What the Future Smart Electricity Grid Can Learn from Other Industries Using Digital Twinning

Surj Patel - Resonet Energy Systems / Patent Garden

Overview

- Digital Twinning is a new methodology powered by AI and IoT that allows companies to build utterly transformative products that previously would have been prohibitive or even impossible to undertake without AI and IoT
 - Jet Engines
 - Nuclear Processes
 - Refineries
 - Complex Automation
 - Cars
- The **Smart Grid** is *really* complex in aggregate behaviour. **Ideal Candidate**.

Computer Simulations

- Flight Simulators
- Racing Car Simulators
- Sim City
- Finite Element Modelling
- **The Data is STATIC** It can only use the data it has at runtime

Understanding Digital Twins

- Definition: A digital twin is a dynamic virtual model of a physical object or system, updated with real-time data.
- Current Application Across Industries:
 - Predictive maintenance in manufacturing
 - Personalized medicine in healthcare
 - **Systems management** in aviation.
- Al is critical
- Resonet Power Transformers
- Patent Garden -ESS Battery Modelling (New Chemistry)

Benefits of Digital Twinning

Predictive Maintenance:

Manufacturing uses digital twins for maintenance, suggesting less downtime for grid components and entire subsystems

Operational Efficiency:

 Logistics for supply chain optimization, hinting at better demand forecasting and resource allocation for the grid. (Amazon makes 16 Billion routing decisions a DAY)

Innovation and Product Development:

Automotive and aerospace industries underline the potential for innovation in grid management and renewable integration.

Current State of Smart Electricity Grids

Challenges:

Demand management, renewable integration, and system reliability.

- Opportunities for Digital Twins
 - Twinning can offer solutions through real-time monitoring, predictive analytics, and enhanced decision-making.

Lessons from Other Industries

Manufacturing to Grid

- Manufacturing's predictive maintenance suggest similar applications for grid components.(Resonet)
- Mercedes, Dassault PLM, Siemens

Logistics to Grid

- Apply supply chain optimization techniques for better energy distribution
 - ► Amazon, FedEx

Aviation to Grid

- Incorporate rigorous testing and simulation from aviation to improve grid safety and reliability.(Jet Engines, Support Systems)
- ▶ GE Aviation, Dassault, Aerospatiale,

Implementing Digital Twinning in the Smart Grid

Integration with IoT

- Enhancing grid monitoring and control via IoT and digital twins.
- ► CTA, IEEE etc.
- Data Analytics and Al
 - Improving grid management and forecasting.
 - Many Vendors
- Stakeholder Collaboration
 - Collaboration among tech providers, utilities, and regulators
 - DoE / NSF / FERC

Challenges and Considerations

Data Privacy and Security

- Robust data management and cybersecurity
- Regulatory Environment

Investment and Infrastructure

- Requirements for adopting digital twins in the grid.
- SBIR / DOE / Capstone / PostDoc
- Investment motivation for Giant Tech Look at the internet

Conclusion and Future Outlook

Transformative Potential

Emphasize digital twinning's potential to revolutionize the smart grid.

Call to Action

Research, development, and collaboration

Agent Marketplaces and Twinning

THANK YOU!:: Surj Patel

Linkedin -

https://www.linkedin.com/in/surjp/

Surj@resonetenergy.com

(Pole Transformer Twinning)

Surj.patel@patent.garden

(Battery Innovation - Lifetime and capacity)

END OF SLIDES

