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ARPA-E Impact Indicators 2024
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Launched by Timothy Heidel
2014

$34.3 Million

SWITCH ES Program Director: Isik C. Kizilyalli
Strategies for Wide-bandgap, Inexpensive Transistors for
Controlling High Efficiency Systems

Enable the development of high voltage (1200+ V), high current (100+ A), wide-bandgap power
semiconductor devices that have the potential for functional cost parity ($/A) with Si devices

14 projects

Program demonstrated GaN vertical devices JRY Qi . . ]
approaching 5 kV and their pathway to 20 kV fo\?llgo";?fers in CMOS Si foundry:

1000
GaN vertical Diod -
o GaNverical FET g\\'\ﬂ““ *Demonstrated
o HEMT-1

100 HENT 0 150 A, 950V SiC Diodes
7 e 0100 Amp, 15 mQ, 1200V MOSFETs

€ HEMT-2

& | o ere o Device stability of packaged devices
;E; o HENH at 175°C (and initial on-wafer results
at 225°C)

(2 4

\

100 1000 10000 Monolith Semiconductor, “Advanced
Breakdown Voltage (V) Manufacturing for SiC MOSFETS

0.1

>100 A

Discrete Device Price <S$0.10 /A Continuous Drain Current
<3 mQ*cm? @ Vgs =15V

Breakdown Voltage >1200 V Specific Rpgon
Link: More about the SWITCHES Program



https://arpa-e.energy.gov/technologies/programs/switches

CI RCU ITS Program Director: Isik C. Kizilyalli 2017

Creating Innovative and Reliable Circuits Using Inventive Topologies 538 Millien
and Semiconductors 21 projects

Use advanced circuit topologies and fundamentally higher performing WBG semiconductor materials
to realize efficiency gains both directly and indirectly in electric power conversion

* Innovate on circuit topology and controls to increase power density

* Innovate on packaging and integration to reduce parasitics VIRGINIA TECH. 2 MW, 24 KV Modular
W Converter

» Manage conductive and radiative noise (EMI) of fast switching devices

Using 10 kV

» Manage reliability to reduce risk and cost Sic MOSFET

200 kW SiC Motor Drive 20 kV SiC Optical Transconductance Varistor
e N Optical Fiber (0TV) High Voltage
" i \ /Electrode

— SiC Switch

B ACANSRY pcondys

Power and voltage >10kW & =600V Power density =>9.15 kW/I
Efficiency >97.5% @ rated power Specific power > 5 kW/kg

Base Electrode

Link: More about the CIRCUITS Program



https://arpa-e.energy.gov/technologies/programs/circuits

B REAK ERS Program Director: Isik C. Kizilyalli 2018

$36.7 Million

Building Reliable Electronics to Achieve
Kilovolt Effective Ratings Safely

Enable and create MVDC markets in the range of 1.5 kV — 100 kV
by developing novel DC circuit breaker technologies.

11 projects

MVDC circuit breakers will enable MVDC distribution
) D by which can save 1.1 quads of energy per year, reduce

A/? Surge flt U.S. emissions by 3% via electrification of
Mechanical Suich transportation, and lower offshore oil and gas rig
. 1 iy Opene » time

DC Has No Zero Crossing Resulting In Persistent Arcs

Ibreaker

] costs by 5%.

Fault Mechanical
occurs Switch Starts de grigl-
To Open I__II...---'"" - g -
DC Systems Require Faster Breaking Times Compared to 1 ’T/
AC 'ﬂ s
VIZR VIR VSN Semiconductor
Switches Can onlyhandle2 - 3 Collection of Multi-point
Ui times the nominal Point-to DC Network

Mesh

Point

current for<5ms

Semiconductor

WZS Vﬁzg W?S Switches

U ) MVDC Distribution: DC network that delivers medium voltage
power across interconnected sources and loads.



https://arpa-e.energy.gov/technologies/programs/breakers

B REAK ERS Program Director: Isik C. Kizilyalli 2018

Building Reliable Electronics to Achieve $36.7 Million
Kilovolt Effective Ratings Safely 11\projects

Program Technical Requirements

Category
1.1 Rated Voltage 1kV DC=V = 100kV DC
1.2 Power* >1TMW
1.3 Efficiency >99.97%
1.4 Response Time < 500us
1.5 Lifetime > 30,000 cycles, = 30 years
1.6 Nuisance Trips <0.1%
1.7 Power Density* =60 MW/m3
1.8 Cooling Passive or Forced Air

*Instantaneous Power Link: More about the BREAKERS Program


https://arpa-e.energy.gov/technologies/programs/breakers

B REAK ERS Program Director: Isik C. Kizilyalli 2018

o - . . . BREAKERS P Out : H1H
Building Reliable Electronics to Achieve . 11spwlicaions $36.7 Million
I i " « 26 Subject Inventions 1
Kilovolt Effective Ratings Safely L e e 11\projects

Solid-State Medium Voltage DC Circuit Breakers @ Sandia
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B REAK ERS Program Director: Isik C. Kizilyalli 2018

Building Reliable Electronics to Achieve - i1gpuliomane oo $36.7 Million
Kilovolt Effective Ratings Safely 26 Subject Inventions 11\projects
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SF6_FREE Program Director: Isik C. Kizilyalli 2021

SF4-Free Routes for Electrical Equipment $10 Million
Exploratory Topic 3 projects

Address innovations in low greenhouse gas (GHG) alternatives for gas-insulated equipment in the
electric transmission and distribution sector (see AB 32 California)

» High-voltage switchgear rely heavily on SF¢ for electrical insulation,
current interruption, and arc quenching - unique dielectric properties

> SF, emissions from the electric T/D sector pose a significant
climate risk as a potent and long-lived greenhouse gas (GHG).

Nitrous Oxide

Greenhouse Gas Global Warming Potential How SFS concentration has incressed in
(100 vear time span) oo st o o o
SF, 22,800 |
ﬁﬂl
HFC 12-14,800 3 i -::“5'/"#7
PFC 6,288-17,340 | W
o Lol

Link: More about the SE6-FREE Exploratory Topic Saurce University of Brsto ooE


https://arpa-e.energy.gov/technologies/exploratory-topics/sulfur-hexafluoride-free-grid

SF6_FREE Program Director: Isik C. Kizilyalli 2021

SF4-Free Routes for Electrical Equipment $10 Million
Exploratory Topic 3 projects

245 kV AC outdoor dead-tank power circuit breaker using Georaia Istitue In_'_;fiifWKWﬁEE
g3™ gas mixture as the dielectric of Technology ==

TESLA 245 kV AC circuit breaker using
supercritical fluid as the dielectric and
arc-quenching medium

CO, carbon dioxide 0O, oxygen C.F ;N fluoronitrile
@ GE VERNOVA 13.0%

. 4

load/fault breaking

o  ~40% of mass of SF, in circuit breaker
* GWP: 300 kg CO,e, 100y

SF alternative life-cycle management framework @~

UCONN @ GE VERNOVA

E‘fu“:':" w Byproduct

Fixation
AC outdoor dead-tank CB with g3™ oyt Q B
gas undergoing dielectric testing Physic: . = L B @
it of ARPA-E proiect pecompo- Leak Detection
_ as pa _ © _ proj et Aging Signature 15
Tanque Muerto de145 kV Asiado con ura Mesci dc Gases Compuestade - Sensing
CO,/0-/C.FN” IEEE RVP. Auaust 8th 2023 Acanulco MX



I NSU LATE Program Director: Isik C. Kizilyalli 2021

Insulating Nanofluids and Solids to Upgrade our Large $3.5+1.8 Million
Aging Transformer Equipment Exploratory Topic 3+1-projects

Increase the durability, reliability, and resilience of large power transformers through improvements in
the vital solid and oil insulating elements

Large Power Transformers (LPTs) carry > 90% of the Nation’s power

Oil bath 70% are 25+ years old

Solid insulation % % 100%
“ s ~—— _?\ = & \7 o ;' - — <

90%
80%
70%
60%
50%
40%
30%
20%

Hazard Function

2015 CIGRE survey of 964 prominent
o g transformer failures found the major
N D7 reason for transformer collapse was

0 10 20 30 40 50 60 70 80 90 100 . . . . . .
dielectric (i.e., insulation failure).

Year
Bartley, WilliamH. "An Analysis of Transformer Failures." Hartford CT (1997).
DOE. Large Power Transformers and the Electric Grid. 2012.

Link: More about the INSULATE Exploratory Topic



https://arpa-e.energy.gov/technologies/exploratory-topics/transformer-insulation

INSULATE program goal is to double transformer lifetime

Functionalized 2D Commercial Nanofluid with
hexagonal boron Transformer suspended h-BN
nitride nanoparticles Mineral Qil

~=

h-BN: excellent electrical insulator, high

- . . Thermal Viscosity
temperature resistance, high chemical Conductivity (cp)
inertness, and superhydrophobicity (W/mK')

C-Crete
e 0.193 10.5

Ul pGe

» TiO,-based nanofluid to improve thermal conductivity and
enhancedielectric strength
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Boron nitride particle
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h-BN has high thermal conductivity
and high dielectric constant
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CHANGING WHAT'S POSSIBLE

Phase changing polymer additives forimproved
transformeroil heat transfer

Sandia
'11 National

% Polymer

Lahoratories
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CAB L ES Program Director: Isik C. Kizilyalli 2021

S$12 Million

Connecting Aviation By Lighter Electrical Systems
Exploratory Topic

Develop technologies for medium-voltage (>10 kV) power distribution cables, connectors, and circuit
breakers for fully electric aviation applications to enable megawatt scale distribution with minimal impact
on weight while maintaining the high reliability and safety requirements of aviation.

Paschen curve - Air

7,projects

1,000,000 E 120 18 10000 ¢
g ® — :
®100 159 % i
~
100,000 P 53 % L /
T _ _ X< 1000 t 1 I
: e ® Wire weight 2 = i | I
2 10,000 o &0 95 3 i l !
= 10, : ye ® Power density c c I I
g c 40 s 3 :
3 - v 3 20 km I !
S g o 5 2 100 | i
5 VO King Air 350 w 20 e 3 3 g : R
S t ® KingAir g 0 " e 0 a .g : : Sea Level
100 | ® Cessna 172 0 2000 4000 6000 8000 10000 10 LWL,
: Voltage, V 0.1 1 10 100
10 Lol ool ol ol ool ol Voltage vs. copper wiring weight (no
10 100 1000 10,000 100,000 1,000,000 insulation) and power density
Energy Onboard, kWh o
e Partial
discharge

Source: National Academies of Sciences, Engineering, and Medicine. 2016. Commercial Aircraft Propulsion and
Energy Systems Research: Reducing Global Carbon Emissions. Washington, DC: The National Academies Press. Ieads to failure

Link: More about the CABLES Exploratory Topic



https://arpa-e.energy.gov/technologies/exploratory-topics/aviation-power-distribution

Connecting Aviation By Lighter Electric Systems (CABLES) Aroa-@
Technology Portfolio: 10kV and 10km, Will it Fly? CHANOHG WisTS POz
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ULTRAFAST Program Director: Olga Spahn . G jI-']‘-i" Q

CHANGING WHAT'S POSSIBLE

Unlocking Lasting Transformative Resiliency Nl | Kickoff Year 2024
Advances by Faster Actuation of power : Projects 15
. . I 42M
Semiconductor Technologies nvestment :
Duration 36 months

Light-actuation

Next generation material, device and module technologies for
improved power distribution and control in future grid applications

= Ultra-wide Bandgap materials for higher power individual devices and modules
[protection > 20 kV, > 250 A | continuous switching >3.3 kV,>10 A]

= EMI mitigation for improved stacking reliability
[wireless/optical actuation, control and sensing]

= Faster actuation — improved protection, better control, lower losses
[1-100 kHz | >250 V/ns, > 100 A/ns | >99% efficiency ]

Multi-die modules

= Better Size Weight and Power (SWaP) Poe e TR

= Supporting enabling technology — sensing, passives, packaging, gate drive
technology

Link: ULTRAFAST Program Announcement Link: Power Magazine News Link: ARPA-E Website Info



https://www.powermag.com/transformative-next-gen-grid-control-technologies-get-42m-in-federal-funding/
https://www.energy.gov/articles/doe-announces-42-million-strengthen-reliability-resiliency-and-affordability-americas
https://arpa-e.energy.gov/technologies/programs/ultrafast

ULTRAFAST Project Types ArNaQ-@

CHANGING WHAT'S POSSIBLE

ULTRAFAST

Materials/Device Modules/Circuits

S “?, ‘ ’9

m W 0
N ;; ij 4/1
Materials ' P PowerCells > Converters >
Risk: novel JE} E} ‘_E} Risk: integration
material/devices e T - complexity
ok fmF .. i
h I_ — —




Program Director: Johan Enslin

Potential New Program

Gl joi-e

CHANGING WHAT'S POSSIBLE

MTDC Network to Support Grid Capacity for

Carbon-free Generation Investment

Kickoff Year 2025

Projects TBD
TBD

Duration TBD

= Solar potential

= Solar + Wind potential
3 Wind potential A o o

Solar and Wind Data from NREL <l 7”'3

4

E‘] Multi-terminal HVDC

7
Converter stations K%j

25




Super Electronic Highway Grid is Needed! QrpPQ-e

CHANGING WHAT'S POSSIBLE

US Transportation Highway System and Transporting to an Electric Super Highway



= 100 years old centralized T&D infrastructure for centralized plants
= |ncompatible with carbon-neutral power generation integration

= Net-zero carbon goals by 2050 — Urgency for new technology

Z p ﬁ _ \L
% < -

e 100 G

7

4 R
= o

' HYDROGEN K2 £
/. - >

= > 3x Electrical load growth by 2050 (3-4 TW) [EIA]
= Hybrid electrical and hydrogen energy networks

= Large-scale hydro, battery and hydrogen storage



How are the grid’s architecture evolving?

Ay
" COLLECT from Virtual Power Plants



Designing tomorrow’s Super Integrated Grid NOW! QrpPQG-C

CHANGING WHAT'S POSSIBLE

1.

2.

3.

Super Electronic Highway Grid

Connect with HVDC Electronic Grid-of-Grids
Release Capacity from “Regional AC&DC Grids”

Collect from MicroGrids and Active Loads
Build on Existing Infrastructure & Right of Ways

Transform Integrated System Operations [«
Hybrid AC&DC Solid-state Substations
Release existing AC-Grid Capacity -2-3x
Provide Diversity and Equity in Interconnectic
Increase Distributed Resiliency through VPP<

~~
,,,,,,

Balance Energy Storage with Time Shift <Zv S\
Seasonable & daily renewable energy shifting. = Solor h Wind potential J
. . ) = Wind potential
Interconnecting Dynamic Pump-Hydro Storage Multiterminal HUDG
Power-2-X with H2 Storage Converter stations

Integration of Chemical and Thermal Energy Transfer Networks



Utilizing Existing Grid Infrastructure — HVAC v/s HVDC

1/3 - DC v/s AC OVL at 500 kV




DC Enables Fully Imperceptible Infrastructure

525 kV Cable, >2 GW
The whole conductor cross-section
utilized

.. e \

b
|
l\

ing Right |

Can either repurpose existing
transmission (300 % capacity increase)
or go underground:

Gl poNiee

CHANGING WHAT'S POSSIBLE




Technology Gaps QArNQ-@

CHANGING WHAT'S POSSIBLE

= New HVDC Converter Topologies Now utilizing inductively or capacitively coupled power
cells for significantly higher flexibility, modularity, and
reliability

Inductively Nyor===
coupled power :V /l:
cells 2220y
Capacitively Yy
coupled :V /]:
power cells

f\,_

(Beyond state-of-the-art Modular Multi-level Converter)

level Independent series/parallel : :[
- connection of galvanically 7 i

X 4 isolated power cells for high , ~1

L. voltage and high current design T _J

aﬂ Experimentally validated with scaled-down
: hardware and P-HIL simulations

:




- QrrQa-@
H V D C St at I O n S CHANGINGIWHAT’S POSSIBLE
On-shore HVDC Station Off-shore HVDC Station

/7 e
~BNY =™ i - e ) j, -

TR e i - = v - P /
LY IR e o e - 7

900 MW _320 kV 160 km

4':3 MTDC!

System 1 - _S - System 2

Underground/undersea 4!#}
HVDC Station  cable or overhead line

HVDC Station 33
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System-Level EMT Modeling for Planning and Operations e

CHANGING WHAT'S POSSIBLE
Component Model
'- Power
T Module
Power Cell/

Sub-module

20 L L L L .
0:00 4 : 12:00 16:00
Time [s] o Converter

“Valve” or
DC Breaker

Example: Simulated system

Converter station ...1 t

y ) I%
Example

%

Voltage [kV]

R RRER

i

1222222

pradasdadetesty

L
i- .

Converter
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System-Level Emulation in Real-Time Environment, with P-HIL Cli e

|
)
'
l

i

E@ = -

=R = = | B =
=i =

E 3 E ' E I:l
; . .

“ ' 11K |
Part of the system emulated with real
hardware prototype(s)




Program Director: Johan Enslin \.h A|J*\.i" \.‘.."'

CHANGING WHAT'S POSSIBLE

Potential New Program

. . Kickoff Year 2025
MTDC Network to Increase Grid Capacity for Projects -
Carbon-free Generation and Active Loads el LED

Duration TBD
New Power Electronic Building New Multi-Terminal HVDC System Integration
Blocks for HVDC submodules Converter Station Design and Operation
50 kV, 2000 A, PEBB Sub-Modules 5-fold power density and cost reduction Multi-terminal HVDC operation in

featuring > 50% higher power density (from 250 m3/MW and $250 k/MW) P-HIL for > 9 terminals

37
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CHANGING 'S POSSIBLE

Thank you

Questions / Comments / Suggestions ?
Ask us about the Upcoming MTDC Workshop June 6/7 in DC

Johan Enslin, Prc slin@hqg.doe.gov

Advisor, ARPASENISIk Kizilyalli@hq.doe.gov

gram Direct #AE, johan.e

sik Kizilyalli
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