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Solar Forecasting Workshop

Solar Energy Technologies Office 

Day 2
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DOE Solar Forecasting R&D Past, Present, Future

Guohui Yuan
Systems Integration, SETO / EERE / DOE
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SETO Systems Integration (SI) Program

The Systems Integration (SI) subprogram supports early-stage research, development, and 

demonstration (RD&D) of technologies and solutions – focusing on technical pillars data, 

analytics, control, and hardware - that advance the reliable, resilient, secure and affordable 

integration of solar energy onto the U.S. electric grid. 

Achieving 100% Decarbonized Power System
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SETO System Integration Key Research Areas
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~$55M annual budget, ~90 active RD&D projects

System Planning

•Power system modeling

•PV plant and inverter 
modeling

•Solar resource data & 
solar forecasting

•Resource adequacy

•Production cost 
modeling

•Reliability and  
interconnection 
standards

System Operation

•Real time situation 
awareness

•State estimation and 
power flow

•System and inverter 
control

•System protection, 
stability, risk 
management

•Grid services and 
system flexibility

•DER integration and 
aggregation of PV, ESS, 
EV, and buildings

•SW tools -EMS, ADMS, 
DERMS, MGMS

Resilience & 
Cybersecurity

•Resilience planning and 
benchmark metrics

•Resilient microgrids and 
DER-based solutions

•Measurement & 
Verification, and 
cost/benefit analysis

•Cybersecurity R&D and 
assessment tools for 
device, plant, and 
system

•Cybersecurity standards

•Stakeholder education 
and information sharing

Enabling Technologies

•Power electronics

•Energy storage

•Data analytics and 
AI/ML

•Sensing and 
communication

•High performance 
computing and cloud-
based tools

•CHIL and PHIL testbeds
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Managing Solar and Wind Generation Variability and Uncertainty

Wind + Solar 

~100%  

Historical 

System Peak

September 5-7, 2022

Load ~51 GW

Solar~13 GW

Wind ~0.7 GW

Wind + Solar 20-30%

March 14, 2024

Load 16.5 GW

Solar 12.5 GW

Wind 3.5 GW

Wind + Solar ~100%

24 GW

51 GW

13 GW

13 GW
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Unlocking the Value of Solar Forecasting
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(Source: University of Arizona/EPRI)

Round 1: October 2021, Solar Forecasting Prize

https://www.energy.gov/eere/solar/american-made-solar-

forecasting-prize

Round 2: February 2023, Net Load Forecasting Prize (Open) 

https://www.energy.gov/eere/solar/american-made-net-

load-forecasting-prize

Solar Forecasting Funding Programs (2013 & 

2017)
• Improve irradiance forecast

• Improve power forecast & utility integration

• Create benchmarking tools

(Winners announced at RE+ 2023)

https://www.energy.gov/eere/solar/american-made-solar-forecasting-prize
https://www.energy.gov/eere/solar/american-made-solar-forecasting-prize
https://www.energy.gov/eere/solar/american-made-net-load-forecasting-prize
https://www.energy.gov/eere/solar/american-made-net-load-forecasting-prize
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Solar Generation Variability and Uncertainty
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Sample measurements (1 min)
Solar Irradiance Data (GHI, DNI): 
• Historical = NSRDB

• Real time = satellites and ground sensors

• Future = forecast

2019 Annual Mean of GHI from NSRDB (2km x 2km, 5 min, 
Terabytes) Home - NSRDB (nrel.gov)

WRF-Solar® | NCAR Research Applications 

Laboratory | RAL (ucar.edu) Run on HPC 

https://nsrdb.nrel.gov/
https://ral.ucar.edu/pressroom/features/wrf-solar
https://ral.ucar.edu/pressroom/features/wrf-solar
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• Using big-data technologies; 

• Applying deep machine learning to blend outputs from 

multiple models

• Leveraging ARM and/or SURFRAD/ISIS data sets

• Integrating with ISO operation

• Gridded Forecast Improved by 25%

AI/ML for Solar Forecasting

IBM Watt-Sun: Deep Learning for Solar Forecasting
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SETO Systems Integration RD&D Activities

Enabling large-scale solar deployment while maintaining reliability

• FY22 Grid Services FOA – demonstration of grid services provided by IBRs; bulk power system protection

• FY22 RACER FOA – community resilience planning and technology demonstration

• FY22-FY24 SETO Lab Call - transient/dynamic modeling, open data, solar database (NSRDB), reliability and 

cybersecurity standards

• FY21 SI & Incubator FOA - grid-forming consortium, BTM solar integration 

• FY20 SETO FOA - resilient community microgrids, PV cybersecurity, hybrid PV plants, AI/ML applications

• FY19-FY21 SETO Lab Call – grid planning & operation, power electronics, sensing and communication, solar+X

• FY19 GMLC Lab Call - resilience models, sensing and measurement, PV cybersecurity

• FY19 SETO FOA - system protection, grid services, grid-forming inverter control, PV cybersecurity 

• ASSIST FOA – situation awareness, and resilience for critical infrastructures

• Advanced Power Electronics FOA -  Improving inverter efficiency, reliability, control; WBG

• GMLC-RDS Lab Call - Resilient distribution system design, demonstration, and value analysis

• Solar Foresting II FOA – irradiance forecast, power forecast, validation framework, operation 

• ENERGISE FOA – state estimation, OPF, DERMS, field demonstration

• SHINES FOA – dispachable solution for optimal control of solar PV, energy storage, and dynamic building load
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What’s Next?



ISO PublicISO Public

DOE Solar Forecasting Workshop

Amber Motley

Director, Short Term Forecasting

July 10th, 2024
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California ISO

Page 12

Western Energy 

Imbalance Market (WEIM)

76,184 MW power plant capacity 

Source: ISO’s Masterfile, August 2023

22 participating entities

925,568 metric tons of CO2 avoided

One of 9 ISO/RTOs in North America

52,061 MW record peak demand 

(Sept. 6, 2022)
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California ISO BAA Renewables

Page 13

Number of Renewable Resources: 529

MW Forecasted Large Scale Renewables: 27,872 MWs

MW Capacity Behind-the-Meter Solar: 16,200 MWs

Values are approximate as of May 2024

Historical statistics and record (as of May 30, 2024)

Solar peak NEW!

18,787 MW
May 13, 2024 at 11:55 am

Previous record: 

18,673 MW, May 9, 2024

Wind peak

6,465 MW
May 28, 2022 at 5:39 pm

Previous record: 

6,265 MW, March 4, 2022

Peak percentage of renewables compared to 

demand

117.3%
April  20, 2024

Previous record: 

107%, June 2023
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ADVANCEMENTS

Page 14
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OPPORTUNITIES

Page 16
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Opportunity Agenda

• Implementation Considerations

• Smoke

• Renewable Forecasting

• Probabilistic Forecasting

• Distributed Energy Forecasting
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Implementation Considerations

Page 18

Renewable 

Provider 1

Renewable 

Provider 2

Weather 

Provider 1

Weather 

Provider 2

Historical 

Forecast Errors

Actuals

Climatology

Probabilistic & 

Ensemble 

Forecasts

As forecasting products evolve it is critical we can 

streamline the data hookups, inputs, cleaning, 

validations, and use throughout all the systems that 

lead to the outputs and then the actions taken by 

operations and markets.

AI Multi Vendor 

Optimization

Data Validation and 

Data Monitoring
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Better Weather Forecasting Accounting for impacts to Fire on critical 

weather variables

High-Resolution Rapid Refresh (HRRR) (noaa.gov)

Smoke Impacted Day

Minimal Smoke Impacted Day

Only One Short Range Model accounts 

for Smoke

Currently there is a lag to account for smoke and 

soot impacts in the renewable forecasts; this lag is 

different for different vendors.

https://rapidrefresh.noaa.gov/hrrr/
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Renewable Forecasting without Actual Telemetry Information

• For periods where resources are required to follow Dispatch Operational 

Targets (DOT) renewable forecasts exclude telemetry data

• Can occur for multiple hours across consecutive days and have a large 

impact on forecast quality

• High Sustainable Limit (HSL) can still be used during these periods as one 

input to train the forecast -> improvement in external forecast

Page 20

HSL Quality
External 

forecast error

Bad 9.7%

Good 7.8%

External forecast 

error Follow DOT

11.6%

7.3%
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Good HSL – Renewable 

Forecasts (including 

persistence) can use HSL as 

input into forecast even during 

follow DOT

Forecast stays reasonable

Bad HSL – Vendors exclude 

actuals excluded from forecast 

during times of follow DOT

High forecast bias

Vendor forecast

HSL

Telemetry

Supplemental Energy

Δ = follow DOT

Ensuring resource provide good 

quality HSL data is critical to utilize 

for forecasting. Ensuring tools 

available to identify bad data is 

critical. 
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Probabilistic forecasts help us manage 

uncertainty. Adapting for conditions helps us 

balance cost with risk. 

22
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CAISO will need visibility data for DERs used to manage distribution system 

level constraints

Page 23
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DER Data Sharing Platform

Solar curtailments

Battery 

charge/discharge

EV load shifting

DER data sharing between Distribution Operators and CAISO is crucial since Distribution Operators may 

dispatch DERS to manage distribution system constraints.
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Building the architecture to integrate DERs for grid operations

DER Characteristic and Real-Time Visibility 
Data

Data Sharing Platform

Schedule/Forecast
True up 

Actuals/Profiles

DER Visualization

Real Time 
Information: 

-Actuals

-Dispatches

-Curtailments

Sharing Static 
Characteristic Data

Registration Change 
(Market vs Non 

Market)

Communication 
Protocols

Funding could help 

prepare load models 

to use this data

DER data processing and visualization layer

Funding could also be 

used to develop new 

integration tools

Automated Load Forecast System (ALFS)
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Tools of the Future:  Connecting the pieces through automation

Page 25
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ISO Panel
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Michael Fontaine
S U P E R V I S O R ,  O P E R A T I O N S  F O R E C A S T I N G

Solar Forecasting Workshop 2024

BTMPV Forecasting Overview
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ISO NEW ENGLAND LOAD FORECAST TOOL

• ISO New England has an internally built tool with which to construct and produce Load Forecasts.

• In addition to creating the New England Load Forecast, this tool allows Forecasters to analyze, build 
and blend custom Weather and BTMPV forecasts & profiles from multiple sources.

• It also allows Forecasters to create reports pertaining to Weather, BTMPV, and Load Forecasting
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• Evaluate New England weather

• Multiple weather forecasts and 
observations for 23 Cities

• Blend and Adjust to a single Weather 
Forecast

• Evaluate BTMPV forecasts and 
observations

• Multiple BTMPV forecasts for 8 N.E. 
Zones

• Blend and Adjust to a single BTMPV 
Forecast

• With Weather and BTMPV Forecasts 
created, multiple Load/Demand Forecast 
models are then run using these inputs

BTMPV Forecast Steps
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Analysis of Weather Prior to BTMPV Forecast

• Load Forecasters stay weather 
forecast diligent

• Review of multiple NWP models to 
compare forecast convergence 
and divergence, including 
irradiance and cloud cover 
parameters

• Forecasters then review forecasts 
and discussions from several 
weather vendors as well as 
forecasts and technical discussions 
from the National Weather 
Service
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Analysis of BTMPV Forecast Performance

• Forecasters review daily 
automated reports on previous 
BTMPV performance

• These reports show the 
Forecaster the past 
performance of individual 
BTMPV models

• The reports also show the 
performance of the Forecaster's 
blended BTMPV Forecast.
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Building / Blending BTMPV Forecast

• Once the Forecaster has 
evaluated Weather 
conditions they can then 
build a BTMPV Forecast

• The Forecaster will import 
the latest Forecasts.

• Forecasts are for 8 New 
England Zones 

• Forecasts are 24 Hourly

• Forecast are for 7 Days
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Building / Blending BTMPV Forecast cont.

• After importing the latest 
Forecasts:

• The Forecaster can weight 
any forecast globally for all 7 
days

• Can weight any forecast on a 
daily basis for each of the 8 
New England Zones, 
excluding individual hours in 
individual forecasts as 
deemed necessary

• Is able to manually add or 
subtract MW to each Daily 
Zonal Forecast
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Approving BTMPV Forecast

• Once the Forecaster has 
finished adjusting and blending 
of the BTMPV Forecast it is 
then exported for use in over 
14 Load/Demand models to 
produce Load/Demand 
Forecasts to blend

• Please note in this particular 
Forecast over 6100 MW of 
BTMPV is Forecast 

• The largest physical generator 
in New England is 1247 MW

• New England can import up to 
2000 MW from neighboring 
control areas but is typically 
limited to 1600 MW or less

• So with an installed capacity of 
over 6900 MW of BTMPV, 
accurate prediction of BTMPV 
becomes of critical 
importance.
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Why are Weather and BTMPV Forecasts important?

• Weather and BTMPV are the most significant inputs into demand forecasting 
software.

• With the continued growth of BTMPV in New England, the impact and volatility to 
demand forecasting accuracy is ever increasing.

• Poor weather forecasts into electrical demand forecast models equals bad 
electrical demand forecasts.

• Poor BTMPV and Irradiance forecasts equal bad demand forecasts.

What if there’s a bad Electrical Demand  Forecast?

• Poor unit commitment, and potential for inadequate units to cover real 
time overall demand and real time unit loss emergencies.

• Poor market participant management of generation units and improper 
fuel procurement with poor financial performance.

• Could cause emergency conditions that may lead to impacts on Life and 
Property.
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PV in Service by State
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Through 2023

State
Installed 
Capacity
 (MWAC)

% of Total

Massachusetts 3,712.0 57.5%

Connecticut 1090.5 15.6%

Vermont 507.0 7.8%

New Hampshire 244.0 3.7%

Rhode Island 400.0 6.2%

Maine 588.0 9.1%

New England Total 6,451.5

Source: 2024 Photovoltaic (PV) Forecast 

https://www.iso-ne.com/static-assets/documents/100010/2024_pv_forecast_final_updated.pdf
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Over 7,000 MW of Photovoltaics in Region by End of Year

– Largest 
concentration of 
photovoltaics (PV)
is in Central / 
Eastern MA 

– There is 850 MW 
of large PV 
facilities visible in 
front of the meter, 
however most PV 
is behind-the-
meter and most is 
not visible to ISO 
in real time.

We are here
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PV Forecast through 2031
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End of year forecasts by year

Source: 2022 Photovoltaic (PV) Forecast 

https://www.iso-ne.com/static-assets/documents/2021/04/final_2021_pv_forecast.pdf
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April 8th 2024 Solar Eclipse Impact on the Demand 
Curve
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In Conclusion
Accurate BTMPV forecasts are of critical importance

 to ISO New England

• With the impact of BTMPV on demand forecasting it is quickly 
becoming the single most important factor when trying to produce an 
accurate demand forecast.

• Electric vehicle adoption and battery storage are beginning to grow.

• With financial impacts as well as impacts to life and property, accurate 
demand forecasting is of prime importance to ISO New England.

• Thank you from the ISO-New England Forecast team

4
0



SOLAR FORECASTING IN 

OPERATIONS AT ERCOT

JULY 10, 2024

Luke Butler

Manager, Resource Forecasting and Analysis

ERCOT
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ERCOT Wind, Solar, and Battery Cumulative MW Operational

42
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Planned Solar Additions

43

Solar shows 

potential to almost 

double in capacity 

from 2024 to 2026.
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Solar Forecasts

• ERCOT implemented a centralized forecast for 

solar in 2016. 
– Second vendor added in 2022

• Model Description

– Four Hourly Solar Forecasts per Vendor
• Rolling 168-hr forecast; hourly resolution;  updated every hour

• POE80, POE50 and 2 Extreme Event Forecast are received 

from each vendor for each solar resource

– One Intra-Hour Solar Forecasts per Vendor

• 2-hour rolling forecast; 5-min resolution; updated every 5-

min

– Four 15-min Probabilistic Forecasts 

• Rolling 6-hr forecast; 15-min resolution;  updated every 

hour 

• 50th, 85th, 90th, 95th, 98th.

• Primary Inputs
– Site geo-location; Met tower geo-location; Wind Speed and 

Temperature Operational limits; Telemetered site-specific 

data; Scheduled outages & de-rates; Generic power curves; 

Weather variables like wind speed/direction, irradiance, cloud 

cover

44

*In the graph above, 2024 represents the average forecast error between 

01/01/2024 and 03/31/2024
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Monitoring and Assessing Operational Impacts of Renewables in or near 

Real Time

• A new Reliability Risk desk was added in the ERCOT Control Room in January  2017 to meet ERCOT’s strategic goal of adapting to the 

changing resource mix .

• Some tools and studies this desk monitors include

– Forecast Presentation Platform to monitor all renewable forecasts and select active forecast for studies and dispatch.

– PI-based displays to monitor renewable generation and forecast at resource, region and system level

– Supply and Demand 6-day Grid Outlook and next 24-hour Capacity Availability Tool (CAT) both use the active hourly Wind and 

Solar forecast and associated historic over forecast uncertainties and help gauge sufficiency of available dispatchable 

resources to cover the various possible Net Load Forecasts over the study horizon and determine if long lead time unit 

commitment is necessary.

– Intra-hour 5-min Capacity Availability Tool (i-CAT) uses the active Intra-Hour forecast and help gauge sufficiency of available 

dispatchable ramping capability to cover the various possible Net Load Forecasted ramp over the next 2 hours.

45

https://www.ercot.com/gridmktinfo/dashboards/supplyanddemand
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SECURITY CONSTRAINED ECONOMIC DISPATCH

Active Intra-hour 5-min Wind and Solar forecast are used in 5-

min Real Time dispatch preposition dispatchable Resources in 

anticipation of wind and solar ramps.

UNIT COMMITMENT STUDIES

Active hourly Wind and Solar forecast are used in hourly 

Reliability Unit Commitment studies to determine if sufficient 

capacity is available to cover active forecasted demand plus 

reserves. Also used in look ahead studies like Outage 

Coordination and Next Day Study.

Studies that Use Renewable Forecasts 

Committed

Dispatchable 

Capacity

+ Wind Forecast 

+ Solar Forecast

Load Forecast 

+

Reserves

RUC

Reliability Unit Commitment (RUC) studies assess if 

additional commitments are needed to meet 

Forecasted Demand + Reserves

SCED’s Target for total

Generation & Storage MW to 

Dispatch at t+5min

 

=

5* Forecasted Load Ramp

- 5* Forecasted Wind Ramp

- 5* Forecasted Solar Ramp

+5 * Forecasted DC Tie Ramp

- Accrued ACE over the last 60min 
ERCOT’s Security Constrained Economic 

Dispatch (SCED) dispatches non- renewable 

Generation and storage resources to meet 

forecasted “net” load (load – wind – solar) over 

the next 5-min
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Predicted Solar Ramp Rate (PSRR) Error
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Performance Metric
Persistence 

Ramp*
SCED PSRR

PSRR, 

IHPPF

PSRR, 

STPPF

Monthly MAE (MW per 5 minutes) 235 148 140 143

Monthly MAE when 5-Min. Solar Ramp > 100 MW 344 184 171 177

* Persistence Ramp assumes a 0 MW solar ramp

<--- DO NOT MOVE GRAPH
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Capacity Availability Tool – “What If” Assessment for next 6 hours

(1) Load

(2) Available Gen

(3) Available Gen with Wind Uncertainty

(4) Online Room

(4) Neg. Online Room
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Intra-Hour Capacity Availability Tool – “What If” Assessment for next 2 hours

Monitors forecasted net load ramp in the next two hours and the available ramping capability of the thermal fleet to cover 

these.

49

(1) Forecasted Load Ramp

(2) Forecasted Fleet Ramp Capability
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Advanced Action Notice (AAN) Display

50

Renewable forecasts are a key input to the ERCOT outage scheduling process and the potential

decision to reduce planned outages based on projected capacity availability.
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Probabilistic Capacity Availability Tool (PCAT) Model

51

Extras

• Energy Storage 

Resources SOC 

Forecast

• Price Responsive 

Demand Forecast

▪ Hourly COP 

Data

▪ Hourly Load 

Forecast Data

▪ Hourly Solar 

Forecast Data

▪ Hourly Wind 

Forecast Data

▪ Calculate uncertainty for load, 

solar and wind forecast 

▪ Apply the forecast uncertainty 

for the forecast period (168 

hours) with information from 

history

▪ Create distribution of net load 

forecast (net load = total load – 

solar – wind) using Monte 

Carlo (MC) simulation

▪ Determine forecasted capacity 

margin distribution from COP 

data and MC output

▪ Event Occurrence 

Probability – hourly 

probability of capacity 

margin falling below 

certain threshold (168 

hours)

▪ Statistics on forecasted 

capacity margin (min, 

max, average, median, 

kth percentile, etc. 

Input Process Output

Currently developing a probabilistic approach to quantify risk in capacity assessment.
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System Solar Intra-Day Variability

[1] baseline variability metric of the regions (1 sigma / average)

[2] baseline capacity: 18.2 GW as of 9/30/2023 at the system level
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❑ The graph illustrates the increase in 

intra-day solar variability at the system 

level with the growth of solar capacity in 

each region.

❑ Each line represents the rise in system-

level intra-day variability with incremental 

capacity in that specific region, while 

maintaining a constant capacity in other 

regions.

❑ The intra-day variability (y-axis) is 

presented relative to the baseline 

capacity[2]

❑ The growth in FarEast and CentralEast 

has the most significant impact on 

system-level variability. An additional 

capacity of 5000 MW in either region 

increases the system variability by 

approximately 4.3%.

❑ In contrast, the growth in FarWest leads 

to a reduction in system-level variability. 

The addition of 5000 MW decreases the 

variability by about 2.5%.
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• On Monday, April 8, 2024, a total solar 

eclipse passed over Texas from the 

southwest to northeast direction. 

• Solar generation was reduced during the 

eclipse, dropping from an instantaneous 

peak of 13.8 GW at the beginning of the 

eclipse to a low output of 0.7 GW at 1:36 

p.m., and then rising to approximately 

13.8 GW by 3:10 p.m. 

• ERCOT procured additional Ancillary 

Services (AS), committed additional 

generation, took manual actions to 

increase ramping capability, and 

deployed AS to maintain reliability.

April 8 Eclipse Forecast

53



DoE Solar Forecasting Workshop

July 9-10, 2024

Solar forecasting – 
progresses, challenges and needs 

from MISO perspective

54



Accelerating solar penetration increase is a key theme of MISO’s transitioning 

fleet

• Current in-service capacity is relatively low at 6.5GW, but has been doubling from previous year each 

of past five years (fast increase)

• MISO is projected to manage 80GW utility-scale solar by 2040, likely one of the largest among all 

ISOs/RTOs (largest penetration by 2040)

• Solar is penetrated across all MISO three regions from North to the South (geographic diversity)

55
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Solar Capacity Growth (GW)

MISO Future 1

https://cdn.misoenergy.org/Series1A_Futures_Report630735.pdf
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• Next-Day Reserve: Next Day Uncertainty (Dynamic)
• Short Term Reserves: 30 minutes – 3 hour (Dynamic)
• Ramp Capability: 10 – 30 minutes
• Contingency Reserve: Largest unit loss
• Regulation: 4 second – 5 minutes 

56

Solar forecasting provides important inputs for markets and 
operations to balance energy and clear reserves

Hourly 
forecast up 

to 7-day 
ahead

Market 
Participant 
(MP) Offer

Hourly 
forecast Day-

Ahead

Hourly and 5 
min forecasts 
hours ahead

5min forecast 
by MISO or 

MP

Multi-Day 
Forward RAC

Day-Ahead 
Market

Next-Day 
Forward RAC

Intra-Day 
RAC and LAC

Real-Time 
Market and 

UDS
AGC…

Solar 
Forecast 

Inputs

Commitment 
Dispatch 

Processes

Market 
Products



Public

Solar forecasting accuracy is a continuous focus and its improvement results in 
direct market and reliability values

• Solar forecasting 
accuracy improved 
across the forecasting 
timeframes in 
collaboration with 
vendor and members

• Situational awareness of 
solar variability and net 
load ramping are built 
for control room 
operations
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Day-Ahead solar forecasting 
performance by hour of day

2019

2023



Public

“Probabilistic” solar forecasting is established to quantify uncertainty and used in 
scenario-based Operations planning

• Multiple NWP based solar 
forecasting scenarios are 
established and utilized to 
quantify uncertainty

• Multiple scenarios are used in 
Operations planning to 
manage uncertainty

• Advanced analytics is being 
developed to dynamically and 
optimally ensemble scenarios 
leveraging real-time 
conditions
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Forecast scenarios 

and gradient 

spread

Example of high-resolution NWP 
models better capture wind drop



Public

Challenges remain in solar forecasting and the errors in the dispatch horizon cause 
difficulty in managing congestion

• While portfolio level 10-minute 
ahead solar forecast error 
averages at 1-2%, significant 
error can occur at certain farms 
causing congestion challenges

• Solar is introducing high 
shorter-timeframe variabilities, 
and its forecasting error is 
almost comparable to wind 
whose capacity is multi-folder 
higher
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Txx flow 
exceed limit

Solar output 
above forecast*

*Note: Besides forecast errors, unit not following dispatch can also challenge congestion management as 
discussed at June 2024 board meeting

https://cdn.misoenergy.org/20240625%20Markets%20Committee%20of%20the%20BOD%20Item%2006%20IMM%20Quarterly%20Report634894.pdf


Public

With the geographic diversity, solar forecasting is challenged by various weather 
events

• Cloud forecasting
• Limited tools available for accurately predicting formation/dissipation/evolution of 

different cloud types such as convective clouds, marine stratus and fog
• Both sub-hourly for the dispatch horizon forecast, and beyond the sub-hourly and 

intra-day for commitment and ops planning horizons

• Snow / snow-free
• Mainly northern MISO is affected by snow during wintertime

• Dust / smoke
• Thunderstorms
• Convection

• Behind the Meter solar visibility and load forecasting
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Improve forecasting during these weather events

Identify leading indicators of high uncertainty to inform dynamic reserve carrying



Questions?
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Timothy Duffy
Manager, Demand Forecasting and Analysis
Grid Transition

DOE Workshop on Solar Forecasting 
July 9, 2024

NYISO Solar Forecasting



©COPYRIGHT NYISO 2024. ALL RIGHTS RESERVED 63

Agenda 

▪ Demand Forecasting System

▪ Renewable Forecasting System

▪ NYCA Solar Trends

▪ Future Developments
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Demand 
Forecasting System
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BTM Solar Generation Samples

Weather Information

NWS Site Forecasts & 

Actuals (2 vendors)

NYS Mesonet
Actuals

BTM Solar Forecasts & Actuals

Load Forecasting System

Forecasts BTM Solar 

Generation & Estimates

EMS & Market

Engines

Data Warehouse

& Reporting

DFA Forecaster

Mesonet Weather

NWS Weather Data

Load Forecast

Load Actuals

BTM Solar Generation

Legend

Load 

Validation

Review &

QC

Real-Time Load Forecast System
Market & Grid Operations

Real-Time 

DB
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Renewable 
Forecasting System
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Renewable Forecasting System - Overview
NYISO

FTM Plant Meter and 

Weather readings

• BTM zonal solar 

forecasts (hourly)

• Estimated zonal 

actual BTM production

• Station level and 

regional irradiance 

and weather

Renewable 

Forecasting Vendor

BTM Solar Site Samples (Inverter Data)

Grid Connected 

Solar/Wind

• Meteorological data 

(every 30-secs)

• Plant meter readings 

(every 6-seconds)

Real-time BTM 

inverter  

measurements

Residential

(Small)

Community Solar

(Large)

NYS Mesonet

Sensible weather & 

irradiance 

measurements

FTM Info.BTM Info.

FTM Solar Wind/ Plant 

forecasts

Legend
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NYISO BTM Solar Forecasting System
▪ The NYISO Behind-the-meter (BTM) Solar forecasting system was developed in concert with the growing 

number of solar installations across NY state (Operational launch occurred in 2017)

▪ Important to monitor and forecast solar systems that are not connected to the NY bulk power system 

because the BTM resources act to modify local loads fed by utility distribution networks (load forecast 

adjustment)

▪ Inverter data provides BTM Solar Photovoltaic (PV) generation data once per hour for about 10,000 sites 

to a renewable energy forecasting provider

• Sample represents over 200,000 installed sites throughout the state, a sample of ~ 

1,600 MW-DC installed capacity

• Data are continuously sampled from the prior 24 hours and aggregated by county 

and size-bin

• Sampling is stratified to capture the differences in performance between large (e.g., 

> 250 kW) and small sites (< 250 kW)

69
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NYISO BTM Solar Forecasting System (Cont.)
▪ Solar forecasting provider produces irradiance and solar MW forecasts 7-days ahead 

• Actual irradiance measurements obtained from 25 NY State Mesonet monitoring 

sites

• Estimated irradiance is derived from high resolution satellite imagery (Mesonet used 

to calibrate satellite)

• Forecasts are created for each county, aggregated to 11 load zones, and delivered 

hourly at 15-minute intervals (B734 project is moving this to 15-minute updates)

▪ BTM forecast and actual data are used as inputs into the NYISO real-time load forecasting system 

• Day-ahead load forecast models (15 minutes-per-interval) forecast the total load 

(net system load + BTM PV generation) for 11 load zones

• The BTM PV generation MWs are subtracted to obtain the (net) load forecast used 

for NYISO generator commitment & dispatch

• Forecast archiving is done in a custom database (Load Forecast Data Repository 

[LFDR]) and analysis performed against data from that system
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NYISO BTM Solar Forecasting System
NYISO

• BTM zonal solar generation 

forecasts (hourly)

• Estimated zonal BTM production 

(scaled from sampling/estimates)

• Mesonet station irradiance and 

weather (25 sites)

Renewable Forecasting Vendor

BTM Solar Site Samples 

(Inverter Generation Data)

Retrospective (prior day) and Real-time 

(last hour) BTM inverter  measurements

Residential & Small Commercial (Small)

Community Solar (Large)

NYS Mesonet

Weather Forecasting 

Vendors

Weather Forecasts & 

Actuals

Sensible weather & 

irradiance 

measurements

Feed is stratified by size into Large (> 250 kW DC) 

and Small (<= 250 kW DC) systems

Per Unit Output (AC output 

relative to DC capacity)

County and Zone 

capacity schedule 

updates  (MW DC)

County Level BTM PV 

Forecasts aggregated 

to NYISO Zones
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NYISO FTM Renewable Forecasts
▪ Front-of-the-meter (FTM) forecasting was developed in concert with the growing number of 

wind installations across NY state (Operational launch occurred in 2006)

▪ Most grid connected resources participate in the NYISO wholesale market and are 
dispatchable

▪ NYISO telemeters site generation data, weather information, and select operational 
characteristics for each site (e.g., site orientation for solar)

• Current installed solar capacity is over 254.4 MW (AC) with over 10.7 GW planned in the 
NYISO queue

• Solar forecasts come with risk products delivered via email (e.g., fog warnings, and snow on PV 
panel risk) 

▪ FTM forecasting provider (UL) produces irradiance and solar MW forecasts 7 days ahead 
• Actual weather conditions obtained from the solar sites
• Estimated irradiance is derived from high resolution satellite imagery (adjusted to Mesonet 

measurements) and used in real-time forecasting
• Forecasts are created for each site, aggregated to the 11 load zones, and delivered at 15-

minute intervals 

▪ FTM forecast and actual data are used as inputs into the NYISO marketplace (MIS) and 
EMS/BMS systems
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NYCA Solar Trends
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BTM PV Installed Capacity Forecast
▪ All actual and forecast 

values represent the end 

of year BTM Solar 

installed capacities

▪ Forecast includes strong 

capacity growth through 

2030
>75% of 10GW 2030 NYS goal 

exists between complete and 

current pipeline projects

▪ Continued growth 

expected for large 

(> 250 kW DC) 

distributed solar 

projects

61% Large Systems 

(6/1/2024)
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BTM Solar 

Installed 

Capacity

5,475 MW DC (Est.) 

as of 6/1/2024
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FTM 
Renewable 
Geographic 
Distribution
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Future Development:
BTM/FTM Integration
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Forecasting Data Integration

BTM Forecasts

Renewable Forecasting 

Vendors

BTM Sampling Sources

Grid Connected Resources

Site weather data

NYS Mesonet

Sensible 

weather & 

irradiance 

measurements

FTM forecasts

Operational data

High Availability 

Distributed Generation 

(“Gold Sites”)

Weather Forecasting 

Vendors

FTM Info.

BTM/Load Info.

Forecast 

Arbiter

Operational Data 

(Generation)

Operational Data 

(Generation)

SCADA/EMSICCP & 

SDWAN

Telemetry 

Service

Ops/Energy 

Service

Weather 

Service

Weather 

Observations/ 

Forecasts

Data Warehouse

(LFDR+)

Load Forecast 

Engine.

Capacity 

Service

Future Data

Publishing & 

Archiving 

Service

Forecast 

Service
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Our Mission and Vision

Vision
Working together with stakeholders to 

build the cleanest, most reliable 

electric system in the nation

Mission
Ensure power system reliability and 

competitive markets for New York 

in a clean energy future
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Q&A and Discussions
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Previous solar forecasting prize winners



Day-Ahead Probabilistic Irradiance 

Forecasting Prize 

Nimbus AI GOES-17 multispectral profile



Nimbus AI Core Team

Peter Sadowski, PhD

Chief Analytics Officer

Associate Professor

UH Computer Science 

Giuseppe Torri, PhD

Chief Science Officer

Associate Professor

UH Atmospheric Science 

Geoff Galgon, PhD

CEO



Forecasting Prize: Setting and Performance

● Setting: four-week evaluation period 

of day-ahead probabilistic forecasts at 

10 US sites.

● Statistical downscaling approach 

performed much better than baseline: 
● Only competitor to beat baseline at 

every site 

● Lessons learned throughout the 

competition led to increased final 

model performance



Forecasting Prize: Lessons Learned

Probabilistic forecasting

● Use CRPS or other proper scoring to 
discourage hedging

● Model densities should reflect 
spatiotemporal structured uncertainty 
(more later)

● Real dispersion characteristics are not 
captured by NWP ensembles

NWP (GFS/HRRR) variable inputs

● GFS input variable selection is 

important.

Geography & Clear-Sky model inputs

● Clear-sky models under/over-estimate 

irradiance by as much as 10%. 



Leveraging irradiance forecasting methods

● Live API-based Hawaii commercial PV system 

(net load / PV production)

● Site-specific probability forecasts for other 

solar-dependent variables

}

Current and Future (Solar) Plans

Solar Forecasting Day-Ahead Dashboard: 

Forecasting Prize Sites

Observed vs. Nimbus AI 60-min 1st generation CNN nowcasts: Island 

of Oʻahu

Diffusion models (generative AI)1

● Use diffusion models in forecasting joint 

probability distributions across a region of interest 

(substation/grid vs. individual sites).

1 Hatanaka, Y. et al.( 2023). Diffusion Models for High-Resolution Solar 

Forecasts. 10.48550/arXiv.2302.00170. 



Thank you

Contact: geoff@nimbus.solar

Nimbus AI GOES-17 multispectral profile



DOE: Solar Forecasting 
Workshop

Zhimin Xi, CEO and Founder

Email: zxi@rautonomy.com

Reliable Autonomy LLC

https://rautonomy.com/





Our Forecasting Method

Hybrid Prediction Models:
•Baseline Methods: Includes methods like PeEn (Periodicity Ensemble) for 
initial predictions based on historical data.

•Physics-based and Data-driven Models: Integrates physics-based models 
and data-driven approaches to refine predictions. Combines these 
methods to leverage the strengths of both approaches.



Our Forecasting Method

Parameter Optimization:
•Bayesian Optimization: Offers a feature to optimize key parameters 
(number of trees, learning rate, minimum leaves in a tree) using 
Bayesian optimization, aiming to enhance prediction accuracy.

Physics-based Machine Learning Model: We use an ensemble of 
regression trees (boosted trees) to model the relationship between 
input features and net load.



Our Forecasting Method

Input Feature Preparation:
• Meteorological Data: The method utilizes meteorological features such as 

temperature, humidity, solar radiation, precipitation, wind speed, and 
cloud cover, etc. to make predictions.

• Time-Based Features: Additional features like time of day (hour) and day 
of the week are included to capture daily and weekly patterns in energy 
usage.

• Historical Data: Past net load data is used to train the model.
• Feature Importance: The importance of different predictor variables is 

calculated and visualized to understand their impact on the model.
• Error Analysis: Prediction errors are analyzed by hour of the day to 

identify patterns and improve model accuracy.



Our Forecasting Method

• Bias Correction: The method incorporates bias correction for weather forecasts, 
ensuring that predictions account for discrepancies between forecasted and 
actual weather conditions.

• Uncertainty Handling: Weather forecast uncertainty is considered by generating 
multiple samples of weather data, which are then used to produce a range of 
possible load forecasts.



www.leaptran.com

➢ Leaptran’s Innovative Solar & Net Load Forecasting 

 Spinoff of Univ. of Texas at San Antonio (UTSA) in 2017 

 SBIR Phase I & II from DOE/USDA

 Prize Winners from Both Solar Forecasting & Net Load 

Forecasting

 Winning commercial contracts recently

DOE’s SETO: Solar Forecasting Workshop

July 9th-10th, 2024, Washington DC

http://www.leaptran.com/
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Behind the Meter (BTM) Solar Penetration 

Facts from Four Substations during Net Load Prize Competition 
• Located in three climate zones 
• Solar penetration from high to low

Locations
Waianae,

HI

Donalsonville, 

GA

Amity,

OR

San Antonio, 

TX

Solar Penetration 

(%) 166% 63% 35%
Unknown 

(<10%)

N. Peak to Peak 

(Low to High)
-0.59 to 0.82 -0.16 to 0.42 0.20 to 0.70 0.36 to 0.93

Remark 

(6/15-7/17/2023)

-load in

everyday

-load in 

weekend

+load 

always

+load

always
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High BTM Solar Penetration – Net Load Forecasting Challenge

Multiple Hybrid Forecast Algorithms 
Developed for 4 Substations:

• Different ensemble regression and 
classification models are used case by 
case

San Antonio

Waianae, HI

Donalsonville, GA

Amity, OR
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High BTM Solar Penetration – Net Load Forecasting Challenge

Some Interesting Observations in a Texas Moderate Solar Penetration 
Network Load 

• Spring season peak load ~300 MW
• 3/11/24 – 3/17/24 (Monday – Sunday) Net Load Profile



www.leaptran.com

Jeff Xu, CEO & President

jeff.xu@leaptran.com

210-324-9378

Edward Hooks, COO

edward.hooks@leaptran.com

210-643-1977

www.leaptran.com

2021

THANK YOU!

2024

http://www.leaptran.com/


Probabilistic Solar Forecasting for 
Rapidly Changing Weather Conditions

Sara Eftekharnejad, Ph.D.
Associate Professor

Department of Electrical Engineering and Computer Science
Syracuse University

Email: seftekha@syr.edu

mailto:seftekha@syr.edu


Research Gaps Addressed

• Machine Learning-based Feature Extraction

• Statistical Modeling

Dynamic Models for Spatio-
Temporal Data

Enhancing Accuracy under Rapidly 
Changing Weather Conditions

Targeting Short-Term Operations

[1] Lyu, Cheng, and Sara Eftekharnejad. "Probabilistic Solar Generation Forecasting 
for Rapidly Changing Weather Conditions." IEEE Access (2024)



Forecast Performance

Baseline:  N. Zhou, X. Xu, Z. Yan, and M. Shahidehpour, “Spatio-temporal probabilistic forecasting of 

photovoltaic power based on monotone broad learning system and copula theory,” IEEE Transactions 
on Sustainable Energy, vol. 13, no. 4, pp. 1874–1885, 2022.



Looking Forward

Forecast with limited data

Operations and planning models with 
uncertainties

Grid resiliency 

A combined generation + failure 
probabilistic forecast
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Solar forecasting to improve grid operation
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Aidan Tuohy
Director Transmission Operations and Planning
Contributions from Miguel Ortega Vazquez, David Larson, 
Armaan Ladak, Erik Ela

Forecast Integration and Metrics Evaluated

Managing Risk in Power 

System Operations 

http://www.epri.com/
https://www.facebook.com/EPRI/
https://twitter.com/EPRINews
https://www.linkedin.com/company/epri
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Better use of better forecasts can drive more efficient investment 

decisions and grid performance across timescales

Decarbonization 
Strategies

Integrated 
Resource 
Planning

Delivery System 
Planning

Real-Time Grid 
Operations

Forecasting is key for grid planning and operations

Reduced

Operating Costs
Increased

Customer Opportunities

Resource 
Adequacy

Reduced

Reliability Risks

Increased 

Asset Utilization
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Recent DOE-funded Effort: 

Managing Uncertainty
Tools, methods, data to understand 
tradeoffs between risks and costs of 

operating system with high renewables

Quantifying uncertainty in output of renewables allows us 
to better understand how we will operate the system

More: www.epri.com/optsun 

http://www.epri.com/optsun
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What’s Next? Key R&D Needs

•Different sources of uncertainty and variability

•Different decisions to be made (look ahead time, spatial and 
temporal scales, planning vs ops)

•New sources of risk management – transmission, demand, storage

•Tools need to be demonstrated and integrated into EMS, MMS as 
well as appropriate planning tools 

Need to develop and 
implement methods 
for fully integrating 
risk in operations

•Linkage to value of improved forecasts (reliability, economics)

•Data sharing and validation – need good underlying datasets to 
benchmark and understand uncertainty, for ops and long term 
planning, incl. resource adequacy

•Based on metrics, identify key areas for improvement (DER, new 
loads, extreme weather, etc.)

Metrics and tools to 
assess forecasts and 

identify opportunities 
for improvement
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Considering Risk in Operations
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What is Risk?

1. “Expectation” entails a probabilistic process for the likelihood of occurrence

2. “Loss” is the magnitude of damage or adverse outcome

▪ Then, in power system’s operation risk is the theoretical mean or long-term average of 
reserve shortages! 

▪ A fixed amount of reserve (e.g., “x” MW) are not measures of risk

▪ The expectation of undergoing events greater than “x” is the risk metric

▪ To compute risk, we must compute the (1) probability of the events and (2) their 
associated magnitude

Risk is the Expectation of Loss*

*M. H. DeGroot, Optimal Statistical Decisions. John Wiley & Sons, 2004.
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Risk of Reserve Shortages

𝑟up𝑟down

Extent up 𝜉upCI

0

Extent down 𝜉down

𝜖, MW

𝑓 𝜖

𝜌short = න
𝑆short

.

𝑓 𝜖 𝑑𝜖 × 𝜉up𝜌long = න
𝑆long

.

𝑓 𝜖 𝑑𝜖 × 𝜉down

Risk is given as the expectation of loss (insufficient reserve), and is given as: 𝜌 = 𝑃 × 𝜉

The system is short:
 potential under-frequency, 

negative ACE, reliability violations, 
or load shedding

The system is long: 
potential for over-

frequency and ACE or 
excessive curtailment 

of VRES

M. A. Ortega-Vazquez, N. Costilla-Enriquez, E. Ela, A. Tuohy, "Risk-Based Reserve Procurement," 2020 Conference on Probabilistic Methods Applied to Power Systems, Liege, Belgium, Aug. 18-21, 

2020.

T. R. Rockafellar and S. Uryasev, “Optimization of Conditional Value-at-Risk,” Journal or Risk, Vol. 2, No. 3, pp. 21-41, Apr. 2000.
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Tools need to use both Historical and Probabilistic 

Uncertainties
Distribution of historical deviations

It accounts the historical deviations in the system 
for net demand: It implicitly includes load, solar, 
and wind deviations

Probabilistic uncertainty for a solar probabilistic forecast

It provides a wealth of information that captures 
specific of unique characteristics of the day, e.g., 
expected clouds at a particular day hour

Need to integrate these independent sources of information in an unified framework 
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Tools to Parametrize Operating Reserves

DynADOR

Variability Uncertainty

STORM

DynADCR

Contingencies

Amount

Time

Source

Location

R
eliab

ility std
.:

e.g., B
A

L-0
0

2
-2

A
d

versarial 
C

o
n

d
itio

n
s

R
isk

 To
leran

ce

Stochasticity

System-Tailored Operating
Reserves Models
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Combining uncertinty provides more insight (indicative)

Historical load 
and wind

Probabilistic 
Forecast for solar Merged

U
n

ce
rt

ai
n

ti
e

s
R

e
se

rv
e

s

Historical

Probabilistic 
Forecast

Merged

Myopic to specific 
day characteristics 

Unaware of historical 
deviations 

Considering both historical 
and probabilistic deviations
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Evaluating Performance
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➢ Evaluate the performance of day-ahead load forecasts relative to one another
➢ Evaluate the robustness of the day-ahead load forecast
➢ Explore the consequences of forecast performance and robustness

Evaluating Forecast Performance (Recent Project)

How well are day-ahead forecasts performing?

Study Objectives

Study Scope

Opendata 
API v2

82 Facets

10 Regions 7 ISO/RTO

65 BAs + Utilities 45 Countries

~1k+ Energy Identification Codes (EIC)

Report:
EPRI, Benchmarking Operational 
Forecasts: Review of Published Day-
Ahead Operational Forecasts, 
3002026990. November 2023

Caveats

•The day-ahead forecasts values 
reported in this study may not 
wholly reflect the forecasts used 
by operators in these regions 
because:

•Operators may use other 
forecasts

•Operators may update their 
forecasts closer to real-time

•Forecast values reported from 
the EIA and ENTSO-E have 
quality issues which cannot be 
rectified
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Forecast Arbiter: https://forecastarbiter.epri.com/

Clear, transparent forecast evaluation tool

https://forecastarbiter.epri.com/
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Usefulness of Metrics for Setting Benchmarks

No shortage to choose from… but which are useful?

Scale-Independent

Percentage-Error 
Metrics

Mean Absolute 
Percentage Error 

(MAPE)

Normalized Scale-
Dependent Metrics

Normalized Mean 
Absolute Error 

(NMAE)

Normalized Mean 
Bias Error (NMBE)

Normalized Root 
Mean Squared Error 

(NRMSE)

Relative Metrics

Forecast Skill (s)

Other Metrics

Pearson Correlation 
Coefficient (r)

Coefficient of 
Determination (R2)

Relative Euclidean 
Distance (D)

Normalized  
Kolmogorov-Smirnov 
Test Integral (%KSI)

• MAPE and NMAE consistently yielded the exact same results, 
due to the scaling factor used in NMAE. 

• NRMSE and NMBE were both particularly important: NRMSE 
indicated the same trends as MAPE while deviating in datasets 
with significant outliers, while NMBE was most useful when 
paired with an error magnitude metric like NRMSE/MAPE to 
interpret the error and its bias. 

• Due to limitations of available reference forecasts, Forecast skill 
was not thoroughly investigated.

• The Pearson Correlation Coefficient does not have the requisite 
resolution to differentiate forecasts with <5% MAPE. 

• The Coefficient of Determination has similar problems to 
Pearson’s, although less severe since it is more sensitive.

• Relative Euclidean Distance’s combination of a bias error 
component with a correlation error component and a percent 
variance error made it difficult to interpret, 

• %KSI was by far the most sensitive metric and was most useful 
as an indicator for large differences in the observation and 
forecast distributions, which could then be explored by plotting. 
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Error Metrics and Year - US
▪ General trends

– NRMSE/MAPE: No consistent change 
in forecast performance

– 2021 Winter Storm: NRMSE/MAPE 
spiked in 2021 for Texas, and is more 
clearly shown by NRMSE 

– California: Increase might be partially 
due to BTM resource increases

▪ COVID-19
– MBE: The US’s tendency to under-

forecast was flipped in 2020
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What’s Next? Key R&D Needs

•Different sources of uncertainty and variability

•Different decisions to be made (look ahead time, spatial and 
temporal scales, planning vs ops)

•New sources of risk management – transmission, demand, storage

•Tools need to be demonstrated and integrated into EMS, MMS as 
well as appropriate planning tools 

Need to develop and 
implement methods 
for fully integrating 
risk in operations

•Linkage to value of improved forecasts (reliability, economics)

•Data sharing and validation – need good underlying datasets to 
benchmark and understand uncertainty, for ops and long term 
planning, incl. resource adequacy

•Based on metrics, identify key areas for improvement (DER, new 
loads, extreme weather, etc.)

Metrics and tools to 
assess forecasts and 

identify opportunities 
for improvement
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TOGETHER…SHAPING THE FUTURE OF ENERGY®

http://www.epri.com/
https://www.facebook.com/EPRI/
https://twitter.com/EPRINews
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Southern Company R&D:

Solar Forecasting

William B. Hobbs, PE

Southern Company R&D

DOE Solar Forecasting Workshop, July 10, 2024 



Outline

• EPRI Forecasting Trial

• Probabilistic Solar Forecasting

• Net Load

• Independence of solar and 
load forecast errors?

• Weather-to-load models

• Flexible Solar

DOE-funded Forecast Arbiter is 
great

• more metrics needed?

More work needed in probabilistic 
solar forecasting (we’re doing 
some)

Work (funding?) needed here!

Upcoming work, some needs

Open production cost models to 
benchmark these things, 
understand sensitivity

Conclusions



Solar Fleet

• About 4 GW in Southern Company’s Balancing Area, ~40 GW peak load

• Additional ~10 GW anticipated by 2035 in Georgia alone

Plants ≥ 10 MW



Forecast Arbiter Trial
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David P. Larson, EPRI, <DLarson@epri.com>

William B. Hobbs, Southern Company

Brent Duncan, Southern Company

Orals – Area 10: Irradiance and PV Power Forecasting

Friday, June 14, 2024

Benchmarking Utility-Scale PV 

Power Forecasts in the Southeast 

US using the Forecast Arbiter

http://www.epri.com/
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Forecast Trial Setup

▪ Deterministic power forecasts

▪ 4 utility-scale PV plants in the Southeast US

▪ 5 forecast schedules

– day-ahead (hourly) down to real-time (5-
min)

▪ 9 forecasters (anonymized commercial 
forecast vendors)
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Key takeaways from this trial:

▪ Solar power forecasting is a mature technology, available from 
many commercial vendors

▪ Top forecasters can achieve similar forecast errors

▪ The same conditions are challenging for all forecasters

▪ Sub-hourly resolution forecasts continue to be difficult

▪ Forecast Arbiter enables multi-vendor, anonymized forecast trials

▪ (Will’s opinion) New ramp metrics could be useful for future 
evaluations, but need work



Post-trial ideas 

(Will’s slides, not EPRI results…)



Forecast Error Metrics

• Normalized Mean Absolute Error (NMAE) run hourly for DA penalizes large 
errors, so better forecasts are “smooth”

• Fcast 1 gets ramp magnitude and direction 
perfect, but timing is off

• Result is 2x higher NMAE
• Timing isn’t always critical in real 

operations



Single Site – DA



DRAFT ramp metric
• General ideas are:

• downward ramps in solar are worse than upward ramps

• exact timing isn't critical

• On a 5-hr rolling interval (current hour, 2 before, 2 after), calculate the largest 2-
hr downward ramp​​

• For each forecast, calculate NMAE of 5-hr rolling largest 2-hr down-ramp 
(excluding ramps smaller than 1% of nameplate)

Forecaster
DA NMAE, 

hourly power

Reference 15.1%

Pearl 11.8%

Sapphire 12.1%

Worse by standard 

metric, better with 

ramps

Forecaster
DA NMAE, 

hourly power

5-hr max down 

ramp (NMAE)

Reference 15.1% 14.6%

Pearl 11.8% 15.3%

Sapphire 12.1% 15.9%



Probabilistic Solar Forecasting



Motivation

• Lots of good deterministic forecasts are available

• None are perfect

• Grid operators have increasing need for uncertainty information

• Most probabilistic forecasts focus on single sites

• Errors across sites are not independent → can’t simply combine site-level 
probabilistic forecasts



EPRI OPTSUN Project

• DOE Solar Forecasting II project

• Found that probabilistic forecasts might 
improve reliability, but only marginal 
impact on costs (see paper [1], recorded 
presentation [2])

• Discovered after project ended: Possible 
mistake in forecasts may have led to too 
much uncertainty 

• better forecast might show much 
higher value

[1] Wang, Q., Tuohy, A., Ortega-Vazquez, M., Bello, M., Ela, E., Kirk-Davidoff, D., Hobbs, W.B., Ault, D.J. and 
Philbrick, R., 2023. Quantifying the value of probabilistic forecasting for power system operation planning. Applied 
Energy (https://doi.org/10.1016/j.apenergy.2023.121254)

[2] W. Hobbs, “Probabilistic Methods in Operations,” ESIG 2022 Spring Technical Workshop (Presentation) 
(https://www.youtube.com/watch?v=1aO4kOoR2nc&t=1370s, https://www.esig.energy/event/2022-spring-technical-
workshop/) 

PI 100 and PI 90 lower bounds look too low

https://doi.org/10.1016/j.apenergy.2023.121254
https://www.youtube.com/watch?v=1aO4kOoR2nc&t=1370s
https://www.esig.energy/event/2022-spring-technical-workshop/
https://www.esig.energy/event/2022-spring-technical-workshop/


New in-house R&D

• Open-source tool to produce probabilistic forecast from an existing 
deterministic forecast (e.g., vendor)

• Focus on day-ahead for now

Vendor 

PV 

forecast

NOAA 

forecasts

ML 

models

Historical 

data

(pvlib+NOAA 

for prototype)



Tools and data

• All in python, open-source (and free) tools

• pvlib for weather-to-power (forecast and synthetic 
actuals)

• Herbie to retrieve NOAA NWPs from AWS
• A portion of this work used code generously provided by Brian 

Blaylock's Herbie python package (Version 2024.3.1) 
(https://doi.org/10.5281/zenodo.4567540)

Important side note: historically, accessing 

NWPs has been way too hard. Tools like 

Herbie need more attention and support from 

our industry.



Sample Results

2.5x



Available Code

• github.com/williamhobbs/solar-fleet-forecast-probability-tool

• BSD-3-Clause License

• Python, with Jupyter Notebooks to run everything yourself

• Please let me know if you use it!



Next steps

• Retrain using more representative forecasts (reforecasts from a vendor)

• Explore additional ML “features”

• Feedback/iterate with operations team

• (tentative) benchmark against SLAC approach

• Re-evaluate value in production cost models?



Net Load



Probabilistic Net Load Forecasting

• Operators dispatch to net of load and solar (and wind)

• Load and solar are influenced by the same weather – forecast errors 
might not be independent [1, 2]

• Most studies I see assume they are independent, e.g., ARPA-E 
PERFORM [3] (usually because of practical limitations, I think…)

[1] Li et al., “A copula enhanced convolution for uncertainty aggregation”, 2020, DOI: 10.1109/ISGT45199.2020.9087644

[2] Beichter et al., “Net load forecasting using different aggregation levels”, 2022, DOI: 10.1186/s42162-022-00213-8

[3] https://github.com/PERFORM-Forecasts/documentation  

https://doi.org/10.1109/ISGT45199.2020.9087644
https://doi.org/10.1186/s42162-022-00213-8
https://github.com/PERFORM-Forecasts/documentation


Industry Needs

• A key industry need: 

• Explore the relationship between load and solar forecast errors

• (for different regions/climates/aggregations)

• Answer question: are load and solar forecast errors independent?

• An intermediate need:

• Open weather-to-load models:

• Bottom-up

• Trained from historical data

• Reference production cost models (open-source, e.g., in PyPSA?) 

• Assuming errors are not fully independent:

• Research is needed in regional probabilistic net load forecasting

• Current NWP ensembles are under-disbursed [1], so this could be 
challenging

[1] Wang et al., “An archived dataset from the ECMWF ensemble prediction system for probabilistic solar power forecasting,” 2022,

https://doi.org/10.1016/j.solener.2022.10.062 

Useful in lots of applications that currently 

“re-invent the wheel”, can’t be compared. 

We need pvlib for load (or EnergyPlus for 

regional grids)

https://doi.org/10.1016/j.solener.2022.10.062


Flexible Solar



Solar on AGC

• “Flexible” solar = easily curtailable solar

• Flexible solar will be curtailed less than traditional solar [1]

• Flexible solar can carry its own reserves, but with some error [2]

• Grid operators may need to forecast this error

• It is tied to solar resource variability [3]

• Will be explored in NREL OPTIMA project (CORRECT), but likely room 
for more R&D here

[1] Q. Wang; W. Hobbs; A. Tuohy; M. Bello; D. Ault. Evaluating Potential Benefits of Flexible Solar Power Generation in the Southern 

Company System. IEEE JPV, 2022. 10.1109/JPHOTOV.2021.3126118.

[2] W. Hobbs, D. Ault, V. Gevorgian, G. Saraswat, “Accuracy of Potential High Limit Estimation for Solar Plants in the Southeast US.” IEEE 

PVSC 2022.

[3]. M. Gostein, W. Hobbs, “Exploring Distributed PV Power Measurements for Real-Time Potential Power Estimation in Utility-Scale PV 

Plants.” IEEE PVSC 2023. https://dx.doi.org/10.36227/techrxiv.23262056.v1. 

https://dx.doi.org/10.36227/techrxiv.23262056.v1


Questions?
whobbs@southernco.com 

github.com/williamhobbs/solar-fleet-forecast-probability-tool

mailto:whobbs@southernco.com


This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

NYSolarCast: Utility-Scale and Distributed
Solar Power Forecasting in New York State

DOE Solar Forecasting Workshop ● 10 Jul 2024 ● Washington, DC

Jared A. Lee1, Susan Dettling1, Julia Pearson1,
Thomas Brummet1, and David P. Larson2

1 Research Applications Laboratory, NSF National Center for Atmospheric Research
2 EPRI



Published Article & Github Repository

• Article describing the 
NYSolarCast system 
published in Solar 
Energy in March 2024

• https://doi.org/10.1016
/j.solener.2024.112462 

• Github public 
repository: 
https://github.com/NCA
R/nysolarcast_delivery 

https://doi.org/10.1016/j.solener.2024.112462
https://doi.org/10.1016/j.solener.2024.112462
https://github.com/NCAR/nysolarcast_delivery
https://github.com/NCAR/nysolarcast_delivery


Motivation

• New York State (NYS) Clean Energy Standard

– 70% renewable energy (RE) generation by 
2030

– 100% RE generation by 2040

• Much more solar energy must be deployed 
across NYS

– Highly variable, weather-driven resource

– Challenge for grid balancing & stability

• Accurate forecasting is increasingly critical for 
electric utilities and independent system 
operators like NYISO

– Nowcast/intra-day forecasts

– Day-ahead forecasts

– Utility-scale photovoltaic (UPV) plants

– Distributed PV (DPV) sites

• Multi-phase project to build a solar power 
forecasting system for NYS

– Funded by NYSERDA & NYPA

– Team: EPRI, BNL, NSF NCAR, U of Albany

Image: Department of Energy, PV Magazine



NYSolarCast System Design & Schedule

• Intra-day
– Forecasts issued every 15 min 1115–1900 

UTC

– 15-min frequency for GHI and UPV forecasts

– 1-h averages for DPV forecasts

• Day-ahead
– Forecasts issued once daily at 0600 UTC



New York State Mesonet (NYSM)

• Historical and real-time data from all 126 
Standard NYSM stations, 1 Jan 2018–31 Aug 
2022

– All atmospheric data, incl. GHI, temperature, 
wind, humidity, etc.

– Averaged into 15-min time-ending values for use 
in NYSolarCast

– LI-COR LI-200R and LI-200RX pyranometers

• Instances of shaded or snow/ice-covered 
pyranometers were found, confirmed by U 
Albany, and excluded from training and 
validation datasets

• LI-COR pyranometers at the Standard sites can 
have bias/calibration issues, but these are not 
uniform network-wide

– NYSM team is working to address this issue

– Occasional updates to calibrations

– Sensors periodically replaced

• 17 of these Standard Network sites are also 
NYSM Flux Network sites with high-quality Kipp 
& Zonen CNR4 pyranometers

U.S. Climate Regions in 
NYS

Voorheesville NYSM site:

LI-200R 
Pyranometer

Photo by Jared Lee

CNR4 Pyranometer



WRF-Solar & HRRR

• Extended history of WRF-Solar® reforecasts over NYS for 
training for machine learning models

– 15 Jul 2018 – 31 Aug 2022, using WRF v4.2

– Intra-day: Out to 6 h, initialized hourly 11z–19z from 2-h old HRRR

– Day-ahead: Out to 42 h, initialized once daily at 06z from 06z 
HRRR

– Several valuable 2-D solar diagnostics in standard output

– 15-min, 3-km gridded output for both Nowcast & Day-ahead cycles

• Operational HRRR also downloaded and re-gridded to WRF-Solar 
grid to provide a blended NWP background grid

Hour (UTC)

00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00 03 06 09 12 15 18 21 00

19z Now

18z Now

17z Now

16z Now

15z Now

14z Now

13z Now

12z Now

11z Now

06z Day-Ahead (42 h)

06z Day-Ahead (42 h)

06z Day-Ahead (42 h)

19z Now

18z Now

17z Now

16z Now

15z Now

14z Now

13z Now

12z Now

11z Now

19z Now

18z Now

17z Now

16z Now

15z Now

14z Now

13z Now

12z Now

11z Now

NYSolarCast WRF-Solar Daily Simulation Schedule

Above: WRF-Solar domain 
(265x265) with NYS Mesonet 
stations included

Left: Sample WRF-Solar GHI 
forecast



StatCast: Blending NWP Models and GHI Observations from NYSM

• StatCast is a statistical forecasting model 
developed by NCAR, and has been applied to 
wind/solar forecasting previously

• StatCast uses the Cubist machine learning (ML) 
algorithm
– Rule-based decision trees

– Separate model for each lead time

– Single model for all of NYS

• Cubist predictand: Clearness index (Kt)
– Removes strong diurnal trend in GHI

– Can easily be converted back to GHI

• Cubist predictors for each lead time model 
include:
– WRF-Solar variables

– Past 45 min of observed Kt at NYSM sites

– Known solar angles

• Training period: 15 Jul 2018–30 Apr 2021

• Validation period: 1 May 2021–30 Apr 2022



Blending StatCast & NWP

• NYSM sites mapped to WRF-Solar grid 
points

• Kt is converted back to GHI at NYSM sites

• Initial radius of influence (ROI) of 40 km

• Each grid point in NYS is a weighted average 
of forecast GHI, with weights inversely 
proportional to distance to nearest NYSM 
site (“intermediate product”)

• WRF-Solar (panel a) & HRRR (panel b) are 
blended together as a background forecast 
(currently a 50/50 blend, panel c)

• StatCast blends intermediate product with 
NWP blended GHI to generate final gridded 
GHI product (panel d)

• StatCast weights (linear in between these 
points):
– 100% at 0 km, 90% at 30 km, 0% at 40 km 

from nearest NYSM site

– 100% from 0–3 h, 50% from 5.5–6 h



Percent Power Forecasts — UPV Farms

• Power production (in kW) and GHI data from 
several PV farms in NYS on monthly basis

– Provider A: 4 farms, training data to Apr 2021

– Provider B: 6 farms, training data to Apr 2021

– Varying start dates, varying QC issues

– Some farms are curtailed daily, some aren’t

• Rescaled to % capacity, set to P99.9 of obs

• Cubist used to generate % power models 
from GHI forecasts every 15 min at 15-min 
res.

GHI and % power output for one PV farm.
Real data is often messy and QC is crucial!



Percent Power Forecasts — DPV Sites

• NYSERDA has a database of over 101,000 
DPV installations (nameplate capacity, lat, 
lon, ZIP)

• NYSERDA has 1-hourly DPV production data 
from almost 500 “representative sites”

– Start/end dates & data quality vary by site

– Training 1 Jan 2018–1 Apr 2020 when available

– Most of these sites are within 10–15 km of the 
nearest NYSM station, all within 30 km

• NYSM obs (GHI, 2-m T, 2-m RH) converted to 
1-hourly time-ending averages • Single statewide distributed % power Cubist 

model

– U.S. Climate Regions in NYS is a variable for Cubist

• The data is messy—additional QC beyond 
NYSERDA’s QC is needed, e.g.:

– Pearson r of capacity factor (CF) & GHI < 0.75?

– P99 CF > 100% or < 50% of nameplate capacity?

– GHI > 1200 W/m2? CF > 150%?

– CF = 0 and GHI > 240 W/m2 (20% of 1200 W/m2)?

– GHI and CF both 0 or missing/NaN values for 
either?

The 436 NYSERDA 
DPV 
representative 
sites that were not 
completely 
rejected by QC



DPV Forecast Aggregation

• % power forecasts produced for every 
grid point in NYS

• For each distributed PV site, % power at 
nearest grid point multiplied by 
nameplate capacity

• All sites’ forecasted total power then 
aggregated regionally

• NYSolarCast currently configured to 
aggregate by regional (3-digit) ZIP code

• Could also use NYISO load zones, 
counties, or other useful regions of 
interest

• NYSolarCast framework is flexible for 
any aggregation — simply assign each 
grid point to a zone/region in a config 
file

• Note: Unresolved large mismatches of 
total DPV capacity in NYISO load zones 
between NYISO & NYSERDA databases

Image: Jennifer Boehnert 

(NCAR)

Source: 

NYISO



Kt Validation at NYSM Sites

▪ NYSolarCast & StatCast identical at NYSM for first 3.5 h, then NYSolarCast relaxes toward NWP 
Blend

▪ NYSolarCast better MAE than smart persistence and NWP Blend at all lead times and nearly all sites
▪ NWP Blend better MAE than smart persistence after 2 h, and slowly declines with lead time



Kt Validation at NYSM Sites

▪ Kt MAE fairly 
consistent at most 
sites at all times of 
day

▪ A few outlier sites 
with high MAE in 
early morning and 
late afternoon 
(additional shading 
issues??)



Kt Validation at NYSM Sites

▪ Near-zero Kt MBE at most sites
▪ Highest MBE sites mostly correspond with highest 

MAE

▪ Highest MAE mostly in Adirondacks, Upper Hudson 
Valley

▪ Possible additional snow/shading impacts at some sites?



GHI Validation at NYSM Sites — Comparison with Reference Forecast

• Compared NYSolarCast GHI 
forecasts at NYSM sites with a 
commercially available “off-the-
shelf” forecast model as a 
reference

– Reference forecast was in 30-min 
averages, so resampled NYSolarCast 
from 15-min instantaneous to 30-min 
averages

– Forecast schedules only lined up to 
allow comparisons at lead times of 1 
and 3 h (HA1 and HA3)

• Similar GHI RMSE at both lead 
times

• Improved GHI MBE at HA1 for 
NYSolarCast, also reduced spread

• GHI MAE skill score shows 
NYSolarCast is better at most sites 
at HA1, smaller differences at HA3



GHI Validation at UPV Sites

▪ NYSolarCast GHI at the UPV farm is nearly always better than the StatCast GHI at the nearest 
NYSM site

▪ If real-time obs from UPV farms are unavailable, NYSolarCast still adds value using nearby weather 
stations

▪ The forecast would be even better with access to real-time UPV farm obs (GHI, temperature, power)



Power Validation at UPV Farms

• 7 of 10 farms have both an 
MPE of -2 to +2% and MAPE 
of 9–12%

• Farm B6 excluded from future 
plots

• Farm B6 outlier status 
attributed to much shorter 
training period than other 
farms and several months of 
missing data during this 1-
year validation period



Power Validation at UPV Farms

• Power MAPE for all UPV farms fairly constant 
as a function of lead time, between 8–13%

• Levels off after ~3 hours

• Power MAPE for most UPV farms generally follows the 
diurnal GHI curve

• Farm A1, Farm A2, and Farm A4 all exhibit mid-day 
dip; production data indicates they are likely 
overbuilt



Power Validation at DPV Sites

• These 10 DPV sites have a range of sizes (783 kW–2.90 MW), tilt angles (10°–30°), and azimuth 
angles (141°–200°)

• 9 of the 10 sites have overall MAPE 6.8%–11.6%, and overall MPE –0.6% to 9.8%
• One outlier site just north of NYC has MAPE 16.5% and MPE 15.3% — data averaging/DST 

issues??



Power Validation at DPV Sites

• Aggregating these 10 sites across NYS together yields a lower MAE than any individual 
site, generally smaller MBE

• Aggregation over regions helps “cancel out” some of these differences in tilt & azimuth 
angle, shading, etc.



Power Validation at DPV Sites

• Aggregating these 10 sites across NYS together yields a lower MAE than any individual 
site, generally smaller MBE

• Aggregation over regions helps “cancel out” some of these differences in tilt & azimuth 
angle, shading, etc.



Summary

• We developed NYSolarCast to predict solar power in NYS — applicable in other areas!
– Entirely open source software framework (https://github.com/NCAR/NYSolarCast_delivery)

– Predicts GHI on a 3-km grid across NYS every 15 min out to 6 h, and at 06 UTC daily for day-ahead

– Predicts 15-min % power capacity at select utility-scale PV farms

– Predicts 1-hourly % power capacity for distributed PV aggregated to regions 

• Real-time NYS Mesonet data is critical to NYSolarCast system, especially in the absence 
of real-time data from UPV farms or DPV sites

• NYSolarCast beats both smart persistence & NWP blend at all intra-day lead & valid 
times 
– A few sites with larger errors may have additional shading or snow cover issues not flagged in QC

• NYSolarCast compares favorably with reference commercial GHI forecast at 1 & 3-h 
leads

• NYSolarCast GHI at UPV farms is nearly always better than StatCast GHI at nearest NYS 
Mesonet station
– Especially valuable when real-time data from UPV farms is not available

• Most UPV farms with MPE –2% to +2%, MAPE 9–12% over 1-year validation period

• NYSolarCast aggregated DPV MAPE < 10%, MBE < 7% for all times of day but late PM

• Article published in Solar Energy (https://doi.org/10.1016/j.solener.2024.112462)

https://github.com/NCAR/NYSolarCast_delivery
https://doi.org/10.1016/j.solener.2024.112462


Thanks for listening!

jaredlee@ucar.edu

Questions? Interested in using/expanding/improving NYSolarCast? Please email me!

Photos: ©2019 Jared Lee, Shagaya Renewable Energy Park, Kuwait
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Southern California Edison (SCE) is one of the nation’s 
largest electric utilities

15 MILLION
RESIDENTS

1,360 MW
ENERGY STORAGE 

CONTRACTS

724,000
TRANSFORMERS

1.4 MILLION
POWER POLES

3,500 MILES OF 
OVERHEAD POWER LINES 

REPLACED WITH 
INSULATED WIRE

118,000 MILES OF 
OVERHEAD DISTRIBUTION 
& TRANSMISSION LINES

6,090
POLES UPGRADED 

TO FIRE-
RESISTANT

5 MILLION
CUSTOMER 
ACCOUNTS

50,000 SQUARE-MILE 
SERVICE AREA
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California’s climate-change goals include a 
40% reduction in absolute greenhouse gas 
(GHG) emissions from 1990 levels by 2030, 
and 80% by 2050, as well as net-zero GHG 
emissions economy-wide by 2045

SCE is required by law to meet the following 
retail sales requirements for the power it 
delivers to customers:

✓ By 2020 – 33% of power from 
Renewables Portfolio Standard (RPS)-
eligible resources (requirement met)

❑ By  2030 – 60% of  power from RPS-
eligible resources

❑ By 2045 – 100% carbon-free power

Pathway 2045 (2019)
SCE’s 2019 data-driven analysis of the steps 
that California must take to meet the 2045 
goals to clean our electric grid and reach 
carbon neutrality.Reimagining the Grid (2020)
An assessment of the grid changes needed to 
support GHG reduction goals, while adapting 
to evolving customer (EV, DERs) and climate-
change driven needs.
Mind the Gap (2021)
An assessment of policy changes and additions 
needed to ensure California meets its GHG 
emissions reductions targets by 2030 in 
anticipation of its goal to decarbonize by 2045. 
Countdown to 2045 (2023)
A data-driven analysis of the steps that 
California must take to meet 2045 goals, which 
identified 5 key actions for affordably 
achieving carbon neutrality 

SCE has published several whitepapers outlining the cross-
sector collaboration required for achieving carbon 
neutrality:

SCE VIS ION FOR DECARBONIZATION AND AN ADVANCED 
GRID DRIVES  FORWARD THROUGH SUCCESSIVE  EFFORTS

https://www.edison.com/our-perspective/pathway-2045
https://www.edison.com/home/our-perspective/reimagining-the-grid.html
https://www.edison.com/our-perspective/mind-the-gap
https://www.edison.com/our-perspective/countdown-to-2045
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Countdown 2045:  Grid Expansion Estimates

TRANSMISSION DISTRIBUTION

Connecting 100+ GW of new 
generation needed by 2045 

could require nearly 90 new 
transmission lines

Planned in 
next 10 years 

(2023-2032)

Incremental 
for Countdown

(2033-2045)

New 
substations1 ~10 ~75

Substation 
expansions1 ~45 ~300

New
circuits1 ~130 ~1300

SCE Distribution in 2045…
• ~25% larger distribution system
• ~90% average circuit utilization
• Many service transformers and wires upgraded

New CAISO transmission capacity needed

2023-32:
~4 GW/year

2033-42:
~8 GW/year

20-year historical:
~2 GW/year

2023-354:
~7 GW/year

2035-45:
~8 GW/year

2032 2035 2042 20452022

SCE distribution projects needed



The Need for Forecasting & Managing DER

• Variable Renewable Energy (VRE) will need to be 
forecasted and managed to ensure generation and 
load are balanced on the distribution & 
transmission network

• >100GW of new resources needed from now to 
2045, with biggest capacity growth Solar:  Expected 
to increase from 23 GW to 63 GW

• Nearly half the solar capacity (31 GW) is BTM, 
representing around 50 TWH per year.  Because of 
the magnitude, any error in forecasting is a 
significant opportunity in terms of energy value and 
operations

• Inaccurate forecasts can lead to reliability issues or 
incur significant costs for SCE to secure energy 
contracts within a short period of time

• Inaccurate forecasts can lead to canceled 
maintenance operations.  SCE has ~100,000 yearly 
switching operations with a 2% cancellation rate.  
Customers require a 2 weeks notice, so any 
cancellation is a significant to operations.
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Grid Management System (GMS)
Operational Forecasting (2 months, or less) Short Term Forecasting Engine (STFE)

Findings from this material were also published in J. Schoene, M. Humayun, J. Ponnaya, A. Johnson, J. Ang, 
and A. Manella, "Operational Forecasting – Use Cases and Implementation Challenges," Southern California 
Edison, 2024.



SCE’s Grid Management System (GMS)
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• GMS is a system of systems that 
provides integrated grid 
management functions and one 
plane of glass for distribution 
operations.

• GMS enables model driven 
operations will enable greater 
utilization of the electric grid while 
enabling much needed operational 
flexibility.

• Allow SCE to run the grid closer 
to operating limits.

• New model driven analytics that 
enable greater grid flexibility 
and shift towards active grid 
management.
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Grid Management Capabilities Roadmap
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2021 2022 2023 2024
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SCE’s Short-Term Forecasting Engine (STFE)

• STFE provides information of real-time 

system generation and demand conditions so 

Grid Operators can take informed actions toward 

proactively preventing or mitigating adverse 

system conditions, thereby ensuring system 

reliability.

• Forecasting unmonitored PV: STFE’s Bellwether 

Methodology forecasts production of each 

unmonitored PV by associating it with a 

monitored PV of similar size and location. First 

value of STFE’s 5-minute time series production 

forecast used as an estimate of each 

unmonitored PVs real-time production.
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Long-RangeIntermediateShort

•Short-term Forecast: now to 48-hrs ahead at 5-minute intervals 
(updated every 15-minutes) 
•Intermediate range: 48 hours to 2-weeks ahead at 1-hr 
resolution (updated hourly)
•Long Range Forecast: 2-weeks to 2 months ahead providing daily 
peak generation (updated hourly)

No
w

48-hrs 2-
weeks

2-
months



Economic Optimization Engine (OE)

STFE provides day-ahead forecasts and, if needed, intraday hour-ahead 
forecasts to OE that facilitates DER participation in the wholesale market by 
informing market awards for the day ahead.

•  Day 1: (1) OE calculates operating limits for market-participating DERs to 
inform market awards for the next day using STFE’s day-ahead forecasts. (2) 
DERs bid into the wholesale market and receive awards accounting for DER 
operating limits. (3) OE calculates schedules for the non-market DERS.

•  Day 2: (4) schedules for all DERs are dispatched. (5) Intraday optimization 
may create a new operating schedule to relieve actual or STFE projected 
constraint violations in the presence of changes not anticipated when the 
operating schedule was created on the prior day.
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Economic 
Optimization

LMP & SCE 
system load 

forecast

Generation 
forecast

Substation 
load forecast

DER market 
participation 
bids/offers

Optimization 
objective 

function from 
operator

Swimlane calculation determines the active/reactive power envelope 
customer DER can import/export within to ensure thermal/voltage 
constraints are maintained.

Data inputs to the Economic Optimization 
ProcessEconomic Optimization Process



Inaccuracies in Forecasting Photovoltaic (PV) from Field 
Trial

• Forecasts don’t necessarily reflect 
actual output of DER

• Actual PV generation profiles more 
complex with cloud coverage

• Occasional dips in PV output caused 
by failure in calculating DER 
dispatches (OPF failures)

• Cost of Inaccuracies:
• Mismatch in committed vs actual 

generation impact grid reliability

• Rotating outages if there’s 
insufficient supply

• High cost of electricity to 
customers

• 20% inaccuracy in forecasting could 
cost SCE’s customers millions annually 
in additional energy procured 

• Cost to DER owners:
• Opportunity cost

• Discourages market participation

• Delays break-even point of customer 
return on investment for their DER
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Photovoltaic Forecasting Inaccuracies are illustrated in this dashboard where the forecasted (left) versus the measured (right) output of 
the residential PVs had a 22% average discrepancy throughout the day. Data from retrieved from SCE’s, DOE and CEC funded, EASE 
project
Department of Energy Award #: DE-EE0008004
California Energy Commission Contract #: EPC-17-024
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STFE currently does not forecast BESS behavior, but it 
needs to account for it when training its load algorithm 
and applying it to forecast load. Notably, it is particularly 
difficult to predict BESS that are (1) customer-owned and 
controlled, (2) available as reserve capacity and may 
dispatch on short notice and (3) used for frequency control 
to manage fast load and generation variations.

Charging/Discharging of a large distribution-connected BESS

STFE results are compromised by unpredictable BESS 
behavior can cause large forecast errors. A provision that 
can be put in place to avoid or mitigate violations quickly 
is the re-computation of the forecast triggered by 
updated BESS profiles or by a violation, both 
necessitating circuit-level sensors that can provide this 
information in real-time. After re-computation, the 
applications are re-run with the corrected STFE results.

Interplay between BESS behavior, load, and PV generation

Inaccuracies caused by Battery Energy Systems (BESS)



Challenges Impacting Forecasts and Optimization Results
Variance of Customer DER: Inaccuracies in 

committed vs actual dispatches due to variances in 
inverter products and accounting for uncontrollable 

customer DER

Weather services: Inaccuracy/absence of weather 
forecasts from weather services

Communication Issues: latency, aggregate network 
reliability at customer sites

Data historization: trade-off between cost and 
data resolution

Data quality: missing data, errors, time 
synchronization issues

Circuit model inaccuracy: impacts ability to 
effectively balance load/generation and conduct 

operational short-term demand planning

Usability: user interface design to provide enough 
customizability without sacrificing ease-of use for 

forecast advisors
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SCE’s Grid Management System put in place the 
systems to manage DER and prepare the grid for 
2045.

SCE will be validating its forecasting and DERMS 
optimization systems in pilot evaluations in 2026 
to ensure they can reliably and efficiently actively 
manage DER and other grid assets.

The models are only as good as the inputs. Grid 
operation will need accurate forecast at the 
short, intermediate and long-term ranges.

The rapid expansion of the grid and generation 
sources will increase the importance of accurate 
forecasting to maintain affordability and 
reliability.  
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