2024 Vehicle Technologies Office Annual Merit Review Batteries R&D (BAT) Posters (1/2) Tuesday, June 4 at 6:00-8:00 PM

BAT272: Pre-Lithiation of High-Capacity Battery Electrodes, Yi Cui, Stanford University	BAT587: Earth-abundant Cathode Active Materials for Li-Ion Batteries: Theory and
BAT275: Lithium Dendrite Prevention for Lithium Batteries, Wu Xu, PNNL	Modeling, Hakim Iddir, ANL
BAT280: Novel Chemistry: Lithium-Selenium and Selenium-Sulfur Couple, Khalil Amine, ANL	BAT588: Earth-abundant Cathode Active Materials for Li-Ion Batteries: System Analysis, Daniel
BAT282: Development of High-Energy Lithium-Sulfur Batteries, Dongping Lu, PNNL	Abraham, ANL
BAT285: Investigation of Sulfur Reaction Mechanisms, Enyuan Hu, BNL	BAT570: Cation-disordered Cathode Materials (DRX+) - Overview and Progress Update, Gerd
BAT286: Lithium-Air Batteries, Khalil Amine, ANL	Ceder, LBNL
BAT287: Advanced In Situ Diagnostic Techniques for Battery Materials, Xiao-Qing Yang, BNL	BAT589: Cation-disordered Cathode Materials (DRX+) - Synthesis, Scale-up and Cell Testing,
BAT230: Nanostructured Design of Sulfur Cathode for High-Energy Lithium-Sulfur Batteries, Yi Cui,	Guoying Chen, LBNL
Stanford University	BAT597: Cation-disordered Cathode Materials (DRX+) - Electrolyte Innovation and High-voltage
BAT054:Modeling of Amorphous Solid-State Conductors, Gerbrand Ceder, UC Berkeley	Stability, Bryan McCloskey, LBNL
BAT309: Electrode Materials Design and Failure Prediction, Venkat Srinivasan, ANL	BAT598: Cation-disordered Cathode Materials (DRX+) - Coatings and Electrode Design, Robert
BAT091: Characterization and Modeling of Lithium-Metal Batteries: First-Principles Modeling and	Kostecki, LBNL
Machine Learning, Kristin Persson, LBNL	BAT028: Materials Benchmarking Activities for Cell Analysis, Modeling, and Prototyping (CAMP)
BAT225: Model System Diagnostics for High-Energy Cathode Development, Guoying Chen, LBNL	Facility, Wenquan Lu, ANL
BAT085: Interfacial Processes, Robert Kostecki, LBNL	BAT030: Electrode Prototyping Activities in ANL's Cell Analysis, Modeling and Prototyping (CAMP)
BAT226: Probing Interfacial Processes Controlled Electrode Stability in Rechargeable Batteries,	Facility, Steve Trask, ANL
Chongmin Wang, PNNL	BAT592: Advanced Anode Manufacturing Through Ultra Thin Li Deposition, Subramanya Herle,
BAT420: Lithium Oxygen Battery Design and Predictions, Larry A. Curtiss, ANL	Applied Materials, Inc.
BAT423: Development of New Electrolytes for Lithium-Sulfur Batteries, Gao Liu, LBNL	BAT167: Process Development and Scale-Up of Advanced Active Battery Materials, Ozge
BAT424: Multiscale Modeling of Solid-State Electrolytes for Next-Generation Lithium Batteries, Anh	Kahvecioglu, ANL
Ngo, Larry A. Curtiss, and Venkat Srinivasan, ANL	BAT470: Process R&D Using Supercritical Fluid Reactors, Youngho Shin, ANL
BAT427: In Situ and Operando Thermal Diagnostics of Buried Interfaces in Beyond Lithium-Ion Cells,	BAT168: Process Development and Scale-Up of Critical Battery Materials - Continuous Flow-
Sumajeet Kaur, LBNL	Produced Materials, Trevor L. Dzwiniel and Krzysztof Pupek, ANL
BAT428: High-Capacity, Low-Voltage Titanate Anodes for Sodium-Ion Batteries, Marca Doeff, LBNL	BAT315: Process R&D for Droplet-Produced Powdered Materials, Joe Libera, ANL
BAT429: Electrolytes and Interfaces for Stable High Energy Sodium-Ion Batteries, Phung Le, PNNL	BAT232: High Energy Density Electrodes via Modifications to the Inactive Components and
BAT430: Development of a High-Energy Sodium-Ion Battery with Long Life, Chris Johnson and Khalil	Processing Conditions, Vincent Battaglia, LBNL
Amine, ANL	BAT164: Advanced Processing Science for Novel Battery Electrode Architectures, Jianlin Li, ORNL
BAT584: Integrated Atomic-, Meso-, and Micro-Scale Diagnostics of Solid-State Batteries, Yi Cui and	BAT475: Towards Solventless Processing of Thick Electron-Beam (EB) Cured Lithium-Ion Battery
William Chueh, Stanford University/SLAC National Accelerator	Cathodes, Zhijia Du, ORNL
BAT585: Anode-Free Lithium Batteries, Ji-Guang Zhang and Xia Cao, PNNL	BAT593: Strategies to Enable Lean Electrolytes for High Loading and Stable Lithium-Sulfur Pouch,
BAT569: Earth-abundant Cathode Active Materials for Li-Ion Batteries: Program Overview, Jason	Shirley Meng, UC San Diego
Croy, ANL	BAT594: New Engineering Concepts to High Energy Density Li-S Batteries, Prashant Kumta,
BAT586: Earth-abundant Cathode Active Materials for Li-Ion Batteries: Cathode Design and	University of Pittsburgh
Synthesis Jason Crov and Arturo Gutierrez ANI	

2024 Vehicle Technologies Office Annual Merit Review Batteries R&D (BAT) Posters (2/2) Tuesday, June 4 at 6:00-8:00 PM

BAT595: Development of Li-S Battery Cells with High Energy Density and Long Cycling Life, Donghai Wang, Pennsylvania State University	
BAT596 : Development of a High-Rate Li-Air Battery using a Gaseous CO2 Reactant, Amin Salehi- Khojin, University of Illinois at Chicago	
BAT522: Thin-Film Lithium Metal Manufacture by Room Temperature Electrodeposition, John Hryn, ANL	BAT582 : Inorganic-Polymer Composite Electrolytes with Architecture Design for Lithium Metal Solid-State Batteries, Enyuan Hu, BNL
BAT592 : Advanced Anode Manufacturing Through Ultra Thin Li Deposition, Subramanya Herle, Applied Materials, Inc.	BAT583 : Development of All-Solid-State Battery Using Anti-Perovskite Electrolyte, Zonghai Chen, ANL
BAT386: eXtreme Fast Charge Cell Evaluation of Lithium-Ion Batteries (XCEL)–Overview and	BAT606: VTO High-Performance Computing Cluster, Ray Grout, NREL
Progress Update, Venkat Srinivasan, ANL	BAT607: Processing and scale-up of high energy density cobalt-free cathodes, Ilias Belharouak,
BAT575: eXtreme Fast Charge Electrolyte Development Thrust, Bryan McCloskey, UC Berkeley	ORNL
BAT456: eXtreme Fast Charge Electrode and Cell Design Thrust, Andrew Jansen, ANL	BAT608: Cathode-Electrolyte Interphase (CEI) Consortium (Thrust 1): Model cathode materials
BAT463: eXtreme Fast Charge Electrochemical and Thermal Performance Thrust, Eric Dufek, INL	for next-generation Li-ion batteries, Jie Xiao, PNNL
BAT377: ReCell–Overview and Update, Jeffrey Spangenberger, ANL	BAT609: Cathode-Electrolyte Interphase (CEI) Consortium (Thrust 2): Electrolytes and CEI at
BAT571: ReCell Center-Direct Recycling of Materials, Jessica Durham Macholz, ANL	high voltages, Jordi Cabana, ANL
BAT572: ReCell Center-Advanced Resource Recovery, Yaocai Bai, ORNL	BAT610: Cathode-Electrolyte Interphase (CEI) Consortium (Thrust 3): Characterization and
BAT573: ReCell Center-Design for Sustainability, Andrew Colclasure, NREL	modeling to understand CEI, Amy Marschilok, BNL
BAT574: ReCell Center-Modeling and Analysis, Allison Bennett Irion, ANL	BAT611: Low cost magnetic imaging sensors for advanced battery monitoring, Mahshid
BAT544: Machine Learning for Accelerated Life Prediction and Cell Design, Eric Dufek, INL	(Michelle) Roumi, Parthian Energy LLC
BAT546: Scaling-Up and Roll-to-Roll Processing of Highly Conductive Sulfide Solid-State Electrolytes, Dongping Lu, PNNL	BAT612 : Optimizing the Silicon Anode Interfacial Stability to Achieve High Energy, Fast Charge Lithium-Ion Electric Vehicle Batteries at Scale, Alexander Warren, Graphenix Development Inc
BAT547 : Continuous high yield production of defect-free, ultrathin sulfide glass electrolytes for next generation solid state lithium metal batteries, Tim Fister, ANL	BAT613 : Domestic Halloysite-Derived Silicon as a Low-Cost High-Performance Anode Material for Li-Ion Batteries, Dean Wheeler, Applied Minerals Inc and Brigham Young University
BAT548: Scale-Up of Novel Li-Conducting Halide Solid State Battery Electrolyte, Mike Tucker, LBNL	BAT614: Next Generation of High Energy Density Batteries at Low Cost, Parham Rohani,
BAT576: Solid State Batteries with Long Cycle Life and High Energy Density, Haegyum Kim, LBNL	NanoHydroChem, LLC
BAT577: Low-Pressure All-Solid State Cells, Annalise Maughan, NREL	BAT615: Novel High-Capacity Composite Anodes for the Upcycling of Spent Graphite from End-
BAT578: Stable Solid-State Electrolyte and Interface for High-Energy Density Lithium-Sulfur Battery,	of-Life Lithium-Ion Batteries (Phase II), Kyle Marcus, Semplastics EHC LLC
Dongping Lu, PNNL	
BAT579: Multifunctional Gradient Coatings for Scalable High-Energy Density Sulfide-Based Solid-	
State Batteries, Justin Connell, ANL	
BAT580: Thick Selenium-Sulfur Cathode Supported Ultra-thin Sulfide Electrolytes for High-Energy All-Solid-State Batteries, Guiliang Xu, ANL	
BAT581 : Precision Control of the Lithium Surface for Solid-State Batteries, Andrew Westover, ORNL	

2024 Vehicle Technologies Office Annual Merit Review Electrification R&D (ELT) Posters Wednesday, June 5 at 6:00-8:00 PM

ELT208: Highly Integrated Power Module, Veda Galigekere, ORNL

ELT223: Component Testing, Co-Optimization, and Trade-Space Evaluation, Jason Neely, Sandia

ELT222: High-Reliability Ceramic Capacitors to Enable Extreme Power Density Improvements Jack Flicker, Sandia

ELT211: Power Electronics Thermal Management, Gilbert Moreno, NREL

ELT214: Electric Motor Thermal Management, Rajneesh Chaudhary, NREL

ELT219: Power Electronics Materials and Bonded Interfaces-Reliability and Lifetime, Paul Paret, NREL

ELT292: Module Precursors and Prognostics, Faisal Khan, NREL

ELT242: Heterogeneous Integration Technologies for High-Temperature, High-Density, Low-Profile Power Modules of Wide Bandgap Devices in Electric-Drive Applications G.Q. Lu, Virginia Tech

ELT243: Integrated Motor and Drive for Traction Applications Bulent Sarlioglu, University of Wisconsin

ELT244: Next-Generation, High-Temperature, High-Frequency, High-Efficiency, High-Power Density Traction System, Robert Pilawa, UC Berkeley

ELT245: Integration Methods for High-Density Integrated Electric Drives, Alan Mantooth, University of Arkansas

ELT246: Implementation of Wide-Bandgap Devices in Circuits, Circuit Topology, System Integration as well as Silicon Carbide Devices, Anant Agarwal, Ohio State University

ELT247: Cost-Competitive, High-Performance, Highly Reliable Power Devices on Silicon Carbide and Gallium Nitride, Anant Agarwal, Ohio State University ELT248: Multi-Objective Design Optimization of 100-kW Non-Rare-Earth or Reduced-Rare Earth Machines, Scott Sudhoff, Purdue University

ELT249: Rugged Wide Bandgap Devices and Advanced Electric Machines for High-Power Density Automotive Electric Drives, Victor Veliadis, North Carolina State University

ELT250: Design, Optimization, and Control of a 100-kW Electric Traction Motor Meeting or Exceeding DOE 2025 Targets, Ian Brown, Illinois Institute of Technology

ELT251: Device- and System-Level Thermal Packaging for Electric-Drive Technologies, Yogendra Joshi, Georgia Institute of Technology

ELT303: Second-Life Battery Solar and Storage Facility Demonstration Enabled by Advanced State of Health Tracking, Mauricio Castillo, Repurpose Energy

ELT304: Low Cost and Scalable Second Use Battery Demonstration in Central California for Equitable Domestic Manufacturing and Job Growth, Antoni Tong, Smartville Inc.

ELT305: Second-life Battery in Mobile EV Charging Application for Rural Transportation (SMART), Pingen Chen, Tennessee Technological University

ELT306: Adaptive Second-Use Battery Utilization with Different Degradation Levels for EV Charging Stations and Power Grid Support and Resiliency, Jaber Abu Qahouq, University of Alabama

ELT307: 13 MW Pilot of Second-Use Batteries Incorporating Module Level Power Conversion to Improve Battery Safety and Performance, Seth Khan, Element Energy

2024 Vehicle Technologies Office Annual Merit Review Materials Technology R&D – Joining, Metals, Propulsion Materials (MAT) Posters Wednesday, June 5 at 6:00-8:00 PM

MAT271 : PMCP 2.0: Thrust 1: Electrical Conductors, Amit Shyam and Tom Watkins, ORNL
MAT272 : PMCP 2.0: Thrust 2: Magnetic and Electric Motor Materials, Beth Armstrong and Tom Watkins, ORNL
MAT273 : PMCP 2.0: Thrust 3: Materials for Non-Electric Low-Carbon Power System, Dean Pierce and Tom Watkins, ORNL
MAT274 : PMCP 2.0: Thrust 4: Advanced Characterization and Computational Methods Tom Watkins, ORNL
MAT275: LMCP 2.0: Thrust 1: Large Scale Giga Casting, Glenn Grant, PNNL
MAT276: LMCP 2.0: Thrust 2: Increased Use of Secondary Metals, Glenn Grant, PNNL
MAT277 : LMCP 2.0: Thrust 3: Local Property improvement for Wrought Aluminum and Cast Magnesium, Glenn Grant, PNNL
MAT278: LMCP 2.0: Thrust 4: Magnesium Corrosion Mitigation, Glenn Grant, PNNL
MAT279: LMCP 2.0: Thrust 5: Advanced Characterization and Computational Methods, Glenn Grant, PNNL
MAT238 : Advanced Processing and Additive Manufacturing for Electric Vehicle (EV) Propulsion, Ultra Conductor Development for Enhanced EV performance, Keerti Kappagantula, PNNL

2024 Vehicle Technologies Office Annual Merit Review Vehicle Analysis (VAN) Posters Wednesday, June 5 at 6:00-8:00 PM

VAN050: Holistic Modeling of Future Transportation Energy Use and Emissions, Matteo Muratori and Paige Jadun, NREL VAN051: Regional Optimization of Application and Infrastructure Architecture in Heavy Duty Vehicle Electrification, Vivek Sujan, ORNL VAN054: Managing Increased Electric Vehicle Shares on Decarbonized Bulk Power Systems, Brennan Borlaug, NREL VAN055: Assessing Opportunities for Travel Demand Management in the Context of Decarbonization and Equity, Chris Hoehne, NREL VAN033: Analysis of Employment and Other Economic Impacts of Transportation Electrification, Joann Zhou, ANL VAN058: ACT States Trucking Analysis, Lynn Daniels, RMI VAN056: Agent Based, Bottom Up Medium and Heavy duty Electric Vehicle Economics, Operation, Charging, and Adoption, Thomas Bradley, Colorado State University VAN057: Scalable Truck Charging Demand Simulation for Cost-Optimized Infrastructure Planning, Ann Xu, Electrotempo **VAN050:** Holistic Modeling of Future Transportation Energy Use and Emissions, Matteo Muratori and Paige Jadun, National Renewable Energy Laboratory **VAN051**: Regional Optimization of Application and Infrastructure Architecture in Heavy Duty Vehicle Electrification, Vivek Sujan, ORNL