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The Approach
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KNOWLEDGE OF N,O PATHWAYS AND INFLUENCING (RISK) FACTORS
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KNOWLEDGE OF N,0 PATHWAYS AND INFLUENCING (RISK) FACTORS
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KNOWLEDGE OF N,0 PATHWAYS AND INFLUENCING (RISK) FACTORS
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Al / MACHINE LEARNING (ML) APPROACH

FOR MITIGATING WRRF N,0 EMISSIONS

Knowledge Base (Porro et al., 2014)
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Accounting and Assessing N20
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What data do we need?
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The Emission Factor Problem Exposed
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Courtesy of Waterboard De Dommel, NL

ML model trained on
data from nearby WRRF
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IPCC 2006 ML-based accounting IPCC 2019

N20O Emissions Comparison
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Assessing N,0 Risk (with Al) and Emissions (with ML)

Courtesy of Metropolitan Water Reclamation District of Greater Chicago, USA —— Low DO Risk
Tnin —— High DO Risk
NZQO pred. (mg/L)
r" | I ‘ ’ l —— N20 emission pred
0.8 il |||‘ R
N20 emission
measured
0.6 @ predicted
% Tanks dimensions:
N
% Volume (m3) = 1949 Area (m2) :
0.4
Avg. meas.:
XX kg N20/day
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0.2
Avg. pred.:
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0 J_lM ] g 'L I _ i _ I ; Al ..y | | il et L N RMILME  55.47 tons of CO2e/year
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Time

This tells us why we have N20 at different times (and what would generally be needed to reduce risk)

and an estimate of N20 emissions based on the site-specific process data. EFs cannot do this. //\*’9'



Summary of N20 emissions (w/ ML), risk (w/Al), and NH4 per BT

300,000 PE WRRF in NL BT 1-5 Zone 1 & 2 Emissions

1200
1000

800
Zone 2 avg. N20 emissions (tons CO2e/yr)

600
M Zone 1 avg. N20 emissions (tons CO2e/yr)
400
200
0
BT2 BT3 BT4 BTS5

EMISSIONS TONS CO2E/YR

BT1
BT1 BT2 BT3 BT4 BTS Total
Total N20 emissions (tons CO2e/yr) 1261 800 1165 828 956 5010
Average risk 0.40 0.46 0.42 0.40 0.38
Zone 1 avg. N20 emissions (tons CO2e/yr) 961 461 816 509 R
Zone 1 avg. risk 0.44 0.55 0.44 0.44 When NH4 conditions are
Zone 1 avg NH4 (mg/L) 2.8 1.5 2.5 1.9 : — similar, lower risk means
Zone 2 avg. N20 emissions (tons CO2e/yr) 300 339 349 319 lower emissions
Zone 2 avg. risk 0.37 0.41 0.36




Screening and prioritizing sites for action
2 3 4 5 6 7
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Screening and prioritizing sites for action
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We cannot use EFs for planning N20 measurements/reduction




Measuring and reducing N20
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Methods for Field measuring N,O emissions
* Floating hood method
* liquid-phase measurements
* Mobile trace dispersion method
 Other methods
» GC/grab sampling
* LessDrone
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LIQUID-PHASE N20 MEASUREMENTS

Courtesy of Unisense Environment

Courtesy of Welsh Water




FLOATING HOOD METHOD
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Online N,O Gas and Liquid Analysis

Off-gas N20 analyzer

SEIFC Flux Chamber (for online gas and liquid)

(for online gas — not visible)

~ ST L

Unisense ) \\.‘Y "f“fp R P—
Microsensors
(liguid)

Eindhoven RWZI, 2014

Gas stripping
column for
determining liquid
N20O conc.
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Checking spatial variability with physical measurements

(typical)

Spot check location
(typical)

If any of the spot check
locations have
significantly different N20
conc. than the reference
location, then a ML model
can be trained so that
N20O emissions can be
predicted in the spot
check locations with the
plant data and N20 from
the reference location.

ML models trained with
Lane 2 data can be used
to account for operating
conditions in Lanes 1, 3,
and 4 and predict N20 in

Lanes 1, 3, and 4 -
LA
i



ML Model Training

Courtesy of Hoogheemraadschap De Stichtse Rijnlanden (HDSR), NL
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Checking seasonal variability with ML and historical data

Testing trained ML model with historical N20O measurement data
0.25

0.2

0.15

Process Data

0.1

0.05

Courtesy of HDSR, NL



How long to measure

Zooming into roughly one-month in July/August 2020 to test trained Courtesy of HDSR, NL
January 2021 ML model with historical N20 measurement data 0.95
. —— N20 meas. (mg/L)
N20 pred. (mg/L)
0.2
Avg. meas.:
(©
| 0.15 & 2.684 kg N20/day
a
N
I ‘ 1 8 ‘ 291.94 tons of CO2e/year ‘
b | 01§
| 1 | | o Avg. pred..
‘ ! 1 ‘ |
. M \J | ” M N M, ' / ! ‘ .l "I | | | l ] %05 2.653 kg N20/day
ey \JJ | .J |
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2020

Confirms we can use historical data and ML and do not need to measure for a full year to understand
season/operational variability without taking action. We can also measure in parallel control and test treatment
tanks to baseline and reduce at the same time as opposed to losing a year.



Land van Cuijk RWZI Knowledge-based Al/ML Insights

A (e N20Risk DSS
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Reducing N,O with Knowledge-based Al/ML Insights

A (R N20Risk DSS
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Data to Visualize:
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Reducing N,O with Knowledge-based Al/ML Insights

I o Cobalt
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Monitoring the process and continuously reducing N20
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What do we monitor?
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ML Model Training

—— N20 meas. (mg/L)

N20 pred. (mg/L)
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Testing of ML model based on first month of measurements against
measured N,O for several months after at site in NL

—— N20 meas. mg/L
N20 pred. mg/L

Sensor calibration
=

Training data ML model was fairly accurate for almost five months after
initially being trained with N,O measurements
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Monitoring after reducing N20

If you don’t monitor risk to maintain reductions, risk and N20 can come back
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Monitoring N20 in other lanes w/ ML
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Monitoring N20 in other lanes w/ ML
Cog Moors Lane 1 measured N20 versus Lane 2 model
predictions (Model trained on Lane 2 N20 measurements)

Courtesy of Welsh Water
Avg N20 conc. measured = 0.032 mg/L (purple)
Avg N20 conc. predicted = 0.027 mg/L (green)




Monitoring N20 in other lanes w/ ML

We can rely on predicted N20 and predicted N20 corresponding with risk



Monitoring N20 in other lanes w/ ML

DO (norm.)

—— N20 meas. (norm.)
N20 pred. (norm.)
Recom. DO (norm.)

W Uﬁu

If we can rely on predicted N20 corresponding with risk, then we can rely on DO
recommendations (cyan) and that bringing current DO (grey) closer to recommended can reduce N20 II
]




Conclusions

Al/ML approach can help through each step of the N20 reduction

Journey - from planning to monitoring after reducing

Reliable physical measurements are essential

There is no perfect tool, but we can put the pieces together for
overall robust solution

o Al/ML for assessing

o In-situ meaurements for reactor level (in one reactor)

o Al/ML with measurement data for monitoring in all reactors
o Mobile measurements at site-level for verifying Al/ML

We need to start Now. We cannot wait for perfection.

Research needs to pick up where we left off, not 10 yrs behind,
while we continue to learn from practice in parallel
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Questions

Jose.porro@cobaltwater-global.com
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