Al for Energy Storage Challenges and Opportunities

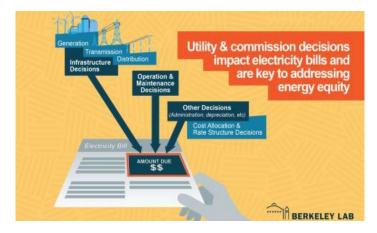
Workshop on AI for Energy Storage April 16, 2024

Mary Ann Piette Associate Lab Director, Energy Technologies Area

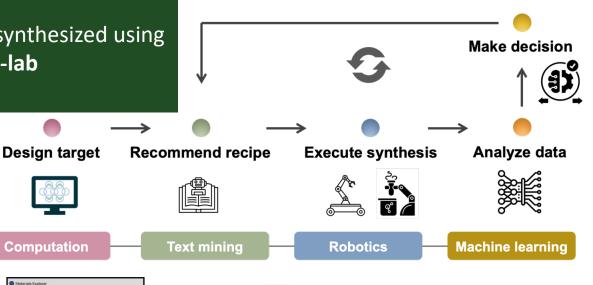
ENERGY TECHNOLOGIES AREA

Grand Challenges

RAPID DEVELOPMENT OF ENERGY STORAGE TECHNOLOGY


EFFICIENT ENERGY STORAGE DEPLOYMENT, OPERATIONS, AND CONTROL

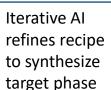
EQUITABLE AND ACCESSIBLE DEPLOYMENT



Rapid Development: Accelerate materials development with automation, robotics, theory, and AI

- New materials virtually pre-screened with supercomputers and AI, e.g., Materials Project
- Targets from computer models synthesized using robotic equipment and AI e.g. A-lab

NERSC


Al recipes

based on

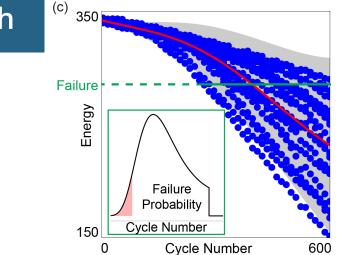
literature

scan of

A-lab

Rapid Development: AI for Validation of Energy Storage Durability and Health

R&D Problems:

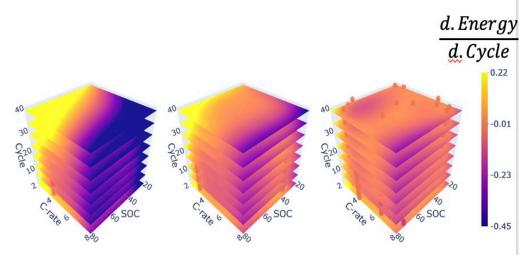

- Need 15-yr warranties
- Understand battery state of health

Role of AI:

• Physics informed Gaussian Process can evaluate failure distribution

Why it Matters:

- Achieved accurate early estimation of failure with minimum testing
- Predicted failure distributions in 4D parameter space



CelPress

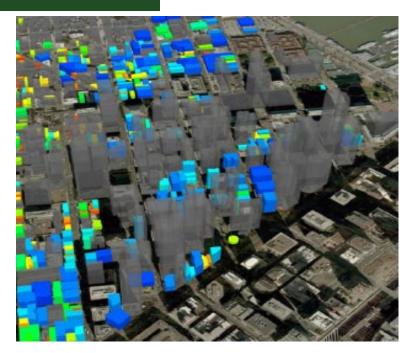
Perspective

Statistical and machine learning-based durability-testing strategies for energy storage

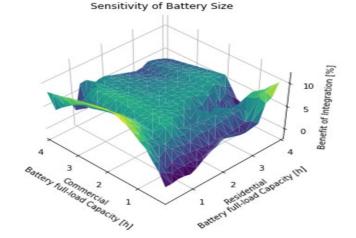
Stephen J. Harris^{1,*} and Marcus M. Noack²

Grid Operations: Urban Digital Twins Combine AI and Physicsbased Models to Inform City Planners and Grid Operators

AI/ML Supports Models

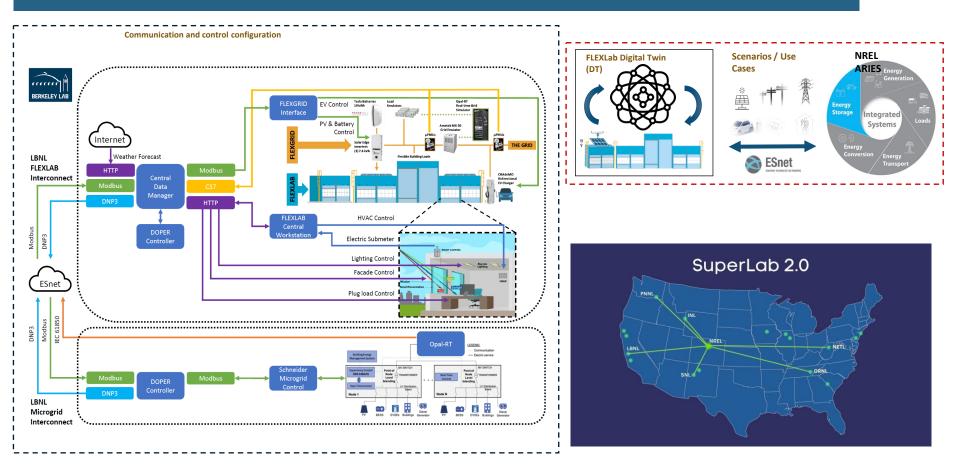

- Provide data and improve input
- Analyze output
- Calibrate models and create surrogates

Detect façade from street view



Models enable

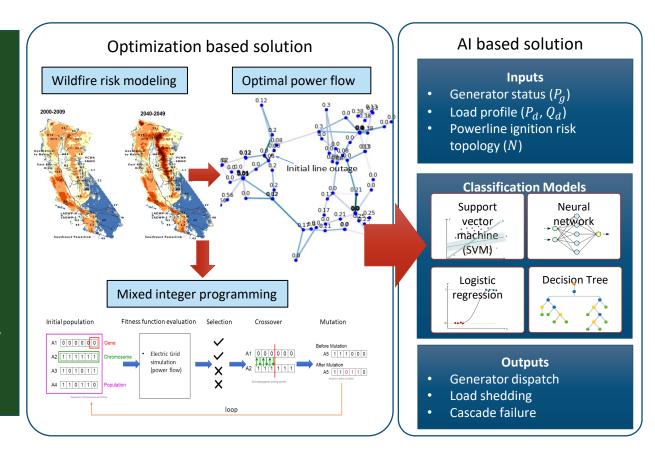
- User interactions and visualization to plan, design and use storage
- Input from building sensors, IoT devices, storage to optimize for reliable, resilient, affordable and clean grid



Grid Operations: Integrate Digital-Twins to Control Storage and Flex Loads with Grid via SuperLab

Grid Operations: Power System Optimal Decision Making under Wildfire Events

R&D Problem:


 Predict line failure, load shedding and generation operations with wildfire

Role of AI:

 Use AI/ML for decision support

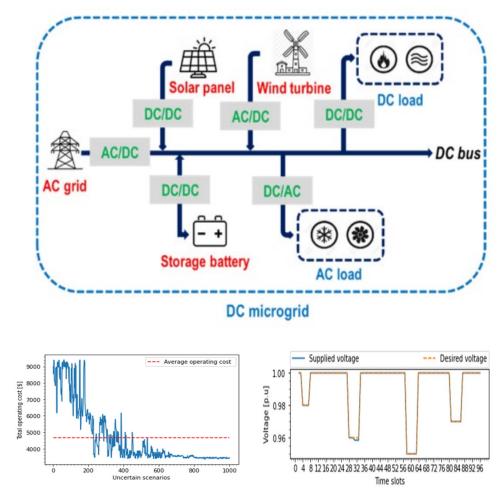
Why it Matters:

 Developed ML pipeline to surrogate computationally expensive contingency analysis

W. Hong, B. Wang, M. Yao, D. Callaway, L. Dale, and C. Huang, "Data-Driven Power System Optimal Decision Making Strategy under Wildfire Events," presented at the Hawaii International Conference on System Sciences, 2022. doi: 10.24251/HICSS.2022.436.

Grid Operations: Voltage-Dependent Demand Response and Optimal Battery Dispatch using Reinforcement Learning in Microgrids

Role of AI:


 Use AI (deep Q-network-based reinforcement learning) for optimal battery dispatch

Role of AI

 AI addresses uncertainty to minimize operating cost while enhancing resilience

Why it Matters:

 Adding AI-based storage for Autonomous Load Management to support EV charging depots

Operating cost of Microgrid

Voltage deviation of Microgrid

Thanh, V.-V.; Su, W.; Wang, B. Optimal DC Microgrid Operation with Model Predictive Control-Based Voltage-Dependent Demand Response and Optimal Battery Dispatch. *Energies* **2022**, *15*, 2140. https://doi.org/10.3390/en15062140

Where Are We Headed?

Role of AI:

- Accelerate and validate new energy storage technologies
- Integrate and control storage with grid
- Enable equity and train workforce of the future

Applied Energy 325 (2022) 119771 Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/apenergy

AppliedEnergy

Optimizing equity in energy policy interventions: A quantitative decision-support framework for energy justice

ABSTRACT

Miguel Heleno^{a,*}, Benjamin Sigrin^b, Natalie Popovich^a, Jenny Heeter^b, Anjuli Jain Figueroa^c, Michael Reiner^c, Tony Reames^c

^a Lawrence Berkeley National Laboratory, Berkeley, CA, USA ^b National Renewable Energy Laboratory, Golden, CO, USA ^c US Department of Energy, Washington DC, USA

ARTICLE INFO

Keywords: Energy justice Equity Energy burden DER deployment Weatherization This paper presents a quantitative framework to support policy decision-making around equitable energy interventions. By combining sociodemographic and techno-economic models in the energy space, we propose a linear programming model to calculate the optimal portfolio of energy investments that explicitly minimizes the energy burden of a given population of energy insecure households. The model is formulated as a multiobjective optimization suitable to support the decisions on weatherization and deployment of distributed energy resources. We illustrate our methodology with a case study involving a population of 14,043 energy insecure households in Wayne County, Detroit, United States.

Household archetypes Energy burden target **Contributions from Tianzhen** Policy Optimization Energy costs National **Eligible population** Hong, Bin Wang, Anuhbav Jain, Model Tract-level Technology potential Intervention costs Stephen Harris, Miguel Heleno Data **Energy burden impacts** ENERGY TECHNOLOGIES AREA