Dielectric Constant Materials for IC Applications, edited by 
P.S. Ho, J.J. Leu, and W.W. Lee, Springer Series in Advanced Microelectronics, Vol. 9. Berlin 
and Heidelberg, Germany: Springer. http://dx.doi.org/10.1007/978-3-642-55908-2_2. 

Saini, Balreen, Fei Huang, Yoon-Young Choi, Zhouchangwan Yu, Vivek Thampy, John D. 
Baniecki, Wilman Tsai, and Paul C. McIntyre. 2023. “Field-Induced Ferroelectric Phase 
Evolution During Polarization ‘Wake-Up’ in Hf0.5Zr0.5O2 Thin Film Capacitors.” Advanced 
Electronic Materials. Vol. 9 (Issue 6): 2300016. https://doi.org/10.1002/aelm.202300016. 

Samsung Semiconductor. 2022. “Samsung Begins Chip Production Using 3nm Process 
Technology With GAA Architecture.” Published June 30, 2022. 
https://news.samsung.com/global/samsung-begins-chip-production-using-3nm-process-technology-with-
gaa-architecture. 

Seabaugh, Alan C., and Qin Zhang. 2010. “Low-Voltage Tunnel Transistors for Beyond CMOS 
Logic.” Proceedings of the IEEE. Vol. 98 (Issue 12): pg 2095–2110. 
https://doi.org/10.1109/JPROC.2010.2070470. 

Sekhar, Vasarla Nagendra. 2012. “Mechanical Characterization of Black Diamond (Low-k) 
Structures for 3D Integrated Circuit and Packaging Applications.” In Nanoindentation in 
Materials Science, edited by Jiri Nemecek. IntechOpen. https://doi.org/10.5772/53198. 

Semiconductor Engineering. 2023. “Gate-All-Around FET (GAA FET).” Accessed December 4, 
2023. https://semiengineering.com/knowledge_centers/integrated-circuit/transistors/3d/gate-all-
around-fet/. 

Sharma, N., J.P. Bird, Ch. Binek, P.A. Dowben, D. Nikonov, and A. Marshall. 2020. “Evolving 
Magneto-electric Device Technologies.” Semiconductor Science and Technology. Vol. 35 (Issue 
7): 037001. http://dx.doi.org/10.1088/1361-6641/ab8438. 

Shenoy, Rohit S., Geoffrey W. Burr, Kumar Virwani, Bryan Jackson, Alvaro Padilla, Pritish 
Narayanan, Charles T. Rettner, Robert M. Shelby, Donald S. Bethune, and Karthik V. Raman. 
2014. “MIEC (mixed-ionic-electronic-conduction)-based access devices for non-volatile crossbar 
memory arrays.” Semiconductor Science and Technology. Vol. 29 (Issue 10): 104005. 
http://dx.doi.org/10.1088/0268-1242/29/10/104005. 

Shulaker, Max M., Gage Hills, Tony F. Wu, Zhenan Bao, H.-S. Philip Wong, and Subhasish 
Mitra. 2015. “Efficient metallic carbon nanotube removal for highly-scaled technologies.” 
Presented at the 2015 IEEE International Electron Devices Meeting (IEDM). Washington, DC. 
https://doi.org/10.1109/IEDM.2015.7409815. 

Si, Mengwei, Pai-Ying Liao, Gang Qiu, Yuqin Duan, and Peide D. Ye. 2018. “Ferroelectric Field-
Effect Transistors Based on MoS2 and CuInP2S6 Two-Dimensional van der Waals 
Heterostructure.” ACS Nano. Vol. 12 (Issue 7): pg 6700–6705. 
https://doi.org/10.1021/acsnano.8b01810. 

https://www.nature.com/articles/s41928-019-0326-y
http://dx.doi.org/10.1007/978-3-642-55908-2_2
https://doi.org/10.1002/aelm.202300016
https://news.samsung.com/global/samsung-begins-chip-production-using-3nm-process-technology-with-gaa-architecture
https://news.samsung.com/global/samsung-begins-chip-production-using-3nm-process-technology-with-gaa-architecture
https://doi.org/10.1109/JPROC.2010.2070470
https://doi.org/10.5772/53198
https://semiengineering.com/knowledge_centers/integrated-circuit/transistors/3d/gate-all-around-fet/
https://semiengineering.com/knowledge_centers/integrated-circuit/transistors/3d/gate-all-around-fet/
http://dx.doi.org/10.1088/1361-6641/ab8438
http://dx.doi.org/10.1088/0268-1242/29/10/104005
https://doi.org/10.1109/IEDM.2015.7409815
https://doi.org/10.1021/acsnano.8b01810


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  85 

Simmons, J.M., B.M. Nichols, S.E. Baker, Matthew S. Marcus, O.M. Castellini, C.-S. Lee, R.J. 
Hamers, and M.A. Eriksson. 2006. “Effect of Ozone Oxidation on Single-Walled Carbon 
Nanotubes.” The Journal of Physical Chemistry B. Vol. 110 (Issue 14): pg 7113–7118. 
https://doi.org/10.1021/jp0548422. 

Singh, Kamaldeep. 2021. “Gate-All-Around (GAA) FET – Going Beyond The 3 Nanometer 
Mark.” Copperpod Intellectual Property. Published September 15, 2021. 
https://www.copperpodip.com/post/gate-all-around-gaa-fet-going-beyond-the-3-nanometer-mark. 

Slesazeck, Stefan, and Thomas Mikolajick. 2019. “Nanoscale Resistive Switching Memory 
Devices: A Review.” Nanotechnology. Vol. 30 (Issue 35, Article no. 352003). 
http://dx.doi.org/10.1088/1361-6528/ab2084. 

Slonczewski, J.C. 1996. “Current-driven excitation of magnetic multilayers.” Journal of 
Magnetism and Magnetic Materials. Vol. 159 (Issues 1–2): pg L1–L7. https://doi.org/10.1016/0304-
8853(96)00062-5. 

Södergren, L., P. Olausson and E. Lind, "Cryogenic Characteristics of InGaAs MOSFET," in 
IEEE Transactions on Electron Devices, vol. 70, no. 3, pp. 1226-1230, March 2023, 
https://doi.org/10.1109/TED.2023.3238382 

Stolichnov, Igor, Matteo Cavalieri, Enrico Colla, Tony Schenk, Terence Mittmann, Thomas 
Mikolajick, Uwe Schroeder, and Adrian M. Ionescu. 2018. “Genuinely Ferroelectric Sub-1-Volt-
Switchable Nanodomains in HfxZr(1–x)O2 Ultrathin Capacitors.” ACS Applied Materials & 
Interfaces. Vol. 10 (Issue 36): pg 30514–30521. https://doi.org/10.1021/acsami.8b07988. 

Sun, Jonathan Z., and Christopher Safranski. 2022. “Metrology and Metrics for Spin-Transfer-
Torque Switched Magnetic Tunnel Junctions in Memory Applications.” Journal of Magnetism 
and Magnetic Materials. Vol. 563: 169878. https://doi.org/10.1016/j.jmmm.2022.169878. 

Tan, J., J.H. Lim, J.H. Kwon, V.B. Naik, N. Raghavan, and K.L. Pey. 2021. “Role of 
temperature, MTJ size and pulse-width on STT-MRAM bit-error rate and backhopping.” Solid-
State Electronics. Vol. 183: 108032. https://doi.org/10.1016/j.sse.2021.108032. 

U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy. 2021. “Advanced 
Manufacturing Office Workshop on Manufacturing and Integration Challenges for Analog and 
Neuromorphic Computing.” Workshop Report, August 11–13, 2021. 
https://energy.gov/sites/default/files/2022-
08/AMO%20Semiconductors%20Workshop%20Report_2022.pdf. 

van de Burgt, Y., E. Lubberman, E. Fuller, et al. 2017. “A non-volatile organic electrochemical 
device as a low-voltage artificial synapse for neuromorphic computing.” Nature Mater. Vol. 16: 
pg 414–418. http://dx.doi.org/10.1038/NMAT4856. 

van der Veen, M.H., et al. 2018. “Damascene Benchmark of Ru, Co and Cu in Scaled 
Dimensions.” Presented at the 2018 IEEE International Interconnect Technology Conference 
(IITC). Santa Clara, CA. https://doi.org/10.1109/IITC.2018.8430407. 

Vaz, D.C., et al. 2021. “Functional Demonstration of a Fully Integrated Magneto-Electric Spin-
Orbit Device.” Presented at the 2021 IEEE International Electron Devices Meeting (IEDM). San 
Francisco. https://doi.org/10.1109/IEDM19574.2021.9720677. 

https://doi.org/10.1021/jp0548422
https://www.copperpodip.com/post/gate-all-around-gaa-fet-going-beyond-the-3-nanometer-mark
http://dx.doi.org/10.1088/1361-6528/ab2084
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1016/0304-8853(96)00062-5
https://doi.org/10.1109/TED.2023.3238382
https://doi.org/10.1021/acsami.8b07988
https://doi.org/10.1016/j.jmmm.2022.169878
https://doi.org/10.1016/j.sse.2021.108032
https://energy.gov/sites/default/files/2022-08/AMO%20Semiconductors%20Workshop%20Report_2022.pdf
https://energy.gov/sites/default/files/2022-08/AMO%20Semiconductors%20Workshop%20Report_2022.pdf
http://dx.doi.org/10.1038/NMAT4856
https://doi.org/10.1109/IITC.2018.8430407
https://doi.org/10.1109/IEDM19574.2021.9720677


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  86 

Vincent, A.F., et al. 2015. “Spin-Transfer Torque Magnetic Memory as a Stochastic Memristive 
Synapse for Neuromorphic Systems.” IEEE Transactions on Biomedical Circuits and Systems. 
Vol. 9 (Issue 2): pg 166–174. https://doi.org/10.1109/TBCAS.2015.2414423. 

Wang, Xingli, Yongji Gong, Gang Shi, Wai Leong Chow, Kunttal Keyshar, Gonglan Ye, Robert 
Vajtai, et al. 2014. “Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe2.” ACS 
Nano. Vol. 8 (Issue 5): pg 5125–5131. http://dx.doi.org/10.1021/nn501175k. 

Wang, Hanlin, Qiang Zhao, Zhenjie Ni, Qingyuan Li, Hongtao Liu, Yunchang Yang, Lifeng 
Wang, et al. 2018. “A Ferroelectric/Electrochemical Modulated Organic Synapse for 
Ultraflexible, Artificial Visual-Perception System.” Advanced Materials. Vol. 30 (Issue 46): 
1803961. https://doi.org/10.1002/adma.201803961. 

Wang, M., S. Cai, C. Pan, et al. 2018. “Robust memristors based on layered two-dimensional 
materials.” Nature Electronics. Vol. 1: pg 130–136. https://www.nature.com/articles/s41928-018-
0021-4. 

Wang, Z., et al. 2021. “Standby Bias Improvement of Read After Write Delay in Ferroelectric 
Field Effect Transistors.” Presented at the 2021 IEEE International Electron Devices Meeting 
(IEDM). San Francisco. https://doi.org/10.1109/IEDM19574.2021.9720502. 

Wei, H., H. Shulaker, H.-S. P. Wong, and S. Mitra. 2013. “Monolithic three-dimensional 
integration of carbon nanotube FET complementary logic circuits.” Presented at the 2013 IEEE 
International Electron Devices Meeting. Washington, DC. 
https://doi.org/10.1109/IEDM.2013.6724663. 

Witt, C., et al. 2018. “Testing The Limits of TaN Barrier Scaling.” Presented at the 2018 IEEE 
International Interconnect Technology Conference (IITC). Santa Clara, CA. 
https://doi.org/10.1109/IITC.2018.8430289. 

Worledge, D.C. 2022. “Spin-Transfer-Torque MRAM: the Next Revolution in Memory.” 
Presented at the 2022 IEEE International Memory Workshop (IMW). Dresden, Germany. 
https://doi.org/10.1109/IMW52921.2022.9779288. 

Wu, Z., et al. 2018. “PVD- Treated ALD TaN for Cu Interconnect Extension to 5nm Node and 
Beyond.” Presented at the 2018 IEEE International Interconnect Technology Conference (IITC). 
Santa Clara, CA. https://doi.org/10.1109/IITC.2018.8430433. 

Xia, J., and Y. Hu. 2022. “Organic ferroelectric non-volatile memory transistors.” Presented at 
the 2022 IEEE International Flexible Electronics Technology Conference (IFETC). Qingdao, 
China. https://doi.org/10.1109/IFETC53656.2022.9948506. 

Xiao, Yongyue, Bei Jiang, Zihao Zhang, Shanwu Ke, Yaoyao Jin, Xin Wen, and Cong Ye. 2023. 
“A review of memristor: material and structure design, device performance, applications and 
prospects.” Science and Technology of Advanced Materials. Vol. 24 (Issue 1). 
https://doi.org/10.1080/14686996.2022.2162323. 

Xie, X., S. Jin, M. Wahab, et al. 2014. “Microwave purification of large-area horizontally aligned 
arrays of single-walled carbon nanotubes.” Nature Communications. Vol. 5: 5332. 
http://dx.doi.org/10.1038/ncomms6332. 

https://doi.org/10.1109/TBCAS.2015.2414423
http://dx.doi.org/10.1021/nn501175k
https://doi.org/10.1002/adma.201803961
https://www.nature.com/articles/s41928-018-0021-4
https://www.nature.com/articles/s41928-018-0021-4
https://doi.org/10.1109/IEDM19574.2021.9720502
https://doi.org/10.1109/IEDM.2013.6724663
https://doi.org/10.1109/IITC.2018.8430289
https://doi.org/10.1109/IMW52921.2022.9779288
https://doi.org/10.1109/IITC.2018.8430433
https://doi.org/10.1109/IFETC53656.2022.9948506
https://doi.org/10.1080/14686996.2022.2162323
http://dx.doi.org/10.1038/ncomms6332


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  87 

Xiong, Danrong, Yuhao Jiang, Kewen Shi, Ao Du, Yuxuan Yao, Zongxia Guo, Daoqian Zhu, et 
al. 2022. “Antiferromagnetic Spintronics: An Overview.” Fundamental Research. Vol. 2 (Issue 
4): pg 522–534. https://doi.org/10.1016/j.fmre.2022.03.016. 

Yadav, Dev Narayan, Phrangboklang Lyngton Thangkhiew, Sandip Chakraborty, and Indranil 
Sengupta. 2023. “Efficient Grouping Approach for Fault Tolerant Weight Mapping in Memristive 
Crossbar Array.” Memories - Materials, Devices, Circuits and Systems. Vol. 4: 100045. 
http://dx.doi.org/10.1016/j.memori.2023.100045. 

Yang, J., D. Strukov, and D. Stewart. 2013. “Memristive devices for computing.” Nature 
Nanotechnology. Vol. 8: pg 13–24. http://dx.doi.org/10.1038/nnano.2012.240. 

Yoon, Chansoo, Gwangtaek Oh, and Bae Ho Park. 2022. “Ion-Movement-Based Synaptic 
Device for Brain-Inspired Computing.” Nanomaterials. Vol. 12 (Issue 10): 1728. 
http://dx.doi.org/10.3390/nano12101728. 

Yu, Zhouchangwan, et al. 2022. “Nanocrystallite Seeding of Metastable Ferroelectric Phase 
Formation in Atomic Layer-Deposited Hafnia-Zirconia Alloys.” ACS Applied Materials & 
Interfaces. Vol. 14 (Issue 47): pg 53057–53064. http://dx.doi.org/10.1021/acsami.2c15047. 

Yue, Ruoyu, Yifan Nie, Lee A. Walsh, Rafik Addou, Chaoping Liang, Ning Lu, Adam T. Barton, 
et al. 2017. “Nucleation and growth of WSe2: enabling large grain transition metal 
dichalcogenides.” 2D Materials. Vol. 4 (Issue 4): 045019. http://dx.doi.org/10.1088/2053-
1583/aa8ab5. 

Zakhidov, Alexander A., Jin-Kyun Lee, John A. DeFranco, Hon Hang Fong, Priscilla G. Taylor, 
Margarita Chatzichristidi, Christopher K. Ober, and George G. Malliaras. 2011. “Orthogonal 
Processing: A New Strategy for Organic Electronics.” Chemical Science. Issue 6. 
http://dx.doi.org/10.1039/C0SC00612B. 

Zhang, Dongli, Moussa Ehsan, Michael Ferdman, and Radu Sion. 2014. “DIMMer: A Case for 
Turning Off DIMMs in Clouds.” SOCC ’14: Proceedings of the ACM Symposium on Cloud 
Computing. New York: Association for Computing Machinery. 
http://dx.doi.org/10.1145/2670979.2670990. 

Zhang, Liping, Jean-Francois de Marneffe, Markus H. Heyne, Sergej Naumov, Yiting Sun, 
Alexey Zotovich, Ziad el Otell, Felim Vajda, Stefan De Gendt, and Mikhail R. Baklanov. 2015. 
“Improved Plasma Resistance for Porous Low-k Dielectrics by Pore Stuffing Approach.” ECS 
Journal of Solid State Science and Technology. Vol. 4 (Issue 1): N3098. 
http://dx.doi.org/10.1149/2.0121501jss. 

Zhang, Delin, Mukund Bapna, Wei Jiang, Duarte Sousa, Yu-Ching Liao, Zhengyang Zhao, Yang 
Lv, et al. 2022. “Bipolar Electric-Field Switching of Perpendicular Magnetic Tunnel Junctions 
through Voltage-Controlled Exchange Coupling.” Nano Letters. Vol. 22 (Issue 2): pg 622–629. 
http://dx.doi.org/10.1021/acs.nanolett.1c03395. 

Zhang, Sirui, Qinghua Zhang, Fangqi Meng, Ting Lin, Binjian Zeng, Lin Gu, Min Liao, and 
Yichun Zhou. 2023. “Domain Wall Evolution in Hf0.5Zr0.5O2 Ferroelectrics under Field-Cycling 
Behavior.” Research. Vol. 6 (Article ID 0093). https://doi.org/10.34133/research.0093. 

https://doi.org/10.1016/j.fmre.2022.03.016
http://dx.doi.org/10.1016/j.memori.2023.100045
http://dx.doi.org/10.1038/nnano.2012.240
http://dx.doi.org/10.3390/nano12101728
http://dx.doi.org/10.1021/acsami.2c15047
http://dx.doi.org/10.1088/2053-1583/aa8ab5
http://dx.doi.org/10.1088/2053-1583/aa8ab5
http://dx.doi.org/10.1039/C0SC00612B
http://dx.doi.org/10.1145/2670979.2670990
http://dx.doi.org/10.1149/2.0121501jss
http://dx.doi.org/10.1021/acs.nanolett.1c03395
https://doi.org/10.34133/research.0093


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  88 

Zhang, Zhiyong, Jianshuo Zhou, Li Ding, Lin Xu, Xiaohan Cheng, et al. 2023. “Terahertz Metal-
Oxide-Semiconductor Transistors Based on Aligned Carbon Nanotube Arrays.” Preprint, 
submitted March 4, 2023. https://doi.org/10.21203/rs.3.rs-2526224/v1. 

Zheng, Yi, Guang-Xin Ni, Ming-Gang Zeng, Shu-Ting Chen, Kui Yao, and Barbaros Özyilmaz. 
2009. “Gate-controlled nonvolatile graphene-ferroelectric memory.” Applied Physics Letters. Vol. 
94 (Issue 16): 163505. https://doi.org/10.1063/1.3119215. 

Zhu, Jiadi, Teng Zhang, Yuchao Yang, and Ru Huang. 2020. “A Comprehensive Review on 
Emerging Artificial Neuromorphic Devices.” Applied Physics Reviews. Vol. 7 (Issue 1): 011312. 
https://doi.org/10.1063/1.5118217. 
  

https://doi.org/10.21203/rs.3.rs-2526224/v1
https://doi.org/10.1063/1.3119215
https://doi.org/10.1063/1.5118217


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  89 

2.2 Circuits and Architectures 
In the pursuit of energy-efficient computing, the design of new circuits and architectures plays a 
pivotal role. As new circuits and architectures are designed to address emerging computing 
needs while also adapting to evolving CMOS/IC, memory, and interconnect technologies, 
energy efficiency must be a core consideration.  

There is a stark contrast in energy consumption between logic operations and memory access 
(as shown in Figure 7 in the Introduction). Compared to an Int8 ADD operation, accessing on-
chip SRAM—which is closest to the processor and the most energy-efficient form of memory—
can be up to 2,000 times more energy-intensive, while accessing off-chip DRAM can be up to 
190,000 times more energy-intensive (Jouppi et al. 2021). The primary energy cost arises from 
the capacitive charging and discharging associated with data transfer between compute 
elements and memory, highlighting data movement as not only a performance bottleneck but 
also a major energy sink. 

This chapter synthesizes the collective insights from the Circuits and Architectures working 
group, highlighting technologies that have significant potential for energy savings while also 
considering economic viability. While the technologies discussed represent a selection of the 
myriad options for improving energy efficiency within circuits and architectures, they exemplify 
the type of innovation required to meet the dual demands of performance and efficiency. The 
energy impact factors for each proposed technology, as compared with these technologies’ 
current counterparts, are specific to their applications and critical to understanding their potential 
benefits. 

Circuits and architectures bridge the gap between bits, instructions, and applications where 
technologies can apply to one or more of these defined hierarchical levels. Nonvolatile memory, 
for example, offers significant energy reductions at the bit level that also extend to the 
instruction level. Technologies like compute-in-memory (CIM) decrease energy consumption per 
instruction and enhance application performance through architectural innovations. Similarly, 
technologies such as the compute express link (CXL) enhance instructional energy efficiency 
and application performance by optimizing resource allocation. Finally, ASICs and domain-
specific architectures (DSAs) elevate efficiency at both the instruction and application levels by 
tailoring hardware to specific computational tasks. 

Working group methodology 
The working group focused on high-impact technologies to improve energy efficiency and 
performance related to memory access, domain-specific and application-specific architectures, 
digital and analog compute-in-memory technologies, novel non-volatile memories, and EDA. To 
quantify the potential energy efficiency gains of these technologies, the working group 
conducted benchmarking through a literature search and compared the results to incumbent 
technologies.  

Table 27 shows the proposed technologies organized by group. Specific energy contributions 
can be found in each of the following sections where applicable. Some technologies, such as 
EDA or instruction set architecture (ISA), do not contribute directly to energy consumption. 
However, proposed energy savings through utilizing these technologies are mentioned in their 
respective sections. While compute-near-memory is discussed, this was considered more of an 
integration scheme rather than a new architecture. 
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Table 27. Technology Groups Addressed by the Circuits and Architectures Working Group. 

Technology Group Specified Technology  

Memory Access 

CXL Fabric 

UCIe 

Instruction Set Architecture 

Non-Volatile Memory (NVM) 

NRAM 
ReRAM 

STTRAM 
PC-RAM 

SRAM Metis SRAM bit line variation reduction, energy 
reuse 

Compute-near-Memory 
Vcache 

MIV stacked ReRAM  
DRAM Cache 

Compute-in-Memory (Digital) SRAM CIM 
HBM PIM 

Compute-in-Memory (Analog) Neuromorphic  

Domain-Specific Architectures 
(DSAs) 

GPU 

TPU 

FPGAs  

Anton-3 

EDA 

Energy per bit simulations 

Advanced PDKs 

DTCO 

 

Figure 30 shows the technologies of interest with their potential energy efficiency improvement 
factors and timelines to TRL 6, as determined by the working group. For more information on 
TRL6, refer to section 1.5.  
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Figure 30. Potential efficiency improvement factor and timeline for selected technologies of the Circuits and 
Architectures working group. 

 

Key takeaways 
Table 28 summarizes the most significant identified energy efficiency opportunities that can be 
achieved through advances in circuits and architectures. 

Table 28. Key Takeaways for Energy Efficiency Opportunities in Circuits and Architectures. 

Technology 
Group 

 Key Opportunities for Energy Efficiency 

Alternative NVM  

 

• Utilize low-power NVM for AI weight applications with infrequent read 
requirements. 

• Improve energy per bit of read and write as well as density to be 
comparable with DRAM and NAND memories, 

Domain-Specific 
Architecture 

 

• Investigate large application spaces that would result in significant 
energy and performance savings. 

• Leverage the appropriate architecture for the specified use case. 



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  92 

Compute-in-
Memory (Digital 
and Analog) 

 

• Reduce the extreme barrier to entry by creating new algorithms and 
software, along with security protocols and advanced hardware, for 
both digital and analog CIM technologies. 

• Improve ADC to DAC overheads for neuromorphic computing to 
improve computational efficiency. 

• Evaluate IoT/Edge applications with alternative NVM to improve 
energy performance for power-limited operations. 

EDA 

 

• Create and use open-source EDA for advanced architecture and 
circuit development to reduce hidden overheads. 

• Co-design software and architecture to improve energy efficiency and 
reduce circuit overheads. 

 

Grand challenges 
Major challenges that must be overcome by circuits and architectures to achieve significant 
energy savings include: 

• Enabling compute-in-memory, whether digital or analog, through the creation of new 
architectures, new security protocols, new EDA software for co-design, and significant 
development of instruction set architectures and new software/algorithms.   

• Demonstrating non-volatile memory (NVM) technologies that are comparable in cost and 
density to DRAM or NAND, particularly when implemented in monolithic integration.  

• Leveraging advanced EDA simulation software and co-design to create novel 
architectures and simulation of device function, whether through optimization of current 
structures or the use of alternative approaches such as 3D integration. 

• Establishing R&D testing facilities to enable integration of novel materials and 
architectures with current state-of-the-art technologies, while also testing and evaluating 
energy efficiency and performance improvements. 

• Minimizing energy overheads and enhancing overall performance by effectively 
educating the current workforce, particularly from academic institutions, about the 
importance of selecting the appropriate architecture for the right applications (e.g., opting 
for GPUs over CPUs for intensive image processing tasks). 

• Reducing the total cost of ownership of new interconnect fabrics that can reduce 
overheads and optimize memory access. 
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2.2.1 Memory Access 
Classical computers use a von 
Neumann architecture (see Figure 31), 
where a large fraction of CPU 
instructions involve moving data 
between CPU registers and memory. 
However, the classical architecture has 
limitations, given the pace at which 
processor speed has outstripped 
memory speed. To mitigate this, 
architects first incorporated fast cache 
memories located very close to the 
processor, and then multi-core designs 
offering parallel processing, with 
individual caches for each core to lower the memory access time. More recently, the industry 
moved to system on chip (SoC) and system in package (SiP) architectures to improve the time 
required to access memory beyond the on-chip caches.  

However, cache memory, while fast and energy efficient, is not sufficient for all applications 
because its storage is small relative to its large 2D footprint. To further improve the memory 
read or write time, a hierarchy was created by computer architects based on three factors: 
access rate (in terms of clock cycles, or how many times transistors actuate per unit of time), 
storage size, and cost. Cache memory (SRAM) is built near the processor and is structured into 
levels (L1, L2, L3) based on storage capacity and access time. DRAM is off chip from the 
processor and is structured as the main non-immediate memory storage, slower than SRAM but 
with a much higher memory density. Long-term storage of information is in NAND or disk 
memory, which, unlike DRAM, retains stored information when power is removed. A pictorial 
representation of the memory hierarchy in modern von Neumann machines is shown in Figure 
32. 

 
Figure 32. Typical memory hierarchy sizes and access times (c. 2019). Variations on this hierarchy exist for other 

structures such as mobile, laptop, etc. Source: Hennessy and Patterson 2019; clock cycles assume a 3.33 GHz 
clock. 

Recognizing that the transfer of data between memory and compute is the largest energy 
consumer, exploring the following areas can yield efficiency improvements in memory access: 

• Page size 

 

 Figure 31. Classical von Neumann computer 
hit t  
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• Interconnect fabrics 

• Instruction set architecture 

• Universal Chiplet Interconnect Express (UCIe) 

As system architectures grow increasingly complex, featuring multiple memory domains and a 
variety of processors and accelerators, there is a pressing need for a cohesive framework that 
facilitates communication, prioritization, and resource allocation among these components. 
Traditionally, this coordination has been managed through bus systems, which are pathways 
that transmit data among the various components of a computer. However, the task of resource 
allocation—such as accessing open memory banks or SRAM when necessary—is complex. 
Moreover, managing the placement and transfer of data between memory and processors adds 
further complications. Interconnect fabrics like CXL offer a robust communication protocol that 
ensures coherency across processors, accelerators, and memory units (Bowman 2023). This 
integration not only accelerates communication but also enhances overall system performance 
and reduces costs. By enabling disparate components to function cohesively, such technologies 
transform a collection of individual parts into a seamlessly operating high-performance chip. 

The adoption of advanced technologies in memory access significantly enhances performance, 
as demonstrated in Table 29. CXL technology, for instance, supports full duplex operations, 
offering lower latency and improved energy efficiency compared to traditional LPDDR DRAM, 
with potential energy savings up to a factor of 1.7. Furthermore, sophisticated interconnect 
structures can markedly decrease the energy consumed during memory access. Although not 
the primary focus of the Circuits and Architectures group, emerging interconnect standards such 
as UCIe are poised to dramatically reduce energy use per bit by 20–40x and significantly 
diminish latency due to shorter interconnects. 

Table 29. CXL and UCIe Energy Impact Factor Comparison and Timeline for Improvements to Memory 
Access. 

Sources: Sharma et al. 2022; Gervasi 2023; Gervasi and Chang 2023 

Specified Technology  
Baseline 
Energy 

Performance 

Commercial 
Benchmark 

Product 

Commercial 
Benchmark 

Energy 
Performance 

Energy 
Impact 
factor 

Timeline for Lab 
Scale 

Demonstration 
(TRL 6, years) 

Projection 
on Data 
Centers 

CXL optimized DDR5 5.8 GB/W for 
64 GB 

Standard 
DDR5 

3.8 GB/W for 
64 GB 1.5 0 

6% power 
reduction, 

2% 
cooling 
savings 

CXL optimized DDR5 6.4 GB/W for 
128 GB 

Standard 
DDR5 

4.9 GB/W for 
128 GB 1.3 0 

CXL Native DRAM 8-
lane PCIe Gen5 1.5–2.0 pJ/bit 2x LPDDR-

6400 x 16 2.0–2.5 pJ/bit 1–1.7 0 N/A 

UCIe 
(chiplet interconnect 

architecture) 

0.5–0.25 
pJ/bit PCIe 10 pJ/bit 20–40x 1–3 N/A 
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There is also potential to achieve 
lower losses and higher transfer 
speeds through various printed circuit 
board (PCB) materials and 
connectors, but these choices also 
affect cost. The cost-performance 
trade-off must be considered in terms 
of total cost of ownership.  

Challenges and solution pathways 
for memory access 

Reducing unnecessary bit overhead 
through page size adjustments 
The page size is the lowest number of 
bits/cells of a memory architecture that 
can be accessed. A memory page of 
8,192 bits requires all 8,192 bits to be 
accessed, when only 256 or 512 bits 
are needed. Utilizing a memory mechanism with a more granular page size enabled with a 
smart memory controller could potentially eliminate the overhead of unused bits. Another 
possible implementation is the memory “buffets” concept (Pellauer et al. 2019), which provides 
explicit, composable data transfers between a processor and the external memory, and access 
requests decoupled from the request receiver, thereby reducing or eliminating the need for on-
chip buffering. The design of buffets has been publicly released in register transfer language 
(RTL) code and is flexible enough to fulfill the needs for memory access architecture in a variety 
of use cases.   

Improving memory access granularity 
Significant energy wastage occurs in program execution since only a small fraction of the page 
size is utilized, yet the entire page is pre-charged. This leads to all bit lines being energized, all 
sense amplifiers being employed to detect signals, and the complete transfer of all bits of 
information back to the memory bus. Possible solutions are to create memory controllers that 
have optimized closed page memories or more SRAM-like addressing. Implementing the DRAM 
address scheme to perform the Row Address Select (RAS) and Column Address Select (CAS) 
cycles without delay between them could help reduce activation and recharging required for 
memory access. In addition, eliminating open page mode for applications with low hit rates 
would reduce overhead by eliminating constant power to word lines of DRAM cells. Lastly, multi-
page-sized memory could be a possible solution for reducing wasted energy through smart 
memory address buses; however, this may impact chip size and performance.    

Optimizing power in system fabrics 
As systems became more complex, a standard interface method to connect all the devices to 
the CPU and establish communication protocols was needed. The Peripheral Component 
Interconnect Express (PCIe) was created to help support this through interconnect standards of 
the PCBs and the component connections. What made PCIe popular was the ability for 
backwards compatibility between older devices and improved data transfer speed through a 
parallel bus architecture. With the emerging emphasis on energy efficiency and speed, 

 

Figure 33  CXL Native DRAM 8-lane PCIe Gen5 vs. LPDDR 
2x LPDDR-6400 latency vs. bandwidth comparison. Source: 

Gervasi and Chang 2023 
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interconnect fabrics and components must be adapted. Possible solutions include exploiting 
new and upcoming interconnect standards, such as UCIe (Sharma 2022) and CXL. They are 
designed for reduced latency and employ memory pooling, which can significantly reduce data 
center memory requirements per device (Bowman 2023). These advanced interconnect 
technologies can be combined with improved PCB materials targeting reduction of dielectric 
losses at high frequencies and improving impedance matching to minimize signal reflections.  

Reflecting true total cost of ownership (TCO) 
Re-architecting memory for power optimization could lead to an increase in die size and, 
consequently, higher costs. Similarly, enhancements in PCB technology, such as improved 
connectors and board materials, might elevate initial expenses in favor of energy savings. 
These higher upfront costs must be evaluated in conjunction with the long-term savings derived 
from decreased energy consumption. Companies should promote the energy efficiency of these 
devices and articulate their total cost of ownership (TCO), which integrates reduced energy and 
cooling expenses, particularly in data centers. This comprehensive TCO perspective should 
also extend to consumer electronics, potentially through an initiative like the ENERGY STAR 
program (Energy Star 2024).  

Integration of multiple IP stacks with reduced latency 
The relentless miniaturization of chip technologies necessitates innovative approaches to 
enhance latency, yield, and energy efficiency. While striving for increased on-chip functionality 
to boost performance, it is crucial to acknowledge the challenges associated with larger chips, 
which often exhibit lower yields due to constraints such as die reticle size limitations. 
Additionally, transitioning to newer manufacturing nodes introduces complexities related to cost, 
time to market, and supply chain management (Sharma 2022). Chiplet integration offers a 
compelling solution to these issues. This design strategy allows for the incorporation of cutting-
edge technologies alongside established ones, reducing time to market and enhancing energy 
efficiency through shorter interconnects. Chiplet architectures also enable the integration of 
diverse process technologies—such as different cores, memories, inputs and outputs, 
photonics, and mixed-signal components—into a single package, optimizing energy usage. 
Furthermore, UCIe’s versatile interconnect standards facilitate compact device designs and 
closer component placement, enhancing communication speeds and overall system 
performance. Establishing UCIe-based chiplet technology standards will significantly influence 
both performance and energy efficiency. 

Action plan for memory access 

Table 30. Action Plan for Memory Access. 

Scope 

Technology for Energy Efficiency Memory Access 

Technologies of Interest: 

• All semiconductors utilizing memory outside of SRAM cache 

• System architectures such as data centers 

• Smart fabrics 

• Signal quality improvement of PCB materials 

Challenges Addressed Solution Pathways 
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• Interconnect fabrics optimization of resources. 

• PCB signal quality. 

• Memory overheads, such as page size. 

• Reduce open page mode for low hit rates. 

• Implment arbitrary page sizes (e.g., multi-page-size DRAM 
with smart memory buses). 

• Optimize memory movement such as memory pooling. 

• Improve signal transmission, interconnect, and sockets 
on PCB to reduce resistance, capacitance, inductance, 
etc. 

• Utilize system fabrics with power optimization for 
performance vs. energy efficiency. 

• Find alternatives to copper for signal and power. 
distribution in PCBs such as CNTs. 

 
Major Tasks/Milestones Metrics Targets Timeline 

Protocol changes for memory 
access optimization Protocol approval JEDEC, CPU/GPU/APU makers 3–5 years 

Increase effectivity of memory 
semantic storage 

Memory models for all 
devices adopted 

Operating systems, hypervisors, 
applications 4–6 years 

Improved PCB materials 
development 

PCBs with improved signal 
transmission characteristics All system buses 4–6 years 

Improved socket development Sockets with improved signal 
transmission characteristics All system bus add-in strategies 4–6 years 

Memory architectures that 
exploit SRAM-like command 
interface to reduce wasted 

access 

Power-efficient memory Memory suppliers 5–7 years 

System architectures that 
optimize memory resources and 

minimize data movement 
New system architectures Operating systems, hypervisors, smart 

fabric 6–8 years 

Increase use of energy-efficient 
data movement 

Increased use of remote 
direct memory access 

(RDMA), data left in place 
when power states are 

available, smart fabrics that 
reduce traffic 

System architects, fabric device 
suppliers, system software stack, 

hypervisors 
6–8 years 

Software and applications that 
are power-aware 

Applications tuned for power 
conservation 

Operating systems, hypervisors, 
applications 8–10 years 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 

• DRAM suppliers to define power-efficient core design options. 

• Processor/memory controller suppliers to support protocol for new memory types. 

• Standards organizations to consider power efficiency as a memory design requirement. 

• PCB suppliers to improve quality of materials. 

End Users/OEMs 
• End users evaluate TCO requirements in the context of power vs. performance. 

• End users to evaluate improved PCB materials that may require additional upfront capital 
but have backend energy savings. 

Academia 

• Architectural studies in memory architecture for power reduction. 

• Development of power-efficient data buses. 

• Development of power-efficient support circuits (phase-locked loop [PLL], etc.). 

• Exploration of new materials for PCBs, signal transmission. 

Required Resources Cross Collaboration Needs of Working Groups 
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• Innovation needed in on-chip power and signal distribution. 

• Improved PCBs’ quality may require new materials. 

• System architects look for improvements to card edge 
connectivity. 

• Accurate power simulation models for memory architectures. 

• Device power requirements documented early in design phase. 

• Metrics for power utilization in TCO calculations. 

• Research reducing data movement and redundancy, especially 
exploiting new technologies such as NVMs. 

• Research in smart fabrics that use energy efficiency as a design 
target. 

• Develop alternatives to Cu for signal distribution to reduce 
power expended to achieve high signal quality. 

• Circuits and Architectures: Include resource fabrics as key 
design goal for memory efficiency; remove open page 
memories with low hit rates. 

• Materials and Devices: Improve PCB material for 
improved signal loss and alternatives to Cu for signal and 
power distribution. 

• Algorithms and Software: Help with memory protocols to 
provide greater granularity of access, which will possibly 
require cooperation between the architecture, compiler, 
and operating system. 

 

2.2.1.1 Interconnect Fabrics 
The working group created an additional action plan for interconnect fabrics because of their 
importance to memory access. CXL is proposed as a replacement to PCIe given its open-
source nature and its ability to target data centers, which collectively use 1–2% of global energy 
(Masanet et al. 2020). CXL leverages memory pooling, which is the ability to have multiple 
devices store data in the same memory bank, removing the need for excessive memory storage 
and, as a result, simplifying the software/algorithms (Woo 2021). It also includes new coherency 
protocols for accessing cache and device memory. Finally, CXL utilizes low latency connectivity, 
which is advantageous given the increase in memory needed for AI and other large memory 
workloads.  

For further energy reduction, we propose utilizing UCIe with CXL, as well as replacing or 
supplementing PCIe where feasible. UCIe has been shown to reduce the energy per bit to 0.25 
pJ/bit, a 40x savings over PCIe at 10 pJ/bit (Sharma et al. 2022). UCIe also allows for the 
designer to create SoCs and SiPs of chiplets from different sources or nodes for a complex 
design and function. In addition, UCIe could allow for integration of 2D and 2.5D integration 
schemes for improved energy per bit. 
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Action plan for interconnect fabrics 

Table 31. Action Plan for Interconnect Fabrics. 

Scope 

Technology for Energy Efficiency Interconnect Fabrics 

Technologies of Interest: Communication between data and processors in computing systems 

Challenges Addressed Solution Pathways 

• Expand computing systems architectures with unified 
connectivity between resources. 

• Provide a standard electrical, protocol, and command structure 
usable by all resources. 

• Utilize CXL (Compute Express Link), which provides a 
system-level interconnect standard with a fixed electrical 
and protocol solution as well as a limited number of 
physical modules and sockets to support it. 

• Adopt UCIe (Universal Chiplet Interconnect Express) to 
expand the CXL concept to chiplets. UCIe solutions likely 
use CXL interconnects for system interaction. 

Major Tasks/Milestones Metrics Targets Timeline 

Standard resource module: 
Storage 

NVMe (NVM Express) 
moving to CXL, evolving with 

memory semantics 
Data centers Sampling now. 

Standards in 3 years. 

UCIe adoption 
Chiplet assemblies shipping, 

integrating devices from 
multiple suppliers 

System-on-chip (SoC) 

Now: CPU/GPU + HBM.  
6 years: CXL-like chiplets. 
20 years: order chiplets on 

Digikey. 

CXL adoption Systems shipping with  
CXL modules Data centers 3 years 

Standard resource module: 
Memory 

Memory modules with 
CXL interfaces Data centers 3 years: custom solutions. 

6 years: standard commodities. 

Memory semantic data access 
mechanisms 

Continued development of 
Direct Access (DAX), OS 

support for memory pooling 
and sharing, applications 

using these modes 

Data centers 5–10 years 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 

• Provide compatible modules for fabric-based systems. 

• Provide compatible chips for modules. 

• Provide compatible chiplets for chiplet assemblies. 

Academia • Migrate from filesystems to memory mapped data. 

Standards Organizations  • Define standards for CXL, UCIe, and chiplets. 

Required Resources Cross Collaboration Needs of Working Groups 

• Power requirements and TCO analysis communicated to 
suppliers, end users, and standards bodies. 

• Operating systems, drivers, and education. 

• Research in improved PCB materials, replacements for Cu for 
signal and power distribution. 

• Software development of memory semantic access such as 
DAX must continue and not get stalled despite discontinuation 
of Optane. 

• Algorithms and Software: Develop software frameworks 
that support the latest interconnect technologies to 
ensure compatibility and performance optimization across 
different platforms. 

• Metrology and Benchmarking: Ensure standard 
specifications are aligned to enable seamless 
interoperation among different interconnect technologies. 
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2.2.2 Digital Compute-in-Memory 
In traditional computing architectures, logic gates are fundamental components that perform 
basic operations on binary data—essentially, the ones and zeros that are the backbone of 
digital systems. These gates process signals and generate outputs based on inputs, enabling 
the execution of complex computational tasks. For example, a simple operation like addition or 
the comparison of two numbers is carried out by a series of logic gates interpreting and 
processing binary data. 

The energy and latency cost to access memory in conventional computing architectures, paired 
with the increase in AI and ML (Mehonic and Kenyon 2022) and their immense off-chip memory 
access requirements (Biswas and Chandrakasan 2019), contribute significantly to the overall 
energy consumption and latency issues in microelectronics. Hence, new architectures such as 
compute-in-memory (CIM) are required to not only significantly lower the unsustainable energy 
usage of AI/ML technologies, but also improve performance.   

In CIM architectures, data is both processed and stored within memory cells, eliminating the 
need to constantly move data back and forth between the memory and the processor—a 
process that typically consumes large amounts of energy. This method is particularly 
advantageous for operations that involve repetitive calculations such as vector multiplication, 
which is a basic mathematical process often used in computing (Agrawal et al. 2018; Kim et al. 
2021; Lin et al. 2022). 

CIM technology can utilize various types of memory, such as SRAM (static random-access 
memory), DRAM PIM (dynamic random-access memory processing-in-memory), STTRAM 
(spin-transfer torque random-access memory), and FeRAM (ferroelectric random-access 
memory). These memory cells need to be organized in a way that allows them to perform 
calculations effectively, similar to how logic gates in traditional computing are arranged to 
perform operations. 

However, standard SRAM designs, which typically use a structure with six transistors per 
memory cell, are not suitable for complex operations like matrix multiplication, due to potential 
disruptions when reading and writing data. Thus, new SRAM architectures that can handle 
these computations without such disturbances must be developed. This need for new designs 
applies not just to SRAM but to all memory technologies if they are to support CIM effectively. 

Utilizing CIM technologies is projected to yield an estimated energy efficiency improvement of 
21,000x, as shown in Table 32. These projections, highlighted in Marvin Chang’s presentation 
at the 2022 IEEE VLSI symposium (Chang 2022), suggest that adopting the Metis 
Microsystems approach could improve the balance between energy consumption and 
processing speed (energy-delay product) by approximately 10x (Bhavnagarwala 2021). The 
Metis Microsystems approach strategically integrates advanced computational and memory 
components to increase energy efficiency and minimize the delay in data processing tasks. This 
approach particularly emphasizes SRAM due to its superior performance benefits compared to 
other non-volatile memory (NVM) technologies. While SRAM-based CIM offers considerable 
advantages in speed and energy efficiency, making it highly suitable for applications in 
accelerators where memory such as register files and cache are predominantly SRAM-based, it 
is also essential to explore alternative CIM architectures (Gao et al. 2017; Sze et al. 2017). This 
exploration is crucial for adapting to diverse application needs such as IoT devices, which may 
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face space constraints, or systems managing extremely large datasets where the properties of 
SRAM might not yield the most energy-efficient outcomes. Pursuing development in other 
memory technologies like DRAM, NAND, or other non-volatile memories will ensure that energy 
efficiency gains are maximized across a wider range of computing scenarios. 
Table 32. Comparison of SRAM-Based CIM at 1-Bit Precision.Current (Chang 2021) and projected energy impact 
of utilizing efficiency improvements on SRAM technologies (Bhavnagarwala 2023), as compared to an average of 1-

bit precision of currently available accelerators (Shankar and Reuther 2022). 

Specified 
Technology  

Tops/W 1-Bit 
Precision 

Baseline 
Energy 

Performance 

Commercial 
Benchmark 

Product 

Commercial 
Benchmark 

Energy 
Performance 

Energy Impact 
Factor 

TRL 6 
Timeline 
(years) 

advanced 
CMOS 

SRAM CIM + 
analog 

multiply-
accumulate 

(MAC) 

9,600 (current), 
96,000 (mature) 

0.1 fJ/op 
(current),  
0.01 fJ/op 
(mature) 

current 
commercial 

AI/ML 
accelerators 

63 fJ/op (1-bit 
precision) 

480 (current), 
4,800 (mature) 1–3 

advanced 
CMOS 

SRAM CIM + 
digital MAC 

32,000 (current), 
320,000 
(mature) 

0.03 fJ/op 
(current), 

0.003 fJ/op 
(mature) 

current 
commercial 

AI/ML 
accelerators 

63 fJ/op (1-bit 
precision) 

2,100 
(current), 
21,000 

(mature) 

1–3 

NVM 1,440 0.7 fJ/op 

current 
commercial 

AI/ML 
accelerators 

63 fJ/op (1-bit 
precision) 90 3–5 

DRAM 1,120 0.9 fJ/op 

current 
commercial 

AI/ML 
accelerators 

63 fJ/op (1-bit 
precision) 70 3–5 

 

Challenges and solution pathways for digital CIM 
Active energy and latency overhead from bitcell transistor variability   
Active energy and latency are significantly impacted by the variability in memory bitcells, which 
are the fundamental storage units in memory arrays. Each bitcell’s performance varies, affecting 
the speed and accuracy of reading data. Slower bitcells may consume more of the initial energy 
supply (precharge) from other cells through leakage mechanisms—unintended electrical flow 
that depletes charge. This issue often necessitates increased voltage to accurately write data to 
these less responsive, or “worse,” cells. 

Because memory plays a crucial role in computing speed, addressing these variations is 
essential. About 70% of an ASIC’s energy is consumed by SRAM buffers and register file 
arrays, which manage data temporarily for quick access (Gao et al. 2017). Reducing the energy 
lost to inefficient bitcells and leakage can therefore lead to significant improvements in overall 
energy efficiency. 
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The Metis Microsystems approach mentioned earlier includes innovations like harvesting energy 
from data movements and employing self-regulating circuits. These strategies aim to 
significantly reduce energy wastage. This approach not only addresses energy consumption but 
also optimizes the operational latency of memory-intensive tasks. 

Power delivery  
Power delivery in SRAM-based CIM architectures involves challenges that need to be 
addressed for efficient operation. SRAM CIM is typically structured around an advanced base 
cell design, such as an 8-transistor setup, which fundamentally alters how power is supplied and 
managed within the memory chip. 

Firstly, SRAM CIM operations frequently activate numerous word lines (WL), the control lines 
that select memory cells for reading or writing. This requires robust power delivery systems for 
the WL drivers, which are circuits that activate these lines. However, noise—fluctuations in 
electrical signals—generated by WL activations can interfere with the computational processes, 
introducing errors. To mitigate this, implementing a denser power grid has been proposed. This 
approach distributes power more uniformly across the chip, helping to stabilize voltage levels 
and reduce computational noise. 

Secondly, activating many bit cells simultaneously for static and dynamic computing tasks 
generates considerable noise in power delivery. Such noise issues are also prevalent in 
alternative CIM structures that employ NVM technologies. These challenges highlight the need 
for innovative power delivery solutions to ensure reliable and accurate memory operations in 
advanced CIM architectures (Verma et al. 2019). 

Architectural challenges related to the specific use case  
CIM technologies excel at performing matrix vector operations rapidly, which is essential for 
tasks like image processing and machine learning. However, these operations represent just a 
fraction of the computational needs. CIM systems often require integration with other 
technologies to handle other types of computational tasks. This integration demands careful 
management of non-idealities that arise from analog signals, especially those affected by 
temperature and voltage variations. For CIM to function effectively alongside different 
accelerators and ASICs, it is crucial to ensure that these components can communicate 
seamlessly, adapting to the unique signal requirements of each device. This compatibility and 
efficient communication between various components are critical for the successful deployment 
of CIM technologies. 

Disruption to 50 years of software  
For the past 50 years, von Neumann architecture has been the choice for all computer 
architectures, and all software has been built with compute and memory separated. While the 
hardware has specific challenges, including power delivery, CIM array structure, ADC to DAC 
limitations, and lack of new EDA software for CIM layout and simulation, the largest bottleneck 
is software. Software must map its automatic code generators in the compiler stack to the 
hardware for optimal functionality. This will require new compilers and likely new instruction set 
extensions as well. Additionally, even with CIM technologies, conventional storage—whether 
DRAM/NAND or others—is still needed, and the transfer of information to and from CIM 
architectures must be programmed. 



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  103 

CIM size-related challenges  
While CIM using SRAM significantly reduces energy consumption by eliminating the need for 
data transfers between the multiply-accumulate (MAC) unit and cache memory, it necessitates 
the use of larger MACs within the accelerator. The MAC, responsible for performing arithmetic 
operations essential for processing tasks, becomes considerably larger due to the multiple 
transistor configurations used in SRAM-based CIM. No single architecture has yet emerged as 
dominant, leading to increased sizes of MACs. Additionally, SRAM transistor scaling is not 
progressing as rapidly as the latest node transistors are due to technological and manufacturing 
challenges, which limits the miniaturization and efficiency improvements typically seen in newer 
semiconductor technologies (Heyman 2023). As SRAM continues to scale down, leakage 
currents increase, which requires more standby power. This becomes a challenge for edge or 
IoT devices that have limited space and power resources. A potential solution lies in adopting 
smaller non-volatile memory technologies such as STTRAM, FRAM (ferroelectric random-
access memory), spintronics, or ReRAM (resistive random-access memory), although these 
alternatives also come with their own set of challenges. For more details on non-volatile 
technologies, refer to the Materials and Devices chapter. 

Action plan for digital CIM 

Table 33. Action Plan for Digital CIM. 

Scope 

Technology for Energy 
Efficiency Compute-in-Memory 

Technologies of Interest: 

• Architecture for software to target CIM platforms for efficient utilization of CIM arrays. 

• Energy and latency cost of moving data from local memory along wire paths for each 
computation. 

• Bitcell transistor and read current variability limitations on performance, energy efficiency, 
and accuracy of CIM arrays. 
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Challenges Addressed Solution Pathways 

• Reduction of memory data access and movement for MAC 
operations. 

• ADC overheads and bitcell variability limiting TOPS/W and 
accuracy. 

• Using CIM architectures would significantly reduce the 
data transfer between processor and memory. Two-thirds 
of memory energy overhead could be eliminated. 

• Developing new architectures that do not require ADCs 
and eliminating overheads of bitcell transistor variability 
could enable CIM arrays to reach much higher efficiencies 
(3,000–5,000 TOPS/W). 

• Harvesting electrostatic energy with self-regulating circuit 
action can reduce the energy consumed by a read access 
in a CIM array by >80% while doubling performance. 

Major Tasks/Milestones Metrics Targets Timeline 

Demonstrator of circuits to 
minimize the overheads of 

CMOS memories from bitcell 
transistor and read current 

variability 

Bitpath energy use/read 
access; latency of bitpath 
from word line select to 
capture of data at array 

output 

10x improvement in the energy-delay 
product metric 12 months 

Demonstrator of circuits to 
minimize costs of moving data 

along local and global bitpaths in 
large CMOS memories from 
harvesting evaluation energy 

Bitpath energy use/read 
access; latency of bitpath 
from word line select to 
capture of data at array 

output 

10x improvement in the energy-delay 
product metric 12 months 

Demonstrator of array peripheral 
circuits using digital in-memory 
arithmetic operation eliminating 
ADC overheads incurred from 

analog approaches 

TOPS/W (maximum possible 
# of OPS/Joule that can be 
accomplished with the CIM 

array) 

5,000 TOPS/W 12 months 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • EDA tool vendor (Synopsys, Cadence, Siemens, etc.) and foundry providing PDKs relevant to 
multi-project wafer (MPW) of test chip. 

End Users/OEMs • Industry members (fabless, foundry, and integrated device manufacturers [IDMs]) and 
government labs designing their own chips. 

Academia 
• Interdisciplinary: Johns Hopkins University (JHU) Applied Physics Laboratory (APL) could 

enable CMOS memory solutions to be more competitive in a traditionally NVM leadership 
domain of ‘always-on’ availability for fast cognitive wake-up function. 

Required Resources Cross Collaboration Needs of Working Groups 

• EDA tools for designing SRAM/RF/CIM arrays and custom 
arithmetic components, including access to a CMOS platform 
PDK, servers equipped with these tools, and MPW test chips for 
creating demonstrator chips. 

• Detailed specifications for new circuits and architectures, with 
a comparative analysis against standard industry designs. 

• JHU APL’s potential contribution of thermoelectric energy 
generator (TEG) integration into chip packages to enhance 
CMOS memory retention energy, offering a more competitive 
solution than NVM. 

• Education and Workforce Development: Principal 
investigators (PIs) should seek partnerships across 
industry and academia. Workforce development is 
enhanced when interdisciplinary programs offer targeted 
internships for university students. National laboratories, 
with their extensive lab and computing resources, are 
ideal for developing prototypes for these programs. 

 

2.2.3 Analog Compute-in-Memory/Neuromorphic Computing 
While SRAM-based CIM uses digital memory techniques, or discrete values, alternative CIM 
architectures are viable using analog technologies with continuous (non-discrete) values. 
Analog CIM uses architectures with non-volatile analog memories as synaptic weights (Z. Wan 
et al. 2022) or signal combinations at each node to determine the output variable. These 
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architectures can be built using various NVMs or specialized circuitry tailored for different 
mathematical functions, effectively creating an analog computer for dedicated applications. 

Of particular interest is the application of neuromorphic computing, or brain-inspired computing. 
This technique uses neural networks that model the structure of the brain, creating artificial 
neurons such as memristors (Chu 2020; Kumar et al. 2022), spintronics (Grollier et al. 2020), 
phase change memory (Sebastian et al. 2017), SRAM (Jhang et al. 2021), and more. It should 
be noted that neuromorphic structures do not need to be purely digital or analog. They can be a 
combination of both, such as SRAM with an analog MAC. Neuromorphic computation can occur 
through spike encoding or spike compute through spiking neural networks (SNN). SNNs for AI 
and ML utilize biological models of neurons to carry out computations or pattern recognition in a 
more energy-efficient manner compared to conventional deep neural networks (Yamazaki et al. 
2022) by having compute and memory at the same location. 

Table 34 illustrates that neuromorphic computation offers substantial energy savings. 
Simulations predict that highly parallel memcapacitive devices could achieve up to 9,000 times 
the energy savings per operation over traditional accelerators. For analog neuromorphic 
systems, projections show a potential 350-fold energy savings. In the digital realm, SRAM-
based CIM adapted for neuromorphic architectures could provide up to 2,100 times, and 
potentially even greater, energy savings compared to existing accelerators in the near future. 
Notably, digital CIM technologies offer higher precision than their analog counterparts (Mehonic 
and Kenyon 2022). 

Table 34. Neuromorphic CIM Technologies Compared to Current Commercial AI Accelerators at 1-Bit 
Precision. 

Sources: Demasius, Kirschen, and Parkin 2021; Zimmer et al. 2020; W. Wan et al. 2022; Krishnan et al. 2022; T. 
Xiao et al. 2022; Chang 2022; current and projected efficiency improvements on SRAM technologies from 

Bhavnagarwala 2021, 2023. 

Technology 
Group 

Specified Technology  

Baseline 
Energy 

Performance 
(1-bit 

precision) 

Commercial 
Benchmark 

Product 

Commercial 
Benchmark 

Energy 
Performance 

Energy Impact 
Factor  

(X Factor) 

Timeline for 
Lab Scale 

Demonstration 
(TRL 6, years) 

Compute-in-
Memory 

Architectures 
(Neuromorphic)  

Memcapacitor 
devices enabling 

parallel MAC 
operations 

0.007 fJ/op 
(simulation) 

current 
commercial 

AI/ML 
accelerators  

63 fJ/op (1-bit 
precision) 9,000  3–5 

Neuromorphic-
Vector-matrix 

multiplication with 
resistive memory 

devices 

5.8 fJ/op 
(current), 
0.18 fJ/op 
(mature) 

current 
commercial 

AI/ML 
accelerators   

63 fJ/op (1-bit 
precision) 

11 (current), 
350 (mature) 3–5 

Neuromorphic-
Pruning/quantization 

of models 
(algorithmic) 

5.8 fJ/op 
(current),  
1.3 fJ/op 
(mature) 

current 
commercial 

AI/ML 
accelerators  

63 fJ/op (1-bit 
precision) 

11 (current),  
48 (mature) 3–5 

Neuromorphic-
Event-driven 

asynchronous 
computing 

(clockless) for deep 
learning 

5.8 fJ/op 
(current),  
1.9 fJ/op 
(mature) 

current 
commercial 

AI/ML 
accelerators  

63 fJ/op (1-bit 
precision) 

11 (current),  
33 (mature) 3–5 
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Compute-in-
Memory 

Architectures 
(Digital) 

advanced CMOS 
SRAM CIM + Digital 

MAC 

0.03 fJ/op 
(current), 

0.003 fJ/op 
(mature) 

current 
commercial 

AI/ML 
accelerators 

63 fJ/op (1-bit 
precision) 

2,100 
(current), 
21,000 

(mature) 

0–3 

 

Challenges and solution pathways for analog CIM/neuromorphic computing 
Spike encoding and computation  
In contrast to other neural networks, spike encoding neural networks (SNNs) use signal timing 
to convey information. This more closely mimics the brain’s synaptic responses through time 
and its ability to transfer information between neurons. In addition to emulating the brain more 
closely, SNNs are more powerful than traditional artificial neural networks (Zhang et al. 2022). 
SNNs can allow for immense energy savings of between 100,000–300,000x over continuous 
value networks and three orders of magnitude over CPUs, depending on the task (Zhang et al. 
2022).  

However, significant challenges remain for SNNs. For example, analog devices are not yet 
robust enough for long-term use (cycling) compared to CMOS transistors (Merolla et al. 2014), 
necessitating further investigation into how to better develop and enable such devices. (For 
more information on neuromorphic devices, see Section 2.1.7.) Programming of images or 
speech for SNNs will require new programming methodologies/languages or translation from 
existing ANNs. Lastly, because SNNs are still relatively new, investigation into viable 
applications is ongoing. 

ADC and DAC overheads limiting TOPS/W  
Any compute-in-memory structure must communicate with a microprocessor using digital inputs 
and outputs. Therefore, continuous analog signals from SRAM CIM signals must be converted 
to digital values. Current challenges with analog-to-digital converters (ADC) and digital-to-
analog converters (DAC) include: 

• Increased IC area from DAC inputs and outputs from the analog memory arrays (Xiao, 
Jiang, and Chee 2022). 

• Multiple devices per input/output circuit, requiring heavy power use (Amirsoleimani et al. 
2020), with some ADC accounting for up to 92% of total power consumption of the circuit 
(Yao et al. 2020). 

• Difficulty in achieving more than four-bit accuracy (Danial, Sharma, and Kvatinsky 2020). 

To move past size, speed, accuracy, and power concerns for digital CIM with analog MACs for 
best energy performance, the EES2 working group and others (Shafiee et al. 2016; Zhang, 
Huang, and Shen 2020) suggest using digital technologies for immediate implementation to 
avoid overhead in the near term. Some techniques are already being employed, such as 
improved conversion algorithms and circuit design innovation, to improve ADC to DAC 
overhead by ~7.5x (Danial, Sharma, and Kvatinsky 2020). Research in this area should 
continue, especially for neuromorphic computing. 

Electronic Design Automation Tool Development  

Currently, there is no open-source EDA software suitable for neuromorphic design, nor are 
there standards set by the community for which device structures and architectures are the 
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most viable for neural networks. An open-source or academic-licensed EDA software with up-to-
date process design kits specific to advanced neural network structures would allow for 
advancement of neural networks through simulation for speed and energy efficiency, as well as 
application space-testing prior to hardware creation. In addition, co-designing algorithms with 
devices and architectures can address the ADC to DAC power and area overheads before 
device creation (Christensen et al. 2022). 

Table 35. Action Plan for Analog CM/Neuromorphic Computing 

Scope 

Technology for Energy 
Efficiency Neuromorphic and analog computing 

Technologies of Interest: 

Potential areas of interest include edge applications, SoC, scientific computing (e.g., climate 
forecasting, detectors, etc.), sensing, IoT, AI hardware (inference, on-chip learning), AI/ML, 
wearables/embedded devices, healthcare (e.g., smart/body-integrated sensors), and smart 
homes.  

Challenges Addressed Solution Pathways 

• Hardware intrinsically distributed through neuronal processing 
(spike encoding and spiking compute). 

• Plasticity at neuronal circuit level and architecture level 
(removes bottleneck of memory accesses). 

• Harnesses multiple neuronal/sub-neuronal units that operate 
at low precision. 

• Opportunity to bring computing closer to physics domain, which 
provides more feasibility to heterogeneous architectures (low 
power, so can be closer to other compute devices), data 
bandwidth advantage (data preprocessing to reduce processing 
requirements), and takes maximum advantage of 3D 
architecture. 

• Focus on developing robust neuromorphic architectures 
(devices/hardware needed for real-time learning) and 
then scale up architectures/systems for complex or large 
compute applications (scalable learning rules). 

• Engage users by developing appropriate 
benchmarks/applications of analog computing. 

• Create tools for programming scalable neuromorphic 
systems. Software system is lacking. Better connections 
with ML community (large LLM); neuromorphic should not 
evolve separately. Open-source tutorials and repositories. 

• Develop EDA tools optimized for neuromorphic and 
related approaches. 

Major Tasks/Milestones Metrics Targets Timeline 

Benchmark current 
neuromorphic systems 

Learning and inferencing 
standard datasets vs. 

existing hardware 

• Increasing access to 
neuromorphic systems for testing 

• Benchmarking against alternative 
ASICs 

• Implementing a specific number 
of neurons and degrees of free 
parameters, with the timeline 
depending on when scale 
definitions are established. 

• 3–5 years 
• 1–2 years 

(depends on 
benchmarks) 

• 2–3 years 
(commercially 
viable 
chips/systems) 

Develop benchmarks that stress 
different aspects of 

neuromorphic system 

Metrics and targets will 
depend on the 

type/application of 
neuromorphic system 

• Edge accelerators: < 1 milliwatt 
(mW), 4 bit precision, > 1 Giga 
operation per second (GOPS/s) 

• General compute: 4–8 bit 
precision, up to 10 GOPS/s 

• HPC: Often, high bit precision is 
not required; typically, adaptive 
precision uses 4–8 bits but can 
increase as needed, facilitating a 
new computing paradigm that 
enhances speed and energy 
efficiency beyond exascale. 

• 5 years (edge) 
• 5–10 years 

(general 
compute) 

• 10–20 years 
(HPC) 

• (Also possible 
that all three 
categories 
could evolve 
on similar 
timescales) 

Develop EDA tools the 
community can agree upon and 
use together. Open-source or 

academic licensing. 

System/network scale Toward millions or tens of millions of 
synthetic neurons 2–3 years 

Availability of high-level 
programming language 

High-level language 
development 

More intuitive programming; high-
level abstraction 3–5 years 
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Extreme increase in power 
efficiency 

Energy per benchmark 
application 

• 10x 

• 1,000x 

• Much larger; approach or exceed 
human brain efficiency 

• 2–3 years 

• 5–10 years 

• 10–20 years 

Removing energy barrier for 
neuromorphic devices 

Joules/operation,  
total energy per 

program/algorithm,  
average power (single W and 

lower, ~100 mW) 

• Reducing the ADC to DAC penalty 
ensures compatibility with 
Boolean hardware. 

• Staying in the analog domain 
before output (removing analog 
conversion). 

• Transitioning to neuromorphic 
code (image recognition, time 
series classification).  

• Requiring adaptive precision for 
training and inference due to 
precision issues. 

• Tesla has 
claimed 
success with 
end-to-end 
neuromorphic. 

• 2–3 years in 
some cases 
(80%–90% 
chip running in 
neuromorphic) 

• 5–10 years 
(90%+ chip 
running in 
neuromorphic) 

• 10+ years (all 
running 100% 
neuromorphic) 

Unconventional computing 
(avoiding digital) 

Joules/operation,  
total energy per 

program/algorithm,  
average power (single W and 

lower, ~100 mW) 

Exploring alternative methods of 
computation such as reservoir 
computing, chaotic computing, 
coupled oscillator computing, and 
cellular state machine computing. 
These approaches overlap with some 
aspects of CIM and offer potential for 
significant improvements in energy 
efficiency. 

Most of these 
technologies are in 
the early stages of 
research and 
development, with 
a commercial 
viability horizon of 
10+ years.  

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 
• Develop cost-effective neuromorphic devices. It is important to collaborate as needed so 

that a software stack is also available for ease of use. 

End Users/OEMs 
• Act as system integrator to incorporate neuromorphic devices into large systems for wide 

use; again, the software stack is available for heterogeneous system. 

Academia 
• Provide methods and techniques to facilitate ease of use of neuromorphic 

devices/architectures.  

• Develop applications that efficiently utilize neuromorphic architectures. 

National Laboratories 

• Provide methods and techniques to facilitate ease of use of neuromorphic 
devices/architectures.  

• Develop applications aligned with DOE mission that efficiently utilize neuromorphic 
architectures. 

• Act as both consumer and producer of neuromorphic technology. 

• Act as testbed host and provider. 

Government • Provide the support needed for a neuromorphic ecosystem: hardware, software, 
applications, and workforce. 

Required Resources Cross Collaboration Needs of Working Groups 
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• EDA tools and open-source design tools, startup and project 
seed funding, fablets and P-line facilities, and employee 
training. 

• Access to evaluation systems and testbed hardware. Well-
integrated solutions: chips, board, rack, and software. Access to 
example designs/use cases.  

• Resources to hire new faculty and create new courses, 
certifications, and degree programs.  

• Resources for hiring well-trained students and postdocs. 
Funding for larger projects and initiatives (center level). 

• Access to latest information to help in outreach to public and 
policymakers. Access to well-trained grad students and 
postdocs for program development and management. 

• Materials and Devices: Develop robust, energy-efficient 
switching mechanisms; explore new memory and 
memristive materials; integrate neuronal behaviors such 
as non-linear response and spike plasticity with CMOS 
technology. 

• Algorithms and Software: Establish a more mature 
programming environment for neuromorphic systems, 
addressing the absence of robust software frameworks 
and the potential need for new programming languages. 

• Metrology and Benchmarking: Standardize methods to 
meaningfully compare different neuromorphic hardware. 

• Manufacturing: Optimize deposition and fabrication 
processes for neuromorphic devices, ensuring CMOS 
compatibility and integration of diverse materials. 

• Education and Workforce Development: Develop 
educational programs and tools at various levels from K-
12 to college to foster expertise in neuromorphic 
computing; promote interdisciplinary training and create 
new open-source curricula to enhance recruitment and 
awareness in hardware-related fields. 

 

2.2.4 Nonvolatile Memory 
The general memory architectures have evolved slowly over the last 40 years, e.g., with larger 
and multi-level on-chip caches, and NAND memory gradually replacing traditional magnetic 
disks. SRAM serves as a crucial component in this evolution, primarily used as cache memory 
due to its higher speed compared to DRAM, despite its higher cost per bit and larger cell size 
which limits its density. DRAM remains the primary volatile memory, given its combination of 
speed, ease of manufacturing, cost per bit, and continued planar scaling. NAND, the primary 
nonvolatile storage, has achieved an extremely high density, and its cost per bit is lower than 
other memories. While DRAM and NAND are unlikely to be replaced with new upcoming 
technologies, it is important to understand their strengths and shortcomings, to anticipate how 
emerging memory technologies might be advantageously incorporated into the memory 
hierarchy, depending on the application. 

DRAM continues to scale via shrinking of the cell pitch size, but fundamental scaling issues 
such as leakage current are forcing DRAM to move to 3D structure (Pires 2023). Additionally, 
DRAM requires constant refreshing of its bitcells to maintain data, which consumes 30% of its 
energy. Continued scaling of DRAM is only increasing the refresh rate and associated energy 
use. DDR4 and DDR5 are different generations of DRAM; DDR4, the 4th generation, has a 
refresh rate of 64 milliseconds (ms), which means it must renew its stored data every 64 ms to 
maintain its integrity. DDR5, the 5th generation, has an improved refresh rate at 32 ms 
(Vogelsang et al. 2022), allowing for more frequent data renewal. This increase in refresh rate 
attempts to mitigate energy inefficiency, especially from standby power, yet the faster refresh 
rate also presents challenges in maintaining the energy efficiency gains achieved through 
advancements in scaling and design (Vogelsang 2010).  

NAND energy efficiency improvements are made through geometric shrinking of the memory 
cell and with multi-tier stacking of more memory cells. The primary issue for NAND is the access 
energy cost, which is nearly 10 times that of DRAM at 100 pJ/bit (Pawlowski 2023). This value 
does not include the cost of access through the interconnects, which adds significant overhead.   
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Although DRAM and NAND will likely remain the dominant forms of memory, supplementary 
memories can help reduce access and standby power consumption. Memories such as MRAM 
(STTRAM), FeFET, ReRAM, and NRAM are viable next-generation technologies. Most of them 
offer significant reduction in energy per bit and improved speed compared to NAND memory. 
Compared to DRAM, these technologies offer similar speeds with similar read and write costs 
and can be placed closer to the processing unit. Most importantly, they do not suffer from 
memory volatility and can store data without power supplied to the cell, saving nearly 30% of 
energy costs (or more if not accessed within 32 ms). This makes them particularly useful for 
neural network applications (Veksler et al. 2020; Mukherjee et al. 2021; Chang 2021), high-
radiation environments (Nantero 2023; Marinella 2021), and IoT devices where space and 
power are limited (Saito et al. 2021). 

A comparison of energy and performance metrics of conventional memory architectures and 
next-generation NVM technologies is shown in Table 36. The energy impact factors compared 
to NAND and DRAM are shown in Table 37. All technologies have the potential to improve 
energy efficiency, read/write times, and durability compared to NAND; however, the biggest 
issue they face in replacing NAND is density. STTRAM, NRAM, and RRAM have the potential to 
improve on the energy cost per bit of DRAM. Not shown in the table are the improvements 
through eliminating a refresh every 32 or 64 ms, which is at least 30% of the cost of DRAM 
operation. They can also be monolithically integrated with logic, which potentially produces a 
significant energy reduction cost over a DRAM-based GPU (An et al. 2022). Lastly, while SRAM 
is highly energy-efficient, it demands continuous power for data retention and occupies a larger 
area. In contrast, NVM technologies do not require constant power, allowing for either 
monolithic integration or achieving densities up to 10 times greater than SRAM. This capability 
from NVM technologies significantly alleviates the energy bottleneck associated with accessing 
higher levels of cache or DRAM for additional memory (Gopireddy and Torrellas 2019; Hankin 
et al. 2019). 

Table 36. Comparison of Conventional Memory Architectures to Alternative Nonvolatile Memories.Due to 
variation among reported data, these values should be taken as estimations. Sources: Marinella 2021; Pawlowski 

2023;  Bhavnargawala 2023; Yu 2016; Zhang et al. 2021; Vogelsang et al. 2022; Chatterjee et al. 2017; Sivan et al. 
2019; Pan and Naeemi 2017. 

 Parameter SRAM DRAM NAND STTRAM ReRAM 
NRAM 
(NVM) 

NRAM  
(AI NVM) 

PCRAM 

Cell Area (F2) >100 <6 <4 6–20 <4 if 3D 4 8 ~4 

Voltage (V) <1 <1 >10 <1 1–3 <1–3 <1–3 1–3 
Read Time 

(nanoseconds 
[ns]) 

<1 10–20 10,000 ~10 ~10 15 2.5 ~10 

Write Time 
(ns) <1 10–20 10,000 ~13 ~2–10 1,000 40 ~50 

Retention N/A ~32 ms Years Years  Years Years Years Years 

Read/Write 
Energy 

~18 
fJ/bit 

5–10 
pJ/bit 

>100 
pJ/bit 

 299 fJ/bit 
for write 

2–13 pJ/bit 
(lowest 
energy 
states) 

0.2 pJ/bit 
for read, 
30 pJ/bit 
for write  

0.4 pJ/bit 
for read, 
60 pJ/bit 
for write  

>100 
pJ/bit 
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Endurance 
(cycles) >1E16 >1E16 >1E4 ~1E12 ~1E12 ~1E9 ~1E9 ~1E7 

 

Table 37. Energy Impact Factors of NVM Technologies Compared to DRAM and NAND. 

Technology  
Energy Per Bit 
(Array Level) 

Energy Impact 
Factor Compared 

to DRAM 

Energy Impact 
Factor Compared to 

NAND 

STTRAM 0.299 pJ/bit (write) 16–32 333 

ReRAM 2–13 pJ/bit (lowest 
energy states) 0.77–5 7.7–50 

NRAM (NVM) 0.2 pJ/bit (read), 
30 pJ/bit (write)  

25–50 (read), 
0.17–0.33 (write) 3–50 

NRAM (AI 
NVM) 

0.4 pJ/bit (read), 
60 pJ/bit (write)  

12.5–25 (read), 
0.08–0.17 (write) 1.7–25 

PCRAM >100 pJ/bit N/A 1 

 

Challenges and solution pathways for non-volatile memory 
Support from processors through application space 
The primary challenges for NVM integration are the infancy of applications that use it, the lower 
endurance compared to DRAM, and the lower density compared to NAND. However, NVM 
technologies do offer improvements in energy cost over NAND and approach energy cost parity 
with DRAM, while avoiding overhead energy from refresh. Understanding which applications 
NVM could be used for will influence the rate of adoption. Examples of such applications include 
AI/ML (Chakraborty, Gupta, and Suri 2020; Chang et al. 2021; Mukherjee et al. 2021), 3DICs for 
compute-near-memory (Hosseini et al. 2022), and IoT (Saito et al. 2021). In addition, NVM 
provides new use cases in conditions where conventional memory may break down, such as 
high temperature, high shock, and high radiation environments (Marinella 2021; Strenz 2020). 
As these use cases become better understood by the community, circuitry and architecture 
improvements (Mukherjee et al. 2021) and integration steps (such as CXL adoption) can 
increase NVM adoption and reduce energy consumption of conventional memories through new 
and hybrid designs. 

Electronic Design Automation Tools and Process Design Kits for Application Space and Total 
Cost of Ownership Analysis 

EDA tools and PDKs are primarily tailored to existing technologies and standard architectures 
(Mifsud and Constandinou 2023). However, as NVM technologies emerge, there is a pressing 
need for updated EDA tools and PDKs to explore their potential applications more effectively. 
These tools should accommodate NVM's unique signal behaviors and memory access 
characteristics, which differ from those of traditional memories. Additionally, it is crucial to 
develop EDA software that can simulate both the performance and the total cost of ownership 
(TCO) for systems incorporating NVMs. This will allow designers to assess the feasibility and 
benefits of integrating NVM into new circuit architectures. 
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Cost 

While some commercial products use NVMs, the market is small due to higher cost and lower 
density. DRAM and NAND are supported by multiple fabs across the globe, which keeps costs 
low simply due to economies of scale. NVM scaling is required to keep up with advanced CMOS 
devices, and this cannot occur without increased utilization to lower costs. One possible solution 
would be to create an advanced fab that allows for production of 3D-integrated NVMs, where 
speed and energy efficiency are improved over conventional devices. Another would be to 
identify strong uses cases to increase production line adoption of NVMs and reduce cost. 

Action plan for non-volatile memory 

Table 38. Action Plan for Non-Volatile Memory. 

Scope 

Technology for Energy 
Efficiency 

• Non-volatile memory 

Technologies of Interest: 
• All NVM media types and memory controllers (e.g., CPU) 

• All NVM media cell and control logic types (ReRAM, NRAM, STTRAM, Spintronics, etc.) 

Challenges Addressed Solution Pathways 

• Enable processor support. 

• Application space for new NVM. 

• Interface width becomes arbitrary. Operating frequency can be 
lower. Flexible error correction schemes. Temperature 
sensitivity lower compared to DRAM or eFlash. Smaller footprint 
compared to SRAM. 

• Integration of NVM processes and materials into fabs. 

• Data density issue, which depends on specific application; NVM 
only impacts certain markets but can be used to supplement 
DRAM/NAND. 

• ReRAM may be sensitive to temperature for memory window, 
read-write noise.  

• Negotiate NVM-friendly protocols with controller suppliers 
and establish standards. 

• Develop processor support to enable NVM for multiple 
applications. 

• Design libraries available for design integration (software 
design to write protocol). 

• Provide funding for fabs to integrate new processes. 

• Design NVM circuitry to handle specific variabilities such 
as flexible error correction schemes. 

• Target Applications for NVM. Focusing on specific use 
cases can accelerate the adoption of NVMs. MRAM and 
STTRAM are positioned to replace parts of DRAM in 
environments requiring durability and in AI systems to 
enhance power efficiency, particularly beneficial for edge 
devices where space and power are constrained. NRAM, 
offering competitive read speeds and greater density, is a 
viable replacement for SRAM in AI applications. Strategic 
circuit and system co-design is essential to address the 
inherent challenges of these devices. 

Major Tasks/Milestones Metrics Targets Timeline 

Software (memory tiering) 

DAX (Direct Access) is in 
Windows/Linux, ongoing 

development, growing, other 
emerging memory. Processor 

direct vs. CXL, must be 
incorporated in memory-

tiering software. 

Software enablement for data centers 
and hyperscalers 4 years 

Access protocol: communicating 
characteristics to key players  

Education of AMD, ARM, 
Microsoft, Intel, IBM DRAM replacements 4 years 

Control suppliers: product 
demonstration of NVM 

Fab availability and costs. 
Demonstration of reliability. 

Comparative reliability, failure rate, 
cost to DRAM. TCO competitive. 

Thermal management requirements. 
Device lifespan.  

6–7 years 
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Co-design of circuitry to enable 
next-gen NVM 

Integration of on and off-chip 
components including 

chiplets and 3D ICs. System 
performance is modeled and 
benchmarked using SPEC, 

evaluating against competing 
technologies. 

 
Design package for NVM adheres to 
budget constraints and standards. It 

includes chiplet designs for UCIe, on-
chip SRAM replacement, and off-chip 
DRAM/NAND/NOR as supplemental 

memory, targeting specific 
applications. 

Approximately 6–
10 year timeline 
for monolithic 

implementations. 

FEOL/BEOL integration: fablet 
Initial development phase for 

technologies that may not 
reach widespread production 

Next-gen NVM 5–10 years 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

End Users/OEMs • Provide software support for new memory types. 

Academia 
• Develop modeling and benchmarking methodologies. 

• Provide workforce. 

National Laboratories • Perform radiation hard tests. 

Government • Provide exploratory fabs where new materials can be introduced and tested. 

Required Resources Cross Collaboration Needs of Working Groups 

• Fablet for BEOL processing out of “standard” fabs. 

• Overall migration of filesystem models, support libraries, and 
programming constructs. 

• Education on new materials, process integration, and 
contamination controls. 

• Software: New architectures; power requirements will 
require new algorithms. 

• Materials and Devices: Continue development at bit level. 

• Advanced Packaging and Heterogeneous Integration: New 
architectures require new cooling and interconnect 
methods. 

• Power and Control Electronics: New power delivery 
requirements (off- and on-chip monolithic/stacked 
methods). 

2.2.5 Domain-Specific Architectures 
Domain-specific architectures (DSAs) and ASICs implement alternative architectures designed 
to reduce energy and speed overhead for some workloads. Although DSAs and ASICs only 
complete a handful of tasks, they are incredibly fast and energy-efficient compared to the 
conventional CPU architecture for those tasks. For example, some microprocessors today 
include domain-specific processing sections dedicated to tasks like audio and video coding and 
decoding. 

Specific examples of DSAs with significant energy savings over CPUs are the graphics 
processing unit (GPU), tensor processing unit (TPU), and field-programmable gate array 
(FPGA). The GPU has a fundamentally different architecture than the CPU does, with large 
memory banks for massive parallel computing capabilities at significant reduction of energy over 
the CPU. Google created the TPU after noticing that speech searches were increasing and 
threatened to double their data center computational power use (Jouppi et al. 2018). The TPU 
was implemented as a coprocessor for speech matrix multiplication, boasting 30–80x energy 
savings over CPUs for speech searches. FPGAs provide a dynamically reconfigurable 
accelerator architecture, allowing the hardware to adapt and accelerate various functions like 
search algorithms, signal processing, matrix multiplication, and machine learning based on 
changing workload demands (Putnam et al. 2016). Additionally, FPGAs can serve as a 
development platform for designing custom ASICs. 
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DSA and ASIC designs generally follow the strategy outlined by David Patterson and John 
Hennessy in their book Computer Architecture: A Quantitative Approach (Hennessy and 
Patterson 2019) to improve processing speed and significantly reduce energy per application: 

• Minimize the distance that data is moved through hardware and compiler design. 

• Invest the savings of on-chip real estate from simplified domain-specific microarchitecture to 
add arithmetic or memory units depending on which is needed most. 

• Through a priori knowledge of the target application, utilize parallelism that is easiest for the 
programmer. 

• Use the smallest data type and size needed for the problem.  

• Utilize domain-specific programming languages that are already in use on other systems to 
reduce complexity of programming. 

Table 39 shows a comparison of some recent domain-specific architectures utilizing 
understanding of the application to create optimized architectures (TPU, FPGA, Anton). 
Significant gains can be made using domain-specific architectures in place of the conventional 
CPU/GPU. This is not an exhaustive list and should be used only as supporting evidence for 
DSAs/ASICs as an important strategy for large use applications.  

Table 39. Performance Comparison of Some Recenta Domain-Specific Architectures 

Technology 
Group 

Specified 
Technology  

Baseline Energy 
Performance 

Commercial 
Benchmark 

Product 

Commercial 
Benchmark 

Energy 
Performance 

Energy 
Savings 

Multiplier  
(X Factor) 

Timeline for Lab 
Scale 

Demonstration 
(TRL 6, years) 

Domain 
Specific 

Architectures 
Google TPUv1 92 TOPS/W Haswell CPU 2.6 TOPS/W 35 0 

Domain 
Specific 

Architectures 

FPGA 
(embedded 

computer vision) 

1.2–30.8 
mJ/frame  ARM 57 CPU 4.5–227 

mJ/frame  3.8–7.6 0 

Domain 
Specific 

Architectures 
Anton 3 

~150–100K Watt-
hour/microsecond 

(Wh/µs) 
Simulation 

NVIDIA A100 
GPU 

3,300–
1,400,000 

Wh/µs 
Simulation 

14–22 0 

a Sources: Jouppi et al. 2018; Qasaimeh et al. 2019; Shaw et al. 2021 

Challenges and Solution Pathways for Domain-Specific Architectures 
Cycle Design Time and Simulation 

Designing a new chip takes significant time and resources. Allowing for all companies to utilize 
design software and simulation may enable application-specific architectures suited to specific 
needs and spur innovation. Historical methods have involved understanding the use case with 
an existing architecture, then creating iterations of the hardware through design, chip creation, 
and testing to make an improved device. Enhancing companies’ ability to assess device 
performance through simulations instead of multiple physical test iterations will significantly 
reduce device costs and time to market. Additionally, adoption of UCIe could allow for easier 
mixing and matching of different IP components for specified use cases. 

https://dl.acm.org/doi/pdf/10.1145/3154484
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Use Cases and Total Cost of Ownership  

Creating a custom chip with a new design-specific architecture will require new masks, 
interconnect design, different IP, and various other factors that together may cost tens of 
millions of dollars. For DSAs to be adopted on a wide scale, more use cases must be identified 
where companies can realize significant impacts on total cost of ownership (TCO) or device 
power, thus providing justification for these investments. As noted earlier in this section, Google 
developed the TPU because speech searching trends indicated a future doubling in data center 
computation (Jouppi et al. 2018). In addition, image recognition in power-limited applications, 
such as smartphones and autonomous vehicles, led to the development of an FGPA 
architecture (Shaw et al. 2021; Shankar 2022). These examples illustrate that identifying 
applications that could benefit from reduced power consumption and faster processing can 
continue to push DSAs into the mainstream and significantly reduce energy consumption in 
specific use cases.  

Table 40. Action Plan for Domain-Specific Architectures 

Scope 

Technology for Energy Efficiency DSAs and ASICs  

Technologies of Interest: 

• Large-scale technologies addressing a specific task (e.g., Google’s Tensor Processing Units 
[TPUs], Meta’s Meta Training Inference Accelerator [MTIA]). 

• Domain-specific, high-performance, large-scale scientific compute tasks such as climate 
simulation or molecular dynamics. Can be applied to different products (CPUs, GPUs, ASICs, 
FPGAs, etc.) or applications (ML, communication networks, edge computing [CPUs, GPUs, 
Neural Processing Units, Bluetooth]). 

Challenges Addressed Solution Pathways 

• Operational efficiency 

• Run-time performance 

• Real-time requirements (latency) 

• IP protection 

• Cost 

• Make sure approaches not only meet an application's 
functional requirements but also ensure solutions are achieved 
within a feasible timeframe. 

• Identify large use case applications where development, 
production, and debugging of DSA/ASIC is cost effective 
for superior performance and energy efficiency. 

• Ensure proper use of fidelity requirements.  

• Explore potential solutions, including cheaper mask sets 
or silicon production sleds, reasonably priced IP available 
for reuse, compiler frameworks that can be leveraged for 
new technologies, better CAD tools for silicon design and 
debugging, and increased output of skilled engineers 
from academic institutions. 

Major Tasks/Milestones Metrics Targets Timeline 

Identify use cases or 
applications requiring DSAs 

Large-scale applications or 
tasks that do not run well on 

existing hardware 
2–3 applications 1 year 

Strawman design for killer app(s) 
Power improvement with iso-

performance, or improved 
performance for iso-power 

10 times or greater 1 year for  
one app 

EDA tools tailored for quicker 
workflow 

Design-build-test  
cycle time 2 times or greater reduction in time ~2 years 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • Design silicon and software 

End Users/OEMs 
• Implement in specific markets 

• Define markets and applications 
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Academia 

• Develop fundamental design concepts 

• Accelerate ecosystem growth 

• Foster workforce development 

National Laboratories 
• Train senior student/postdoctoral 

• Develop metrology and standards  

Government 
• Incentivize the ecosystem 

• Conduct Outreach (communication to public, members of Congress, etc.) 

Required Resources Cross Collaboration Needs of Working Groups 

• Government incentives, clear return on investment and total 
accessible market, and industry momentum. 

• Demonstrator/prototype chips/products, evaluation testbeds, 
access/information about new technologies, and 
conferences/workshops to bring end users together. 

• Access to the latest information about advantages, etc., to help 
in disseminating to the public and policymakers. 

• Access to EDA tools, prototype hardware, and foundries (at 
scale). 

• Funding programs. 

• Access to well-trained graduate students and postdocs for 
program development and management. 

• Resources for outreach and talent development. 

• Engineers with skills for ASIC and software development, 
hardware/software co-design of systems. Consider degree 
programs or certificates in ASIC design and co-design. 

• Algorithms and Software: Collaborate to address DSS. 

• Metrology and Benchmarking: Benchmark DSAs against 
other solutions. 

• Power and Control Electronics: Examine adaptive power 
management in a heterogeneous compute environment. 

• APHI: Develop possible interaction with 3D architectures 
because DSAs may require this technology.  

• Manufacturing Energy Efficiency and Sustainability: 
Collaborate to reduce cost and number of layers required, 
cost of packaging and heterogenous integration, and 
fabrication time. 

 

2.2.6 Instruction Set Architecture 
An instruction set architecture (ISA) serves as the crucial software interface to a computer's 
hardware, enabling software to command the physical components. It defines the supported 
codes or instructions that a processor can execute, bridging the gap between hardware and 
software. Commercially significant ISAs include Intel's and ARM's proprietary sets and the 
open-source RISC-V, all vital for CPU operations. Higher-level virtual machine ISAs like the 
Java Virtual Machine (JVM) and NVIDIA's Parallel Thread Execution (PTX) provide a further 
layer of abstraction, primarily used in GPU computing. 

While creating a new ISA for novel hardware is technically possible, the substantial software 
ecosystem required makes it increasingly impractical. Instead, enhancing existing ISAs for 
energy efficiency and integrating them into DSAs is more commercially viable. This approach 
taps into existing development tools, speeds up time to market, and cuts costs, while aligning 
with the energy efficiency goals by optimizing data handling and computational tasks more 
efficiently in DSAs. 

Challenges and Solution Pathways for Instruction Set Architecture 
Power Management 

ISAs face critical challenges in managing power efficiently across varying workloads. Traditional 
ISAs are not always optimized for power conservation, leading to excessive energy 
consumption during idle or low-activity periods. As systems become more complex and energy 
efficiency becomes a greater concern, particularly in mobile and embedded devices, the need 
for effective power management strategies becomes paramount. Additionally, existing ISAs may 
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lack the flexibility to dynamically adjust power settings based on real-time processing demands, 
resulting in suboptimal power usage. 

To address these challenges, incorporating explicit power management instructions into ISAs 
can significantly enhance energy efficiency. Such instructions would enable processors to adjust 
their power usage dynamically, ensuring that energy consumption is aligned with the workload 
requirements. For example, lower precision numeric formats could be employed to reduce the 
memory bandwidth requirements for certain applications like neural network processing, thereby 
conserving energy. Additionally, designing ISAs with built-in power-saving modes, like those 
seen in ARM processors, can minimize power consumption when devices are not in full use. 
Integrating these power management capabilities into the ISA design would help in reducing 
overall energy expenditure while maintaining performance (Keller et al. 2017). 

Compute-in-Memory 

The integration of CIM technologies within traditional ISA frameworks is a significant challenge. 
CIM aims to reduce the energy and latency costs associated with data movement by performing 
computations directly where data is stored. However, adapting software to fully leverage CIM 
capabilities can be complex due to the need for significant changes in program architecture and 
memory management. Additionally, traditional ISAs may not support the operations needed for 
effective CIM, which limits the potential gains from this technology. 

To overcome these obstacles, ISAs could be extended to include specialized instructions that 
support compute-in-memory operations. This approach would involve developing intermediate 
representations, such as tensor dataflow graphs, to optimize data layout and computation 
strategies directly within the memory array (Wang et al 2022). Such innovations would not only 
facilitate the integration of CIM into existing system architectures but also enhance the efficiency 
of data processing tasks. Moreover, incorporating CIM transparently within the ISA could shield 
programmers from complex hardware details, making it easier to develop applications that 
benefit from in-memory computing. Collaborative efforts between hardware designers, software 
developers, and standards bodies are crucial to standardize and propagate these 
advancements across the industry. 

Table 41. Action Plan for Instruction Set Architectures. 

Scope 

Technology for Energy 
Efficiency Instruction Set Architecture 

Technologies of Interest: x86, RISC-V, FPGA, GPU, and other CPU 

Challenges Addressed Solution Pathways 

• Power management integration 

• Compute-in-memory integration 

• Involve ISA developers in the definition of PIM functions. 

• Use cache control structures to match PIM granularities. 

• Avoid wasted power via control mechanisms to enable or 
disable speculative operations based on hit rates. 

• Lower fidelity requirements to minimum. Int8, if it can be 
used, is significantly less energy intensive than FP32. 

• Require improved understanding of cache line minimums. 
Possible to increase or decrease size dependent upon 
need. 

Major Tasks/Milestones Metrics Targets Timeline 
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Memory PIM functions Memory specification  
with PIM 

Cache memory (HBM) or main 
memory (DDR, LPDDR) 

Currently 
underway 

Improve compiler efficiency 
High-level language 

compilation closer to hand-
coded assembly 

All operating systems and applications Ongoing 

Speculative hit rate monitors 
On-the-fly ability to enable or 
disable speculative functions 
based on success hit rates 

CPUs, GPUs, FPGAs, etc. 4 years 

Cache line efficiency 
Memory accesses allow 
granularity closer to the 
application requirement 

CPUs, GPUs, FPGAs, etc. 4 years 

ISAs that comprehend PIM 
PIM instructions removed 
from xPU if redundant with 

memory PIM 
CPUs, GPUs, FPGAs, etc. 4 years 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • Improve energy efficiency of ISAs, caches, and memory accesses. 

End Users/OEMs • Consider TCO in performance analyses. 

Academia • Revise compiler, reinterpreter writers to consider power utilization. 

Government • Implement algorithms to consider power, ISA issues.  

Other • Develop standards for memory access granularity, PIM functions. 

Required Resources Cross Collaboration Needs of Working Groups 

• Power analysis tools for ISA definition, compiler writing. 

• Benchmarks that calculate TCO factors such as power and 
cooling. 

• Power models defined before command sets and access 
granularity are defined. 

• Algorithms and Software: Revise compilers, interpreters, 
etc., need additional work to improve energy efficiency of 
instruction streams and data accesses. 

• Education and Workforce Development: Reeducate 
compiler and interpreter writers are needed to consider 
energy use as part of the optimizer functions. 

 

2.2.7 Electronic Design Automation for Circuits and Architectures 
EDA is critical in the field of microelectronics, where circuit designs and layouts are meticulously 
planned and executed. As energy-efficient microelectronic devices continue to miniaturize and 
increase in complexity, the challenges in IC design have escalated, involving intricate design 
rules, evolving circuit sizes, diverse masks, specialized measurement needs, and continuously 
developing processes. EDA tools are instrumental in managing these complexities by facilitating 
the design of circuits, devices, and systems that meet performance standards and 
manufacturing requirements. 

A key component of EDA is design-technology co-optimization (DTCO). This process involves a 
collaborative effort between designers and process engineers to optimize a circuit or system’s 
performance, power efficiency, and area density, while also aiming to reduce process 
development time and costs (Yuan 2022; Synopsys 2023a). DTCO enables teams to refine 
process technologies to achieve ambitious targets such as precise linewidths, specific dopant 
profiles, high-quality films, and robust electrical benchmarks. 

The DTCO process begins with the development of the fundamental transistor or circuit 
component. Following this, a comprehensive set of design rules—usually geometric in nature 
(Ferguson 2018)—is established along with the requisite process steps. This ensures that the 
device’s performance is optimal and that it can be manufactured with a high yield. These design 
rules and process steps are encapsulated in what is known as the Process Design Kit (PDK). 
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The PDK, used alongside EDA tools, allows for the precise creation of energy-efficient device 
and interconnection layouts essential for modern circuits. 

One critical aspect of EDA and PDKs, aside from their ability to support circuit and architecture 
design, is their ability to simulate the behavior of the individual circuit components as well as the 
full device. It is important to know that each circuit component behaves as indicated and each 
device is performing at the expected speed and power. EDA creates a 3D model of the circuitry 
that can then be simulated to show device performance. This can enable manufacturers to 
reduce parasitic early in the design process rather than later when the device is near 
production, leading to significant cost savings (Synopsys 2023b).  

While EDA and PDK tools do not result in direct savings on the semiconductor device itself, the 
ability to leverage them for circuit, device, and packaging components will allow for energy 
savings in other ways: 

• Enabling rapid prototyping and testing through advanced simulation tools ensures devices 
function correctly and are manufacturable without extensive physical trial and error. This 
efficiency not only saves resources but also enhances manufacturing energy efficiency and 
sustainability. 

• Utilizing EDA tools to refine digital twin architectures in AI/ML applications can lead to more 
efficient processing and energy use. 

• Employing EDA tools to conduct preliminary energy metric testing helps set standards for 
computing energy per application, promoting energy-efficient designs. 

• Implementing EDA tools helps reduce unwanted parasitic effects in circuit designs, 
improving overall energy efficiency and device performance. 

• Incorporating alternative materials for interconnects in the PDK, such as graphitic carbon, 
CNTs, or advanced devices that are naturally more energy-efficient, such as TFET or GAA, 
will save energy. 

• Implementing EDA tools facilitates the creation of 3D and other innovative architectures that 
inherently improve energy efficiency by optimizing space and reducing interconnect lengths. 

• Reducing the effort needed for design and verification tasks through automated and more 
intelligent EDA tools will lead to faster development cycles and lower energy consumption 
during testing. 

Challenges and solution pathways for Electronic Design Automation for Circuits 
and Architectures 
Architecture Design for the Most Energy-Efficient Layout 

EDA tools play a crucial role in identifying and managing the parasitic components of resistance 
and capacitance (RC) delays in circuit designs, as highlighted by Thiruvengadam and Borges 
(2022). These tools are instrumental in optimizing circuit structures to enhance signal 
transmission and overall performance. However, EDA does not necessarily provide information 
about either energy per bit performance or standby power (Bhavesh et al. 2022), nor is it 
necessarily designed primarily for energy efficiency. Power optimization is needed for all 
aspects of the design flow to reduce overhead (Reis 2015). One solution is to have specific 
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power constraints of the device added into the system with energy per bit and energy per 
application integrated into the EDA/PDK software. Utilizing ML (Bhavesh et al. 2022; García-
Martín et al. 2019) or AI tools that have been already developed for EDA (Hilson 2023) for 
power performance standards such as energy per bit for read/write of memory, along with 
energy per application, could improve the overall energy efficiency of the architecture with little 
or no compromise in performance.  

Verification Bottleneck 

Device verification represents a significant challenge for manufacturers, with any major issues in 
the later stages of product development potentially adding substantial costs and extending the 
time-to-market (Synopsys 2023b). The conventional approach has been to perform verification 
late in the IC development process. Moving verification earlier in the process (i.e., with 
simulation-testing) can uncover performance and function issues that otherwise would not arise 
until later stages (Aboagye, Patel, and Vig 2014; Synopsys 2023c). EDA providers such as 
Synopsys® and Cadence® already have this capability. Making early verification more 
widespread will help prevent unexpected costs and reduce the environmental harm from wasted 
resources.  

Process Design Kit With Sufficient Information for Electronic Design Automation 

For the EDA software to construct a device—e.g., an architecture such as DRAM or a processor 
unit such as an ALU—it must rely on the specifications provided by the PDK. Each PDK has 
design rules, constraints, schematics, circuit models, and more (Worthman 2014). For optimal 
design and simulation, the PDK must provide the expected modeling data to the designer for 
their analysis with EDA. Developing a set standard for what information a PDK must provide 
could enable better simulation and energy consumption analysis. Such a standard would also 
benefit designers trying to model newer energy-efficient devices that may not have the same 
market share or popularity as the incumbent technologies. 

Circuitry Parasitics 

Circuitry parasitics, primarily resulting from interconnects and components within a circuit, are 
responsible for a significant portion of energy consumption in microelectronics, often accounting 
for more than 80% of the total energy use. Parasitic capacitance and resistance in these 
elements can lead to energy losses, especially during the transmission of signals. To combat 
these inefficiencies, it is crucial to develop PDKs that incorporate novel materials and innovative 
designs. These might include CNTs for interconnects, energy-efficient devices like MRAM or 
TFETs, optimized SRAM architectures, or 3D ICs. Such advancements can significantly reduce 
parasitic losses and, consequently, the overall energy consumption in microelectronic devices. 

Open-Source Electronic Design Automation and Process Design Kits 

The high cost to purchase and use EDA and PDKs impedes academic research groups and 
small companies from developing new and next-generation energy efficient technologies (Chen 
et al. 2021). For these stakeholders to provide innovative and commercially relevant designs, 
open-source PDKs such as SKY130 (Chen et al. 2021) and open-source EDA platforms such 
as DoD’s OpenROAD (Moore 2018) are needed to lower design costs. 
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Table 42. Action Plan for Electronic Design Automation Improvements. 

 

Scope 

Technology for Energy 
Efficiency Electronic Design Automation for chip development 

Technologies of Interest: • Design and simulation software (i.e., EDA and PDKs) 
• Reduction of circuitry parasitics 

Challenges Addressed Solution Pathways 

• Industry focuses solely on reducing design time when 
developing EDA and PDKs. Tools are needed to infer the most 
energy-efficient solutions more effectively. Current approaches 
usually require a human expert in the loop. 

• Better algorithms, performance, and energy efficiency are all 
needed. 

• EDA is becoming very expensive, though DARPA is working on 
an open-source approach to reduce cost. 

• Co-design is needed for PDK and EDA tools to improve power 
modeling. (EDA is not currently aware of PDK.) 

• Work with vendors to develop application-specific EDA to 
improve efficiency. 

• Implement simulation will require higher-level computing 
languages, which can help solve the current verification 
bottleneck.  

• Accelerate EDA tools using AI. 

• Incentivize (using government incentives) private EDA 
vendors to cooperate with researchers on PDK and even 
EDA more broadly. 

• Move from rectilinear to more open (e.g., curvilinear) 
device shape to help energy bottlenecks and be thought 
of as 0.5D expansion. 

• Investigate and develop PDKs for novel less parasitic 
devices such as a TFET with lower leakage, reducing 
bitcell variability, etc. 

• Implement interoperability between tools to leverage the 
specialties of different vendors without having to use 
custom scripts or error-correction mechanisms. 

Major Tasks/Milestones Metrics Targets Timeline 

Ease of use for EDA/PDK  
for better circuit design 

(translating from user language 
to higher-level language) 

Lines of code  
(C vs. Python) Compilers to translate  

Some compilers 
are already 

available, but 
quality needs 
improvement. 

Demonstrator of Design 
Technology Co-Optimization 

(DTCO) flow to optimize Sandia 
TFET device for memory design 

to improve energy efficiency 

Sub-threshold swing, Vmin 20 mV/dec (1/3 of MOSFET),  
3x reduction 12 months 

EDA simulation (circuitry 
parasitics reduction): 

Demonstrator of EDA tools for 
simulation and performance 
analysis of memory design 

energy efficiency 

Energy-delay product 5x–10x reduction 1–2 years 

EDA and PDK  
co-development 

Power simulation, photonics, 
advanced packaging 

EDA tools to be aware of  
PDK for utilization 1–2 years 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers EDA tool vendor (Synopsys, Cadence, Siemens, etc.) 

End Users/OEMs Industry members (fabless and IDMs) and government labs designing their own chips 

National Laboratories Collaborative interaction with Sandia to model/simulate TFETs  

Required Resources Cross Collaboration Needs of Working Groups 
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2.2.8 Conclusion for Circuits and Architectures 
The Circuits and Architectures chapter highlights the vital importance of prioritizing the 
development of new circuitry designs to bolster energy efficiency. Domain-specific architectures, 
in-memory computing, and neuromorphic technologies have emerged as promising solutions to 
lower energy consumption, particularly in computationally intensive workloads. 

Meeting these targets requires robust collaboration across different fields to design new circuits 
and architectures capable of reducing memory access costs and improving power delivery. This 
collaboration can be enabled by enhancing EDA tools to streamline device integration and 
performance simulations, strengthening instruction set architectures to support memory pooling, 
and developing standards to incorporate chiplet-based designs. 

To rapidly translate these innovations into real-world impact, EES2 has set TRL 6 as a baseline 
to accelerate the deployment of new designs and architectures. Achieving this baseline 
demands significant investment in co-design strategies, advanced EDA software, and standards 
to ensure seamless integration across the computing stack. Dedicated cross-collaboration 
among various stakeholders will be essential to ensure these efforts deliver transformative gains 
in energy efficiency.  
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2.3 Advanced Packaging and Heterogeneous Integration 
As transistor nodes shrink below 20 nm, the cost benefits diminish, shifting the focus toward 
advanced packaging (AP) and heterogeneous integration (HI)—collectively referred to as 
APHI—as essential methods for enhancing energy efficiency and device performance. The 
focus of APHI is on a variety of different approaches for packaging chips together. Until recently, 
integration technologies focused on planar chip interconnects, chip-to-chip connections, and air 
flow and heat sinks for thermal management. In the shift to APHI, new technologies such as 
2.5D and 3D geometries, as well as advanced interconnect schemes and new thermal 
mitigation strategies between stacked chips, are some of the key energy efficiency approaches. 
Multiple semiconductor organizations, including MAPT, IRDS, IEEE, and the Semiconductor 
Industry Association (IEEE IRDS 2023; SIA 2022), have stated that HI will be the key 
technology driver for at least the next decade due to its performance and energy efficiency 
improvement potential.  

Energy efficiency of logic and memory operations have not improved at the same rate. Memory 
technologies have improved more rapidly than logic operations in terms of energy efficiency, 
largely due to significant advancements in memory design and integration techniques. Logic 
operations, involving arithmetic instructions, have improved by approximately 2x to 4x 
depending on the calculation type (Jouppi et al. 2021). In contrast, memory technologies like 
HBM2 and GDDR6 have seen a 6-foild increase in efficiency compared to older DDR3/4 
standards (Vogelsang 2010; Smith 2022; O’Conner et al. 2017). However, memory operations 
still exhibit an energy cost nearly 4x higher than that of the most energy intensive logic 
operation, primarily due to the energy costs associated with data transfer through interconnects. 
For instance, accessing DDR3/4 memory is about 1,300 times more energy-intensive per bit 
than logic operations are. Advances in HBM2 and GDDR6 have reduced this disparity to about 
250x to 350x through packaging improvements, yet accessing memory remains significantly 
more energy-costly than performing logic operations (Jouppi et al. 2021).  

The Circuits and Architectures chapter emphasized computational strategies to minimize data 
transfer, whereas this chapter on APHI will explore next-generation interconnect technologies. 
These technologies aim to enhance data transfer efficiency and incorporate thermal mitigation 
strategies to lower energy consumption by reducing chip parasitics and secondary energy 
expenditures. 

An instruction in microelectronics refers to a command given to a computer processor to 
perform a specific operation. At the instruction level, various technologies discussed in the APHI 
chapter have the potential to significantly impact energy consumption. Innovations such as 
carbon nanotube interconnects decrease parasitic losses, while approaches like 2.5/3D 
interconnects and chip stacking technologies shorten the distances between interconnected 
components. These advancements collectively aim to reduce the overall energy requirements of 
memory and logic operations, demonstrating a crucial step toward more energy-efficient 
microelectronic systems. 

Working Group Methodology 
APHI technologies are at the forefront of performance improvement in microelectronics today 
and align well with the EES2 goal of reducing the overall energy consumption of 
microelectronics. The APHI working group proposed nearly 30 technologies, divided into six 
groups, that tackle both the energy consumed during operation and the secondary costs of 
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cooling (see Table 43). The proposed technologies’ energy efficiency factors (compared to 
incumbent technologies) are found in their respective sections throughout the chapter.  

Certain technologies discussed in the Circuits and Architectures chapter are discussed in further 
detail here because they also have implications for APHI. Compute-near-memory, for example, 
is enabled through interconnect and thermal management technologies. Additionally, EDA, 
while not a physical device, can have significant impacts on the system package through co-
design and with initial energy consumption simulations. 

Table 43. APHI Technology Groups and Technologies of Interest 

 

Figure 34 shows the technologies of interest with their potential energy efficiency improvement 
factors and timelines to TRL 6, as determined by the working group. For more information on 
TRL6, refer to section 1.5.   

Technology Group Specified Technology 

Next-Gen Interconnects, all levels 
Graphene, CNT (SWNT, MWNT) 
Ru, Ir, Rh 
Optical 

Foundational 2.5/3D Interconnect 
Technologies  

Carbon based 
2.5D-Bridge Chip, EMIB/Foveros, Interposer, Chiplet 
Through silicon via 
Monolithic 3D (Monolithic Inter-tier Vias) 
Hybrid Bonding (Cu-Cu) 
UCIe 

Application-driven 3D Integration 
Vcache 
MIV stacked ReRAM  
DRAM Cache 

Advanced Thermal Interface Materials 
(TIM)  

LMP Metal Solder with polymer (Indium-based) 

Nanostructure engineering to increase thermal surface area contact  

CNT based thermally conductive matrix 
Graphene based conductive matrix 

EDA for Systems Design (SOIC, SiP, 
PCB) 

Energy per bit simulations 
Architecture level PDKs 
STCO 
Thermal Co-Design 
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Figure 34. Potential efficiency improvement factor and timeline for selected technologies of the APHI working 
group 

Key Takeaways 
Table 44 summarizes the most significant identified energy efficiency opportunities that can be 
achieved through advances in APHI. 

Table 44. Key Takeaways for Energy Efficiency Opportunities in APHI. 

Technology 
Group Key Opportunities for Energy Efficiency 

Interconnects for 
2.5/3D stacking 

 

• Transition to 3D hybrid bonding to surpass the limitations of 
copper microbumps, enhancing energy efficiency with reduced 
signal delay and improved bandwidth. 

• Implement copper-to-copper and dielectric bonding for submicron 
pitch sizes, resulting in significant energy savings compared to 
traditional methods. 

• Utilize advanced packaging techniques for legacy nodes to 
improve energy efficiency. 

Thermal Interface 
Materials 

 

• Advance thermal interface materials that offer lower thermal 
resistance and obviate the need for polymer adhesives, leading to 
better heat dissipation and energy efficiency. 

Advanced system 
cooling technologies 

 

• Develop novel cooling technologies capable of managing the heat 
generated by high-density chip stacks, thus reducing the energy 
required for cooling operations. 
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Grand Challenges 
Achievement of the identified energy savings opportunities with APHI requires overcoming the 
following major challenges: 

• Creating an R&D fablet open to universities and small businesses for feasibility testing to 
address challenges associated with APHI technologies and workforce development.  

• Implementing UCIe as the standard interconnect to facilitate miniaturization, increase 
bandwidth, accommodate legacy nodes, and resolve supply challenges. 

• Developing and testing novel devices that may not currently be CMOS compatible but 
can be monolithically integrated.   

• Exploring innovative thermal interface materials, like carbon-based matrices and 
topographically engineered interfaces, to effectively address thermal management 
challenges. 

• Reducing memory access costs and heat generation, primarily for SRAM and DRAM, 
through innovations in interconnect technologies, including alternative materials and 
mechanisms. 

2.3.1 Carbon Nanotube-Based Interconnects 
Interconnect technologies currently use ~80% of all on-chip power (Karkar et al. 2016). While 
3D ICs will significantly reduce this high energy consumption, investigations into alternative 
materials are paramount. Currently, copper is the material of choice for interconnects at all 
levels, but as devices continue to scale, copper’s resistivity, grain boundary effects, and thermal 
issues will increase. Additionally, copper electromigration is an issue as line widths are 
decreased (Mittal and Lin 2017). The APHI working group proposes carbon nanotubes (CNTs) 
as one possible solution for moving beyond copper interconnects. 

CNTs were introduced in the Materials and Devices chapter as a possible new transistor 
technology. As the quality of CNT production improves, along with other carbon allotrope 
production technologies (such as wet-based chemistry methods, deposition methods, and 
graphitic sheet transfer technologies), research priorities should include investigation of 
alternative opportunities for carbon, such as interconnects and interposer technologies, for 
improvements in energy efficiency and performance. 

Alternative 
interconnect 
materials  

• Advance optical interconnects to sidestep parasitic capacitance 
for increased bandwidth and lower energy per bit through 
component miniaturization and monolithic integration. 

• Explore carbon-based interconnects like CNTs to reduce resistive 
losses and improve thermal conduction over copper, aiming for 
reduced RC delays and enhanced energy efficiency. 

Packaging EDA 

 

• Enhance energy efficiency through EDA that facilitates advanced 
integration/packaging co-design and initial energy consumption 
simulations. 

• Encourage the use of system technology co-optimization (STCO) for 
predictive modeling and optimization of energy use in packaging 
designs. 
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CNTs and graphene provide significant reduction in resistance and capacitance, reducing RC 
delays without the need for as many repeater amplifiers; they also provide increased thermal 
conduction over copper, likely reducing localized hot spots (Alam et al. 2011; Mittal and Lin 
2017). One important property of CNTs and graphene is the ability to carry significantly higher 
current density than copper does at smaller sizes (Soldano, Talapatra, and Kar 2013), opening 
up CNTs for power distribution, vias, and possibly smaller chips. Table 45 provides a 
comparison of simulated graphene layers, measuring resistance, capacitance, and correlating 
impact factors of CNT bundles compared to conventional copper interconnects.  

Table 45. Comparison of Simulated Graphene Layers and Resistance, Capacitance, and Correlating Impact 
Factors of CNT Bundles Compared to Conventional Copper Interconnects 

 

Although graphene and CNT bundles provide improvement over copper, the implementation of 
these materials as interconnects is still in its infancy. The working group identified no current 
device or prototype using CNT interconnects, only simulation or initial rudimentary test 
structures. For example, graphene interconnects with 7nm technology (Wang et al. 2017) 
showed an 8% improvement in the energy delay product via EDA simulation, with more room for 
improvement.  

Challenges and Solution Pathways for Carbon Nanotube-Based Interconnects 
Contact Resistance 
Contact resistance measures the impedance electrons face when transitioning between 
different media. For carbon-based interconnects, the contact resistance is dominated by metal-
carbon distance, adhesion to the metal contact, and the metal work function. Researchers have 
employed various techniques to reduce this resistance, including using joule heating to 
eliminate interfacial impurities, forming metallic-carbon interfacial layers, and applying ultrasonic 
nanowelding. Despite these efforts, the best achievable contact resistivity for CNT to metal 
remains around 10-5 Ω∙cm2. This value is still an order of magnitude higher than the contact 

Technology 
Group 

Specified 
Technology 

Baseline Energy 
Performance 

Commercial 
Benchmark 

Product 

Commercial 
Benchmark Energy 

Performance 

Impact 
Factor 

Timelin
e 

(years) 

Carbon-Based 
Interconnects 

Graphene 
(simulation 20 

layers) 

Resistance:  
600 Ω/μm Copper  Resistance:  

950 Ω/μm 1.6 

10–15 

Capacitance: 
0.08 femtofarad/ 
micron (fF/μm) 

Copper Capacitance: 
0.17 fF/μm 2.1 

CNT 
(simulation) 4 Ω  Copper 

(simulation) 12 Ω  3.0 

CNT Local 
Interconnect 
(simulation) 

Capacitance 
100 μm: 12.6 fF 
500 μm: 62.8 fF 

1,000 μm: 142.3 fF 

Copper 

Capacitance 
100 μm: 14.3 fF 
500 μm: 71.4 fF 

1,000 μm: 184.4 fF 

1.1–1.3 

https://sci-hub.se/10.1109/IITC-AMC.2017.7968949
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resistance of 5.8*10-6 Ω∙cm2 for Cu at the 22nm node, highlighting ongoing challenges in 
achieving comparable efficiency (Todri-Sanial, Dijon, and Maffucci 2017). 

Ab initio calculations play a crucial role in tackling these challenges by providing a theoretical 
foundation to explore and optimize the atomic and electronic structures at the interfaces. These 
calculations help predict the optimal configurations for reducing contact resistance, focusing on 
parameters such as the type of metal used, the number and dimensions of multi-walled 
nanotubes, graphene layer properties, and interface characteristics. The working group 
suggested avoiding metals altogether in situations where the carbon-based interconnect contact 
resistance is too high (Wang et al. 2017). CNT-to-graphene contact resistance is poorly 
referenced in the literature, but a value of 10-6 μΩ∙cm2 has been reported (Ramos et al. 2016) 
and could likely be further optimized. Another pathway could be to create graphitic nanosheets 
through laser ablation of SiC (Salama et al. 2002). This technique is patented for an interposer 
technology (Salama 2023) but may be expandable to create vertical and horizontal 
interconnects with limited contact resistance. 

Production of Carbon-Based Interconnects and Process Integration 
As detailed in the Materials and Devices chapter’s CNTFETs section, the initial step for any new 
material integration, such as carbon-based interconnects, involves a rigorous industry vetting 
process to ensure that no contaminants are introduced. Once cleared, integration of these 
technologies will bring additional challenges. Chemical vapor deposition (CVD) of CNT and 
graphene generally requires seed layers and may not be BEOL-compatible to produce the 
needed material properties with current methods. Alternatives like spin coating CNTs for 
horizontal interconnects or transferring graphene sheets are BEOL-compatible but still require 
significant process optimization to meet high-volume manufacturing standards and to ensure 
they are free of contaminants.  

If the industry opts for converting silicon carbide (SiC) to graphitic carbon, this would necessitate 
not only new equipment but also extensive optimization of both the laser systems used and the 
resulting material properties. Establishing a solid foundation for the integration of carbon 
interconnects will be crucial. A dedicated fabrication facility, or fablet, that allows for the 
exploration of new processes and their refinement to ensure CMOS compatibility could greatly 
accelerate the transition of these technologies to full-scale high-volume manufacturing. 

Action Plan for Carbon Nanotube-Based Interconnects 
Table 46. Action Plan for Carbon Nanotube-Based Interconnects 

Scope 

Technology for Energy 
Efficiency: Carbon nanotube-based interconnects 

Technologies of Interest: 

• Carbon-based interconnects for chip stacking (carbon through silicon vias, flip-chip pads) 

• Carbon-based interconnects for PCBs (replacing/complementing Cu, though hole vias are quite 
large and cannot coat via with Cu). CNT for interconnects into SiC (integrated circuits, substrate 
fabrications, multiple applications). 

• Carbon-to-carbon-based vertical and horizontal interconnects; carbon-to-carbon HDI (CNTs, 
graphene) 

• CNTFets for compute to memory bus 

• Flexible electronics 

Challenges Addressed Solution Pathways 
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• Reduce Ohmic contact at carbon/metal, carbon/carbon 
interface. 

• Improve production of global interconnects with correct diameter, 
length, and chirality for optimal material properties along with 
improved filtration purification processes. 

• Research low-temp. deposition processes (under 300°C), seed 
layer, or conversion technologies for of vertical interconnects. 

• Integrate processes for CNT interconnects that are CMOS-
compatible. 

• Understand junction contact resistance of carbon based 
horizontal and vertical interconnects. 

• Develop contact promoter between metal interconnect and 
C (Ag, Ni, Pd, TiN) in addition to ab initio calculations to help 
understand the electron transport between carbon-to-metal 
and carbon-to-carbon. 

• Produce vertical CNTs through low-temp. (<400°C) with a 
cobalt seed. Produce pure metallic SWNTs and MWNTs 
containing electrical properties like metallic SWNT via wet 
chemistry processes with filtration/purification processes to 
remove impurities. 

• Optimize CMOS-compatible, carbon-based interconnects 
using spin coating by fine-tuning the solution viscosity and 
substrate roughness and by enhancing inkjet printing 
processes. 

• Investigate SiC to graphitic interposer technology (no EDA, 
PDK for this technology). 

Major Tasks/Milestones Metrics Targets Timeline 

CMOS-compatible spin coating 
for horizontal interconnects  

• Ability to demonstrate a 
metal layer with 90nm 
technology 

• Achieve legacy nodes 

• Achieve chip-to-chip compatibility 
0–1 years 

Vertical interconnects 

• Vertical via fill for CNTs 
(inkjet, squeegee); 
Molarity of solvent layers, 
interlayer resistance; 
Comparable to the 
resistance of copper. 

• Efficient routing on 
interlayers; Low interlayer 
resistance applicable to 
global interconnects.  

• CNT with lower resistance than 
copper, suitable for lower RC delay 
at approximately 20nm technology 
scale  

• <350°C for BEOL compatibility 

0–2 years (ink jet, 
squeegee) 
3–5 years 

SiC conversion to graphitic 
carbon interposer technology 

• Advanced packaging. 
• High power and energy 

savings applications. 
• Thermal considerations, 

high-frequency. 
performance, and current 
carrying capacity. 

• Used in high-performance computing 
(HPC), AI interposer technology, and 
power electronics (especially for 
thermal management to enable 
operations at higher temperatures). 

2 years 
(application 

development) 

Leverage knowledge of 
community to reduce repeat 

experiments  

• On par with the contact 
resistance of copper. 

• Knowledge sharing to 
reduce iterative testing. 

• Develop CNT technology with 
resistance lower than or comparable 
to copper for both local and chip-to-
chip interconnects. 

3–4 years 
(academic 

demonstration) 

Ab initio calculations for interface 
production 

• Develop accurate 
interface models to 
determine the electronic 
and physical structure at 
the CNT-metal interface. 

• Assess Fermi level and 
band structure. 

• Enhance electrical structure to 
optimize performance 

• Define physical dimensions of 
SWNTs and MWNTs 

3–4 years 

Omnidirectional interconnect (in 
situ, ex situ) 

• On par with resistance of 
copper  

• Multi-die stacking. 
• Suitable for high-power application 

7 years 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • Supplying high metallic CNTs, graphitic interposer technology 

End Users/OEMs • Testing and integration 

Academia • Basic/experimental research to enable technologies  
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2.3.2 Optical Interconnects 
Optical interconnects provide a superior alternative for connectivity between on-chip cores and 
within multi-chip modules, especially as the performance of electrical links degrades over longer 
distances like those found in traditional circuit boards. As discussed in the beginning of this 
chapter, a significant portion of energy in computer systems is consumed by interconnections 
rather than logic operations, particularly at the board and chip levels. This is due to high signal 
volume and the associated energy costs of charging and discharging wires with high 
capacitance. Figure 35 presents benchmark data from around 2018, comparing the bandwidth 
density and energy efficiency of state-of-the-art electrical and optical interconnects, expressed 
in terms of bandwidth density multiplied by energy efficiency (specific energy in pJ/bit). 

National Laboratories • Basic/experimental research to enable technologies, take to higher TRL 

Government 
• Funding opportunities 

• Explore extreme uses (temperature, radiation) 

Required Resources Cross Collaboration Needs of Working Groups 

• Develop a fablet capable of integrating CNTs into the BEOL 
process, serving as a generic institute to lower the barriers to 
entry. 

• Enhance the availability and development of simulation tools and 
libraries, including Density Functional Theory (DFT) and ab initio 
methods. 

• Amplify focus on thermal characteristics in academic research to 
improve material performance under varying thermal conditions. 

• Use high-volume manufacturing laser machines for high 
throughput of SiC conversion to graphitic carbon. 

• Address the limited scope of current carbon-based technologies 
by adjusting architectural, power delivery, and manufacturing 
processes. Development of dedicated EDA/PDK software tailored 
to these materials is essential. 

• Develop curricula at both collegiate and workforce training levels 
to educate on the unique requirements and applications of 
carbon-based technologies. 

• Materials and Devices: Synthesize metallic SWNT, MWNT. 
Develop interconnect interface. 

• Circuits and Architectures: Develop new systems and 
circuitry for difference in potential and current given 
ballistic e-transport and lower capacitance and voltages. 

• Metrology and Benchmarking: Investigate voltages, 
capacitance, failure mechanisms, interfacial issues, 
benchmarking new performance, etc. 

• Algorithms and Software: Update software/algorithms if 
Circuits and Architectures effort enables different 
architectures. 

• Power and Control Electronics: Implement new power 
paradigm with lower resistance and capacitance; voltage 
drop of carbon-based interconnects will require power 
supply changes. 
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Figure 35. Interconnect figure of merit benchmarks (circa 2018) with 2023 commercial and R&D optical 

interconnect benchmark references. Source: Stojanovic 2020; Original source: Gordon Keeler, DARPA MTO, ERI 
Summit 2019 

Photonic transceivers enable high bandwidth optical signaling but currently exist commercially 
as board-level pluggable components connected to chips and multi-chip packages via electrical 
wires whose power dissipation and density limit overall performance. The DARPA Photonics in 
the Package for Extreme Scalability (PIPES) program (Tauke-Pedretti 2023) has pushed the 
boundaries of the electrical/photonic interface toward the package and board level through 
further miniaturization of the photonic components. As a result of work done in the PIPES 
program and elsewhere, the crossover point between optical and electrical interconnects has 
moved from about 1 m in 2018 to about 10 cm by 2023 (Sorger 2023), with exact crossover 
depending on many factors, such as underlying component technology, signal processing, and 
signal modulation format. A commercial co-packaged optics (CPO) product (Broadcom 2023) 
and an estimate based on recent R&D for sub-centimeter interconnections have been added to 
the interconnect benchmark plot (see Figure 35). The latter is based on photonic waveguides 
with 10 μm pitch, a 10 Gbps on-off keyed data rate (without multiplexing), transceiver-less 
operations assuming 10 fJ/bit for the electro-optic modulator (EOM), 15% laser wall-plug 
efficiency, and 30 fJ losses. These assumptions are supported by current R&D on the 
component devices, as discussed in the following section. 

Challenges and Solution Pathways for Optical Interconnects 
To further exploit the benefits of optical links, photonics must become more intimately integrated 
in the microelectronics package. However, the target of 1pJ/bit associated with technologies 
such as those pursued by PIPES, while achieving impressive progress over the prior state of 
the art, does not fully address the grand challenge sought after in the EES2 vision of 100–
1,000x power reductions for data communication and systems. Integrating optical transceivers 
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(ideally monolithically) into electronic chips presents an opportunity to move closer to the more 
ambitious EES2 goal. 

An optical link needs components at each end to transmit and receive the signal. The source 
needs a light source (generally a laser) and an electro-optical modulator, and the receiver needs 
a photodetector. The potential for drastic reductions in the energy demanded by optical 
interconnects through device scaling has been discussed in detail by Miller (2017), which 
suggests a pathway for interconnects from ~ 1 cm to ~ 10 m that have the same energy (~ 
10fJ/bit) as local electrical wires on chip or better. Achieving this level of performance will have 
far-reaching impact on the energy consumption of computer systems, substantially knocking 
down the “memory wall” both in terms of latency and energy consumption. A more recent review 
by Mekawey et al. (2022) provides more up-to-date references to the state of the art. 

A fundamental quantum mechanical advantage of optical interconnects is known as “quantum 
impedance conversion,” meaning that the optical signal only needs to charge the capacitance of 
the photodetector and not the channel itself (Miller 1989). This avoids the major energy use of 
electrical interconnects but trades that loss for the energy that must be consumed to power the 
optical transmitter and receiver. To achieve very low-energy optical interconnects, the key 
challenge is to reduce capacitance of photodetectors, optical sources, and their associated 
circuitry.  

Solutions to improving power consumption of optical links are rooted in (a) component 
performance improvement, which includes clever designs, emerging materials, and deployment 
of device optimization algorithms, (b) link-level optimization such as is enabled by multiplexing 
of signals (Winzer and Neilson 2017), and (c) system synergies enabled by HI of multiple 
technologies, each optimized for a specific purpose. Here, HI is key since it allows reduction of 
parasitic capacitances (e.g., between CMOS drivers and optoelectronic components). 
Regarding the latter, emerging chip manufacturing capabilities are promising, such as Global 
Foundries 45SPCLO, a 45nm SOI CMOS technology monolithically integrating RF, analog, and 
silicon photonics capability (GlobalFoundries 2022). 
Semiconductor Lasers 

Semiconductor lasers act as light sources that are modulated to encode information. For 
transmission over long distances, most transmitters use externally modulated lasers. However, for 
short-reach links, lasers can be directly modulated, avoiding the need for a separate modulator, 
and thereby offering savings in energy consumption and transmitter footprint.   

Integrating lasers with photonics has its challenges, though significant advancements have been 
reported recently (Li et al. 2022). To achieve optical gain on Si, an effective and common solution 
is to integrate a III–V semiconductor gain medium on a Si photonics platform. III–V lasers have 
the advantages of high gain, high optical output power, and the ability to operate using electrical 
pumping. Since III–V materials are not CMOS-compatible today, integration approaches with Si 
photonics platforms include flip-chip integration, transfer printing, and heterogenous bonding. 
Direct growth of III-V gain material on silicon substrate may bring the cost down and improve 
scalability. Quantum dot (QD) lasers integrated on Si through bonding have also been reported 
recently (Norman et al. 2019; Shang et al. 2022). 
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Electro-Optic Modulators 

Achieving efficient modulation of light in optical interconnects presents significant challenges. 
An electro-optic modulator (EOM) operates similarly to a transistor, with an optical source and 
drain, and an electronic gate that modulates the refractive index of the optical medium to 
modulate light. The most common optical modulators are the lithium-niobate-based Mach-
Zehnder modulator (MZM), indium-phosphide-based electro-absorption modulator (EAM), and 
silicon ring modulator (RM). MZM is currently more widely used (Wooten et al. 2000) than the 
other types of modulators, especially in long-haul applications, because of better extinction ratio 
(the ratio between signal energies for the “1” and “0” states), larger modulation bandwidth, and 
relatively low influence of thermal and polarization variations on the modulator performance. 
Indium-phosphide EAMs offer advantages in terms of lower drive voltage requirements and 
smaller form factor (Wu et al. 2017). Silicon RMs are favored for their compact size, low loss, 
low energy consumption (~6fJ/bits), and compatibility with CMOS technology (Li et al. 2013). 
However, their low extinction ratio and strong sensitivity to temperature remain obstacles to 
adoption. Research is underway to address these limitations.  

Sorger et al. (2015) laid out an evolutionary 
path for future EOMs in terms of 
technological advancements and 
limitations, as shown in Figure 37. EOMs, 
crucial for converting electrical data to 
optical signals, can operate by directly 
modulating the light source or through 
other mechanisms. The focus is on 
reducing the physical size of EOMs to 
lower capacitance and energy 
requirements while increasing data 
transmission rates. Nanoscale EOMs, 
approximately 1 μm in size, can achieve 
switching rates over 100 Gbps and 
switching energy as little as 1 fJ/bit, which 
reduces the power needed to just 1 μW. 
This is a 1,000x reduction compared to 
classical modulators. However, enhancing 
light-matter interaction to reduce size further without sacrificing performance remains a 
challenge. Current efforts explore various promising materials and techniques such as free 
carriers in silicon and indium tin oxide, quantum-confined Stark effects in germanium quantum 
wells, and permittivity tuning in graphene (Xu et al. 2005; Amin et al. 2018; Srinivasan et al. 
2019; Ye et al. 2014). These advancements have led to significant reductions in device size and 
improvements in modulation efficiency, marking substantial progress toward integrating these 
technologies into standard manufacturing processes. 

Photodetectors 
The photodetector circuits in long distance communication links are generally designed for 
maximum sensitivity for weak signal recovery in the presence of noise. The amplification 

Figure 36. Optoelectronic modulator device scaling 
laws.Source: Sorger et al. 2015 
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circuitry in these links is, in some cases, the largest energy consumer (Krishnamoorthy et al. 
2015). However, for short distance interconnects, the requirements change substantially 
because the link operates far above the noise floor (Krishnamoorthy and Miller 1996), 
analogous to short point-to-point electrical wiring. The requirement for short chip-to-chip or intra-
chip optical interconnects is to make the optical interconnect behave just like a short electrical 
wire, without the overhead associated with low-noise amplification, line coding, clock and data 
recovery (CDR), or serialization/deserialization (SERDES) needed for long-distance 
interconnects. These simplifications make it easier to conceive of optical interconnects between 
chips while also enabling those low-energy interconnections to be extended to much greater 
lengths (meters rather than centimeters) because of the absence of charging capacitance and 
very low signal attenuation. 

If a photodetector can be made small enough and close enough to the input gate of a CMOS 
transistor, the photodetector can generate a voltage swing large enough to drive the transistor 
directly without any amplification—a so-called “receiverless” photodetector (Miller 2017) able to 
achieve ~1 fJ/bit total energy for the receiving system. To achieve the low photodetector 
capacitance to reach this performance level, the photodetector’s volume must be on the order of 
1 cubic μm or less (Miller 2017). Adequate absorption can be achieved in the direct-bandgap III-
V semiconductors commonly used for commercial fiber optic receivers. Furthermore, emerging 
concepts of quantum-thin layered materials, e.g., transition-metal dichalcogenides (TMDCs), 
show a very high absorptivity (α ≈ 105/cm), exceeding that of III-V materials by an order of 
magnitude or more. Combining such emerging materials with optical-mode compression and 
impedance-matching techniques can enable receiverless and self-powered photodetection 
schemes and hence more efficient links (Wang, Sorger, and Dalir 2022; Wang et al. 2023).  

The photodetector must also be very close to the input transistor (within about 1 μm), 
necessitating monolithic integration. Monolithic integration of III-V devices on silicon ICs is a 
challenge that has attracted significant research attention over time, including epitaxial 
deposition of III-V quantum dots on Si (Wu, Tang, and Liu 2019). Recent work (Wen et al. 2022) 
demonstrated monolithic fabrication of InP/In0.5Ga0.5As/InP p-i-n heterojunction photodiodes that 
were also capable of working as LED emitters. These photodiodes could be an alternative to 
traditional lasers and EOMs as optical transmitters. The key to their effectiveness as 
transmitters lies in the ability to confine their light emissions to a single mode, which enhances 
the directionality and intensity of the light. Concentrating structures are used to achieve this 
confinement, optimizing the photodiode's output for more efficient optical communication 
systems (Miller 2017).  

Interconnection Optics 
The optical medium interconnecting transmitters and receivers also poses several challenges to 
enabling widespread use in chip-to-chip or intra-chip connections. The list of challenges 
includes integrating a practical number of channels, achieving high bandwidth transfer, 
minimizing losses of signal power within the medium and at interfaces, and managing costs. 

Optical fiber coupling may be accomplished via grating couplers, edge couplers, or evanescent 
couplers (Mekawey et al. 2022). Challenges for the waveguide include coupling losses at either 
end, losses in propagation, and bending radius (which can directly impact losses or crosstalk 
within the waveguide due to reflections). Very compact and massively parallel optical 
interconnects will require advances in these areas.  
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In the design of communication links, there is a fundamental trade-off between the number of 
physical channels, the data rate supported by each channel, and the complexity of circuitry at 
either end of the link. In long-distance communications, Serializer/Deserializer (SERDES) 
circuitry is commonly used to merge multiple data channels into a single serial stream. This 
approach simplifies the physical interconnect but can constrain the flexibility needed for shorter 
connections on a chip or between boards. For these shorter connections, parallel 
communication architectures are preferred due to their lower latency and simpler circuitry. 
Additionally, in the optical domain, signals can be combined using Wavelength-Division 
Multiplexing (WDM) rather than time-multiplexing. WDM allows for substantial bandwidth on a 
single optical channel by utilizing the high frequency of optical carriers. For instance, a 
demonstration by Liu et al. (2019) achieved a transmission rate of 4.1 Tbps using 64 WDM 
channels, showcasing how optical technologies can efficiently manage the trade-offs between 
channel count and data rate to achieve high bandwidths with reduced complexity. 

Monolithic integration is crucial in the context of intra-chip optical links because it allows the 
entire system—transmitters, receivers, and waveguides—to be fabricated as a single structure 
directly on the semiconductor substrate. This integration enhances compatibility with existing 
semiconductor processes and significantly improves the efficiency and compactness of the 
communication system. For instance, a 2020 study by Liu et al. offers a practical example of 
these benefits. The authors developed a monolithic plasmonic waveguide that drastically 
outperformed traditional electrical connections in terms of signal latency and energy dissipation. 
Their design achieved signal latencies of approximately 0.18 to 0.19 picoseconds (ps) and 
energy dissipation rates between approximately 2.5×10−3–3.8×10−3 fJ/bit. Additionally, they 
reported minimal crosstalk with a coupling length of 155 to 125 μm, demonstrating effective 
isolation between channels over short distances. This example underscores the potential of 
monolithic integration to significantly enhance the performance of optical interconnects on chips. 

Optical signaling also opens the possibility of free-space communication links between chips or 
boards. The theoretical diffraction-limited density of such connections is enormous; for example, 
two 1×1 cm surfaces separated by 1 cm could theoretically support up to 100 million channels, 
or up to 10,000 channels if separated by 1 meter (Miller 2000). The optical interface could 
consist largely of conventional imaging optics or lenslet arrays. Interconnections of this type can 
not only transfer tens of Tbps between chips, but also can enable clock signals to propagate 
reliably over distances of meters to enable much larger machines to operate in strict 
synchronization than is possible with electrical connections.  

Finally, cost is one of the biggest obstacles to the widespread replacement of electrical 
connections with optical connections. Photonics packaging is far more expensive than 
conventional electronics packaging (Mekawey et al. 2022), making cost reduction a central 
concern for the development of optical interconnect technology. Automating the chip packaging 
ecosystem is expected to significantly reduce costs. Furthermore, achieving high-performance 
and low-energy photonic links that advance heterogenous technology system-on-chip solutions 
may drive costs down at the system level. 

 



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  143 

Action Plan for Optical Interconnects 
Table 47. Action Plan for Optical Interconnects. 

Required Resources Cross-Collaboration with 
Other Working Groups 

Scope 

Technology for Energy Efficiency Using optical interconnects to replace metal for on-chip and off-chip communications 
to lower energy costs, improve latency and bandwidth, and move past the data deluge 

Technologies of Interest 

• Pluggable transceivers (400 Gbps) (100 m to 1 m) (co-package electronics and 
optics) 

• Optical engines (close to processors for TB/s) (<1 m in general, depends on use case) 
• Optical interconnect for data center architectures, rack to rack (100 m to 1 m) 
• Optical interconnect for chip-to-chip connection (cm scale) 
• Optical interconnects for intra-chip and 2.5/3D HI connections (mm scale) 

Challenges Solution Pathway 
• Miniaturize key optical components. 
• Minimize supporting circuitry and associated capacitance. 
• Integrate electro-optic devices monolithically on silicon CMOS chips. 
• Improve manufacturability and cost.  

• Improve micron-scale electro-optic 
modulators and light sources. 

• Achieve monolithic integration of III-V 
photodetectors on CMOS silicon. 

• Develop advanced interconnection optics 
including free-space links. 

Major Tasks / Milestones Metrics Targets Timeline 
(years) 

Advanced electro-optical 
modulators 

50 fJ/bit, linear footprint < 500 μm ER/IL = 1.0 3–5 
10 fJ/bit, linear footprint < 250 μm ER/IL = 2.0 6–9 
1 fJ/bit, linear footprint < 100 μm ER/IL = 5.0 10–15 
0.1 fJ/bit, linear footprint < 10 μm ER/IL = 10.0 16–20 

Advanced photodetectors GBP = Responsivity x Speed  
[ A/W x b/s] 

0.7 x 40 = 28 G 0–3 
1 x 50 G 3–5 

2 x 100 G 6–9 
10 x 200 G 10–15 

Optical I/O 
Coupling Efficiency x Channel 

count  
[% x n] 

50% x 1–4 0–3 
70% x 8 4–8 

90% x 64 9–15 
99% x 256 15+ 

Laser source Efficiency-Channel-Product  
[% x N] 

10% x 1 0–3 
20% x 8 3–6 

30% x 64 7–12 
50% x 256 12+ 

Waveguide (passive) platform Loss x bending-radius  
[dB/cm x um] 

0.2 x 50 0–3 
0.1 x 30 3–6 

0.01 x 15 7–12 
0.001 x 2 12+ 

Stakeholders and Potential Roles in Project 
Stakeholder Role 

Industry Groups Free MPW runs, then dedicated runs as partnerships 
End Users/OEMs Joint demo projects, sharing what end-use/product limitations exist, to help design 

new photonic ICs and components 
Academia Long-range and exploratory device and system technology development 

National Laboratories Metrology, placement for initial demonstrations, initial technology ‘leaps’ 
Government Funding support, convener role through centers of excellence 

Other Standards development (e.g., IEEE, SPIE) 
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• Academia: Photonics 10-year R&D center support for long-term planning 
(e.g., $20M for 10 years, $2M/year to fuel the technology pipeline) 

• Government: Funded centers of excellence, 2–3 programs, $50+M 
each, to accelerate the technology and connect R&D to product 
demonstrations 

• Materials and Devices: Develop more 
efficient EOMs (e.g., ER/IL) and 
photodetectors; optical coupling losses 

• Circuits and Architectures: Implement co-
design of driver/control of photonic 
components 

• Algorithms and Software: Optimize algorithms 
to increased bandwidth 

• Education and Workforce Development: 
Accelerate photonic IC design education and 
expertise 

 

2.3.3 3D Hybrid Bonding 
As 3D packaging approaches continue to evolve, a critical need is to develop capacity for robust 
wafer and die stacking with improved interconnect methods. The traditional C4 technology, 
which involves soldering connections at the corners of stacked chips, has been gradually 
superseded by copper bumps or microbumps. These create numerous vertical copper-to-copper 
interconnects between the stacked elements. offering enhanced bandwidth and energy 
efficiency compared to traditional soldering approaches. However, reducing the pitch—the 
distance between each connection—to less than 10–15 µm is essential for further bandwidth 
and efficiency gains. This miniaturization presents significant challenges, but is necessary to 
meet the demands of high-performance, energy efficient devices (Albright 2022). 

3D hybrid bonding, which creates chip interconnects using both metal (copper) and adjacent 
dielectric elements (SiO2, SiCN, SixNy), facilitates chip-stacking connections below the 10 µm 
level. These permanent dielectric-to-dielectric and metal-to-metal bonds can in turn deliver 
orders-of-magnitude improvements over copper microbumps, reducing signal delay, enhancing 
bandwidth and memory density, and improving energy efficiency (Hiebert 2023). 3D hybrid 
bonding is also referred to throughout the industry as a direct bond interconnect (DBI). 
Comparisons to other bonding methods and an example schematic of 3D hybrid bonding are 
shown in Figure 37 and Figure 38, respectively. 

 
Figure 37. Comparative images and size scales for solder, microbump, and 3D hybrid bonding interconnects. 

Source: Jani 2019 
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Figure 38. 3D hybrid bonding process with Cu vias and SiO2 films. Source: Ong et al. 2022 

Copper-to-copper bonding (µBump) is frequently used for 3D packaging due to its low resistivity, 
high energy efficiency, and ability to accommodate 15–20 µm pitch sizes. However, its high 
bonding temperatures and the difficulties in scaling below 10 µm make it impractical within many 
heterogeneous integration applications or with components (such as certain logic devices) that 
have a limited thermal budget. 3D hybrid bonding—using copper and a dielectric material—has 
proven suitable for mass production of CMOS devices and has the potential to achieve the 
interconnect densities that will be required for the next generation of vertically stacked 
packaging (e.g., 3D memory on logic integration). The dielectric materials bond well at lower 
temperatures without external pressure, eliminating many of Cu-to-Cu bonding’s thermally 
induced issues while potentially allowing for submicron copper pad pitch sizes and, most 
importantly, improving energy efficiency. 

Reduced pitch sizes and shortened 
electrical paths allow 3D hybrid 
bonding to achieve lower power 
consumption and latency relative to 
Cu-to-Cu bonds, while also reducing 
thermal resistance. Polymer 
adhesives/underfill materials are no 
longer needed because the dielectric 
materials themselves serve as the 
underfills. Wafer-to-wafer hybrid 
bonding approaches have been utilized 
in image-sensing applications for the past few years, and the potential benefits of hybrid 
bonding for enabling heterogeneous integration has led to a significant industry push in this 
direction (Albright 2022).  

Recent examples of commercial applications using 3D hybrid bonding include AMD’s 3D V-
Cache™ technology. It debuted in 2021 and has been implemented across various gaming and 
high-performance server processors. AMD described it as the industry’s first 3D product for 
HPC applications and the first demonstration of hybrid bonding used in these applications (AMD 
2023). The company has indicated >15x improvement in interconnect density and >3x 
improvement in interconnect energy efficiency relative to using 3D microbumps. IBM and 
ASMPT presented a new hybrid bonding method at the 2023 IEEE Electronic Components and 

Table 48. Impact and Timeline Estimates for 3D Hybrid Bonding 

3D Hybrid Bonding 

Energy 
Efficiency 

Improvement 
Incumbent Technology Timeline to 

Demonstration 

3x Cu microbumps 0 years 

 

 

https://doi.org/10.3390/ma15051888


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  146 

Technology Conference, touting a bond thickness between chiplets of around 0.8 microns 
(Murphy 2023) (significantly thinner than what is possible with solder). Finally, leading foundry 
United Microelectronics Corporation (UMC) has been working with Cadence Design Systems, 
recently certifying their 3D hybrid-bonding technologies within Cadence’s design platforms, 
allowing the foundry’s customers to develop 3D systems more easily and accelerate these 
systems’ time to market (UMC 2023) while improving energy efficiency.  

Challenges and Solution Pathways for 3D Hybrid Bonding 
Hybrid-bonding techniques are being implemented in various advanced 3D packaging 
applications. However, as the industry pushes toward single digit micron and submicron pitch 
sizes, key challenges such as device alignment and process controls become more critical and 
need enhanced solutions. Additionally, reliability issues such as electromigration and copper 
diffusion become more pronounced at these smaller scales and must be addressed. 

Alignment, Metrology, and Process Controls 

As pitch sizes shrink, tighter control of bond-pad alignment—with submicron accuracy—to 
ensure secure connections will be increasingly important. New metrology and process control 
techniques are needed, both to meet these requirements and to maintain satisfactory process 
yield. Different bonding structures and increased keep-out zones (i.e., unused die areas) may 
also be needed in some cases, such as with double-sided bonding. More stringent process 
control over aspects like chemical mechanical polishing (CMP), wafer dicing, wafer/die cleaning, 
dielectric thickness and surface topologies, and the dish-like shape of the copper pads must 
also be considered.  

Contamination control, bonding temperature precision (Hiebert 2023), and thermal-budget 
management—especially for cases involving elaborate 3D architectures—must also be dealt 
with going forward. Efforts to address these challenges will center around process optimization 
and continuous improvement. 

Die Integrity and Manufacturing Standards 

Particularly for die-to-wafer hybrid bonding, ensuring that only good dies are used is vital to the 
integrity of the final chip’s performance. Additional process control steps, along with accurate 
manufacturer-provided die-quality information, will be essential within such applications (Hiebert 
2023). New manufacturing standards will also be necessary to guide hybrid bonding’s strength, 
durability, cost, and emissions considerations going forward. These new standards will likely 
follow comparable copper-bond standards. 

Challenges at Reduced-Length Scales 

Potential challenges for bond reliability due to pitch shrinking and higher-density interconnects 
must also be identified and addressed going forward. These could include local current 
concentration and electromigration, short circuiting (due to dielectric breakdown and copper 
diffusion to dielectrics), dielectric reliability deterioration (due to shorter conduction paths), and 
path breakdowns (due to misalignment of the copper bonding pads). Additional work will also 
generally be needed in developing and improving 3D EDA tools for both multilayer and 
heterogenous integration.  
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Action Plan for 3D Hybrid Bonding 
Table 49. Action Plan for 3D Hybrid Bonding 

Scope 

Key Technology for Energy 
Efficiency High-performance and energy-efficient 3D hybrid bonding 

Technologies of Interest: 

• Ru-, Co-, Ir-, and Rh-based metal interconnects 

• Chip-to-chip: EMIB/Foveros, TSMC interposer, chiplet, Through silicon vias, hybrid bonding 

• Edge bonding  

Challenges Addressed Solution Pathways 

• Replace solder-based interconnect technologies with smaller, 
more densely packed interconnects featuring increased input 
and output pins to enhance the energy efficiency of 3D 
technologies. 

• New bonding methods enabling reduced pad size are required 
and must show thermal and mechanical reliability and electrical 
properties on par with those of metal-to-metal bonding. 

• Scaling Cu pitch sizes below 10 μm with high thermal budget. 

• Thermal budget differences for different components 

• Removal of CuOx for improved Cu-to-Cu connections. 

• Develop low-temperature bonding methods that can 
prevent Cu oxidation and enable fine-pitch structure with a 
high density. 

• Continue to integrate bumpless Cu hybrid bonding 
technology and surrounding dielectrics (e.g., SiO2, SiCN, 
SIN). Shown to be suitable for mass production of CMOS 
devices while increasing interconnect density below 10 μm, 
which can enable 3D stacking. 

• Develop inorganic dielectrics with low bonding temperature, 
alleviating thermal gradient issues. 

• Achieve lower power use and latency from reduced pitch 
size and shortened interconnect length with hybrid bonding. 

• Investigate optimal surface treatment methods to remove 
copper oxide, including methods like using cohydroxylated 
and cohydrophilic copper oxide. Explore selective thermal 
atomic layer deposition of copper and adjust bonding 
temperatures to improve the bonding interface. 

Major Tasks/Milestones Metrics Targets Timeline 

Understand the effect of bonding 
process parameters on hybrid 
bonding quality to allow good 
process control (e.g., mechanical 
polishing, wafer/die cleaning, and 
wafer dicing) 

• Improved device-to-device 
communication (TOPS/W) 

• Lower power delivery 

• Sufficient yield in comparison to 
solder techniques 

• Further reduction of thermal budget 
in hybrid bonding 

• Precise alignment with submicron 
accuracy, different bonding 
structures (for double-sided 
bonding), and increased keep-out 
zones to realize successful bonding 
and high yields 

0–2 years (initial 
deployment) 

2–5 years 
(process 

improvement) 

Require manufacturing standards 
to guide hybrid bonding strength, 
cost, and emissions 

• Comparable Cu bond 
standards 

• Meet testing standards for durability 

• Meet or beat emissions standards 
0–2 years 

Require high processing quality 
standards to control surface 
flatness for D2D or D2W hybrid 
bonding. Debris, burrs, and other 
particulates generated during die 
singulation would induce uneven 
topography of bonding surface 
and void formation, leading to 
poor electrical connectivity or 
open-circuit failure.  

• Flatness, low dishing 

• Via precisely controlled chemical 
mechanical polishing (CMP), achieve 
<1-nanometer surface roughness 
and <0.1-nanometer leveling of 
copper dishing for well-controlled 
thermal expansion. 

• Carefully determine bonding pattern 
density, configuration, and topology 
of adjacent layers to minimize 
impact to surface topography.  

0–2 years 
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Identify and address bonding 
reliability issues associated with 
high-density interconnects.  

• Pitch shrinking induced 
local current 
concentration. 

• Electromigration effects. 

• Short circuit due to 
dielectric breakdown. 

• Copper diffusion to 
dielectrics. 

• Dielectric reliability 
deterioration due to 
shorter conduction paths 
or breakdown paths 
caused by misalignment 
or overlay of bonding 
pads. 

• Improve the reliability of 
interconnects to sustain pitch 
shrinking down to submicron sizes. 

• Enhance the stability and 
performance under high-density 
conditions. 

Ongoing efforts 
with targeted 

improvements 
expected to be 
implemented 

within the next 3-5 
years 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 
• Continue to create and advance hybrid bonding, ensure reliability 

• EDA suppliers must advance current technology and simulation using high-density interconnect 
(HDI) 

End Users/OEMs 
• Redesign for the use of this technology to achieve speed and energy efficiency gains. Possibly 

add redundancy given reduction of size (HDI). 

Academia 
• EDA for design 

• Die thinning, co-planarity experimentation 

National Laboratories 

• EDA for design 

• Die thinning, co-planarity experimentation 

• Initial device prototyping 

• Simulation to understand transport properties with different bonding configurations 

Government • Funding, part stability (NASA, military, etc.) 

Required Resources Cross Collaboration Needs of Working Groups 

• Funding and locations for die thinning, application specific HDI 
equipment for smaller companies  

• Allocate resources for academic and national laboratory research 
on integration techniques and simulations, including device 
functionality, heat management, and power distribution. 

• Reliability testing  

• Hardened electronics 

• Manufacturing Energy Efficiency and Sustainability: Develop 
the hybrid bonding and Cu conductive pathway process; 
ensure alignment while moving to smaller pitch size for 
stacking. 

• Circuits and Architectures: Develop circuit designs and 
architectures that leverage advanced packaging 
techniques. Focus on scaling down global interconnects 
and enhancing thermal management to accommodate 
smaller device footprints and increased density. 

• Algorithms and Software: Explore potential need for new 
programming. 

• Power and Control Electronics: Deliver power through 
different architectures. 

 

2.3.4 Vertical Integration (2.5D/3D) 
Vertical 2.5D and 3D packaging approaches offer significant opportunities for creating more 
efficient and faster microelectronic devices compared to traditional 2D architectures, such as 
PCIe 2D interconnects. There has been a surge in advanced-packaging technologies over the 
past 25 years, building on earlier efforts in wire bonding and flip-chip approaches (see Figure 
39) and incorporating a diverse range of vertically oriented solutions that allow more efficient 
access to memory and other IC components. 
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2.5D/3D Nonmonolithic Technologies 
In advanced packaging, vertical 2.5D approaches generally utilize an interconnect carrier such 
as a silicon interposer layer, heterogeneous interconnect stitching technology (HIST), or bridge 
chips to route wires horizontally. 3D non-monolithic packaging involves two or more chips being 
stacked vertically, typically connected either with a through silicon via (TSV) and microbumps or 
through bumpless 3D hybrid bonding (Burkacky, Kim, and Yeom 2023). The wire lengths for 
2.5D integrations are generally in the 100 micron–5 millimeter range, while vertical 3D layers 
use TSVs and nanoscale vias with lengths around 100 nanometer–100 microns, affording 
significant efficiency and latency improvement potential in the transition from 2.5D to fully 3D 
architectures (Zhang, Zhang, and Bakir 2018). A detailed benchmarking study by Zhang et al. 
evaluated various 2.5D and 3D integrations—including bridge chips, interposers, HISTs, and 3D 
monolithic (discussed in the next sub-section) and non-monolithic approaches—based on 
typical configurations and component sizing. Figure 39 illustrates the schematics and relative 
capacitance breakdowns for these different signal channels. 
 

 
Figure 39. Digital signal channel paths and associated capacitance.(Left) schematics of digital signal channels: 
(a) bridge-chip 2.5D, (b) interposer and HIST 2.5D, and (c) 3D integrations; (right) capacitance breakdowns for these 

signal channels (ESD = electrostatic discharge capacitor). Source: Zhang, Zhang, and Bakir 2018 

Silicon interposers, which have been available for over a decade, incorporate horizontal 
electrical connections between adjacent die, combined with TSVs that pass vertically through 
the silicon die/wafer. Taiwan Semiconductor Manufacturing Company (TSMC) is the main 
industry supplier of a range of interposer technologies (Burkacky, Kim, and Yeom 2023). While 
interposers generally serve as a 2.5D interconnect technology, TSVs can also be utilized for 
fully 3D chip-stacking configurations. HIST uses a 2.5D and 3D design similar to an interposer 
configuration but uses stitch chips with high-density, closely packed wires along with multi-
height, compressible micro-interconnects (Jo et al. 2018) to enable chiplet-based designs.  

Bridge chips provide high-density interconnects between die and can achieve larger sizing than 
is often possible for silicon interposers, which can face cost and technical limitations (Bakir 
2022). Compared to interposers, bridge chips are a relatively new technology and typically use 
less silicon (Burkacky, Kim, and Yeom 2023). The following examples help illustrate the 
diversity of such technologies being explored or brought to market: Intel’s embedded multi-die 
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interconnect bridge (EMIB) silicon bridge technology uses thin silicon pieces embedded inside 
an organic substrate to connect adjacent die (Keser and Kroehnert 2019). Samsung, IMEC, and 
others have pursued similar 2.5D silicon-bridge approaches (Lapedus 2018). Intel’s Foveros 
technology is a 3D face-to-face connection between dice/chiplets that complements the EMIB’s 
2.5D functionality, using small microbumps to accomplish the chip-on-chip bonding and improve 
overall interconnect density (WikiChip 2023). Another significant development in chip stacking is 
AMD’s Ryzen technology, which employs hybrid bonding—not a bridge chip technology but 
rather a different approach to achieve a 3x improvement in energy efficiency (AMD 2023). 

A major bottleneck in advancing 2.5D and 3D HI technologies is the lack of standardization, 
notably the absence of universally adopted frameworks like the Universal Chiplet Interconnect 
Express (UCIe). This issue is compounded by the limited number of third-party vendors in the 
industry. Most major fabs typically do not incorporate wafers from external sources, limiting the 
diversity and innovation typically brought by third-party contributions. This restriction is 
particularly challenging for advanced packaging and fabrication processes like Through-Silicon 
Vias (TSVs) and die-to-die bonding, which require complex and extensive manufacturing 
infrastructure. Moreover, 3D monolithic architectures face significant challenges related to yield, 
cost, availability of suitable materials and devices, and effective thermal management (Zhang, 
Zhang, and Bakir 2018).  

3D Monolithic Technologies 
While 2.5D and 3D non-monolithic approaches offer significant energy and signal-delay 
improvements over traditional 2D packaging, the relatively large size and capacitance of TSVs 
remains a limiting factor. Current technology nodes are in the single-digit nanometer range, yet 
TSVs generally have diameters of a few micrometers, along with large pitch (30–50 µm), large 
keep-out-zones, and, accordingly, large capacitances (Dhananjay et al. 2021). Monolithic 3D 
integration technologies allow device layers to be sequentially assembled in the vertical 
direction; thus, multiple layers of transistors can be fabricated above a single substrate 
(Dhananjay et al. 2021). Monolithic inter-tier vias (MIVs) serve to interconnect these vertical 
device layers, where the vias’ diameters are orders of magnitude smaller than those of both 
TSVs and mini-TSVs (see Figure 40).  

The diagram shown in Figure 40 visually represents the size differences among 14-nm NAND 
gates, Monolithic Inter-tier Vias (MIVs, 50-nm), Mini TSVs (2µm), and regular TSVs (5-µm) 
compared to a 28-nm NAND gate. Each shape and size reflects the relative scaling: the small 
rectangle for the 14-nm NAND gate signifies its base size of 1 times; circles are used for MIVs 
and TSVs to indicate their cylindrical nature, which makes them appear disproportionately larger 
due to their area encompassing both the core and insulation; the larger rectangle represents the 
older technology of a 28-nm NAND gate, emphasizing the significant reduction in scale over 
time. The energy-saving opportunities from these various 2.5D and 3D vertical integration 
approaches are estimated in Table 49.  
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Figure 40. Relative sizes of typical NAND gates, MIVs, and TSVs. Source: Samal et al. 2016 

Lowering interconnect capacitance means lower energy per bit and higher bandwidth. For 
analog-sensing applications, it also means lower noise and power use in the subsequent 
signal/amplifier stage. While 3D monolithic integration faces several challenges distinct from 
those of the 2.5D and 3D non-monolithic approaches—including thermal management, cost, 
modeling, and yield constraints—the energy efficiency and latency benefits of 3D monolithic 
approaches make them promising for high-performance applications. With the ability to mix 
different process technologies into the vertical layers (logic + memory, logic + logic, logic + 
analog, etc.), monolithic 3D opens nearly endless IC design opportunities.  

Although there are currently no examples of commercially available 3D monolithic technologies 
(Dhananjay et al. 2021), these advanced packaging approaches are expected to play an 
increasingly important role over the next decade. Current limiting factors include overall 
manufacturing complexity, the need for low-temperature processing of the stacked device 
layers, and insufficient 3D design infrastructure and metrology.  

Vertical integration, sometimes referred to as “More than Moore,” is of great interest to the 
EES2 community, given its vast landscape of integration technologies with associated 
performance and energy efficiency improvements. Table 49 compares the various vertical 
integration approaches in terms of energy per bit; the TSMC interposer represents the 
commercial benchmark product for 2.5D as a mass-produced state of the art. 

Table 49. Energy Per Bit Comparisons of Different Vertical Integration Schemes 

Specified Technology 
Baseline 

Performance 

Commercial 
Benchmark 

Product 

Commercial 
Benchmark 

Performance 

Performance 
Multiplier 

Timeline 
(years) 

Bridge Chip, 
EMIB/Foveros 150 fJ/bit TSMC 

Interposer 263 fJ/bit 1.6 0 

TSMC Interposer 263 fJ/bit TSMC 
Interposer 263 fJ/bit 1 0 

Heterogeneous 
Interconnect Stitching 

Technology (HIST) 
259.9 fJ/bit TSMC 

Interposer 263 fJ/bit 1 0 

Through-Silicon Vias 
(TSVs) 176.2 fJ/bit TSMC 

Interposer 263 fJ/bit 1.5 0 

Monolithic Inter-Tier 
Vias (MIVs)* 0.1 fF TSV 5 fF 50 7–10 

Monolithic 3D 
135.1 fJ/bit  
(with ESD) 
3.7 fJ/bit 

TSMC 
Interposer 263 fJ/bit 

1.9  
(with ESD) 

71.1 
7–10 
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 (without ESD)  (without ESD) 
UCIe 250 fJ/bit (2.5D) PCIe 10 pJ/bit (2D) 40 1–3 

3D Hybrid Bonding** <1 3D microbump 3 >3 0 
Sources: Mahajan 2016; Angelini 2020; Zhang, Zhang, and Bakir 2018; Salman 2023 
ESD for monolithic 3D refers to ESD protection capacitor. 
*Energy per bit for MIVs are not found from literature; Using femtofarad to represent 
capacitance. 
*3D hybrid bonding energy metric taken from AMD. No approximation was done given the 
unknown size of 3D microbumps and how this affects energy per bit. 

Challenges and Solution Pathways for Vertical Integration (2.5D/3D) 
Development of Standard Interconnect Schemes for 2.5D/3D ICs 

There is currently a lack of standardization for 2.5D and 3D heterogenous-integration 
approaches. The ability to more readily mix and match dice/chiplets and other IC devices from 
different manufacturers and different technology nodes, for example, would allow for integrators 
to adjust more easily to supply chain issues or incompatibilities between different generations of 
technology nodes. An interconnect standard for 3D ICs (similar to UCIe) alongside creation and 
adoption of fabrication standards for heterogeneous integration—as well as 3D-compatible 
process design kits (PDKs) from foundries—would all serve to facilitate more rapid development 
and deployment of HI solutions. 

New Electrical Design Automation Tools for 3D IC Co-Design 

To reduce design time and risk, development of 3D electronic design automation (EDA) tools for 
both multilayer and heterogeneous integration will be essential. These resources will need to 
allow for co-design of different technologies and applications, satisfying key energy and 
performance constraints while modeling important criteria such as thermal loads, 
electromagnetic interference, and resource optimization. The collective expertise from the 
industry and academia ensures the development of comprehensive security and verification 
methodologies, as discussed in sections 2.2.7 and 2.3.6 of the roadmap.  

Prototype Development Issues 

If fabs limit or do not allow other intellectual property into their facilities, this will hinder 
widespread success of APHI. The creation of an integration-minded fab/fablet might be of use in 
overcoming such obstacles. Academia will need access to integration-minded facilities to 
develop prototypes and help grow a workforce with the essential working knowledge of 3D ICs. 
Potential solutions include establishing access to small-volume production and prototyping 
facilities to foster innovation and workforce development, along with building a domestic supply 
chain that incorporates integration vendors capable of accepting and combining wafers from 
various foundries.  

Bolstering domestic fabrication capabilities would improve prototyping, allow for PDK 
development, and ideally establish libraries that encompass chiplets, 3D stacks, and monolithic 
3D. Ultimately, the industry must be able to provide small-scale 3D manufacturing/packaging 
capabilities at a reasonable cost.  

Power Delivery 
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2.5D/3D architectures present unique power delivery challenges. Unless die on different 
process nodes have separate power sources, stacked chips can compete for power resources, 
and transistors toward the top of a stack will see greater drops in voltage due to power traveling 
through multiple TSVs (SRC 2023). New power delivery methods and novel materials for power 
delivery are both needed. Technical targets identified include maintaining voltage noise within 
5% to 10%, power efficiencies greater than 95%, and on-die temperatures less than 80°C. 
Additional considerations related to power delivery can be found in the Power and Control 
Electronics section of the roadmap.  

2.5D/3D Nonmonolithic Package Assembly 

The transition to AP represents a significant shift in how wafer packaging is typically handled 
today. Currently, back-end packaging is most often outsourced to semiconductor assembly and 
test companies (OSATs) (Burkacky, Kim, and Yeom 2023). However, some of the APHI 
technologies mentioned will require processing conditions more typical of front-end fabrication 
and/or have stringent processing requirements. This may alter the role and importance of 
OSATs.  

Thermal Budget Constraints 

Novel packaging schemes that integrate devices with one another will increase thermal density, 
requiring new methods for heat removal. As thermal densities reach over 100 W/cm2, 
conventional air cooling will reach its limits. This requires investigation into improved TIMs, such 
as nano-etched surfaces with high elastic modulus and thermally conductive materials; 
improved heat sinks (such as nanodiamond copper); or water-cooled microchannels etched in 
copper; alongside system-cooling technologies such as immersion cooling or direct cooling 
through microfluidic channels (IEEE HIR 2023). Additional information on thermal budget 
challenges and solution pathways is found in section 0, Thermal Management. 

Action Plans for Vertically Integrated Devices and 3D Monolithic Integration 
Table 51. Action Plan for Vertically Integrated Devices 

Scope 

Technology for Energy 
Efficiency 

• Energy-efficient vertically integrated devices 

Technologies of Interest: 

• Chiplets for 2.5D integration 

• Wafer-to-wafer 3D stacking 

• Monolithic 3D integration with Multi-tier Vias (MIVs) 

Challenges Addressed Solution Pathways 
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• All functional units implemented with the same technology node, 
leading to inefficiencies. 

• High energy consumption for data movement within and between 
chips. 

• Significant RC delays and signal issues in large interconnects. 

• Low yield in monolithic 3D technologies. 

• Limited availability of EDA tools for effective 3D integration. 

• Lack of access to small business and university facilities, which 
hampers innovation. 

• Develop and adopt universal standards and PDKs for HI 
and 3D fabrication. 

• Standardize interfaces for different functions within chiplets 
and 3D stacks. 

• Create and refine 3D EDA tools to support co-design across 
different technologies. 

• Enhance security and verification for new EDA tools. 

• Establish a robust supply chain for heterogeneous 
integration. 

• Enable small-volume production and prototyping to 
encourage innovation. 

• Apply co-design strategies to manage thermal integration 
and reduce required energy in 3D and monolithic 
architectures. 

• Utilize novel materials and advanced techniques for high-
yield monolithic 3D integration. 

• Integrate memory technologies like NVM in 3D 
architectures to reduce latency and energy consumption. 

Major Tasks/Milestones Metrics Targets Timeline 

Development of standards, 
including pin maps 

• Adoption time 

• Cost 

• Quick turnaround time for R&D 

• Cost reduction 

• Adoption of standards 

3 years 

3D native EDA tools 

• Complexity/runtime 
accuracy 

• Ability to capture thermal 
issues and thermal 
optimization 

• Reduction in design time and risk, 
Improvement in runtime accuracy 

3–5 years 

Power delivery and thermal 
management 

• Voltage noise 

• Temperature (transient 
and steady-state) 

• Power loss  

• Maintain voltage noise within 5%–
10% 

• Power efficiencies larger than 95%  

• On-die temperatures <80°C 

3–5 years 

Domestic fab/fablet • Cost 

• Production capacity 

• Prototyping capability 

• Build PDKs, libraries for chiplets 

• 3D stacks 

• Monolithic 3D 

5 years 

Development of novel materials 
• Thermal dissipation 

capability 

• Yield for monolithic 3D 

• Reduce I/O parasitics 

• Increase thermal conductivity 
5 years 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 
• E.g., integration/assembly vendors/suppliers 

• Provide small-scale manufacturing/3D packaging capability at reasonable cost 

End Users/OEMs • Negotiate with stakeholders for providing IP resources 

Academia 

• Models and frameworks for benchmarking different 3D technologies 

• Cross-layer optimization methods to satisfy runtime thermal constraints 

• Provide workforce that is knowledgeable in advanced 3D packaging and monolithic 3D 
integration 

National Laboratories 

• Development of novel materials, thermal solutions, simulation capability for temperature, 
154ultiphysics 

• Lead support; act as a support center for academic community 

• Lead development of standards for ease of adoption of 3D heterogeneous integration (3DHI) 
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Government 
• Financially support the supply chain 

• Establish ecosystem providing design and prototyping capability 

Required Resources Cross Collaboration Needs of Working Groups 

• Manufacturers/Suppliers: Funding and availability of users, 
potential tax incentive by government 

• Academia: Test equipment for validation, funding for prototyping 
and education 

• National labs: HPC equipment 

• Government: Funding and resources such as real estate, water, 
and electricity; tax incentives for using national 
vendors/suppliers 

• Algorithms and Software: Develop new design, new 
algorithms 

• Power and Control Electronics: Develop new design, new 
power paradigm 

• Metrology and Benchmarking: Understand and mitigate 
failures  

• Education and Workforce Development: Train next-
generation workforce in chiplet design and test flow, chip 
stacking, and monolithic 3D integration. As 3D native tools 
are developed, the workforce should also be familiar with 
them and 3D-specific design/test methodologies. With 
these advanced technologies, the boundary between 
package and die designs is less clear. New educational 
materials should be developed to consider these 
characteristics. As domestic fabs for chiplet design and test 
flow technologies emerge, they will need more workers in 
diverse fields, including electrical engineering, mechanical 
engineering, materials science, and chemistry.  

 

Table 50. Action Plan for 3D Monolithic Integration 

Scope 

Technology for Energy 
Efficiency 3D Monolithic Integration 

Technologies of Interest: 

• Monolithic inter-tier vias (MIVs), interlayer dielectric (ILD) interconnect 

• Alternative low-temperature devices, processes (CNTFETs, NRAM, ReRAM, rapid annealing 
[e.g., thermal, laser, other])  

• Thermal coupling between devices integrated on one another; may be more challenging (need 
to design for thermal coupling). 

Challenges Addressed Solution Pathways 

• Reduction of RC delay, interconnect length. 

• Faster access to upper or lower tiered device (memory, logic, 
other in different tier). 

• Reduced footprint vs. co-planar solution. 

• Thermal management for 3D ICs. 

• TSV RC delays. 

• Develop MIVs for improved data transfer, reduced RC delay, 
and significant improvements in energy savings. 

• Enable mixing of process technologies (logic + memory, 
logic + logic, logic + analog, etc.). 

• Co-design 3D monolithic architecture with thermal 
performance and software. 

Major Tasks/Milestones Metrics Targets Timeline 

Standards development  

• Adoption rate of new 
standards 

• Compatibility with existing 
fabrication processes 

• Ease of integration into 
existing manufacturing 
environments 

• Achieve industry adoption  
• Ensure compatibility with current 

leading-edge fabrication processes 
• Develop guidelines that simplify 

integration into any standard 
semiconductor manufacturing 
environment  

Varies 

Fabrication of monolithic 
integration 

• Low-temperature 
processes compatible with 
FEOL 

• MIV process development 

• Thermal mitigation 

• CNTFETs (low T), NRAM (SRAM 
replacement), FeFETS, low-temp. 
silicon (CEA-List), junctionless 
transistors (UIUC; III-V materials on 
BEOL for RF application, carbon 
nanowires, GaN devices) 

• Low-temp. annealing methods: 
Laser, quick thermal anneal without 

Certain 
technologies are 
available now, 

NRAM integration, 
ReRAM 

integration 
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distribution to bottom layers, 
microwave annealing 

Co-design and tests 

• Thermal simulation, 
device performance, EDA 
software for design is 
lacking 

• Conventional test 
methods are not 
applicable (non-idealities 
of upper tiers) 

• See Action Plan for Vertically 
Integrated Devices 

• Better probing techniques (finer 
granularity, deeper), focused ion 
beams (FIBs) for SEM/TEM for 
analysis. X-ray/acoustic imaging: 
look at devices at a given depth, 
something high throughput. 

Varies 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers Focus on FEOL processes by testing chips and wafers; extend to commercial foundries for 
scale-up. 

End Users/OEMs Drive demand for efficient and low-energy chips through NMI; facilitate efficient logistics for 
intra-fab shipments. 

Academia Lead in demonstrating technology, developing new materials, optimizing designs, and training 
the next generation of engineers. 

National Laboratories Serve as early technology adopters and supporters, providing MPW access and fostering the 
commercial availability of advanced technologies. 

Government Support research and technology transfer between public institutions and private industry, 
ensure funding and foster inter-sector collaboration. 

Required Resources Cross Collaboration Needs of Working Groups 

• Universities and Start-ups: Setting up fablet facility for innovation 
and practical applications. 

• Industry: Circuit design, EDA, and fabrication resources to enable 
the technology, and new PDKs that support the technology (see 
Action Plan for Vertically Integrated Devices). 

• Academia: Education and workforce development, such as 
training students on important challenges (design for thermal 
integrity, testing). 

• National Labs: HPC for materials and process development (EDA, 
simulation at material level of device, computation). 

• Circuits and Architectures: Develop new designs. 

• Power and Control Electronics: Implement new power 
distribution (ultra-thin dielectric). 

• Algorithms and Software: Develop new computing 
paradigm. 

• MEES: Implement new process development. 

• Metrology and Benchmarking: Implement new reliability test 

• See Action Plan for Vertically Integrated Devices for 
additional considerations. 

2.3.5 Thermal Management 
The advancement of next-generation, energy efficient APHI technologies necessitates an 
intensive focus on thermal management strategies at both the die and system levels, the latter 
of which is detailed in the Power and Control Electronics (PACE) chapter. With the ongoing 
increase in the density of interconnects, transistors, and memory cells, there is a corresponding 
rise in power density, which essentially refers to the amount of heat generated per unit area. 
This increase in power density leads to greater energy consumption due to heightened device 
and chip parasitics and increases the demand for effective heat dissipation solutions. This 
problem is further exacerbated by chip stacking, which concentrates the power density and heat 
of multiple chips into the footprint of just one chip (IEEE HIR 2021). 
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Fundamentally, power consumed in the circuitry is manifested as heat that must be dissipated, 
and while lower-resistance interconnects, memory cells, and transistors will help, heat 
generation remains inevitable due to the inherent switching energy and contact resistance of 
these components. With the shrinking of transistor devices, DRAM, and other components, the 
leakage current is increasing, as is the heat produced (Kao, Kuo, and Dai 2016). The 
performance of all cell types—logic, memory, and even interconnects—worsens with increased 
heat (Weste and Harris 2011), while energy consumption rises. For example, DRAM operating 
outside its nominal temperature range can have a performance degradation of 8.6% and 
increased power consumption (due to leakage) of 16.1% (Zhang, Sarvey, and Bakir 2014). It is 
paramount to devise secondary methods for heat removal at the device/die and system levels, 
both to maintain device performance and to avoid unnecessary increases in energy 
consumption. 

Chip stacking and 3D monolithic integration are inevitable, as are the complex heat-removal 
technologies that must be developed to enable them and boost their energy efficiency. 
Temperature coupling between device stacks only worsens when they are integrated vertically 
(Sarvey et al. 2015; Zhang, Sarvey, and Bakir 2014). Additionally, heat removal is more difficult 
in 3D IC designs, given the increased distance from the heat spreader (Kumar and Naeemi 
2017). To help enable the next revolution in microelectronics packaging, the APHI working 
group focused on interfacial heat removal technologies (called thermal interface materials 
[TIMs]). The sections below describe the background, technology comparisons, challenges, and 
solution pathways for TIMs.  

Thermal Interface Materials 
In conventional packaging, heat generated by the device is transferred through the 
interconnects and BEOL layers, which may have heat-isolating properties, toward the heat 
spreader and subsequently to the heat sink. However, when chips are stacked, the path for heat 
to travel from the inner chips to the heat spreader lengthens, exacerbating thermal management 
challenges. To mitigate these heat conduction issues, TIMs are placed at the interfaces 
between chips to help facilitate heat transport toward the heat sink for eventual removal from 
the system. The use of TIMs is crucial for mitigating localized hot spots, which tend to be less 
energy efficient and can degrade overall device performance. 

TIMs must be thermally conductive to remove the generated heat. They should also be capable 
of completely filling the gaps between contact surfaces, accommodating the surface roughness 
of the contacting layer, and remain mechanically stable through numerous thermal cycles as the 
device powers on and off. TIMs have two distinct levels: TIM 1 which conducts heat from the die 
to the heat spreader (typically made of copper), and TIM 2, which facilitates heat transfer from 
the heat spreader to the heat sink (Jensen and Lasky 2020). The choice of TIMs usually 
depends on their thermal conductivity and elastic modulus to ensure efficient heat management  

As shown in Table 51, TIMs can make significant improvements over the state of the art in 
terms of materials’ thermal conductivity and can incorporate engineering features that decrease 
the temperature of the chip overall. However, significant challenges related to TIMs remain, as 
discussed below. 
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Table 51. Performance of Advanced Thermal Interface Materials Compared to Baseline Technologies 

Technology 
Group Specified Technology 

Baseline 
Energy 

Performance  

Commercial 
Benchmark 

Product 

Commercial 
Benchmark 

Energy 
Performance 

Performance 
Multiplier  

Timeline 
(years) 

Advanced 
Thermal 
Interface 
Materials 

(TIMs) 

Liquid metal paste 
(LMP) solder with 
polymer (Indium-

based) 

70 W/m∙K 
(thermal 

conductivity) 

polymer-
based paste, 
conductive 

filler particles  

10 W/m∙K  7 2 

Carbon nanosprings 
in conductive polymer 100 W/m∙K  

polymer-
based paste, 
conductive 

filler particles 

10 W/m∙K  10 2 

CNT-based thermally 
conductive matrix 63.7 W/m∙K 

polymer-
based paste, 
conductive 

filler particles  

10 W/m∙K  6.4 2 

Graphene-based 
conductive matrix 40–90 W/m∙K  

polymer-
based paste, 
conductive 

filler particles  

10 W/m∙K  4–9 2 

Nanostructure 
engineering to 

increase surface 
contact area of TIM 

with 5.4 W/m∙K at 17 
CFM air flow 

58°C (device 
temperature) 

Indium 
(~70 W/m∙K) 73°C  1.26 5 

 

Challenges and Solution Pathways for Thermal Interface Materials 
Poor Understanding of Thermal Interface Resistivity 

Although thermal interface resistivity is often poorly understood, it likely defines heat removal 
characteristics. Advanced TIMs presented in the literature tend to generate excitement because 
of the high thermal conductivity of these new materials. However, thermal conductivity alone is 
not an adequate performance indicator. Materials such as CNTs and graphene provide bulk 
thermal conductivity in the thousands of W/m∙K, but there have been no measurements of 
graphene or CNT TIMs showing greater than 40–90 W/m∙K. The primary reasons for differences 
between theoretical and measured heat transfer are: 

• The materials must have adequate contact (lowering thermal interface resistance with the 
substrates) to promote heat transfer (Jensen and Lasky 2020). 

• Material phonon modes need to overlap for adequate heat transfer. 

• Heat transfer in certain materials is anisotropic, meaning it varies with direction, which can 
restrict heat transfer across different axes (Guo et al. 2021; Refai-Ahmed et al. 2018). In the 
case of anisotropic TIMs, interfacial heat transfer can be limited because the heat at a hot 
spot cannot be conducted laterally. In contrast, isotropic (direction independent) heat 
transfer can be approached through alignment technologies such as embedding Carbice™ 
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CNT forest (anisotropic heat transfer) in an aluminum “sandwich” (isotropic heat transfer) 
(Green, Prinzi, and Cola 2016). 

Ensuring the best possible surface contact is important for maximizing heat transfer. For 
instance, increasing the surface contact area of the flexible TIM between the IC and heat sink 
significantly reduces temperature compared to normal higher-thermal-conductivity TIMs, as 
thermal resistance is a function of surface area (Guo et al. 2021). Nanoengineering the IC 
surface and heat sink to promote increased thermal transfer via improved interfacial 
conductance will complicate the manufacturing process. However, it is likely needed to help 
ensure adequate heat removal in 3D ICs. 

Because interfacial contact and resistance is the primary indicator of whether a TIM with good 
thermal conductivity will promote adequate heat removal, the heat transfer process must be 
better understood, tested, and simulated. Conventional heat measurements for thermal 
conductivity should be performed, but there must also be adequate device performance 
demonstration with each TIM integrated. An industry-standard device or device architecture 
should be implemented to allow standardized testing for publication of new TIM specifications 
that will be adequate for next-generation 3D ICs. All of the considerations listed above could be 
added into EDA software via a TIM PDK for improved thermal modeling. 

Compatibility With New Advanced System Cooling Technologies 

Conventional technologies utilize a heat sink combined with forced air flow for removing heat 
from the system. While this approach is viable for 2D electronics, it may not be adequate as the 
industry moves into 3D ICs. Next-generation cooling techniques—such as microfluidic cooling, 
immersion cooling, and direct liquid cooling—are in development and need the help of 
advanced TIMs. The TIMs must be compatible with the cooling environment.  

Mechanical Durability Through Coefficients of Thermal Expansion Mismatch Affecting 
Long-Term Thermal Cycling Stability 

Effective TIMs must be capable of accommodating the differential coefficients of thermal 
expansion (CTE) between the two surfaces they connect. The CTE measures how much a 
material expands when heated and contracts when cooled. This differential in expansion rates 
can lead to mechanical stress during thermal cycling, which is the process of repeated heating 
and cooling that occurs in operational environments (Guo et al. 2021). Conventional materials 
such as Cu, In, and Al, which have great thermal conductivity, lack the malleability to adjust to 
thermal expansion and contraction when in contact with surfaces. These more rigid materials 
also will have more trapped air pockets, which reduce thermal transport and increase localized 
heating. This in turn leads to lower thermal cycling lifetimes. However, materials that do have 
the ability to survive the changing expansion—such as Carbice CNT forests with polymer, 
CNT/graphene pastes, and high-elastic-modulus materials—will be better suited for long-term 
stability (Green, Prinzi, and Cola 2016; Guo et al. 2021). 

Action Plan for Thermal Interface Materials 
Table 52. Action Plan for Thermal Interface Materials 

Scope 

Technology for Energy 
Efficiency Thermal interface materials 
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Technologies of Interest: Thermal interface materials (TIM1–2) 

Challenges Addressed Solution Pathways 

• Interfacial adherence and defect impact on heat removal 

• Testing and simulation standardization 

• Compatibility with advanced cooling technologies such as 
immersion cooling 

 

• Design materials whose intrinsic properties can be 
simulated. Contemporary example: TIM based on elastic 
CNT on aluminum backbone.  

• Explore in situ, real time interfacial monitoring. 

• Scale technologies that enable mapping and simulation of 
thermal resistance distribution at the real-application 
interface. 

• Expand focus on TIM for ongoing consortia working on 
material design. 

• Develop scalable algorithms that accurately translate 
technology-enabled interface mappings into simulations 
that reflect the actual distribution of interface resistance in 
practical applications. 

• Propose standardized testing protocols that transition from 
measuring thermal bulk properties to evaluating thermal 
interface conductivity, ensuring realistic performance 
expectations are met. 

Major Tasks/Milestones Metrics Targets Timeline (Years) 

Gather data to bridge the gap 
between bulk material properties 
and system-level performance, 

enhancing insights at the 
interface through in situ 

monitoring. 

-- Understand failure mechanism (bulk 
properties vs. system level) 2 

Understand and list optimal 
material properties (at bulk and 

system interface). 
-- Distill a list of optimal material properties 

for TIM 2 

Check chemical compatibility with 
cooling environment. 

Toxicity, durability in 
advanced cooling 

environment (e.g., immersion 
cooling) 

Non-toxic, reliable thermal performance 
under advanced cooling conditions such 
as immersion cooling (dielectric fluid or 

refrigerant coolant)  

2–5 

Communicate findings between 
standard-making entities (NIST) 

and industry. 

Proper communication 
between NIST and industry 

White paper/guideline published by 
NIST on TIM design and application 2–5 

Develop technology and 
algorithm for interface mapping 
(interface thermal resistance). 

Accuracy, resolution, 
throughput, and compatibility 

with in-situ testing 

Develop technology for mapping 
thermal interfaces that integrates with 

simulation tools, enabling high-
throughput design of thermal 

management solutions 

2–5 

Develop standard set of tests to 
use (inter-agency NIST, DOE, 

ASHRAE, etc.). 
-- 

Testing including over-time performance 
to evaluate  

reliability of TIM 
3–6 

Overall Goal: Design material 
with optimal properties. Conduct 

gap analysis for engineered 
materials and composites. 

Better TIM with improved 
system-level thermal 

performance 

Improve system-level thermal resistance 
through the development of technology 

and simulation tools that enhance 
interface performance and throughput 

5–10 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • Encourage to do more research via, e.g., government providing findings or potential tax benefit. 

End Users/OEMs • Provide wish list for DOE or assigned national laboratory. 

Academia 
• Identify novel thermal materials suitable for coating on chips and packages to serve as heat 

sinks or thermal redistributors. 

• Find better and easier equivalent or alternative testing method for HI. 
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National Laboratories 
• Provide examples or standards for testing routine and equipment. 

• Provide testing capabilities for researchers and suppliers. 

Required Resources Cross Collaboration Needs of Working Groups 

• Government funding for material design innovation and 
manufacturing upscaling. 

• Access to HPC server application testing facilities. 

• Reliability, energy efficiency, and ease-of-use (modularity, 
sustainability) standards. 

• Funding for fundamental research and tools on 
understanding/improving interfacial thermal resistance and on 
low-energy, scalable manufacturing methods. 

• Measuring and testing equipment and tools for understanding 
interface performance, reliability, energy efficiency, and ease of 
use. 

• Shared findings, best practices, and handbook.  

• Power and Architecture: Consider thermal management in 
designs; have better thermal understanding when running 
simulations. 

• Materials and Devices: Define requirements that materials 
must meet to be selected for use as TIMs at different layer 
levels. 

• Education and Workforce Development: Develop updated 
tools and comprehensive education for industry. 
Universities should offer cross-disciplinary training in 
materials science, heat transfer, mechanical engineering, 
and simulation to better prepare system engineers for 
industry challenges. Enhancements may include developing 
cross-disciplinary curricula, establishing endowed chairs in 
APHI, and creating university/lab centers. 

 

2.3.6 Packaging Electronic Design Automation/Process Design Kits/Assembly 
Design Kits 

Historically, packaging design focused on providing mechanical stability and facilitating power 
distribution and data transfer through features like ball grid arrays on printed circuit boards and 
redistribution layers (RDLs). With the advent of more complex devices, however, the shift 
toward 2.5D components using embedded multi-die interconnect bridge (EMIB), interposer 
technologies, and 3D integration necessitates advanced EDA tools. These tools are essential 
for managing increased interconnect density, refining design protocols, and enhancing 
simulations to keep pace with evolving packaging technologies (Acito 2019; de Geus 2023). 

Today, the chip industry navigates between two distinct design paradigms. The first 
encompasses traditional SoCs connected to PCBs. The second focuses on shrinking 
interconnects near the IC scale for multi-stacked chips, such as flip chip and hybrid bonding 
used in High Bandwidth Memory (HBM), and for stacked systems like DRAM Cache, both of 
which necessitate innovative packaging techniques. The use of diverse IP blocks, defined as 
reusable units of logic or data such as microprocessors or memory arrays, has led to a 
proliferation of design capabilities, complicating the design and simulation processes. 
Additionally, multi-domain components such as analog, digital, RF, and photonics increase 
design complexity. The scope for simulation now extends to multi-physics problems that involve 
electrical, mechanical, thermal, optical, and acoustic properties. Consequently, issues such as 
heat and electrical crosstalk, which have become more prevalent in design layouts, modeling, 
and device performance simulations, must be thoroughly addressed. EDA software must 
continually evolve to accommodate these increasing complexities in design and simulation. 

Because EDA is a software-based tool, it does not directly affect the overall energy usage of 
microelectronics. However, it does help reduce microelectronics’ energy consumption through 
advanced design and simulation, which creates effective, energy-efficient devices with improved 
performance. Beyond this, EDA reduces costs through prototype failure-mode analysis.  



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  162 

Challenges and Solution Pathways for Packaging Electronic Design 
Automation/Process Design Kits/Assembly Design Kits  
System Technology Co-Optimization 

System technology co-cptimization (STCO) is an approach that extends design technology co-
optimization (DTCO) principles to the system level. It deconstructs the conventional SoC into 
distinct functional components—such as I/O, cache memory, and HBM—and optimizes their 
integration on a silicon die, typically using chiplets (Moore 2023; Siemens 2021). This method 
facilitates collaboration between design and manufacturing teams to refine IP block 
functionalities, communication protocols, and interconnections. Similar to DTCO, where circuit 
design and process teams work together to optimize device elements like transistors, STCO 
leverages chiplet-based designs or standardized interconnect I/O layouts. This approach 
enables the assembly of advanced circuitry that delivers enhanced performance and reduced 
power consumption. 

There are two main benefits of using the STCO technique. First, it allows for improved design 
through standardization, and second, it facilitates early analysis to discover related issues in the 
design phase rather than in prototype hardware. Simplifying the components and standard 
interfaces (I/O interconnects) should enable development of an early package prototype with 
enough information for initial performance simulations, especially when combined with EDA 
software assembly design kits (ADK) that provide design rules for chiplet devices with 
associated simulation parameters (Siemens 2021; Heinig and Fischbach 2015). With the aid of 
simulations, the design and manufacturing teams can work to improve all components 
simultaneously for optimal performance and energy efficiency. As a result, STCO will enable 
more energy efficient 3D stacked architectures. 

Standards for Package Assembly Design Kits With Vendor Support 

Process design kits (PDKs) allow for continued improvements in the performance of device 
architecture through collaboration with foundries and designers. Current 3D design software is 
limited to specific packaging types requiring high-effort, user-specific scripting to enable 
advanced layouts (Heinig and Fischbach 2015). Without specific information about the design 
and manufacturing of components, the package designer cannot adequately simulate the 
electrical, thermal, or mechanical behavior of the package. To help enable package and device 
simulations, an ADK is needed.  

ADKs contain design rules and simulation information analogous to a PDK. They contain the 
manufacturing steps, including the assembly technologies used (e.g., copper wires), the 
materials properties relevant to simulations (such as mechanical, thermal, and electrical); the 
geometrical information for interfaces such as input/output for die and substrate technologies; 
and, lastly, design rules such as component clearance, interconnect sizes, and pitches. With all 
this information, along with EDA and STCO, package designers and manufacturers can 
complete initial prototype design and simulations for the next generation of packaging 
technologies. This information should also enable 3D chip stacking and simulate the relevant 
challenges. Importantly, standards should be set for assembly design kits, such as utilizing 
chiplet technology for interconnect schemes, that can be bought or shared with vendors. This 
standardization is particularly important for managing thermal challenges associated with device 
stacking (Kao, Kuo, and Dai 2016). 
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Enhancing Simulation Algorithms To Reduce Computational Demands 

As the industry adopts a "shift left" approach—moving testing and verification earlier in the 
development process—through STCO, there is an escalating need for sophisticated simulations 
that can accurately model the multi-physics aspects of devices and packaging, including heat, 
power, and energy consumption. While traditional CPU and GPU cores generally suffice for 
these tasks, there is room for optimization. Recognizing the specific requirements for multi-
physics simulations, the development of specialized algorithms and dedicated hardware 
architectures—such as CIM or DSA—could drastically reduce both simulation times and energy 
costs. This targeted approach would enable faster development cycles for prototypes, yielding 
devices with markedly better performance and energy efficiency compared to existing solutions. 

Artificial-Intelligence-Driven System-Level Optimization 

System-level optimization in packaging design involves multiple teams, including device 
manufacturers, designers, IC layout teams, and ADK providers. Leveraging AI in this process 
can streamline the design, enhancing both performance and energy efficiency. AI has already 
proven effective in EDA for optimizing complex architectures, such as next-generation 
processors (de Geus 2023). By implementing AI, the design time for intricate projects, like 
GPUs, has been dramatically reduced—from the traditional months-long process requiring 
extensive engineering resources to significantly shorter periods (Hilson 2023). Utilizing AI 
specifically tailored for package design could accelerate prototype development, minimizing 
both time and resource expenditure, and fostering quicker iterations and enhancements in 
package solutions. 

Action Plan for Packaging Electrical Design Automation/Process Design 
Kits/Assembly Design Kits 
Table 55. Action Plan for Packaging Electrical Design Automation/Process Design Kits/Assembly Design Kits 

Scope 

Technology for Energy 
Efficiency Electronic Design Automation for Packaging. 

Technologies of Interest: 

• Chip-stacking, 2.5D and 3D technology. Efficient handling of system complexity. 

• Multi-domain floor planning (digital, analog, RF, and photonic ICs) 

• Co-design/simulation and verification of different domains from different foundries 

• Mixed-signal (digital/analog/optical) functional verification 

• Package design: mechanical, PCB 

Challenges Addressed Solution Pathways 
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• 3DHI challenge: Moving from D(esign)TCO to S(ystem)TCO 

• Standard pin map options 

• EDA algorithms for simulation of the full system 

• AI utilization at the system level 

• Optimize STCO to include component model, design full 
system, and handle interface where packaging meets chips. 
Designs are first optimized with individual DTCO flows for 
each 3DHI layer. Chips are integrated with 
packaging/interconnect layers using DTCO + packaging co-
design. System is combined and optimized through the 
STCO flow to create the final optimized stack. 

• Develop and adopt standards for package assembly design 
kits that different vendors can support. Standard pin maps 
can give DC/AC models for each option. 

• Optimize simulation algorithms to reduce reliance on CPU 
and GPU cores, thereby decreasing power and memory 
usage, and incorporate neuromorphic computing and deep 
learning techniques to enhance problem-specific 
processing efficiency. 

• Implement AI-driven optimization across system levels to 
enhance cost-efficiency and performance, focusing on 
analog and digital design optimization, and design 
verification. Extend optimization efforts to encompass all 
domains, including packaging, to achieve comprehensive 
improvements in reliability, yield, thermal management, 
and signal integrity. 

Major Tasks/Milestones Metrics Targets Timeline 

Technology definition for 
standardization 

Size, height, technology for 
PCB/packaging Library standardization for EDA  1–3 years 

Demonstrate how STCO can be 
applied to a 3DHI phased array 

antenna to consume less energy 

Size, weight, and power 
(SWAP) 10x improvement 3–5 years 

AI-driven, system-level 
optimization Cost and Efficiency 2x improvement (cost) and 10x 

improvement (efficiency) 5–7 years 

Improving solution algorithm  
Simulation time, memory, 
compute power, energy, 

thermal load 
100x–1,000x improvement 8–10 years 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 
• EDA vendors 

• Define, develop the software 

End Users/OEMs 

• Help with standardization 

• Validate software for simulations  

• Provide feedback on new designs/design flow 

• Work with foundries 

Academia 
• Train students in system knowledge (3DHI, APHI, packaging) 

• Fund PhD research (new algorithms, designs, AI) 

National Laboratories • Develop HPC comparison, new algorithms, and AI development 

Government • Fund academic/national lab research 

Required Resources Cross Collaboration Needs of Working Groups 

• Partnerships between EDA/partner manufacturers for continual 
development (loaning parts, paying for parts, funding for 
hardware evaluation). HPC resources for improvements in 
algorithm design for simulations. 

• Funding for initial development of AI, algorithms, and software. 

• HPC center for algorithm innovation (national lab). 

• Dedicated centralized resource at national lab or center for R&D. 
Ease of access with IP protection (CRADA). 

• Algorithms and Software: Collaborate on minimizing energy 
use for EDA simulation. 

• Circuits and Architectures: Develop EDA solutions. Circuits 
and Architectures solutions will influence APHI solutions 
(e.g., PDK will have an impact on assembly design kit). 

• Education and Workforce Development: Implement EDA 
tool training. Partner validation and verification. 
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2.3.7 Conclusion for Advanced Packaging and Heterogeneous Integration 
The Advanced Packaging and Heterogeneous Integration (APHI) chapter of the EES2 roadmap 
emphasizes the crucial role of advanced packaging technologies in enhancing energy efficiency 
across the semiconductor industry. Vertically integrated devices and system-level cooling 
strategies represent key areas where significant advancements can lead to major energy 
savings. By employing energy-efficient 3D technology and optimizing the thermal interface 
materials, APHI aims to manage heat more effectively, thus reducing the thermal challenges 
associated with dense packing of high-performance chips. 

Innovation in APHI is targeted towards solving scaling challenges for optical interconnects, 
enhancing intra-chip signal integrity, and increasing the energy efficiency of memory access. 
The deployment of these technologies demands rigorous EDA improvements to support new 
ADKs, facilitating a streamlined pathway from design to simulation and, ultimately, to 
manufacturing. 

To meet energy-efficiency goals, EES2 emphasizes the need for accelerated development and 
integration of novel packaging solutions, such as the establishment of dedicated R&D facilities 
that allow for rapid prototyping and early-stage testing of APHI technologies. Such initiatives are 
vital for overcoming current barriers in thermal management, material integration, and system-
level integration, ensuring that advanced packaging can keep pace with the evolving demands 
of modern computing environments.  

Overall, advancing APHI technologies is about not just enhancing individual components, but 
also ensuring a synergistic integration that maximizes overall system performance and energy 
efficiency. The roadmap sets a clear directive for industry-wide collaboration, standardized 
practices, and focused R&D efforts to rapidly bring these critical technologies to market 
readiness, aligning with the urgent needs for sustainable energy management in the 
semiconductor sector. 
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2.4 Algorithms and Software 
Significant opportunities exist for reducing energy consumption in computing through improved 
algorithms and software. As shown in Figure 6 in the Introduction, there are about 20 orders of 
magnitude in computational energy consumption between representative large application 
programs and the individual instructions being executed (Shankar 2023). This domain bridges 
architectural designs and the software that maps to them. Energy improvements in software 
must come from an understanding of what the software does and how, as well as finding means 
to accomplish software tasks more efficiently, either purely through improved algorithms or 
through improvements in both the underlying machine architecture and the algorithms 
implementing problem solutions on that architecture. The large-scale applications benchmarked 
in Figure 41 are from distinct problem domains, and algorithmic improvements that reduce the 
energy cost of training of large-language models may have little or no impact on the energy 
used for spike protein simulation, and vice versa. This chapter is divided into four sections after 
a brief summary of the key aspects of Algorithms and Software and the working group that 
contributed to the key aspects: 1) energy efficiency in algorithms, mainly as applicable to 
machine learning; 2) software for general purpose architectures (e.g., CPU and GPU); 3) 
software for special purpose architectures (e.g., ASIC); and 4) measurements, tools, and 
benchmarking to enable energy efficiency. 

Working group methodology 

As described in Section 1.4, after an initial definition of candidate technologies for inclusion in 
the roadmap, members of the Algorithms and Software working group performed an initial 
estimate of the potential energy efficiency improvement factor of the various technologies and 
the timeline over which the 
estimated energy efficiency can 
be achieved. This assessment 
(with results shown in Figure 41), 
although subjective, provides 
general directions for a quick 
review. Specific points to be 
considered: 1) it is not possible to 
accurately quantify potential 
improvements for algorithms and 
software not yet implemented, 
and 2) the expected gains are 
more a curve than a point in time 
because real software is 
continually and incrementally 
refined over time. The diamonds 
in Figure 41 represent a collection 
of technologies that were 
expanded in later meetings. For 
ease of organizing this chapter, 
technologies have been grouped 
into topics as shown in Table 53 and are discussed in detail in the proceeding subsections.  

 
Figure 41. Algorithms and Software working group potential 

efficiency improvement factor and timeline initial assessment. 
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Table 53. Algorithms and Software Technology Grouping 

Technology group Technology 

Algorithm-specific energy efficiency 
Tooling 

Benchmarking 

Algorithms for machine learning 

Meta-learning of hyperparameter optimization 

Physics-informed machine learning models for scientific 
computing 

Continual learning (sequential training without 
catastrophic forgetting) 

Bottom-up sparse machine learning model development 

Benchmarking hyperparameter optimization methods 

Benchmarking and methodology to quantify training and 
inference costs 

Energy-efficient alternative training methods 

Approximate/efficient matrix/tensor multiplication 

Software for conventional 
architectures 

Languages compilers and run-time systems 

Privacy and security 

Computational reliability 

Communication protocols 

Data compression 

Precision of data types 

Software for domain-specific and 
emerging architectures 

Domain-specific languages 

Adoption of existing compute cores in domain-specific 
architectures 

Reusable memory access control architecture 

Compute-in-memory 

Tightly coupled architecture and software co-design 

 

Table 54 summarizes the most significant identified energy efficiency opportunities that can be 
achieved through advances in algorithms and software. 

Table 54. Key Takeaways for Energy Efficiency Opportunities in Algorithms and Software 

Technology 
Group Key Opportunities for Energy Efficiency 
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Improved 
efficiency in 
machine 
learning 
algorithms 

 

• Continual learning, in which ML systems can 
build on knowledge gained without retraining 
from the ground up (incremental learning) 
analogously to biological systems. 

 

• Bottom-up sparse ML model development, in 
which the larger ML model is made up from 
smaller models that are trained for more narrow 
tasks and combined as a “mixture of experts” or 
hierarchical model of knowledge. 

 

• Meta-learning, or “learning to learn,” for 
optimization of model hyperparameters (such as 
number of nodes, number of layers, learning 
rate), which can greatly reduce the effort 
required to develop efficient models. 

 

• Physics-inspired ML models, in which the neural 
network model incorporates physics models, 
such as differential equations, and can be used 
to solve problems in applied mathematics with 
the potential to enhance or displace finite-
element solvers, greatly accelerating numerical 
problem solutions. 

Software for 
domain-specific 
and emerging 
architectures 

 

• Domain-specific languages for conventional as 
well as new and emerging architectures, which 
can express a problem solution in high-level 
operators that are amenable to intermediate 
representations that can be better targeted for 
machine-level optimization. 

 

• In co-design with advanced architectures, 
exploiting compute-in-memory, data 
compression, and data types for more efficient 
brain-inspired representation. 

Languages, 
compilers, and 
runtimes 

 

• Languages such as Mojo that aim to replace 
interpreted Python with a source-code-
compatible, incrementally compiled alternative. 

 

• Better automatic code optimization to exploit 
machine parallelism and maximize the speed 
and energy benefit of cache memory. 

 

• Application of machine learning to code writing 
and code optimization. 
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Grand challenges are to: 

• Optimize energy efficiency of algorithms by improving use of parallel resources and 
minimizing data movement. 

• Improve advanced profiling tools and benchmarking to measure software’s energy 
impact. 

• Integrate new hardware architectures into existing systems and their codebases within 
commercially tolerable compatibility constraints and continue to measure and 
benchmark energy estimates. 

• Reduce the energy consumption of machine learning algorithms with new strategies in 
training and inference stages. 

• Advance fundamental understanding of intelligence and learning to realize the 
transformative potential of machine intelligence. Machine learning systems are still far 
from the observed performance of learning in humans and other animals.  

2.4.1 Algorithm-Specific Energy Efficiency Tooling and Benchmarks 
A comprehensive capability for systematic profiling, enabling the performance and energy 
impact of software to be accurately measured, is a prerequisite for achieving the aim of 
benchmarking energy performance for specific algorithms in a wide variety of computing 
systems and environments. 
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2.4.1.1 Tooling 
For traditional architectures, there 
are three components to energy use: 
movement of instructions (program) 
to the CPU, executing instructions in 
the execution units, and reading 
(loading) data from and writing 
(storing) data back to memory or 
external devices such as network 
and storage controllers. If power is 
measured during the execution of 
the program, the measurement 
captures the energy used in all three 
components. However, if the 
temperature distribution is 
measured, it will represent different 
distributions of energy as the heat 
distribution is an effect caused by 
computing. Thus, to understand and 
analyze software for different 
workloads, a more detailed and 
component-level measurement is 
desired.  

The current state of the art for 
measuring energy usage of 
algorithms is inadequate. For 
example, the Intel Runtime Average 
Power Level (RAPL) facility is 
normally used for thermal 
management of microprocessors but 
is only able to provide an aggregate 
estimate of power over the whole 
chip or a whole core at an interval of 
about 1 ms. Knowing the energy 
consumption at a more detailed level 
is desirable but faces some 
fundamental challenges. For 
example, consider the very simple 
case illustrated in Figure 42. In this 
example, the function foo(*a,*b) 
simply returns the sum of two 
variables whose addresses are 
passed to it. In the first call to foo, 
the local cache is “cold,” and the 
processor must fetch the arguments 

 
Figure 42. Interaction of software and CPU architecture 

int foo (unsigned int *a, unsigned int *b)      
{

return *a + *b;
}

; r1 - r4 input registers,; r0 return reg
_foo:
ld [%r1], r5        ; *a - > register 5
ld [%r2], r6        ; *b -> register 6
add %r5, %r6, %r0   ; sum in return reg.
ret

(a) Example C function foo(*a, *b)

(b) Compiled assembly code for foo

(c) First call to foo

(d) Subsequent call to foo

L1 Instr. Cache

L1 Instr. Cache

L1 Data Cache

L1 Data Cache

L2 Cache

L2 Cache
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as well as the function’s instructions from the DRAM main memory. On the next call, if called 
with the same arguments, the processor finds both the instructions and data in the L1 cache, 
and no DRAM activity is triggered. For a 7nm process, the energy cost of DRAM access is 173x 
the cost of accessing L1 cache (see Figure 7 in the Introduction), and 43,333x the cost of an 
INT32 add, and the energy expended to call foo differs by at least 173x from one call to the 
next. Other complications may arise. For example, other functions executed between calls to 
foo, or other processes running on the same core, could claim all the available L1 cache space 
and cause foo’s instructions and data to be evicted. The energy usage for code at this level of 
granularity is a complex interplay of the current workloads being executed by the system, the 
runtime environment, and details of the memory hierarchy implementation.  

This example illustrates that software meant to probe the energy expended at a granular level 
must carefully consider not only the software being probed, but also other workload 
characteristics spanning the software and hardware present in the system at runtime.  

Modern microprocessors provide subsystems that monitor many details of processor 
performance and events during operation, with the Intel Performance Management Unit (PMU) 
being a prime example (Intel 2022). These systems do not, however, provide adequate source-
level traceability to facilitate the tooling needed for precise energy measurements. A selection of 
sophisticated architecture-specific profiling tools available include the Intel Vtune Profiler (Intel 
2023) and Intel Processor Trace (Yagemann 2023), the AMD Research Instruction Based 
Sampling Toolkit (Greathouse 2021), IBM POWER9 Performance Monitor Unit (IBM 2018), 
various NVIDIA tools for GPU performance analysis (NVIDIA 2023), and some Linux-specific 
tools (Gregg 2023). Generally, these tools provide no facility or very limited capability to perform 
energy profiling. 

There has been progress in addressing the need for energy profiling recently. Variorum (2023), 
which recently won an R&D 100 award, is an extensible vendor-neutral library for Linux that 
exposes power and performance monitoring and control of low-level hardware dials. Variorum’s 
application programming interface (API) abstracts the details of the vendor-specific 
implementations and makes low-level machine performance dials available to both general and 
advanced users in a portable manner. In its internal implementation, Variorum uses different 
kernel interfaces, such as model-specific registers (MSRs) on Intel and AMD or NVML for 
NVIDIA, to expose the available dials on the platform. These dials allow for measurement and 
control of various physical features on processors and accelerators, such as power, energy, 
frequency, temperature, and performance counters.  

Challenges and Solution Pathways for Algorithm-Specific Energy Efficiency Tooling 

There is no efficient way to take memory access traces (e.g., cache misses) from software. 
Such a capability may be required to perform the detailed energy profiling needed. One tool 
which may serve as a starting point is the Intel Pin dynamic binary instrumentation framework 
for the IA-32, x86-64, and MIC instruction-set architectures (Intel 2023a. This framework 
performs measurements at run time on the compiled binary files and requires no recompiling of 
source code. At this juncture the granularity needed is not well-understood, and requirements 
may evolve with the software and architecture over the coming years. 

Measurements can be supplemented by energy-aware compute simulation which provides open 
libraries for estimating energy at different levels from instruction to system-level. Such software 
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simulates a computing chip or subsystem running a workload, collecting energy use data. An 
example of this type of software has been developed for GPUs at Purdue University (Kandiah et 
al. 2021). Expanding on this approach with other hardware and with an open-source approach 
can enable more widespread, fine-grained understanding of energy uses at every stage of a 
computation. In addition, a DOE funded effort is developing software for estimating energy 
usage of different applications on different software-hardware combinations. 

2.4.1.2 Benchmarks 
Benchmarks have long been used to provide quantitative comparisons of the performance of 
computer systems, starting with the first widely reported “Whetstone” benchmark (Curnow and 
Wichmann 1976). The need to incorporate energy efficiency measures in computer equipment 
benchmarks has been recognized for more than a decade (Fanara, Haines, and Howard 2009).  

An industry non-profit group called the Standard Performance Evaluation Corporation (SPEC) 
was formed to establish, maintain, and endorse standardized benchmarks and tools to evaluate 
performance and energy efficiency for the newest generation of computing systems. SPEC has 
developed the SERT benchmark suite to assess energy efficiency of servers. This suite has 
been incorporated into an international standard (ISO/IEC 21836:2020) for server energy 
effectiveness metrics (ISO 2020) and has also been adopted as a requirement for the DOE 
Energy Star rating system for computer servers (U.S. Department of Energy 2018). 

Benchmarks generally attempt to provide a useful measure of a computer system’s 
performance by executing a workload that is representative of some important class of real-
world applications. There is a proliferation of benchmarks across many application domains. For 
example, in machine learning, the MLCommons organization—a consortium of AI community 
researchers and developers from more than 30 organizations—was formed in part to develop 
and promulgate benchmarks specific to machine learning. MLPerf is an independent, objective 
benchmark suite published by MLCommons used to evaluate training and inference 
performance of machine learning systems. The MLPerf Training benchmarking suite measures 
the time it takes to train machine learning models to a target level of accuracy. MLPerf Inference 
benchmarks measure how quickly a trained neural network can perform inference tasks on new 
data. 

Challenges and Solution Pathways for Algorithm-Specific Energy Efficiency Benchmarks 
To support measurable achievement of the EES2 goal, a suite of benchmarks needs to be 
established and used to track performance of systems as they evolve over the next decades. 
There are many benchmarks already in existence covering the range of use cases across 
domains. A suite of standard benchmarks for assessing energy use, such as the preliminary list 
shown in Table 55, will be necessary going forward. The term “benchmarking the benchmarks” 
has been coined to describe this selection process, which may uncover gaps and potentially 
lead to the development of new more specialized benchmarks for some cases, especially for 
low-level performance assessment in coordination with the tooling development. There are 
other use cases among the benchmarks identified. 

 
Table 55. Algorithm-Specific Use Cases and Benchmark Suite Selection 

Domain Software Benchmark 
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AI/ML 

• Frameworks 

• ML Compilers 

• Integrating new 
AI/ML 

• accelerators 

• Data prep 
techniques 

• MLCommons benchmarks 

• NeuroBench 

• DataPerf 

• Domain-specific 

• Training/inference perf tests 
Models for Science 

Cloud (“Data 
center tax”) 

• Open Source 

• “Cloud” enterprise 
apps 

• REST API 
services 

• Fleet Bench (Google) 

• Others should be coming out 
soon 

 

HPC • (pick some target 
kernels) 

• Rmax 

• HPL 

• HPGC 

• Graph500 benchmarks 

• (based on kernels picked) 

Enterprise 

• Enterprise-class 
Database 

• In-Memory 
Databases 

• Back-Office 
Applications 

• Supply Chain 

• CRM 

• TPC Benchmarks (C, E, H, DS) 

• SpecJBB 

• SpecVlRT/Vmmark Virtualization 

 

 

The needs identified for both tooling and benchmarking are best addressed by an industry- or 
government-sponsored organization that can fill the following roles: 

• Perform benchmarking across diverse hardware and software platforms from multiple 
vendors and provide a centralized repository for reporting results. 

• Develop energy profiling tools able to operate on multiple hardware and operating systems 
platforms and provide and support those tools as open-source solutions, enabling energy 
measurements to become commonplace rather than the difficult-to-get data, as is currently 
the case. 
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• Provide support tools for energy use estimates in computer performance simulations, 
allowing highly granular assessment of energy performance throughout the simulated 
system.   

• Coordinate with industry benchmarking standards groups to disseminate findings and tools 
throughout the industry. 

• The ability to precisely measure the energy impact of software is crucial for assessing and 
enhancing energy efficiency throughout the entire computing stack in order to monitor and 
quantify the industry's overall progress toward the EES2 goals, as illustrated in Figure 43. A 
combination of benchmarks selected to cover all prominent use cases, as suggested in 
Table 55, along with the tools to accurately measure and simulate energy efficiency 
performance will provide clear feedback to stakeholders regarding energy reduction 
progress and opportunities. 

 
Figure 43. EES2 proposed approach to evaluation of computer system energy performance and progress 

toward long-term improvement goals 

 

Action Plan for Algorithm-Specific Energy Efficiency Tooling and Benchmarks 

Table 56. Action Plan for Algorithm-Specific Energy Efficiency Tooling and Benchmarks. 

Scope 

Key Technology for Energy 
Efficiency 

Benchmarks and tooling for algorithm-specific energy efficiency measurement and 
improvements. 

Technologies of Interest Energy efficiency metrics for conventional general-purpose computing systems, domain-
specific accelerators, and emerging compute paradigms. 

  



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  182 

Challenges Solution Pathways 

• Programmers have inadequate tools for access to 
information about the energy impact of programs or what 
programming decisions affect the energy impact. 

• Modern microprocessors have counter subsystems, but 
these are generally difficult to access and provide no 
information about energy associated with events.   

• Architectural limitations inhibit effective means of making 
energy measurements in some cases. 

• Inadequate attention is given to energy efficiency during 
systems and software development. 

• The breadth of the EES2 energy efficiency goal requires an 
industry-wide view of energy performance across a wide 
range of machine architectures and software use cases. 

• Determine and publish energy expended for operations at a 
granular level, similar to the Horowitz (2014) and Jouppi et 
al. (2021) papers table of energy costs, for each 
architecture (CPU, GPU, accelerators). 

• Provide profiling tools that enable executed programs to be 
measured in terms of these operations, enabling energy 
measurements for program sections. 

• Provide simulation tools for simulating energy performance 
of systems and software, especially during development. 

• Define a set of energy vs performance benchmarks 
covering all prominent use cases in the industry. 

• Provide a neutral source for collecting and promulgating 
energy use information, methodology, and tools. 

Major Tasks / Milestones Metrics Targets Timeline (years) 

Develop ongoing research/metrology 
capability to replicate the Horowitz 
(2014)/Jouppi et al. (2021) 
measurements on any computer 
system.  

Energy per operation 
(Joules/op) 

Measurements on multiple CPU and GPU 
processor platforms with different memory 
configurations 

1–2 

Develop energy models to map 
counter measurements to energy use 
and to establish traceability from 
event counters to processes and 
instructions 

Energy consumption of 
a program or program 
fragment (Joules per 
execution) 

Robust profiling tools made available for 
multiple platforms 2–3 

Develop benchmark codes for 
different algorithm classes to be run 
on different systems as a rating 
metric 

Energy ratings similar 
to Energy Star 

Open-source benchmark codes that work 
with the profiling tools to adaptable 
perform benchmarking on a wide variety of 
commercial systems 

3 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

End Users/OEMs Run tests (particularly for data centers) 

Academia Perform most of the research work through graduate student projects 

National Laboratories Potentially host the metrology institute 

Government Funder 

Required Resources  Cross Collaboration with Other Working Groups 

Product manufacturers or suppliers: Make hardware and 
software available for testing 
Government: Provide funding and facilitate access to national-
level computing facilities 

Circuits and Architectures: because algorithm energy use 
measurement depends on measurements at the level of 
circuits & architectures as input. 
 
Metrology and Benchmarking: these measurements should fit 
into some standardized benchmarking framework. 
 
Education and Workforce Development: 
- A course similar to MIT 6.016 is needed for “Design for 
Energy Performance.” 
- Some of the benchmarking studies needed would be good 
graduate student research projects. 

 

2.4.2 Reduced Energy for Machine Learning Algorithms 
Worldwide, the market for machine learning (ML) and AI applications is growing at an 
astounding rate. This trend is expected to continue over the remainder of this decade as shown 
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in Figure 44 rising from $208 
billion in 2023 to more than $1.8 
trillion projected in 2030 
(approximately 9x, equivalent to 
36.6% annual growth). Thus the 
need to find ways to reduce the 
energy intensity of machine 
learning applications is urgent. 

The term artificial intelligence (AI) 
broadly means the ability of 
computers to exhibit independent 
intelligence (as opposed to 
executing explicit human-
designed algorithms for solving 
specific problems), but practically 
speaking, AI systems today are 
all based on machine learning 
using neural network algorithms. 
A simple neural network is depicted in Figure 45, comprising an input layer with three inputs, an 
output layer with two outputs, and a “hidden” layer with four nodes. The arrows depict 
connections between these pseudo-neurons (crudely mimicking biological neurons) and each 
arrow has an associated “weight” coefficient that adjusts the influence of each node’s input to its 
output. Values of these weights are determined by a training process that combines a set of 
example inputs and outputs (the training set) with the goal of making the network produce the 
correct outputs for the training set. The trained network may then be used with a wider set of 
inputs to produce estimated outputs (with a degree of accuracy that depends on the design of 
the network, the size and quality of the training set, and the difficulty of the problem).  

Large-scale deep neural networks (DNNs) (neural networks with more than one hidden layer) 
have shown impressive performance in many domains, including computer vision and natural 
language processing (O’ Neill 2020). Many of the remarkable gains in machine learning 
performance have been enabled using increasingly large models, with a growth of about five 
orders of magnitude in the number of parameters over eight years (see Figure 46). As a result, 
training and using DNNs require immense amounts of energy 
and contribute to a large carbon footprint. For example, GPT-3, 
with more than 175 billion parameters, reportedly consumed 
1,287 MWh for training (de Vries 2023).  

This growth in model size has been spurred by the discovery 
that model performance can be improved by over-
parameterizing, where the number of model parameters 
greatly exceeds the number of data points in the training set. 
Overparameterization, combined with the ever-increasing 
training set sizes needed to reduce statistical error rates, has 
caused overall computational growth to increase by at least the 
fourth power of the target performance. In practice, 

 
Figure 45. Neural network with 

one hidden layer.Source: 
Wikipedia 2024 

 

 
Figure 44. Market growth worldwide for machine learning and 
artificial intelligence through 2030.The market is anticipated to 

grow at a 36.6% compounded annual rate. Source: Statistica 2023 
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computational demand has grown even faster (Thompson et al. 2022).  

The biggest driver of the increasing energy use of computing is the feedback loop among the 
demand for model performance, model size, and adoption of ML applications: The desire for 
continuous improvement in performance drives ever-larger datasets, with a corresponding 
increase in the number of parameters in the latest models. Successful application of these 
increasingly large models leads to massive proliferation of ML applications. Each new success 
drives users to desire even better model performance, and so on. 

Challenges and solution pathways for machine learning 
ML training is much more energy-intensive than ML inference is. However, because a trained 
model is typically used for many thousands or even millions of inferences, the total energy cost 
of inference for a model may be equal to or greater than that of its training. Hence, reducing the 
energy use for both ML training and inference is important for achieving the EES2 goals.  

At a fundamental level, the limit to what quality of training can be achieved for a given dataset 
and training task for different machine learning algorithms is not known. This theoretical 
knowledge gap may have a large impact on the energy cost of training once the limits become 
better understood. Even though current understanding is limited, several important observations 
have been made that suggest areas ripe for improvement in terms of reducing energy use in 
ML: 

• The energy cost of training is inversely dependent on training data quality (i.e., training cost 
is higher when the training data quality is lower). 

• Mechanisms to transfer model learning or model hyperparameters (tuning) from one model 
to another are not well-understood; finding effective transfer methods would greatly reduce 
energy consumption.  

•  Precision requirements are different for different aspects of training and inference. 
(Generally, higher precision is needed for training than for inference). Adaptive approaches 
may be able to optimize precision at different steps of the training and inference processes 
to reduce energy use with minimal impact on accuracy. 

• Animals can learn from noisy data. In addition, natural learning is robust, retaining inference 
accuracy well even when data distribution shifts. Producing algorithms that come closer to 
the performance of natural systems (e.g., evolutionary algorithms) will require research and 
experimentation. Such nature-inspired algorithms may eventually deliver major reductions in 
the quantity and quality of training required. 
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• Note that, in addition to the opportunities discussed below, ML applications to compilers, 
code writing, and runtime systems 
are covered in section 2.4.5.1. 
Opportunities for software gains in 
connection with compute-in-memory 
and neuromorphic hardware 
architectures are discussed in 
section 2.4.6.4.  

2.4.2.1 Energy-Efficient Alternative 
Training Methods  

There are many potential opportunities to 
improve the energy efficiency of ML 
training and inference processes. These 
are applicable for both data center 
operations and edge devices such as 
mobile phones but are particularly 
important for the latter due to their limited 
energy budget. Some methods for 
improving training efficiency include (list adapted from Verhelst and Murmann 2020): 

• Software optimizations: Design algorithms to maximize spatial and temporal locality of 
data access in a CPU memory hierarchy; optimize data flow in systolic arrays (such as in the 
Google TPU) or in compute-in-memory architectures; or enable wholly new emerging 
architectures, such as neuromorphic spintronics (Grollier et al. 2020). 

• ML processing: Expand ML processing on edge devices rather than in the cloud. This 
would avoid the time and energy cost of transferring huge amounts of data collected at the 
edge to data centers. 

• Model compaction: Manipulate network topology to co-design the computation with 
available hardware resources, avoiding bottlenecks when operating on constrained 
embedded processors. 

• Model quantization: Manipulate the numeric precision of model weights and activations. 
Limited fixed-point representations of eight, four, or even fewer bits have been shown to be 
adequate for many inference tasks. Math computations run much faster in reduced 
precision, especially on GPUs with Tensor Core support for that precision (NVIDIA 2023a), 
while also reducing required memory bandwidth. 

• Pruning: Selectively remove near-zero weights after or during training. This can result in a 
sparse neural network which can be exploited for more efficient storage. It may also result in 
more efficient computation when supported by sparse neural processor hardware that skips 
zero-valued multiplication operations. 

Gains from application of these strategies may be much greater when used together, but 
combining them is a research challenge. For example, model compaction may not work well 
with model quantization in some instances.  

 
Figure 46. Complexity of machine learning 

models.Source: Villalobos et al. 2022 
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Additional energy efficiency gains are possible when algorithms are combined with architectural 
features during co-design. New neuromorphic architectures are emerging with good systems 
and spiking models, but to date, there is no corresponding end-to-end software design stack to 
support model adoption for large scale problems.  

Another potential direction for efficiency improvement in training is in data preparation, which 
often requires manual intervention or bespoke data quality filtering software. Better software 
tools for automating data and feature preparation could boost efficiency both by consuming less 
development time and by providing better training data quality, allowing a target level of 
inference accuracy with less training data. 

2.4.2.2 Approximate/Efficient Matrix/Tensor Multiplication 
Linear algebra, specifically matrix multiplication, is at the heart of most of the computational 
algorithms including machine learning and is generally at the core of both training and inference. 
Therefore, methods to accelerate matrix multiplication have the potential to make ML tasks 
faster. Extensive efforts have been expended on efficient exploitation of data spatial and 
temporal locality when subdividing the work to minimize references to slow external memory, 
with differing requirements and strategies depending on the hardware available. Additionally, 
lower precision numeric representations have effectively reduced resource demands while 
maintaining overall fidelity, suggesting that approximate matrix multiplication could also be 
beneficial in many ML applications. 

Many approaches have been tried with varying degrees of success. Recently, Blalock and 
Guttag (2021) demonstrated an approximate matrix multiplication method called Multiply-
ADDitioN-lESS (MADDNESS) that accomplishes an approximate multiplication with bounded 
error 10x faster than other approximate methods and 100x faster than exact multiplication. The 
algorithm is especially efficient when one of the two matrices is known beforehand (e.g., 
representing model weights). In this case, the product matrix is approximated using no 
multiplications at all, instead using a simple binary tree hash function to compute an index into a 
pre-computed lookup table of dot products. Blalock and Guttag (2021) provide a brief 
description of and comparison to several other approximation algorithms. 

Other methods include extending approximation methods to GPUs and other existing 
accelerators, convolutional networks with weight reuse, memory use optimization, and custom 
accelerator design for edge devices. Efficiency gained through a combination of advanced 
architecture and algorithms is further discussed in section 2.4.6.4. 

2.4.2.3 Meta-learning of Hyperparameter Optimization 
In machine learning, meta-learning, or “learning to learn,” is a data-driven approach in which 
metadata from prior ML is used to assess which approaches have been most effective and 
adapt learning strategies accordingly to speed up the learning process. This, in turn, suggests 
the possibility of effective machine learning with drastically reduced computational and energy 
cost by converging on a trained network with far fewer iterations. 

Meta-learning has been explored in a wide variety of applications, including computer vision, 
robotics, neural architecture search, hyperparameter optimization, language and speech, and 
others (Hospedales et al. 2021). Ansótegui et al. (2021) employed a meta-learning approach to 
demonstrate a 50% reduction in the computational cost to optimize arbitrary “black box” 
functions using results from each iteration and applying machine learning to the selection of 
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next iteration parameters. Such an approach is desirable when the function to be optimized is 
itself computationally expensive, for example engineering design optimizations involving 
complex simulations. 

Hyperparameters are variables that determine the configuration of a neural network, distinct 
from the parameters in the dataset that are used for training and inference. The 
hyperparameters are set before training a model. Examples of model hyperparameters include 
the number of hidden layers in a neural network, the number of nodes in each layer, and even 
the type of neural network model to be used. Algorithm hyperparameters include learning rate 
and batch size. Hyperparameters cannot be learned directly from the training data but 
nevertheless can be optimized with measures such as inference accuracy or training time. 
Commonly used methods to optimize hyperparameter values are: 

• Bayesian search, which conditions probability of an outcome on the state of current 
knowledge.  

• Grid search, an exhaustive trial of all possible combinations of the hyperparameters to 
determine the best one. Grid search is computationally intensive, especially with large 
numbers of hyperparameters (the “curse of dimensionality”). 

• Random search selects combinations of hyperparameters randomly rather than 
systematically to find a near-optimum combination with far fewer trials compared to grid 
search. It can be combined with grid search over a smaller search space determined by 
an initial random search. 

• Evolutionary or genetic algorithms and other heuristic approaches use mutation, 
crossover, and selection from an initially randomized set of hyperparameter values to 
evolve toward an optimal solution. 

• Multi-fidelity searches, especially for very large models, evaluate the hyperparameter 
selection on a small subset of the dataset using one or a combination of the other 
methods and infer performance over the full dataset from the results. 

Each of these approaches presents opportunities for improved learning performance guided by 
past experience. Key challenges include application of meta-learning methods to diverse tasks 
rather than tasks drawn from closely related tasks, and improving the ability to generalize from 
learning metadata. In some cases, computational cost is a challenge, and a number of solutions 
have been explored to devise computational shortcuts for the training of meta-learning 
parameters. Use of meta-learning techniques, in combination with different methods, especially 
for very large neural networks, can help in optimization depending on the specific application. 

Systematic collection of data from previous ML applications can be applied to reduce learning 
costs, including energy cost. Effective methods of applying past ML training experience to new 
applications are just beginning to be explored in this extremely active area of research. 

2.4.2.4 Continual Learning (Sequential Training without Catastrophic Forgetting)  
Many approaches to continual learning rely on the stochastic gradient descent training method 
and must adopt strategies such as memory buffers or replay to avoid catastrophic forgetting—
the tendency of a neural network to abruptly forget previously learned information as a result of 
new incoming information. Madireddy, Yanguas-Gil, and Balaprakash (2023) developed a 
biologically inspired ML architecture that incorporates synaptic plasticity mechanisms and 
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neuromodulation to enable continual learning without stochastic gradient descent. This memory-
free architecture achieves continual learning performance superior to that of other memory-
constrained learning approaches and matches the performance of memory-intensive replay-
based approaches. The high accuracies achieved rely in part on a novel inelastic rule that 
implements a simple form of memory consolidation for synaptic weights that deviate from the 
presynaptic weights of each neuron, leading to a stabilization of weights that mitigates 
catastrophic forgetting. 

Harun et al. (2023) performed a comparative assessment of the efficiency of multiple continual 
learning systems and found that, despite recent methods that have largely solved the 
catastrophic forgetting problem, many of the methods for incremental learning are highly 
inefficient in terms of computation, memory, and storage, with some methods requiring more 
computation than training from scratch does. Ideally, a model should adapt to a growing training 
dataset without increasing the computation or memory, but most continual learning methods 
lack this ability. 

Biological organisms are able to learn throughout their lifetimes from interactions with their 
environment. It is desirable for neural network machines to be able to similarly learn on a 
continual basis, without expending disproportionate amounts of energy. This challenge is known 
as lifelong learning and largely remains unsolved. Kudithipudi et al. (2022) identified a set of key 
capabilities that artificial systems will need to achieve lifelong learning and described biological 
mechanisms that help explain how organisms solve these challenges. Examples include 
transfer of knowledge for application in new circumstances; exploitation of task similarity by 
decomposing tasks into more elementary, reusable components; noise tolerance; and 
hierarchical distributed neural networks for specialized functions that enable both fast response 
and reduced complexity of higher-level brain functions.   

Progress in bio-inspired continual learning has the potential to play a critical role in reducing the 
energy cost of ML training by focusing on energy-efficiency in both the formalisms of learning 
and in the implementations of training methods. 

2.4.2.5 Physics-Informed ML Models for Scientific Computing  
Machine learning is increasingly being used to solve problems in applied mathematics, 
engineering, and physics, using equations that model the problem to guide the training of the 
neural network. Physics-informed neural networks (PINNs) are neural networks that incorporate 
physics in appropriate model equations, such as partial differential equations, as a component 
of the neural network itself (Cuomo et al. 2022). The framework for such models was first 
introduced by Raissi et al. (2017), although there were many prior examples of related work 
before the formulation of a formalized framework. Figure 47 shows a generalized flow diagram 
of such a neural network model.  

Such ML applications are a promising research direction in scientific computing in general, 
offering the potential to displace or enhance other computationally intensive engineering 
calculations, such as finite element solvers, for substantial energy savings. PINN are an active 
area of research, with many examples in power systems (Huang and Wang 2023; Misyris, 
Venzke, and Chatzivasileiadis 2020), fluid dynamics, quantum mechanics, materials science, 
optics, electromagnetics, and other fields (Cuomo et al. 2022). 
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There are still many unresolved challenges, such as convergence and stability, as well as 
implementation issues with software architectural design, including boundary conditions 
management, neural network hyperparameter selection, and optimization strategies. As is the 
case with other fields of ML research, the choice of the best type of neural network (feed-
forward, deep learning, convolutional, recurrent, or others) is not well-understood. Integration of 
PINN into scientific analysis code written in conventional programming languages such as C++ 
and Python is also a challenge. 

 
Figure 47. Physics-informed neural network differential equation solver. The network is defined by θ. Its input 

variables are transformed into network output field u. Derivatives are calculated from the given equation(s) and u, and 
the residuals are used as feedback to train the network. Source: Cuomo et al. 2022. 

2.4.2.6 Bottom-up Sparse ML Model Development  
One strategy to enable large models with high performance but better scaling is to use sparse 
connectivity. This approach routes individual inputs to different “experts” in a potentially huge 
network instead of passing every input to every part of the neural network. This is known as a 
“mixture of experts” model. For example, a mixed image and text recognition/classification 
model could have separate specialized expert sub-models for image and text analysis (Mustafa 
et al. 2022).  

The mixture of expert model approach mainly benefits performance during inference, not 
training. As mentioned earlier, although training takes more computational energy, inference is 
typically used hundreds or thousands of times for each training instance and thus accounts for 
most energy use. Recently, Huang et al. (2023) proposed a method for a dimensional reduction 
technique that can be applied during the training phase and can generally be applied to any 
network architecture. The authors showed that the reduced version of the neural network 
maintains high accuracy but takes much less energy, model storage, and computational time in 
both training and inference for a specific application. This approach thus presents a promising 
direction for further research. 
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2.4.2.7 Benchmarking Hyperparameter Optimization Methods  
The number of choices in and increasing size of ML designs makes research on effective 
methods for hyperparameter optimization (HPO) essential. However, the research community 
lacks realistic, diverse, computationally cheap, and standardized benchmarks that can be used 
to compare optimization approaches. Eggensperger et al. (2022) has proposed a set of 
containerized, multi-fidelity benchmarks, allowing them to be reproducibly run for 
computationally affordable and statistically sound evaluations. The suite of benchmarks is called 
HPOBench and was tested in a large-scale study evaluating 13 optimizers from 6 optimization 
tools. This kind of benchmarking capability will not only shed light on the most effective 
optimization strategies but can also provide the dataset for a meta-learning approach to highly 
efficient hyperparameter optimization. 

2.4.2.8 Benchmarking and Methodology to Quantify Training and Inference Costs  
ML training presents three key benchmarking challenges. First, multiple implementation factors 
(such as processor architecture, memory architecture, and network size) simultaneously affect 
both training throughput (speed) and the training time to reach a specified quality threshold. 
Second, the stochastic nature of training causes run-to-run variation in time to solution. And 
third, the diversity of software and hardware systems makes fair benchmarking difficult. MLPerf, 
as noted in Section 2.4.1.2, aims to address these challenges. MLCommons has developed the 
MLPerf benchmark suite to measure how fast systems can train models to a target quality 
metric (Mattson et al. 2020). An MLCommons Power Working Group has also been established 
to create power measurement techniques built on industry-standard tools in support of MLPerf 
benchmarks. Future work should benchmark a more comprehensive set of accelerator 
configurations and include benchmarks for inference on both servers and edge devices. 

Action plan for reduced energy for ML algorithms 

Table 57. Action Plan for Reduced Energy for ML Algorithms. 

Scope 

Technical Challenge for 
Energy Efficiency 

Reduce the energy cost of software (both training and inference) for machine learning 
applications. 

Technologies of Interest: 

• All types of machine learning algorithms 
• All hardware architectures 
• Training set data quality 
• Incremental/progressive training 

Challenges Solution Pathways 
• Data/dimensional reduction and specificity 
• Network architecture and optimization  
• Hyperparameter optimization  
• Numerical operations 
• Adaptation of nature-inspired learning in ML methods 

• Develop large-scale benchmarks and methodology to quantify 
training and inference costs 

• Demonstrate energy-efficient alternative training methods 
• Develop approximate matrix/tensor multiplication methods 
• Achieve continual learning without catastrophic forgetting 
• Optimize physics and data requirements for scientific machine 

learning 
• Develop sparse models bottom-up, avoiding the need to build 

and prune large models  
• Develop hyperparameter optimization methods for large 

language models and meta-learning methods for predicting 
optimal values 

• Improve meta-learning of hyperparameter optimization for 
training large models 
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Major Tasks / 
Milestones Metrics Targets Timeline (years) 

Meta-learning of 
hyperparameter 
optimization for training 
large models 

Iterations required to reach 
optimal hyperparameters for 
training, energy savings from 
optimized training for a target 
performance 

Few shot (5 data points) to one shot 
optimization (1 data point) 1–3 

Continual learning: achieve 
sequential training on 
multiple tasks without 
catastrophic forgetting 

Accuracy on all tasks 
compared to that obtained 
from full retraining, total 
energy cost for training 

95% relative accuracy without having to 
retrain on prior data. 95% energy savings 
with respect to a specialist model 

5 

Establish trade-off between 
physics and data 
requirement for SciML 

%data/dimension reduction 90% reduction in required data if 90% 
physics known 5 

Develop sparse models 
bottom-up, i.e., avoiding 
the need to build and prune 
large models 

% reduction in parameters of 
language/vision/time series 
models 

95% of state-of-the-art accuracy with 90% 
reduction in size 5 

Develop benchmark 
hyperparameter 
optimization methods for 
large language models and 
develop meta-learning 
methods for predicting 
optimal values 

Number of iterations required 
to achieve optimal 
hyperparameters 

Identify optimal hyperparameter for a new 
model with <100 iterations 3 

Develop large scale 
benchmark and 
methodology to quantify 
training costs 

Energy cost per training 
experiment 

One dataset/architecture per main use 
case as defined by its footprint in energy 
consumption 

1–3  

Demonstrate energy-
efficient alternative training 
methods (low precision 
training, non-gradient 
methods, neuromorphic 
computing architectures) 

Energy cost per training 
experiment 90% reduction in training costs 3–5 

Approximate/efficient 
matrix/tensor multiplication Energy cost per flop 50% reduction in energy with 90% 

accuracy maintained 5 

Stakeholders and Potential Roles in Project  

Stakeholder Role 
Software Developers Develop and implement improved algorithms 

Academia Develop and implement improved algorithms 
National Laboratories Develop and implement improved algorithms and benchmarks 

Government Provide targeted funding programs for high impact areas 
Required Resources  Cross Collaboration with Other Working Groups 

  Circuits and Architectures: Breakthroughs in this area will 
require a combination of algorithms and hardware accelerators, 
co-designed to work together for maximum efficiency. 

 

2.4.3 Reduced Energy for Algorithms Used in Scientific Computing 
The U.S. Department of Energy (DOE) and its affiliated laboratories are at the forefront of 
employing scientific computing to tackle a wide range of challenges in biology, chemistry, 
physics, and materials science. These computations require significant processing power, so it 
should come as no surprise that as of 2023, DOE laboratories operate three of the world’s top 
ten supercomputers. A comprehensive analysis of 500 supercomputers, as reported by the 
TOP500 list, which ranks the most powerful computer systems worldwide, highlights the 
intensive energy demands of these systems (TOP500 2022; Barrett et al. 2010). The Top500 
analysis, detailed in various studies, spans systems from 2010 to 2022 and includes the first 
reported exascale computer (Shankar and Reuther 2022).  
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In these high-performance computing systems, energy is consumed by two main sources: the 
hardware/system-level architecture and the algorithms/software, which are inherently 
interdependent. Accurate energy assessments thus require benchmarks that consider both the 
raw performance metrics and the actual time needed to complete scientific simulations, 
emphasizing the critical co-dependency of hardware and software in achieving energy efficient 
scientific computing. 

Energy benchmark analysis 

Energy benchmark analysis is vital for scientific computing because it directly impacts the 
efficiency and sustainability of supercomputers engaged in complex simulations. An analysis by 
Shankar and Reuther (2022) evaluates the performance of the world's most powerful computing 
systems, as ranked by the TOP500 list, focusing on the High-Performance Linpack (HPL) and 
High-Performance Conjugate Gradient (HPCG) benchmarks.  

The HPL benchmark assesses a supercomputer’s ability to solve a dense linear system of 
equations using double or higher precision arithmetic (FP64). It employs LU decomposition, 
where a matrix is factored into a lower and an upper triangular matrix, followed by back 
substitution to find the solution. This process, crucial for high-performance computing systems, 
largely consists of complex matrix multiplications that benefit from parallel processing 
capabilities of modern CPUs, GPUs, and memory subsystems. Rmax and Rpeak denote the 
actual maximum and theoretical peak performances of these systems, respectively, reported in 
teraFLOPS or petaFLOPS. 

The HPCG benchmark, in contrast, evaluates the efficiency of data access and computations in 
a conjugate gradient solver, which is foundational for simulating physical systems. It tackles a 
structured sparse linear system of equations using stencils, a method that relies on FP64 for its 
accuracy and stability. Due to its focus on sparse data patterns, HPCG typically shows lower 
performance rates compared to HPL, emphasizing the necessity for both benchmarks to ensure 
comprehensive evaluation and numerical stability of supercomputing systems (Heroux and 
Dongarra 2013). 

Because not all systems are evaluated using the HPL and HPCG benchmarks, the importance 
of relevant benchmarks is underscored by Figure 48, which graphs Rmax for the top 500 
systems. For instance, the Frontier system, recognized as the most energy-efficient on HPL 
benchmark among the TOP500, is over 200 times less energy-intensive than the LLNL CTS-1 
Quartz, another system operated by the DOE. This stark contrast in energy efficiency, based on 
analysis from 2022, highlights the need for more comprehensive benchmarks to better 
understand energy disparities and identify strategies to enhance energy efficiency across all 
high-performance computing systems. 
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Figure 48: Energy/Instruction based on HPL benchmarks Rmax. The X-axis consists of the top 500 

supercomputers with the fastest on the left and slowest on the right. Source: Shankar and Reuther 2022. 

To illustrate the energy requirements for large-scale scientific computations, we consider the 
simulation of a SARS-CoV-2 spike protein, a crucial component of the coronavirus's infection 
mechanism. Conducted on a supercomputer, this simulation analyzed the dynamics of the viral 
envelope consisting of 305 million atoms. The simulation ran for 8.77 days on 80 P100 GPUs at 
the San Diego Supercomputer Center, achieving a sampling duration of approximately 7.5 
microseconds. Parameters from this study are detailed in Table 58. Assuming energy costs for 
floating-point operations range between 1 x 10-12 to 1 x 10-11 joules, the total energy 
expended for this simulation was approximately 24.9 billion joules, as outlined in Table 59 
(Casalino et al., 2021). This case exemplifies the significant energy demands of advanced 
scientific simulations. 

Table 58: Simulation parameters for Covid Virion particle simulations. 
Source: Shankar 2023 

NAMD Simulation Atoms Nodes Sim rate Performance 
Spike-ACE2 complex 8.5M 1024 162 ns/day 229 TFLOP/s 

SARS-CoV-2 virion 305M 4096 68 ns/day 3.06 
PFLOP/s 

 

Table 59: Energy estimate in Joules and kWh for simulation of a single virion particle. 
Source: Shankar 2023 

Application Energy (joules) Energy (kWh) 
Spike ACE Complex 1.74E+09 4.82E+02 
SARS Covid Virion 2.32E+10 6.44E+03 
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Total (Max) 2.49E+10 6.92E+03 

The energy consumed during the entire simulation of the SARS-CoV-2 spike protein 
significantly surpasses that used by a large language model application, despite the shorter 
simulation duration. This vast difference, spanning over twenty orders of magnitude greater than 
the energy for a single floating-point operation, is attributable to the immense power 
requirements and extensive compute cycles demanded by high-performance supercomputers 
for scientific computations. This scenario underscores the inherent energy intensity of high-
precision scientific computing, necessitated by the stringent accuracy requirements of such 
simulations. This pattern is likely representative of a broad spectrum of large-scale scientific 
computations, highlighting the critical need for comprehensive system benchmarking. The 
analysis makes it clear that ongoing efforts to advance and optimize software across different 
systems and applications are essential to achieve energy efficiency in scientific computing. 

2.4.4 Reduced Energy for Cryptocurrency Mining 
Electricity demand from U.S. cryptocurrency mining operations has surged dramatically in 
recent years. Current estimates suggest that annual electricity consumption from cryptocurrency 
mining accounts for between 0.6% and 2.3% of the nation's total electricity use (EIA 2023). 
According to The New York Times, 34 large-scale Bitcoin mining operations now function in the 
United States, further straining local power grids (Dance et al 2023). As shown in Figure 49, the 
energy usage for computer-based cryptocurrency mining, including data centers and AI 
applications, is becoming a significant share of the electricity used in computing. 

Figure 49 presents a comparison of energy estimates (electrical energy associated with 
computing) from 2016 to 2024 against the annual electricity production of various states (such 
as Arizona, California), countries (like Australia, the Netherlands), and the annual energy 
generation of the Hoover Dam hydroelectric project. Additionally, the figure includes lower 
bounds and estimated energy requirements for cryptocurrency mining (EIA 2024). 

 
Figure 49. Energy use estimates of cryptocurrency mining. Energy is compared to the electricity generated in the 

states of California and Arizona; in Australia, the Netherlands, and the United Kingdom; and by the Hoover Dam 
project. Source: EIA 2024 

After dipping briefly in 2021, the energy consumption from cryptocurrency mining has seen 
continued growth since 2023. The cost relative to transaction volume has not changed 
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significantly since 2010, but the overall energy usage has grown into a significant component of 
computing (Song and Aste 2020). Current estimates suggest around 170 TWh is consumed, 
roughly ten times the total output of the Hoover Dam and exceeding the annual electricity 
production of Arizona and the Netherlands. At its peak between 2021 and 2023, cryptocurrency 
mining consumed more electricity than the entire state of California did. The U.S. Energy 
Information Administration estimates that about 38% of global cryptocurrency mining is done in 
the United States, using approximately 3.5 times the annual electricity output of the Hoover 
Dam. This energy consumption now rivals the 200 TWh used annually by the world’s 
conventional data centers and constitutes a significant fraction of the 460 TWh consumed by all 
data centers combined (International Energy Agency 2017). 

Strategic responses for the United States 

The substantial electricity demand from cryptocurrency mining has prompted specific actions 
from policymakers and grid planners to mitigate adverse effects on electricity cost, reliability, 
and related emissions (The White House 2022; de Vries 2018). Challenges in tracking the 
energy use of cryptocurrency mining arise from the difficulty in partitioning energy use from 
system-level components to architecture and software. With the trillion-dollar market 
capitalization associated with cryptocurrency mining, it is expected that both hobbyists and 
commercial miners will continue engaging in this resource-intensive activity (Thompsett 2024).  

Understanding the extent of cryptocurrency mining’s profound impact on the U.S. energy 
landscape is difficult, particularly regarding the consumption of significant computing power and 
associated energy and material resources. To address potential instability in the electrical grid 
due to the intense electricity demands of cryptocurrency mining, the U.S. government has 
issued a report pursuant to Executive Order 14067, Ensuring Responsible Development of 
Digital Assets, raising four critical inquiries (Thompsett 2024): 

1. How do digital assets affect energy usage, including grid management and reliability, 
energy efficiency incentives and standards, and sources of energy supply? 

2. What is the scale of climate, energy, and environmental impacts of digital assets relative 
to other energy uses, and what innovations and policies are necessary for robust 
comparisons? 

3. What are the potential uses of blockchain technology that could support climate 
monitoring or mitigation technologies? 

4. What key policy decisions, critical innovations, research and development, and 
assessment tools are required to minimize or mitigate the climate, energy, and 
environmental implications of digital assets? 

Optimization of cryptocurrency mining operations 

The cryptocurrency mining process, inherently compute-intensive, necessitates an ever-
increasing amount of computational power (The White House 2022). Mining operations are 
performed by networks that execute a one-way hashing function to map digital inputs into fixed-
length output digits, essential for validating transactions within a blockchain. Each validation 
involves solving mathematical puzzles that incorporate transaction data, where the miners 
generate a vast number of guesses—from millions to trillions—per second to identify unique, 
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alphanumeric hashes. Once a block of transaction data is verified as correct, it is added to the 
blockchain, and the successful miner is rewarded with newly minted cryptocurrency. 

Mining operations are typically conducted in farms, which consist of numerous video cards and 
ASIC modules connected to computers, collectively enhancing the network's hash rate and its 
ability to process and verify transactions swiftly (Kim 2021; Bondarev 2020). However, the 
continuous operation of these energy-intensive farms poses significant challenges to power 
infrastructure, particularly in countries like the United States where a substantial number of 
mining centers are located. This sustained high energy demand highlights the urgent need for 
research into optimized consensus algorithms and system efficiencies (Lei et al 2021). 

In a notable advancement, Ethereum drastically reduced its energy consumption by over 99% in 
2022 by transitioning its algorithm to a Proof of Stake (PoS) consensus mechanism. This 
change aligns the potential of algorithmic and software innovations in reducing the energy 
footprint of blockchain technologies (The White House 2022). Further research in this area 
could lead to more sustainable practices across the industry, alleviating stress on global energy 
resources. 

2.4.5 Software for Conventional Architectures 
The technologies described in this section refer to software “for conventional architectures,” with 
emphasis on CPUs and GPUs, but applicable to emerging architectures as well. Some general 
themes that emerged from working group discussions include the following: 

• Tooling as discussed in section 2.4.1 is needed to find new ways to optimize (i.e., 
incrementally improve) high-use software.   

• More efficient languages, compilers, and libraries (e.g., math kernels) will allow for more 
efficient programming by leveraging a given microarchitecture’s capabilities.    

• Some common software functions such as encryption, error correction, and communications 
offer opportunities for energy-saving optimizations. These are necessary functions in 
computer systems that can be viewed as a sort of “tax” that must be paid for systems to 
work. 

• Newer hardware needs updated compilers and libraries to allow it to be used in old 
problems (e.g., NVIDIA Rapids, AMD ROCm). This need exists for incrementally improving 
performance in conventional hardware, as well as for emerging architectures/devices. 
Emerging hardware or software architectures need to be integrated into existing processes 
and show they can solve existing problems, and that the benefits of new architectures justify 
the overheads of integrating them.  

2.4.5.1 Languages, Compilers, and Runtime Systems 
The proliferation of multi-core processors has spurred a need for software that can harness the 
full potential of these systems. However, parallelization (restructuring code to enable portions to 
run simultaneously on multiple processors) is an advanced topic in computer science education 
and code optimization via explicit parallelization in source code is labor intensive and potentially 
error prone. Profiling tools (discussed in section 2.4.1), when adapted to provide accurate and 
detailed energy reporting, can help skilled programmers to more easily and quickly identify 
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opportunities for optimization across complex computing environments, thus facilitating 
optimization with less investment in programmer labor. 

It is often possible to achieve significant 
improvements in program speed by 
optimizing software implementation. Bentley 
(1984) described a well-known example in 
one of his famous “Programming Pearls,” 
where an orbital mechanics program was 
sped up by a factor of 400, reducing run time 
from about a year to less than a day. Of that 
400x factor, 2x was from faster hardware 
and the rest was from optimizing the code 
design: 40x from better data representation, 
2x from tuning of loop step sizes, and 2.5x 
from recoding a critical procedure in 
assembly language. Other examples, such 
as using optimal vector lengths in do-loops 
and rewriting logic for specific architectures 
(e.g., vector processing machines like Cray 
supercomputers in the 1980s and 1990s), can contribute to co-optimization between hardware-
software components that uses the machines to reduce computational effort.  

A more recent well-known example, shown in Figure 50, comes from Hennessy and Patterson’s 
(2019) Turing Award paper. A matrix multiply operation written in interpreted Python was sped 
up by almost 63,000x by reimplementing the code in C, writing it explicitly to operate in parallel, 
optimizing cache memory access, and exploiting vector multiplication hardware. 

Faster programs typically use less energy. A recent study (Pereira et al. 2021) compared the 
performance of many programming languages on a common Linux-based desktop platform. 
This comparison was part of a project called the Computer Language Benchmarks Game, in 
which benchmark programs are collected in as many programming languages as possible and 
are run in a common system operational setup. Figure 51 illustrates the results for one of the 
benchmarks. (Results for other benchmarks were similar but not identical.) Energy consumed 
was measured using The Intel Running Average Power Limit (RAPL) tool measured the 
programs’ energy consumption. The negative correlation between speed and energy consumed 
was strong across all languages. 

Although a skilled programmer can make major efficiency gains in some cases by explicit 
handling of optimization, it is more scalable if the compilers perform optimization automatically. 
Foundational software components that run continuously justify the expenditure of considerable 
effort at manual optimization. However, most software development is conducted either in 
situations where such time investment is not feasible, or by personnel who lack the training (for 
example, when scientific research code is written by research scientists, not computer 
scientists). 

The Python optimization results shown in Figure 50 may be an extreme example, but it 
underscores the widespread inefficiency of software due to both language choice and 
programming practices. Python is an interpreted rather than compiled language, trading 

 
Figure 50. Matrix multiplication speedup over native 

Python.Source: Hennessy and Patterson 2019 
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execution efficiency for ease of coding. The prevalence of Python continues to grow (Cass and 
Goldstein 2023), thanks both to the availability of a rich ecosystem of libraries and packages for 
every variety of programming problem and to the ease of learning and experimenting afforded 
by the interpreted language. Although the Python interpreter imposes an inefficiency in program 
execution, much of the widely used Python code infrastructure (e.g., NVIDIA Rapids and CUDA) 
is built on fast, compiled, optimized libraries implemented in C/C++ with convenient Python 
language wrappers for ease of use.   

 
Figure 51. Comparison of the energy, speed, and memory used for various programming languages.Results 

are for the binary-trees benchmark. Source: Pereira et al. 2021. 

Some more recently introduced languages such as Julia and Mojo aim to be comparable to 
Python in terms of user friendliness but in a higher-performance compiled implementation. Julia 
is a high-level, general-purpose programming language, increasingly being used for numerical 
analysis and scientific computational problems (Fischer 2022). Testing Julia with codes 
indicates improved energy efficiency compared to other high-level languages like Python for 
specific applications (Pereira et al. 2021). Mojo is particularly notable because it aims to be 
code-compatible with Python 3.x, supporting both ahead-of-time and just-in-time compilation as 
well as full compatibility with the popular Jupyter notebook style of Python programming. Mojo is 
still under development and not yet capable of full compatibility. Further maturation of Julia, 
Mojo, and similar language initiatives will yield large practical benefits in program speed and 
energy efficiency.  

All major commercial and open-source compiler systems (e.g., gcc, Visual Studio, LLVM) now 
have built-in optional optimizers for auto-parallelization of code to run efficiently on multiple 
cores, as well as auto-vectorization of code (automatic execution of an arithmetic operation on 
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multiple elements of an array simultaneously) to use single-instruction-multiple-data (SIMD) 
vector instructions. Code “optimization” generally cannot be provably optimal; rather, code 
optimizations exploited by compilers make use of heuristic rules that are painstakingly 
discovered through intuition and experimentation by compiler writers.  

Of particular importance in mitigating the memory performance bottleneck is the need for cache 
management optimizations. Although the software has no direct control over the cache (which is 
managed completely by the hardware), software optimization must take into account the 
processor’s cache operations in order to maximize the speed and minimize the energy cost 
associated with data movement. The Python matrix multiplication example in Figure 50 
underlines the importance of cache management optimization: while parallelization provided a 
speedup factor of 7.8x, cache optimization provided a boost of 18.4x.  

Challenges and solution pathways for languages, compilers, and runtime systems 

Compiler optimizers are constantly improving through normal software management practices. 
Further opportunities for improvement in compiler optimization include auto-parallelizing and 
auto-vectorizing optimizations. Machine learning techniques may be able to improve compiler 
optimization to improve the speed and thus energy efficiency of executable code. Wang and 
O’Boyle (2018) provided a comprehensive review of research in applying machine learning in 
compilers and runtime systems, summarized in Table 60. Some studies have reported success 
in applying machine learning to discover improved optimization heuristics or fine-tune known 
heuristics. Others have used machine learning to optimize use of the myriad compiler 
optimization flags of popular compilers, such as gcc, to achieve the highest speedup factor.  

Table 60. Machine Learning Methods in Compiler and Runtime Design.Source: Wang and O’Boyle 2018. 

Approach Problem Application Domains Models 

Supervised 
learning 

Regression Useful for modeling continuous values, 
such as estimating execution time, 
speedup, power consumption, latency, etc. 

Linear/non-linear regression, 
artificial neural networks (ANNs), 
support vector machines (SVMs) 

Supervised 
learning 

Classification Useful for predicting discrete values, such 
as choosing compiler flags, #threads, loop 
unroll factors, algorithmic implementations, 
etc. 

K-nearest neighbor (KNN), 
decision trees, random forests, 
logical regression, SVM, Kernel 
Canonical Correlation Analysis, 
Bayesian 

Unsupervised 
learning 

Clustering Data analysis, such as grouping profiling 
traces into clusters of similar behavior 

K-means, Fast Newman 
clustering 

Unsupervised 
learning 

Feature 
engineering 

Feature dimension reduction, finding useful 
feature representations 

Principal component analysis 
(PCA), autoencoders 

Online learning Search and 
self-learning 

Useful for exploring a large optimization 
space, runtime adaption, dynamic task 
scheduling where the optimal outcome is 
achieved through a series of actions 

Genetic algorithm (GA), genetic 
programming (GP), 
reinforcement learning (RL) 

 

Because the effective use of parallel computing resources depends on the workload at runtime, 
which may not be accurately estimated at compile-time, schemes to efficiently manage runtime 
resource allocation are an important element of overall performance optimization.  
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Another important and promising direction for optimization is the direct generation of source 
code by machine learning systems. AI assistants for human code-writing are currently 
experiencing a rapid and widespread uptake in the software developer community. GitHub has 
introduced an AI tool called GitHub Copilot (GitHub 2024) that provides sophisticated interactive 
code completion capabilities as well as code generation from textual prompts. As of this writing 
more than 37,000 businesses have begun using GitHub Copilot in their code development. 
Other AI-based code generation tools such as ChatGPT are also available. 

A recent survey of ML-based code generation approaches (Dehaerne et al. 2022) compared 37 
studies from 2016–2022 describing ML-based source code generation: generating original code 
from a textual description of requirements, generating documentation from code, or translating 
code between languages. The authors noted that although ML models can generate code, it is 
often not as optimized or effective as human-written code is. A study comparing human-written 
to AI-assisted C++ code showed that the human-written code was 15–26% faster on average, 
and that the difference was greater for more expert programmers, up to 6x faster in some cases 
(Erhabor et al. 2023). 

However, future work promises to address these challenges. Automated source-level rewriting 
of human-written code for optimization without the use of machine learning has demonstrated 
some successes. Baziotis, Kang, and Mendes (2023) demonstrated a system called Dias to 
automatically rewrite code in exploratory Jupyter data analysis notebooks. Dias was able to 
rewrite individual Jupyter cells to be 57x faster compared to hand-written code calling the 
Python Pandas library and 1,909x faster compared to the same code calling the Modin library (a 
drop-in replacement for Pandas that supports parallel processing). Whole Jupyter notebooks 
were accelerated by up to 3.6x when using the Pandas library and 26.4x using the Modin 
library. Application of such automated source-level optimization to AI-generated source code is 
a logical next step. This is an extremely active area of research. Given the boost in programmer 
productivity afforded by such tools, AI-generated or AI-assisted code development may be used 
to optimize algorithms for energy efficiency, depending on other system-level constraints. 

2.4.5.2 Privacy and Security 
Security, at the intersection of software and architecture, is computationally expensive. Of 
relevance to EES2, from a high-level confidential computing perspective, security is an 
overhead cost as we seek to improve the overall energy efficiency of computing. Privacy and 
security solutions must meet needs as efficiently as possible. Current solutions, which put 
encryption into datapaths to enable a trusted execution environment, have support from AMD, 
Intel, and NVIDIA. Currently, encrypted computing has limitations related to the management 
and security of encryption keys and the necessity of multiple encryption/decryption steps for 
data processing. 

To enable privacy and security as a built-in feature of data flow, the internet of the future needs 
a secure multi-party compute infrastructure that uses homomorphic encryption and private 
information retrieval (PIR). Homomorphic encryption allows computations to be performed 
directly on encrypted data—such that computation results are also encrypted, and when they 
are decrypted, are identical to the results of those computations on the unencrypted data. 
Homomorphic encryption, therefore, can be used for cloud storage and computation that allows 
data to be processed in the cloud while remaining encrypted and private (Munjal and Bhatia 
2022). 
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PIR has been a popular research topic since it was first described in 1995 (Hsu et al. 2020). 
With PIR, when a user makes a query to retrieve information, the request is sent to the service 
provider using homomorphic encryption. The encrypted response can only be decrypted by the 
user. There are crypto technologies that can return a desired item without having knowledge of 
the request content, but the algorithms are extremely computation-intensive (10x to 1,000,000x 
compared to unencrypted). Nevertheless, because of the demand for privacy, PIR will likely be 
deployed in at least some internet transactions in the future and will result in a large 
computational workload for those transactions. 

Challenges and solution pathways for privacy and security 
There are many trade-offs between computational cost and security/privacy guarantee in 
implementing homomorphic encryption and PIR with different algorithms. For example, PIR can 
be implemented in a single server using a distributed point function or in two servers using two-
level homomorphic encryption, and the two alternatives will have different costs.  

In the design space for homomorphic encryption, there are even more trade-offs, for example, 
supporting additive homomorphic encryption, using integer or floating-point algorithms, and 
other design possibilities. The myriad options available must be evaluated to determine practical 
solutions for different applications. Accompanying these design trade-offs are differences in 
energy consumption.   

A high degree of parallelism in the computations is needed to make PIR practical. Currently, 
implementations of PIR use conventional hardware (e.g., CPUs, GPUs). Ultimately, for both 
speed and energy efficiency, domain-specific architectures should be developed, and the 
hardware and software should be co-designed. As of 2024, at least six companies are testing or 
commercializing the first chips implementing homomorphic encryption (Moore 2024).  

2.4.5.3 Computational Reliability 
In general, increased reliability requires more energy, a kind of “tax” on the system. 
Computational reliability encompasses a broad range of technologies and techniques in modern 
computer systems. Algorithms and software used to increase reliability include various forms of 
RAID, N-way replication, two-phase commit, and active-passive configurations. There are also 
protocols for dealing with hardware failure due to age or external influences like radiation-
induced bit flip or array failure.  

Computational reliability has been recognized as an important topic for decades. Well-
established industry groups study the issues and set standards and requirements for fault 
management, such as the Open Compute Project (OCP) working groups on fleet-scale memory 
fault management and silent data corruption errors. 

Bit errors may be the result of electromagnetic interference but are most commonly induced by 
cosmic rays. Error correction coded (ECC) memory is a type of DRAM used in data centers, 
servers, and generally any application where high reliability is critical. (It is typically not used in 
personal computers.) ECC memory uses additional non-data “parity” bits to encode the data bits 
in a Hamming code (Hamming 1950) or a triple modular redundancy code (Shooman 2002) in a 
way that permits detection of errors and reconstruction of the correct data if an error occurs. 
ECC memory may be implemented using an extra DRAM on a memory module containing the 
parity bits, or with the parity checking on-chip. “Chipkill,” an IBM-specific technology, is a more 
effective version of ECC that also corrects for multiple bit errors, including the loss of an entire 



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  202 

memory chip. This is accomplished by spreading the bits of a Hamming-coded word across 
multiple chips, so that the word can be reconstructed even if an entire chip fails. 

Error checking is also present in CPU cache memories, typically with a single bit error detection 
capability in the L1 cache backed up by a single bit error correction encoding in the L2 cache. If 
a 1-bit L1 cache error is detected, it can be refreshed from the L2 cache. 

For very large systems subject to the combined error rate of all components (such as data 
centers and supercomputers), or systems that run critical applications (such as financial 
transaction processing), further protection from errors is achieved by checkpointing, in which the 
system or application state is periodically backed up to non-volatile memory. In the event of an 
uncorrectable upset, the system or application can restart from the most recent checkpoint 
rather than starting over from the beginning or completely rebooting.  

For non-volatile storage, redundant array of independent disks (RAID) technology is 
conceptually similar to the triple modular redundancy or Chipkill technologies discussed above. 
In this scheme, multiple drives contain multiple copies of the data or parity calculations from the 
data, enabling full data recovery in the event of a failure of a drive sector or the whole drive. 

Not every transistor in a computer can be protected from state errors. Silent data corruption—
when data errors go undetected by the larger system—is a widespread problem for large-scale 
infrastructure systems. It can propagate through erroneous computations and manifest as 
application-level problems. It can also result in data loss and can be difficult to debug and 
resolve. Dixit et al. (2021) described best practices for detecting and remediating silent data 
corruptions, finding that reducing silent data corruption requires not only hardware resiliency 
and production detection mechanisms, but also robust fault-tolerant software architectures. 

Challenges and solution pathways for computational reliability 
Future improvements in computational reliability are likely to come from refinements in both the 
degree of protection and the methods for handling failures. Some challenges and potential 
solutions are as follows. 

Application checkpointing 

While ECC protection is implemented in hardware, application checkpointing (periodic saving of 
the state of a computation to use as a restart point in case of a failure) is managed by software 
and is an active area of development. Google recently reported developing a checkpointing 
scheme used in very large-scale LLM training (a system with more than 50,000 TPUv5e chips 
organized in UCIe-interconnected pods, with 256 chips per pod) that boosts efficiency 150x by 
loading checkpoints in a single pod and broadcasting the checkpoint to all other pods, rather 
than have each pod separately load the checkpoint data. Industry is actively developing more 
optimizations like this. 

Single-event upsets and other sources of random error are stochastic processes, whereas 
checkpointing algorithms are deterministic or nearly so. An energy cost can be ascribed to the 
overhead necessary to implement checkpoints and a (stochastic) energy cost can be ascribed 
to lost work in the event of an error. These two costs can be subjected to formal minimization 
analysis that can be used to reduce overall energy cost. 

Combining reliability and security 
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For memory, there is a new Open Compute sub-workstream called Fleet-scale Memory Fault 
Management, a spinoff of the Hardware Management workstream. There are possible options 
under investigation by this industry group for co-design of both security and reliability features 
(Aiken et al. 2021) for reduced overhead energy. 

2.4.5.4 Communication Protocols 
Software can increase energy efficiency by minimizing communication overhead, and in some 
circumstances software can be used to enable efficient workload data flow. For example, 
disaggregated resources (e.g., memory) could be used as a more convenient place to store 
data which is processed incrementally (e.g., weights in a neural network), with the need only to 
pass pointers instead of passing blocks of data across the interconnect. 

Communication protocols such as the NVIDIA Collective Communication Library (NCCL) aim to 
streamline common communication patterns for AI workloads (NVIDIA 2023b). NCCL 
implements multi-GPU and multi-node communication primitives optimized to achieve high 
bandwidth and low latency over PCIe and NVLink high-speed interconnects (Jeaugey 2019).  
Development frameworks such as PyTorch and TensorFlow have integrated NCCL to 
accelerate deep learning training on multi-GPU systems. 

Microsoft has implemented its own Azure-based platform on top of NCCL known as Microsoft 
Collective Communication Library (MSCCL), described as “an inter-accelerator communication 
framework”. It provides programmable communication algorithms for inter-connection among 
accelerators with different latencies and bandwidths 

Challenges and solution pathways for communication protocols 
The driving challenge for communication protocols are in estimating quantitatively the trade-offs 
between speed (performance) and reliability. Standardization and widespread adoption will 
benefit future system development. The EES2 community can play a role in this effort by 
ensuring that energy efficiency is a consideration in such standardization efforts. 

Action plan for software for conventional architectures 
Table 61. Action Plan for Software for Conventional Architectures. 

Scope 
Technical Challenge for Energy 
Efficiency Software for Conventional Architectures  

Technologies of Interest 

• Programming systems, including compilers, languages, runtime libraries 
• Privacy and security 
• Communication protocols 
• Computational reliability   

Challenges Solution Pathways 
• Improvement in compiled code performance without specialized 

effort by programmers 
• Reduction of energy cost associated with application 

checkpointing 
• Energy-efficient implementation of privacy protocols  

• Use machine learning in source code and compiled 
code optimization 

• Develop stochastic optimization of checkpointing for 
energy efficiency 

• Consider energy efficiency trade-offs in PIR 
implementation 

• Use co-design methods to design for efficiency 
Major Tasks / Milestones Metrics Targets Timeline 

Compilers and runtimes: 
Improved profiling tools for 
optimization 

Level of detail and usability of 
automated code analysis 

20% reduction in coding time to implement 
optimization 2–3 years 

Languages and compilers: AI 
code generation wizards 

Coding time; accuracy and 
efficiency of coded algorithms; 

20% improvement in speed of generated 
code 4–5 years 
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suitability for IR code 
optimization by compilers 

Compilers and runtime libraries: 
ML approaches to discovering 
compiler heuristics 

Improvement in execution 
speed of generated code 

10% improvement on speed of generated 
code 2–3 years 

Computational reliability: 
checkpointing energy 
optimization studies 

Overall energy cost of 
checkpointing 15% improvement 4–5 years 

Communication protocols: 
Promote standardization of 
NCCL communication framework 

Adoption rate for new design 
projects >90% 2–3 years 

Privacy and Security: Perform 
energy efficiency trade-offs for 
candidate PIR implementations 

Energy efficiency or energy 
cost per transaction TBD 5–7 years 

Stakeholders and Potential Roles in Project 
Stakeholder Role 

Compiler Developers Implement optimization improvements 
Hardware Suppliers Provide improved profiling tools 

Data Center Operators Support modeling and simulation 
Academia Demonstrate prototype software; support modeling and simulation 

National Laboratories Demonstrate prototype software; support modeling and simulation; demonstrate improved 
checkpoint in HPC centers 

Government Provide targeted funding opportunities to stimulate work 
Required Resources Cross-Collaboration with Other Working Groups 

• Research funding is needed for improved compiler systems. 
• Human capital is needed for participation in standards bodies and 

working groups, bringing an energy efficiency focus to their work. 

Education & Workforce Development: Promote funding for 
studies at universities; catalyze improved energy efficiency 
coursework.  

 

2.4.6 Software for Domain-Specific and Emerging Architectures 
This section is focused on software challenges and opportunities tied to computer architectures 
outside of the traditional von Neumann architecture. For the purposes of this discussion, 
“emerging architectures” refers to those that are not currently in commercial use. Some of the 
software issues related to emerging architectures have already been discussed in Chapter 2.2. 
Likewise, many of the solutions outlined in the previous section for “conventional” architectures, 
such as compiler optimization, data compression, data type precision, and communication 
protocols, can also be applied to domain-specific and other emerging architectures. This section 
highlights some additional software related opportunities for energy efficiency gains in emerging 
architectures. 



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  205 

For decades, the imbalance of compute speed to memory bandwidth, as measured by the 
number of computations the machine can perform in the time it takes to read a data value from 
memory (see Figure 52), has made it ever more difficult to ignore communication costs. Beyond 

just increasing the size of hardware 
caches, new algorithms must be 
designed to minimize and hide 
communication, sometimes at the 
expense of duplicating memory and 
computation (Dongarra et al. 2020). 

Today, architecture and software go 
hand-in-hand to implement new 
capabilities in computer systems. 
Hennessy and Patterson (2019) 
have called this a new “golden age 
of computer architecture” in which, 
at the end of Moore’s Law, progress 
will be made by exploring many new 
architectural concepts beyond the 
von Neumann architecture. Domain-

specific architectures (DSAs) serve as an illustrative example. By providing combinatorial rather 
than sequential logic to perform the computation, and by orchestrating efficient data flow with a 
priori knowledge of what the application demands, DSAs enable radically improved performance 
in the targeted domains compared to what is achievable with a general-purpose CPU. To realize 
this potential for improved performance, however, the support software system must be able to 
provide high-level abstracted access to manage the unique aspects of the specific architecture 
and design. DSAs can partially address machine imbalance by managing data movement more 
efficiently, but more advanced research is needed.  

The machine imbalance problem is exacerbated by the most significant trend in computing 
today: the exponential increase of machine learning applications that, by their nature, are 
extremely data intensive. Machine learning algorithms such as generative AI consume a large 
amount of energy as a direct result of data movement (Sze et al. 2017). Compute In-Memory 
(with some architecture changes) would be a good candidate to implement low power 
inferencing for cloud as well as for edge devices, as this could reduce data movement. Cao et 
al. (2023) and Gozalo-Brizuela and Garrido-Merchán (2023) provide a survey of generative AI 
as well as use cases. 

The following subsections describe some challenges for software developers for emerging 
architectures and potential solutions for improved energy efficiency. 

2.4.6.1 Domain-Specific Languages  
Domain-specific languages (DSLs) are a natural fit to work with domain-specific architectures 
(DSAs), although their application is by no means limited to new architectures. DSLs are 
appropriate for application domains in which the most used operations can be expressed as 
high level operators and are then amenable to intermediate representation techniques to target 
and optimize for the specific hardware that is to be used. A familiar example of a DSL is 
Structured Query Language (SQL), a language explicitly designed for manipulating relational 

 
Figure 52. Growing machine imbalance over time.Source: 

Dongarra et al. 2020 



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  206 

databases. Domain-specific languages can make expression of hardware operations and 
programmer intent more natural and straightforward. At the same time, DSLs can borrow 
heavily from the syntactic and semantic idioms of popular general-purpose languages to reduce 
the learning curve for programmers. Nevertheless, the learning curve for any new language can 
limit its application to a wide variety of problems. The alternative to a DSL is a framework 
(system of libraries and an associated runtime system) implemented in a general-purpose 
language.  

The trade-offs between these two alternatives, frameworks and DSLs, are illustrated by two 
popular programming systems for machine language systems widely used today: PyTorch and 
TensorFlow. PyTorch is an open-source machine learning framework based on the Torch library 
with strong support for tensor computing and deep neural networks, both of which have 
significant matrix-vector operations. The tensor (multi-dimensional array) computational 
workflow can run on NVIDIA GPUs through the NVIDIA CUDA parallel processing compiler. 
Originally developed by Meta (formerly Facebook), PyTorch is now managed by a non-profit 
foundation as part of the Linux Foundation. 

TensorFlow is also an open-source library (Abadi 2016) but is more properly viewed as a DSL 
whose computations are expressed as “stateful dataflow graphs,” a data-centric intermediate 
representation that enables separating program definition from its optimization (Ben-Nun et al. 
2019). The TensorFlow language was developed concurrently with the Google tensor 
processing unit (TPU) in a true example of hardware/software co-design. 

Compiler infrastructure has evolved in response to the trend toward specialized DSLs targeting 
DSAs. The LLVM compiler infrastructure mentioned in section 2.4.5.1 is a suite of libraries 
enabling multiple language front ends to be represented in a common intermediate 
representation for optimizations and then targeted to multiple machine-specific back ends. A 
significant advancement is the introduction of multi-level intermediate representations (MLIR). 
MLIR simplifies the process of mapping programmatic constructs from DSLs or frameworks 
directly to DSAs (Lattner and Pienaar 2019). As depicted in Figure 53a, the compiler 
architecture allows for the integration of multiple programming languages. Initially, source code 
is processed into an abstract syntax tree (AST), followed by a language-specific intermediate 
representation (IR) that supports unique features such as novel data types.   

In the case of TensorFlow, the front end produces abstract data flow graphs which are 
translated to the high level operations (HLO) intermediate language and optimized by the 
accelerated linear algebra (XLA) optimizer. The outcome of these language-specific optimizers 
is then lowered to the LLVM IR for further optimization and code generation for target hardware 
(which may yet have additional machine-specific optimizations). The aim of MLIR is to provide a 
super-extensible system that allows DSLs to lower naturally to MLIR and LLVM IR, accelerating 
innovations in hardware, compiler algorithms, and high-level abstractions. 

For emerging architectures, DSLs allow a path for integration into an existing ecosystem and 
likely help them target which operators are most important to examine. They also set a bar for 
measuring the benefit of the emerging architecture, independently of marketing claims. For 
example, neuromorphic architecture holds enormous promise for building more powerful and 
efficient machine learning systems, yet it has been difficult to integrate these architectures with 
runtime systems to enable problem-solving. The use of IR can help decouple the evolution of 
neuromorphic hardware and software, ultimately increasing the interoperability between 
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platforms and improving accessibility to neuromorphic technologies as shown in Figure 53b 
(Pedersen et al. 2023). The potential for DSLs to unlock practical use of these architectures is 
worthy of extensive study. 

 

 
Figure 53. Neuromorphic intermediate representation. a) MLIR compilation process through language-specific 

intermediate representations. b) Example of IR that allows for continuous-time representation of nodes that can then 
be executed on continuous-time hardware or simulators, or discretized for use on discrete-time hardware or 

simulators. Source: (a) Lattner and Pienaar 2019; (b) Pedersen et al. 2023. 

2.4.6.2 Adoption of Existing Compute Cores in Domain-Specific Architectures  
Even though DSAs are tailored for domain-specific workloads, the modern design approach 
allows DSAs to tap into well-developed software ecosystems, depending on the overlap with 
existing architectures. Licensable processor cores, such as Arm and x86, and open-source 
RISC-V can be incorporated into the DSA chip design, thereby gaining access to operating 
systems, compilers, and high-level applications with comparative ease. The minimal RISC-V 
core can be implemented in as few as 15,000 gates (Lattner 2021), making its incorporation a 
very low burden on a custom chip with billions of transistors. Figure 54 shows an example of 
this design approach for an experimental neuromorphic computer architecture with an 
embedded RISC-V core.  
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The pace of software innovation will become a limiting factor unless it can keep up with the pace 
of architectural innovation. There is room for further maturation and standardization to enable 
existing software ecosystems to be seamlessly recompiled and executed on new DSA 
architectures. Development of a fairly standardized design framework for the interface between 
custom accelerator architectures and the higher-level environment will streamline software 
development for these accelerators using principles of co-design.  

 
Figure 54. An example neuromorphic computer architecture with embedded RISC-V processor.Source: MICAS 

2023 

2.4.6.3 Reusable Memory Access Control Architecture  
One challenge in typical design practice today is for each accelerator to have its own bespoke 
memory hierarchy and associated circuitry design. This follows quite naturally from one of the 
main motivations of custom accelerators, which is to take explicit control of data flow as 
specifically demanded for a specific planned workload. Yet there is potential to accomplish this 
control while adhering to a reusable memory access control architecture.  

The memory “buffets” concept (Pellauer et al. 2019) provides for explicit, composable data 
transfers between a custom chip and the external memory. Access requests are decoupled from 
the request receiver, thereby reducing or eliminating the need for on-chip buffering. The design 
of buffets has been publicly released in RTL code and is flexible enough to fulfill the needs for 
memory access architecture in a variety of use cases. Such flexibility in efficient memory access 
could facilitate acceleration of sparse matrix math operations, taking advantage of the data 
sparsity that is not accommodated well in current accelerators by avoiding time and energy 
expended transferring mostly zeroes and instead transferring only nonzero data. 

2.4.6.4 CIM, Neuromorphic Computing, and Spiking Neural Networks (SNNs) 
The successes of large neural network models have spurred innovation in machine 
architectures aimed explicitly at neural network processing. Many architectural adaptations have 
been made in GPU design, as well as in FPGA and TPU accelerators (as discussed in Chapter 
2.2), to process neural networks more efficiently. To achieve still greater energy efficiency and 
performance, computer architects have turned to brain-inspired “neuromorphic” computing 
designs, which mimic observed features of biological brains in silicon. Figure 55 illustrates two 
such architectural paradigms being actively explored as alternatives to the von Neumann 
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architecture and their associated challenges. Although the term “neuromorphic computing” most 
often refers to architectures that include inter-neuron signaling via variable-timed spikes in 
“spiking neural networks” (SNNs), all neural networks are brain-inspired. The term 
“neuromorphic” can refer to a wide class of architectures, including all-digital designs and 
mixed-signal designs with some analog circuitry as part of the network, particularly in the form 
or programmable resistance elements to represent the model weights. The existing and 
emerging device technologies for neuromorphic computing were discussed in section 2.1.7, 
while emerging circuit architectures for both digital and analog compute-in-memory were 
discussed in sections 2.3.2 and 2.3.3, respectively. 

 
Figure 55. Von Neumann, resistive crossbar, and spiking neuromorphic architecture paradigms and 

challenges.Source: Aimone and Agarwal 2024 

The common feature of brain-inspired or neuromorphic architectures is reorganization of the 
compute and memory elements to situate them as close as possible to one another to minimize 
the distance that data must move. Because most ML networks have static hyperparameters 
(once trained and optimized), compute-in-memory provides an alternative to massive transfers 
of data by storing the network hyperparameters (weights/kernels) within the memory/compute 
array where MAC (multiply-accumulate) operations take place. This reduces the neural network 
model’s memory transfers during runtime. Storing the network parameters once as part of the 
initialization of the compute array means there is no need for memory transactions during run-
time, which results in lower latency as well as lower power consumption per inference. 
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Digital compute-in-memory (CIM) 

CIM is a promising avenue to alleviate data 
movement bottlenecks but poses 
challenges for implementation in software. 
Digital CIM is not an extreme departure in 
terms of an architecture: it is moving 
compute closer to or in memory within a 
digital architecture. Some examples of 
digital CIM are already commercially 
available, including UPMEM (UPMEM 
2023) and the IBM NorthPole architecture 
(Modha et al. 2023). In the case of UPMEM, 
the operators look like hardware instructions 
or programs with accelerator semantics. 
Essentially traditional compute done with 
different tradeoffs, this requires avoidance 
of certain OS and system architecture rules. 
In the case of NorthPole (see Figure 56), 
the chip runs a network model with its own 
custom-defined instruction set but appears 
to the host processor as an active memory 
with just 3 commands (write inputs, run 
network, read results) and the minimum 
possible I/O bandwidth. NorthPole is a 
brain-inspired, all-digital inference engine 
exploiting CIM specifically optimized for 
neural network performance. Each of its 
256 cores is capable of massively parallel 
neural network computations (2,048, 4,096, 
or 8,192 operations per cycle for 8-, 4-, and 
2-bit precision, respectively), with memory 
in each core intimately intertwined with the 
computing circuits. As a result, it has 
demonstrated 25x greater energy efficiency 
(measured in frames per second per watt) 
for the ResNet50 image classification 
benchmark, compared to energy efficiency 
performance with an H100 GPU. 

Analog CIM 

Analog crossbar multiplier arrays (see section 2.1.7), an alternative to digital matrix 
multiplication for linear algebra operations, are the foundation of existing machine learning 
algorithms. They offer the possibility of dramatic reductions in energy (see section 2.2.3), but 
have thus far found limited application due to the low precision achievable with analog circuitry. 
However, as Aimone and Agarwal (2024) have pointed out, precision is an emergent property of 
digital circuit design because individual transistors have only single-bit precision. Song et al. 

 
Figure 56. IBM NorthPole digital neuromorphic 

chip.Source: Modha et al. 2023 

 hematic of an individual core (one of 256)

(b) Host interface
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(2024) recently demonstrated a method combining architecture and algorithm to achieve 
arbitrarily high precision with analog crossbar arrays, as depicted in Figure 57. The method 
dedicates subsequent crossbars to address the residual error (the difference between desired 
and realized precision) to reach the overall desired precision while maintaining a substantial 
energy advantage over conventional digital operations. This approach may not only enable 
more energy-efficient neural network processing but it also may be applied to more conventional 
numerical analysis tasks that require high-precision matrix multiplication. 

 
Figure 57. Architecture and algorithm to achieve arbitrarily high precision with analog crossbar multipliers. 

(a) Traditional crossbar arrays with ADCs and additional postprocessing circuits; (b) proposed arbitrary precision 
programming circuit with shared ADCs; (c) example of programming a numerical value A=1 into multiple memristor 

devices step by step; (d) flowchart of the arbitrarily high-precision programming algorithms. Source: Song et al. 2024. 

Spiking neural networks (SNNs) 

Prominent examples of spiking neuromorphic computers include the SpiNNaker computer of the 
Human Brain Project (Human Brain Project 2023), the Intel Loihi project (Intel 2023b), and the 
IBM TrueNorth project (Akopyan et al. 2015). Analog neuromorphic computing using ReRAM or 
silicon photonics, Ising rings, etc., offers huge potential gains in energy efficiency, but the 
discovery of effective algorithms for training SNNs has proven to be a difficult software 
challenge. The standard back-propagation method of training other neural networks is 
incompatible with SNNs. Alternative approaches for training have included strategies to 
approximate the back-propagation algorithm, to convert networks trained on conventional DNNs 
to run on SNNs, and to train SNNs directly through evolutionary algorithms (simulating evolution 
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through survival of the fittest, reproduction with intermixing, and mutation) (Schuman et al. 
2022). Despite the difficulties in training them, SNNs have demonstrated some success. For 
example, the Intel Loihi consumes 5–100x less energy than conventional DNNs for keyword 
spotting in speech recognition. For bio-inspired odor recognition, Intel Loihi is 3,000x more data-
efficient than DNNs (Intel 2020). 

Challenges and solution pathways for CIM, neuromorphic computing, and SNNs 
At present, digital CIM architectures are much better positioned than analog CIM architectures 
to gain widespread use, but these systems also present challenges for software. It is desirable 
to implement CIM relatively transparently while shielding hardware details from programmers in 
the same way the memory hierarchy does. Issues of automatically parallelizing sequential 
programs, managing the data layout in memory to implement computations, and incorporating 
in-memory operations within the memory hierarchy logic remain to be addressed at scale. 

Although neuromorphic computing is being evaluated widely, there are currently no real-world 
applications of neuromorphic computing that have exploited native hardware implementation. 
Many challenges must be addressed to realize the energy efficiency benefits of CIM, 
neuromorphic, and SNN architectures (Schuman et al. 2022): 

• Widening algorithmic focus: The lack of good native training methods for SNNs has 
meant that much of the reported SNN performance has come from applications where 
conventional software-based neural network solutions already exist, and SNN 
implementations were mapped from a DNN to the SNN. Further exploration of 
neuroscience-inspired approaches may yield higher performance networks. The use of 
SNNs for exploratory neuroscience is itself an important research direction that may yield 
better understanding of both SNNs and biological brains. 

• Wider availability of machines and simulators: There have been several high-profile 
neuromorphic computer systems, as previously mentioned, that have provided access for 
diverse groups to experiment with. Wider availability of development systems will enable a 
much larger community to develop, leading to faster discovery of viable algorithms. 

• Enabling use in heterogeneous compute environments: Neuromorphic compute 
engines’ reliance on the facilities of a host computer may impose overheads that hinder their 
performance and prevent commercial viability. It is important to achieve the optimal balance 
between performance and energy efficiency. Careful design of interfaces between 
neuromorphic chips and other compute elements—especially for edge computing, where the 
low power requirements of neuromorphic processors are most attractive—is a must. 

• Better benchmarks: Because it has been difficult to find problems for which neuromorphic 
computing is particularly well-suited, current benchmarks tend to rely on problems already 
effectively solved with conventional networks. Articulate important use cases to define 
appropriate benchmarks for neuromorphic computers. 

• Better programming abstractions: The fundamental lack of understanding of 
computational primitives, abstractions, and representations means that further studies for 
emerging architectures are essential.  
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2.4.6.5 Data Compression 
Data compression reduces the high costs associated with data movement by increasing the 
information density of the data, potentially aligning with near-term EES2 goals. It is particularly 
valuable in contexts with slow file I/O systems, long-distance communication links, and 
significant associated energy costs. When the energy saved by reducing data volume exceeds 
the energy spent in compressing and decompressing data, the efficiency gains are substantial. 
However, the benefits are less pronounced within computer systems, such as in data transfers 
between main memory and virtual memory or between main memory and cache, where the 
overhead of compression often outweighs the energy savings, resulting in modest compression 
ratios. 

Nevertheless, there has been work in compression. NVIDIA offers a standard compression 
library called nvcomp that enables compressed I/O in GPU systems (Sakharnykh, LaSalle, and 
Karsin 2020). ZeroPoint Technologies has introduced an IP product called Cache-MX that 
provides data compression of cache lines for L2 and L3 caches (but not for the most time-
sensitive L1 cache). Cache-MX is an add-in to the last-level cache controller that performs 
compression, decompression, and compaction to effectively double the (logical) size of the 
cache, with an increased latency penalty of 9 cycles for a 1.6 GHz (or potentially faster) clock. 
This compression delivers higher performance for the same power expenditure, either with 
larger apparent cache size or with chip real estate freed up for other functionality. 

Generally, data compression in a computer system must be lossless. But in connection with 
approximate computing or analog computing architectures, there may be opportunities for 
higher compression in lossy compression schemes. For data compression to be beneficial, the 
full accounting must include energy estimates for access, compression, decompression, 
transmission, and the relevant computation. Although compression may worsen latency, the 
overall effect may lead to an efficiency gain because fewer bits are transferred after 
compression.  

Exploiting a priori knowledge of the information domain of the data being communicated can 
yield large improvements in compression (Weissman 2022). For example, the algorithms used 
widely for audio and video compression exploit knowledge of human perceptual processing to 
achieve much better compression than would be possible without this knowledge. Tsai and 
Sanchez (2019) proposed a method for compressing software objects using the logical structure 
of those objects to achieve better compression ratios. Analogously to domain-specific computer 
architectures, domain-specific compression algorithms may lead to significant reductions in data 
movement with consequent improvements in energy efficiency. 

2.4.6.6 Precision of Data Types 
As shown in Figure 7 of the Introduction, higher numerical precision comes with an energy cost. 
For example, adds of 32-bit floating point (“FP32”) require 5.4 times more energy than adds of 
8-bit integers (“INT8”), while multiplies require 18.7 times more energy for FP32 versus INT8 
data precision. These comparisons account for only the arithmetic operation itself and not the 
energy cost of moving the operands to and from memory, which is of course also proportional to 
precision. Clearly, data precision has an important energy impact. 
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Floating point representation of real numbers 
in terms of a number of bits of a mantissa, or 
“significand,” with additional bits representing 
an exponent and a bit representing sign 
(essentially a binary version of scientific 
notation), were introduced with the first 
electromechanical calculators. The IEEE 754 
standard (IEEE 2019) for single-precision, 
double-precision, and quad-precision floating 
point was issued in 1985, leading to stability 
and identical results among computers (Athow 
2014). There has been continued significant 
innovation in floating point representation, 
driven primarily by the massive data 
throughput required for many ML applications. 
The “brain float” 16-bit representation that has 
become widely used in ML applications trades 
some precision in the mantissa for additional 
dynamic range in the exponent. A team at the 
Barcelona Supercomputer Center, together with Intel, has developed a method to achieve 
higher precision by combining bfloat16 values, thus eliminating the need to implement both 
bfloat16 and fp32 hardware on a chip (Genkina 2022). Figure 58 illustrates several numeric 
formats, including a distributed “MSFP” floating point format proposed by Microsoft (Rouhani et 
al. 2020), in which a single exponent is used in common for a block of mantissa values. This is 
useful for very hardware-efficient matrix dot-product computations and makes a compromise 
between the efficiency of integer math, which is subject to underflow or overflow with numerical 
outliers, and floating point, which has a separate exponent allocated to each value.  

Innovation in efficient number representation is ongoing. Opportunities exist for improvement, 
not only for machine learning but for other applications such as scientific computing, which has 
typically used higher precision floating point formats. In an effort to increase effective memory 
bandwidth, a team at Lawrence Livermore National Laboratory is developing floating point 
compression techniques to discard bits lacking useful information (Hittinger et al. 2019). Further 
exploration of novel combinations of smaller data types able to realize higher precision, efficient 
mixed-precision computation, and distributed representation similar to the MSFP format can 
reduce the memory traffic required to support computations. 

Proliferation of numeric type representations also means proliferation of software required for 
conversion between formats and carries the risk of many different implementations having slight 
incompatibilities. Therefore, efforts to promote standardization of new, more efficient formats will 
be beneficial. 

 
Figure 58. Integer and floating-point numeric 
representations. MSFP is a distributed floating-

point representation proposed by Microsoft. 

Source: Rouhani et al  2020 
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2.4.6.7 Tightly Coupled Architecture and Software Co-design  
Every novel computing paradigm—quantum computing, neuromorphic computing, biologically 
inspired computing, optical computing, etc.—must first be reduced to practice sufficiently that a 
machine architecture can be defined. It is then the job of software to provide appropriate logical 
abstractions to relate what programmers want to do to the low-level compute paradigm. Energy 
savings from new architectures are possible only when the new architecture is accompanied by 
software enabling it to perform its improved functions. Shortening the timescale delivers energy 
savings sooner, and this can be facilitated by tightly coupled architecture and software co-
design. 

This is already happening in emerging technologies. For example, IBM already has an 
assembler and compiler called OpenQASM for their quantum computing hardware (Cross et al. 
2022) which has been used to develop and test a robust set of benchmarks (Li et al. 2020). 
Another more recent example is the NorthPole brain-inspired neural processor developed by 
IBM (Modha et al. 2023). NorthPole’s chip design, aimed at energy-efficient neural inference at 
the edge, was introduced alongside a full 
software development suite that includes 
a compiler, chip simulator, and validator to 
validate both the compiler and input 
algorithms. The concurrent availability of 
these tools should facilitate rapid testing 
and commercial implementation of 
solutions using the NorthPole architecture. 
In general, as illustrated conceptually in 
Figure 59, software must follow 
architecture, but the gap between that 
hardware availability and usable software 
can be reduced by tightly coupled 
hardware/software co-design teams. 
Software may need a longer time to 
mature in order to adapt the new 
architecture into the wider computing 
ecosystem and provide compatibility with existing software interfaces. Co-design early in the 
process can lead to quicker adoption of new energy-saving architectures and acceleration of 
overall energy efficiency.  

Action plan for software for domain-specific and emerging architectures 

Table 62. Action Plan for Software for Domain-Specific and Emerging Architectures. 

Scope 

Technical Challenge for 
Energy Efficiency Software for Domain-Specific and Emerging Architectures 

Technologies of Interest 

• Domain-specific languages 
• Data buffets 
• Quantum programming 
• Neuromorphic programming 
• Data compression 
• Hierarchical algorithms for different scales  

 
Figure 59. Early engagement between hardware and 
software designers yields better software sooner. 
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Challenges Solution Pathway 

• Achieving reduction in energy use through lower-level data 
compression applications 

• Ensuring compatibility and efficient interchangeability of emerging 
numeric data types 

• Lack of systematic studies on accuracy versus performance 

• Support interface standards for domain-specific 
architectures 

• Support infrastructure and community to aid 
development of neuromorphic computing and 
compute-in-memory software 

• Develop domain-specific data compression 
strategies 

• Promote standardization of data types for 
information interchange 

Major Tasks / Milestones Metrics Targets Timeline 

Quantification of energy 
requirements for larger set of 
scientific simulations and 
machine learning algorithms 

Identify metrics for different sets of 
algorithms that span the areas of 

interest 
Measure benchmarks 1–2 years 

Support compiler 
infrastructure for domain-
specific languages 

Time to implement a working 
compiler <3 months 2 years 

Promote adoption of data 
buffet architecture in domain-
specific hardware through 
standards 

Number of chips incorporating buffet 
design >80% of new designs 3 years 

Develop robust software 
libraries exploiting data 
buffets 

Maturity and functional 
completeness  

Fully implemented libraries in 
C/C++, Python, Java 3 years 

Develop software prototypes 
for compute-in-memory 
architecture 

Compatibility with language code 
base 100% compatibility 5–7 years 

Discovery of effective training 
strategies for SNNs 

Computational effort to reach target 
accuracy 

No more than other neural network 
models 7–10 years 

Develop high-level 
programming tools for SNNs Useful models/use cases supported Multiple commercially significant 

models 7–10 years 

Proliferate open-source 
hardware/simulation 
platforms for SNNs 

Availability of development 
ecosystems 

At least one robust development 
ecosystem 7–10 years 

Data compression for 
domain-specific information Compression ratio >50% 3–5 years 

Standards for reduced 
precision/higher efficiency 
numeric representations 

Compatibility of implementations 100% compatibility 5 years 

Stakeholders and Potential Roles in Project 

Stakeholder Role 
Industry Groups formulate and adopt software standards for domain-specific and emerging architecture. 

End Users/OEMs  Commercialize new capabilities. 
Academia  Explore cutting edge algorithms and architectures. 

National Laboratories  Host laboratories and services for the development community. 
Government  Provide funding for shared high-performance hardware resources. 

Required Resources Cross-Collaboration with Other Working Groups 
• Industry working groups for standardization of interfaces. 
• Research funding for architectural and software innovation. 

Circuits and Architectures: Software opportunities described in 
this section follow from architectural innovation;close 
collaboration in software and architecture will yield better and 
faster results. 

 

2.4.7 Conclusion for Algorithms and Software 
Some improvement in energy efficiency can be gained by optimizing common software 
functions, particularly in making effective parallelization of software more routine. These 
improvements must remain fully compatible with existing codebases to be acceptable. Although 
this is a major challenge, the application of new approaches such as machine learning in the 
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optimization of software may realize major gains. Still greater gains can be achieved in the 
emerging field of machine learning, where the fundamental limits of algorithmic efficiency are 
yet to be discovered, as well as in software supporting emerging architectures, where innovative 
designs continue to be developed for many applications. All software development will benefit 
from profiling tools that enable programmers to probe energy efficiency of code at a fine-grained 
level. Those same tools, combined with benchmarking across the major use cases of 
computing, will enable tracking of industry progress toward EES2 goals. 
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3 Enablers 
The four Enabler working groups—Power and Control Electronics, Manufacturing Energy 
Efficiency and Sustainability, Metrology and Benchmarking, and Education and Workforce 
Development—cover enabling technologies and approaches in order to address the tools, 
processes, and technologies needed to support the advances in the compute stack described in 
the previous chapters. 

3.1 Power and Control Electronics (PACE) 
Power and control electronics (PACE) refers to an interdisciplinary field with roots in electrical 
engineering and technology development. This field focuses on the design, development, and 
application of electronic systems and devices responsible for managing and regulating the use 
of electricity as an energy source. These systems play a critical role in controlling the 
generation, conversion, distribution, and utilization of electrical energy. Since they often involve 
components and circuits designed for the control and automation of various processes, these 
systems and devices are integral to a wide range of applications, including power supplies, 
motor drives, renewable energy systems, industrial automation, and more. 

PACE and microelectronics are two distinct branches within the broader field of electrical 
engineering that focus on different aspects of electronic systems. The two branches are 
generally differentiated by the intended purpose in use, the scale at which they are applied, and 
the underlying devices and components they utilize. The differences between PACE and 
microelectronics are further described in Table 63. 

Table 63. Power and Control Electronics and Microelectronics Fields. 

Field Intended Purpose Trend Devices 

Power and 
Control 
Electronics 

Efficiently manage the generation, 
distribution, conversion, and 
control of electrical power.  

High voltage 
and high power 
over time  

Power 
semiconductors 
(e.g., thyristors, 
IGBTs, MOSFETs, 
diodes), power 
converters, voltage 
regulators, motor 
drives, and control 
systems 

Microelectronics  The miniaturization of electronic 
components, the fabrication of 
integrated circuits (Ics), and the 
development of semiconductor 
devices, such as 
microprocessors, memory chips, 
and other integrated circuits. 

Miniaturization 
over time, 
currently 
allowing billions 
of transistors on 
a single chip 

Transistors, 
integrated circuits, 
systems-on-a-chip 

 

In summary, while PACE focuses on managing and controlling the delivery of electric power, 
microelectronics considers the development and integration of electronic components to create 
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devices for computation and telecommunication. At their heart, both device classes are built on 
semiconductor technology, though differences exist in their respective design objectives.  

Use of PACE in computing environments 
In the computing industry, PACE are essential for ensuring the reliable and efficient operation of 
electronic devices, from personal computers to data centers. PACE serve several key uses in 
computing, including:  

• Uninterruptible power supplies (UPS): UPS systems are used to ensure that critical 
pieces of equipment never experience a power outage. At their simplest, UPS systems 
detect when a utility power supply becomes unavailable and use high-speed switches and 
battery energy storage to provide an alternative electricity supply. In their most advanced 
form, UPS systems use power electronics to recondition utility electricity supplies in real-
time, removing any variations or fluctuations in voltage or frequency, which ensures high 
power quality for sensitive equipment.  

• Power distribution units (PDU): PDUs are devices used to distribute electric power to 
individual server racks. At the simplest level, these devices are analogous to the power 
strips used in homes and offices to supply electricity to many devices at once. However, 
PDUs can be much more complicated. In most modern data center facilities, PDUs contain 
monitoring and control equipment to provide granular insight into energy use and to 
remotely control power delivery to individual servers or devices. In some data center 
facilities, PDUs also contain voltage transformers, which are used to reduce power 
distribution from the UPS output voltage level to a lower voltage that is more suitable for use 
by the electronic equipment. PDUs may also represent the point at which individual phases 
branch off from the three-phase utility electrical supply (e.g., step down from 480 V AC, 3-
phase to 120 V AC, single phase).   

• Switching power supplies: These are widely used in computer systems to convert 
electrical power from the main power source (usually the electrical grid) into the various DC 
voltages needed by different components within the computer, such as the motherboard, 
central processing unit (CPU), and graphics processing unit (GPU). 

• Voltage regulators: Power electronics are used to regulate and stabilize the voltage 
supplied to sensitive components in computers. Voltage regulators are used to ensure that 
the voltage supplied to critical devices, like processors, maintains a constant value, as even 
small fluctuations in voltage can cause damage. This regulation of the voltage is crucial for 
preventing damage and ensuring the proper functioning of Ics, circuit components, and 
subsystems. 

• Variable speed fans and pumps for cooling systems: Power electronics control the 
speed of fans and pumps in computer systems to optimize air and liquid-based cooling 
systems. This process is crucial for maintaining the operating temperature of components 
within acceptable limits. On a larger scale, similar power electronics equipment is often used 
to control the HVAC systems within data centers.  

• Power factor correction (PFC) systems, which support energy efficiency: PFC 
systems, using power electronics, are employed to improve the power factor of computing 
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equipment and the motor loads that drive data center cooling systems. PFC is a method for 
reducing energy consumption and improving overall efficiency in alternating current (AC) 
electrical systems.  

In the context of a data center, these power electronic devices are used to provide conditioned 
electrical power to information and communication technology (ICT) devices, which may include 
servers and computers; devices such as switches, routers, wireless access points, power-over-
ethernet devices, and telecommunication systems; and storage devices and digital signal 
processing equipment.  

Power and control electronics are foundational to the functioning of computing systems, 
ensuring reliable power delivery, energy efficiency, and the overall performance and longevity of 
electronic components in a wide range of computing devices and infrastructure. 

Relevance to EES2 
The PACE working group considered the role that these devices play in supporting the 
computing infrastructure being explored in other working groups (Materials and Devices, 
Circuits and Architectures, and Algorithms and Software). PACE supports the proper operation 
of computing infrastructure and has a direct impact on the energy consumed by 
microelectronics devices.  

All the electrical energy consumed by computing systems passes first through power electronic 
devices, which are regulated by control systems. If these devices and controls are inefficient, 
the total energy demand for a computing facility may far exceed the energy input required to run 
the intended computational equipment. Additionally, energy losses associated with PACE are 
converted into waste heat that must be removed from computing facilities.   

The technical approaches described in the PACE section are organized as follows: Dynamic 
computing load management techniques are described first. These techniques directly 
manipulate the power delivered to computing devices to reduce power consumption. Next, 
advanced and emerging thermal management approaches are described since new approaches 
will be needed to accommodate emerging circuit architectures with increasing thermal 
management requirements. Lastly, the PACE section describes the enhanced modeling, 
analysis, and simulation needs for empowering future co-design efforts in support of the next 
generation of energy-efficient devices and computing facilities.  

Working group methodology 
The PACE working group sought to better understand the contribution of power electronics and 
their control systems to the energy efficiency of computing devices in operation. The working 
group explored the use of PACE in computing environments, noting standard industry practices 
and potential areas of innovation. The working group concluded that best-in-class power 
electronics do not represent significant sources of power consumption or loss in modern and 
newly constructed data centers. Furthermore, industry-standard practices related to controlling 
power delivery are effective in eliminating losses and ensuring highly efficient power delivery. 
However, there are related concepts that warrant further consideration in future iterations of the 
EES2 roadmap. Though these related concepts may not represent power electronics and 
control challenges or solutions directly, they do address broader challenges related to the 
design, implementation, and optimization of power delivery for emerging architectures.  
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The diagram in Figure 60 presents the estimated energy efficiency factors and related timelines 
for the technological approaches recommended by the PACE working group. These approaches 
are described in more detail in the subsequent sections, and activities related to the timelines 
referenced are noted in the action plans contained in this chapter.  

 

 
Figure 60. Potential efficiency improvement factor vs. timeline for PACE technologies. 

Key takeaways 
The following tables present and summarize the PACE-related technologies recommended for 
further investigation, as well as the major contributions each recommended technology makes 
to energy efficiency.  

 
Table 64. Key Opportunities for PACE Technology. 

Technology 
Group 

Key Opportunities for Energy Efficiency 

Dynamic 
Computing Load 
Management  

 
 

 

• While modern servers have standby modes that consume much less power 
than in their active states, most servers still consume 80% of their total lifetime 
electric power while in standby mode.  

• Turning devices off completely could increase server efficiency by 5X. This 
represents significant global savings, given the growing installed base of 
servers worldwide.  

• Shifting workloads to data centers with more efficient computing resources or 
available renewable power can effectively reduce global computational energy 
use.  
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Advanced Thermal 
Management 
Technologies  

 

• Energy densities are increasing in emerging computer architectures, requiring 
novel strategies for removing heat from circuits while in operation.  

• Most data centers currently use forced air cooling, but technical limits will 
reduce the use of this technology in the future.  

• Techniques for cooling that involve immersion in liquid, coolant distribution via 
microchannels, and phase-change materials offer new opportunities for 
managing heat removal in future computing devices.  

Enhancing 
Modeling, 
Simulation, and Co-
Design Capabilities 

 

• Using presently available software packages for microelectronics design, it is 
difficult to connect energy performance at the device level to overall energy 
performance at the facility level.  

• It is nearly impossible to weigh the impact of device-level design changes on 
high-level system energy consumption.   

• Extensions are needed to the capabilities of modern design and analysis 
software programs, to allow co-simulation, co-optimization of system design 
properties, and validation of design changes.  

• Enhanced co-design tools will enable the design of future computing systems 
that are globally optimized to reduce power consumption.  

 
Table 65. PACE Technology Grouping. 

Technology 
Category Technology  

Dynamic Computing 
Load Management 

Reduction of idle power consumption 

Resource-aware compute scheduling 

Advanced Thermal 
Management 
Technologies 

Diamond copper nanocomposite heat 
sink 

Water cooled heat sink 

Direct liquid cooling 

Immersion cooling, single phase 

Immersion cooling, dual phase 

Enhancing Modeling, 
Simulation, and Co-
Design Capabilities 

Multi-scale co-design tools 

Multi-domain co-simulation  

In-simulation reliability and economic 
analysis 

 

Grand challenges 
The following challenges must be addressed to realize the potential contributions of PACE 
technologies toward EES2 goals: 

• Architecture-specific power delivery optimization: As new device architectures are 
developed (2.5/3D, neuromorphic, PICs, etc.) power delivery approaches will need to 
become more specialized to each architecture. The power delivery needs of each 
emerging architecture will need to be independently assessed and accounted for.  

• Enhanced co-design capabilities: To fully understand implications for energy 
efficiency, electricity delivery needs to be co-designed with circuits and architectures. 
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Improvements in design and simulation tools can help to elucidate design tradeoffs 
related to energy efficiency.  

• Thermal management: Despite significant improvements in thermal management at the 
data center level, emerging architectures will require new approaches to on-chip thermal 
management due to increases in energy density and dimensionality. Thermal 
management is an integral part of power delivery optimization and innovations will be 
required.  

• Applying innovations in non-data-center contexts and legacy computing facilities: 
New data centers are being built at massive scales and with impressive innovations 
included by default. What remains unclear is the percentage of legacy computing 
equipment, the computational work being performed in non-data-center contexts, and 
the energy efficiency burden that legacy equipment represents. There may be 
opportunities to incentivize energy efficiency upgrades for computing equipment housed 
in non-data-center facilities (e.g., hospitals, research centers, academic institutions, 
etc.). 

3.1.1 State of the Art and Benchmarks 
Overview of Data Center Power Distribution  
Power distribution systems for data centers are designed to ensure reliability and safety. Any 
interruptions in the flow of electricity to computational equipment can be costly for data center 
owners and operators. Therefore, power system design for data centers prioritizes the use of 
redundant and varied supplies of energy. Since different electricity sources (e.g., an electric 
utility connection, a diesel generator, an electrochemical battery system, etc.) have different 
characteristics (voltage fluctuations, disturbances, frequency variations, harmonic distortion 
levels), methods are used to ensure the same quality of electricity is delivered to sensitive 
electronic devices. For this reason, double-conversion UPS systems are commonly used in data 
centers: Each UPS contains a power electronic rectifier, which converts the included AC utility 
waveform into a DC electrical signal. The UPS then utilizes an inverter (which is another class 
of power electronics devices) to create a new AC waveform with consistent power quality. 
These UPS systems also utilize energy storage (typically in the form of electrochemical 
batteries) to maintain a consistent power supply in the event of a short-duration outage in the 
primary (utility) electrical supply. For longer-duration outages, onsite diesel backup generators 
are typically utilized to supply power to data centers until utility power can be restored.  

Power distribution architectures can vary between data center facilities. Different facility owners 
and operators employ a variety of strategies to ensure redundancy, enhance reliability, and 
achieve high power quality. The diagram in Figure 61 provides an overview of different power 
delivery architectures for data centers. Though the configuration and interconnection of devices 
may change, the primary components stay consistent: namely, utility power supplies, 
distribution transformers, panels and switchgear, backup generators, UPSs, and IT loads.  

Figure 62 shows a more streamlined view of power delivery to IT and ICT devices within a data 
center. This view emphasizes the power electronics devices typically included in the power 
delivery chain that feed computational devices. As shown, every electron utilized within a 
computational device must first pass through a long chain of power conversion, conditioning, 
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and control steps. As energy is converted from one form to another, waste heat is generated, 
which must be removed from the facility using HVAC equipment. 

 
Figure 61. Common power distribution architectures for data centers.Source: Paananen 2023 
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Figure 62. Power electronics in the data center power delivery chain.Source: Sun et al. 2018 

End-to-End Efficiency in Data Centers 
Power use effectiveness (PUE) is a metric that has become popular as a means for 
communicating the energy efficiency of an operational data center (Gillis and Fontecchio 2022). 
The PUE metric seeks to capture the extent to which energy consumed within a data center is 
utilized for computation, the primary purpose of the data center. In practice, data centers 
consume energy in power conversion equipment, control systems, HVAC systems, and auxiliary 
building systems. PUE is calculated as the ratio of total energy consumed in a data center to 
energy consumed specifically by IT equipment. A ratio of 1 would represent 100% of data center 
facility power being consumed by the intended IT equipment. A PUE efficiency of 3 would mean 
the facility overall uses three times the amount of power as the IT equipment alone, which is 
highly inefficient.  

In the early 2000s, data centers were reporting an average PUE of 3 or more (de Jong and 
Vaessen 2007). The industry recognized a need for improvement and resources were dedicated 
to improvement. In the last two decades, tremendous improvements have been realized. 
Modern data centers now achieve an average PUE of 1.57 (Bizo et al. 2021), with industry-
leading facilities achieving a PUE as low as 1.06. The average PUE for all Google data centers 
is 1.10 (Google 2023). 

Required Cooling Load in Data Centers  
To achieve these PUE improvements, data centers have introduced remarkable innovations in 
the management and control of cooling systems. As computational devices operate within a 
data center, they produce heat as a natural byproduct. Data center cooling systems work to 
ventilate this air, replacing it with cooled air, which prevents temperature rises that could 
damage electronics. Airflow management systems are used to control the flow of air across 
computing devices. These systems have evolved, incorporating tight seals, plates, and fittings 
to ensure that exhaust and intake air systems are not able to mix. Precision control of air 
delivery and removal has greatly improved cooling efficiency for data centers. In some 
instances, like supercomputing and high-performance computing systems, liquid cooling 
solutions replace forced air movement.  

What could be considered the greatest innovation in cooling efficiency involves the use of “free 
cooling solutions,” which are made possible by geographically locating data centers in 
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advantageous locations, such as those with naturally occurring cold water sources or lower 
ambient air temperatures. In these locations, air and water can be circulated without the use of 
compressor-based refrigeration systems, which drive energy use in modern cooling and HVAC 
systems.  

With decades of investment, cooling has gone from the highest energy consumer within a data 
center to a much less significant portion of overall data center power use, which has contributed 
significantly to the increases seen in data center PUE.  

Power Electronics Conversion Efficiency for Data Center Power Delivery  
A variety of power electronics devices are required to condition power for computing equipment 
within a data center. Power electronics converters are devices that are used to convert between 
alternating current and direct current electricity distribution, or to convert between voltage levels. 
Table 66 summarizes the common power electronics converters that are found in data centers.  

Table 66. Common Power Electronics Converters in Data Centers. 

Name Description Data Center Use 

Rectifier Converts from AC to 
DC 

Used within UPS systems to eliminate fluctuations 
in utility or generator supply voltages.  

Also used in server power supplies to create the 
DC voltages required to operate electronics.  

Inverter Converts from DC to 
AC 

Used in UPS systems to recreate AC waveforms 
that are high quality and well-regulated.  

Buck 
Converter 

Reduces DC voltage 
levels 

May be used in PDUs or PSUs to further reduce 
DC voltages after rectification. For instance, 
rectifiers in data centers often produce voltages 
between 300 V and 400 V DC. Buck converters are 
used to produce a regulated 12 V or 48 V supply 
for on-chip power distribution.  

 

Given the prevalence of power electronics converters within data centers, efforts have been 
made to increase their efficiency. Inefficient converters produce more waste heat, which building 
HVAC systems must eliminate. Inefficient power electronics within a data center cause 
subsequent increases in overall facility energy use. For this reason, power electronics have 
been the focus of improvements in the last decade. Notably, two approaches have resulted in 
increased efficiency in power electronics for data centers. Firstly, high-performance, wide-
bandgap (WBG) power semiconductors such as gallium nitride (GaN) and silicon carbide (SiC) 
have replaced traditional silicon devices. These WBG materials allow devices to operate at 
higher voltages, frequencies, and temperatures with greater efficiency. This means that power 
electronics utilizing GaN and SiC can switch more quickly and lose less power, resulting in less 
energy dissipation as heat. Consequently, data centers can reduce cooling requirements, 
leading to lower energy consumption and operational costs. The robustness of these materials 
also translates into smaller, lighter, and more reliable devices, making them ideal for the high-
density and high-reliability environment of data centers. The ability of GaN and SiC to handle 
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higher power densities is critical in managing the intense power usage and thermal 
management challenges inherent in modern data processing centers. By integrating these 
advanced materials, data centers can significantly enhance their power converters efficiency as 
high as 98% and 99% (for SiC and GaN devices, respectively) (Horn 2023). The introduction of 
these advanced materials into the motor drives for cooling systems and Uninterruptible Power 
Supply (UPS) systems marks a significant milestone, leading to unprecedented operational 
efficiencies (GlobeNewswire 2023).  

Secondly, data centers have increased the voltage at which electric power is distributed. This 
reduces the current needed to transmit electric power, reducing the power losses associated 
with electrical conduction (Edmonds 2022). Many data centers have increased DC distribution 
voltages from a historical norm of 12 V DC to 48 V DC, thereby reducing conduction losses by 
16x, as losses are proportional to the square of the current (Maxim Integrated 2023). In some 
instances, data center owners have eliminated AC power distribution in much of their facilities, 
choosing instead to distribute 380 V DC from the UPS systems directly to server power supplies 
(Emerge Alliance 2023). This direct distribution not only increases system efficiency, but also 
eliminates the need for load balancing and power factor correction, issues that derive explicitly 
from the use of three-phase alternative current electricity distribution (O’shea 2016).  

3.1.2 PACE Approaches for Reducing Computing Energy Use   
The EES2 PACE working group brainstormed technology solutions and approaches wherein 
PACE innovations could be used to enhance the overall energy efficiency of computing 
infrastructure. The following technology categories emerged as a part of the discussion: 

• Electricity supply innovations 

• Data center power use improvements  

• On-chip / On-package power management  

• Architecture-specific power delivery innovations 

• Dynamic computing load management 

• Advanced thermal management techniques 

• Enhanced modeling, simulation, and co-design capabilities 

A subset of these technologies was explored by the PACE working group and resulted in the 
development of various action plans. These action plans detail high-level strategies that can be 
pursued to solve the challenges identified. The rest of the approaches were investigated by the 
working group but were not recommended for further consideration as a part of the EES2 
roadmap. These approaches are described in a separate section within this chapter, but do not 
include action plans.  

3.1.2.1 Dynamic Computing Load Management  
Two techniques for reducing computing facility energy use by manipulating characteristics of the 
computing load in a facility were discussed: 1) dynamically reducing power supplied to 
equipment not in use, and 2) shifting demand from one data center location to a different data 
center location where renewable energy resources were more readily available.  
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Dynamically turning off power to unused equipment 
As demand changes in data centers, equipment utilization varies. Reducing energy delivery in 
response to demand changes represents an approach for reducing overall energy use. Modern 
data centers employ demand reduction approaches and can shift workloads over diverse 
locations, optimizing power use and hardware utilization. Improvements have been made 
regarding idle power consumption for servers, and power management techniques in data 
centers empower operators to place limits on server power consumption during periods of low 
utilization (Matthews and Maclean 2023). Studies have shown that power management 
resources can reduce servers’ idle power consumption by up to 11%. Despite these benefits, 
the same studies have shown that idle power consumption can still account for 50–90% of 
overall power consumption for some servers. Turning servers off completely when not in use 
could reduce server power consumption by an additional 30% beyond the improvements 
possible through power management systems (IEA 2021), and the potential exists for more 
broadly utilizing strategies that turn equipment off completely when not in use.  

Challenges and solution pathways for dynamic computing load management 
Efforts are needed to better understand the operating constraints and limitations associated with 
cutting power to idle equipment, such as estimating impacts on equipment availability and 
system flexibility. Modeling and experimentation are also needed to validate potential benefits 
and tradeoffs. The EES2 community can play a leadership role in exploring the associated risks 
and opportunities. The federal government can promote investigation through stakeholder 
engagement and RDD&D investment. 

Resource-Aware Distributed Computing 

The term resource-aware computing can refer to the efficient scheduling and allocation of 
workload in a single CPU across threads and cores in a multicore computing environment, 
across servers in a data center, or across data centers in a regional, national, or global network. 

Scheduling work on a machine to share the 
computation resources (CPU, memory, I/O) 
most effectively among the active tasks has 
been practiced since the advent of the first 
multitasking computer systems in the 
1960s. With the emergence of multicore 
architectures, the job of the scheduler 
expanded to allocate tasks across multiple 
compute cores (see, for example, Tillenius 
et al. 2015), and this scope quite naturally 
expanded to scheduling resources across 
clusters in whole data centers (Vasile et al. 
2015). With widespread optical fiber data 
networks, the scheduling of workload can 
be expanded to geographically separated 
data centers as well. Light travels 245 
km/ms in optical fiber, so in the 5–10 ms 
required for a magnetic disk reference, fiber 

 
Figure 63. Daily and hourly fraction of renewable 
energy in the California grid for 2022.Data source: 

California ISO 2024 
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optic communication can carry data 1,225–2,450 km (roughly the distance from Washington DC 
to Chicago IL or Austin TX).  

Recently, large data center operators have begun to consider the use of scheduling to reduce 
their carbon footprint. Figure 63 illustrates how large that opportunity could be in the case of 
electricity supply in California. The statewide supply of renewable energy shows a daily variation 
from less than 20% at night to more than 50% virtually every day and exceeding 80% regularly 
during the spring and autumn when longer days and cool weather combine to produce a high 
output from the state’s large solar fleet and low heating and cooling loads. This temporal 
distribution is typical in regions with high solar energy penetration, but the pattern can be 
different, with more renewable energy availability at night in the windy regions of the midwestern 
states.  

Recent work by Google (Radovanovic et al. 2023) has implemented a Carbon-Intelligent 
Compute Management system that is able to selectively delay the execution of temporally 
flexible workloads to “greener” times (when 
the local electricity mix is less carbon-
intensive). The system, illustrated 
conceptually in Figure 64, monitors the 
forecasted carbon intensity of the utility 
energy supply to the facility. The system 
then determines heuristically or explicitly 
which workloads are not time-critical and 
which can be shifted to times with lower 
energy carbon content. However, the actual 
measurements from Google data center 
clusters demonstrated a power 
consumption drop of only 1–2% during 
times with the highest carbon intensity. 

A team of engineers at Microsoft and 
Carnegie Mellon University (Agarwal et al. 
2021) introduced the concept of a virtual 
battery, illustrated 
conceptually in Figure 65. 
In a virtual battery model, 
multiple data centers are 
located near (perhaps 
collocated with) renewable 
energy plants and joined 
together via a wide-area 
network (WAN). This 
approach is a paradigm 
shift: instead of using 
techniques to adapt the 
availability of power to the 
computation demand, 
computational demand is 

 
Figure 64. Google carbon-intelligent compute 
management data center scheduling system 

concept. Source: Radovanovic et al. 2023 
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Figure 65. “Virtual battery” shifts workload between data centers in 
response to renewable power availability. Source: Agarwal et al. 2021 
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shifted to adapt to the availability of clean power. Virtual batteries shift demand by requiring 
applications to either be flexible and delay-tolerant or proactively migrating to where power is 
(going to be) available. The engineers noted that about half of the cost of utility-supplied 
electricity is due to transmission and distribution, and they further claim that the energy cost of 
shifting workload between data centers is negligible compared to the energy costs of 
transmission and distribution. Thus, a strategy of relying mostly on self-generated renewable 
power coupled with opportunistic geographic workload shifting can be very cost-effective.  

Challenges and solution pathways for resource-aware distributed computing 
This work is still in early stages, and efforts are needed to combine temporal and geographic 
workload shifting to achieve maximum carbon footprint abatement. But with data centers now 
consuming more than 1% of total electricity usage (Masanet et al. 2020), these efforts represent 
immediate opportunities for significant economic benefits. 

The migration of workload between data centers can be accompanied by power-saving 
strategies such as frequency scaling and preferentially powering down components that are 
older and less energy-efficient.  

There is a need for more comprehensive modeling to examine the comparative cost of moving 
the data versus moving the power and to improve real-time reporting of renewable energy 
fraction in power generation that can be an input to application routing. 

The benefits can be amplified through the management of this process in cooperation with utility 
companies and grid operators. The transition to a carbon-free grid will come through massive 
deployment of renewable energy generation and storage systems, but also, importantly, through 
exploitation of load flexibility as a means of matching supply and demand. Data centers can 
become a significant source of load flexibility that is needed for a carbon-free grid. A lot of 
computation, such as database maintenance, is done on a scheduled basis; increasingly we will 
be able to add periodic retraining updates for ML applications to the suite of flexible computation 
loads. The EES2 community can play a leadership role in exploration of the intersections of 
smart grid modernization and data center power management for maximum benefit. 
Furthermore, the government can act as a convener to coordinate efforts between grid 
operators and data center operators to engineer the systems for the maximum benefit to both 
carbon abatement and grid stability. 

Action plan for dynamic computing load management 

Table 67. Action Plan for Dynamic Computing Load Management. 

Scope 
Technical Challenge for 

Energy Efficiency Reducing energy use in computing facilities through manipulation of electrical load.   

Technologies of Interest: • Reduced idle power consumption  
• Resource aware compute scheduling  

Challenges Solution Pathway 
• Optimizing both power consumption and performance in HPC 

compute center job scheduling; converged cloud/HPC workloads 
in HPC centers. 

• Reducing the power consumption of idle servers in computing 
facilities.  

• Extension of cloud scheduler algorithms and heuristics 
to optimization across multiple data centers with 
renewable resource availability as a constraint.  

• Investigation of benefits and concerns associated with 
temporarily eliminating power to idle equipment.  

Major Tasks / Milestones Metrics Targets Timeline 

Stochastic scheduling Resource utilization Optimal scheduling under uncertainty 3 years 
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Multi-objective optimization Time to service/power 
utilization 

Right pareto profile for selecting the optimal 
scheduling strategy 3 years 

Availability of short-term/medium-
term and long-term energy 
forecasts 

Accuracy 99% 1–2 years 

short/long/medium term 
power/load forecasting Forecast accuracy 99% accuracy 3 years 

Energy-Reliability tradeoffs in 
scheduling for on-prem HPC and 
Cloud 

Energy efficiency (e.g., 
cooling) Optimality, energy efficiency 3 years 

Development of coordinated 
regional workload scheduling Total load scheduling flexibility 

>90% of data centers participating 
Daily shiftable load in MW 5 years 

Impact assessment for shutting 
down idle equipment Power reduction effectiveness 

Identify operating constraints, quantify 
limitations for use, estimate energy impacts, 

verify potential reductions in equipment 
availability, assess impact on system 

flexibility 

5 years 

Stakeholders and Potential Roles in Project 
Stakeholder Role 

Hardware Suppliers Provide relevant equipment specifications and perform testing. 
Data Center Operators Evaluate operational limits and tradeoffs and perform studies. 

Academia Perform research and publish findings.  
National Laboratories Develop protocols and support development efforts. 

Government Provide targeted funding opportunities to stimulate work and act as a convener to promote 
cooperative scheduling and load management between grid operators and data center 
operators.  

Other Optimize scheduling for regional grid operators and utilities coordinate with data center 
operators. 

Required Resources Cross-Collaboration with Other Working Groups 

Power system renewable energy/carbon intensity data. Education & Workforce Development: Fund studies at 
universities; catalyze improved energy efficiency 
coursework.  Operational data for workload flexibility characteristics 

3.1.2.2 Advanced Thermal Management Technologies 
Despite the significant advances made in cooling data centers, computing also takes place in 
non-data-center environments. Where improvements in cooling do not apply at the facility level, 
more modular, compact, or chip-level cooling strategies may be needed. In particular, the 
development of 2.5D and 3D chips will require direct on-chip cooling strategies that exceed the 
capacity of traditional, forced air cooling methods that are commonly applied today.  

As the power density of electronic devices increases, conventional cooling methods become 
insufficient. For instance, while larger computer systems typically use heatsinks with forced air, 
and mobile and IoT devices rely on passive heatsinks, these approaches fall short for 3D IC 
devices. HPC devices are expected to exhibit power densities up to 1,000 W/cm², with stacked 
logic or memory tiers at 100 W/cm², and IoT devices at 10 W/cm² (Li and Goyal 2017). 
Moreover, hot spot densities can reach 2–4x the average power density, significantly increasing 
the risk of performance degradation and device failure due to overheating (IEEE HIR 2021). 
Current forced air system, even when combined with vapor chambers, is limited as it can only 
cool up to 85 W/cm², which is inadequate for the cooling demands of 3D ICs. Therefore, novel 
cooling methods are needed for the next generation of 3D IC cooling. 

Planar 2D systems have utilized a software technique to help mitigate extreme temperatures. 
Dynamic thermal management (DTM) transitions a task to a cooler core when a critical 
temperature on an existing core is reached. While this technique is important to prevent 
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overheating, it is unlikely to work well in a 3D IC with a smaller footprint and stacked 
technologies, which have higher power density (Li and Goyal 2017). This is also a challenge on 
mobile devices or other applications with passive cooling. For smartphones, the processor case 
temperature can reach near 43°C, or 18°C above the ambient temperature near the processor 
(IEEE HIR 2021).  
Savings potential for advanced thermal management techniques 
Literature sources report investigating methods utilizing liquid or mixed-phase cooling as a 
potential advanced thermal management strategy. Compared to air cooling (50–85 W/cm²), 
these methods can range from achieving 100 W/cm² for dielectric immersion cooling, 562 
W/cm² for water immersion cooling, and to 1,020 W/cm² for two-phase microchannels. 
Alternative cool plates can also be used for alleviating heat fluxes of 250 W/cm². These 
technologies are shown in  

Table 68 with their performance compared to conventional air technologies and their impact 
factor over air cooling. Exact energy impacts are difficult to place as only water-cooled heat 
sinks were found to project data-center energy savings by 20x. A comprehensive study of the 
energy impact of these technologies is recommended. 

Table 68. Various Device and Package-Level Cooling Technologies, and Their Impact over Conventional 
Technologies. 

All technologies except for direct liquid immersion utilize thermal interface materials (TIMs), although it is not a 
requirement to forego them. Included is also the timeline to reach TRL 6. 

Technology 
Group Specified Technology 

Baseline 
Energy 

Performance 

Commercial 
Benchmark 

Product 

Commercial 
Benchmark 

Energy 
Performance 

Impact 
Factor 

Timeline 
(years) 

Device and 
Package 

Level Cooling 
Technologies  

Diamond copper 
nanocomposite heat 

sink 
900 W/m∙K Cu Heat Sink 389 W/m∙K 2.3 1–3 

Water cooled Heat 
Sink 

170–250 
W/cm2 

Forced Air 
Cooling  

50 W/cm2 3.4–5 

1–3 0.23% Chip 
Power for 
Cooling 

50% of Chip 
power for 
cooling 

217 

Direct liquid cooling 
(water immersion 

cooling, electrically 
isolated by dielectric, 

no TIMs) 

562 W/cm2 Forced Air 
Cooling  50 W/cm2 11.24 5–10 

Immersion Cooling 
Single Phase (micro 

channels in the 
device) 

790 W/cm2 Forced Air 
Cooling  50 W/cm2 15.8 5–10 

Immersion Cooling 
Dual Phase (micro 

channels in the 
device) 

1,020 W/cm2 Forced Air 
Cooling  50 W/cm2 20.4 5–10 

 

In addition to the technologies characterized, many additional technologies exist that have the 
potential to be used in microelectronics circuit cooling applications, though further 
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characterization is needed to quantify their potential. These technologies include thermoelectric 
devices, heat pipes, and magnetocaloric cooling. It is recommended that version 2.0 of the 
EES2 roadmap further investigate the suitability of different thermal management approaches at 
different computing scales and in different contexts, including distributed and scalable solutions 
for non-data-center facilities.   

Challenges and solution pathways for advanced thermal management technologies 

Infrastructure adoption and standardization 

The first paper using microchannels in a device for cooling purposes was published in 1981, but 
the process was never commercialized due to existing infrastructure limitations at the time 
(Tuckerman and Pease 1981; Refai-Ahmed et al. 2020). Forced air cooling is reaching its limits 
and the next-generation data centers employing 3D ICs are likely to leverage water-cooled heat 
sinks or microchannels. This shift will require new pumps, rack layouts, liquid heat exchangers, 
and other components. In addition, new standards will be needed for the liquid cooling systems, 
such as flow rates, pressure drops, pump sizes, line lengths, fin thickness, and channel width 
for microfluidics, as is currently done with room air conditioners for data centers (AHRI 1360, 
OCP, ALSI 127, etc.). 

Compatibility with chip power and interconnects 

Microfluidic channels on the back side of the Si die will have significant integration challenges 
with chip designs that primarily use backside power. Utilizing microchannels as a TIM will 
require precise placement of the electrical vias between the fluidic channels (Li and Goyal 2017; 
Kandlikar 2014). Future designs must balance cooling and power distribution, especially for 3D 
circuit configurations. Packaging EDA CAD tools must be adapted to evaluate designs that 
configure these new cooling technologies alongside power distribution and interconnect layouts. 

Reliability concerns and serviceability 

As these advanced thermal management technologies have not yet been implemented broadly, 
the potential exists for multiple unknown failure modes and longevity concerns. Issues may 
include leakage of water or other liquids and the resulting impacts on devices, dielectric coating 
durability, and boiling of liquid coolants in contact with the devices. Failure mode and effects 
analysis (FMEA) should be conducted on these approaches to create mitigation plans. In 
addition, new components should be serviceable. If there is an equipment failure, or 
preventative maintenance is required, procedures must be established for the removal water or 
other coolants as needed to safely remove or replace components.  

Distributed and scalable solutions for cooling computer equipment in non-data-center facilities 

High-efficiency cooling solutions can be applied to various facilities that commonly contain 
significant computing infrastructure, though computation is not the primary facility purpose (e.g., 
healthcare facilities, universities, scientific computing centers, and logistics, shipping, and 
tracking companies). Since computing is often subordinate to other business functions in these 
environments, investments in computing energy efficiency may be lacking compared to industry-
leading data centers. In these contexts, government incentives can promote the adoption of 
high-efficiency computing and cooling equipment, but the potential effects of this approach have 
yet to be quantified.  
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Improving technical and commercial maturity for emerging cooling technologies 

Many emerging cooling solutions require further investment in RDD&D before becoming 
suitable for commercial use in computing facilities. Thermoelectric cooling approaches have the 
potential to be integrated on-package using deposition processes similar to CMOS 
microelectronics. However, manufacturing challenges still exist for superlattice and tunneling 
thermoelectric devices, which may prove to be useful approaches for achieving higher thermal-
to-electrical conversion efficiencies. Similarly, heat pipes may be useful for heat removal 
applications in CNT-based computing architectures. However, the technological development of 
CNT-based transistors and heat pipes will need to move in parallel, and co-design will be 
needed, to allow for convergence.  

Action plan for advanced thermal management technologies 

Table 69 Action Plan for Advanced Thermal Management Technologies. 

Scope 

Technology for Energy Efficiency Effect System level Cooling/Full Chip cooling 

Technologies of Interest: 

• Air cooling 

• Liquid/immersion cooling (including single-/two-phase direct liquid cooling and single-/two-
phase immersion cooling) 

• Microfluidic cooling (single- and two-phase) 

• Interposer cooling technologies 

• Heat exchangers (for liquids cooling back down) 

• Thermoelectric and magnetocaloric cooling 

• Heat pipes 

Challenges Addressed Solution Pathways 

• Thermal distribution in PCBs. 
• Server thermal design power (TDP). 
• Rack density (increasing server density). 
• Thermal hot spots . 

• Non-uniform surfaces across multi dies for 
cooling. 

• Data center sustainability by increasing facility 
water temperature (deal with hot air and liquid 
temperature). 

• Greater reliability of function during heat 
waves (e.g., not needing to decrease data use 
due to heat). 

• High-efficiency cooling solutions for all 
compute contexts, including non-data-center 
environments. 

• Lower TRL cooling technologies require R&D 
investment. More mature cooling technologies 
may still require de-risking. Technologies that 
have been demonstrated at commercial scale 
within data centers may still require 
adaptation for use in other compute contexts. 
Reliability analysis is required when 
incorporating novel cooling strategies into 
device packaging. 

• Integrate thermal distribution material in PCB layers for normalized temperature across 
assembly. These materials can be “free” (e.g., copper floods) or additive (e.g., carbon 
layers). 

• Transition from air to liquid by education, economics, and adaptation of the current 
infrastructure. 

• Further decrease system thermal resistance through advanced liquid cooling techniques, 
through standardization and scaling up systems and reliability. 

• Decrease thermal resistance for removing backside heat and alleviating thermal 
bottlenecks (i.e., isolation of thermal crosstalk). 

• Remove heat from the liquid to ensure further cooling of computing components (possibly 
could use waste heat recovery). 

• Direct targeted research funding toward required R&D efforts. 

• Utilize grants, prize competitions, and SBIR programs to drive demonstration and 
deployment of cooling solutions that need to be de-risked.  

• Consider use of lending programs, tax incentives, and rebates to encourage the adoption of 
mature cooling programs in non-data-center contexts.  

• Measure and publish the results of each effort, to help inform the industry. 

Major Tasks/Milestones Metrics Targets Timeline 

Address thermal management for PCBs and 
assemblies 

Thermal distribution 
across assembly  

PCB design, materials and assembly 1 year 
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Develop R&D efforts for the various low-TRL 
cooling strategies. 

 Number of funded 
projects, research projects 

awarded 
50% industry/government cost share   1–5 years 

Promote adoption for higher TRL solutions. Technology adoption rate  
Increase from baseline; utilization of 

SBIRs and other relevant government 
programs 

1–3 years  

Achieve Standardization 

Defined by a few 
standards communities 

(e.g., Asherie, ALSI 127, 
ANSI 1360, OCP) 

Flow rates, pressure drops, mounting 
and unit configurations, pump sizes, line 

lengths, etc. 
3–7 years 

Investigate reliability concerns/serviceability 

Leakage concern, 
exposure to liquid, MTBF, 

operations and 
maintenance costs 

Similar device longevity failure rates to 
conventional air-cooled technologies, 

reduced O&M costs  
3–7 years 

Promote infrastructure adoption 

Implementation of next-
gen cooling techniques by 
infrastructure upgrades for 

liquid-based coolants 

Microfluidic heat sinks, Immersion 
cooling, Single- and dual-phase device 

microchannels 
8–12 years 

Drive adoption through OpEx (CapEx high for 
new liquid-cooled data center) 

TCO reduction through 
significant energy savings 

Data center builders and planners, data 
center providers, chip producers Ongoing 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers Develop cooling technologies and commercialize solutions. 

End Users/OEMs Energy-efficient system integration, adoption, and implementation; Define cooling 
requirements, verify solutions, participate in demonstrations. 

Academia 
Design techniques to enable thermal management improvements, such as innovations in 
new cooling solutions, interface design, coolants, materials (e.g., interposer, heat 
exchanger), floods, etc.  

National Laboratories Conduct R&D; Develop solutions; Provide testing capabilities and partnerships to enable 
technology validation and adoption. 

Government 
Set standards and provide resources and incentives for industry’s transition toward higher 
energy efficiency; government research agencies (like the National Science Foundation and 
DOE’s Office of Science) may be involved in funding R&D for lower TRL cooling solutions. 

Required Resources Cross Collaboration Needs of Working Groups 

• Various opportunities for funding, including for manufacturing up-
scaling. 

• Access to HPC system testing facilities. Potentially use DOE or USG-
owned facilities as demonstration sites for the technologies developed.  

• Energy efficiency, reliability, and sustainability standards. 

• Facilities for testing and validation of solutions’ energy efficiency, 
reliability, and sustainability. 

• Manufacturing skillset related to scale up, ensuring workforce’s ability to 
manufacture these technologies at scale. Those who service data 
centers need to be educated on air-cooled data centers and liquid 
cooling. Possibly a need for thermal engineers to create effective cooling 
designs. 

• Education is required for end users (moving from air to liquid): why it 
makes sense for the business, OpEx savings, etc. 

• Materials and Devices: Explore PCB construction 
issues for thermal distribution. Compatibility with 
liquid cooling. Chip design materials compatibility with 
exposure to liquid. 

• Sustainability: Determine metrics met and 
water/greenhouse gas footprints. 

• Metrology and Benchmarking: Develop system-level 
models to quantify impact. Requirements: Can you 
accommodate 25°C water, 45°C water? Thermal 
requirements on heat rejection side. 

• Circuits and Architectures: Design for thermal 
crosstalk (3D stacking, specifically), where the heat is 
put in and removed. Microfluidics impact architecture 
design. Yield at the wafer. 

 

3.1.2.3 Enhancing Modeling, Simulation, and Co-design Capabilities  
Modeling and simulation tools will need to evolve to enable the next generation of energy-
efficient computing devices and facilities. Current tools do not allow for end-to-end modeling of 
energy use in data centers and computing facilities. This capability would allow for an improved 
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understanding of the relationship between device-level operations and overall facility energy 
use. Additionally, integrated, multi-physics co-design tools are needed to evaluate and optimize 
design tradeoffs involving thermal management and power delivery. Lastly, modeling and 
simulation tools will need extended features that enable analyses related to system reliability 
and economics.   

Challenges and solution pathways for enhancing modeling, simulation, and co-design 
capabilities 

End-to-end energy modeling 

Simulation environments exist for modeling energy use within different scales (microelectronics 
level versus data center facility level), but existing tools do not provide end-to-end modeling 
capabilities across scales. Furthermore, due to a lack of end-to-end simulation capability, it is 
difficult to predict the way design tradeoffs at the circuit and architecture level will impact 
aggregate energy use at the facility level. 

Due to the complexity and scale of modern computing infrastructure, end-to-end energy use 
modeling efforts suffer from long simulation times unless significant computational resources 
are dedicated to the task. These resources, however, are often unavailable to design teams. 
One potential pathway for resolving this modeling challenge would involve the use of high-
performance computing (HPC) resources to generate reduced order models for energy 
performance. Complex, high-fidelity simulations can be created using HPC, providing realistic 
energy impact estimates over significant scales. Generating reduced order models would allow 
the insights gained using supercomputers to be accessible later when using lower capability, 
personal computer workstations. Using this approach, targeted R&D projects could result in 
tools made more widely available for design purposes.  

Integrated, multi-physics co-design tools 

Optimizing the design of power delivery to on-chip devices and ensuring proper removal of heat 
generated will require co-design in emerging circuit architectures like chip stacking and 
2.5D/3D. This co-design process requires detailed simulations conducted in multiple domains 
(mechanical, thermal, electrical, magnetic, fluid, etc.). Tradeoffs must be evaluated across these 
domains. At present, software packages have been designed for analysis in each domain, and 
limited cross-domain analysis capabilities exist. In the future, methods may be needed for tightly 
coupling simulation packages from different vendors, allowing them to time-synchronize, or pass 
information between solvers (co-simulation). Alternatively, new simulation tools with expanded 
features may need to be developed. A dedicated effort may be needed to evaluate the 
capabilities and shortcomings of current simulation tools with respect to design for emerging 
architectures. Further recommendations for new features and capabilities can be made, based 
on that assessment.  

Extending simulation tools to analyze reliability and economics 

Multi-scale multi-domain co-design tools could also be used to support techno-economic 
analysis and reliability assessment for complex microelectronic systems. Often, a full bill of 
materials (BOM) is needed to derive reliability and lifetime information for a computing system. 
However, due to complexity, a full BOM is not often modeled in software. Large-scale 
simulations that include a full detailing of components and subsystems could be used to 
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evaluate failure modes and mitigations and to analyze the cost impacts of design decisions. 
These analyses are now performed indirectly by industry experts, but in the future, these 
insights could be made available as extensions of simulation capabilities. 

Action plan for enhancing modeling, simulation, and co-design capabilities 

Table 70. Action Plan for Enhancing Modeling, Simulation, and Co-Design Capabilities. 

Scope 

Technology for Energy 
Efficiency 

Develop multi-scale, single-framework, co-design tools for optimizing circuit design, power 
delivery, thermal performance, reliability, and economics. 

Technologies of Interest: 

• Advanced modeling and simulation  

• High performance computing and reduced order modeling  

• Multi-domain physics-based modeling 

• Reliability analysis, cost optimization, and energy consumption modeling 

Challenges Addressed Solution Pathways 

• Immense fragmentation in engineering analysis software 
development.  

• End-to-end (from device to facility) visibility regarding energy 
consumption within data centers.  

• Lack of clarity regarding limitations in sharing data between 
commonly used commercial software packages.  

• Improving integration between software packages through 
design, testing, and standardization.  

• Utilizing HPC and ROMs to analyze energy consumption 
across scales.  

• Extending the features of existing software programs 
through additional code development.  

Major Tasks/Milestones Metrics Targets Timeline 

Baselining current use of design 
software and limitations regarding 

data sharing and collaboration 
Representation, accuracy 

All market-leading software packages 
characterized; limitations accurately 

depicted.  
1–2 years 

Development of tools and 
methods for enhancing 
collaboration in design 

Usefulness, reception by 
industry 

Broad industry acceptance and high 
utilization 3–5 years 

Testing and validation of co-
simulation approaches 

Model accuracy, simulation 
time, insightfulness 

Cross-domain optimization, global 
energy use reductions 5–7 years 

R&D projects leveraging HPC 
and ROMs for end-to-end energy 

modeling 
Model availability and utility 

Development of ROMs that can be 
reused for analyzing different facilities 
with different hardware configurations 

2–5 years 

Development projects focused on 
reliability and economic modeling Model integration, utility 

Development of models that provide 
useful insights for informing design 

choices 
1–4 years 
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Stakeholders and Potential Roles in Project  

Stakeholder Role 

Software Vendors Cooperate in the development of tools for extending capabilities, and in creating co-simulation 
capabilities.  

End Users/OEMs Define high-priority technical and economic metrics to guide development efforts.  

Academia Conduct R&D to find relevant solutions for the challenges identified.  

National Laboratories Work with industry to scale and customize solutions.  

Government Convene stakeholders, fund R&D, drive progress.  

Required Resources Cross Collaboration Needs of Working Groups 

• HPC resources at DOE national labs for developing high 
speed, highly granular analysis tools and reduced order 
models.  

• A pre-competitive consortium for developing software 
extensions that benefit all vendors.  

• Metrology and Benchmarking: Evaluate baseline end-
to-end energy performance, assess software 
capabilities.  

• Algorithms and Software: Support in optimizing the 
software tools developed as a result of this effort.  

 

3.1.3 PACE Honorable Mentions  
The following energy reduction approaches were explored by the PACE working group but did 
not result in the development of action plans.  

3.1.3.1 Electricity Supply Innovations 
This category focuses on methods to reduce the carbon intensity and emissions associated with 
power data centers. Technologies options and strategies include:  

• Shifting power demand to align with the availability of low-carbon power supplies: 
Shifting power demand would involve changing the times at which computational loads are 
executed (job scheduling) in response to signals provided by the local electric utility. This 
can be achieved by incorporating emissions implications into the optimization routines used 
in job scheduling algorithms for data centers. However, data center workloads are often 
driven by customer demands, and there are practical limits concerning the extent to which 
loads can be temporally shifted.   

• Utilizing energy storage to optimize low-carbon power delivery to data centers: During 
times at which demand cannot be shifted, energy storage may be utilized to minimize the 
environmental impact of power delivery. This energy-optimization process works by storing 
energy from low-carbon and carbon-free sources when available (e.g., storing solar energy 
during peak production periods), and then dispatching the stored energy during times of 
high demand that cannot be time-shifted. While this energy arbitrage approach has been 
explored in many industries, data centers are particularly suited since they already have 
onsite energy storage assets. Ensuring that battery capacities remain sufficiently reserved is 
critical to assure that data center reliability does not suffer in exchange for decarbonization. 
The process of utilizing energy storage is a facility-specific optimization, design, and control 
challenge. 
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• Dynamically switching to low-carbon, on-site fuel sources: Hydrogen fuel represents a 
high potential energy source for data centers due to its ability to replace both batteries and 
diesel generators. While diesel generators are typically kept onsite at data center facilities 
for use in the event of utility power outages, hydrogen fuel cells represent a carbon-free 
alternative. Hydrogen production can also be used to capture excess on-peak renewable 
energy, which can be dispatched (instead of battery energy storage) during periods of hard-
to-shift computing demand. Additionally, this on-peak renewable energy can also be 
dispatched during times when local electric power utilities are unable to supply low-carbon 
electricity. Due to the many potential value propositions offered by hydrogen, developmental 
efforts are underway by industry and research institutions. 

• Producing on-site renewable generation: The use of solar PV has been explored for data 
centers to smooth intermittencies and to reduce power quality impacts on data centers. 
However, data center power densities continue to increase to the point where onsite 
(rooftop) PV generation has the potential to provide only a small fraction of the energy 
needed in an enterprise data center. Countries like Ireland are experiencing unprecedented 
growth in data center developments, in a region with significant plans for expansion of 
offshore wind generation. Similarly, data centers have been built in proximity to hydroelectric 
generation assets to take advantage of lower energy prices and minimize environmental 
impact. Market drivers have incentivized the exploration of onsite renewables for data 
centers, and new approaches continue to be explored by industry.  

3.1.3.2 Data Center Power Use Improvements   
Power distribution architecture changes within data centers 
As previously mentioned, the migration to higher voltage levels and the use of DC 
distribution have largely addressed the efficiency gains possible in these areas.  
Data center power delivery equipment efficiency improvements 
The introduction of wide bandgap semiconductor devices has created higher-efficiency 
power delivery equipment for data centers. The introduction of these devices has been 
coupled with advanced monitoring and control systems that have helped to maximize energy 
use in modern data centers.  
Reducing auxiliary data center power use 
Approaches include the use of optimized cooling strategies for data centers and high-
efficiency cooling equipment. These approaches have been well-integrated into modern data 
centers, as evidenced by the significant improvements in PUE over the last two decades.  
3.1.3.3 On-Chip/On-Package Power Management   
Like power supply reduction techniques used at the server level, approaches exist for reducing 
on-chip power consumption during times when processors are not actively in use. Dynamic 
voltage and frequency scaling are two techniques commonly employed by chip developers for 
reducing idle power consumption from processors. These techniques are routinely employed in 
modern chip design.  

Additional approaches discussed by the PACE working group include ultra-low voltage power 
delivery and sub/near threshold voltage delivery.  
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3.1.3.4 Architecture-Specific Power Delivery Innovations  
Moving forward, novel device architectures will require integrated design of circuits, cooling, and 
power delivery mechanisms. Optimizing power delivery approaches for each architecture 
represents the best path forward. Unique approaches are needed to address power delivery for 
3D/chip-stacked/chiplet architectures, photonic integrated circuits, and CNT-based solutions.  

As this is essentially an architecture topic, it is recommended that future EES2 roadmap 
development efforts include power delivery and thermal management as topics within broader 
architecture discussions. 

3.1.4 Conclusion for Power and Control Electronics 
Power and Control Electronics (PACE) is one of the critical enablers for efficient compute stacks 
across varied applications. This chapter emphasizes the necessity of advancing power 
electronics strategies to handle the increasing power demands and heat densities that 
accompany the next-generation computing architectures. 

Key areas such as eliminating low-power modes in idle equipment and shifting compute loads to 
more energy-efficient or renewable-powered data centers are highlighted as immediate 
strategies to reduce power usage significantly. The chapter also stresses the importance of 
leveraging emerging thermal management technologies that allow for higher power densities in 
advanced packaging such as 3D integrated circuits. 

The roadmap also points to the need for development and standardization of advanced tools 
and methodologies to assess and quantify the energy impacts at various scales—from device-
level to data-center scale. These tools are essential for enabling resource-aware compute 
scheduling and optimizing thermal management strategies within data centers. 

Overall, to align with rapid advancements in computing technology and the escalating pace of 
environmental concerns, it is imperative to accelerate the deployment of these PACE 
technologies in high energy impact areas like data centers. This includes investing in R&D to 
advance cooling technologies, enhancing the functionality of power delivery systems, and 
developing robust frameworks for continuous performance assessment and improvement. 
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3.2 Manufacturing Energy Efficiency and Sustainability (MEES) 
The growth and further development of artificial intelligence/machine learning (AI/ML), Industry 
4.0, and the Internet of Things (IoT) will increase data analysis, communication, and 
semiconductor component production (Schume 2020; McKinsey & Company 2022b). With the 
increased use of microelectronics and their associated energy costs being covered by the 
compute stacks chapter, this section will now focus on the energy efficiency, resource intensity, 
and climate impacts of manufacturing.  

There is an expectation that a new, faster, and more efficient electronic device will be released 
every one to two years. New devices require new silicon, new process design kits (PDKs), 
and—most importantly to this roadmap’s scope—more steps per technology node. This 
resulting increase in steps ultimately results in significantly more energy costs per node.  

 
Figure 66. Manufacturing energy costs per wafer for different technology nodes. MOL = middle of line; FEOL = 

front end of line; BEOL = back end of line; EUV = extreme ultraviolet. Source: Bardon and Parvais 2023 

Figure 66 illustrates the increase in manufacturing energy required per wafer, with significant 
increases in back end of line (BEOL) energy costs (Bardon and Parvais 2023). Transitioning 
from the 3nm to the 2nm node—while yielding a 15% performance improvement and a 30% 
reduction in power consumption at equivalent transistor counts—incurs a significant production 
energy increase of approximately 200kWh per wafer. For example, TSMC’s nanosheet-based 
2nm node, despite its advancements, only enhances chip density by about 1.1X compared to 
the 3nm node. The substantial manufacturing energy demands potentially outweigh the benefits 
of performance and power efficiency improvements in semiconductor technology advancements 
(Shilov 2022). Energy consumption for leading semiconductor fabs is also increasing. TSMC 
now consumes around 22,000 gigawatt-hours per year, a 2x energy increase over 5 years from 
2017 to 2022 (Statista 2023a); Intel consumes 10.9 gigawatt-hours per year, a 2x increase over 
7 years from 2015 to 2022 (Statista 2023b). Current production volumes are already taxing 
many grids, and projected increases in energy consumed during chip production are larger than 
the energy currently used by most countries, including the U.S. (Knauss 2023). While a 
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multitude of companies are working on increasing on-site renewable energy production or 
promising to buy from renewable sources, this may not be an option at all locations.  

Other resource and energy consequences emerge from the increase in microelectronics 
production. For example, ss designs become more complex, the manufacturing process has 
also become more resource intensive. Each new node requires an increase in the number of 
lithography, etch, chemical mechanical polishing or planarization (CMP), and deposition steps. 
These new steps similarly increase the number of wet process steps needed to clean the wafers 
from residual chemistry on the surfaces and create better interfaces for the next step. Not only 
does this increase the quantity of water used, but these wet process steps also increase the 
need for intensive water recycling to remove waste impurities. While fabs recycle a lot of water 
for reuse (Bassler 2022), this may not work at all locations or in water-stricken areas. In fact, 
during a 2021 drought in Taiwan, fabs were forced to truck in water to maintain operations, even 
with an 85%+ recycling rate (Mott 2021). 

Along with increasing water use, these processes require more materials and produce more 
waste gases. To meet the requirements of new technology nodes, an increased number of 
chemical vapor deposition (CVD), lithography, and dry etch steps produce a variety of 
fluorinated, high-GWP gases, such as NF3 and SF6. When generated, these fluoride-based 
compounds exhibit a high vapor pressure, enabling them to be readily evacuated toward the 
abatement system. However, even abatement systems with 95%+ efficiency still release 
significant amounts of greenhouse gass into the atmosphere. The energy equivalent of the 
greenhouse gass emitted due to the operational energy use of fabrication facilities will increase 
unless offset by renewable energy sources or the implementation of alternative non-greenhouse 
gas process gas. 

Advanced technologies will continue to require more and more resources such as electricity and 
water while producing more waste and greenhouse gas emissions. The Manufacturing Energy 
Efficiency and Sustainability (MEES) working group focused on technologies and approaches 
that can mitigate these aspects. Not all technologies that could potentially help manufacturing 
sustainability are described here, and the technologies discussed were chosen based upon their 
potential impacts as well as the expertise of the working group members. 

Working group methodology 
Sustainable production of microelectronics has clear alignment with the EES2 goals of energy 
reduction and minimizing environmental impacts. Understanding that the next generation of 
microelectronics will require more resources and produce more waste and greenhouse gass, 
the MEES working group identified 26 technical areas across 4 different technology groups as 
technologies worthy of investigation. Table 71 is a list of these technology areas along with 
specific technologies in these areas that were discussed by the working group. Given the 
available bandwidth and expertise of the working group members, only the bolded technologies 
were chosen to be investigated. For the next iteration of the roadmap, additional technologies 
will be explored. 

Table 71. MEES Technology Groups and Specified Technologies. 

Technical Group Specified Technology  
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Alternative and optimized 
processes for energy and 
waste 

• Reduce energy consumption of lithography of EUV, and through adoption of 
nanoimprint lithography 

• Identification of high energy bottlenecks, device designs, and process 
improvements 

• Selective deposition and etch processes 
• Bottom-up self-assembly for FEOL 
• Reduce solvent usage 
• Minimize high-GWP (global warming potential) gases (e.g., SF6, NF3) 

through new deposition/etch processes 
• Low-PFAS (per- and polyfluoroalkyl substances) materials 

Facilities considerations 

• Preliminary ideas: wall power, green equipment, water use 
• Allow for purified compressed air instead of resource-intense gases such as 

pure N2 or He when applicable 
• Energy recovery of waste heat or other 
• Reduce air filtration to level needed 
• Facility location optimization primarily in resource- and renewable-energy-

rich areas 
• Additive manufacturing for improved equipment to reduce variations 

Sustainable 
manufacturing practices 

• Recycling of key waste streams, e.g., high-value metals from slurries 
• Water-optimized processes and recycling efforts; target net-zero or net-

positive use 
• Green energy procurement and/or on-site generation 
• More efficient heating and cooling processes (facilities, tools) 
• Improvement of abatement technologies to reduce GWP of byproduct 

gases or capture for reuse 
• Development of life cycle inventory (LCI) identifying energy and materials 

footprint of advanced integrated circuits (Ics) 

E-waste avoidance 
(including recycling) 

• Design for reuse (labeling of components) 
• Incentives for original equipment manufacturers (OEMs) to recycle 
• Design hardware for forward compatibility to avoid waste (e.g., chiplet 

technologies) 
• Build for disassembly 

 
Key takeaways 
 summarizes the most significant identified energy efficiency opportunities that can be achieved 
through advances in Manufacturing Energy Efficiency and Sustainability (MEES). 
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Table 72. Key Opportunities for Energy Efficiency and Sustainability in MEES. 

Technology 
Group Key Opportunities for Energy Efficiency 

Light-based 
Lithography 

 

• Streamline energy usage by refining laser sources for DUV lithography 
and implementing process gas recycling. Enhance photoresist 
formulations to improve light sensitivity, reducing exposure time.  

• Optimize plasma generation chamber designs and mirror technology 
to maximize light utilization for EUV lithography. Improve the 
efficiency of high-powered laser systems and their maintenance 
processes through innovative system design. 

Imprint-based 
Lithography 

 

• Eliminate the need for complex light sources and reduce the overall 
energy footprint. For example, nanoimprint lithography has high 
energy efficiency potential by leveraging its direct mechanical 
patterning approach. 

Process Gas 
Abatement 

 

• Develop compact abatement solutions with superior destruction and 
removal efficiency to significantly lower greenhouse gas emissions in 
semiconductor manufacturing. Foster the adoption of alternative 
process gases for cleaning, deposition, and etching that have lower 
global warming potential (GWP). 

Grand challenges 
The main challenges for improving manufacturing energy efficiency and sustainability are: 

• Improving energy efficiency of EUV lithography by seeking breakthroughs in equipment 
design and process efficiencies. 

• Optimizing nanoimprint lithography to compete with traditional photolithography 
methods, with a focus on minimizing defects, scaling down in size, enhancing alignment 
precision, and improving stamp lifetime. 

• Adopting and creating compact, high-efficiency abatement systems that fit within the 
spatial constraints of fabs, with higher destruction and removal efficiency and minimal 
floor space requirements. 

• Identifying and implementing lower-GWP gases for etching and cleaning that maintain 
tool performance while reducing environmental impact. 

• Establishing comprehensive energy metrics for each lithographic process, from DUV to 
EUV, to ensure accurate assessment and benchmarking of energy consumption. 

• Developing efficient recycling methods for process gases to curtail emissions and 
operational costs in photolithography. 

3.2.1 Lithography 
Lithography, a central process in semiconductor manufacturing, transfers intricate circuit 
patterns onto a silicon wafer. Since the inception of chip fabrication, lithography has undergone 
significant transformations to accommodate the persistent demand for smaller, faster, and more 
energy-efficient microelectronics.  

Photolithography, which uses ultraviolet (UV) light to etch designs onto silicon wafers, is the 
dominant pattern transfer technique. Wafers are first coated with a light-sensitive chemical 
layer, known as a photoresist. Once applied, the wafer is exposed to UV light that has passed 
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through a mask (a stencil containing the desired layer design). This UV light exposure causes 
chemical changes in the photoresist, making the exposed area soluble or insoluble depending 
on the type of resist used. Following exposure, the wafer undergoes a development process 
where the soluble regions are washed away to create a precise replica of the mask pattern. 
Historically, two wavelengths were generally employed: 248nm and 193nm. The 248nm 
wavelength, used in deep ultraviolet (DUV) lithography, was used early on in photolithographic 
technology and utilized KrF lasers to produce the desired UV light. As chip technology 
advanced and there was a pressing need to pattern smaller features, the 193nm wavelength—
using ArF lasers—was adopted. Unfortunately, the 193nm lithography process typically 
consumes more energy than the 248nm process due to the increased complexities in light-
source generation and the ancillary equipment required to manage and optimize the shorter 
wavelength. In fact, energy consumption in the 193nm process can range from several to tens 
of kWh per wafer depending on the specific photolithographic process, the equipment used, and 
the design intricacy. 

The relentless pursuit of miniaturization in the semiconductor industry has further driven the 
transition toward extreme ultraviolet lithography. EUV lithography, utilizing a much shorter 
wavelength of approximately 13.5nm, enables smaller, more precise pattern replication. But 
generating EUV light requires high-power laser systems and specialized equipment, leading to a 
substantial increase in energy consumption relative to traditional DUV processes.  

As a result, the industry is actively researching energy-efficient solutions within EUV. 
Additionally, alternative lithography methods—such as nanoimprint lithography, which physically 
stamps patterns onto surfaces—are being explored as potential successors or complements to 
EUV since they offer both precision and potentially improved energy profiles. 

In this chapter, various lithography techniques are discussed alongside strategies to reduce the 
energy footprints without compromising technology progression. 

DUV lithography 
DUV is the primary lithography technique for legacy nodes (10nm and above). As with all 
lithography, generating the precise UV light requires careful control, stable environments, and 
intricate machinery, all of which come at a substantial energy cost. Over the years, tool 
suppliers have been optimizing the light production process. For example, by advancing 
photoresist sensitivity and refining optics to reduce light scattering, exposure time has 
decreased, which not only conserves energy per wafer but also accelerates the overall process. 
Innovations in machinery, such as advanced cooling systems, have further reduced the energy 
footprint of these lasers. Cymer, a leading manufacturer of DUV laser sources, was able to 
develop a master oscillator (MO) chamber that helped reduce power consumption by ~15%. 
Additionally, the shift to neon gas, which offers cost and supply advantages compared to 
helium, was complemented by a new system adept at capturing, recycling, and supplying over 
90% of the neon gas needed by ArF sources (Roman et al. 2017).  

DUV lithography has also reached a resolution limit for its most advanced technique, ArF 
immersion lithography, at around the 40nm to 20nm nodes. Beyond this limit, the resolution and 
pattern fidelity deteriorate rapidly, making it challenging to produce reliable semiconductor 
devices. The resolution is proportional to wavelength/numerical aperture, thus the fundamental 
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limit is governed by the wavelength. To push beyond the 10nm limitation, EUV lithography with 
a wavelength of 13.5nm has been developed and is currently being commercialized. 

EUV lithography 
Extreme ultraviolet lithography operates at a wavelength of approximately 13.5nm and can 
pattern features down to 7nm and below. To generate light at this wavelength, plasma from tiny 
droplets of molten tin is excited, which emits light within the EUV spectrum. However, 
conventional optics cannot be used to manipulate EUV light due to its unique absorption 
characteristics. Instead, EUV light is directed onto the silicon wafer using a series of specialized, 
multi-layer coated mirrors. The same characteristic that makes EUV able to pattern tiny features 
(i.e., wavelength) also makes it energy inefficient. Current top-down estimates of power outputs 
and efficiencies for 13.5nm EUV technology compared to traditional immersion lithography are 
provided in Table 73. 

Table 73. Energy Consumption of EUV vs. DUV Lithography. Source: Kim 2009 

Metric 200W output EUV 90W output ArF immersion double 
patterning 

Electrical power (kW) 532 49 
Efficiency (%) 0.04% 0.18% 

Ratio of input power/output 2,660 544.44 
 
Even relative to double-patterning immersion lithography, the lower efficiency and resulting 
higher input power (~5x) of EUV are evident. In addition to this top-down analysis, a bottom-up 
evaluation based on bond energies further underscores the heightened energy usage of EUV. 
Specifically, energy metrics for deposition, lithographic, and etch processes highlight that EUV 
can require higher energy per bond compared to its 193nm DUV counterpart (Shankar 2023). 
Table 74 shows that the deposition/growth and etch energetics are bound at the low end (2.1 
eV) and high end (8.42 eV), which correspond to copper-metallic bond energy and copper-
tantalum bond energy, respectively. The total energy per bond varies between approximately 3x 
and 5x for EUV compared to double patterning in DUV technology.  

Table 74. Total Energy Per Bond for DUV vs. EUV Lithography. Source: Shankar 2023 

 

Addressing the significant energy requirements of EUV lithography is paramount, especially as 
semiconductor processes inch toward even smaller dimensions. The process of generating EUV 
light is inherently energy intensive and the energy footprint spans from high-powered lasers to 
the subsequent cooling and maintenance of the machinery. To address these concerns, EUV 



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  257 

lithography manufacturers like ASML are continuously innovating chamber designs to optimize 
plasma generation and advancing mirror technology to reduce light losses. See Figure 67 for 
additional details regarding ASML’s roadmap for upcoming EUV technology. 

Industry leaders and associated entities are actively pinpointing processes with significant 
carbon footprints and strategizing how to diminish them (Ragnarsson et al. 2022). Such 
approaches to curb energy expenditures in lithography/pattern transfer include, enhancing the 
design of processing equipment for better efficiency, exploring alternative bottom-up processes 
like directed self-assembly, and refining patterning techniques at nanoscale dimensions. Given 
the higher energy requirements of EUV relative to traditional immersion lithography, it is 
important that these energy efficiency efforts be extended to the design of the lithographic 
processes and equipment. 

 

Figure 67. Roadmap of EUV lithography tool developed by ASML. Source: Jones 2022 

Nanoimprint lithography 
Nanoimprint lithography (NIL) is gaining momentum as an alternative to EUV lithography. At its 
core, nanoimprint lithography operates much like a stamping process (see Figure 68): A mold 
with the desired patterns is pressed into a resist layer placed on the substrate. This imprinting 
process physically deforms the resist, replicating the mold’s patterns onto the substrate. Once 
the imprint is made, residual layers are typically removed, followed by etching to transfer the 
pattern into the substrate. NIL has demonstrated its ability to achieve features well below the 
10nm scale and is currently being commercialized by tool providers such as Canon, positioning 
it as a primary alternative for next-generation semiconductor devices. 
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Figure 68. Photolithography vs. nanoimprint lithography processes. Source: Canon 2019 

From an energy standpoint, NIL is significantly more energy efficient than EUV ilthography (see 
Table 75). NIL sidesteps the need for complex light sources, such as those used in DUV and 
EUV lithographies, as well as the associated energy-intensive processes for generating specific 
wavelengths of light. Instead, NIL’s direct mechanical patterning approach substantially reduces 
its energy footprint, making it a more eco-friendly option. 

Table 75. Power Consumption of EUV vs. NIL Processes. Source: DNP 2023 

Process Power Consumption of  
Lithography Process 

EUV Lithography 9.7 kWh/wafer 
NIL 1.1 kWh/wafer 

However, like all innovative technologies, NIL faces its own set of challenges, including size 
scaling, defect control, and imprint alignment. Among these, defect control remains the biggest 
challenge. For example, the direct contact between the mold and resist can lead to 
imperfections or damage that could affect device performance. NIL is currently being used in 
memory, but Canon has recently announced that they are moving NIL into logic in order to 
compete with ASML when it comes to precision (Mann 2023). If this comes to fruition, an 
orders-of-magnitude decrease in energy consumption is possible. But size scaling remains 
another issue. Currently, NIL masks and EUV masks are made through similar processes. 
However, there is a nascent process that allows direct duplication of patterns down to 1nm–2nm 
using NIL—but that template-making process is slow, possibly limiting NIL’s near-term 
prospects for manufacturing critical components (Hua et al. 2004).  

Given these considerations, the semiconductor industry is deliberating the best path forward for 
nanoimprint lithography. While NIL may not completely replace optical lithography due to its 
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unique challenges, it could very well be used in tandem with other methods. For example, 
employing NIL for specific layers or processes where its benefits are most pronounced, while 
also relying on traditional lithographic methods for others, which might offer an optimal blend of 
precision, energy efficiency, and throughput. As the demand for smaller, more efficient devices 
grows, integrating techniques like NIL alongside established processes can be key to reducing 
the energy consumption of chip manufacturing. 

3.2.2 Process Gas Abatement Systems 
The growth of the microelectronics industry and the increased complexity and number of 
production steps have resulted in an overall increase in greenhouse gas emissions. Fluorinated 
gases, which can escape into the atmosphere, are commonly used for etch and chamber 
cleaning processes. Table 76 presents common gases used in semiconductor processing and 
their GWPs.  

Table 76. GWPs and Atmospheric Lifetimes of Key Waste Gases. Source: Beu et al. 2019 

Chemical Global Warming 
Potential 

Atmospheric 
Lifetime (Years) 

CO2 1 20 
CH3F 150 3 
N2O 310 120 
CF4 6,500 50,000 
C2F6 9,200 10,000 
CHF3 11,700 160 
NF3 17,200 500 
SF6 23,500 3,200 

 

IMEC recently published a report looking at the sustainability of next-generation chip 
manufacturing. Their findings showed that there are still significant emissions resulting from N2O, 
CHF3, SF6, NF3, and CF4, with the latter three representing 93% of wafer emissions. The report 
also showed that emissions per wafer have increased by 2.7x from the 28nm node to the 3nm 
node. Investigation into abatement systems is needed to effectively remove contaminants from 
the production line since they can save ~40% of total emissions (excluding onsite power 
generation) (McKinsey & Company 2022a). 

The destruction or removal efficiency values reported in the Intergovernmental Panel on Climate 
Change’s (IPCC) 2019 Electronics Industry Emissions report (Beu et al. 2019), alongside IMEC 
and state-of-the-art values for multiple different gases, are shown in Table 77 (Ko et al. 2014; 
Hur et al. 2016; Applied Materials 2023; Lee and Chen 2017). For the three gases that 
contribute 93% of the process waste gases, there is an average of 93% removal according to 
the IPCC. While this may seem very good, more can still be done to improve abatement 
(Bardon et al. 2020). While these technologies can be improved significantly with the state of 
the art, challenges remain to abatement technologies and process gases, which are discussed 
below. 
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Table 77. Destruction and Removal Efficiency Values for Key Process Gases. Source: Beu et al. 2019 

Process 
Gas 

U.S. 
Destruction 

and 
Removal 
Efficiency 

(DRE) 

IMEC 
DRE 

State of 
the Art 
DRE 

Improvement 
Factor 

CH3F 98% 90% 99% 101% 

N2O 60% 90% 98.7 165% 

C2F6 95% 90% 100% 105% 

CF4 89% 90% 90%–95% 105% 

CHF3 98% 90% 99% 101% 

NF3 95% 95% 99.1%–
100%  105% 

SF6 95% 90% 99% 104% 

 

Challenges and Solution Pathways for Process Gas Abatement Systems  
Compact Designs With Higher Destruction and Removal Efficiency 
Fabs are designed with a subfloor to accommodate additional components to the tool set, which 
can include pumps, power sources, gas generators, and abatement tools. Since there is limited 
space available—especially for facilities producing older nodes where increases in floor space 
are not possible—creation of small-footprint and little-to-no-floorspace abatement systems in 
line before the pumps is needed. Additionally, the abatement systems need to have a higher 
destruction and removal efficiency while maintaining a smaller footprint for effective greenhouse 
gas removal. A one-size-fits-all approach may be difficult to address these challenges without 
lifetime issues in the tools and parts. While technologies do exist that require no floorspace and 
are smaller and more efficient than the IPCC-reported values, it may not be cost effective for all 
smaller producers to upgrade. Providing financial assistance and/or loans for abatement 
systems to reduce GHG impacts may support wider adoption. 

Alternative process gases for cleaning, deposition, and etching 
The use of NF3, SF6, and perfluorocarbons CHxFy occurs primarily in the etching of materials—
whether it be for structural or 3D components of films on the wafer, or removal of films from 
chamber walls to ensure that the tool is performing within its specifications. Despite high 
removal efficiency, significant gas emissions still occur. Solutions include using alternative 
chemistries for cleaning atomic layer deposition (ALD) and chemical vapor deposition (CVD) 
chambers or etching with lower global warming potential (GWP) gases like F2 plasmas (Hwang 
et al. 2007; Riva et al. 2009). Additionally, thermal reactivity processes involving metals, metal 
oxides, and nitrides with agents like ozone, sulfuryl chloride, HF, and transfer ligands could be 
adapted for chamber cleaning if sufficiently rapid (Partridge et al. 2023a; Partridge et al. 2023b; 
Johnson et al. 2016). However, challenges remain: NF3 and SF6’s inertness is hard to match 
with more reactive chemicals like F2, HF, or SOCl2, requiring stringent handling precautions. 
Moreover, many of these alternative methods are still in the research phase, posing significant 
hurdles before industrial application is feasible. 
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3.2.3 Conclusion for Manufacturing Energy Efficiency and Sustainability 
Manufacturing Energy Efficiency & Sustainability (MEES) plays a vital role in enabling the EES2 
roadmap by ensuring that semiconductor manufacturing processes align with modern energy 
efficiency demands. As an enabler, MEES aims to advance techniques, standards, and 
methodologies that will shape the next generation of sustainable manufacturing in the 
semiconductor industry. 

Core strategies highlighted include the adoption and efficiency improvement of light- and 
imprint-based lithography techniques, which offer improved efficiency in the production of 
advanced microelectronic components. Process gas abatement systems are essential to 
mitigate emissions and environmental impacts during semiconductor fabrication, or ideally, 
replace greenhouse gas-emitting process gases altogether with more environmentally friendly 
alternatives. 

MEES acts as a cornerstone for EES2's objectives by improving manufacturing throughput, 
reducing environmental impact, and enabling the rapid scaling of energy-efficient semiconductor 
technologies. Collaboration between industry leaders and researchers will ensure these 
initiatives are accelerated, securing a more sustainable future for semiconductor manufacturing. 
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3.3 Metrology and Benchmarking  
Metrology plays a central role in the R&D and manufacturing of microelectronic devices and 
comprised of a diverse array of tools, techniques, and analysis methods. In this roadmap, 
“metrology” includes both inline, high-throughput measurements as well as off-line advanced 
characterization techniques and everything in-between. As geometric scaling progressed, the 
process tolerances and specifications became more stringent and the number and importance 
of metrology steps increased, as did the measurement requirements (e.g., resolution and 
measurement time). For instance, comparing the manufacturing processes of two generations 
of microchips, one can observe a significant increase in the complexity and number of 
metrology steps required. In manufacturing a chip with 14nm features—smaller and more 
advanced than one with 65nm features—the number of metrology and inspection steps is four 
times greater.  

More recent advancements, such as 3D stacking and heterogeneous integration, push into the 
vertical direction. While these innovations exhibit improved performance, energy efficiency, and 
multifunctionality, they introduce a whole new set of metrology challenges and requirements: 
minor discrepancies in alignment or defects can cascade through the layers, degrading the 
system’s overall performance and efficiency; novel materials and/or device architectures may 
require novel characterization techniques; and critical structures and interfaces may no longer 
be accessible. While traditional approaches continue to provide value, they will not meet the 
metrology needs for emerging energy efficient devices and systems. To enable the technologies 
found within this roadmap, advancements in existing metrology techniques or development of 
new ones—to meet these technologies’ specific requirements—are needed.  

In conjunction, standardized energy performance measurements (i.e., benchmarking) are 
needed to objectively evaluate the array of emerging technologies, including those proposed in 
the roadmap. Benchmarks provide a foundational reference, allowing for the systematic 
assessment of innovations against a consistent criterion. While each technology may have 
attributes other than energy that make it suitable for a specific computing application, data from 
benchmarking will nonetheless help prioritize and possibly downselect the technology options.  

Working group methodology  
The discussions in this working group were structured differently from the other working groups. 
Given that innovations in metrology and benchmarking will not confer direct improvements in 
energy efficiency, the group did not quantify energy efficiency impacts. Instead, the group 
identified critical metrology and benchmarking approaches and discussed the desired future 
state for each, summarized in Table 78. These approaches set the context for future 
discussions of challenges and solution pathways for metrology and benchmarking group.  

 

Key takeaways 
Table 78 summarizes the most significant identified energy efficiency opportunities that can be 
achieved through advances in metrology and benchmarking. 

Table 78. Key Opportunities for Energy Efficiency in Metrology and Benchmarking.  

Technology 
Group Key Opportunities for Energy Efficiency 
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Grand challenges 
The following represent grand challenges, major resource needs, and key solution pathways 
distilled from working group discussions:   

• Discrepancy between expected and actual system performance: During chip 
manufacturing, the use of simplified metrology structures in non-active areas often fails to 

3D Metrology 

 

 

 

• Development of non-destructive interface metrology techniques that 
are strongly connected to characterization and measurement data 
models. 

• X-ray tomography to evaluate buried structures and interfaces, with 
100nm resolution, large field of view, and with scan times of 
seconds to minutes. 

• Thermal metrology to characterize interfacial thermal resistance and 
gradients, as well as detect hot spots, with 0.1 milli-Kelvin resolution. 

In-situ and In-
operando 
Characterization for 
Fabrication 

 
 

 
 
 

• Development of more widely available techniques with fast feedback 
times, including those for composition, thickness, conformity, etc.   

• Process-specific measurements, such as those for RF plasma, to 
enable strict process control during fabrication.  

• The integration of deposition tools with X-ray measurements to 
ensure consistent depth and uniformity across the wafer. 

Metrology for High-
Aspect-Ratio 
structures  

• Development of advanced metrology approaches that are inline, 
high-speed, and non-destructive to evaluate parameters of interest, 
e.g., wafer-scale etch and deposition uniformity. 

• Multi-modal, multi-scale measurements to enable seamless 
integration of measurements and models for holistic 
characterization. 

AI/ML Assisted 
Metrology and 
Virtual Metrology  

• Integration of AI/ML with physics-based modeling for inline high-
volume manufacturing metrology.  

• While there are some instances of virtual metrology in high-volume 
manufacturing, drive wider adoption across industry.  

High-Throughput 
Metrology 

 

 

• Coupling high-resolution characterization with high-throughput 
metrology to improve overall speed, measurement capability, and 
output of inline metrology techniques. For example, secondary ion 
mass spectroscopy, which is being adopted as a primary pathway for 
emerging technologies, can be coupled with an inline technique to 
reduce offline characterization time.  

Failure Analysis 
 

• Establishing advanced, real-time failure analysis platforms that 
integrate multi-modal characterization techniques to swiftly identify 
and understand failure mechanisms as they occur. 

• Focusing on the correlation of stressing mechanisms with observed 
failures through the use of automated, synchronized multi-modal 
analysis to enable proactive improvements in device design and 
reliability. 

Benchmarking 

 

• Establishment of a sustained benchmarking program for emerging 
devices and systems to objectively evaluate energy efficiency and 
performance.  

• Development of an end-to-end system-level model to holistically 
evaluate how energy efficiency improvements at a single level affect 
system-level efficiency.  



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  266 

accurately represent the more complex active regions where energy efficiency is critical. 
This mismatch can lead to unforeseen performance outcomes in devices intended to 
optimize energy use. Approaches to bridge the gap between expected and actual 
performance are needed. Solutions may include developing more realistic or representative 
test structures and providing more samples (without intellectual property [IP]) to metrologists 
to develop better measurement and modeling capabilities.  

• Buried structures/interfaces (3D metrology): The shifts toward 2.5D and 3D devices for 
energy efficiency introduce layers and interfaces that cannot be easily evaluated. Multi-
chamber, multi-process tools are becoming more prevalent to ensure pristine interfaces, as 
cleanliness is a major contributor to yield losses, resulting in less visibility to underlying 
structures and interfaces. Traditional methods of evaluating buried structures involve offline 
and/or destructive characterization, such as focused ion beam (FIB) milling, or slow imaging 
techniques, such as X-ray tomography. 3D metrology/characterization techniques that are 
inline or near-inline and non-destructive to minimize defect formation during the production 
of these devices are needed.  

• Thermal measurements: The complex structures of emerging energy efficient chip 
architectures dramatically increase the thermal resistance between various layers and heat 
sinks, especially for heterogeneously integrated devices. While thermal management is an 
active area of research, developments in thermal metrology, especially for 3D 
microelectronics, are lagging. While techniques exist—such as Raman scattering, frequency 
domain thermo-reflectance (FDTR), and synchrotron photon analysis—improvements in 
resolution, measurement depth, and the ability to measure heterogeneous materials and 
interfaces are needed. In addition, as 3D technologies move into high-volume 
manufacturing, thermal metrology (currently lab-scale) will need to move inline or near-
inline.  

• Bringing advanced characterization techniques closer to the “line”: Advanced 
characterization techniques, such as synchrotron X-ray and scanning tunneling electron 
microscopy, are typically destructive, slow, and confined to the lab. However, these 
techniques are invaluable because they provide high-resolution measurement data needed 
for R&D that conventional metrology techniques cannot provide. As devices and systems 
get more complex, measurement needs are bordering on those that can only be provided 
through advanced characterization. Therefore, there is great interest in moving these 
techniques closer to the “line”—making them non-destructive, faster, and automated.  

• The following subsections were distilled from the synthesis of the proposed solution 
pathways from the working group, each contributes to the advancement of energy efficient 
devices, and is further discussed in detail: 

• Enhanced metrology: Improving existing techniques or developing new techniques to meet 
evolving measurement needs. 

• AI/ML in metrology: Utilizing artificial intelligence/machine learning algorithms to refine and 
further enhance metrology, making them more adaptive to ever-evolving measurement 
needs. 
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• Failure analysis (FA): Developing a holistic FA framework to identify and analyze potential 
weak links and areas of concern within the device or system, paving the way for 
improvements in design and functionality. 

• More samples: Increasing the availability of samples for metrologists and tool developers, 
while maintaining IP constraints.  

• Benchmarking: Establishing standards at diverse levels, ranging from narrative frameworks 
to system-level models. This process ensures a consistent trajectory toward achieving 
optimal energy efficiency across the board. 

•  

3.3.1 Enhanced Metrology 
Enhanced metrology refers to advanced metrology and characterization techniques that must 
be developed to meet the measurement needs for emerging energy efficient devices and 
systems. For instance, the N3XT computing concept (Aly et al. 2015), monolithically integrates 
carbon nanotube field-effect transistors (CNTFETs), silicon field-effect transistors (FETs), 2D 
materials for thermal management, and resistive random-access memory (RRAM) along with 
other components on an energy efficient 3D chip. The complex metrology needs for such an 
advanced configuration exceed what conventional metrology tools can accommodate, even at 
the most advanced nodes. 

As device become more advanced and smaller, traditional optical microscopy encounters 
limitations, especially below the 2nm mark. At these scales, more invasive and destructive 
techniques, such as transmission electron microscopy (TEM) or atom probe microscopy, are 
often employed. The industry needs to develop non-destructive techniques that offer similar 
spatial resolution and may benefit from leveraging AI to correlate data from destructive 
methods.  

Summarized below are key techniques and considerations for enhanced metrology to enable 
the technologies in this roadmap. 

Transmission electron microscopy 
TEM is an offline characterization technique in which a beam of electrons is transmitted through 
an ultra-thin sample, interacting with the specimen as it passes through. This interaction 
produces a magnified image with atomic-scale resolution. It is particularly useful in 
characterizing device interfaces and structures, crystal structures, and film thicknesses. It is also 
used as a mechanism to validate measurements of inline tools, such as critical-dimension 
scanning electron microscopes (CD-SEMs) and critical-dimension small-angle X-ray scattering 
(CD-SAXS) (Vladar et al. 2014), and, in some instances, develop International System of Units 
(SI) traceable standards (Orji et al. 2016).  

Advancing TEM for specialized measurements demands not only ultra-high resolution but also 
precise sample preparation coupled with state-of-the-art electron detectors. Presently, TEM is a 
very slow and destructive process, where the entire TEM process takes approximately 24 hours 
with engineer oversight. The current pace of R&D related to this roadmap requires faster 
turnaround with improved resolution.  
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AI and ML can be leveraged to significantly reduce processing time. By incorporating these 
technologies, full automation of the TEM process is possible, covering everything from data 
acquisition to its nuanced interpretation. The introduction of faster detectors and sources with 
smaller electron dose are anticipated to further shorten processing time. Concurrently, 
innovations in monochromators and optimizing energy dispersion of the electron beam can 
improve resolution.  

X-ray tomography for 3D stacking and heterogenous integration  
X-ray tomography provides a non-destructive method of evaluating hidden interfaces and 
structures. It is commonly used in failure analysis of packaged devices. It works by generating 
cross-sectional slices of a 3D structure and reconstructing them to form a 3D image. The push 
toward advanced packaging and heterogeneous integration (See Chapter 2.3)makes this 
technique uniquely positioned to support non-destructive evaluation of hidden interfaces and 
structures. Moreover, with the trend toward multi-step/multi-chamber tools to complete entire 
process modules, this technique can be further adapted to wafer fabrication to meet metrology 
needs. 

On top of the advancement of X-ray tomography method, high-resolution X-ray tomography for 
device research is typically confined to large, accelerator-based synchrotron X-ray sources, 
which makes it not easily accessible to researchers. The development of compact, affordable X-
ray sources is needed to reduce the acquisition time and increase accessibility and the number 
of high-resolution X-ray sources. While X-ray tomography of package- and board-level devices 
have lower resolution requirements, the availability of compact X-ray sources will still provide 
significant benefits. Given the complexity of leading-edge heterogeneous integration, integrating 
board-level electrical testing with 3D, non-destructive mapping techniques becomes essential.   

Thermal transport characterization and mapping 
Thermal transport characterization and mapping have become increasingly important as 3D 
heterogeneous devices grapple with heat management challenges. As these devices integrate 
materials and layers with different functionalities, they often experience uneven thermal 
gradients, leading to potential performance degradation or even device failure. The 
development of innovative techniques and metrology tools for thermal characterization can 
provide insight into these thermal behaviors, facilitating better design and management 
strategies. Emerging techniques include nitrogen-vacancy (NV) magnetometers and Raman 
spectroscopy. NV magnetometers, which leverage the quantum properties of defect centers in 
diamonds, offer high-resolution thermal mapping by sensing temperature-dependent shifts in 
their luminescence (Kuwahata et al. 2020). Alternately, Raman spectroscopy, which measures 
the vibrational modes of molecules, can be employed to determine temperature changes based 
on shifts in peak frequencies (Yue, Zhang, and Wang 2011). Both these techniques not only 
provide a non-invasive approach to thermal characterization but also allow for real-time 
monitoring. Techniques such as these can enable more resilient designs or integration schemes 
by providing a deeper understanding of thermal flows in 3D structures.  

Enhanced metrology is essential given the rising complexity of energy efficient devices. The 
increasing prevalence of heterogeneously integrated devices demand automated measurement 
that can offer superior characterization and faster rates. Modeling is key to driving these 
developments forward, ensuring precision and repeatability in measurement as well as analysis. 
Underpinning these innovations is the availability of samples. Representative test samples and 
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structures are needed to develop and validate enhanced metrology techniques (further 
discussion is provided in a separate section below).  

Action plan for enhanced metrology technologies 
Table 79. Action Plan for Enhanced Metrology Technologies. 

Scope 

Metrology and Benchmarking 
Approach Enhanced metrology 

Technologies of Interest: 
Technologies with complex 3D structures, integration schemes, inaccessible features, and 
non-standard materials. Technologies requiring in-situ, dynamic, automated measurements 
with high spatial resolution and multiple measurement modalities. 

Metrology Challenges Addressed Proposed Solution Pathways 

• Inability to evaluate properties at inaccessible points within 
3D structures. 

• Inaccuracy of material and interface properties for non-
standard items. 

• Lack of real-time or near-real-time understanding of interface 
changes. 

• Avoid excessive measurements, understanding process 
dependency to capture only what’s necessary. 

• Implement non-destructive, deep-penetration metrology 
with compositional contrast. 

• Enhance high-spatial-resolution measurements, which 
may be destructive. 

• Increase usage of high-speed X-ray tomography at low 
intensities. 

• Integrate coupled measurement modalities to provide a 
holistic view. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

Transmission electron 
microscopy 

Critical dimension (CD) and 
composition measurements 

Near-term: 2 hour; mid-term: 1 hour; 
long-term: 1 hour (fully automated) 3–10 

Develop test samples and 
standards 

Identify suitable samples and 
structures 

Identify samples and structures that 
don’t reveal IP but help advance novel 
metrology 

2 

Tomography and X-ray 
scattering 

CD measurements and 
departures 

Near-term: correlated magnitudes with 
baseline CDs; mid-term: 20% error 
with respect to baseline offline 

1–3 

Development of compact X-
ray sources Brightness/energy 

100x reduction in acquisition time for 
SAXS and tomography compared to 
current synchrotron benchmarks 

5–15 

Integrated board-level 
electrical testing with 3D 
mapping 

Spatial resolution, throughput Demonstration with standard electrical 
testing tools 3 

Thermal transport 
characterization and mapping Improved spatial resolution Timeline when needed: soon Within 1 

TEM or atom probe 
microscopy (destructive). 
(Optical microscopy is limited 
below 2nm.) 

Non-destructive method with 
spatial resolution Far end (if doable at all) Long-term goal, if 

achievable 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • Supply critical samples and offer comprehensive details on key product specifications. 

End Users/OEMs • Spearhead the design, production, and optimization of hardware components and systems. 

Academia • Innovate and advance research methodologies, harness AI capabilities, and foster 
collaborative integrations with industry stakeholders. 

National Laboratories • Undertake specialized research and development projects, often overlapping with 
academia, to push the boundaries of current knowledge and technology. 

Government • Facilitate research and industry growth by allocating strategic funding, providing 
programmatic oversight, and fostering public–private partnerships. 

Required Resources Cross Collaboration Needs of Working Groups 
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• High-performance computing (HPC) access for training large-
scale models 

• More beamlines and synchrotrons 

• Time, funding, and experts 

• All working groups are needed to develop requirements 
related to each technology to ensure that the solutions 
are practically deployable and the models accurately 
characterize those parameters. 

 

3.3.2 Artificial Intelligence/Machine Learning in Metrology 
Artificial intelligence (AI) and machine learning (ML), with their predictive capabilities and data-
driven approach, offer potentially transformative opportunities to metrology. Traditional 
metrology primarily relies on explicit rule-based systems and manual data analysis and 
intervention, often rendering the processes time-consuming and occasionally susceptible to 
operator errors. On the other hand, AI/ML uses data to recognize patterns and detect 
anomalies, and, in some cases, automatically correct processes. The advantage lies in AI/ML’s 
ability to process and analyze large datasets rapidly, enabling real-time feedback and 
adjustments, aiding the development of energy efficient devices. However, output from AI/ML is 
only as good as its input. If these models are working off incomplete or low-quality datasets, its 
results will be unreliable. 

In practice, the introduction of AI/ML into fabs has been gradual. Its current uses are primarily 
confined to enhancing wafer inspection and defect detection. Virtual metrology, which uses AI to 
predict process variability on wafers that have not been physically measured, is also slowly 
being rolled out. Summarized below are additional use cases or applications in which AI/ML can 
enhance metrology, as well as challenges and potential solutions for each. 

Inaccessible points in 3D structures 
Conventional metrology tools have limited capability to evaluate or measure points within 3D 
structures where the probes or tools lack access. By combining inputs from physics-based 
models, part geometry, and destructive testing, AI/ML may be able to predict, with high 
accuracy and repeatability, measurements at these inaccessible points—somewhat akin to 
virtual metrology. However, significant testing, validation, and sensitivity analysis is needed prior 
to deployment.  

Management of large datasets for 3D measurements 
Handling vast amounts of data becomes cumbersome, especially when dealing with intricate 3D 
measurements that produce multidimensional datasets. AI/ML can simplify this challenge by 
implementing dimensionality reduction techniques. These techniques reduce the size of the 
dataset without significant information loss, making data management and subsequent analysis 
more efficient and scalable. 

Addressing complex failure analysis 
With the intricacy of modern microelectronics, predicting potential device failures becomes a 
more complex task, especially at the nanoscale. AI/ML-based models can mitigate these 
challenges by predicting the failure rates for these devices. By training an ML model with 
historical failure data under different conditions and parameters, the model can forecast 
potential failures, allowing for preemptive corrective measures. 

Scientific data annotation 
With the sheer volume of data collected, data annotation quickly becomes the bottleneck for this 
data being used for AI/ML models. Traditional data annotation is manual and requires domain 
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expertise to ensure systematic, consistent, and correct annotation. Ironically, the very challenge 
that must be overcome to make AI/ML function effectively can be addressed by AI/ML. 
Generative AI and self-supervised techniques, like the Segment Anything Method (developed by 
META), can complete initial segmentation, annotation, and anomaly detection. While it is still a 
good idea to keep a human in the loop, especially at the outset, it can reduce much of the 
upfront manual work. These annotated datasets can then be used to train further models or 
used in downstream tasks, making the process for development of energy efficient device much 
more efficient.  

Improving Nondestructive Evaluation Techniques 

Traditional nondestructive evaluation techniques (NDE) techniques might not offer the 
granularity required for modern microelectronic devices, often missing out on micro- or nano-
scale defects that can compromise device performance. By integrating AI/ML with techniques 
like X-ray computed tomography (CT), a non-invasive imaging method that captures cross-
sectional images using X-rays, a more in-depth and comprehensive assessment of internal 
structures can be achieved. These algorithms, once trained on annotated data, can improve 
detection, leading to improved device reliability and longevity. 
Complexity in Multimodal, Multiscale Data 

Metrology often encompasses diverse datasets, ranging from optical and electron microscopy 
readings to 3D X-ray CT scans. Additionally, multi-modal data, which may include thermal, 
mechanical, and electrical measurements, need to be integrated. Navigating and making sense 
of this multi-modal, multi-scale data is challenging and demands sophisticated computational 
techniques. By leveraging state-of-the-art AI techniques like multi-task learning, knowledge 
distillation, and transfer learning, one can simultaneously interpret and correlate data from 
various sources and scales. Designing an AI model that can effectively amalgamate insights 
from different data types allows for a holistic understanding, thus enhancing the accuracy and 
efficiency of metrology. This holistic approach ensures that the unique advantages of each data 
source are utilized, leading to a more comprehensive assessment. 

Action Plan for Artificial Intelligence/Machine Learning in Metrology 
Table 80. Action Plan for AI/ML in Metrology 

Scope 

Metrology and Benchmarking 
Approach Utilization of AI/ML in metrology 

Technologies of Interest: Inline metrology, non-destructive evaluation, data annotation, 3D metrology, etc.  

Metrology Challenges Addressed Proposed Solution Pathways 
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• Ensure the reliability of AI/ML predictions, given their dependency on 
data quality. 

• Overcome the limited capability of conventional metrology tools to 
evaluate inaccessible 3D structure points. 

• Manage large datasets generated from 3D measurements and complex 
failure analysis. 

• Automate scientific data annotation to address the bottleneck of 
manual data processing. 

• Enhance the granularity of NDE techniques for microelectronic devices. 

• Address the complexity of integrating multi-modal, multi-scale datasets 
in metrology. 

• Validate AI/ML models using comprehensive 
testing and sensitivity analysis for accurate virtual 
metrology. 

• Implement AI/ML dimensionality reduction to 
efficiently handle and analyze extensive 
metrology data. 

• Train AI/ML models on historical device failure 
data to predict and prevent potential failures. 

• Employ generative AI and self-supervised learning 
for efficient initial data segmentation and 
anomaly detection. 

• Integrate AI/ML with advanced NDE methods like 
X-ray CT to detect internal microscale flaws. 

• Develop AI algorithms capable of interpreting and 
correlating multi-modal, multi-scale data for a 
comprehensive metrology assessment. 

Major Tasks/Milestones Metrics Targets Timeline (years) 

Inaccessible Points in 3D 
Structures 
Curate synthetic and real data, test 
AI/ML models, understand 
inaccessible 3D points, design and 
execute experiments to measure 
such points, and refine AI models. 

Evaluate curated data quantity 
and quality; assess data 
completeness; measure 
accuracy, precision, recall, and 
F1 score; track inaccessible point 
detection rates; and monitor 
model accuracy enhancements. 

Overcome challenges in 
measuring inaccessible 3D 
structure points. 

2–3, varies with 
the metrology 

technique used 

Management of Large Datasets 
for 3D Measurements 
Collect and organize vast 3D 
datasets, implement dimensionality 
reduction techniques, evaluate 
synthetic data quality, incorporate 
reduced synthetic data into AI 
training, and track dimensionality 
reduction and synthesis process 
enhancements. 

Assess curated data quality, 
measure dataset size reduction 
and retained information, 
compare model performances 
with different dataset sizes, 
evaluate synthetic data usability, 
and monitor model performance 
improvements with synthetic 
data. 

Address challenges in 
analyzing extensive 3D 
datasets. 

1–1.5 

Addressing Complex Failure 
Analysis 
Curate relevant parameters, 
preprocess data, develop and 
validate AI/ML models for failure 
prediction, refine the models, and 
deploy for real-time failure 
monitoring. 

Evaluate parameter collection, 
assess preprocessing readiness, 
measure model metrics 
(accuracy, precision, recall, F1 
score, AUC-ROC [area under the 
receiver operating characteristic 
curve]), compare model 
performance across datasets, 
assess model overfitting, track 
model enhancements, gauge 
real-world performance, and 
implement device improvements 
post-analysis. 

Address intricate device failure 
analysis challenges. 2–3 

Scientific Data Annotation 
Collect and preprocess relevant 
data, implement segmentation and 
anomaly detection, refine labels 
through active learning, create 
physics-based simulations, 
generate and assess synthetic 
annotated data, and integrate this 
data into subsequent training or 
downstream tasks. 

Assess data quantity and labeling 
quality, monitor label 
enhancement, compare 
simulation quality to real-world 
data, evaluate AI/ML model 
performance, and track 
downstream task enhancements 
post-integration. 

Address limited annotated 
scientific data issues. 1–2 

Improving Non-Destructive 
Evaluation Techniques 
Identify NDE challenges, develop 
AI/ML solutions, test and refine the 
algorithms, and incorporate them 
into the NDE process. 

Quantify identified challenges 
and potential gains, review 
academic contributions, measure 
AI improvement in data quality 
and acquisition time, and track 
algorithms.  

Improve NDE techniques. 
3–5, varying with 
the NDE system 

type 
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Complexity in Multi-Modal, Multi-
Scale Data 
Recognize various data types or 
scales; develop AI for integration 
and interpretation; and train, 
validate, and test the models. 

Measure identified data type 
diversity, assess AI performance 
on different datasets, and 
examine feature correlations and 
device performance metrics. 

Understand and leverage multi-
modal, multi-scale data. 2–3 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • Supply AI-enabled devices and tools for model development and testing. 

End Users/OEMs • Share insights on AI/ML application challenges, provide datasets, and offer feedback on 
model outputs. 

Academia • Conduct foundational research in AI/ML, develop novel algorithms, and collaborate on 
prototype projects. 

National Laboratories • Offer computational resources and expertise, as well as large-scale testing environments 
for AI/ML models. 

Government • Fund AI/ML research initiatives, develop policies for ethical AI application, and foster 
collaboration between various stakeholders. 

Required Resources Cross Collaboration Needs of Working Groups 

• High-quality, diverse, and labeled datasets for training and validation 

• Computing infrastructure with high processing capabilities  

• Secure data storage and management solutions  

• Platforms and tools for model deployment and monitoring 

• Domain-specific expertise for specialized AI/ML applications 

• Other working groups in the stack (Materials and 
Devices, Power and Control Electronics, 
Algorithms and Software, and Advanced 
Packaging and Heterogeneous Integration) need 
to provide requirements from technologies within 
these groups to better develop platform. 

 

3.3.3 Failure Analysis 
Failure Analysis (FA) is a set of techniques aimed at identifying and understanding the root 
causes of failures in electronic devices and components. With the introduction of new materials, 
architectures, and integration techniques, traditional FA techniques may no longer be sufficient. 
The complexity of emerging energy efficient devices means that pinpointing defects and 
degradation mechanisms using conventional FA can be akin to finding a needle in a haystack. 
Moreover, the pace of the microelectronics industry demands faster validation of devices and 
components at the prototype stage, adding another layer of urgency to FA, which is typically 
slow and methodical. 

Recognizing these evolving challenges, FA techniques must undergo a transformation. A 
holistic, multi-modal in-situ failure analysis platform was proposed as a solution pathway. Such 
an approach facilitates real-time monitoring of device degradation, combining various 
characterization modes simultaneously. An automated application can be leveraged to 
synchronize these modes seamlessly, ensuring a comprehensive understanding of failure 
mechanisms. In essence, the focus must shift from a post-mortem analysis to a real-time 
observation, aiding in rapid and precise identification of failure modes. Furthermore, an 
increased emphasis is needed on correlating specific stressing mechanisms directly with 
observed failures, allowing for more accurate preemptive measures in device design. 
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Action Plan for Failure Analysis 
Table 81. Action Plan for Failure Analysis. 

Scope 

Metrology and Benchmarking 
Approach Improved failure analysis 

Technologies of Interest: 
• Emerging R&D-stage devices and systems; in particular, those found within the roadmap. 
• Also relevant to existing integrated circuit (IC) products. 

Metrology Challenges Addressed Proposed Solution Pathways 

• Difficulty of failure analysis as devices get more complex. 

• Faster validation of R&D-stage devices and components. 

• Bridge the gap between idealized system metrology and actual 
system performance.  

Multi-modal, in-situ failure analysis platform. This platform will 
include the following components: 
• In-situ device stressing and degradation monitoring; 

• Electrical, thermal, optical, and other modes of 
characterization during stressing; 

• An application to synchronize different modes; and 

• Modeling and failure visualization.  

These components will work in concert to pinpoint sources of 
failure and help correlate failure with stressing mechanism.  

Major Tasks/Milestones Metrics Targets Timeline (years) 

Integration of electrical, thermal, 
optical, and other modes of 
characterization on test stand 

Electrical, thermal, optical, 
and other parameters 

Parity with results from single modality 
testing 1.5 

Software/application development 
for automated synchronization Application error rate Minimize 1 

Development of testing protocol Electrical, thermal, optical, 
and other parameters 

Parity with results from single modality 
testing 1 

Development of analysis 
framework and visualization  Time/spatial resolution Understanding of where/when/why 

failure happens 2 

Testing and sensitivity analysis  Sensitivity and specificity Optimal detection of failures with 
minimal false positives 2.5 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • Provide new devices for characterization. 

End Users/OEMs • Provide specifications/technical details on problems. 
Provide characterization tools or components of tools needed to develop platform. 

Academia • Develop new device designs and first-stage device development. 

National Laboratories • Provide characterization expertise. 

Government • Provide support and develop roadmap, coordination of efforts. 

Required Resources Cross Collaboration Needs of Working Groups 

• Test samples that are indicative of emerging devices 

• End-user requirements to better develop platform 

• Other working groups in the stack (Materials and Devices, 
Power and Control Electronics, and Advanced Packaging 
and Heterogeneous Integration) need to provide 
requirements from technologies within these groups to 
better develop platform. 

 

3.3.4 More Samples 
To meet the ever-stringent process requirements for the next node, as well as the growing 
catalogue of parameters of interest for R&D-stage devices, metrologists are commonly asked to 
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develop techniques that are cheaper, better, and faster, or that measure something not 
measured before. However, these developments are highly dependent on the availability and 
quality of samples. Through extensive working group discussions and previous workshops held 
by AMO (Office of Energy Efficiency & Renewable Energy 2021), one thing is clear: increased 
access to diverse and representative samples is needed to substantially enhance and 
accelerate the development of novel metrology techniques. Comprehensive and varied samples 
become paramount to understand, test, and improve metrology, and this is especially the case 
as 3D devices and systems become more prevalent.  

Recognizing that complete elimination of IP restrictions is infeasible and unrealistic, creative 
solutions to navigate this challenge are necessary. Exploring avenues such as establishing less 
restrictive non-disclosure agreements (NDAs) or other protective mechanisms could serve as a 
viable means to bridge this gap. Another idea is to establish a central body (e.g., government-
led or industry consortia, similar to SEMATECH) that develops and administers common test 
structures (without IP) that are available to everyone. By establishing a framework that respects 
industry sensitivities while ensuring researchers have access to samples, a more collaborative, 
dynamic, and robust research environment can be fostered. This balanced approach will 
undoubtedly propel the field of metrology forward, ensuring it continues to address the ever-
evolving needs of industry towards a more energy efficient future. 

Action Plan for More Samples 
Table 82. Action Plan for More Samples 

Scope 

Metrology and Benchmarking 
Approach Greater availability of samples 

Technologies of Interest: All IC technologies—emerging and existing 

Metrology Challenges Addressed Proposed Solution Pathways 

• Bridge the gap between idealized system metrology and actual 
system performance. 

• Explore mechanisms to overcome IP constraints from device 
manufacturers, leading to challenges with developing new 
metrology tools and capabilities. 

• Inability to evaluate properties of interest at inaccessible points 
within 3D structures. Inability to measure and verify where 
devices match designs. 

• Inaccuracy of material and interface properties that are used in 
computational models of 3D structures (inclusive of challenges 
associated with inhomogeneous, anisotropic, and nonlinear 
materials). 

• Measure material properties at relevant length scales. Current 
properties based on bulk materials, which are different than 
micro/nano scale.  

• Measure chemical and interfacial properties on side walls and 
all-around structures. 

• Encourage manufacturers or a centralized source to offer 
realistic/indicative test structures and/or samples rather 
than model systems (no IP included) for early research. 

• Fund companies to come up with test structures that are 
well suited to evaluate a specific metrology. 

• Consider adopting a Defense Advanced Research Projects 
Agency (DARPA)-like model with a government group 
ensuring that devices or common test structures be 
available for everyone, potentially facilitating metrology 
standards. 

• Create standard datasets through testing of a wide variety 
of samples. 

Major Tasks/Milestones Requirements Targets Timeline (years) 

Identify material system and 
technology 

Detailed specifications and 
types of materials to be 
studied.  

Establish a comprehensive database of 
materials and technologies. 0.5–1 
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Identify metrology modality of 
interest (i.e., electro-thermal, 
transport, interface, X-ray, 
thermo-mechanical, dimensional, 
etc.) 

Specific modality devices and 
equipment relevant for the 
task.  

Develop expertise in multiple modalities, 
ensuring wide-ranging capabilities.  1–1.5 

Develop device/structure design  
Standardized designs and 
schematics based on industry 
standards. 

Achieve efficient and optimal design 
structures for varied applications. 1–2 

Fabricate test devices, including 
important process variations  

Detailed process flow charts 
and specifications for each 
device type. 

Ensure reliable and repeatable 
fabrication processes across all devices. 2–3 

Evaluate necessary 
dimensional/material properties  

Standardized measurement 
tools and techniques for 
diverse material properties. 

Acquire accurate and comprehensive 
material property data for modeling. 2–3 

Develop models based on 
dimensions/material properties 

High-fidelity computational 
tools and software. 

Develop predictive models that 
accurately reflect real-world 
performance. 

3–4 

Apply metrology of interest to test 
devices 

Metrology equipment 
calibrated for the specific test 
devices. 

Ensure accurate and reliable 
measurements across all test scenarios. 4–5 

Document measurement results 
Structured database systems 
and error-estimation 
algorithms. 

Ensure data integrity and reliability for 
future analysis and application. 4–5 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers 
• Develop and fabricate test samples with IP sensitivities in mind 
• Collaborate with metrologists to address specific issues they face 

Tool Vendors • Create a metrology system (commercial tool) from a metrology technique—bridge valley of 
death 

Academia 
• Modeling and simulation  
• Workforce development 
• Support circuit design activities 

National Laboratories 
• Provide characterization expertise and capabilities (e.g., beamlines) 
• Support circuit design activities 

Government • Investment in fab runs to develop test structures 

National Institute of Standards 
and Technology (NIST) 

• Provide standard measurement data and standard material properties (i.e., standardized 
inputs and outputs) 

Required Resources Cross Collaboration Needs of Working Groups 

• Consortium of industry, academia, and national laboratories to 
foster collaboration and channels of communication 

• Other working groups engaged in components and system 
development (Materials and Devices, Circuits and 
Architectures, Advanced Packaging and Heterogeneous 
Integration, and Manufacturing Energy Efficiency and 
Sustainability) need to provide requirements and samples 
to the Metrology group to meet these needs.  

 

3.3.5 Benchmarking 
Benchmarking enables a consistent comparison of technologies through standardized test 
methodologies and may help prioritize R&D to support the most promising energy-efficient 
technologies. It can also establish standards against which performance and efficiency can be 
measured. Currently, there is a gap in benchmarking the latest advanced technologies and 
approaches emerging today, including those in packaging, circuits, devices, and 
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software/algorithms. A sustained and comprehensive benchmarking effort is needed, which may 
include updating Nikonov and Young’s work and expanding it to include higher levels of the 
stack (Nikonov and Young 2013). In addition, a standardized, system-level model is needed to 
holistically understand each component’s contribution to overall system efficiency. 

The primary objective of system-level models is to assess the impact and effectiveness of 
technological innovations. These models distinguish between innovations that offer real 
advantages and those that fall short when integrated into larger systems. These models are 
essential in today’s complex technology environments, particularly in data center management 
and edge devices, and may help illuminate what technologies or technology combinations may 
provide the largest energy efficiency benefits at the system level. For example, they can analyze 
the impact of changes in device nodes on data center energy efficiency.  

Described below are the key considerations when developing system-level models.  

System Complexity 
Understanding each component’s impact on the overall system is critical for optimizing system 
efficiency. This requires a model that elucidates the interactions within the system, highlighting 
the ripple effects of changes in one area on the entire system. Recognizing the 
interdependencies of components, while complex, is crucial for the model’s accuracy and 
integral for transitioning from a focus on isolated components to a comprehensive system 
perspective. 

Model Development and Simulation 
After identifying system components and their interdependencies, these must then be integrated 
into a modeling framework. Different system layers, from devices to data centers, require 
distinct models and simulation tools. Ensuring seamless data transfer and interoperability 
between model levels are key challenges to ensure reliable outputs. Collaboration across 
various teams such as design engineers, simulation experts, metrologists, and other relevant 
stakeholders is necessary to achieve a holistic view and effective energy efficient solutions. 

Continuous Improvement 
To meet evolving energy efficient needs and challenges, continuous improvement must be 
integral to the refinement and maintenance of these models. Implementing a feedback loop, 
where insights from system-level measurements consistently inform design and manufacturing 
processes, enables ongoing refinement and enhancement of the model. This approach not only 
addresses current challenges but also anticipates future ones, ensuring the model remains 
robust, efficient, and adaptable in a dynamic technological environment. 

Action plan for Benchmarking 
Table 83. Action Plan for Benchmarking. 

Scope 

Metrology and Benchmarking 
Approach Development of energy-focused benchmarking  

Technologies of Interest: All energy-efficient technologies contained within this roadmap, as well as those emerging in 
academic and industry R&D settings. 

Metrology Challenges Addressed Proposed Solution Pathways 
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• Collect benchmarking data and develop models to distinguish 
between feasible and impractical ideas. 

• Define energy-efficiency metrics for specific workflows, with a 
focus on ensuring their relevance over the roadmap scope. 

• Develop a unified benchmarking standard that assesses the 
energy efficiency of emerging technologies across all levels of 
the compute stack. 

• Quantify the impact of component-level efficiency gains on 
overall system performance due to complex interdependencies. 

• Deploy system-level models to quantify energy 
consumption trade-offs. 

• Develop a framework to capture energy consumption 
trade-offs. 

• Utilize system-level models to address data center 
efficiency concerns. 

• Identify subsystem-level models to understand energy 
consumption dynamics. 

Major Tasks/Milestones Metrics Targets Timeline 

System-Level Benchmarking 
Align metrics with technological 
advancements and industry 
needs 

Establish standard metrics 
for system-level modeling 

Develop a set of industry-accepted 
metrics 8 months 

Tackle System Complexity 
Ensure all system components 
are evaluated holistically, 
reducing discrepancies  

Uniform methods and 
practices Streamline system measurements 6 months 

Model Development and 
Simulation 
Use simulation tools to foresee 
system behavior and interactions  

Integration of advanced 
simulation tools Efficient predictive outcomes  10 months 

Continuous Improvement 
Implement a feedback loop to 
ensure systems stay robust, 
efficient, and future-ready  

Feedback mechanism for 
insights Iterative system improvements Ongoing 

Standardize Practices 
Address complications that arise 
due to non-standardized 
practices across sectors  

Creation of universal 
standards Adoption across all sectors 1 year 

Stakeholders and Potential Roles in Project  

Stakeholder Role 

Product Manufacturers/Suppliers • Provide hardware that meets software requirements. 

End Users/OEMs • Update infrastructure to meet hardware needs and improve efficiency. Purchase and install 
hardware. Collaborate with data center operators for specific requirements. 

Academia • Innovate transformational approaches, such as new materials and computing architectures. 

National Laboratories • Lead in technological development and mature academic innovations. 

Government • Provide funding for new technological approaches and set requirements for efficiency. Fund 
research and set standards for system design. 

Required Resources Cross Collaboration Needs of Working Groups 

• Consortium or organized body to enable various stakeholders’ 
continuous communication 

• Demonstration platform such as data center or test bed 

• High-fidelity modeling, ultimately moving toward reduced-order 
modeling 

• All working groups need requirements related to 
infrastructure and thermal management, ensuring that the 
solutions are practically deployable and that the models 
accurately characterize those parameters. 

 

3.3.6 Conclusion for Metrology and Benchmarking 
In the Metrology and Benchmarking chapter, the focus has been on enhancing measurement 
techniques to keep pace with the rapid advancement of semiconductor technologies. Precision 
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in metrology is crucial for validating the energy efficiency and performance of emerging devices, 
especially those that are 3D or heterogeneous in nature. 

Given the increasing complex structures and materials in semiconductor manufacturing, 
traditional metrology techniques often fall short. As a response, there is a push to develop 
advanced, non-destructive metrology methods that can provide detailed insights without 
damaging the structures of cutting-edge devices. In addition, the integration of AI and ML into 
metrology processes not only improves the precision and adaptability of these measurements 
but also ensures that the evaluations are deeply aligned with actual device performance. 

Furthermore, establishing continuous and adaptable benchmarking standards is imperative for 
accurately assessing the energy efficiency of new technologies. These standards must be 
robust enough to guide industry-wide R&D efforts, helping to streamline the validation and 
deployment of innovative materials and architectures. 

The chapter stresses the importance of a cohesive approach that bridges the gap between 
metrology and actual device performance. By fostering the developments in AI-enhanced 
metrology and advocating for the broad accessibility of diverse test samples, the roadmap aims 
to support the semiconductor industry's move towards more sustainable and energy-efficient 
solutions. This strategic focus on advanced metrology and benchmarking is essential for 
accelerating the deployment of technologies that meet the demands of modern energy 
efficiency standards. 
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3.4 Education and Workforce Development (EWD) 
To address the significant challenges posed by the increasing energy consumption of 
microelectronics, the EES2 roadmap targets crucial energy efficiency and reduction objectives. 
This ambition necessitates a workforce that is both expanding and rapidly evolving and is 
equipped to research, manufacture, and deploy the innovations recommended. Recent strategic 
frameworks, particularly the National Microelectronics Strategy released on March 8, 2024, 
have laid the groundwork for education and workforce development (EWD) in this sector 
(National Science and Technology Council 2024). The EES2 roadmap draws inspiration from 
this strategy, proposing initiatives that not only enhance technical skills but also foster a 
sustainability-conscious mindset among both current and future professionals in the field. 

The pressing nature of energy efficiency and climate issues demands immediate action, beyond 
waiting for the next generation of engineers, scientists, and technicians. A report by The New 
York Times on March 14, 2024 highlights the rapid pace of data center construction worldwide, 
emphasizing the need for swift educational reform to include all learners, particularly the current 
workforce responsible for deploying these centers (Plumer and Popovich 2024). Our 
educational recommendations are designed to facilitate the rapid incorporation of workers from 
adjacent fields into the microelectronics sector, kickstarting the journey towards doubling energy 
efficiency as early as 2024.  

The EES2 roadmap outlines four critical EWD goals to be pursued alongside technological 
advancements: 

• Raise public awareness on the crucial role energy-efficient semiconductors play in 
global sustainability. 

• Engage students and workforce in EES2-driven microelectronics research. 

• Empower a future-ready microelectronics workforce through multidisciplinary 
education, training, and continuous support for educators and learners. 

• Navigate demographic shifts and engage diverse talent. 

These goals underscore the need for a skilled workforce that not only excels in technical areas 
but also prioritizes and understands the critical importance of energy efficiency. Discussions 
from the April 2023 workforce-focused roadmap meeting at SLAC National Accelerator 
Laboratory further underscore the necessity of rethinking our approach to motivating and 
training the workforce responsible for microelectronics manufacturing and deployment (SLAC 
National Accelerator Laboratory 2023).  

Achieving and maintaining U.S. leadership in energy-efficient microelectronics hinges on our 
ability to develop a workforce proficient in every aspect of the field. The substantial role of the 
semiconductor industry in the U.S. economy, supporting 1.85 million jobs as of 2020 with direct 
employment numbers rising sharply by 2023, reflects the industry's growth and the attractive 
nature of its job market (Semiconductor Industry Association 2021, 2023; U.S. Bureau of Labor 
Statistics 2024). 
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Women in Electronics and Computing 
Despite representing a slim majority of the population and the dominant segment of those 
pursuing higher education, women remain significantly underrepresented in the fields of 
physical sciences, engineering, and specifically in microelectronics and power electronics 
manufacturing and deployment. The National Strategy underscores the importance of starting 
early, advocating for initiatives beginning in elementary school to bridge this gap and foster 
sustainable change. We refer readers to both the National Strategy and our own Section 4 for 
guidance on initiating this crucial shift.   

As such, the urgency of today’s environmental challenges compels us to accelerate these 
efforts. The year 2024 marks a critical point in confronting the threats of climate change and the 
looming energy crisis. It is imperative that women are empowered to rapidly transition into 
careers within sustainable electronics. Clear communication about the necessity of this shift, 
coupled with robust support for career changes, can catalyze immediate action. 

Historically, women have demonstrated remarkable adaptability and capacity for rapid career 
shifts in times of need, as exemplified by the iconic Rosie the Riveter during World War II. This 
historical precedent illustrates the potential for significant workforce transformation. While 
challenges vary among different groups, many women could transition more readily if given 
appropriate economic, cultural, and mentoring support. 

In response to the pressing challenges of our time, it is crucial to fully engage the potential of 
women in the electronics and computing sectors. This commitment not only addresses gender 
disparities but also cultivates a resilient, innovative workforce capable of driving our society 
towards a more sustainable future. 

Working Group Methodology 
Recognizing the rapidly evolving landscape of the semiconductor industry, the working group 
sought to address the gap between existing educational programs and the industry’s imminent 
needs. Emphasis was placed on developing curriculum frameworks that incorporate advanced 
technical knowledge with an acute awareness of sustainability and energy efficiency. The group 
also tackled challenges related to diversity in science, technology, engineering, and 
mathematics (STEM) fields, early childhood education, and the direct linkage between 
educational pathways and fulfilling career opportunities in the microelectronics sector. Through 
their deliberations, the working group aimed to lay the groundwork for educational reform that 
not only meets the immediate technical demands of the EES2 initiative but also ensures the 
long-term sustainability of the microelectronics industry through a well-informed, skilled, and 
diverse workforce. 

Key Takeaways 
The key challenges and opportunities for education and workforce development in support of 
the EES2 initiative are summarized in Table 84. With a spotlight on the nuanced workforce 
challenges tied to the roadmap, the DOE’s recommendations target the development of industry 
professionals with the requisite education and training to advance EES2-related technologies 
both now and in the future. 

Table 84. Education and Workforce Development Key Needs and Opportunities 

Area Key Needs and Opportunities 
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Goal 1: Public 
Awareness  

• Elevate public engagement by promoting the critical 
importance of energy-efficient semiconductors for 
global sustainability through interactive and 
educational initiatives. 

Goal 2: Student 
and Workforce 
Engagement  

• Foster hands-on student and workforce 
engagement in microelectronics research through 
dynamic academia-industry collaborations aligned 
with EES2-driven projects. 

Goal 3: Future-
Ready Workforce 
Empowerment 

 

• Craft multidisciplinary and agile educational 
programs that prioritize energy efficiency and 
provide continual educator support to empower a 
future-ready workforce. 

Goal 4: Diversity & 
Demographics  

• Harness demographic diversity to invigorate the 
microelectronics industry with innovative and 
inclusive strategies for talent development and 
engagement. 

 

Grand Challenges 
The following represent grand challenges, major resource needs, and key solution pathways 
distilled from working group discussions:   

• Evolving education curricula to pace with microelectronics innovation, emphasizing 
energy efficiency and sustainability from foundational learning. 

• Cultivating a technically proficient workforce that integrates environmental 
considerations into its work, fostering a culture of sustainability within the industry. 

• Expanding the diversity and inclusivity of the STEM workforce to incorporate a broader 
range of perspectives and innovative solutions for energy-efficient microelectronics. 

• Creating educational pathways that meld practical experiences with theoretical 
knowledge, highlighting the importance of co-design in hardware, software, and 
architecture for enhancing energy efficiency. 

• Encouraging continuous professional development and lifelong learning to align with 
rapid technological advancements and the evolving landscape of energy efficiency. 

• Promoting cross-disciplinary collaboration between academia, industry, and government 
to ensure educational programs meet the microelectronics industry's real-world 
demands. 

We acknowledge the limitations of this report, recognizing it does not encapsulate the entire 
spectrum of microelectronics and related ICT education and workforce needs for the U.S. and 
international EES2 participants. Insights from the 2023 MAPT Roadmap and contributions from 
EES2 members, including those from SRC, SEMI, and IEEE, provide a more comprehensive 
review and additional depth on education and workforce programs in the semiconductor 
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industry. These contributions shape our understanding and guide our strategies for fostering a 
dynamic and capable workforce for the future. 

3.4.1 Raise Public Awareness on the Crucial Role Energy-Efficient 
Semiconductors Play in Global Sustainability  

Raising public awareness about the critical role of semiconductors in driving sustainable energy 
solutions is essential for fostering a broader understanding and support for energy efficiency 
within the industry. As the backbone of modern technology, semiconductors have the unique 
potential to significantly reduce global energy consumption through innovative, eco-friendly 
applications. Educating the public on the importance of semiconductors in achieving a 
sustainable future not only highlights the industry’s commitment to environmental stewardship 
but also inspires collective action towards a net-zero emissions goal. By engaging communities 
through informative and interactive initiatives, we can catalyze a shift towards more sustainable 
practices across industries and encourage the next generation of innovators to prioritize energy 
efficiency in their creations. 

To bolster public engagement and drive sustainability in the semiconductor sector, the following 
strategies are tailored to emphasize energy efficiency and sustainable practices: 

• Develop and promote museum exhibits and public activities that provide insightful, 
actionable information on the role of semiconductors in achieving energy sustainability, 
enhancing public understanding of their critical importance in green technology. 

• Forge connections with networks of science centers to disseminate region-specific 
educational content that emphasizes local contributions to sustainable semiconductor 
practices and energy efficiency. 

• Craft and distribute educational kits focused on sustainable microelectronics and 
designed for use in events celebrating advancements in energy-efficient technologies. 

• Maximize the use of multimedia and social media platforms to spread awareness about 
the environmental impact of semiconductors and the industry's efforts toward 
sustainability. 

• Engage communities through competitions and challenges that highlight the importance 
of energy efficiency and sustainable innovation in the semiconductor industry, 
encouraging a new generation to contribute to eco-friendly advancements. 

3.4.2 Engage Students and Workforce in Microelectronics Research 
To better prepare the next generation for challenges and opportunities listed in this roadmap, 
leveraging existing educational programs plays a crucial role. These programs, ranging from 
early childhood development through college, exemplify innovative approaches to integrating 
STEM principles into various stages of learning. They not only provide valuable resources for 
educators but also introduce students to the wonders of engineering and technology from a 
young age. By building on these foundations, we can create a continuum of learning that 
progressively equips students with the knowledge and skills required for success in the rapidly 
evolving tech landscape. There are exemplary case studies of existing programs that have 
made significant strides in STEM education: 
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• Project Learning Tree: This project offers teachers activity guides to enrich classroom 
learning, with similar initiatives spearheaded by CM partners at CSU and IACMI 
(https://www.plt.org/). 

• Engineering is Elementary (EIE): Developed by the Boston Museum of Science, this 
program integrates STEM content into K–5 reading curricula, providing new material 
without overburdening the existing curriculum (https://www.eie.org/). 

• Project Lead the Way (PLTW): PLTW is a curriculum focused on bringing engineering 
and technology to high schools, introducing students to engineering concepts to prepare 
them for further education in engineering fields (https://www.pltw.org/). 

• Engineering for Us All (e4usa): This initiative is aimed at providing a foundational 
engineering curriculum for high school students, potentially offering college credit upon 
completion (https://e4usa.org/). 

• TeachEngineering: A repository of curricular tools and aids for engineering education, 
this website is a platform where the EES2 initiative can be shared with a broad audience 
of educators (https://www.teachengineering.org/). 

• Engineering Ambassadors Network: This network comprises a consortium of around 
40 universities training engineering students to deliver compelling, age-appropriate 
presentations in K–12 schools and after-school programs 
(https://www.engineeringambassadorsnetwork.org/). 

These programs exemplify the diverse approaches to incorporating STEM education across 
different educational stages in K-12, highlighting the importance of early engagement and 
continuous learning pathways in building a future-ready workforce. 

From the office of AMMTO, the Lab-Embedded Entrepreneurship Program (LEEP) presents a 
groundbreaking opportunity to engage researchers and the workforce in cutting-edge 
microelectronics research (EERE 2024). LEEP equips budding entrepreneurs and researchers 
with the tools, mentorship, and resources to convert their innovative ideas into marketable 
solutions, focusing on clean energy and technology. 

 

https://www.plt.org/
https://www.eie.org/
https://www.pltw.org/
https://e4usa.org/
https://www.teachengineering.org/
https://www.engineeringambassadorsnetwork.org/
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Figure 69. LEEP brings technology idea to market-ready solutions. Source: EERE 2024 

The LEEP program not only equips innovators with financial support and mentoring but also 
fosters connections with national lab resources and facilitates industry collaborations. Through 
initiatives like the annual Demo Day, LEEP encourages the confluence of investors and industry 
experts, catalyzing the transition from academic research to market-ready solutions. By 
embedding entrepreneurship in students’ educational journey, LEEP ensures that students not 
only conceive innovative ideas but also possess the tools and knowledge to translate them into 
viable products that support the nation's energy efficiency and sustainability goals. This 
engagement is crucial for fostering a competitive edge and positioning the United States as a 
leader in semiconductor technology and energy-efficient innovation. 

As the EES2 roadmap suggests, enriching this educational matrix with programs that nurture a 
research-driven mindset is paramount. Providing hands-on access to state-of-the-art research 
facilities and fostering an environment that prioritizes innovation and entrepreneurship ensures 
that the U.S. continues to pave the way in semiconductor technology and energy efficiency. The 
concerted effort to bridge education with actionable industry experience will prepare the U.S. 
workforce to not only face future technological challenges but also to lead the charge in 
sustainable advancement. 

3.4.3 Empower a Future-Ready Microelectronics Workforce Through 
Multidisciplinary Education, Training, and Continuous Support for 
Educators and Learners  

The burgeoning complexity of semiconductor technologies, such as advancements in 
neuromorphic and quantum computing, underscores the urgency for interdisciplinary problem-
solving skills. This necessitates the development of highly skilled candidates, emphasizing the 
importance of advanced degrees and highlighting the intense competition for talent, particularly 
as foreign-born scientists and engineers significantly contribute to this sector (American 
Immigration Council 2022). 

To fulfill the evolving needs of the semiconductor workforce, comprehensive strategies must be 
developed to empower educators and stimulate students across all educational tiers. Beyond 
the foundational fields of electrical engineering and computer science, the growing complexity in 
semiconductor innovations makes interdisciplinary expertise—encompassing chemistry, 
industrial and environmental engineering, and materials science—increasingly vital for achieving 
energy efficiency. Enhancing K–12 education through state-aligned, quality resources and 
hands-on projects is essential for sparking interest in microelectronics careers at an earlier age. 

Programs like the NSF’s Research Experiences for Teachers and the Robert Noyce Teacher 
Scholarship Program are instrumental in strengthening STEM education, which is vital for 
nurturing a future-ready technical workforce. To cultivate talent for skilled technical roles, 
regionally tailored training programs offering credentials like certificates and diplomas, are often 
more suitable than traditional degree paths. Such localized training initiatives, especially in 
burgeoning semiconductor hubs, benefit significantly from partnerships between the industry, 
educational institutions, and regional training programs. 

In higher education, adaptable curricula that keep pace with the swift advancements in 
semiconductors are necessary to prevent a divergence between academic preparation and 
industry demands. Proactive collaboration among industry leaders, educators, and labor 
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representatives is key to developing cutting-edge curricula and programs that cater to imminent 
industry requirements and encourage interdisciplinary solutions for the multifaceted challenges 
in semiconductor R&D. 

Non-degree programs like Penn State’s Microelectronics and Nanomanufacturing Certificate 
Program exemplify effective industry-academia collaboration. By providing hands-on training 
and certifications in nanotechnology, these programs forge direct pathways into the 
semiconductor workforce. Expanding opportunities for mentorship, apprenticeships, and on-the-
job training that reflect the current pace of technological innovation in microelectronics is crucial. 
Creating equitable access to these learning avenues, particularly in underserved regions, and 
potentially allowing such professional experience to count towards college credit, will streamline 
career progression in the microelectronics industry. 

The following are key action plans to cultivate a future-ready microelectronics workforce: 

• Develop comprehensive, interdisciplinary curricula integrating a co-design of hardware 
and software to address semiconductor complexities and energy efficiency goals. 

• Enhance K–12 engagement through quality, state-aligned educational resources and 
stimulating hands-on projects to spark early interest in microelectronics. 

• Bolster STEM teacher training through programs like NSF’s Research Experiences for 
Teachers and the Robert Noyce Teacher Scholarship Program, aiming to build a 
technically proficient workforce. 

• Promote region-specific technical training and credentialing programs, leveraging 
industry-education partnerships to address local workforce needs in semiconductor 
hubs. 

• Ensure higher education curricula adapt to rapid semiconductor advancements, fostering 
industry-academia collaboration for innovative, relevant program development. 

• Expand non-degree pathways such as certifications and apprenticeships, providing 
hands-on, industry-aligned training to streamline entry into the semiconductor workforce. 

• Create opportunities for mentorship, internships, and professional training that reflect the 
pace of microelectronics innovation, offering equitable access across diverse 
communities. 

• Allow professional experiences to count towards academic credit, facilitating smoother 
transitions from education to careers in microelectronics. 

3.4.3.1 Curriculum Development 
In the subsequent sections, distinct curriculum needs across three critical domains are 
discussed: Bits, which focus on hardware; Systems, which encompass the co-design of 
hardware, software, and architecture; and Applications, which deal with algorithms and 
software. This division is designed to provide a structured approach to curriculum development, 
enabling targeted educational strategies that cater to the specific skill sets and knowledge areas 
essential for each aspect of the microelectronics field. By addressing these domains, we lay out 
a comprehensive educational pathway that supports the EES2 initiative's vision for a 
sustainable and technologically adept future. 
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The following coursework and ideas are recommendations derived from this roadmap, designed 
to address the evolving needs of the microelectronics industry. 

For bits (hardware only) 
In response to the technological advancements highlighted by the EES2 initiative, the 
curriculum for hardware engineering and material science must be rigorously updated to equip 
students with the knowledge and skills necessary to innovate in the field of energy-efficient 
microelectronics. It should include: 

• Introduction to advanced material science for microelectronics. Courses should 
cover the basics of emerging 2D materials, carbon nanotubes (CNTs), ferroelectrics, 
spintronics, and other novel materials. Focus on their role in enhancing the energy 
efficiency of interconnects, contacts, and interlayer dielectrics, as well as thermal 
interface materials. 

• Fundamentals of energy-efficient device physics. Educate students on the principles 
of transistor and device-level engineering, including memory and logic devices, analog 
devices, and the implications of novel transistor structures such as Si-GAA and TFETs 
for energy savings. 

• Practical applications of novel materials. Through lab work and projects, provide 
hands-on experience with fabricating and testing devices made from advanced 
materials. Emphasize the energy efficiency aspects and performance improvements 
over traditional silicon-based technologies. 

• Design and simulation of energy-efficient devices. Integrate courses on CAD and 
simulation tools specific to devices incorporating novel materials. Teach students to 
predict device performance, focusing on energy efficiency and power consumption 
metrics. 

• Capstone projects in energy-efficient hardware design. Encourage students to 
undertake comprehensive projects that require them to design, fabricate, and test 
energy-efficient microelectronic devices, applying their knowledge of advanced materials 
and device architectures. 

By focusing on these critical areas, the “bits” curriculum will prepare students to contribute 
significantly to the development of next-generation microelectronics, aligning with the EES2 
initiative’s goals for a more energy-efficient and sustainable future in computing technology. 
Collaborative learning experiences, such as team projects and industry internships, will further 
enhance students’ ability to apply theoretical knowledge to real-world challenges in energy-
efficient hardware design. 

For Systems (Co-Design of Hardware, Circuits, and Architecture) 
The rapid evolution in microelectronics necessitates a curriculum that equips students with 
advanced knowledge in circuit design and architectural innovations, focusing on energy 
efficiency and performance optimization. 

This includes: 

• Secure and private computing. Introduce the principles of homomorphic encryption 
and private information retrieval (PIR) technologies, emphasizing their role in enabling 
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secure cloud computing and data privacy without compromising on computational 
efficiency. 

• Computational reliability. Offer courses on error correction code (ECC) memory 
technologies, highlighting their importance in enhancing the reliability of data storage 
and processing in high-stakes environments like data centers and critical servers. 

• Efficient communication protocols. Educate students on optimizing data movement 
through efficient communication protocols, including the design and implementation of 
libraries like NVIDIA’s Collective Communication Library (NCCL) for AI workloads. 

• Foundations of neuromorphic computing. Provide a comprehensive overview of 
neuromorphic computing, covering the basics of neural computation, including neurons, 
synapses, dendrites, and cortex operations. Dive into spike encoding mechanisms, 
spiking and non-spiking brain-inspired networks, and learning rules for spiking neural 
networks (SNNs). 

• Design and simulation of neuromorphic systems. Advanced courses on designing 
digital neural networks and neuromorphic accelerators, including weight quantization, 
spike design, and learning constraints. Study existing neuromorphic hardware like Intel 
Loihi, IBM TrueNorth, and others to understand the practical applications and 
challenges. 

• Quantum computing introduction. Offer an introductory course on quantum 
computing, covering the basics of quantum mechanics as applied to computing, qubits, 
entanglement, and quantum algorithms. Explore the potential energy efficiency benefits 
and challenges of quantum systems. 

• Advanced architectural design for energy efficiency. Focus on the design of energy-
efficient computing architectures, including the use of computational co-design strategies 
that integrate hardware and software considerations from the ground up. 

• Practical applications and capstone projects. Engage students in hands-on projects 
that involve designing, simulating, and optimizing circuits and architectures for energy 
efficiency. Encourage projects that incorporate secure computing, neuromorphic 
systems, and quantum computing concepts. 

By addressing these key areas, the “systems” curriculum will prepare students to navigate the 
complexities of modern circuit design and architecture, with a strong emphasis on energy 
efficiency and the adoption of next-generation computing paradigms. Through a combination of 
theoretical knowledge and practical experience, students will be well-equipped to contribute to 
the advancement of energy-efficient microelectronics, aligning with the goals of the EES2 
initiative. 

For Applications (Algorithms and Software) 
In an era marked by energy-conscious technological innovation, the curriculum for software and 
applications must evolve to incorporate principles of energy efficiency from the ground up. 
Students should be trained in the design and implementation of algorithms and software that 
optimize energy use without sacrificing performance.  
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• Foundational programming and code optimizations: Introduce programming with an 
emphasis on writing energy-efficient code. Courses must cover runtime optimizations, 
efficient memory management, and the use of energy-aware compilers. The 
“Performance Engineering of Software Systems” course currently offered at MIT is an 
excellent model for addressing this need. 

• Advanced architectures and system integration: Educate students on the software 
implications of emerging energy-efficient computational architectures, such as quantum 
computing and neuromorphic systems. 

• AI and ML for energy efficiency: Train students to create and optimize AI algorithms 
that minimize energy consumption, incorporating techniques such as sparse computing 
and low-power neural networks. 

• Embedded and system-level programming: Focus on embedded system design with 
an energy-first approach, including real-time operating systems, microcontroller 
programming, and IoT applications. 

• Domain-specific software development: Teach the creation of software for domain-
specific architectures, including the use of domain-specific languages that allow high-
level problem descriptions to map efficiently to low-power hardware. 

• Application development for energy efficiency: Offer courses in mobile and web 
development should emphasize strategies for reducing energy use, from sensor data 
processing to network communications. 

• AI-enhanced CAD tools: Include AI methodologies for optimizing chip design in CAD 
tools, enabling students to contribute to the creation of energy-efficient hardware. 

By integrating these components into the software curriculum, students will be prepared to 
contribute to the EES2 initiative’s vision of a sustainable computing future. Collaborations with 
industry partners for internships and co-op programs can provide practical experience, ensuring 
that graduates not only understand the theory behind energy-efficient computing but can also 
apply it in real-world settings. 

Cross-Cutting Topics 
In addition to the foundational domains of “Bits,” “Systems,” and “Applications,” our curriculum 
encompasses cross-cutting topics that underscore the importance of co-design in achieving 
energy-efficient microelectronics. These areas bridge the gaps between hardware engineering, 
circuit design, architectural innovations, and software development -- ensuring that students 
grasp the multidisciplinary nature of creating comprehensive solutions for energy-efficient 
computing. 

The recommendations below are derived from this roadmap, aimed at instilling a co-design 
philosophy in students, preparing them for the collaborative, interdisciplinary challenges of the 
microelectronics industry as outlined in the EES2 initiative. 

This includes: 

• Co-design for energy efficiency. Introduce students to the principles of co-design, 
where hardware, software, and system architecture are developed in tandem to optimize 
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energy efficiency. This includes understanding the trade-offs and synergies between 
different components of microelectronics systems. 

• Integrated projects in advanced packaging and heterogeneous integration. 
Incorporate projects that require students to design and evaluate advanced packaging 
solutions, such as 2.5D and 3D stacking, focusing on how these technologies impact 
system performance and energy efficiency. Emphasize the role of heterogeneous 
integration in enabling high-performance, energy-efficient systems. 

• EDA tools for co-design. Offer courses that delve into the use of EDA tools in the co-
design process, highlighting how these tools facilitate the integrated development of 
electronic systems, circuits, and components. Special attention should be paid to 
process design kits (PDKs) and their role in supporting co-design efforts. 

• AI/ML applications in co-design. Explore how AI and ML algorithms can assist in the 
co-design process, from optimizing microelectronic device layouts for energy efficiency 
to predicting the performance of integrated systems. Discuss the use of AI in enhancing 
metrology tools for better manufacturing precision. 

• Capstone projects on interdisciplinary design. Engage students in capstone projects 
that require them to apply knowledge from across the curriculum to design, simulate, 
and possibly prototype an energy-efficient microelectronic device or system. This could 
involve integrating advanced packaging techniques, leveraging EDA software for design 
optimization, and applying AI/ML for performance enhancement. 

• Industry collaborations for practical experience. Foster partnerships with companies 
and research institutions involved in advanced packaging, EDA software development, 
and AI/ML applications in microelectronics. These collaborations can provide students 
with internships, co-op programs, and access to cutting-edge technologies and 
methodologies, ensuring their education is directly relevant to industry needs. 

By emphasizing co-design in these cross-cutting topics, students will gain a comprehensive 
understanding of the complexities and interdisciplinary nature of modern microelectronics 
design and manufacturing. This holistic view is crucial for innovating in the realm of energy-
efficient computing and aligns with the ambitious goals of the EES2 initiative. 

3.4.4 Navigate Demographic Shifts and Engage Diverse Talent  
The talent competition within the STEM sector is increasingly fierce, particularly in hardware 
engineering and computer software development, highlighting the crucial role of advanced 
degrees. The past decade has seen Ph.D. hires in the industry double, with foreign-born 
scientists and engineers constituting 41% of high-skilled technical workers in the semiconductor 
sector (Hunt and Zwetsloot 2020; National Center for Science and Engineering Statistics 2021). 
Furthermore, foreign-born individuals represent 30% of all science and engineering workers and 
hold over half of the doctorates in pivotal fields such as engineering, computer science, and 
mathematics (Khan, Robbins, and Okrent 2020). However, outdated immigration policies have 
contributed to a talent drain, diminishing the pool of international talent and simultaneously 
deterring U.S. students from entering the microelectronics field, thereby jeopardizing the 
industry’s advancements in energy efficiency (Congressional Research Service 2022). 
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Addressing the talent shortfall necessitates formulating strategies to attract, develop, and retain 
a diverse talent pool, leveraging both domestic and international expertise. Initiatives such as 
the Growing Apprenticeships in Nanotechnology and Semiconductors (GAINS) program and the 
National Talent Hub underscore the critical role of public and private collaboration in aligning 
workforce development with the goals of the EES2 roadmap, setting a course for a more 
diverse, innovative, and energy-efficient future in microelectronics. 

The semiconductor industry stands at the forefront of addressing global energy challenges, with 
the potential to significantly impact energy efficiency and sustainability across communities and 
society. In this vein, it is imperative to prepare an inclusive workforce that is not only well-versed 
in the current and future landscapes of microelectronics but is also increasingly focused on the 
benefits of energy efficiency. This preparation extends across educational spectrums, notably 
within smaller and rural schools, community colleges, Historically Black Colleges and 
Universities (HBCUs), Tribally Controlled Colleges and Universities (TCCUs), and other 
minority-serving institutions (MSIs). 

By broadening microelectronics education and training across these diverse educational 
institutions, we unlock opportunities for underrepresented talent in the semiconductor industry. 
This inclusive approach not only fosters innovation but also cultivates a professional 
environment that is welcoming and positive, attracting a wider pool of talent. Implementing 
bridging programs and providing comprehensive support services, such as childcare, further 
ensures that these opportunities are accessible to all, thus addressing gaps and ensuring a 
robust pipeline of talent into the industry. 

The semiconductor industry is experiencing a pivotal demographic transformation that mirrors 
the broader shift toward greater diversity in society. This change presents unique challenges 
and opportunities. Key to this demographic shift is the recognition of the “enthused unfocused” 
groups who show an interest in semiconductors but perceive the field as daunting or 
inaccessible. These groups, often inclusive of women and minorities, represent a significant 
untapped potential (Institution of Mechanical Engineers 2014). To effectively engage them, the 
industry needs to extend educational outreach efforts that simplify the conceptual presentation 
of semiconductor technology and make the sector more approachable. Initiatives like 
mentorship programs, specialized internships, and interactive workshops are essential in 
providing the necessary insight and encouragement to pursue careers in this field. 

3.4.4.1 Underserved Communities 
The traditional composition of the STEM workforce—predominantly white, non-Hispanic, and 
male, particularly at the post-secondary level—is undergoing a transformation. This change is 
expected to become even more pronounced over the next two decades.  

A key insight into this evolving landscape can be gleaned from a comprehensive study by 
Finegold in 2014 (Institution of Mechanical Engineers 2014). He identifies five distinct groups, or 
‘tribes,’ among 11- to 19-year-olds in the United Kingdom, with implications for understanding 
similar trends in the United States. The study highlights that the majority of youth inclined 
towards engineering careers belong to the ‘STEM devotees’ group, primarily comprising white 
males with close ties to adults in STEM professions. However, the study also reveals that other 
groups are not inherently averse to engineering; they simply need a different approach to 
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engagement. For instance, the ‘social artist’ group shows interest in engineering when it 
intersects with art and design. 

A particularly relevant finding 
for the U.S. context includes a 
significant number of 
immigrants and minorities. This 
group shows an interest in 
engineering but perceives it as 
an inaccessible career path. 
This perception points to a 
latent potential within these 
communities that, if properly 
nurtured, could significantly 
contribute to the diversity and 
strength of the STEM 
workforce, as shown in Figure 
70. 

Accessible pathways for 
diverse talents to enter and 
thrive in the semiconductor industry are needed. This can be achieved through scholarship 
programs, targeted recruitment initiatives, and collaborations with organizations dedicated to 
diversity in STEM fields. These pathways should aim to lower the barriers to entry and provide 
tangible opportunities for these groups to contribute significantly to the semiconductor sector. 

3.4.4.2 Women in Science, Technology, Engineering, and Mathematics (STEM) 
The semiconductor industry’s efforts to engage more women necessitate a nuanced, 
multifaceted approach, beginning with an understanding of the inequities present from the early 
educational years. Statistics reveal a significant gender imbalance in STEM, rooted in cultural 
and educational practices that diverge as early as elementary school. For instance, Lubienski 
find that girls may begin to doubt their mathematical abilities by the 3rd grade, a stark contrast 
to boys who may develop an overconfidence in their skills around the same age (Lubienski et al. 
2013). This early divergence contributes to a significant underrepresentation of women in the 
STEM workforce, despite women earning a majority of bachelor’s degrees. Specifically, in the 
2020–2021 academic year, only 6.7% of women earned degrees in core STEM fields compared 
to 26.2% for men, highlighting a critical gap at the end of the STEM education pipeline (Statista 
2024). 

To address this disparity, it is imperative to reshape early childhood messages around STEM, 
making them inclusive and appealing to all demographics, especially girls and the ‘enthused 
unfocused.’ The National Academy of Engineering’s “Changing the Conversation” report 
suggests recasting engineering messaging to resonate with currently disenfranchised 
demographics. Furthermore, promoting environmental sustainability within STEM disciplines 
resonates strongly with many women, who often seek careers contributing to societal well-
being. Highlighting the role of women in solving environmental challenges through STEM can 
inspire a new generation to pursue these fields, breaking down stereotypes and broadening the 
spectrum of opportunities. 

 
Figure 70. STEM workforce diversity projection. Source: BRDG 

program 



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  294 

Incorporating these insights requires reevaluating legacy educational practices and embracing 
an educational paradigm that anticipates the rapidly evolving future. As the EES2 initiative 
tackles pressing sustainability challenges, it also presents an opportunity to pioneer an 
education and workforce development model that is dynamic and inclusive. Showcasing 
successful female professionals and emphasizing the industry’s commitment to environmental 
sustainability can inspire and guide aspiring female professionals, fostering a diverse and 
vibrant workforce ready to address the complex energy challenges of tomorrow. 

3.4.4.3 Early-Stage Developments 
This demographic evolution shown in Figure 70 coincides with a critical period in STEM 
education and career decision-making in the United States, where interest often wanes in 
middle school, particularly among girls and certain minority groups. To counter this trend, it is 
essential to introduce STEM initiatives at the K–12 level that are specifically designed to engage 
a diverse student population. Improving STEM instruction, providing experiential learning 
opportunities, and ensuring access to technology in schools, as well as in afterschool and 
summer programs, are vital steps in this direction. 

For EES2, recognizing and engaging with this rapidly growing but underutilized ‘enthused 
unfocused’ group is crucial. Their engagement represents an opportunity to diversify the STEM 
workforce and challenge existing social paradigms. By creating pathways that make engineering 
and technology fields more accessible and relatable, EES2 can empower these individuals to 
become future leaders in technology. This approach is not just about filling workforce gaps; it’s 
about cultivating a rich, diverse pool of talent capable of driving innovation and addressing the 
complex challenges of our time. 

3.4.5 Conclusion for Education and Workforce Development 
The Education and Workforce Development chapter has highlighted the critical role of 
cultivating a technically skilled and diverse workforce to meet the EES2 energy efficiency goals. 
The future of semiconductor and computing innovation hinges on a workforce capable of 
understanding, developing, and implementing advanced technologies in a rapidly evolving 
landscape. 

A comprehensive educational framework is needed, ranging from curriculum development for 
emerging technologies to interdisciplinary training programs that emphasize sustainability. Such 
programs should align educational outcomes with the specific needs of the semiconductor 
industry, ensuring that talent pipelines are built to address next-generation challenges. 

Moreover, outreach efforts must prioritize diversity and inclusivity to fully leverage the potential 
of all demographics. This will help secure a workforce that is representative of society and 
capable of driving innovation forward. Educational pathways should extend beyond traditional 
academic structures to include targeted training, certification programs, and industry-aligned 
apprenticeships. 

By fostering collaboration across industry, academia, and government, and creating educational 
programs aligned with industry roadmaps, the EES2 roadmap will help establish a workforce 
that is ready to tackle the complexities of energy-efficient microelectronics. Ultimately, these 
initiatives will ensure that the industry remains resilient and innovative in its pursuit of a 
sustainable and energy-efficient future. 



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  295 

 

3.4.6 Education and Workforce Development References  
American Immigration Council. 2022. “Foreign-born STEM Workers in the United States.” Last 
modified June 13, 2022. Accessed May 3, 2024. 
https://americanimmigrationcouncil.org/research/foreign-born-stem-workers-united-states. 

Congressional Research Service. 2022. “U.S. Employment-Based Immigration Policy.” Updated 
July 21, 2022. https://crsreports.congress.gov/product/pdf/R/R47164. 

EERE. "Lab-Embedded Entrepreneurship Program," U.S. Department of Energy, Office of 
Energy Efficiency & Renewable Energy, accessed April 12, 2024. 
https://www.energy.gov/eere/ammto/lab-embedded-entrepreneurship-program 

Hunt, Will, and Remco Zwetsloot. 2020. “The Chipmakers: U.S. Strengths and Priorities for the 
High-End Semiconductor Workforce.” Center for Security and Emerging Technology (CSET) 
Issue Brief. Published September 2020. https://cset.georgetown.edu/wp-content/uploads/CSET-The-
Chipmakers.pdf. 

Institution of Mechanical Engineers. 2014. “Five Tribes: Personalising Engineering Education.” 
Published October 29, 2014. Accessed February 2024. https://www.imeche.org/policy-and-
press/reports/detail/five-tribes-personalising-engineering-education. 

Khan, Beethika, Carol Robbins, and Abigail Okrent. 2020. “The State of U.S. Science and 
Engineering 2020.” U.S. National Science Foundation and National Science Board. Published 
January 2020. Accessed March 25, 2024. https://ncses.nsf.gov/pubs/nsb20201. 

Lubienski, Sarah T., Joseph P. Robinson, Corinna C. Crane, and Colleen M. Ganley. 2013. 
“Girls’ and Boys’ Mathematics Achievement, Affect, and Experiences: Findings From ECLS-K.” 
Journal of Research in Mathematics Education. Vol. 44 (Issue 4): pg 634–645. 
https://doi.org/10.5951/jresematheduc.44.4.0634. 

National Center for Science and Engineering Statistics. 2021. “National Survey of College 
Graduates (NSCG) | 2021.” U.S. National Science Foundation. 
https://ncses.nsf.gov/surveys/national-survey-college-graduates/2021. 

National Science and Technology Council. 2024. “National Strategy on Microelectronics 
Research.” Executive Office of the President of the United States. Published March 2024. 
https://www.whitehouse.gov/wp-content/uploads/2024/03/National-Strategy-on-Microelectronics-
Research-March-2024.pdf. 

Plumer, Brad, and Nadja Popovich. 2024. “A New Surge in Power Use Is Threatening U.S. 
Climate Goals.” The New York Times. Published March 14, 2024. 
https://www.nytimes.com/interactive/2024/03/13/climate/electric-power-climate-change.html. 

Semiconductor Industry Association. 2021. “Chipping In: The Positive Impact of the 
Semiconductor Industry on the American Workforce and How Federal Industry Incentives Will 
Increase Domestic Jobs.” Published May 2021. https://www.semiconductors.org/wp-
content/uploads/2021/05/SIA-Impact_May2021-FINAL-May-19-2021_2.pdf. 

https://americanimmigrationcouncil.org/research/foreign-born-stem-workers-united-states
https://crsreports.congress.gov/product/pdf/R/R47164
https://www.energy.gov/eere/ammto/lab-embedded-entrepreneurship-program
https://cset.georgetown.edu/wp-content/uploads/CSET-The-Chipmakers.pdf
https://cset.georgetown.edu/wp-content/uploads/CSET-The-Chipmakers.pdf
https://www.imeche.org/policy-and-press/reports/detail/five-tribes-personalising-engineering-education
https://www.imeche.org/policy-and-press/reports/detail/five-tribes-personalising-engineering-education
https://ncses.nsf.gov/pubs/nsb20201
https://doi.org/10.5951/jresematheduc.44.4.0634
https://ncses.nsf.gov/surveys/national-survey-college-graduates/2021
https://www.whitehouse.gov/wp-content/uploads/2024/03/National-Strategy-on-Microelectronics-Research-March-2024.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/03/National-Strategy-on-Microelectronics-Research-March-2024.pdf
https://www.nytimes.com/interactive/2024/03/13/climate/electric-power-climate-change.html
https://www.semiconductors.org/wp-content/uploads/2021/05/SIA-Impact_May2021-FINAL-May-19-2021_2.pdf
https://www.semiconductors.org/wp-content/uploads/2021/05/SIA-Impact_May2021-FINAL-May-19-2021_2.pdf


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  296 

Semiconductor Industry Association. 2023. “Chipping Away: Assessing and Addressing the 
Labor Market Gap Facing the U.S. Semiconductor Industry.” Published July 2023. 
https://www.semiconductors.org/wp-content/uploads/2023/07/SIA_July2023_ChippingAway_website.pdf. 

SLAC National Accelerator Laboratory. 2023. “DOE EES2 Roadmap Meeting #5.” Accessed 
February 2024. https://ees2.slac.stanford.edu/doe-meetings-events/doe-ees2-roadmap-meeting-5. 

Statista. 2024. “Number of Bachelor’s Degrees Awarded in the United States During the 
Academic Year of 2020 to 2021, by Gender and Subject.” Accessed February 2024. 
https://www.statista.com/statistics/967826/number-bachelors-degrees-awarded-gender-subject-us/. 

U.S. Bureau of Labor Statistics. 2024. “Employment and Earnings Table B-3a: Average Hourly 
and Weekly Earnings of All Employees on Private Nonfarm Payrolls by Industry Sector, 
Seasonally Adjusted.” Accessed March 25, 2024. https://www.bls.gov/web/empsit/ceseeb3a.htm. 

  

https://www.semiconductors.org/wp-content/uploads/2023/07/SIA_July2023_ChippingAway_website.pdf
https://ees2.slac.stanford.edu/doe-meetings-events/doe-ees2-roadmap-meeting-5
https://www.statista.com/statistics/967826/number-bachelors-degrees-awarded-gender-subject-us/
https://www.bls.gov/web/empsit/ceseeb3a.htm


U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  297 

 

SECTION 

Conclusion 

 

  



U.S. DEPARTMENT OF ENERGY        OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY  |  ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0  

  298 

4 Conclusion 
The semiconductor industry faces daunting energy challenges. Already confronted with the end 
of Dennard Scaling and its biennial efficiency improvements, the industry must now contend 
with explosive data center energy use due to the rise of AI, especially from the growth of natural 
language programming (NLP)/large language models (LLMs), which are forecasted to drive 
increases in energy use that could double bi-monthly instead of biennially. In less than two 
years, LLMs such as ChatGPT have progressed from being a novelty to a commonplace 
technology that is a standard iPhone feature. The rapid escalation in energy use of just one 
microelectronics computing application, coming on top of increasing crypto mining electricity 
use, underscores the urgency of accelerating more energy efficient technologies into the 
market.  

4.1 A New Moonshot and Space Race 
Much like JFK’s famous Moonshot quote about doing difficult things, the ambitious EES2 goal 
also serves to organize and measure the best of our energies and skills while similarly providing 
many public benefits. By setting a straightforward and familiar goal for the industry (biennial 
efficiency improvements), DOE's EES2 Initiative aims to catalyze an energy efficiency “space 
race.” As version 1.0 and subsequent roadmaps are published, EES2 hopes the industry will 
compete to better and deploy their own versions of near-term “technologies to beat,” as shown 
in Figure 71. Just setting the goal seems to have already spurred beneficial competition, as 
evidenced by AMD’s announcement of its own goal of 100X efficiency improvement by 2027. 
EES2 also aims to bolster competition among researchers—especially government funded 
researchers—to beat these technologies for the mid- and long-term. At the same time, working 
groups (WGs) in the next versions of the roadmap will race to identify still more ways to co-
design energy efficiency into compute stack technology pathways.  

EES2 recognizes that the next two decades require a great diversity of technologies and people 
who understand how to design and make them. The further development of curriculum and 
pedagogy to train and develop the skilled people who can counter the rapidly increasing energy 
consumption in computing has only just begun.   
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Figure 71. Top energy efficient technologies. 
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 These 55 technologies were identified at the end of 2023 by the roadmap compute stack adjacent layer co-design 
working groups as those most likely to meet the EES2 1,000x goal. Cost-effectiveness and market projections were 

considered qualitatively.  

4.2 EES2: Putting People and Their Organizations First 
This initial release of the EES2 roadmap is the culmination of more than a year of effort by the 
EES2 pledging organizations and their personnel who participated in the WGs to frame the 
issues, identify candidate technology options, and formulate the solution pathways and action 
plans. The EES2 team thoroughly researched the recommended areas and compiled an 
extensive bibliography. Though not comprehensive, the technologies put forward in this initial 
roadmap cover the spectrum of the compute stack and enabling technologies with clear 
potential to achieve EES2 aims. In future versions, as more of the semiconductor innovation 
ecosystem joins the EES2 Initiative, even more comprehensive roadmaps will be produced.  

As of publication, more than 65 organizations have committed to the ambitious pledge (see 
Figure 72), with many actively participating in the roadmap 1.0 WGs. Pledging and roadmap 
participation show robust support for the EES2 goals and RD&D agenda from industry leaders, 
national laboratory leaders, and other educational, workforce, and outreach institutions. This 
broad base of commitment underscores the potential for strong industry-wide participation in 
RD&D solicitations aimed at achieving the ambitious objective of enhancing the life-cycle energy 
efficiency of semiconductor products by at least 10x in 7 years, 100x in 14 years, and 1,000x in 
two decades. Widespread industry backing further suggests that these efforts will benefit from 
significant private sector investment, collaboration in education and workforce development, and 
cost-share participation, all geared towards realizing the transformative energy efficiency targets 
set forth by EES2. 

 

 

Figure 72. Pledge signers for EES2 from September 2022– April 2024. 

4.3 Technology Results and Co-Design for Efficiency First 
The EES2 roadmap highlights the significant factors of energy efficiency improvement possible 
across the microelectronics compute stack. Figure 71 graphically illustrates the more 
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promising technology options identified in this roadmap by the compute stack co-design 
WGs in conjunction with the enabling WGs. The figure presents two key evaluation criteria 
used by the WGs: time to maturity and efficiency improvement. Time to maturity refers to 
the time required for a technology to achieve a TRL of 6. Efficiency improvement measures 
the energy metrics (e.g., energy per bit, energy per switch, memory access) relative to the 
current state-of-the-art technologies. Additional information is needed to prioritize the 
potential impact of these technologies and to determine how to allocate resources. EES2 is 
actively researching some of this information, such as past and current U.S. and global 
energy use of SOTA technologies, to be included in future versions. Most non-technical 
factors—apart from the EES2 hypothesis that an ambitious industry-wide biennial goal will 
drive competition among companies and researchers—are beyond the scope of an R&D 
roadmap.   

Multiple concerted efforts across the full compute stack are necessary over the next two 
decades. Starting at the bottom of the compute stack with materials and devices, there is an 
urgent near-term need to consider new materials and device geometries that simultaneously 
minimize thermal and mechanical forces as well as improve electrical/electronic performance. In 
the mid-term, continued foundational and manufacturing R&D on materials such as carbon 
allotropes (graphene and CNTS0) and new switching methods for devices must accelerate. In 
the long term, device research should include exploration of quantum and nature-inspired 
approaches and how they can be co-designed across the hardware and full compute stack. In 
the short term, both in circuits and architecture as well as advanced packaging and 
heterogeneous integration, industry will take the lead—with strong support from NIST, DOD, 
NSF, and the CHIPS program—in research on co-design innovations within the 
circuit/processor and beyond in the hardware stack.  

EES2 will further increase competition among researchers in the near and mid-term by 
supporting the measurement of energy efficiency performance of computing and other 
microelectronics products. EES2 also will provide benchmarking tools for this efficiency first 
approach. Finally, at the top of the stack with algorithms and software, the roadmap shows that 
software-driven full stack co-design is most likely needed to reach 1,000x. Such algorithm and 
software driven innovations will occur at all time scales, but are especially needed in the long 
term. Table 85 and Table 86 below expand upon the short-, mid-, and long-term time scales for 
the EES2 compute stack codesign WGs and enabling WGs, respectively.  

Table 85. Key Takeaways for the Compute Stack 

Key Areas for Energy 
Efficiency Manufacturing Challenges Solution Pathways 

Materials and Devices (mid-term) 
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• Novel materials such as 
2D materials, CNT, and 
ferroelectric materials 

• Current CMOS 
architecture such as Si-
GAA 

• Future CMOS 
alternatives with 
transistors using 
alternatives for 
switching such as 
tunneling, spintronic  

• Analog devices for 
neuromorphic 

• Streamline production of high-
quality novel materials. 

• Innovate methods for novel 
materials integration. 

• Standardize metrics and protocols 
for emerging technologies. 

• Assess thermal stability, 
conductivity, and contact 
resistance of novel materials. 

• Connect material science with 
device engineering. 

• Leverage detailed device models 
and simulations. 

• Invest in R&D efforts related to scalability of 
high-purity and -quality novel materials. 

• Create industry-wide benchmarks and testing 
protocols to evaluate novel devices and 
materials. 

• Fund dedicated testbeds and prototyping labs 
to demonstrate and refine emerging 
technologies. 

Circuits and Architectures (near term) 

• Compute in and near 
memory 

• Domain-specific 
architectures 

• New lower-energy non-
volatile memory 
technologies 

• Neuromorphic 
computing. 

• Memory access costs 

• Prioritize advanced EDA for 
improved device architectures. 

• Develop new algorithmic, power 
distribution, and additional 
circuitry changes to bolster new 
architectures. 

• Strengthen new device-level 
technologies to be on par with 
CMOS.   

• Increase memory density and 
reduce cost of new NVM 
compared to DRAM/NAND. 

• Eliminate unnecessary overhead 
power consumption and 
computational redundancies in 
architecture systems. 

• Improve EDA to enable higher levels of 
simulation and discover issues before physical 
device production, increase availability of PDKs 
for new devices or compute schemes to enable 
new device/architecture integration. 

• Design new architectures along with software to 
enable performance improvements with 
increased energy efficiency and delve into larger 
use cases to enable more cost benefits to 
custom architectures. 

• Continue funding novel device technologies and 
concurrent architecture with focus on cost 
reduction, density increase, and signal 
variability reduction. 

• Improve instruction set architectures or 
instruction level languages and utilize advanced 
interconnect fabrics such as CXL to enable 
memory pooling. 

Advanced Packaging and Heterogenous Integration (near term) 

• Vertically Integrated 
devices 

• Thermal interface 
materials 

• Advanced interconnect 
for Cu replacement 

• System-level cooling 
technologies 

• Interconnect scaling 

• Implement STCO for advanced 
packaging with EDA software. 

• Remove excessive heat for 
Energy-efficient 3D technology 
stacking. 

• Pair novel technologies with state-
of-the-art processors/memory to 
show proof of durability and 
energy efficiency. 

• Address scaling challenges for 
optical interconnects to enable 
their use for intra-package and 
intra-chip signals. 

• Increase the energy efficiency of 
memory access.  

• Improve EDA to enable ADKs for expanded 
packaging design and simulation for energy 
efficiency optimization and FMEA. 

• Create a fablet allowing for R&D development of 
advanced packaging and heterogeneous 
integration technologies, which can alleviate 
foundry concerns and enable new technology 
acceleration and proof of concept. 

• Invest in improved thermal interface materials, 
heat sinks, and system-level cooling to enable 
energy-efficient 3D technologies. 

• Prioritize miniaturization, monolithic integration, 
and cost reduction of electro-optical light 
sources, modulators, and detectors. 

• Enable direct stacking of DRAM or SRAM on 
processors to help reduce energy costs of the 
most significant bottleneck of computing. 

Algorithms and Software (all time scales, but especially long term) 
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Table 86. Key Takeaways for Microelectronics Enablers 

• Algorithms that perform 
tasks more efficiently 

• Algorithms that avoid 
data movement 

• Software that supports 
new efficient 
architectures 

• Discover and implement machine 
intelligence algorithms that 
achieve the abilities of natural 
systems. 

• Discover and implement new 
solutions for scientific computing 
using machine learning. 

• Exploit the resources of massively 
parallel computing systems more 
effectively. 

• Achieve continual, incremental learning in 
machine learning systems to avoid retraining. 

• Achieve efficient machine learning through 
hierarchical models. 

• Enable fast machine learning design 
optimization through meta-learning. 

• Implement fast compiled alternatives for 
Python. 

• Improve automatic parallelization of code to 
exploit available machine resources.  

• Develop domain-specific languages and 
frameworks to support emerging architectures. 

Key Areas for Energy 
Efficiency Grand Challenges Solution Pathways 

Power and Control Electronics (very near term) 

• Migrate computing loads to 
data centers with available 
higher-efficiency equipment 
or onsite renewable energy 
resources.  

• Instead of using low-power 
modes for idle equipment, cut 
power provisions entirely. 

• Utilize emerging thermal 
management strategies to 
enable higher power densities 
in stacked die and 3D 
architectures.  

• Develop advanced co-design 
tools for optimizing power 
delivery along with other key 
design factors.  

• Bridge the gap between metrology 
and actual device performance. 

• Challenges with IP constraints and 
integration of advanced 
characterization techniques. 

• Future power delivery approaches will 
need to be custom fit for circuit 
architectures.   

• Co-design tools require 
improvements to evaluate tradeoffs 
in the design of complex systems.  

• Increasing energy density and 
dimensionality at the chip level 
necessitate improvements in thermal 
management.  

• Computing takes place in non-data 
center contexts. Scalable solutions 
are needed to address power 
management in these locations.    

• Develop strategies for resource-aware 
compute scheduling.  

• Quantify the impact and challenges 
associated with idle power reduction 
strategies. 

• Pursue RDD&D projects to increase the 
commercial readiness of emerging cooling 
technologies.  

• Extend the functionality of existing 
software tools to enable co-simulation, 
reliability investigations, and techno-
economic analysis.  

• Utilize high-performance computing 
infrastructure to assess the impact of 
changes in device-level energy use on 
data center-scale facilities.  

 

Manufacturing Efficiency and Environmental Sustainability (near term) 
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• Lower greenhouse gas 
emitted processes 

• Abatement systems 
• EUV efficiency 

improvements 
• Alternative lithography 

development such as NIL 

• Multiple processes use high impact 
greenhouse gas with low removal 
efficiencies. 

• Replacement gases that can be used 
in place of SF6, NF3, CFx are highly 
caustic.  

• Viability of replacement processes 
needs intense scrutiny to test cost 
effectiveness and yield impacts on 
devices. 

• Enable NIL for devices requiring less 
defect density. 

• EUV light source is too energy 
intensive. 

• Evaluate novel processes such as thermal 
ALE and organic vapor plasma etching, 
which can help reduce greenhouse gas 
emissions for dry etch but require initial 
evaluation on 300 mm wafers. 

• Create alternative processes replacing 
gases such as SF6, NF3, and ClF3 with F2, 
SF4, or others; this will require better 
handling because the replacement gases 
are no longer inert. 

• Replace abatement systems with 
improved higher removal efficiencies, 
which requires only ordering new parts 
that do not require subfloor space. 

• Design innovative EUV light source to 
optimize plasma generation to reduce 
energy consumption. 

• Channel R&D efforts toward defect 
density reduction methods such as stamp 
material optimization. 

Metrology and Benchmarking (all time scales) 

• Advance 3D metrology by 
developing non-destructive, 
high-resolution techniques 
for complex structures and 
interfaces. 

• Innovate metrology for 
precise thermal property 
measurements of 
heterogenous materials. 

• Apply AI/ML to improve 
precision and efficiency in 
metrology processes. 

• Establish continuous and 
adaptable benchmarking 
standards for evaluating 
energy efficiency of new 
technologies. 

• Complexity in metrology due to 
3D stacking and heterogeneous 
integration. 

• Traditional methods are 
inadequate for emerging novel 
devices. 

• Need for non-destructive 
techniques and integration with 
AI/ML. 

• Bridging the gap between 
metrology and actual device 
performance. 

• Challenges with IP constraints 
and integration of advanced 
characterization techniques. 

• Develop and adopt advanced, non-
destructive metrology methods 
tailored for complex structures. 

• Establish comprehensive 
benchmarking standards for 
consistent technology evaluation. 

• Utilize AI/ML algorithms to refine 
metrology tools for adaptability and 
precision. 

• Innovate in metrology to align test 
structures with actual device 
performance. 

• Provide broader access to diverse test 
samples while respecting IP concerns. 

Education and Workforce Development (all time scales but especially long term) 

• Reach people’s hearts and 
minds on the importance of 
energy efficiency. 

• Curriculum development for 
emerging technologies. 

• Educational pathways for 
advanced microelectronics. 

• Interdisciplinary training for 
sustainability in tech. 

• Align educational outcomes with 
semiconductor industry needs. 

• Develop talent for next-generation 
technology roles. 

• Ensure diversity and inclusivity in 
STEM fields. 

• Create educational programs that align 
with industry roadmaps. 

• Implement targeted training for specialized 
microelectronics roles. 

• Develop outreach programs to attract a 
diverse workforce. 
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4.4 The Future 
Version 1.0 of the EES2 roadmap is the beginning of a two-decade effort to take energy 
efficiency scaling from historical fact to future reality. The exponential demand for computing 
and the critical need to curb emissions urgently necessitate an acceleration and expansion of 
these initiatives. While this report documents myriad potential efficiency improvements across 
fifty-five technologies, achieving their full benefits requires an integrated approach that 
emphasizes software-driven co-design across the entire technology stack. Ultimately, EES2 
hopes to reboot the energy efficiency doubling pace of Dennard scaling doubling efficiency 
every two years—with the goal of reaching 1,000x more in the next twenty years. 

Plans for roadmap 2.0 are already underway. As EES2 recruits more industrial, academic, and 
national laboratory members of the innovation ecosystem, the initiative will not only have more 
policy impact, it will also boast even broader technical expertise among the WGs. Now that the 
first roadmap is published, EES2 will actively turn to broaden its recruiting into new 
microelectronics application sectors, such as communications. In addition, while EES2 started 
with electronics and electrons, it will also broaden to promising new information carriers, such 
the photons used in optoelectronics/ photonics. EES2 already includes pledgers whose 
research includes long-term transformational technology areas such as quantum computing as 
well as the latest advances in nature-inspired architectures. EES2 will work with these pledgers 
to help recruit more from their respective sectors and to attract more volunteers for the version 
2.0 WGs. 

While much can change before the start of version 2.0 of the roadmap in spring 2025, future 
WGs will continue to build upon a solid base of peer-reviewed research while continuing to work 
with EES2 pledgers to lower barriers toward immediate deployment of technologies for biennial 
microelectronics energy efficiency doubling. This dual R&D and deployment strategy ensures 
flexibility and responsiveness to emerging technologies and market shifts, thereby fostering a 
sustainable evolution of the microelectronics sector. 

As the EES2 Initiative continues to grow and build momentum for massive improvements in 
computing energy efficiency, the EES2 team will further work with stakeholders in 
microelectronics and related applications to develop the technology base and to assess 
progress toward the goal every 2 years.   

This roadmap is not intended to serve as a forecast or to pick winners and losers among 
technologies. Rather, it is the opening salvo in a new energy efficiency “space race,” where 
instead of outer space, the EES2 team explores the fascinating realm of increasingly tiny and 
ultra energy efficient information systems. The roadmap sets a high bar to challenge and 
motivate technology developers and to counteract grim forecasts that humanity cannot achieve 
the clean energy transition due to rising computing energy use trends. The semiconductor 
industry’s inspiring past successes in improving energy efficiency indicate that ambitious EES2 
efficiency goals can be met as well. Let’s do it now.  
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