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Grand Challenges
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Rapid Development: Accelerate materials
development with automation, robotics, theory, and Al

New materials virtually pre-screened with
supercomputers and Al, e.g., Materials Project

P

Make decision

Targets from computer models synthesized using
robotic equipment and Al e.g. A-lab 6 T @
~ — ~ — ~ — -~
Design target Recommend recipe Execute synthesis Analyze data
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Al recipes Iterative Al
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literature target phase
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Rapid Development: Al for Validation

of Energy Storage Durability and Health 350

R&D Problems: Failureh = = = = = =
* Need 15-yr warranties

* Understand battery state of health

Energy

Failure
Probability

Cycle Number

Role of Al: o CelPress -
* Physics informed Gaussian Process 0 Cycle Number 600
can evaluate failure distribution

Statistical and machine learning-based
durability-testing strategies for energy storage

Why it Matters: _
Stephen J. Harris'* and Marcus M. Noack?
e Achieved accurate early estimation
. R ; d.Energy
of failure with minimum testing . Cycle

0.22

* Predicted failure distributions in
4D parameter space
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Grid Operations: Urban Digital Twins Combine Al and Physics-
based Models to Inform City Planners and Grid Operators

Detect fagade from street view
¢ Models enable
User interactions and visualization to plan, design

Al/ML Supports Models
and use storage

Provide data and ! ‘
improve input == :
i § Input from building sensors, 10T devices, storage
: to optimize for reliable, resilient, affordable and

Analyze output
clean grid

Calibrate models and

create surrogates
Sensitivity of Battery Size
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Grid Operations: Integrate Digital-Twins to Control

Storage and Flex Loads with Grid via SuperLab

Communication and control configuration
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Grid Operations: Power System Optimal Decision

Making under Wildfire Events

R&D Problem:

* Predict line failure, load
shedding and generation
operations with wildfire

Role of Al:

e Use Al/ML for decision
support

Why it Matters:

* Developed ML pipeline to
surrogate computationally
expensive contingency
analysis
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Optimization based solution

~

Wildfire risk modeling Optimal power flow

2000-2009 2040-2049 \
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Mixed integer programming

Initial population Fitness function evaluation  Selection Crossover Mutation
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Al based solution

Inputs
Generator status (F;)
Load profile (Py, Q4)
Powerline ignition risk
topology (N)

Classification Models

Support
© vector -

Logistic
' rj?«ﬂé'n

Outputs
Generator dispatch

Load shedding
Cascade failure

W. Hong, B. Wang, M. Yao, D. Callaway, L. Dale, and C. Huang, “Data-Driven Power System
Optimal Decision Making Strategy under Wildfire Events,” presented at the Hawaii
International Conference on System Sciences, 2022. doi: 10.24251/HICSS.2022.436.




Grid Operations: Voltage-Dependent Demand Response and

Optimal Battery Dispatch using Reinforcement Learning in Microgrids

Role of Al: B e .
* Use Al (deep Q-network-based ;' @ E @ @ E 3
. . o 1
reinforcement learning) for optimal i I.Solar panel [Windturbine r!" ------- -
. ! DC load ]
battery dispatch | DC/DC ACIDC DC/DC !
! 1
* Al addresses uncertainty to {AC grid DC/DC DC/AC !
oo 5 c 5 1
minimize operating cost while | - \ l
1
enhancing resilience i I"fi’ Li ®®! :
. v Storage battery s - N
Why it Matters: % AL Inad " 4
* Adding Al-based storage for DC microgrid

Autonomous Load Management to
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e i] ENERGY TECHNOLOGIES AREA Thanh, V.-V.; Su, W.; Wang, B. Optimal DC Microgrid Operation with Model Predictive Control-
— Based Voltage-Dependent Demand Response and Optimal Battery Dispatch. Energies 2022, 15,
2140. https://doi.org/10.3390/en15062140



Where Are We Headed?

Role of Al:

* Accelerate and validate new energy
storage technologies

* Integrate and control storage with grid

* Enable equity and train workforce of
the future

Contributions from Tianzhen
Hong, Bin Wang, Anuhbav Jain,
Stephen Harris, Miguel Heleno
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Optimizing equity in energy policy interventions: A quantitative
decision-support framework for energy justice

Miguel Heleno®*, Benjamin Sigrin®, Natalie Popovich?, Jenny Heeter, Anjuli Jain Figueroa®,
Michael Reiner, Tony Reames®

2 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
® National Renewable Energy Laboratory, Golden, CO, USA
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ARTICLE INFO

ABSTRACT

Keywords:
Energy justice
Eqity

Energy burden
DER deployment
Weatherization

Energy burden target
Eligible population

Intervention costs

This paper presents a quantitative framework to support policy decision-making around equitable energy
interventions. By combining sociodemographic and techno-economic models in the energy space, we propose
a linear programming model to calculate the optimal portfolio of energy investments that explicitly minimizes
the energy burden of a given population of energy insecure households. The model is formulated as a multi-
objective optimization suitable to support the decisions on weatherization and deployment of distributed
energy resources. We illustrate our methodology with a case study involving a population of 14,043 energy
insecure households in Wayne County, Detroit, United States.

Household archetypes
Optimization

Energy costs National
Model

Tract-level
Data

Technology potential
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