

An AI/ML approach for assessing, reducing, and monitoring N2O emissions from WRRFs

U.S. DOE Industrial Efficiency Decarbonization Office Measuring Life-Cycle Greenhouse Gas Emissions from Water Resource Recovery Facilities Workshop – January 23 – 24, 2024

The Approach

KNOWLEDGE OF N₂O PATHWAYS AND INFLUENCING (RISK) FACTORS

KNOWLEDGE OF N₂O PATHWAYS AND INFLUENCING (RISK) FACTORS

KNOWLEDGE OF N₂O PATHWAYS AND INFLUENCING (RISK) FACTORS

Goal is to eliminate conditions leading to N2O formation risk

AI / MACHINE LEARNING (ML) APPROACH FOR MITIGATING WRRF N₂O EMISSIONS

Knowledge Base (Porro et al., 2014)

Accounting and Assessing N20

What data do we need?

-SCADA-bo, NH4, NO3, MLSS- Air Flow $-N_7 O(is available)$

The Emission Factor Problem Exposed

COMPARISON OF N₂O ACCOUNTING METHODS (RWZI SOERENDONK)

Assessing N₂O Risk (with AI) and Emissions (with ML)

This tells us why we have N2O at different times (and what would generally be needed to reduce risk) and an estimate of N2O emissions based on the site-specific process data. EFs cannot do this.

Summary of N2O emissions (w/ML), risk (w/AI), and NH4 per BT

0.41

0.36

0.37

0.37

0.37

Zone 2 avg. risk

Screening and prioritizing sites for action

1	2	3	4	5	6	7	8	9
Site name / process type	Population Equivalents	Calculated emissions per CAW EF (tons of CO2e/yr)	Calculated emissions per N ₂ O measurements or estimated with ML (tons of CO2e/yr)	N ₂ O risk profile (why there is N ₂ O)	General Mitigation Opportunities	Is site ready to reduce N ₂ O (Y/N)	Ranking based on column 3 EF	Ranking based on Columns 4 and 7
CAS	221,495	1207	2090	due to low DO	Increase DO	Y	2	2
CAS	296,862	1624	1260	due to both high and Iow DO	Balance DO (eliminate over and under aeration)	Y	1	3
CAS	163,660	895	610	due to low DO	Increase DO	Ν	3	4
SBR	141,497	774	2000	Mainly due to anoxic phase	lincrease anoxic period, decrease DO during aerobic	Y	4	1

Various UK sites

Screening and prioritizing sites for action

1	2	3	4	5	6	7	8	9
Site name / process type	Population Equivalents	Calculated emissions per CAW EF (tons of CO2e/yr)	Calculated emissions per N ₂ O measurements or estimated with ML (tons of CO2e/yr)	N ₂ O risk profile (why there is N ₂ O)	General Mitigation Opportunities	Is site ready to reduce N ₂ O (Y/N)	Ranking based on column 3	Ranking based on Columns 4 and 7
CAS	221,495	1207	2090	due to low DO	Increase DO	Y	2	2
CAS	296,862	1624	1260	due to both high and low DO	Balance DO (eliminate over and under aeration)	Y	1	3
CAS	163,660	895	610	due to low DO	Increase DO	Ν	3	4
SBR	141,497	774	2000	Mainly due to anoxic phase	Increase anoxic period, decrease DO during aerobic	Y	4	1

We cannot use EFs for planning N2O measurements/reduction

Measuring and reducing N20

Methods for Field measuring N₂O emissions

- Floating hood method
- Liquid-phase measurements
- Mobile trace dispersion method
 - Other methods
 - GC / grab sampling
 - LessDrone

LIQUID-PHASE N20 MEASUREMENTS

Courtesy of Unisense Environment

Courtesy of Welsh Water

FLOATING HOOD METHOD

Online N₂O Gas and Liquid Analysis

Off-gas N2O analyzer **SEIFC Flux Chamber** (for online gas and liquid) (for online gas – not visible) Unisense REPEALED IN DEADER OF Microsensors (liquid)

Gas stripping column for determining liquid N2O conc.

Eindhoven RWZI, 2014

Checking spatial variability with physical measurements

Reference location (typical)

Spot check location (typical)

If any of the spot check locations have significantly different N2O conc. than the reference location, then a ML model can be trained so that N2O emissions can be predicted in the spot check locations with the plant data and N2O from the reference location.

ML models trained with Lane 2 data can be used to account for operating conditions in Lanes 1, 3, and 4 and predict N2O in Lanes 1, 3, and 4

ML Model Training

Courtesy of Hoogheemraadschap De Stichtse Rijnlanden (HDSR), NL

Time

Checking seasonal variability with ML and historical data

Time

Courtesy of HDSR, NL

How long to measure

Confirms we can use historical data and ML and do not need to measure for a full year to understand season/operational variability without taking action. We can also measure in parallel control and test treatment tanks to baseline and reduce at the same time as opposed to losing a year.

Land van Cuijk RWZI Knowledge-based AI/ML Insights

N2ORisk DSS

Time

Data to Display

Cobalt

/ater

Logout

Reducing N₂O with Knowledge-based AI/ML Insights

N2ORisk DSS

Cobalt

vater

Reducing N₂O with Knowledge-based AI/ML Insights

Logout

N2ORisk DSS

Cobalt

/ater

Monitoring the process and continuously reducing N20

What do we monitor?

-SCADA-DO, NH4, NO3, MLSS- Ris K $-N_{7}$

ML Model Training

Time

Testing of ML model based on first month of measurements against measured N_2O for several months after at site in NL

Monitoring after reducing N20

Monitoring N20 in other lanes w/ ML

Monitoring N20 in other lanes w/ ML Cog Moors Lane 1 measured N20 versus Lane 2 model predictions (Model trained on Lane 2 N20 measurements)

Monitoring N20 in other lanes w/ ML

We can rely on predicted N2O and predicted N2O corresponding with risk

Monitoring N20 in other lanes w/ ML

If we can rely on predicted N2O corresponding with risk, then we can rely on DO recommendations (cyan) and that bringing current DO (grey) closer to recommended can reduce N2O

Conclusions

- AI/ML approach can help through each step of the N2O reduction journey - from planning to monitoring after reducing
- Reliable physical measurements are essential
- There is no perfect tool, but we can put the pieces together for an overall robust solution
 - AI/ML for assessing
 - In-situ meaurements for reactor level (in one reactor)
 - AI/ML with measurement data for monitoring in all reactors
 Mobile measurements at site-level for verifying AI/ML
- <u>We need to start Now</u>. We cannot wait for perfection.
- Research needs to pick up where we left off, not 10 yrs behind, while we continue to learn from practice in parallel

Questions

jose.porro@cobaltwater-global.com

