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Solar Energy Technologies Office (SETO) Overview

We accelerate the advancement and deployment of solar technology in support of an 

equitable transition to a decarbonized economy no later than 2050, starting with a 

decarbonized power sector by 2035.

MISSION

Drive innovation in technology 

and soft cost reduction to 

make solar affordable and 

accessible for all Americans

Enable solar energy to 

support the reliability, 

resilience, and security of 

the grid

Support job growth, 

manufacturing, and the 

circular economy in a wide 

range of applications

WHAT WE DO
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Where Does SETO Fit Within the Energy Department?
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Driving Toward Administration Decarbonization Goals

Support a decarbonized industrial sector with advanced concentrating solar-thermal technologies and 
develop affordable renewable fuels produced by solar energy.  

Accelerate solar deployment and associated job growth by opening new markets, reducing regulatory 
barriers, providing workforce training, and growing U.S. manufacturing.

Enable inverter-based technologies to provide essential grid services and black start capabilities while 
demonstrating the reliable, resilient and secure operation of a 100% clean energy grid. 

Reduce hardware and soft costs of solar electricity for all Americans to enable an affordable carbon-free 
power sector by 2035.

Center energy justice by reducing environmental impacts, removing barriers to equitable solar access, and 
supporting a diverse and inclusive workforce.
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SETO Subprograms 

PHOTOVOLTAICS (PV) CONCENTRATING SOLAR-
THERMAL POWER (CSP)

SYSTEMS INTEGRATION STRATEGIC ANALYSIS AND 
INSTITUTIONAL SUPPORT *

MANUFACTURING AND 
COMPETITIVENESS

WORKFORCE AND 
EQUITABLE ACCESS *

*Funded from the Soft Costs Budget Line



7U.S. DEPARTMENT OF ENERGY       SOLAR ENERGY TECHNOLOGIES OFFICE

DOE Solar Office Funds 600+ Active Projects

Projects and partners in 43 states plus the District of Columbia

36% of projects 

led by national labs

25% of projects 

led by universities

39% of projects led by 

businesses, non-profits, and state 

and local government
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U.S. Solar: Falling Costs, Rising Deployment
The solar energy industry is one of the fastest growing industries in the nation. Driven by falling costs and 

state and federal policy, total solar PV installed capacity is now over 180 GW and is projected to grow to 

about 220 GW by the end of the year. 

Sources: Wood Mackenzie/SEIA: Solar Market Insight Report 2023 Year in Review. National Renewable Energy Lab System Advisor Model was used to depict electricity costs as the 

levelized cost of energy (LCOE) for a utility-scale system in a mid-America location with average solar resource, without benefit of tax credits
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PV Deployment and System Price in the U.S. (2010–2023, 2024 Estimate)

https://www.seia.org/research-resources/solar-market-insight-report-2023-year-review
https://sam.nrel.gov/photovoltaic.html
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Record-breaking Installation Volumes!
At the beginning of May, WoodMac revised their 2023 
annual installations upwards from 32 GWdc to 40 GWdc. 
This was the result of a modification to how they 
determined the installation date for UPV projects in Texas 
(which represented 29% of installs in 2023 and was 5.2 
GW higher in 2023 after the adjustment), plus data from 
developers that they received after the deadline for their 
earlier report (including AZ, VA, LA, and NC).

Installation data for Q1 2024 is preliminary, however, 
estimates range from 10-12 GWdc of installs. This is nearly 
double Q1 2023 installations, which is notable because Q1 
installations are usually the lowest volume of the year 
(with Q4 being the highest, often by a substantial margin).

WoodMac’s most recent projections (released June 6) for 
2024/2025 were revised upwards by a few GW, but they 
are still projecting nearly flat installation growth for the 
next several years due to ongoing labor and high voltage 
equipment constraints plus the trade policy uncertainty.

7.7 GW

Sources: Energy Information Administration (EIA) Electric Power Monthly, Wood Mackenzie 

(WoodMac) US Solar Market Insight: Q2 2024. All 2023 and 2024 data is preliminary and 

different data sources update at different times.

*DPV = distributed photovoltaics, UPV = utility-scale photovoltaics, YTD = year-to-date

**Inverter loading ratio = 1.15 for DPV and 1.3 for UPV

10.7 GW

11.8 GW

projections

https://www.eia.gov/electricity/monthly/
https://power-and-renewables.woodmac.com/reportaction/150275120/Toc?SearchTerms=us%20solar%20market%20insight%3A%20q2%202024


10U.S. DEPARTMENT OF ENERGY       SOLAR ENERGY TECHNOLOGIES OFFICE

Research Areas: Systems Integration

Where we are now:

• Inverter-based solar and wind resources pose challenges to system reliability and 

stability

• Solar generation variability and uncertainties

• System operators have no visibility or control over most distributed solar

Priority R&D Topics:

• Develop long-term planning models and tools for solar integration

• Develop advanced control capabilities for power electronics 

• Enhance grid services to operate high-solar grid

• Advance communications and sensing for situation awareness

• Improve solar forecasting

• Integrate storage to add flexibility

• Enhance resilience and security in system design 

• Accelerate grid codes and standards development

The goal for SETO’s system integration research is to achieve high-solar grid integration by 

supporting the reliability of the power system, enhancing resilience and security, 

and increasing system flexibility to reduce grid integration costs.

Find our latest Peer Review feedback here: https://www.energy.gov/eere/solar/2024-seto-peer-review  

https://www.energy.gov/eere/solar/2024-seto-peer-review
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Thank you for being here today!

Questions?
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Solar Forecasting Research
through the lens of DOE-SC
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Gary Geernaert

Earth and Environmental Systems Science Division

Office of Biological and Environmental Research
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OUTLINE

• A little about us in Office of Science

• BER portfolios relevant to Solar Forecasting

• Success stories relevant to solar forecasting

• Imagining forecasting capabilities in the next few years
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Office of Science Research Portfolio
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Biological and Environmental 
Research

Dorothy Koch, Associate Director

Earth & Environmental Systems Science
Gary Geernaert, Director

▪ Atmospheric System Research
▪ Environmental System Science
▪ Earth and Environmental Systems Modeling
▪ Facilities & Infrastructure
▪ Environmental Molecular Sciences Laboratory (EMSL)
▪ Atmospheric Radiation Measurement (ARM)

Biological Systems Science
Todd Anderson, Director

▪ Genomic Science
▪ Bioenergy Research Centers

▪ Biomolecular Characterization & Imaging Science
▪ Facilities & Infrastructure
▪ Joint Genome Institute

Advanced 
Scientific 

Computing 
Research

Basic 
Energy 

Sciences

High 
Energy 
Physics

Fusion 
Energy

Nuclear 
Physics

DOE Office of Science
Harriet Kung, Acting Director
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DOE EESSD Permanent Staff 

17

ATMOSPHERE TEAM MODELING TEAM ESS TEAM
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Atmospheric Sciences overview 
relevant to solar forecasting
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ASR Priority Research Areas and Working Groups

Convective cloud 
processes and properties 
including cloud cover, 
precipitation, life cycle, 
dynamics, and 
microphysics over a range 
of spatial scales.

Aerosol processes 
governing the spatial and 
temporal distribution of 
atmospheric particles and 
their chemical, 
microphysical, and optical 
properties.

High latitude processes 
including cloud, aerosol, 
and surface-interaction 
processes controlling the 
surface energy budgets in 
northern and southern 
high latitude regions

Warm boundary-layer 
processes controlling the 
structural and radiative 
properties of clouds, 
aerosols and their 
interactions with the 
underlying surface in the 
lowest few kilometers of 
the atmosphere.
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The Atmospheric Radiation Measurement 
(ARM) User Facility

2

0

Support for field 

campaigns ranging 

from guest 

instruments to facility 

deployments

Large-eddy 

simulation (LES) 

model simulations & 

analysis tools

Extensive data 

management 

infrastructure. Data 

freely available 

Piloted & uncrewed 

aerial measurement 

platforms

Network of 3 fixed-

location & 3 mobile  

observatories

Measurements of 

clouds, aerosols, 

precipitation, radiation, 

surface properties & 

the atmospheric state 

since 1992

Support for process 

studies & model & 

satellite development
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• 3 fixed measurement sites (Oklahoma, Alaska, Azores) in different 
climate regimes; 1 mobile facility for mid-range (~5 year) 
deployments (SE US, Oliktok Point)

• 2 mobile facilities available for proposal-driven deployments
◦ e.g., the CAPE-k, CoURAGE, EPCAPE, SAIL campaigns

• 24/7 data collection at fixed/mobile facilities with all data freely 
available at www.archive.arm.gov 

• High-performance computing  for working with large ARM data sets

• Aerial facility component

Atmospheric Radiation Measurement (ARM) User  Facility

21

https://arm.gov/ 

http://www.archive.arm.gov/
https://arm.gov/
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ARM Facility data in publications on solar forecasting

Wang, et al., May 2024:  A novel solar irradiance forecasting method based on multi-
physical process of atmosphere optics and LSTM-BP model.  Renewable Energy.

Liu W, Y Liu, T Zhang, Y Han, X Zhou, Y Xie, and S Yoo. 2022. "Use of physics to 
improve solar forecast: Part II, machine learning and model interpretability." Solar 
Energy, 244, 10.1016/j.solener.2022.08.040.

Liu W, Y Liu, X Zhou, Y Xie, Y Han, S Yoo, and M Sengupta. 2021. "Use of physics to 
improve solar forecast: Physics-informed persistence models for simultaneously 
forecasting GHI, DNI, and DHI." Solar Energy, 215, 10.1016/j.solener.2020.12.045.

Manandhar P, M Temimi, and Z Aung. 2023. "Short-term solar radiation forecast using 
total sky imager via transfer learning." Energy Reports, 9(1), 10.1016/j.egyr.2022.11.087.

22

https://linkinghub.elsevier.com/retrieve/pii/S0038092X22005904
https://linkinghub.elsevier.com/retrieve/pii/S0038092X22005904
https://www.sciencedirect.com/science/article/pii/S0038092X20313049
https://www.sciencedirect.com/science/article/pii/S0038092X20313049
https://www.sciencedirect.com/science/article/pii/S0038092X20313049
https://doi.org/10.1016/j.egyr.2022.11.087
https://doi.org/10.1016/j.egyr.2022.11.087
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Open-source sky image datasets for solar forecasting with deep 

learning: A comprehensive survey:  Yuhao Nie, et al., 2024

The DOE ARM Facility 
contributes to the 
open-source sky 
imager data base.
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Earth and Environmental System Modeling 
overview relevant to solar forecasting



Energy.gov/science

Advanced E3SM capabilities for RGMA to 
enhance understanding

Knowledge from RGMA simulations and analyses 
to benefit E3SM development

Earth System Model Development
                      (ESMD)

Regional and Global Model Analysis (RGMA)
 

MultiSector Dynamics
 (MSD)

There are three foci of the Modeling Program, with some interdependence 
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Strategies: 
➢ Science drivers for model development
➢ Earth system across scales (high-resolution frontier, bridge 

gaps, quantify uncertainty)  
➢ Prepare for and overcome the disruptive transition to next 

era of computing, leverage ASCR HPC capabilities
➢ Innovative mathematical, computational methods, tools, 

algorithms, technologies (e.g., ML/AI) 

More E3SM Acronyms: https://e3sm.org/resources/help/acronyms/

Goal: Support the development of E3SM including its 
subcomponents, to address the grand challenges of 
actionable predictions of the changing Earth system, 
emphasizing on the most critical scientific questions facing the 
nation and DOE

Innovative and computationally advanced ESM capabilities, in support of Energy science and mission

                           The Energy Exacsale Earth System Model (E3SM)

26



E3SM-Arctic atmosphere grid E3SM-Arctic ocean grid

• DOE’s flagship climate 
model 

• 7 nat’l labs and NCAR 
• Includes the full earth 

system and many 
human systems

• Can “zoom in” to 
regions of interest

• Atmos cloud resolving 
component at 3 km 
resolution

• Uses DOE Exascale 
High Performance 
Computers

Key tool for regional scale predictability: DOE’s Energy Exascale Earth System Model 
(E3SM)
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E3SM SCREAM is skillful in simulating present-day clouds and 
predicts more surface solar with warming
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Predicted change in downward surface 
solar flux with +4K warming*
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Skill in reproducing ISCCP’s 
present-day cloud properties

Present-day 
total cloud cover

decreasing solar
-21 -15 -3-7-11 3 7 211511

W m-

2
increasing solar

*Longer, non-idealized simulations needed to 
establish robustness of response.

Worse

Better



Energy.gov/science

Top of Atmosphere shortwave flux difference between 
SCREAM 3km and satellite (CERES-EBAF)

Baseline surface downward solar radiation 
flux in SCREAM 3km

W m-

2
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https://globalchange.mit.edu/research/research-projects/integrated-framework-modeling-multi-system-dynamics 

Multi-system, multi-sector modeling 
framework to explore 
stressors, risks and responses, tipping 
points, of interconnected physical and 
socioeconomic systems

Toolbox for Multi-Sector Modeling

• Human-

Natural System 

Interactions

• Transportation 

Infrastructure

• Stress-Testing 

Paired Systems

Major Tasks:

Human Systems Natural Systems Pattern Scaling 
Extremes

Probabilistic 
Ensembles

Scenario Discovery

Electricity Models Water Resources

CAM3 & WRF

Emulators Decision Frameworks Risk Triage

Multi-Scale Interactions

Global Drivers Teleconnections
Local 

Systems

Decision-

Making

AI/ML techniques is a new priority to more rapidly advance science and prediction

https://globalchange.mit.edu/research/research-projects/integrated-framework-modeling-multi-system-dynamics
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Opportunities to improve solar forecasting based on 
research in BER

• The E3SM prediction capability will be further developed with a flexible grid 
to extend atmospheric modeling below 3 km

• ARM data coupled with AI will yield an improved stochastic representation of 
high resolution patterns of solar irradiance over specific regions of interest.

• Projections of future changes in solar radiance patterns, associated with 
climate change, will be included in the E3SM simulations.

31
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Climate modeling and grid planning



Photo by Dennis Schroeder, NREL 55200

Creating High-Resolution Climate Data 

for Solar Energy Applications

Jaemo Yang (NREL)

DOE Solar Forecasting Workshop

July 9-10 | Washington, D.C.
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Why are climate data needed ?

▪ PV technology has rapidly advanced in the last decades, and its global deployment has significantly grown.

▪ Solar irradiance is greatly influenced by the Earth’s atmosphere and weather.

▪ Climate change likely leads to changes in future weather (e.g., increases in heat waves).

▪ Climate change is increasingly causing extreme weather events to become more frequent and intense. 

▪ Thus, it is essential to assess and understand the potential impacts of future climate change on solar generation 
and the power sector. 

Graphic from 
International Renewable 
Energy Agency

Installation capacity of solar energy worldwide

Solar

Graphic from U.S. Energy 
Information 
Administration
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CMIP and Climate Scenarios 
▪ CMIP (Coupled Model Intercomparison 

Project): 
- Managed by World Climate Research 

Programme (WCRP)
- Climate scenarios resulted from multi global-

scale models contribute to IPCC report

▪ CMIP6: 
- Consider different socio-economic 

developments as well as different pathways 
of greenhouse gas concentrations.

- Provide climate simulations under Shared 
Socioeconomic Pathways (SSPs)

CMIP/CMIP6 
Experiment Design 
(Eyring et al. 2016) 

O’Neil et al. 2014

Fossil-Fueled 
Development

Regional 
Rivalry

Middle of the Road

Sustainability Inequality
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Why high resolution?

▪ General circulation model (GCM) limitations: 
- Very low resolution (> 100 km and daily)
- Systematic errors or biases
- High deviations from observational data

▪ Needs: 
- Provide high resolution data
- Provide un-biased climate projections

▪ Options: 
- Dynamical downscaling methods
- Statistical/machine-learning based 

downscaling approaches
- Bias correction 

Graphic from: 
https://dept.atmos.ucla.edu/
alexhall/downscaling-cmip6

Example: simulated precipitation anomalies

Resolution relevant for climate 
impact studies!

mm/d

https://dept.atmos.ucla.edu/alexhall/downscaling-cmip6
https://dept.atmos.ucla.edu/alexhall/downscaling-cmip6


Methods for Downscaling of Climate Data
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GCM

RCM

HPC

PROS & CONS
PROS ▪ Downscaling approach that is based on consistent and physical 

mechanism.

▪ Capable of resolving atmospheric and surface processes occurring at 

sub-GCM grid scale.

▪ Not constrained by historical record.

▪ Capable of producing various atmospheric variables as outputs.
CONS ▪ Computationally intensive.

▪ Affected by bias of driving GCM.

▪ Uncertainties in modeling when selecting different parameterizations.

▪ May require further bias correction of RCM outputs.

Graphic from NCAR NCL: 

https://www.ncl.ucar.edu/

Trzaska, S, Schnarr, E (2014) A review of downscaling methods for climate change projections. United States Agency Int 

Dev by Tetra Tech ARD 1–42, http://www.ciesin.org/documents/Downscaling_CLEARED_000.pdf

Dynamical Downscaling

▪ Use GCM’s outputs as inputs for regional climate models 

(RCMs) (e.g., WRF, RegCM)

▪ Use governing physical laws to integrate dynamic solution

https://www.ncl.ucar.edu/
http://www.ciesin.org/documents/Downscaling_CLEARED_000.pdf
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Statistical/ML-based Downscaling

PROS & CONS
PROS ▪ Computationally inexpensive and efficient.

▪ Methods range from simple to elaborate and are flexible 

enough to tailor for specific purposes.

▪ Relies on the observed climate as a basis for driving future 

projections.
CONS ▪ Very difficult to capture convective-scale atmospheric 

phenomenon (i.e., dx < 10 km) because of no 

representation of physics such as convection/turbulence.  

▪ High quality observed data may be unavailable for many 

areas or variables.

▪ Over-fitting problem.

▪ Machine-learning approach is sometimes defined as 

“black-box” model – i.e., not interpretable model.

▪ Use statistical relationships between large-scale 

predictor fields and high-resolution predictands

▪ Train the model on observational datasets 

GCM ML-based

Buster et al., “High-resolution meteorology with climate 

change impacts from global climate model data using 

generative machine learning”, Nature Energy (2024). 
https://doi.org/10.1038/s41560-024-01507-9 

https://doi.org/10.1038/s41560-024-01507-9


On-going Project 1: PACES
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PACES: Power Planning for Alignment of 

Climate and Energy Systems
PartnersProject Overview:

▪ Climate change is already posing significant chronic and acute risks 

to power system planning targets and operations.

▪ The energy sector lacks cohesive frameworks and datasets to answer 

national-scale planning questions related to climate risks.

▪ This project aims to establish best practices and open-access datasets 

to bridge these capability gaps. 

Key Innovations:

▪ Application of two different climate downscaling methods- machine 

learning-based and dynamical techniques. 

▪ Best practices in equitable power system planning for climate change 

impacts. 

▪ Analysis of extreme events- heat and cold waves, wind/solar/water 

droughts, wildfires, and floods.

▪ A roadmap for utility implementation demonstrated with Tennessee 

Valley Authority and Southern Company.

Impact: We will enable the 

energy industry to plan 

systems that are robust to 

the impacts of climate 

change 
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True High Res (WTK or NSRDB)

Coarsen to 

create training 

data

Low Res (WTK, NSRDB, GCM)

Generative 

Model

Discriminative 

Model

Synthetic High-Res Output

100km Daily

4km Hourly

4km Hourly

Sup3rCC (ML-based)

Climate Data Downscaling with 
Generative Machine Learning

▪ Super-Resolution for Renewable 
Energy Resource Data with Climate 
Change Impacts (Sup3rCC)

▪ Computationally efficient: 

 Downscale 1 year of CONUS data to 4km 
hourly resolution in 30 minutes wall-
clock time

▪ Designed for renewables:

 wind, solar, temp, humidity, precipitation

▪ Fully integrated into NREL energy 
analysis software (reV, ReEDS, etc…)

▪ Open-source

https://nrel.github.io/sup3r/ 

Buster et al., “High-resolution meteorology with climate change impacts 

from global climate model data using generative machine learning”, Nature 

Energy (2024). https://doi.org/10.1038/s41560-024-01507-9 

https://nrel.github.io/sup3r/
https://doi.org/10.1038/s41560-024-01507-9
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WRF 
model 
(RCM)

GCM Data:
• High-quality input (~100 km resolution) for RCM 
• Consider bias-corrected fields in GCM data: air 

temperature, pressure, humidity, wind, etc. 

Downscaled GHI

•: Location of PV plants

w/m
2

Downscaled wind speed@80m

•: Location of wind plants

m/s

• Radiative transfer
• Planetary boundary layer
• Microphysics
• Land surface model, etc.

WRF 
physics
modules

Graphic from NCAR NCL: https://www.ncl.ucar.edu/

Graphic by NREL. Meta and atmospheric data from EIA and HRRR:

https://www.eia.gov/, https://rapidrefresh.noaa.gov/hrrr/

WRF: https://www.mmm.ucar.edu/models/wrf

▪ Dynamical downscaling approach can generate a 

full set of physically consistent high-resolution 

climate data.

▪ Use the widely used Weather Research and 

Forecasting (WRF) model to downscale 100 

years of GCM data for SSP2-4.5 and SSP5-8.5.

▪ The best WRF configurations will be developed 

to accurately represent modeled atmospheric 

variables related to renewable energy 

applications.

Objective: Develop unbiased, physically 

consistent, high-resolution (4 km and hourly) 

downscaled future projections for entire 

CONUS

WRF Dynamical Downscaling (Physics-based)

https://www.ncl.ucar.edu/
https://www.ncl.ucar.edu/
https://www.eia.gov/
https://rapidrefresh.noaa.gov/hrrr/
https://www.mmm.ucar.edu/models/wrf
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▪ Designed numerical experiments with five different 

WRF configurations to find a right combination of 

physics modules.

▪ Implemented an evaluation of key atmospheric 

variables against observational data for 17 climate 

zones on CONUS domain.

Köppen-Geiger (KG) climate 
classification

(Habte et al. 2020)

Climate zone

Better

KS-Test for WRF Simulations (15 years)

Numerical Experiments (Dynamical Downscaling)

Experiment Based on WRF configuration used in (applications to entire CONUS) 

E01 WRF-Solar (NWP specialized for solar energy applications)

E02 WRF-Solar EPS (ensemble prediction system tailored for solar energy)

E03 PR100 + Wind Toolkit (high-resolution wind resource data)

E04 IM3/HyperFACETS TWG simulations (downscaled climate data, 12 km) 

E05 CONUS404 (downscaled reanalysis data, 4 km)



▪ Capability of representing extreme events 

(e.g., tropical cyclones)

48

Sandy 
2012

Florence 
2018

Modeling Extreme Events



On-going Project 2: NCDB
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Downscaling Future Solar Projections

Large scale RCM 
daily data in future 

years

Small scale 
projected hourly 
solar, wind, and 
temperature in 

future years

Statistical 
model

Calibrate RCM parameters 
using solar, temperature, 
and wind observations

Statistical 
model

NSRDB: https://nsrdb.nrel.gov/

Climate Data Downscaling with 
Statistical methods

▪ This work aims to 1) develop statistical methods within an efficient framework and 2) 

downscale future climate data sets tailored for solar energy applications. 

▪ The NSRDB is used to build and calibrate the statistical downscaling models.

▪ Technical approach:

❶Regridding → ❷Bias-correction → ❸Temporal downscaling → ❹Spatial downscaling

RCM-based climate projections 
obtained from the North 
American Coordinated Regional 
Climate Downscaling Experiment 
(NA-CORDEX; https://na-
cordex.org/) are used as inputs to 
the proposed statistical methods.

https://nsrdb.nrel.gov/
https://na-cordex.org/
https://na-cordex.org/
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Bias-correction of RCM GHI

Raw RCM

Bias corrected

▪ GCM’s horizontal grid spacing  (> 100 km) is too 
coarse to represent local processes and terrain 
heterogeneity and the RCM’s also have inherent 
systematic and random modeling errors stemming 
from various model components.

▪ Therefore, bias-correction of RCM output should be 
considered before any application of climate data

▪ We employed a bias correction technique based on 
quantile mapping to reduce bias of RCM GHI.

On average across all pixels, the bias of bias-
corrected GHI is less than 10% compared to 
the NSRDB.
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▪ The bias-correction method applied to the raw RCM conserves both the trend and pattern of the raw 
RCM GHI. 

▪ This indicates that the quantile mapping reduces the bias of RCM GHI without adversely impacting 
the RCM’s ability to represent future projections of solar irradiance trend and variability.

95-years Bias-corrected GHI Projections

BC Method: Quantile mapping
Training period: 2006-2020 (15 years)

Bias corrected

Raw RCM GHI



NREL    |    53

Temporal and Spatial Downscaling of RCM GHI
Temporal downscaling architecture

Simulated timeseries (out-of-sample application)

Training: 1998-2020 
NSRDB data (23 years)

▪ Temporal downscaling is the key to accurate 

generation of hourly-scale GHI using statistical 

methods.

▪ The thin plate splines (TPS) is used as a method 

to spatially downscale the 20-km RCM GHI to 4-

km resolution. 

Spatial downscaling
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Evaluation of Downscaled GHI and DNI (daily total, 2006-2020)

▪ Downscaled climate projections show nBIAS less than 2% and 10% for GHI and DNI, respectively 
across all climate zones.

▪ KS-test shows the similar distance between two distributions (NSRDB and downscaled climate data). 

Köppen-Geiger (KG) climate classification

Habte et al. 2020
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National Climate 
Database (NCDB)

▪ The climate.nrel.gov data application will be a public 
facing web interface to allow users to explore, visualize, 
and download climate resource data sets.

▪ This platform will compliment the NSRDB

▪ Become the go to platform for meteorological climate 
data
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Concluding Remarks

▪ Climate change and its impacts on renewables cannot be ignored anymore in 
energy fields.

▪ To help mitigate climate effects on energy systems, DOE is now seeking to 
understand the short-term and long-term impacts of climate and extremes and 
develop future climate data to be included in a range of risk management tools for 
the energy sector (e.g., PACES project).

▪ Downscaled climate datasets specialized for solar and other renewable energy 
applications are currently being developed using different approaches.

▪ It is expected that the high-resolution data will be leveraged for various energy 
applications.
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Current state-of-the-art of solar forecasting technologies: 

from physics-based model to AI/ML-based models
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SETO Solar Forecasting Workshop: July 9-10, 2024

Current State of the Art in Solar Forecasting 
Techniques: From Physics Based Models to AI/ML 
Based Models
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Physics Based Models: WRF-Solar Ensemble 
Prediction System
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WRF-Solar

Ensemble prediction system based on WRF-
Solar that-
▪ Provides probabilistic forecasts for the grid 

with ensemble members tailored for solar 
forecasts.

▪ Delivers calibrated forecasts that -
▪ Produce unbiased estimation of 

irradiance. 
▪ Improves previous state-of-art solar 

forecasts and reduces uncertainty by 
over 50%.

▪ The model is publicly downloadable.

WRF-Solar GHI
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Approach

• Identify variables that significantly influence the formation and 

dissipation of clouds and solar radiation through a tangent 

linear analysis of WRF-Solar modules that influence cloud 

processes.

• Introduce stochastic perturbations in the variables identified in 

previous step to develop WRF-Solar ensemble prediction 

system (WRF-Solar EPS).

• Calibrate WRF-Solar EPS using observations to ensure that 

the forecasts’ trajectories are unbiased and provide accurate 

estimates of forecast uncertainties under a wide range of 

meteorological regimes.

• Demonstrate the improvements of WRF-Solar EPS.

• Incorporate WRF-Solar EPS in the WRF-Solar community 

model as an open-source probabilistic framework:          

https://ral.ucar.edu/solutions/products/wrf-solar-eps

WRF-Solar EPS is the first NWP ensemble model 
specifically designed to provide probabilistic irradiance 
forecast.

Development
WRF-Solar 

Tangent linear analysis of WRF-Solar modules for 
sensitivity study 

Introduce stochastic perturbations in the selected 
variables 

Calibration of WRF-Solar EPS forecasts to remove 
bias and improve spread accuracy 

Deliver WRF-Solar EPS package capable of providing 
accurate probabilistic forecasts 

Configuration and assessment of the WRF-Solar EPS 
ensemble 

Assessment



Funded by:

Satellite-derived Datasets for Validation

MAE comparison of WRF-Solar, 
NSRDB, and ground Obs. 

MAE of WRF-Solar GHI 
calculated with ground Obs. 

MAE of WRF-Solar GHI 
calculated with NSRDB. 

The MAE calculated with NSRDB is within ~5% of high-quality ground observations and  reproduces the 
spatial variability of the error (r = 0.96).

NSRDB compared with surface observations and deterministic WRF-Solar day ahead forecasts (2018).

Accuracy of NSRDB is sufficient for WRF-EPS validation. 



Funded by:

WRF-Solar v1 vs WRF-Solar EPS

MAE of GHI was reduced by 8% when using WRF-Solar EPS and comparing the day-ahead forecast to 
baseline WRF-Solar V1.

Mean Absolute Error of GHI for 2018 using NSRDB W/m^2



Funded by:

Ensemble Calibration: Methodology

Basic idea of weather analogs

Today One week ago? 1 year ago?

Can we use this 
information to improve 
NWP forecast?

Concept of analog ensemble (AnEn)

We implemented an analog technique as an ensemble post-processing method to improve the 
performance of WRF-Solar EPS. High-quality observations are essential to improve solar forecasts.

Delle Monache et al. 2013

We used the NSRDB to 
calibrate the ensemble 
forecasts. 



Funded by:

Ensemble Calibration: Results

• GHI bias was reduced by 81% (calibrated WRF-Solar EPS vs. WRF-Solar V1).

• GHI bias is approximately 1% compared to NSRDB.

• Forecast bias was reduced for all regions.

Mean Bias Error (MBE) of GHI for 2018 using NSRDB
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Cloud Detection Metrics

WRF-Solar EPS (prediction)

NSRDB9km

(observation)

Scenario Clear Cloudy

Clear a b

Cloudy c d

Contingency matrix for the WRF-Solar EPS and NSRDB: 

Mismatched cloud frequency (MCF)

𝑀𝐶𝐹 =
𝑐

𝑐 + 𝑑
× 100% 
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Evaluation of Monthly Cloud Mask Forecast for Different Cloud Types

MCF

Deep
Convective

CirrostratusCirrus

NimbostratusAltostratusAltocumulus

StratusStratocumulusCumulus

% • We used EMP50 and analyzed MCF classified in 

different cloud optical depth (COD) and cloud 

top height (CTH). 

• Given the MCF, WRF-Solar EPS provides 

accurate forecasts for high-level and thick 

clouds, whereas low-level and thin clouds 

cause difficulties in predicting cloud masks from 

the WRF-Solar EPS. 

• There are notable low MCF values for 

‘Cumulus’ category in summer.

• This might be a result of the representation of 

shallow cumulus clouds using the Deng 

parameterization in WRF-Solar EPS. 

• But note that there are also difficulties in 

detecting thin and low-level clouds from 

satellite.

R1: OPD ≤ 3 
R2: 3 < OPD ≤ 20
R3: 20 < OPD

High level
clouds

Mid level
clouds

Low level
clouds

Thin Mid Thick

Mismatched cloud frequency (MCF, %)

EMP50 : Observations are cloudy when 
cloud fraction from NSRDB is > 50%



Funded by:

WRF-Solar EPS Website

• WRF-Solar has been incorporated into the 

official version from WRF v4.4 

• We have created the website for WRF-

Solar EPS 

(https://ral.ucar.edu/projects/wrf-solar-

eps).

• This website includes a preliminary 

overview of WRF-Solar EPS:

✓ Description of WRF-Solar EPS

✓ User’s guide

✓ Publications

https://ral.ucar.edu/projects/wrf-solar-eps
https://ral.ucar.edu/projects/wrf-solar-eps


Era of Large Foundation Models

Machine Learning-based Solar Forecasting
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History of Hybrid NWP AI Models

Current NWP Workflow Hybrid NWP-ML Workflow Future End-to-End DL Workflow

Pre-processing

Prediction

Post-processing

Input: meteorological observation (weather stations, radiosondes, satellites, etc.)

Physical feature calculation

Physical feature calculation
Machine learning feature 

engineering
Data preparation

Pre-processed data

3D-/4D- Var + ensemble Kalman 
filter + Nudging

Machine learning

Initial conditions

Dynamical 
core

Parameterization 
of non-resolved 

process
Machine learning

Statistical downscaling Machine learning downscaling

End-user forecasts

Gridded forecasts

End-to-end Foundational Deep 
Learning

• Time consuming
• Less accurate
• Limited resolution

• Heavily rely on NWP
• Limited learning capability
• Limited spatial coverage

• 10,000x faster
• Global scale
• More accurate

Adapted from Schultz, M.G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.H., Mozaffari, A. and Stadtler, S., 2021. Can deep learning beat numerical weather 
prediction?. Philosophical Transactions of the Royal Society A, 379(2194), p.20200097.
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Can deep learning beat NWP – Wave 
of Foundation Models

Discussion of the possibility of 
completely replacing current NWP 
with deep learning?

Steady progress in NWP development 
vs. more disruptive advances in 
machine learning

1. Schultz, M.G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.H., Mozaffari, A. and Stadtler, S., 2021. Can deep learning beat numerical weather prediction?. Philosophical Transactions of the 
Royal Society A, 379(2194), p.20200097.

2. Chen, S., Long, G., Jiang, J., Liu, D. and Zhang, C., 2023. Foundation models for weather and climate data understanding: A comprehensive survey. arXiv preprint arXiv:2312.03014.
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PanGu-Weather: A Case Study 

Weather forecasting breakthrough featured in Nature1 and Science2

➢ Global scale

➢ Medium-range (up to 7-
days-ahead)

➢ Multi-variate output 
(temperature, wind, but 
no solar)

➢ 60 TB ERA5 training data

1. Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X. and Tian, Q., 2023. Accurate medium-range global weather forecasting with 3D neural networks. Nature, 619(7970), pp.533-538.
2. Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W. and Merose, A., 2023. Learning skillful medium-range global 

weather forecasting. Science, 382(6677), pp.1416-1421.
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Pathway

➢ 10,000x faster than 
NWP in prediction

➢ Better accuracy

▪ Normal

▪ Extreme

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X. and Tian, Q., 2023.
Accurate medium-range global weather forecasting with
3D neural networks. Nature, 619(7970), pp.533-538.
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Limitation and Roadmap

Limitation 3. Evaluation: better accuracy ≠ physic consistency

Reason 3.1 No physics embedded in AI models

Reason 3.2 Lack of physics-based evaluation metrics

Solution: Develop physics-constrained AI for 
better solar forecasting

Limitation 2. Model: weather forecasting ≠ solar forecasting 

Reason 2.1 Out of interests for AI mainstream

Reason 2.2 Challenging due to cloud dynamics

Solution: Lead the effort in developing solar 
forecasting foundation model

Limitation 1. Data: reanalysis data ≠ solar observation data 

Reason 1.1 Lack of high-quality and quantity solar data

Reason 1.2 Lack of easily-accessible solar data 

Solution: Create NSRDB-based SolarBench to 
standardize the AI-based solar forecasting 
development

Figure adapted from Zhu, X.X., Xiong, Z., Wang, Y., Stewart, A.J., Heidler, K., Wang, Y., Yuan, Z., Dujardin, T., Xu, Q. and Shi, Y., 2024. On the Foundations of Earth and Climate 
Foundation Models. arXiv preprint arXiv:2405.04285.
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Prediction of Solar Variability by 
Cloud Type and Cloud Cover at 

ARM and SURFRAD Sites

Kelly A. Balmes1, 2, Laura D. Riihimaki1, 2, Joseph Sedlar1, 

2, 

Kathleen O. Lantz2, David D. Turner3

1CIRES/University of Colorado Boulder
2NOAA Global Monitoring Laboratory

3NOAA Global Systems Laboratory Source: ARM



Introduction

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 =
𝐴𝑙𝑙 − 𝑠𝑘𝑦 𝑆𝑊 𝑓𝑙𝑢𝑥

𝐶𝑙𝑒𝑎𝑟 − 𝑠𝑘𝑦 𝑆𝑊 𝑓𝑙𝑢𝑥

• Riihimaki et al. (2021) built 
relationship from observations that 
can be used to diagnose surface 
shortwave (SW) irradiance variability 
from model output

• Variability depends strongly on cloud 
type and cloud cover

• Observations from DOE Atmospheric 
Radiation Measurement Program 
(ARM) Southern Great Plains (SGP) site 
in Oklahoma
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Introduction

• Riihimaki et al. (2021) built 
machine learning (ML) model 
to predict solar variability

• Seasonal analysis suggests the 
relationship is relatively 
weather regime and location 
independent 

• Need to further test at 
additional sites
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Evaluation of Riihimaki et al. (2021)

• The evaluation of the ML model in Riihimaki et al. (2021) is extended to 
25 years at ARM SGP and to other ARM sites globally

• Evaluation is also tested at NOAA’s Surface Radiation Network (SURFRAD) 
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Data - ARM observations

• Solar variability: all-sky and clear-sky SW 
fluxes from RADFLUX

• Cloud cover: cloud fraction from 
RADFLUX

• Cloud type: CLDTYPE data product (Lim 
et al., 2019)

• Cloud types include low cloud, congestus, 
deep convection, altocumulus, altostratus, 
cirrostratus/anvil, and cirrus 

• Cloud types simplified into low, mid, high 
clouds

Lim et al. (2019)

Source: ARM
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Data - SURFRAD observations

• Solar variability: all-sky and clear-sky SW 
fluxes from RADFLUX

• Cloud cover: cloud fraction from RADFLUX

• Cloud type: identified by random forest 
model based on observational inputs (Sedlar 
et al., 2021)

• Cloud types include low stratiform, low 
cumulus, congestus/deep convection, high 
cirrostratus/anvil, high cirrus, and multi-level 
(low-high, low-mid, and mid-high)

• Cloud types simplified into low, mid, high 
clouds
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ARM, SURFRAD solar variability observations

• Solar variability metric: 𝜎(∆ET)
• standard deviation of the minute to 

minute change in ET over 15 min
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ARM, SURFRAD solar variability observations

• Solar variability metric: 𝜎(∆ET)
• standard deviation of the minute to 

minute change in ET over 15 min

• 𝜎(∆ET) is larger for low cloud 
and smallest for high cloud

• 𝜎(∆ET) is largest for partial 
cloudy skies
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ARM, SURFRAD solar variability observations

• Solar variability metric: 𝜎(∆ET)
• standard deviation of the minute to 

minute change in ET over 15 min

• 𝜎(∆ET) is larger for low cloud 
and smallest for high cloud

• 𝜎(∆ET) is largest for partial 
cloudy skies

• Similar features noted across 
ARM and SURFRAD sites
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Methods

• Observed cloud type and cloud cover are inputted into the ML model 
to predict 𝜎(∆ET) and then evaluated against observations of 𝜎(∆ET)
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Results

89

• Solar variability predictability is 
largely generalizable



Results at SGP

90

• Similar r2 and lower MSE found for 
SGP compared to those in Riihimaki 
et al (2021), which indicates that 
the results are: 

• independent of cloud cover product

• not due to overfit data

• Similar results are found when 
using the ARM or SURFRAD cloud 
types



Results at SURFRAD sites

• SURFRAD performance is similar to 
ARM performance
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Predictability is less for some locations

• Nauru Island (TWPC2) has largest 
MSE

• North Slope of Alaska (NSA) has the 
lowest r2
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Results by cloud types
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Results by cloud types

• SURFRAD performance is worse for 
low and mid clouds
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Results by cloud types

• SURFRAD performance is worse for 
low and mid clouds

• Mid cloud variability is higher 
relative to low clouds at NSA and 
Boulder (TBL) for partial cloudy 
skies, which impacts predictability
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Results by observed variability

• Predicted 𝜎(∆ET) slightly 
overestimates for low observed 
𝜎(∆ET) but underestimates for high 
observed 𝜎(∆ET)
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Summary

• Solar variability predictability from Riihimaki et al. (2021) are generalizable 
to other locations 

• Solar variability predictability is robust to different cloud type and cloud 
cover observations

• Predictability is lower for certain locations and cloud types

Next steps:

• Improve model to handle very low/high variability cases

• Develop diagnostic from forecasted cloud type and cloud cover to generate 
day-ahead solar variability estimates
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The AI Revolution in 
Weather Forecasting
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The History of simulation-based weather 
forecasting is truly impressive

P Bauer et al. Nature 525, 47-55 (2015) doi:10.1038/nature14956



Massive observational data and high-performance 
computing contributed to the success of simulation-

based weather predictions

Overpeck, Jonathan & Meehl, Gerald & Bony, Sandrine & Easterling, David. 
(2011). Climate Data Challenges in the 21st Century. Science (New York, 
N.Y.). 331. 700-2. 10.1126/science.1197869. 

Massive observational data High performance compute

The Atos high-performance computing facility in ECMWF's data centre in Bologna, Italy.



Is this scalable? …The answer is No 

Nuclear Power Plant

P Bauer et al. Nature 525, 47-55 (2015) doi:10.1038/nature14956



AI/ML is progressing with 
Foundation Models emerging



How do Foundation Models work?                                                       
Three steps are involved

1. Pertaining using self-supervision with attention networks

2. Finetuning using specific labels/data

3. Inference and 
operationalize

In the morning, I drink a 
coffee and eat a bagel with 

crème cheese. 

In the morning, I drink a 
coffee and eat a bagel with 

crème cheese. 
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AI Foundation models are taking
the world by storm

Less

label

Faster 
development 

Better or 
similar

accuracy

Economy of scale

One base 

model

+ + + =

Bommasani et al.  (2021). On the Opportunities and Risks of Foundation Models. 



Salient Features Enabling technology Benefit

Excellent “next” token 
prediction skill

Attention networks & 
transformers

Excellent forecasting 
skills

Homogenization and 
adaptability

Self-supervised 
learning

Readily scalable to 
many applications

Accelerate
simulations

Deep networks (to directly 
map inputs to outputs)

Higher resolution & 
richer ensembles 

Foundation Models salient features
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Salient Features Enabling technology Benefit

Excellent “next” token 
prediction skill

Attention networks & 
transformers
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forecasting skills

Homogenization and 
adaptability

Self-supervised 
learning

Readily scalable to 
many applications

Accelerate
simulations

Deep networks (to directly 
map inputs to outputs)

Higher resolution & 
richer ensembles 

Foundation Models salient features



Developing Weather Foundation Models

Weather Observations & Reanalysis &
Forecasts Data

Weather Foundation                    
Model 

Forecast 
horizon

Parameter 
(wind, solar)

Events 
(Ramps, 

extremes)

…..Location
Temporal & 

spatial
downscaling

Ensemble 
model 

blending

Development partners
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Some key technical challenges

Typical ERA5 subset
0.25 degrees resolution, 37 levels, 6 parameters
721 x 1440 x 37 x 6 x 32 bit = 922 MB / timestamp

- Data volumes Sample volumes of 250 MB – 2 GB 
are common.

- Token counts Most models use small tokens (2x2 
pixels; 4x4 pixels). Even 2D tokenization schemes 
push beyond conventional ViT architectures.

- Stability Forecasts are typically made via 
autoregressive rollouts. Numerics need to be stable.

- Performance Models compare to HPC simulations.



Pre-training a weather Foundational Model

Other key features
- 2D hierarchical vision transformer
- Trained on 51,800 tokens
- Encoder/decoder are fully attention based.
- All auxiliary information (e.g. lead time) 

injected via context tokens.

Input data
- Time-dependent inputs use 2 timestamps. 

Vertical, temporal and parameter dimensions 
are all stacked.

- Pretrained on 40-years of MERRA2 data.

Pre-training task
- Masked pretraining and “forecasting”.

Foundation 
Model



Pre-training / inference 



AI provides significant speed-ups compared
 numerical weather simulations 

Weather AI models
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Finetuning results – Few shot learning

Input Output Ground truth



Conclusion

Weather foundation models are emerging

• Computationally much more efficient 

• Learn the physics directly from data

• Approaching comparative performances

• Quick adaptability to address the long-tail of applications





Value of Physically Based Models

Hugh Cutcher, Lead Data Scientist



Solcast, a DNV company

99.99%
API  uptime

Providing services for 

200+ GW

Founded in 

2016 
Acquired by DNV in 

2022
Headquartered in

Sydney
Sales & Support in

USA & EU
Serving

300+ Customers

130+ 
Countries

2TB
Data every day

26 million
API calls daily

30+
Publications

200+
Validation Sites

Recent API Usage



Solcast data overview

Forecast
Present to +2 hours

Nowcast
+4 hours to +14 days

NWP

Live

-7 days to present

Historic

2007 to -7 Days +2 hours to +4 hours
Blend

Nowcast 
(GMS Satellite Extrapolation)

GMS Satellite Archive Live GMS Satellite Data Numerical Weather Prediction

Live & Forecast



Monitoring, analytics, and 
control: Services and 

products

Asset 
management 

Solar resource 
assessment

Residential PV 
technology and 

services

Energy, demand, and price 
forecasting and trading 

Distributed energy 
technologies and 

microgrids

Grid/market operators 
(ISOs, TSOs)

Non-solar 
industries

Taipower

Diverse
Applications
300+ customers across 
different segments



Machine Learning Black Box



Garbage In, Garbage Out Once in a Lifetime 



Solcast Model Chain



April Eclipse



2020 California Wildfires

Scale unprecedented in recent history



Snow Soiling



Impact on 
average yields often 
low as limited in 
scope

Highly localised

Consistent

Terrain Shading

http://drive.google.com/file/d/12Kb4rVL2NPjR_3qZMeY2ywhbtue3iw0q/view


Solar Position





For any questions…

Hugh Cutcher
hugh@solcast.com
        Find me on LinkedIn

More info at

solcast.com
go.solcast.com/HiHugh
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Resource and load forecasting for multiple technologies
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DOE Solar Forecasting Workshop – July 9, 2024

Load Forecasting Trends and 

Challenges

David Larson, PhD
Technical Leader, EPRI
DLarson@epri.com

http://www.epri.com/
https://www.facebook.com/EPRI/
https://twitter.com/EPRINews
https://www.linkedin.com/company/epri
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Improved forecasts will drive more efficient investment decisions 

and grid performance across timescales

Decarbonization 
Strategies

Integrated 
Resource 
Planning

Delivery System 
Planning

Real-Time Grid 
Operations

Load forecasting is key for many grid decisions…

Reduced

Operating 

Costs

Increased

Customer Opportunities

Resource 
Adequacy

Reduced

Reliability Risks

Increased 

Asset Utilization
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But load forecasting is getting more complicated!

Drivers Complicating Electric 
Demand Forecasting

• End-use efficiency
• Customer generation/storage
• Customer behaviors/rate structures

• Electrification
• Decarbonization (H2, heat)
• Weather (extreme temps)
• Re-industrialization/On-shoring
• Digitalization (data centers, crypto) 

Summer Peak Forecast

Peak
WN Peak

2024 50/50 Fcst
2023 50/50 Fcst
2022 50/50 Fcst

PJM Peak Load Forecast:
2022 vs. 2023 vs. 2024 Projections

Source: PJM 2024 Load Forecast Report
https://www.pjm.com/-/media/library/reports-notices/load-forecast/2024-load-
report.ashx

10 GW

4 GW

202
4

202
3202

2
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Forecasting in System Operations

Now

?
Future

• Deterministic forecasts

• Single forecast model

• Transmission

• Hourly resolution

• Load, solar, wind

• Probabilistic forecasts

• Multiple forecast models

• Transmission & Distribution

• Sub-hourly resolution

• Load, solar, wind, storage,
hybrids, DERs, etc.
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Winter Storm Elliott: High short-term forecast errors

“The load forecasting tools had never 
experienced similar weather 
conditions and load levels to Elliott, 
therefore the data history wasn’t 
available to the tools to perform 
accurate load forecasting”
– SPP report2

“Abnormally high load forecasting 
errors occurred due to a lack of 
historical data for similar extreme 
conditions in December” – MISO 
report3

PJM under-forecasted peak load by ~8%1

Source: PJM

Extreme temperatures with new technologies can fool forecasting algorithms.

1: PJM: “Winter Storm Elliot: Event Analysis and Recommendation Report”, July 17, 2023
2: SPP: “Review of SPP’s Response to the Dec. 2022 Winter Storm”, April 17, 2023
3: MISO: “Overview of Winter Storm Elliot December 23, Maximum Generation Event”, January 17, 2023
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More historical data may not be sufficient

Temperature vs load before Winter Storm Elliot

Winter Storm Elliot

Past 4 years
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“Best” forecasts still don’t capture ramps*

*from a forecast trial with 9 vendors, ran using EPRI’s Forecast Arbiter platform and 4 grid-scale PV plants in Southeast US

ForecastActual
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Where do we go?
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Need to consider how forecasts are created and used

Focusing only on “reduce average error” no longer enough

Inputs Forecast Method End-use

Feedback

Forecast

Feedback
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What should we prioritize?

(1) Good: Improve Load Forecasts

(2) Better: Improve Net Load Forecasts

(3) Best: Improve Grid Outcomes
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Industry Coordination
Enable knowledge-sharing and 

collaboration among utilities, ISOs/RTOs, 
etc.

01

Long-Term Forecasting (Planning)
Develop methodologies and 

guidance to incorporate new load drivers
02

Short-Term Forecasting (Operations)
Develop methodologies and guidance to 

mitigate changes in forecast accuracy
03

EPRI Load Forecasting Initiative

Improved load forecasts at operational and planning timescales* will drive more efficient 
investment decisions and better grid performance.

EPRI launched a 24-month initiative to address critical needs in load forecasting that will 
work across three areas:

*we are defining “planning timescales” as >1-year ahead
msites.epri.com/LFI

https://msites.epri.com/LFI
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TOGETHER…SHAPING THE FUTURE OF ENERGY®

http://www.epri.com/
https://www.facebook.com/EPRI/
https://twitter.com/EPRINews
https://www.linkedin.com/company/epri
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Q&A and Discussions
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Forecasting for Hydropower

Water Power Technologies Office, U.S. Department of Energy

Eri Sharifi, Charles Scaife

7/9/2024
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Modernizing the 
Existing Fleet

Pumped Storage 
Hydropower

New Low-Impact 
Projects

Wave Tidal, River and Ocean 
Current

Ocean Thermal
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WATER POWER TECHNOLOGIES OFFICE
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1. Innovations for Low-Impact Hydropower Growth

2. Grid Reliability, Resilience, & Integration 
(HydroWIRES)

3. Fleet Modernization, Maintenance, & 
Cybersecurity

4. Environmental & Hydrologic Systems Science

5. Data Access, Analytics, and Workforce

FIVE CORE RESEARCH AREAS
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HydroWIRES

The mission of HydroWIRES (Water 

Innovation for a Resilient Electricity 

System) is to understand, enable, and 

improve hydropower’s contributions to 

reliability, resilience, and integration in 

a rapidly evolving electricity system.
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Role in the Hydropower Program

Covering grid related R&D including: 

• grid reliability,

• grid resilience, and 

• grid integration.
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Research Area 4

Technology 

Innovation

Research Area 3

Operations and 

Planning

Research Area 2

Capabilities and 

Constraints

Research Area 1

Value Under 

Evolving Systems 

Conditions

• Grid Services Taxonomy

• Value drivers

• Valuation Methodologies

• Technology Gaps 

• Unit Flexibility Enhancement

• Plant Flexibility Enhancement

• New PSH Designs

What can the hydropower 

fleet do?

• Flexibility Framework

• Flexibility Tradeoffs

• Hydrologic Forecasting

• Modeling Representation

• Reliability and Resilience 

Contribution

• Comparison with Other 

Resources

• Operations Optimization 

• System Effects of Operations

Four Research Areas
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Hydrologic forecasting is part of the 

HydroWIRES roadmap
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Hydropower operators use inflow forecasting tools to estimate future inflows to hydropower 

reservoirs.

These tools vary extensively within the hydropower industry in terms of lead time (short, 

medium, long term), geographic setting, and complexity. Some forecasting tools are 

proprietary, but can be purchased from vendors; other tools are in-house, developed by the 

hydropower facility operator to be fit for purpose.

Understanding reservoir inflow is critical to managing multiple water uses and making 

informed operational decisions. If hydropower plants are required to operate more flexibly, 

forecasting tools will likely require improvements in accuracy and resolution. For example, 

there may be some instances where conditions are swiftly shifting, as is the case with low-

elevation upper watersheds, snow pack dependent facilities, and lower latitude facilities.

Hydropower flexibility is a function of reservoir capacity; therefore, knowing exactly how 

much water will be available at a particular time can enable better planning and unlock 

additional operational capabilities.

Work under this objective will first focus on identifying instances where forecasting tools are 

currently or prospectively insufficient in the context of increasing operational flexibility, and 

evaluating the degree to which past and current investments resolve those gaps. Future 

investments will then be aimed at addressing specific gaps that are highly targeted and 

impactful.

Hydrologic Forecasting
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This dataset provides both monthly and 

weekly constraints (maximum and minimum 

generation) and power targets for hundreds of 

hydropower plants across the United States. 

The data is intended for use in Production 

Cost Models (PCMs) and Capacity Expansion 

Models (CEMs). The hydropower data is based 

on disaggregated annual power data which is 

part of the EIA-923 dataset. 

HydroWIRES B1: Monthly and Weekly 

Hydropower Constraints Based on 

Disaggregated EIA-923 Data
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Hydropower Scheduling Oriented 

Inflow Forecast Evaluation for Great 

River Hydro TA

Great River Hydro (GRH) operates 13 generating 

stations and 3 storage-only reservoirs along the 

Upper Connecticut River, draining 6,266 square 

miles. 

Managing the reservoirs requires coordination over 

a couple days. So far seasonal flow forecast and 

medium range probabilistic flow forecast during 

high flow conditions are leading to satisfactory 

management. PNNL is assisting Great River Hydro 

to evaluate potential improvements in inflow 

forecasting and scheduling accuracy, particularly 

during short- to medium- duration periods (1-10 

days).

Improved accuracy is anticipated to enhance 

the efficiency with which GRH utilizes water, 

improving GRH’s ability to hit the best priced 

hours throughout the system and enhancing 

revenues as a result.
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Hydropower operators use weekly water inflow forecasts to optimize reservoir releases and unit 

commitment and to meet power grid needs.

The accuracy of inflow forecasts, combined with related scheduling adjustments, contracts, and market 

opportunities, are reflected in a utilities’ revenue. One of the goals of the HydroWIRES initiative is to 

quantify the flexibility of hydropower operations and understand its adaptability to changes in water 

supply, regulation, markets, and power grid needs.

In partnership with North Carolina State University and the National Corporation of Atmospheric Research, 

researchers from PNNL and INL will use inflow forecasts, reservoir and power system models, and case 

studies to demonstrate the contribution of flow forecast to provide hydropower services to the grid. Flow 

forecast accuracy metrics, combined with regional power system analytics (including regional economics 

and generation portfolios) will help detangle the value of incremental improvement in flow forecasts. This 

research supports DOE in developing strategic partnerships with other institutions to invest in information 

products and decision-support practices for meeting power grid needs.

Value of flow forecasts to power system analytics
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HYDROLOGIC SYSTEMS SCIENCE

MISSION

Advance our understanding of the impacts 

of climatic and hydrologic changes on 

hydropower operations and hydropower's 

effect on the environment to support 

decision-making of stakeholders across 

multiple sectors.
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HYDROLOGIC SYSTEMS SCIENCE

DATA COLLECTION

Using new and existing sensing technologies that are 

both accurate and reliable to monitor the natural and 

built environment

METRICS AND ANALYTICS

The systematic computation of gathered data that 

leads to meaningful discovery, interpretation, or 

message that supports decision-making.

MODELING

Understanding and predicting coupled human and 

natural systems across various spatial and temporal 

scales through the advancement of earth and power 

systems models and modeling framework
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HYDROLOGIC SYSTEMS SCIENCE

DATA COLLECTION

Using new and existing sensing technologies that are 

both accurate and reliable to monitor the natural and 

built environment

METRICS AND ANALYTICS

The systematic computation of gathered data that 

leads to meaningful discovery, interpretation, or 

message that supports decision-making.

MODELING

Understanding and predicting coupled human and 

natural systems across various spatial and temporal 

scales through the advancement of earth and power 

systems models and modeling framework
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HYDROLOGIC SYSTEMS SCIENCE

DATA COLLECTION

Using new and existing sensing technologies that are 

both accurate and reliable to monitor the natural and 

built environment

METRICS AND ANALYTICS

The systematic computation of gathered data that 

leads to meaningful discovery, interpretation, or 

message that supports decision-making.

MODELING

Understanding and predicting coupled human and 

natural systems across various spatial and temporal 

scales through the advancement of earth and power 

systems models and modeling framework
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HYDROLOGIC SYSTEMS SCIENCE

DATA COLLECTION

Using new and existing sensing technologies that are 

both accurate and reliable to monitor the natural and 

built environment

METRICS AND ANALYTICS

The systematic computation of gathered data that 

leads to meaningful discovery, interpretation, or 

message that supports decision-making.

MODELING

Understanding and predicting coupled human and 

natural systems across various spatial and temporal 

scales through the advancement of earth and power 

systems models and modeling framework

Regional Annual Generation, 2001–2021
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HYDROLOGIC SYSTEMS SCIENCE

DATA COLLECTION

Using new and existing sensing technologies that are 

both accurate and reliable to monitor the natural and 

built environment

METRICS AND ANALYTICS

The systematic computation of gathered data that 

leads to meaningful discovery, interpretation, or 

message that supports decision-making.

MODELING

Understanding and predicting coupled human and 

natural systems across various spatial and temporal 

scales through the advancement of earth and power 

systems models and modeling framework
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HYDROLOGIC SYSTEMS SCIENCE

DATA COLLECTION

Using new and existing sensing technologies that are 

both accurate and reliable to monitor the natural and 

built environment

METRICS AND ANALYTICS

The systematic computation of gathered data that 

leads to meaningful discovery, interpretation, or 

message that supports decision-making.

MODELING

Understanding and predicting coupled human and 

natural systems across various spatial and temporal 

scales through the advancement of earth and power 

systems models and modeling framework
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