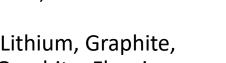

Appalachian Regional Deploy Dialogue

Grant S. Bromhal, PhD Senior Science Advisor

> Morgantown, WV July 17, 2024

Critical Materials RDD&D needs reach across DOE


Domestic Critical Minerals & Materials Supply Chains Are Vital for the Clean Energy Transition

Magnets for wind turbine

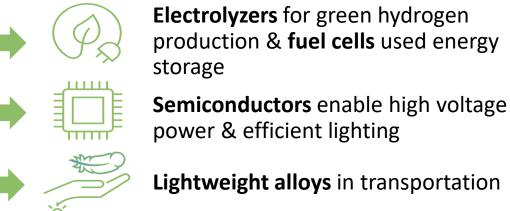
Batteries for electric vehicles &

generators & EV motors

Neodymium, Praseodymium, Dysprosium, Terbium

Cobalt, Lithium, Graphite, Nickel, Graphite, Fluorine

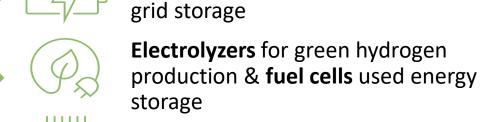
Iridium & Platinum

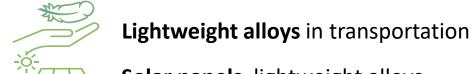

Gallium & Silicon Carbide*

Magnesium & Aluminum

Silicon*

Copper* & Electrical Steel*





*Not on the U.S. Geological Survey Critical Minerals List

Solar panels, lightweight alloys, electrical steel

Wind turbine generators & EV motors

White House Goals

- 100% clean • electricity by 2035
- Net-zero economy ٠ by 2050
- 50% electric • vehicle sales by 2030

DOE Goals

- 30 gigawatts offshore wind by 2030
- Cost of Clean • Hydrogen \$1/kg by 2031

Significant vulnerability across many supply chains

	Graphite 100%	
	Manganese 100%	•
	Rare Earths >95%	Þ
	Platinum 83%	Þ
Maximum US Reliance on Fossil Imports as 30% in 2005	Cobalt 67% *100% of base metal is imported Nickel 57% *100% of class 1 nickel is imported	•
	Magnesium 52%	
	Fossil Energy and Carbon Management	USGS

W

Commodity	
ARSENIC, all forms	100
ASBESTOS	100
CESIUM	100
FLUORSPAR	100
GALLIUM	100
GRAPHITE (NATURAL)	100
INDIUM	100
MANGANESE	100
MICA (NATURAL), sheet	100
NIOBIUM (COLUMBIUM)	100
RUBIDIUM SCANDIUM	100 100
	100
STRONTIUM	
TANTALUM	100
YTTRIUM GEMSTONES	100 99
	>95
ABRASIVES, fused aluminum oxide NEPHELINE SYENITE	
	>95
RARE EARTHS, ⁴ compounds and metals	>95 >95
TITANIUM, sponge metal BISMUTH	280
POTASH	91
STONE (DIMENSION)	87
DIAMOND (INDUSTRIAL), stones	84
PLATINUM	83
ANTIMONY, metal and oxide	82
ZINC, refined	77
BARITE	>75
BAUXITE	>75
IRON OXIDE PIGMENTS, natural and synthetic	75
TITANIUM MINERAL CONCENTRATES	75
CHROMIUM, all forms	74
PEAT	74
TIN, refined	74
ABRASIVES, silicon carbide	73
SILVER	69
COBALT	67
GARNET (INDUSTRIAL)	67
RHENIUM	60
ALUMINA	59
VANADIUM	58
NICKEL	57
DIAMOND (INDUSTRIAL), bort, grit, and dust and powder	56
MAGNESIUM COMPOUNDS	52
GERMANIUM	>50
IODINE	>50
MAGNESIUM METAL	>50
SELENIUM	>50
TUNGSTEN	>50

Net import reliance as a percentage of				
	apparent consumption in 2023			
100				
100				
100				
100				
100				
100				
100				
100				
100 100				
100				
100				
100				
100				
100				
99				
>95				
>95				
>95				
>95				
94				
91				
87				
84				
83				
82				
77				
>75				
>75				
75				
75				
74				
74				
74				
73				
69				
67				
67				
60				
59 58				
57				
56				
50 52				
>50				
>50				
>50				
>50				
>50				
200				

USGS 2024 Mineral Commodity Summaries 2024 (usgs.gov)

Federal Support for the Domestic Battery Supply Chain

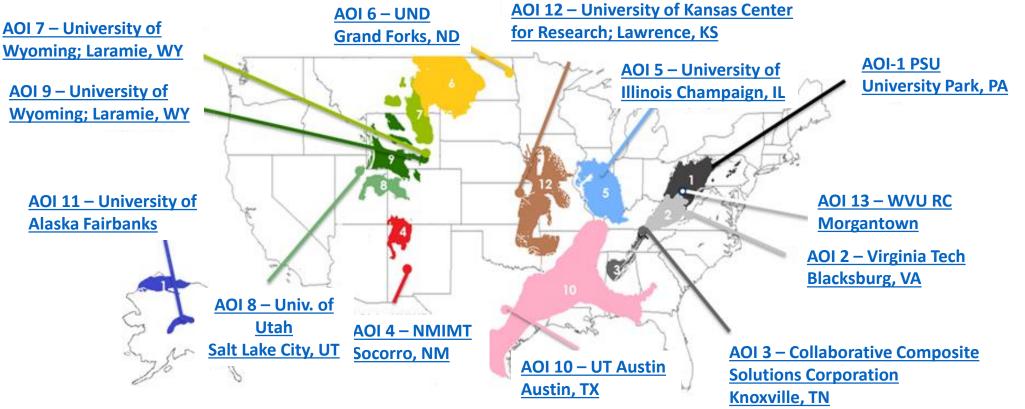
(BIL, IRA, LPO, DPA, and BEYOND!)

			(=.=,,	,					
DOE-MESC (BIL)	DOE-MESC (IRA)	DOE-LPO (Loan)	Defense (DPA)	Defense IBAS	Commerce	Ex-Im Bank	U.S. Development Finance Corp	National Science Foundation	Interior
Battery Manufacturin g and Processing Section 40207(b)(c) \$6 Billion Battery Recycling Sections 40207 and 40208 \$335 Million	Advanced Manufacturin g Production Credit Sec 13502 (45X) Clean Vehicle [Tax] Credit Sec 13401 (48C) \$10 Billion Conversion Grants Sec 50143 \$2 Billion	Advanced Vehicle Technology Manufacturin g Loans Loan Guarantees \$15-20 Billion to date	Critical Minerals \$500 Million (Ukraine Stimulus) \$250 Million (IRA 30001)	Industrial Base Analysis and Sustainment Program \$2 Billion Invest in 6 priority industrial capability development areas: Shipbuilding Workforce Weapons Electronics Chemical Batteries	CHIPS ACT: \$52.7 billion in federal funding to revitalize the U.S. semi- conductor industry <i>ITAC on</i> <i>Critical</i> <i>Minerals and</i> <i>Metal (Trade</i> <i>Policy)</i> <i>Select USA</i> <i>(FDI)</i> <i>USEACs</i> <i>FCS</i> <i>New Supply</i> <i>Chain Office</i>	Make More in America Initiative: Direct loans, loan guarantees, and insurance Projects over \$50 million Securing Importation of Processing Equipment and Modular Parts	Targeted Investments in Mining and Minerals Projects Abroad to Support Global Clean Energy Example: DFC equity investment in Mali, Brazil, and Mozambique	\$160 Million Regional Innovation Engines Program to expand domestic innovation capacity through the prioritization of geographic regions that do not currently have well- established innovation	Mining Law Reform: Interagency Working Group providing whole-of- government effort to reform the General Mining Law (non-financial)
							۲	NSF:	
									MESC

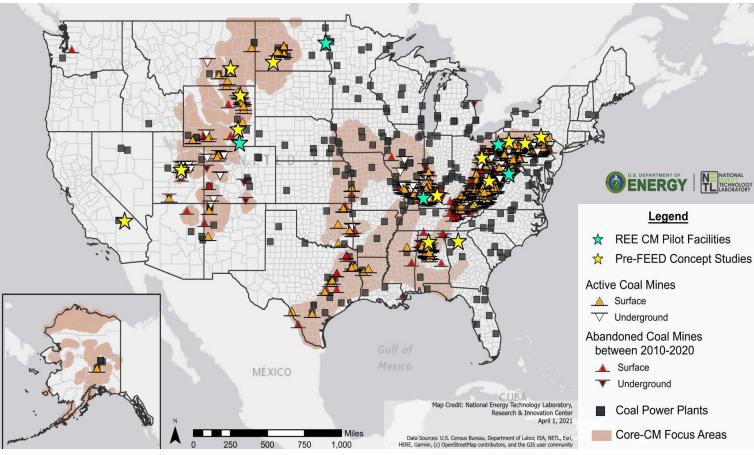
Critical Minerals & Materials (CMM) Vision & Strategy Vision:

- Build reliable, resilient, affordable, diverse, sustainable, and secure domestic critical mineral and materials supply networks.
- Support the clean energy transition and decarbonization of the energy, manufacturing, and transportation economies.
- Promote safe, sustainable, economic, and environmentally just solutions to meet current and future needs.

CMM Strategies:



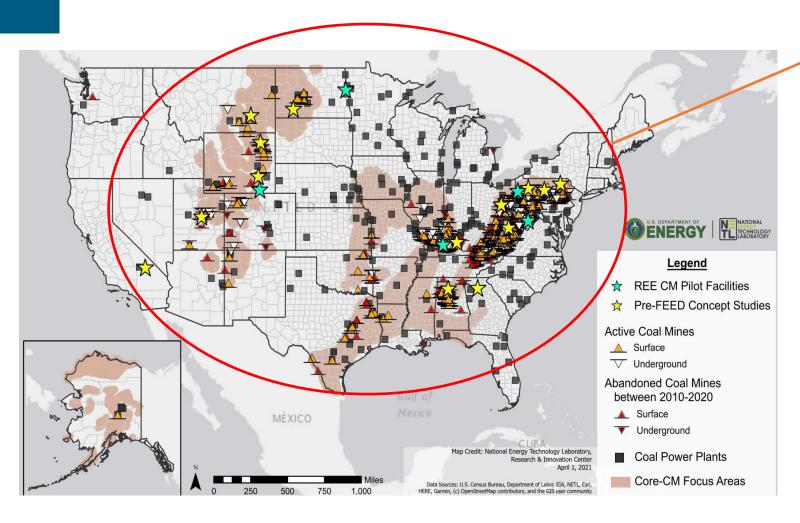
https://www.energy.gov/critical-minerals-materials



DOE is an integral part of an All-of-Government Strategy

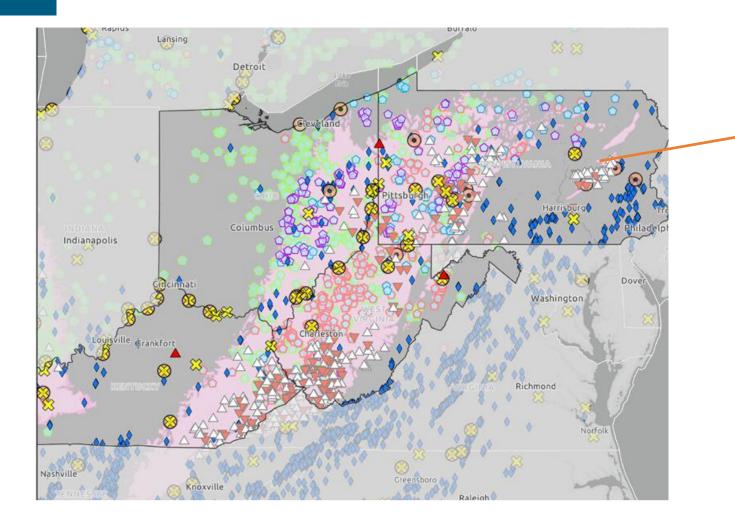
CORE-CM: Developing National Prospectus by Assessing Regional Opportunities

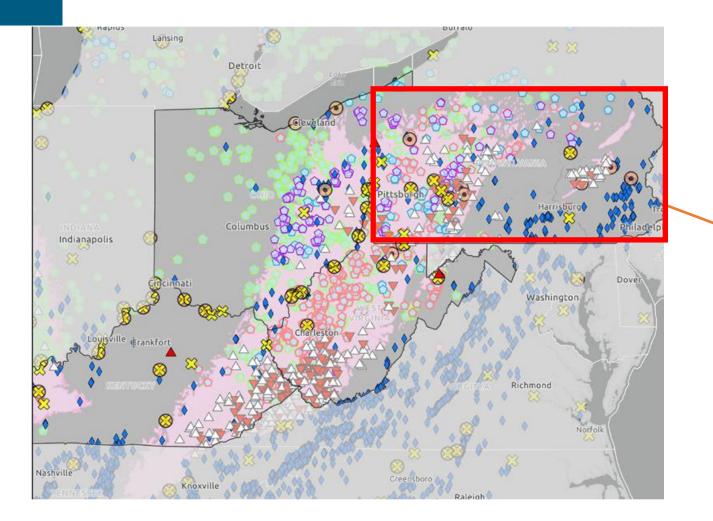
- Build broad-based regional coalition teams, including Tribal Nations, local communities
- Investigate regional resources (materials, facilities, infrastructure, workforce), opportunities, and challenges
- Catalyze regional economic growth and job creation, while addressing legacy waste and environmental justice
- Enable production of REE, CM and high-value, nonfuel, carbon-based products


Potential In-Place Volume in U.S. Legacy Coal Ash

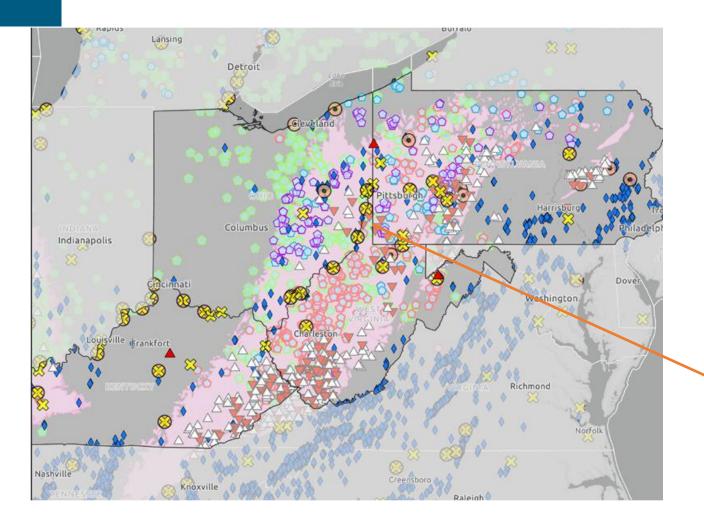
Critical Metal	Estimated Mass	Potential Supply (Years)	
Nd	172,000 tons	40	
Dy	62,000 tons	14	
Li	288,000 tons	130	
Co	110,000 tons	15	
Ni	252,000 tons	1.1	
lr	40 tons	15	
Pt	600 tons	15	
Ga	20,000 tons	1,100	
Ge	30,000 tons	3,900	

Granite, Bromhal, Wilcox, Alvin. NAE The Bridge, Sept. 2023

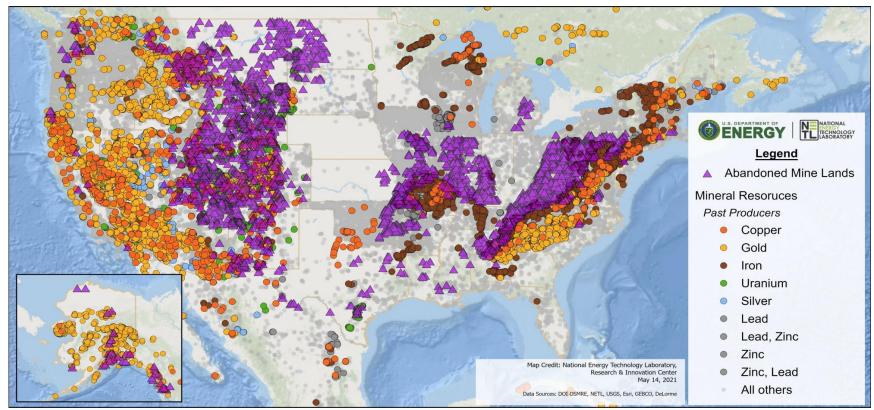

From USGS. COALQUAL database


~<u>30,000t/yr</u> in <u>current production</u>

ENERGY Fossil Energy and Carbon Management

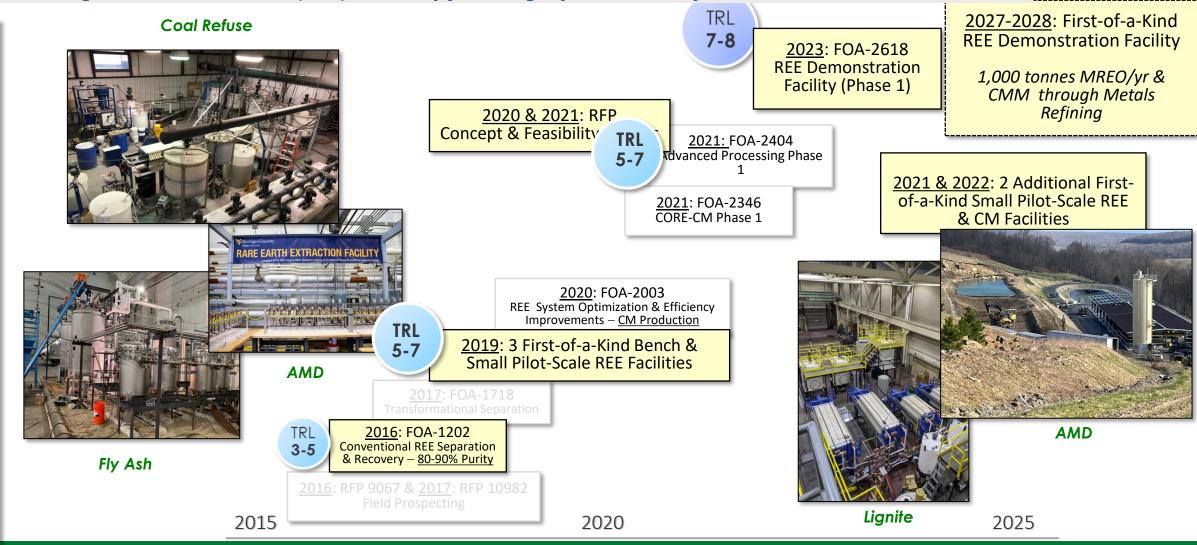

- ~<u>30,000t/yr</u> in <u>current production</u>
- 68,000 t from Appalachia coal refuse
 - <u>12,300 t/yr</u> REE (2018*; 50% recovery), <u>active refuse</u>

- ~<u>30,000t/yr</u> in <u>current production</u>
- 68,000 t from Appalachia coal refuse
 - <u>12,300 t/yr</u> REE (2018*; 50% recovery), <u>active refuse</u>
- 331,000 t from PA ash impoundments.
 - Over <u>10,000 t/yr</u> REE (2018*; 50% recovery), <u>active ash</u>



- ~<u>30,000t/yr</u> in <u>current production</u>
- 68,000 t from Appalachia coal refuse
 - <u>12,300 t/yr</u> REE (2018*; 50% recovery), <u>active refuse</u>
- 331,000 t from PA ash impoundments.
 - Over <u>10,000 t/yr</u> REE (2018*; 50% recovery), <u>active ash</u>
- Between <u>400-1700 tons/yr</u>REE (50% recovery), <u>Appalachia AMD (</u>HREE enriched)

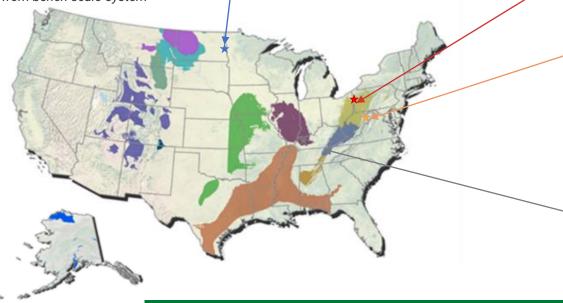
Potential from Other Secondary & Unconventional Sources


From USGS, Abandoned non-coal Mines

Includes produced water, red mud, phosphate sludge, and metal mine wastes

CMM Processing from Waste Resources

Maturing Rare Earth Element (REE) Recovery from Legacy Coal Waste from Pilot to Demonstration Scale


Small-Scale Pilot Facilities

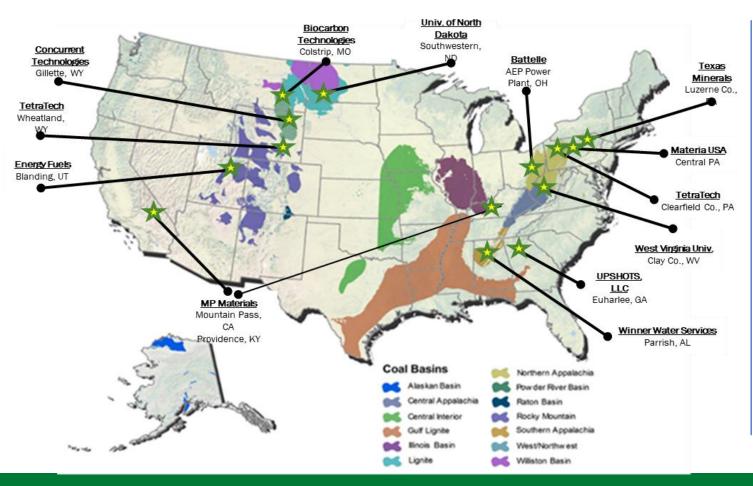
Pilot-Scale Facilities Producing High Purity MREO/CM (Co, Mn, Ni, Ga, Gd) from Domestic Coal-Based Sources

- · Location: Grand Forks, ND
 - Feedstock: Lignite
 - Operation Period: Not yet in operation, Period of Performance ends 06/30/2024
 - Production rate of highest grade/purity: 140 g/week (85% REO: 88% REO/CM)*
 - Separation Beyond MREO/MRES: Planned, but not yet achieved.
 - CMM Produced: Ge (60% by weight) Planning for Ga

* Data from bench-scale system

WestVirginiaUniversity.

- Feedstock: Post-combustion fly ash from two KY power plants
- Operation Period: November 2019 March 2022
- Production of highest grade/purity: 16 g >90% REY oxide, 22 g of >85% REY oxide
- Separation Beyond MREO/MRES: Sc, Al only
- <u>CMM Produced</u>: 1 g Sc salt (>85%), 101 g Al (>70% oxide)
- Location: Mt. Storm, WV
- Feedstock: Acid Mine Drainage
- Operation Period: October 2022 September 30, 2023
- Production rate of highest grade/purity: 82 g MREO/hr, 2.8 kg 95% LREO, 2.5 kg 65% HREO
- Separation Beyond MREO/MRES: Partially
- CMM Produced: Ni+Co, Mn, Zn
- Location: Webster County, KY • Feedstock: Course Refuse and Lignite
 - Operation Period: July 2021 July 2022
 - Production of highest grade/purity: 0.72 kg >80% REO (with coal refuse)
 - Separation Beyond MREO/MRES: N/A
 - <u>CMM Produced</u>: 0.3 kg (8% Co, 30% Ni); 0.27 kg (22% Mn)



Feasibility (Pre-FEED) Studies

Large scale projects to produce 1-3 metric tons/day of mixed REO/RES and other critical minerals.

13 projects selected for the Concept Phase of the pre-FEED studies

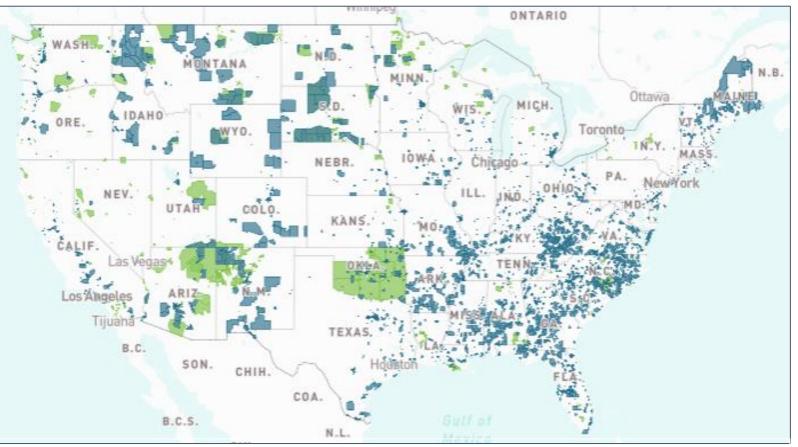
8 projects were selected from concept phase to perform a more detailed pre-FEED study

Contractor	Location		
West Virginia University	Morgantown, WV		
MP Mine Operations	Mountain Pass, CA		
Energy Fuels	Lakewood, CO		
University of North Dakota	Grand Forks, ND		
Winner Water Services	Sharon, PA		
Tetra Tech – PA	Pittsburgh, PA		
Texas Minerals Resource Corp	Sierra Blanca, TX		
Materia USA LLC	Inwood, NY		

Opportunity: Waste Minimization and Circularity

Reclaiming, recycling waste materials

Maximizing use of feedstock materials

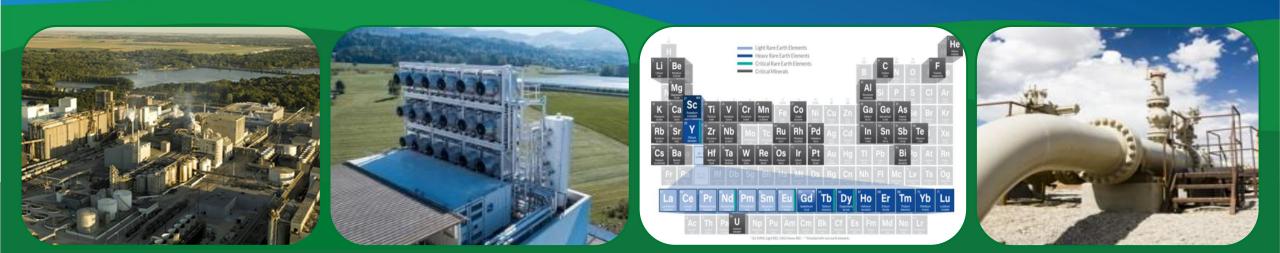

Can change the *risk profile* of a project

Community Engagement is Critical

Community Benefits Plans

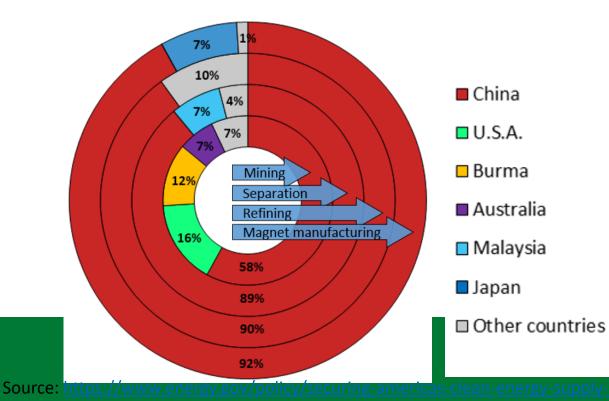
Disadvantage was measured based on a score across 36 indicators. Census tracts with at least 30% low-income households and disadvantage scores >80% of those in their state are considered a disadvantaged

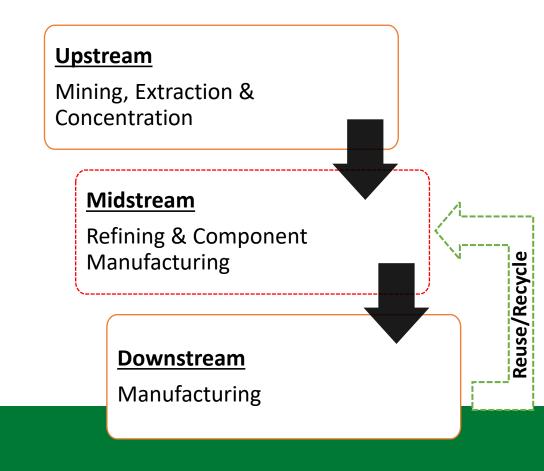
Things to consider


- Accelerating commercialization of novel feedstocks and next generation technology
- Engaging communities
- Engaging private capital
- Bringing upstream and midstream (and downstream) along together
- What is economic for waste streams? Different risk profile
- How do we compete internationally? Standards?

Fossil Energy and Carbon Management

Questions?




Critical Mineral and Material Supply Chain Vulnerabilities

Supply Chain Vulnerabilities

- → Up-to-mid stream capabilities are concentrated in 1-3 countries
- → Lack of midstream capabilities are a gap that limit growth of upstream supply and downstream value-add manufacturing

Example: Geographic concentration of supply chain stages for sintered NdFeB magnets

Four Main Sources for Supply Diversification

Recycling

Secondary & Unconventional Feedstocks

New Domestic Mining

International Sources

Standards Development/Engagement

Responsible stewardship of critical materials is a domestic and international issue requiring high environmental standards across the entire supply chain

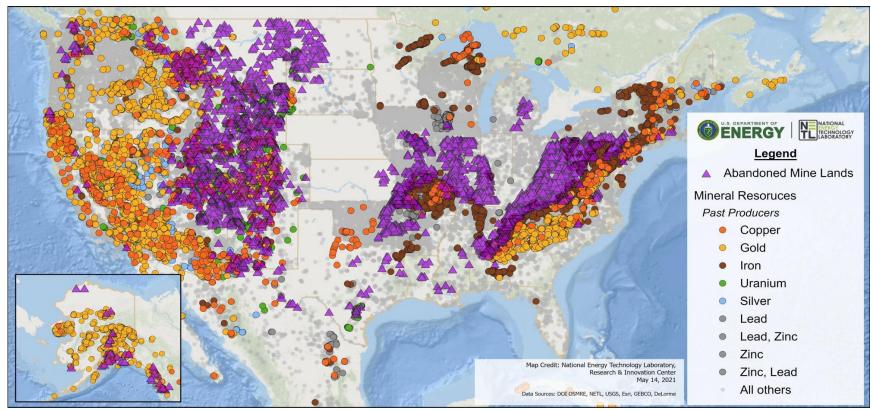
FECM/MSD engages in ISO efforts to improve sustainability in global CM supply chains

- ISO TC 298 Rare Earth Elements
 - U.S. proposed developing a sustainability standards for rare earth mining, separation and processing to include environmental, economical and societal impacts
 - Working Group 5 has been established specifically for sustainability, and will be beginning work soon
- ISO TC 333 Lithium
 - New technical committee that is still developing strategic business plan, but is meant to include the full supply chain, excluding LIB as end products
 - Sustainability proposal put forth by the U.S. and is currently posted for a 12-week ballot

Working with EPA on certification standards for federal procurement

OSTP NSTC CMS, International Bilateral/Multilateral interactions are opportunities to coordinate responsible development of supply chains

Thank you Grant Bromhal: grant.bromhal@hq.doe.gov


Learn more about CMM at DOE: energy.gov/criticalmaterials

Questions?

Potential from Other Secondary & Unconventional Sources

From USGS, Abandoned non-coal Mines

Includes produced water, red mud, phosphate sludge, and metal mine wastes

Future of Mining RDD&D for precision extraction

Opportunity to capitalize on recent efforts to revolutionize mining technology

RDD&D areas needed

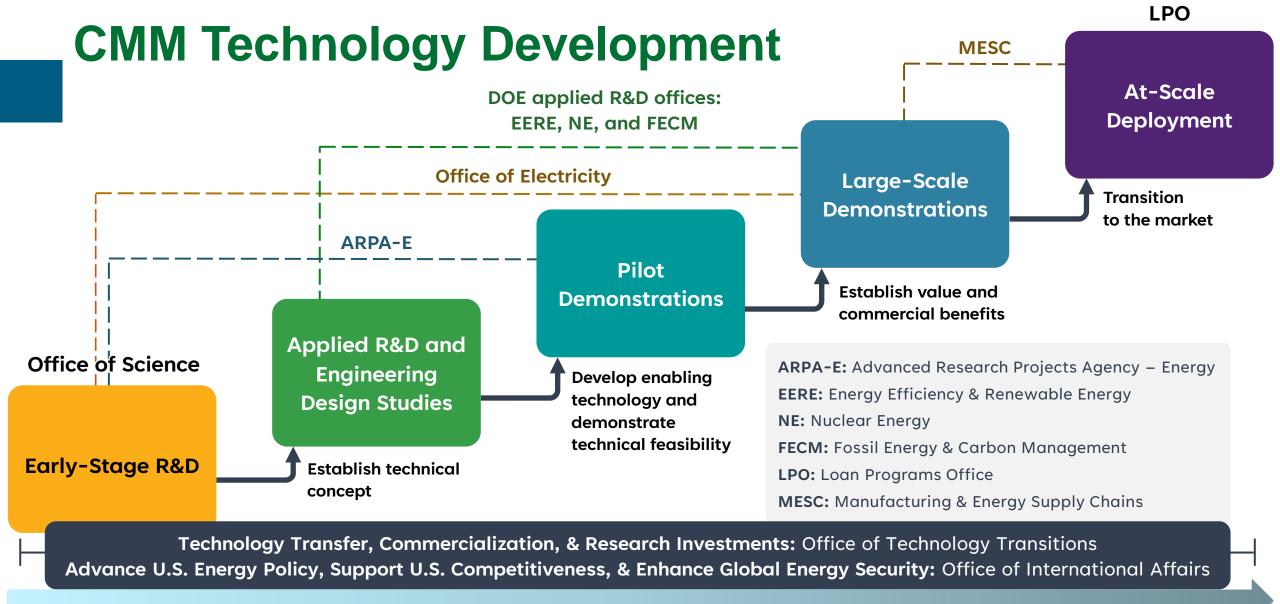
- Advanced drilling technologies
- Novel geophysics
- Digital subsurface applications (autonomous ops, robotics, real-time extraction)
- In-situ mineral extraction (e.g., bio)
- Novel processing
- Tailings management
- Marine mineral production
- Mineral traceability

NOVAMERA

Novamera is a gold mining/drilling company that is applying a similar approach now

Future Mining Expected Outcomes

- Acceleration of exploration-to-production timeline <u>cutting target time in half</u>
- Achieving the "Mine of the Future" vision
 - Low to zero emission mining technologies and practices
 - New technologies for getting "everything" out of a mineral deposit
 - Small "footprint" mining
 - A low-impact national strategy for tailings management, re-use and extraction
- Ensuring a trained workforce concurrent with activity increase
- <u>Improved image</u> of sector combination of clean technologies and public engagement
- Key support to regulatory agencies <u>ensuring regulatory adoption</u> of innovation and tested new approaches


Significant vulnerability across many supply chains

	Graphite 100%	•
	Manganese 100%	•
	Rare Earths >95%	•
	Platinum 83% ————	•
Maximum US Reliance on Fossil Imports Was 30% in 2005	Cobalt 67% *100% of base metal is imported Nickel 57% *100% of class 1 nickel is imported	•
	Magnesium 52%	
	Fossil Energy and Carbon Management	USGS

Commodity		Net import reliance as a percentage of		
Commodity		apparent consumption in 2023		
ARSENIC, all forms	100			
ASBESTOS	100			
CESIUM	100			
FLUORSPAR	100			
GALLIUM	100			
GRAPHITE (NATURAL)	100			
INDIUM	100			
MANGANESE	100			
MICA (NATURAL), sheet	100			
NIOBIUM (COLUMBIUM)	100			
RUBIDIUM	100			
SCANDIUM	100			
STRONTIUM	100			
TANTALUM	100			
YTTRIUM	100			
GEMSTONES	99			
ABRASIVES, fused aluminum oxide	>95			
NEPHELINE SYENITE	>95			
RARE EARTHS, ⁴ compounds and metals	>95			
TITANIUM, sponge metal	>95			
BISMUTH	94			
POTASH	91			
STONE (DIMENSION)	87			
DIAMOND (INDUSTRIAL), stones	84			
PLATINUM	83			
ANTIMONY, metal and oxide	82			
ZINC, refined	77			
BARITE	>75			
BAUXITE	>75			
RON OXIDE PIGMENTS, natural and synthetic	75			
TITANIUM MINERAL CONCENTRATES	75			
CHROMIUM, all forms	74			
PEAT	74			
TIN, refined	74			
ABRASIVES, silicon carbide	73			
SILVER	69			
COBALT	67			
GARNET (INDUSTRIAL)	67			
RHENIUM	60			
ALUMINA	59			
VANADIUM	58			
NICKEL	57			
DIAMOND (INDUSTRIAL), bort, grit, and dust and powder	56			
MAGNESIUM COMPOUNDS	52			
GERMANIUM	>50			
IODINE	>50			
MAGNESIUM METAL	>50			
SELENIUM	>50			
TUNGSTEN	>50			

	apparent consumption in 2023
100	apparent consumption in 2020
100	
100	
100	
100	
100	
100	
100	
100	
100	
100	
100	
100	
100	
100	
99	
>95	
>95	
>95	
>95	
94	
91 87	
87	
83	
82	
77	
>75	
>75	
75	
75	
74	
74	
74	
73	
69	
67	
67	
60	
59 58	
58	
57 56	
50 52	
>50	
>50	
>50	
>50	
>50	

USGS 2024 Mineral Commodity Summaries 2024 (usgs.gov)

Emerging Technologies

