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Solar Energy Technologies Office (SETO) Overview

We accelerate the advancement and deployment of solar technology in support of an
equitable transition to a decarbonized economy no later than 2050, starting with a
decarbonized power sector by 2035.

WHAT WE DO

Drive innovation in technology
and soft cost reduction to
make solar affordable and
accessible for all Americans

Enable solar energy to
support the reliability,
resilience, and security of
the grid

Support job growth,
manufacturing, and the
circular economy in a wide
range of applications




Where Does SETO Fit Within the Energy Department?
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Driving Toward Administration Decarbonization Goals

» Reduce hardware and soft costs of solar electricity for all Americans to enable an affordable carbon-free
power sector by 2035.

» Enable inverter-based technologies to provide essential grid services and black start capabilities while
demonstrating the reliable, resilient and secure operation of a 100% clean energy grid.

Accelerate solar deployment and associated job growth by opening new markets, reducing regulatory
barriers, providing workforce training, and growing U.S. manufacturing.

A A

Center energy justice by reducing environmental impacts, removing barriers to equitable solar access, and
supporting a diverse and inclusive workforce.

Support a decarbonized industrial sector with advanced concentrating solar-thermal technologies and
develop affordable renewable fuels produced by solar energy.
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SETO Subprograms
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*Funded from the Soft Costs Budget Line
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DOE Solar Office Funds 600+ Active Projects

Projects and partners in 43 states plus the District of Columbia

0 .
36% of projects 25% of projects 39 A) of projects led by

led by national labs led by universities businesses, non-profits, and state
and local government
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U.S. Solar: Falling Costs, Rising Deployment

The solar energy industry is one of the fastest growing industries in the nation. Driven by falling costs and
state and federal policy, total solar PV installed capacity is now over 180 GW and is projected to grow to
about 220 GW by the end of the year.

PV Deployment and System Price in the U.S. (2010-2023, 2024 Estimate)
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Sources: Wood Mackenzie/SEIA: Solar Market Insight Report 2023 Year in Review. National Renewable Energy Lab System Advisor Model was used to depict electricity costs as the
levelized cost of energy (LCOE) for a utility-scale system in a mid-America location with average solar resource, without benefit of tax credits
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https://www.seia.org/research-resources/solar-market-insight-report-2023-year-review
https://sam.nrel.gov/photovoltaic.html

Record-breaking Installation Volumes!
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Sources: Energy Information Administration (EIA) Electric Power Monthly, Wood Mackenzie
(WoodMac) US Solar Market Insight: 02 2024. All 2023 and 2024 data is preliminary and
different data sources update at different times.

*DPV = distributed photovoltaics, UPV = utility-scale photovoltaics, YTD = year-to-date

**|nverter loading ratio = 1.15 for DPV and 1.3 for UPV
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At the beginning of May, WoodMac revised their 2023
annual installations upwards from 32 GW,_to 40 GW,_.
This was the result of a modification to how they
determined the installation date for UPV projects in Texas
(which represented 29% of installs in 2023 and was 5.2
GW higher in 2023 after the adjustment), plus data from
developers that they received after the deadline for their
earlier report (including AZ, VA, LA, and NC).

Installation data for Q1 2024 is preliminary, however,
estimates range from 10-12 GW, of installs. This is nearly
double Q1 2023 installations, which is notable because Q1
installations are usually the lowest volume of the year
(with Q4 being the highest, often by a substantial margin).

WoodMac’s most recent projections (released June 6) for
2024/2025 were revised upwards by a few GW, but they
are still projecting nearly flat installation growth for the
next several years due to ongoing labor and high voltage
equipment constraints plus the trade policy uncertainty.

9



https://www.eia.gov/electricity/monthly/
https://power-and-renewables.woodmac.com/reportaction/150275120/Toc?SearchTerms=us%20solar%20market%20insight%3A%20q2%202024

Research Areas: Systems Integration

The goal for SETO’s system integration research is to achieve high-solar grid integration by
supporting the reliability of the power system, enhancing resilience and security,
and increasing system flexibility to reduce grid integration costs.

Where we are now: ' o
* Inverter-based solar and wind resources pose challenges to system reliability and !
stability

e Solar generation variability and uncertainties
* System operators have no visibility or control over most distributed solar

Priority R&D Topics:

* Develop long-term planning models and tools for solar integration
* Develop advanced control capabilities for power electronics

* Enhance grid services to operate high-solar grid

e Advance communications and sensing for situation awareness

* Improve solar forecasting

* Integrate storage to add flexibility

* Enhance resilience and security in system design

* Accelerate grid codes and standards development

Find our latest Peer Review feedback here: https://www.energy.gov/eere/solar/2024-seto-peer-review
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https://www.energy.gov/eere/solar/2024-seto-peer-review

Thank you for being here today!

Questions?
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Solar Forecasting Research
through the lens of DOE-SC

July 9, 2024

Gary Geernaert
Earth and Environmental Systems Science Division

Office of Biological and Environmental Research
DOE Office of Science
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OUTLINE
* A little about us in Office of Science
* BER portfolios relevant to Solar Forecasting
* Success stories relevant to solar forecasting

* Imagining forecasting capabilities in the next few years

Energy.gov/science



Office of Science Research Portfolio

Advanced Scientific * Delivering world leading computational and networking capabilities
Computing Research to extend the frontiers of science and technology

Understanding, predicting, and ultimately controlling matter and
energy flow at the electronic, atomic, and molecular levels

Biological and Environmental Understanding complex biological, earth, and environmental
Research systems

Supporting the development of a fusion energy source and
supporting research in plasma science

Hiah Enerav Phvsics ¢ Understanding how the universe works at its most fundamental
9 gy Fhy level

Basic Energy Sciences

Fusion Energy Sciences

¢ Discovering, exploring, and understanding all forms of nuclear

Nuclear Physics matter

.S. DEPARTMENT OF Oﬁlce Df
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DOE Office of Science
Harriet Kung, Acting Director

I I I I I
Ad_vanggd Basic . . . . High
Scientific fusion Biological and Environmental Mluclear

Research

Dorothy Koch, Associate Director

Biological Systems Science
Todd Anderson, Director

® Genomic Science

" Bioenergy Research Centers
® Biomolecular Characterization & Imaging Science
® Facilities & Infrastructure

® Joint Genome Institute

Earth & Environmental Systems Science
Gary Geernaert, Director

Atmospheric System Research

Environmental System Science

Earth and Environmental Systems Modeling

Facilities & Infrastructure

® Environmental Molecular Sciences Laboratory (EMSL)
®  Atmospheric Radiation Measurement (ARM)
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DOE EESSD Permanent Staff
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Atmospheric Sciences overview
relevant to solar forecasting

Office of
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ASR Priority Research Areas and Working Groups

Convective cloud
processes and properties
including cloud cover,
precipitation, life cycle,
dynamics, and
microphysics over a range
of spatial scales.

Global Regime

Regional Regime Srown cabon () amhing
o Mataril oz due s sty

wlource o ety position
ons:

Aerosol processes
governing the spatial and
temporal distribution of
atmospheric particles and
their chemical,
microphysical, and optical
properties.

o @

High latitude processes
including cloud, aerosol,
and surface-interaction
processes controlling the
surface energy budgets in
northern and southern
high latitude regions

==

Warm boundary-layer
processes controlling the
structural and radiative
properties of clouds,
aerosols and their
interactions with the
underlying surface in the
lowest few kilometers of
the atmosphere.
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The Atmospheric Radiation Measurement
(ARM) User Facility

v

Measurements of

clouds, aerosols, 3 /

precipitation, radiation,
surface properties & 2
the atmospheric state

Serc by Gty

since 1992 oo & o e
Network of 3 fixed- Piloted & uncrewed Extensive data Large-eddy Support for field
Support for process location & 3 mobile aerial measurement management simulation (LES) campaigns ranging
studies & model & observatories platforms infrastructure. Data model simulations & _from guest o
satellite development freely available analysis tools instruments to facility

deployments




Atmospheric Radiation Measurement (ARM) User Facility

» 3 fixed measurement sites (Oklahoma, Alaska, Azores) in different
climate regimes; 1 mobile facility for mid-range (~5 year)
deployments (SE US, Oliktok Point)

2 mobile facilities available for proposal-driven deployments
> e.g., the CAPE-k, CoURAGE, EPCAPE, SAIL campaigns

24/7 data collection at fixed/mobile facilities with all data freely
available at www.archive.arm.gov

High-performance computing for working with large ARM data sets

Aerial facility component

Office of
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http://www.archive.arm.gov/
https://arm.gov/

ARM Facility data in publications on solar forecasting

Wang, et al., May 2024: A novel solar irradiance forecasting method based on multi-
physical process of atmosphere optics and LSTM-BP model. Renewable Energy.

LiuW, Y Liu, T Zhang, Y Han, X Zhou, Y Xie, and S Yo0o0. 2022. "Use of physics to
iImprove solar forecast: Part 11, machine learning and model interpretability." Solar
Energy, 244, 10.1016/j.solener.2022.08.040.

LiuW, Y Liu, X Zhou, Y Xie, Y Han, S Yoo, and M Sengupta. 2021. "Use of physics to
iImprove solar forecast: Physics-informed persistence models for simultaneously
forecasting GHI, DNI, and DHI." Solar Energy, 215, 10.1016/j.solener.2020.12.045.

Manandhar P, M Temimi, and Z Aung. 2023. "Short-term solar radiation forecast using
total sky imager via transfer learning." Energy Reports, 9(1), 10.1016/j.egyr.2022.11.087.

Office of
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https://linkinghub.elsevier.com/retrieve/pii/S0038092X22005904
https://linkinghub.elsevier.com/retrieve/pii/S0038092X22005904
https://www.sciencedirect.com/science/article/pii/S0038092X20313049
https://www.sciencedirect.com/science/article/pii/S0038092X20313049
https://www.sciencedirect.com/science/article/pii/S0038092X20313049
https://doi.org/10.1016/j.egyr.2022.11.087
https://doi.org/10.1016/j.egyr.2022.11.087

Open-source sky image datasets for solar forecasting with deep
learning: A comprehensive survey: Yuhao Nie, et al., 2024

72 open-source sky image datasets for solar forecasting and related research
covering diverse geographic regions and climate conditions

S Ty The DOE ARM Facility

B NI ) ARUCOMBLE A on LN contributes to the
open-source sky

imager data base.

D s
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Earth and Environmental System Modeling
overview relevant to solar forecasting
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There are three foci of the Modeling Program, with some interdependence

Regional and Global Model Analysis (RGMA)

Earth System Model Development
(ESMD)

Model Analysis for Predictive
Understanding at Regional and Global Scales

Advanced E3SM capabilities for RGMA to
enhance understanding
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(/Encrgy Exascal le

The Energy Exacsale Earth System Model (E3SM)

Innovative and computationally advanced ESM capabilities, in support of Energy science and mission

Earth System Across Scales Goal: Support the development of E3SM including its
subcomponents, to address the grand challenges of
actionable predictions of the changing Earth system,
emphasizing on the most critical scientific questions facing the

ﬂati n and DOE
rategies:

» Science drivers for model development

» Earth system across scales (high-resolution frontier, bridge
gaps, quantify uncertainty)

» Prepare for and overcome the disruptive transition to next
era of computing, leverage ASCR HPC capabilities

» Innovative mathematical, computational methods, tools,
algorithms, technologies (e.g., ML/Al)

<--- -

Planetary
Waves

Synoptic Mesoscale Cumulonimbus  Cumulus
Storms Storms Clouds Clouds

- - Energy.gov/science



Key tool for regional scale predictability: DOE’s Energy Exascale Earth System Model
(E3SM)

60N

50°N

DOE’s flagship climate
model

7 nat’l labs and NCAR
Includes the full earth ; | : :
system and many . R oo
human systems

Can “zoom in” to
regions of interest
Atmos cloud resolving
component at 3 km
resolution

Uses DOE Exascale
High Performance
Computers

45N

30°N -

S0N —FEEeER e
20°N

Indian Ocean/Maritime Continent (IOMC)

E3SM-Arctic atmosphere grid E3SM-Arctic ocean grid




E3SM SCREAM is skillful in simulating present-day clouds and
predicts more surface solar with warming

Present-day
total cloud cover

1100

r80

r60

40

Satellite observations

20

Skill in reproducing ISCCP’s
present-day cloud properties

Cloud property error metric
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Predicted change in downward surface
solar flux with +4K warming*
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*Longer, non-idealized simulations needed t
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Top of Atmosphere shortwave flux difference between Baseline surface downward solar radiation

SCREAM 3km and satellite (CERES-EBAF) flux in SCREAM 3km
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Al/ML techniques is a new priority to more rapidly advance science and prediction

Multi-system, multi-sector modeling
framework to explore

stressors, risks and responses, tipping
points, of interconnected physical and
socioeconomic systems

GloballDrvaral 3 ([eleconnecona ) mtocaliay SRBeciians

Systems Making
Toolbox for Multi-Sector Modeling Major Tasks:
Human Systems Natural Systems Pattern Scaling Probabilistic Scenario Discoverv
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Timevame
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https://globalchange.mit.edu/research/research-projects/integrated-framework-modeling-multi-system-dynamics

Opportunities to improve solar forecasting based on
research in BER

* The E3SM prediction capability will be further developed with a flexible grid
to extend atmospheric modeling below 3 km

« ARM data coupled with Al will yield an improved stochastic representation of
high resolution patterns of solar irradiance over specific regions of interest.

* Projections of future changes in solar radiance patterns, associated with
climate change, will be included in the E3SM simulations.

Office of

'ENERGY | scicnce Energy.gov/science
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Climate modeling and grid planning
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Introduction




Why are climate data needed ?

Installation capacity of solar energy worldwide U.S. renewable electricity generation )
including end use

trillion kilowatthours

1,400,000

1,200,000 25
Z 1,000,000
H 2.0
E 800,000
£ 15
g
= 600,000
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400,000 wind
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200,000 : Graphic from U.S. Energy
hydroelectric  information

Administration

Graphic from
International Renewable g 0.0 ¢ T

0
T T 1
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Solar photovaltaic

= PV technology has rapidly advanced in the last decades, and its global deployment has significantly grown.
= Solarirradiance is greatly influenced by the Earth’s atmosphere and weather.

= Climate change likely leads to changes in future weather (e.g., increases in heat waves).

= (Climate change is increasingly causing extreme weather events to become more frequent and intense.

= Thus, it is essential to assess and understand the potential impacts of future climate change on solar generation

and the power sector.
NREL | 37



CMIP and Climate Scenarios

= CMIP (Coupled Model Intercomparison

Project):
- Managed by World Climate Research
Programme (WCRP)

- Climate scenarios resulted from multi global-

scale models contribute to IPCC report

Clouds/
Circulation

Chemistry / Ocean/Land/

Aerosols

Short term
\, hindcasts

Characterizing
forcing

Decadal
prediction

Paleo
cdimate

Carbon

" Scenarios
cycle ¢

CMIP/CMIP6
Experiment Design

(Eyring et al. 2016)

Regional climate /

Land use Geo- Extremes

engineering

Socioeconomic

CMIP6:

Consider different socio-economic
developments as well as different pathways
of greenhouse gas concentrations.

Provide climate simulations under Shared
Socioeconomic Pathways (SSPs)

A
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E i Adaptation

o |Llow Sustainability | Inequality  Challenges

Challenges I Dominate >

Socioeconomic challenges
for adaptation o'Neil etal. 2014
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Why high resolution?

Example: simulated precipitation anomalies
45-km

General circulation model (GCM) limitations:
Very low resolution (> 100 km and daily)
Systematic errors or biases

High deviations from observational data .
Needs:

Provide high resolution data

Provide un-biased climate projections

Options:

Dynamical downscaling methods
Statistical/machine-learning based
downscaling approaches

Bias correction

\

Raw GCM

I

114°W

> i
T N e R

122°w 118°W 114°W

Graphic from:
https://dept.atmos.ucla.edu/

alexhall/downscaling-cmip6

42°N

34°N
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114°'wW

Resolution relevant for climate
impact studies! \gei | 39
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Methods for Downscaling of Climate Data




Dynamical Downscaling

N Graphic from NCAR NCL:
3 \hllgs://www.nclucar.edu/

= Use GCM'’s outputs as inputs for regional climate models
(RCMs) (e.g., WRF, RegCM)

= Use governing physical laws to integrate dynamic solution

PROS & CONS

PROS = Downscaling approach that is based on consistent and physical
mechanism.

= Capable of resolving atmospheric and surface processes occurring at @\(’
sub-GCM grid scale. §
=  Not constrained by historical record. Q

= Capable of producing various atmospheric variables as outputs.
CONS = Computationally intensive.

= Affected by bias of driving GCM.

=  Uncertainties in modeling when selecting different parameterizations.

40°

= May require further bias correction of RCM outputs. 0

20

. . ) o ) 180 1200 o110 100 e 80 70 60"
Trzaska, S, Schnarr, E (2014) A review of downscaling methods for climate change projections. United States Agency Int

Dev by Tetra Tech ARD 1-42, http://www.ciesin.org/documents/Downscaling_ CLEARED_000.pdf
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GHI [W/m2] NREL | 41


https://www.ncl.ucar.edu/
http://www.ciesin.org/documents/Downscaling_CLEARED_000.pdf

Statistical/ML-based Downscaling

Use statistical relationships between large-scale
predictor fields and high-resolution predictands

Train the model on observational datasets

PROS & CONS

PROS

Computationally inexpensive and efficient.

Methods range from simple to elaborate and are flexible
enough to tailor for specific purposes.

Relies on the observed climate as a basis for driving future
projections.

CONS

Very difficult to capture convective-scale atmospheric
phenomenon (i.e., dx < 10 km) because of no
representation of physics such as convection/turbulence.

High quality observed data may be unavailable for many
areas or variables.

Over-fitting problem.

Machine-learning approach is sometimes defined as
“black-box” model —i.e., not interpretable model.

GCM ML-based

2050-03-30 00:00 (MST) (1/72)

Buster et al., “High-resolution meteorology with climate
change impacts from global climate model data using
generative machine learning”, Nature Energy (2024).
https://doi.org/10.1038/s41560-024-01507-9
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On-going Project 1: PACES




PACES: Power Planning for Alignment of

Climate and Energy Systems

Project Overview:

Climate change is already posing significant chronic and acute risks
to power system planning targets and operations.

The energy sector lacks cohesive frameworks and datasets to answer
national-scale planning questions related to climate risks.

This project aims to establish best practices and open-access datasets
to bridge these capability gaps.

Key Innovations:

Application of two different climate downscaling methods- machine
learning-based and dynamical techniques.

Best practices in equitable power system planning for climate change
impacts.

Analysis of extreme events- heat and cold waves, wind/solar/water
droughts, wildfires, and floods.

A roadmap for utility implementation demonstrated with Tennessee
Valley Authority and Southern Company.

A Southern Company

=2l

COLORADO STATE

/iz\ﬁ Gji |

= 4
= MODERNIZATION INITIATIVE
\\\\\: U.S. Department of Energy

Partners

INREL %OAK RIDGE

Transforming ENERGY National Laboratory

< EVOLVED
' | ENERGY
ELECTRIC POWER | RESEARCH
RESEARCH INSTITUTE

THE CITY
UNIVERSITY
WEEWYORK UCUNN

SCHOOL OF ENGINEERING

TENNESSEE
VALLEY

% Los Alamos
‘Q AUTHORITY

NATIONAL LABORATORY

@

UNIVERSITY

Impact: We will enable the
energy industry to plan
systems that are robust to

the impacts of climate
change
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Sup3rCC (ML-based)

Super-Resolution for Renewable True High Res (WTK

Energy Resource Data with Climate r,,;“}':g"ﬁ\

Change Impacts (Sup3rCC) E . A5
e,

or NSRDB)
& 4

Discriminative
> Model <

|

Computationally efficient:

4er Hourly
Coarsen to Generative
Downscale 1 year of CONUS data to 4km l” na Viodel
hourly resolution in 30 minutes wall- :
C|0Ck time Low Res (WTK, NSRDB, GCM) 4km Hourly

Designed for renewables: Climate Data Downscaling with

wind, solar, temp, humidity, precipitation Generative Machine Learning

100km Daily

Fully integrated into NREL energy

analysis software (reV’ ReEDS, etc...) Buster et al., “High-resolution meteorology with climate change impacts
from global climate model data using generative machine learning”, Nature

Open-source Energy (2024). https://doi.org/10.1038/s41560-024-01507-9
https://nrel.github.io/sup3r/
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WRF Dynamical Downscaling (Physics-based)

Dynamical downscaling approach can generate a
full set of physically consistent high-resolution
climate data.

Use the widely used Weather Research and
Forecasting (WRF) model to downscale 100
years of GCM data for SSP2-4.5 and SSP5-8.5.

The best WRF configurations will be developed
to accurately represent modeled atmospheric
variables related to renewable energy
applications.

Objective: Develop unbiased, physically
consistent, high-resolution (4 km and hourly)
downscaled future projections for entire
CONUS

GCM Data:

* High-quality input (~100 km resolution) for RCM

* Consider bias-corrected fields in GCM data: air
temperature, pressure, humidity, wind, etc.

Graphic from NCAR NCL. https://www.ncl.ucar.edu/

WRF * Radiative transfer
* Planetary boundary layer

physics * Microphysics
modules® Land surface model, etc.

WREF: https://www.mmm.ucar.edu/models/wrf

Downscaled GHI Downscaled wind speed @80m
Data UTC yyyymmain); 2021021513

Data TG (yyyymmadhh); 2021021418

< s viled

- o
®: Location of wind plants
s w saw w wrw o osw ww w
: ] . -

Fa—

3 3 0 w/m

®: Location of PV plants

Graphic by NREL. Meta and atmospheric data from EIA and HRRR:
https://www.eia.gov/, https://rapidrefresh.noaa.gov/hrrr/
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Numerical Experiments (Dynamical Downscaling)

= Designed numerical experiments with five different KS-Test for WRF Simulatipns (}5 years)

Climate zone

WRF_ configurations to find a right combination of gxg - ~ ' ‘ b.1E -
physics modules. Dse B > | 0.15 _—
Experiment Based on WRF configuration used in (applications to entire CONUS) ?;f: i - : - | g:; 0.2
EO1 WRF-Solar (NWP specialized for solar energy applications) Dfb - - \ (())113 R 2:2
EO2 WRF-Solar EPS (ensemble prediction system tailored for solar energy) Cl:)sfz , : \ { — j G® o1 H 0:14
E03 PR100 + Wind Toolkit (high-resolution wind resource data) Csa (IS [ ‘ | = ‘ I;I gg: % 55
E04 IM3/HyperFACETS TWG simulations (downscaled climate data, 12 km) g: 74 e : ‘ 007 m 01
EO5 CONUS404 (downscaled reanalysis data, 4 km) BWk > ‘\ - - 1 00 i 0-08
BWh [ — ) -l 0.05  ¥80.06
= Implemented an evaluation of key atmospheric BSK | e | e | o, 004
variables against observational data for 17 climate o = ‘ 0.02 0.2

zones on CONUS domain. reemrmmma—m—sse—a— Am S——

; EO1 E02 EO3 EO4 EO05
Képpen-Geiger (KG) climate Precipitation

classification
(Habte et al. 2020)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Temp@2m

- [ W
002 004 006 008 0.1

Better <
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Modeling Extreme Events

asoN -
40°N —
35°N —
30°N —
- % =  Capability of representing extreme events
N E—— : (e.g., tropical cyclones)
95°W  90°W  85°W  80°W  75°W  70°W  65°W ' % '

N .
4 6 8 10

0o 2 12 14 16 18 WS@160m (m/s, 2018-09-12T20:00:00) Hurricane Florence Track (8-km domain)
45°N : l 45°N — - 3 : :
40°N o
35°N |

35°N
30°N |
Florence . |
- 2018 |
T T st ——Fo1
95°W  90°W  B5°W  BOSW  75°W  70°W  B5°W | S T Obsevalion
T T T T T
85°W 80°W 75°W 70°W 65°W

PN |
0 2 4 6 8 10 12 14 16 18
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On-going Project 2: NCDB




Downscaling Future Solar Projections

= This work aims to 1) develop statistical methods within an efficient framework and 2)
downscale future climate data sets tailored for solar energy applications.

= The NSRDB is used to build and calibrate the statistical downscaling models.

=  Technical approach:

NSRDB: https://nsrdb.nrel.gov/

Climate Data Downscaling with
Statistical methods

Calibrate RCM parameters
using solar, temperature,
and wind observations

Statistical
model

Large scale RCM
daily data in future
years

-->

}

Statistical
model

RCM-based climate projections
obtained from the North
American Coordinated Regional
Climate Downscaling Experiment
(NA-CORDEX; https://na-

cordex.org/) are used as inputs to
the proposed statistical methods.

Small scale
projected hourly
solar, wind, and
temperature in
future years

ORegridding - QBias-correction - eTemporaI downscaling - QSpatiaI downscaling
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Bias-correction of RCM GHI

GCM'’s horizontal grid spacing (> 100 km) is too
coarse to represent local processes and terrain
heterogeneity and the RCM’s also have inherent
systematic and random modeling errors stemming
from various model components.

Therefore, bias-correction of RCM output should be
considered before any application of climate data

We employed a bias correction technique based on
guantile mapping to reduce bias of RCM GHI.

On average across all pixels, the bias of bias-
corrected GHI is less than 10% compared to
the NSRDB.

Bias (year: 2011-2015, rcp4.5, W/m?)

50°N —|

40°N —|

30°N —|

20°N —

L ROWRCM g 0

135°W 120°W 105°W 90°W 75°W 60°W

50°N —|

40°N

S

30°N —

20°N | i E Q);"g:}u
Bias corrected . 7
10, = T T T T 4
135°W 120°W 105°W 90°W 75°W 60°W
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95-years Bias-corrected GHI Projections

Daily GHI (2006-2100; RCP4.5 and RCP8.5)

— Raw RCM GHI

J

— Bias corrected

Avg. Daily GHI (W/m2)

y=-0.0604x+311.21

175
2006 2016 2026 2036 2046 2056 2066 2076 2086 2096
Year
BC Method: Quantile mapping
—+e—NSRDB --»-—-Raw RCM (RCP4.5) --«--Raw RCM (RCP8.5) Training period: 2006-2020 (15 years)
—e—Bias-corrected RCM (RCP4.5) —e—Bias-corrected RCM (RCP8.5) - Linear (Raw RCM (RCP4.5))
<<<<<<<<< Linear (Raw RCM (RCP8.5)) - - -Linear (Bias-corrected RCM (RCP4.5)) - - - Linear (Bias-corrected RCM (RCP8.5))

The bias-correction method applied to the raw RCM conserves both the trend and pattern of the raw
RCM GHI.

This indicates that the quantile mapping reduces the bias of RCM GHI without adversely impacting

the RCM'’s ability to represent future projections of solar irradiance trend and variability.
.52



Temporal and Spatial Downscaling of RCM GHI

Temporal downscaling architecture

NSRDB - clearsky
hourly GHI
(20km)

NSRDB - daily
avg. GHI (20km) L

NSRDB — hourly
GHI (20km,
hourly)

Generate Diurnal Template

—

Fit universal template

Adjust template
height for daily total
GHI

Model fitting
RCM — daily avg. step
GHI (future years)
Model

prediction
step

Predict Diurnal Template

Adjust universal

Noise Addition

Calculate residuals

Fit residual basis

functions and store

Fit spatial model for

Ll Weight stored basis i
functions

basis function weights

8-

template height for  —
daily total GHI

sum

Noise Addition

Simulate basis function
|
weights

Training: 1998-2020
NSRDB data (23 years)

Simulated timeseries (out-of-sample application)

1000

800

600

400

GHI (W/m2)

200

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time step (hour)

—8-NSRDB —Downscaled RCM

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time step (hour)

—8-NSRDB —Downscaled RCM

Spatial downscaling

- 20-km GHI

43N e —
4N 1

41°N s S
W“N% ;

39°N

38°N

arN -

T T T
104°W 102°W 100°W 98°W 96°W 94°W 92°W 90°W

4-km GHI

4N

39°N

T
104°W 102°W 100°W 98°W 96°W 94w 92w 90°W

2000 UTC 1 Jan 2022

Temporal downscaling is the key to accurate
generation of hourly-scale GHI using statistical
methods.

The thin plate splines (TPS) is used as a method
to spatially downscale the 20-km RCM GHI to 4-
km resolution.



Evaluation of Downscaled GHI and DNI (daily total, 2006-2020)

Koppen-Geiger (KG) climate classification
\ . nBias (CONUS, 2006-2020)

160 150 140 130° 120110 100 90 80° 70 60 S0 40 0

o

O I'm ] [ [ ] ] - il | = - LT -

Am A BSh BSk BWh BWk Cfa Cfb Csa Csh Dfa Dfb Dfc Dsh Dsc Dwa Dwb

Kolmogorov-Smirnov (KS) test (CONUS, 2006-2020)

0.15

0.1

0.05

o I N mf mf mf NN wf uf HE mf mf wf ol mR omE HEN

Am Aw BSh BSk BWh BWk Cfa Cfb Csa Csh Dfa Dfb Dfc Dsb  Dsc Dwa Dwb

KS distance

Climate zone

= GHI = DNI

Habte et al. 2020

u Downscaled climate projections show nBIAS less than 2% and 10% for GHI and DNI, respectively
across all climate zones.

n KS-test shows the similar distance between two distributions (NSRDB and downscaled climate data).
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. . *  The climate.nrel.gov data application will be a public
National Climate

facing web interface to allow users to explore, visualize,

and download climate resource data sets.
Database (NCDB)

=  This platform will compliment the NSRDB

gecome the go to platform for meteorological climate
ata
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Concluding Remarks

=  Climate change and its impacts on renewables cannot be ignored anymore in
energy fields.

=  To help mitigate climate effects on energy systems, DOE is now seeking to
understand the short-term and long-term impacts of climate and extremes and
develop future climate data to be included in a range of risk management tools for
the energy sector (e.g., PACES project).

=  Downscaled climate datasets specialized for solar and other renewable energy
applications are currently being developed using different approaches.

= |tis expected that the high-resolution data will be leveraged for various energy
applications.
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Q&A and Discussions
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Current state-of-the-art of solar forecasting technologies:
from physics-based model to Al/ML-based models
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Physics Based Models: WRF-Solar Ensemble
Prediction System




WRF-Solar

Ensemble prediction system based on WRF-
Solar that-
= Provides probabilistic forecasts for the grid .,

-130° -120" -110" -100" -80" -80" -70" -60"

Y 7 -
with ensemble members tailored for solar 4&,*‘; @
T RN
forecasts. BESVA Nl w =
. : © & "WRF ©
= Delivers calibrated forecasts that - < I Ok
. . . 7 N .;_1IIIIlI" quE!,F
= Produce unbiased estimation of | | i N
irradiance. |

= |mproves previous state-of-art solar
forecasts and reduces uncertainty by
Over 50%- (!J 2CI)O 4(50 600 800 1000
= The model is publicly downloadable. GHI [W/m2]

-130" -120" -110° -100° -80" -80° -70" -860"
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Approach

Identify variables that significantly influence the formation and
dissipation of clouds and solar radiation through a tangent
linear analysis of WRF-Solar modules that influence cloud
processes.

Introduce stochastic perturbations in the variables identified in
previous step to develop WRF-Solar ensemble prediction
system (WRF-Solar EPS).

Calibrate WRF-Solar EPS using observations to ensure that
the forecasts’ trajectories are unbiased and provide accurate
estimates of forecast uncertainties under a wide range of
meteorological regimes.

Demonstrate the improvements of WRF-Solar EPS.

Incorporate WRF-Solar EPS in the WRF-Solar community
model as an open-source probabilistic framework:
https://ral.ucar.edu/solutions/products/wrf-solar-eps

WREF-Solar

Development JU

Tangent linear analysis of WRF-Solar modules for
sensitivity study

.z

Introduce stochastic perturbations in the selected
variables

]

-

Configuration and assessment of the WRF-Solar EPS
ensemble

e

Calibration of WRF-Solar EPS forecasts to remove
bias and improve spread accuracy

]

N4 Assessment

WRF-Solar EPS is the first NWP ensemble model
specifically designed to provide probabilistic irradiance
forecast.

Deliver WRF-Solar EPS package capable of providing
accurate probabilistic forecasts

nnnnn

4
WNCC [ O




MAE [W/m2]

Satellite-derived Datasets for Validation

NSRDB compared with surface observations and deterministic WRF-Solar day ahead forecasts (2018).

MAE comparison of WRF-Solar, MAE of WRF-Solar GHI MAE of WRF-Solar GHI
NSRDB, and ground Obs. calculated with NSRDB. calculated with ground Obs.

0
)’ -
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The MAE calculated with NSRDB is within ~5% of high-quality ground observations and reproduces the
spatial variability of the error (r = 0.96).

Accuracy of NSRDB is sufficient for WRF-EPS validation.



WRF-Solar v1 vs WRF-Solar EPS
Mean Absolute Error of GHI for 2018 using NSRDB

WRF-Solar V1 WRF-Solar EPS

7 L) - S
§ ‘4 b;
- 1
" ‘1\ 80
40N
! T0
60
50
..... 55 40
R - e S "
3 -—‘Q\
MAEz73.4 Wim’] ~Y & x

MAE of GHI was reduced by 8% when using WRF-Solar EPS and comparing the day-ahead forecast to
baseline WRF-Solar V1.



Solar radiation

Ensemble Calibration: Methodology

We implemented an analog technique as an ensemble post-processing method to improve the
performance of WRF-Solar EPS. High-quality observations are essential to improve solar forecasts.

Basic idea of weather analogs

Can we use this
information to improve
NWP forecast?

_Concept of analog ensemble (AnEn)

Current Forecast, f

We used the NSRDB to

Past Forecast, g 1 calibrate the ensemble
,7—"'."‘*~~v_u7
gy 7;] forecasts.
r-1 ‘ t
s TR 2
observation ' TTTse-i___ I:I__," “AnEn

member #7

0 1 2 3h 0 1 2 3h g Delle Monache et al. 2013




Ensemble Calibration: Results
Mean Bias Error (MBE) of GHI for 2018 using NSRDB

WRF-Solar EPS Calibrated WRF-Solar EPS ™
> M [] we . ] 2 " Iy =]
‘ ? 55
-

GHI bias was reduced by 81% (calibrated WRF-Solar EPS vs. WRF-Solar V1).

GHI bias is approximately 1% compared to NSRDB.

Forecast bias was reduced for all regions.



Cloud Detection Metrics

Contingency matrix for the WRF-Solar EPS and NSRDB:

WRF-Solar EPS (prediction)

NSRDB,,
(observation)

Scenario Clear Cloudy
Clear a b
Cloudy C d

Mismatched cloud frequency (MCF)

MCF =
C

+d

X 100%
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Evaluation of Monthly Cloud Mask Forecast for Different Cloud Types

High level -
clouds

Mid level

—
clouds

Low level _J
clouds

Tkm ;CTH

Cirrus

CTH

3km < CTH = 7km

CTH = 3km

R1:OPD<3

R2:3<0OPD <20

R3:20< OPD

Altocumulus

— =]

Mismatched cloud frequency (MCF, %)

Altostratus

Stratocumulus

- —_———Z=

40

30

20

10

We used EM,, and analyzed MCF classified in
different cloud optical depth (COD) and cloud
top height (CTH).

Given the MCF, WRF-Solar EPS provides
accurate forecasts for high-level and thick
clouds, whereas low-level and thin clouds
cause difficulties in predicting cloud masks from
the WRF-Solar EPS.

There are notable low MCF values for
‘Cumulus’ category in summer.

This might be a result of the representation of
shallow cumulus clouds using the Deng
parameterization in WRF-Solar EPS.

But note that there are also difficulties in
detecting thin and low-level clouds from
satellite.

EMps, : Observations are cloudy when
cloud fraction from NSRDB is > 50%
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WRF-Solar EPS Website

NCAR RESEARCH APPLICATIONS NCAR s sponsored by @
LABORATORY National Science Foundation )

KAL HOME = WHO WE ARE  EXPERTISE SOLUTIONS ~ WORK WITH US.

« WRF-Solar has been incorporated into the

e official version from WRF v4.4
* We have created the website for WRF-
Solar EPS
(https://ral.ucar.edu/projects/wrf-solar-
eps).

* This website includes a preliminary
overview of WRF-Solar EPS:

Description of WRF-Solar EPS
User’s guide
Publications

Refe

DN

AR| Prwacy | Termsofuse | Copyrightlssves | SpomsoredbyNSF | ManagedbyUCAR | Webmaster/Feedback



https://ral.ucar.edu/projects/wrf-solar-eps
https://ral.ucar.edu/projects/wrf-solar-eps

Machine Learning-based Solar Forecasting

Era of Large Foundation Models



History of Hybrid NWP Al Models

Current NWP Workflow Hybrid NWP-ML Workflow Future End-to-End DL Workflow
( Input: meteorological observation (weather stations, radiosondes, satellites, etc.)
Physical feature calculation
Physical feature calculation Machine learning feature Data preparation
engineering

Pre-processing { Pre-processed data
3D-/4D- Var + ensemble Kalman

filter + Nudging Machine learning

Initial conditions

.

Dynamical Parameterization End-to-end Foundational Deep
Prediction o core of non-resolved Machine learning Learning
process

—

Gridded forecasts

Post-processing Statistical downscaling Machine learning downscaling

End-user forecasts

Adapted from Schultz, M.G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.H., Mozaffari, A. and Stadtler, S., 2021. Can deep learning beat numerical weather
prediction?. Philosophical Transactions of the Royal Society A, 379(2194), p.20200097.

NREL
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Can deep learning beat NWP — Wave

of Foundation Models

Steady progress in NWP development
vs. more disruptive advances in

machine learning 5 vcia Biwicoon Cimax | PR
- i -.xi - ;;;—: } —
= | —

Discussion of the possib”ity of ‘Senuawer PanGu BBtk FuXi wanv.mroumaswet"

completely replacing current NWP T s =L =
with deep learning? e | /T | N mw

Google GraphCast

1. Schultz, M.G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L.H., Mozaffari, A. and Stadtler, S., 2021. Can deep learning beat numerical weather prediction?. Philosophical Transactions of the

Royal Society A, 379(2194), p.20200097.
2. Chen, S,, Long, G., Jiang, J., Liu, D. and Zhang, C., 2023. Foundation models for weather and climate data understanding: A comprehensive survey. arXiv preprint arXiv:2312.03014. NREL | 74



PanGu-Weather: A Case Study

Weather forecasting breakthrough featured in Nature! and Science?

> Global scale

» Medium-range (up to 7-
days-ahead)

» Multi-variate output
(temperature, wind, but
no solar)

» 60 TB ERAS training data

Patch

3D Earth-Specific Transformer

Embedding g\
Layer 1

merge } Earth-Specific Blockx2
(8 x 360 x 181 x C)

Layer 4
Earth-Specific Blockx2
(8 % 360 x 181 X C)

Upper-air Variables : e
(13 X 1440 X 721 X 5) § down-sampling;

v v

Layer 2
Earth-Specific Blockx6
(8 x 180 x 91 x 2C)

4 ‘ Upper-air Variables
: up-sampling ; (13 x 1440 x 721 x 5)
Layer 3
Earth-Specific Blockx6 4%4

(8 x 180 x 91 x 2C) Patch

Recovery |

Encoder

Surface Variables
(1440 x 721 x 4)

Decoder

Surface Variables
(1440 x 721 x 4)

1. Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X. and Tian, Q., 2023. Accurate medium-range global weather forecasting with 3D neural networks. Nature, 619(7970), pp.533-538.
2. Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W. and Merose, A., 2023. Learning skillful medium-range global NREL | 75
weather forecasting. Science, 382(6677), pp.1416-1421.



Pangu-Weather, forecast time 72 hours  Operational IFS, forecast time 72 hours ERAS5 (ground truth)

Temperature (K)

Wind speed (m s77)

g 305
= 300
s | 295
qE) 290
E 280
; 270
» 10,000x faster than © s
N W P | n p red |Ct| on Pangu-Weather, forecast time 72 hours ~ Operational IFS, forecast time 72 hours ERAS (ground truth)
- 25
§ 20
> Better accuracy 2 18
: 10
= Normal 2 5
—&— Pangu-Weather —8— Qperational IFS —o— FourCastNet
" Extreme T2M u10 V10
P 4 N = 4 —
i n A
<2 E E
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o (is
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Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X. and Tian, Q., 2023. 24 72 120 168 24 72 120 168 24 72 120 168
Accurate medium-range global weather forecasting with Forecast time {hDLII'S) Forecast time (hOUI'S} Forecast time (l"lOUfS} REL | 76

3D neural networks. Nature, 619(7970), pp.533-538.



Limitation and Roadmap

Limitation 1. Data: reanalysis data # solar observation data

Solution: Create NSRDB-based SolarBench to

. . standardize the Al-based solar forecasting
Reason 1.2 Lack of easily-accessible solar data development

Reason 1.1 Lack of high-quality and quantity solar data

Limitation 2. Model: weather forecasting # solar forecasting

pd—= ~Vp+ pVu+F

Reason 2.1 Out of interests for Al mainstream Solution: Lead the effort in developing solar im0 v

. ) Physical consistency
Reason 2.2 Challenging due to cloud dynamics forecasting foundation model

Limitation 3. Evaluation: better accuracy # physic consistency

Reason 3.1 No physics embedded in Al models Solution: Develop physics-constrained Al for
Reason 3.2 Lack of physics-based evaluation metrics better solar forecasting

Climate
Foundation

Figure adapted from Zhu, X.X., Xiong, Z., Wang, Y., Stewart, A.J., Heidler, K., Wang, Y., Yuan, Z., Dujardin, T., Xu, Q. and Shi, Y., 2024. On the Foundations of Earth and Climate
Foundation Models. arXiv preprint arXiv:2405.04285.
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Introduction

ARM SGP Site: June 6, 2018
1200 T

* Riihimaki et al. (2021) built
relationship from observations that W ‘

@
=3
=3

can be used to diagnose surface
shortwave (SW) irradiance variability
from model output
* Variability depends strongly on cloud
type and cloud cover

* Observations from DOE Atmospheric Effective transmissivity =
Radiation Measurement Program
(ARM) Southern Great Plains (SGP) site
in Oklahoma

Shortwave Irradiance (W/m°)
5
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3
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UTC Time

All — sky SW flux
Clear — sky SW flux
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Introduction

* Rithimaki et al. (2021) built
machine learning (ML) model
to predict solar variability

* Seasonal analysis suggests the
relationship is relatively
weather regime and location
independent

* Need to further test at
additional sites
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SW Variability by CloudType and Season: SGP 2014-2018
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Evaluation of Riihimaki et al. (2021)

* The evaluation of the ML model in Riihimaki et al. (2021) is extended to
25 years at ARM SGP and to other ARM sites globally

 Evaluation is also tested at NOAA’s Surface Radiation Network (SURFRAD)
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Source: ARM

Data - ARM observations

 Solar variability: all-sky and clear-sky SW
fluxes from RADFLUX

* Cloud cover: cloud fraction from

RADFLUX
* Cloud type: CLDTYPE data product (Lim et EL AT,
et al., 2019) m

* Cloud types include low cloud, congestus,
deep convection, altocumulus, altostratus,
cirrostratus/anvil, and cirrus

* Cloud types simplified into low, mid, high

clouds L et
Time [UTC]
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Data - SURFRAD observations

 Solar variability: all-sky and clear-sky SW
fluxes from RADFLUX

* Cloud cover: cloud fraction from RADFLUX

* Cloud type: identified by random forest
model based on observational inputs (Sedlar
et al., 2021)

* Cloud types include low stratiform, low
cumulus, congestus/deep convection, high
cirrostratus/anvil, high cirrus, and multi-level
(low-high, low-mid, and mid-high)

* Cloud types simplified into low, mid, high
clouds
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ARM, SURFRAD solar variability observations

* Solar variability metric: o(AET) -
i~ 0.4

* standard deviation of the minute to 403
minute change in ET over 15 min oo
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ARM, SURFRAD solar variability observations

0.6

* Solar variability metric: 0(AET) o5 armscr-okanoma,us  — o — towmion  — s — won
~o

e standard deviation of the minute to
minute change in ET over 15 min

e o(AET) is larger for low cloud 0 10 20 30 B S0 s 70 w0 %0 100
R ractional sKy cover %
and smallest for high cloud

e o(AET) is largest for partial
cloudy skies
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ARM, SURFRAD solar variability observations

* Solar variability metric: 6(AET) o Ji armscr-okenoma,us  — 0 —— swmon ——wa —— sir
— 0.4 =
e standard deviation of the minute to E 0

minute change in ET over 15 min Egi Wi i ‘ | “' “‘ g;‘ﬂm;'“ﬂéﬂ@lm; |

e o(AET) is larger for low cloud
and smallest for high cloud

e o(AET) is largest for partial gz TR . 5 '6" .é“ .MH Mm ‘ém Ll

0.5 = (b) ARM TWPCL1 - Tropical Western Pacific, Papua New Guinea

o(AET)
I==)

cloudy skies 0
0.5 = (c) SURFRAD BON - Bondville, IL, US

« Similar features noted across &

[S|¢)

Ao imHmHInHﬂ Wi i, o
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Fractional sky cover [%]
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Methods

* Observed cloud type and cloud cover are inputted into the ML model
to predict o(AET) and then evaluated against observations of o(AET)

inputs:

output:

@T University of Colorado Boulder & nDHH
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Results

* Solar variability predictability is

largely generalizable
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Results at SGP

e Similar r? and lower MSE found for

SGP compared to those in Riihimaki

et al (2021), which indicates that
the results are:

* independent of cloud cover product
* not due to overfit data

e Similar results are found when
using the ARM or SURFRAD cloud

types
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Results at SURFRAD sites

 SURFRAD performance is similar to

ARM performance
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Predictability is less for some locations

* Nauru Island (TWPC2) has largest

MSE
* North Slope of Alaska (NSA) has the
lowest r?
NSA 3%“;%f
3
. \\\Vj:?:?‘l?) e
‘tj;,»vj.\’]'\lecz
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o(AET) results by cloud type
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Results by cloud types

 SURFRAD performance is worse for

low and mid clouds
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o(AET) results by cloud type
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Results by cloud types

 SURFRAD performance is worse for
low and mid clouds

* Mid cloud variability is higher
relative to low clouds at NSA and
Boulder (TBL) for partial cloudy
skies, which impacts predictability

P ol o i .,
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o(AET) results by cloud type
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Results by observed variability

* Predicted o(AET) slightly
overestimates for low observed
o(AET) but underestimates for high
observed o(AET)
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Summary

* Solar variability predictability from Riihimaki et al. (2021) are generalizable
to other locations

 Solar variability predictability is robust to different cloud type and cloud
cover observations

* Predictability is lower for certain locations and cloud types

Next steps:
* Improve model to handle very low/high variability cases

* Develop diagnostic from forecasted cloud type and cloud cover to generate
day-ahead solar variability estimates
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The Al Revolution in
Weather Forecasting
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The History of simulation-based weather
forecasting Is truly impressive
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Massive observational data and high-performance
computing contributed to the success of simulation-
based weather predictions

Massive observational data High performance compute
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AI/ML Is progressing with
Foundation Models emerging

80s | Bigdata 80s to ~2010 ;| Massive data 2010 -2017+ i Self-supervisionat scale
- i Compute || Massive data
i I
{| Compute

i

Foundation Model

@ Feature design

Expert Systems Machine Learning Deep Learning Foundation Models

Hand-crafted symbolic Task-specific hand-crafted Task-specific learnt feature Generalizable & adaptable
representations featurerepresentations representations learnt representations



Computational speed

How do Foundation Models work?

Three steps are involved

vI'DM": s
‘ [ —

W 555 powercenergy
o~ r e

In the morning, I drink a
and eat a [ with
creme cheese.

In the morning, I drink a
coffee and eat a bagel with
creme cheese.




Al Foundation models are taking
the world by storm

O - + © + © -

One base Less Better or Faster
model label similar development
accuracy

N

;) Economy of scale

U]

Bommasani et al. (2021). On the Opportunities and Risks of Foundation Models.



~oundation Models salient features

Salient Features

Excellent “next” token
prediction skill

Homogenization and
adaptability

Accelerate
simulations



~oundation Models salient features

Salient Features Enabling technology
Excellent “next” token Attention networks &
prediction skill transformers

Homogenization and
adaptability

Self-supervised
learning

Accelerate <«— Deepnetworks (to directly
simulations map Inputs to outputs)



~oundation Models salient features

Salient Features Enabling technology Benefit
ExceHem_t next tokem E Attention networks & E ExceHem |
prediction skill transformers forecasting skills
Homogenization and Self-supervised —> Readily scalable to
adaptability learning many applications
Accelerate <«— Deepnetworks (todirectly s Higher resolution &

simulations map inputs to outputs) richer ensembles



Developing Weather Foundation Models

- Forecast Parameter Events Temporal & Ensemble

2w Location ‘ , GERS spatial model ...
S © horizon (wind, solar) :

=9 extremes) downscaling blending

2=

L

Weather Foundation
Model

Foundation
Model

Weather Observations & Reanalysis &
Forecasts Data

Development partners
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some key technical challenges

- Datavolumes Sample volumes of 250 MB = 2 GB
are common.

- Token counts Most models use small tokens (2x2
pixels; 4x4 pixels). Even 2D tokenization schemes
push beyond conventional ViT architectures.

- Stability Forecasts are typically made via
autoregressive rollouts. Numerics need to be stable.

i - Performance Models compare to HPC simulations.
Typical ERAS subset

0.25 degrees resolution, 37 levels, 6 parameters
721 x1440x 37 x 6 x 32 bit =922 MB / timestamp

== imieleinia =
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Pre-training a weather Foundational Model

Input: oundation Qutput:
Y(ty,t.a), masked N Y(t,), Y(ty), Y(t), Y(t.), Y(t.,)

Input data Other key features
- Time-dependent inputs use 2 timestamps. 2D hierarchical vision transformer
Vertical, temporal and parameter dimensions - Trained on 51,800 tokens
are all stacked. - Encoder/decoder are fully attention based.
- Pretrained on 40-years of MERRA2 data. - All auxiliary information (e.g. lead time)

injected via context tokens.
Pre-training task
- Masked pretraining and “forecasting”.



Pre-training / inference

Input ULOM - 0% masking Output ULOM @ 6 hours ahead




Al provides significant speed-ups compared
numerical weather simulations
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netuning results — Few shot learning

Ground truth

e

400
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Conclusion

2020 2021 2022 2023 2024

Weather foundation models are emerging
« Computationally much more efficient
» Learn the physics directly from data
« Approaching comparative performances
* Quick adaptablility to address the long-tail of applications






SOLCAST

a DNV company

Value of Physically Based Models

Hugh Cutcher, Lead Data Scientist



Solcast, a DNV company

Founded in Acquired by DNV in Headquartered in Sales & Support in Serving
2016 2022 Sydney USA & EU 300+ Customers

200+ Providing services for
Validation Sites 200+ GW
Recent API Usage
130+ 2TB 30+ 26 million 99.99%
Countries Data every day Publications API calls daily API uptime
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Solcast data overview
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Monitoring, analytics, and
control: Services and
products

Asset
management

Solar resource
assessment

Residential PV
technology and
services

Diverse
Applications

Energy, demand, and price
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Machine Learning Black Box

Black Box Outputs

SELCAST



Garbage In, Garbage Out Once in a Lifetime
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RAW GEOSTATIONARY ATMOSPHERIC PRESSURE, ALBEDO
SATELLITE IMAGES WATER VAPOUR (SURFACE REFLECTIVITY)
NOAA, EUMETSAT & JMA ECMWF, ERA, NOAA GFS NASA MERRA2, NASA MODIS

Solcast Model Chain

ECMWF IFS, NOAA GFS,
BOM ACCESS-G, WRF (VARIOUS) ECMWF CAMS, NASA MERRA2

CLEAR SKY MODEL

ELEVATION
SOLCAST CLOUD MODEL (REST2)

UD OPACITY CLEAR SKY GHI

INPUTS

|

GLOBAL HORIZONTAL SOLCAST SEPARATION
IRRADIANCE (GHI) MODEL

PHYSICALLY BASED
MODELS

DIFFUSE HORIZONTAL DIRECT NORMAL
IRRADIANCE (DHI) IRRADIANCE (DNI)

USER ARRAY TRANSPOSITION MODEL
GEOMETRY (HAY, REINDL)

e
S@LCASI- GLOBAL TILTED PV POWER

IRRADIANCE (GTI) (see other docs)
a DNV company




Astronomical
Phenowmena

April Eclipse

Eclipse Impacts - Solcast GHI Actuals SOLCAST
Issued at 2024-04-08 17:00 ET N

SOLCAST

a DNV company

Source: Solcast API
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2020 California Wildfires

MERRA2 Aerosols: 2020-09-09T01:00Z

SELCAST
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Snow Soiling

Solcast Snow Soiling Forecasts
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Terrain Shading

¥ Impact on
average yields often
low as limited in
scope

HK Highly localised
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http://drive.google.com/file/d/12Kb4rVL2NPjR_3qZMeY2ywhbtue3iw0q/view
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For any questions...

Hugh Cutcher
hugh@solcast.com
Find me on LinkedIn

More info at

solcast.com

go.solcast.com/HiHugh
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Q&A and Discussions

U.S. DEPARTMENT OF ENERGY  SOLAR ENERGY TECHNOLOGIES OFFICE 130




Resource and load forecasting for multiple technologies
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Load Forecasting Trends and AND CUSTOMER
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Challenges
DOE Solar Forecasting Workshop - July 9, 2024

David Larson, PhD
Technical Leader, EPRI

DLarson@epri.com
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Load forecasting is key for many grid decisions...

¢ o® . ¥ %
Decarbonization Integrated Resource Delivery System Real-Time Grid
Strategies Resource Adequacy Planning Operations
Planning

Improved forecasts will drive more efficient investment decisions

and grid performance across timescales

L o Ny

Increased Increased Reduced Reduced
Customer Opportunities Asset Utilization Operating Reliability Risks
Costs
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But load forecasting is getting more complicated!

Drivers Complicating Electric PJM Peak Load Forecast:

Demand Forecasting 2022 vs. 2023 vs. 2024 Projections

220,000

#* Electrification 210,000

o 200,000 Summer Peak Forecast

#* Decarbonization (H2, heat) 190,000

* Weather (extreme temps) 180,000

® Re-industrialization/On-shoring 170,000 106w 202

e . . 160,000

® Digitalization (data centers, crypto) .., .0 - sz
140,000

¥ End-use efficiency 130,000 2024 50/50 Fest

¥ Customer generation/storage 120,000 B peak M 2023 50/50 Fest

$

. 110,000 B WN Peak M 2022 50/50 Fcst
Customer behaviors/rate structures 10000 /30 Fes

1995 2000 2005 2010 2015 2020 2025 2030 2035 2040
Source: PJM 2024 Load Forecast Report
https://www.pjm.com/-/media/library/reports-notices/load-forecast/2024-load-
report.ashx
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Forecasting in System Operations

e Deterministic forecasts

* Probabilistic forecasts

?

* Single forecast model * Multiple forecast models

e Transmission e Transmission & Distribution

* Hourly resolution e Sub-hourly resolution

* Load, solar, wind * Load, solar, wind, storage,
hybrids, DERs, etc.
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Winter Storm Elliott: High short-term forecast errors

PJM under-forecasted peak load by “8%' “The load forecasting tools had never

. Dec23 experienced similar weather
Load (Thousands, MW) Temperature o . .
150 - - 35° conditions and load levels to Elliott,
Source: PIM Actual Load . P
140 - (DR deployed)* - 30° therefore the data history wasn’t
N\ / . :
130 450 Actual Load @\ - 25° available to the tools to perform
RN (DR not deployed)/ .
120 { S, - 20° accurate load forecasting”
\
110 - L Forecasted 1 45° — SPP re tz . .
o ; Load .. “A norr#ﬁ[y high load forecasting
. RN . errors occurred due to a lack of
N R .. historical data for similar extreme
Dec. 23 Dec. 24 conditions in December” — MISO
|Temperature:--ActuaI -~ Forecasted ‘ *Includes final DR values ‘

rgp;gmtgrm Elliot: Event Analysis and Recommendation Report”, July 17, 2023
: iew Gf SPP’s Response to the Dec. 2022 Winter Storm”, April 17, 2023

3: MISO: “Overview of Winter Storm Elliot December 23, Maximum Generation Event”, January 17, 2023

Extreme temperatures with new technologies can fool forecasting algorithms.
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More historical data may not be sufficient

20 A

15 A

10 1

w
I

Temperature [°C]
o

=10 41

—-15 1

e Past 4 Years
e Event Year

80000

100000 120000
Load [MWh]

140000

Temperature vs load before Winter Storm Elliot

137

© 2024 Electric Power Research Institute, Inc. All rights reserved.

=rr2l



“Best” forecasts still don’t capture ramps*

100% ] /” _________ L ["§
+* Actual RN t
. 75% l/ ctua \\c\)recas
S 50%- i A
D? Il \\’\
25%4 /[ !
{ \
O% " I I I I I T \\
20% -
2 0% -
L
-20% -

08-23 06 08-23 08 08-23 10 08-23 12 08-23 14 08-23 16 08-23 18 08-23 20

*from a forecast trial with 9 vendors, ran using EPRI’s Forecast Arbiter platform and 4 grid-scale PV plants in Southeast US
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Where do we go?



Need to consider how forecasts are created and vused

Feedback

Forecast

Forecast Method End-use

Feedback

Focusing only on “reduce average error” no longer enough
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What should we prioritize?

(1) Good: Improve Load Forecasts

v

(2) Better: Improve Net Load Forecasts

v

(3) Best: Improve Grid Outcomes

© 2024 Electric Pow ver Research Institute, , Inc. All rights reserved [ d =]



EPRI Load Forecasting Initiative

Improved load forecasts at operational and planning timescales™ will drive more efficient
investment decisions and better grid performance.

EPRI launched a 24-month initiative to address critical needs in load forecasting that will
work across three areas:

Industry Coordination
Enable knowledge-sharing and
collaboration among utilities, ISOs/RTOs,

Long-Term Forecasting (Planning)

Develop methodologies and
guidance to incorporate new load drivers

Short-Term Forecasting (Operations)
Develop methodologies and guidance to
mitigate changes in forecast accuracy

msites.epri.com/LFl

*we are defining “planning timescales” as >1-year ahead

© 2024 Electric Power Research Institute, Inc. All rights reserved.
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WATER POWER TECHNOLOGIES OFFICE

Forecasting for Hydropower

Water Power Technologies Office, U.S. Department of Energy

Eri Sharifi, Charles Scaife
7/9/2024
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WATER POWER TECHNOLOGIES OFFICE

Hydropower
Program

Modernizing the Pumped Storage New Low-Impact
Fyicting Flaat

&

()

g E
2 g
E (a
=

Wave Tidal, River and Ocean Ocean Thermal
Current
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FIVE CORE RESEARCH AREAS

1. Innovations for Low-Impact Hydropower Growth

3. Fleet Modernization, Maintenance, &
Cybersecurity

4. Environmental &
5. Data Access, Analytics, and Workforce




HydroWIRES

The mission of HydroWIRES (Water
Innovation for a Resilient Electricity
System) is to understand, enable, and
improve hydropower’s contributions to
reliability, resilience, and integration in
a rapidly evolving electricity system.
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Role in the Hydropower Program

Covering grid related R&D including:
* grid reliability,

* grid resilience, and

* grid integration.
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Four Research Areas

Research Area 1

Value Under
Evolving Systems
Conditions

Grid Services Taxonomy
Value drivers
Valuation Methodologies

What can the hydropower
fleet do?

Flexibility Framework
Flexibility Tradeoffs

Modeling Representation

Reliability and Resilience
Contribution

Comparison with Other
Resources

Operations Optimization
System Effects of Operations

Technology Gaps

Unit Flexibility Enhancement
Plant Flexibility Enhancement
New PSH Designs




Hydrologic forecasting is part of the
HydroWIRES roadmap

Flexibility Develop a flexibility
Framewark framework

Apply flexibility
framework to real

Develop a flexibility total U.S.

plants estimation tool exibility

. Asset-level cost-
Understand Understand machine

ol onmental/ conditi bility ;  benefit toolbox with
Tradeoffs c R Y i grid benefit, nature, |
_’i and machine impacts
. Aeasure grid value Inder d flow
Hydrologic ME:; ure grid value ﬁLrgsm S I:l:m Improve flow forecast
Forecasting improvements capability gaps LAl
Modeling In:@rove po\A.EI syfstern Sup_port inu?gs_tryj\ed
R , model representation research to improve
epresentation of hydropower modeling capabilities

Foundational . Tool . Application and Key Results and
Understanding Development Verification Performance Goals
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Hydrologic Forecasting
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Hydropower operators use inflow forecasting tools to estimate future inflows to hydropower
reservoirs.

These tools vary extensively within the hydropower industry in terms of lead time (short,
medium, long term), geographic setting, and complexity. Some forecasting tools are
proprietary, but can be purchased from vendors; other tools are in-house, developed by the
hydropower facility operator to be fit for purpose.

Understanding reservoir inflow is critical to managing multiple water uses and making

* informed operational decisions. If hydropower plants are required to operate more flexibly,
& forecasting tools will likely require improvements in accuracy and resolution. For example,

there may be some instances where conditions are swiftly shifting, as is the case with low-

" elevation upper watersheds, snow pack dependent facilities, and lower latitude facilities.

Hydropower flexibility is a function of reservoir capacity; therefore, knowing exactly how
much water will be available at a particular time can enable better planning and unlock
additional operational capabilities.

Work under this objective will first focus on identifying instances where forecasting tools are
currently or prospectively insufficient in the context of increasing operational flexibility, and
evaluating the degree to which past and current investments resolve those gaps. Future
investments will then be aimed at addressing specific gaps that are highly targeted and
impactful.
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HydroWIRES B1: Monthly and Weekly

Hydropower Constraints Based on
Disaggregated EIA-923 Data

SCITAL

This dataset provides both monthly and
weekly constraints (maximum and minimum
generation) and power targets for hundreds of
hydropower plants across the United States.
The data is intended for use in Production
Cost Models (PCMs) and Capacity Expansion
Models (CEMs). The hydropower data is based
on disaggregated annual power data which is
part of the EIA-923 dataset.

e i 2 - X '
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Hydropower Scheduling Oriented
Inflow Forecast Evaluation for Great

River Hydro TA

stations and -
Upper Connecticut River, draining 6,266 square
miles.

Managing the reservoirs requires coordination over
a couple days. So far seasonal flow forecast and

medium range probabilistic flow forecast during
high flow conditions are leading to satisfactory
management. PNNL is assisting Great River Hydro
to evaluate potential improvements in inflow
forecasting and scheduling accuracy, particularly
during short- to medium- duration periods (1-10
days).

:‘}/ Hydropower Scheduling Oriented Inflow .. .o
Forecast Evaluation for Great River Hydro

Cameron Bracken, Vince Tidwell, John Ragonese

General Forecast Evaluations

o manages 589 MW of hydropower onthe PN is providing independent review of two vendor foracast
o

Improved accuracy is anticipated to enhance
the efficiency with which GRH utilizes water,

improving GRH’s ability to hit the best priced
hours throughout the system and enhancing
revenues as a result.
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Value of flow forecasts to power system analytics

Hydropower operators use weekly water inflow forecasts to optimize reservoir releases and unit

commitment and to meet power grid needs.

The accuracy of inflow forecasts, combined with related scheduling adjustments, contracts, and market
opportunities, are reflected in a utilities’ revenue. One of the goals of the HydroWIRES initiative is to

demonstrate the contribution of flow forecast to provide hydropower services to the grid.
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POTENTIAL CLIMATE 680
CHANGE IMPACTS

Drought Early Flooding Extreme
Snowmelt Temperatures

HYDROLOGIC SYSTEMS SCIENCE

MISSION e ||

) ) Evaporation ' ‘“ I J
Advance our understanding of the impacts S -
of climatic and hydrologic changes on Streamflow
hydropower operations and hydropower's

TV =

Groundwater

decision-making of stakeholders across

effect on the environment to support \ Resrvi
multiple sectors.
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HYDROLOGIC SYSTEMS SCIENCE

DATA COLLECTION

Using new and existing sensing technologies that are

both accurate and reliable to monitor the natural and

METRICS AND ANALYTICS

The systematic computation of gathered data that

leads to meaningful discovery, interpretation, or

MODELING

Understanding and predicting coupled human and

natural systems across various spatial and temporal

systems models and modeling framework
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HYDROLOGIC SYSTEMS SCIENCE

full pool (highest water level) winter pool (loweshwater level)
DATA COLLECTION 5 : A NG
Using new and existing sensing technologies that are 3
both accurate and reliable to monitor the natural and
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systems models and modeling framework
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HYDROLOGIC SYSTEMS SCIENCE

Mid to Upper
Columbia River Basin

aoourl
. Headwaters
N
METRICS AND ANALYTICS
The systematic computation of gathered data that
leads to meaningful discovery, interpretation, or
y
Colorado
pro]ots
Pacific
Northwest
NATIONAL LABORATORY Plant capacity (MW) o 5 O 500 O 5000
systems models and modeling framework
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HYDROLOGIC SYSTEMS SCIENCE

Regional Annual Generation, 2001-2021

Snake River Basin Missouri Headwaters
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systems models and modeling framework
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HYDROLOGIC SYSTEMS SCIENCE

US Federal Hydropower Plants

-> 2,000 MW [ vsace
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¥ BPA (1-4)
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US Army Corps of Engineers (USACE) SWPA (a
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Coordinate \’ |
. . . North America Albers Equal Area Conic, |
Understanding and predicting coupled human and Power Marketing Administrations (PMAs) VKD 102008 W v
Bonneville Power Administration (BPA) Map Scalo: 4
Southeastern Power Administration (SEPA) 1:15,584,603
natural systems across various spatial and temporal 1 Power Admini (SWPA) {2 wapn & swen
Data Sources:
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systems models and modeling framework

DEPARTMENT OF ENER! OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | WATER POWER TECHNOLOGIES OFFICE



HYDROLOGIC SYSTEMS SCIENCE

U.S. DEPARTMENT OF ENERGY

MODELING

Understanding and predicting coupled human and

natural systems across various spatial and temporal

systems models and modeling framework
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