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Artificial intelligence (AI) holds the potential to accelerate the transition to a carbon-neutral economy and help 
achieve the technology research, development, demonstration, and deployment (RDD&D) goals set forth by the 
DOE Office of Fossil Energy and Carbon Management (FECM) in its Strategic Vision. FECM and the National 
Energy Technology Laboratory (NETL) continuously expand, maintain, and curate extensive scientific datasets 
and AI tools essential to carbon management, and they are now standing up a robust AI Multi-Cloud 
Infrastructure to enable the DOE research community to share and leverage a collection of tailored resources to 
expedite progress toward equitable and sustainable solutions. 

As one step toward prioritizing AI development activities, FECM is exploring specific roles for AI in meeting the 
top RDD&D needs identified in the Vision. This document summarizes a series of discussions in which a range of 
specialists from FECM, NETL, and the DOE Office of Science suggested potential roles for AI in Carbon 
Conversion. This document should be viewed as a representative sample of the types of AI applications that may 
be needed; it is by no means a comprehensive list.  
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Potential Roles for AI in Carbon Conversion 

The U.S. Department of Energy (DOE) Office of Fossil Energy and 
Carbon Management (FECM) and its partners are working to 
mitigate the climate crisis by developing new and improved 
technologies and conversion pathways for recycling carbon 
dioxide (CO2) into value-added products. Ideally, these products 
will provide economic incentives for the conversion in addition to 
long-term storage for the incorporated carbon. 

Carbon conversion represents a key opportunity in the larger 
carbon capture and storage ecosystem, particularly where long-
term storage is not available or where CO2 sources are too 
distributed for centralized capture (FECM 2022). Conversion 
technologies can complement other CO2-mitigation efforts, such 
as point source capture (PSC) and carbon dioxide removal (CDR) 
(FECM 2023a). While carbon-conversion approaches can be limited by the available markets for the products 
created, conversion technologies will be of particular interest in industry sectors that are hard to decarbonize by 
other methods. 

FECM’s Carbon Conversion Program invests in 
research, development, and demonstration (RD&D) 
projects to reduce carbon emissions by enabling the 
economic conversion of carbon oxides—including 
CO2—into valuable products (FECM 2023a). The 
Carbon Conversion Program focuses on three main 
pathways (see Figure 1): catalytic conversion into 
fuels and chemicals, biological uptake into algae and 
bioproducts, and mineralization into inorganic 
materials. (A fourth pathway, Working Fluids, includes 
the direct use of CO2 in more established processes 
such as enhanced oil recovery and is not a focus of 
FECM’s Carbon Conversion Program.) Overall, a wide 
range of value-added materials can be created through the different types of carbon conversion—including 
pharmaceuticals, plastics, syngas, carbon nanotubes, and building materials.  

To briefly introduce each of the three main pathways under consideration: Catalytic Conversion involves 
developing and evaluating novel catalysts that facilitate the carbon conversion process using less energy. The 
efficacy of a catalyst depends on its productivity in facilitating CO2 reactions, its durability and ease of 
recyclability, and the energy and carbon intensity of producing it in the first place. Biological Uptake approaches 
take advantage of the CO2 absorbed by algae-based systems during photosynthesis and use the resulting 
biomass to generate a range of chemicals, fuels, and other bioproducts. The cost-effectiveness of these 
technologies depends on the algae’s rate of CO2 uptake, the amount of energy needed to deliver CO2 to the 
system, the duration of CO2 storage, and other parameters. Lastly, Mineralization techniques make use of the 
way CO2 exposed to an alkaline material reacts by permanently bonding with various calcium- or magnesium-
based minerals to create carbonates—offering the potential to create building materials and other value-added 

Carbon (CO2) Conversion 
Vision Statement 

Research, develop, and demonstrate 
a broad suite of technologies that 
convert CO2 into environmentally 
responsible, equitable, and 
economically valuable products, and 
enable low-carbon supply chains to 
meet the goal of a decarbonized 
economy by 2050. 

FECM Strategic Vision 2022 

Figure 1. Key Carbon Conversion Approaches 
(Source: FECM 2023a) 
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products. While these reactions with alkaline materials occur naturally without added energy, the benefits of 
accelerated mineralization strategies depend significantly upon how effectively a mineral source reacts with CO2 
and how much commercial value is attached to the final product (Sandalow 2021). Figure 2 outlines these 
pathways and value-added products. 

Converting CO2 sources into economically 
viable products faces significant challenges. 
Viewed from a thermodynamic standpoint, 
CO2 is a highly stable molecule, and 
significant energy, often achieved with a 
catalyst, is needed to convert it cost-
effectively (Whang 2019). The various 
chemical pathways to create a desired 
product can be highly complex and 
interlinked. Optimal conversion 
opportunities may also depend on the local 
geography or other conditions specific to a 
particular factory or site. Overall, a complex 
range of factors may impact efforts to 
create a conversion system that can cost-
effectively produce a valuable material 
from CO2 at scale. 

As a result of these challenges, artificial 
intelligence (AI) can play a significant role in 
improving existing carbon-conversion 
technologies, exploring potential new 
conversion opportunities, and optimizing 
site performance and efficiency based on changing situations—to name a few possibilities. AI provides a wealth 
of opportunities to advance carbon-conversion approaches based on its capacity to quickly analyze and process 
large databases, manage interconnected systems, react to real-time feedback from smart sensors, and simulate 
or explore the vast potential of diverse catalyst chemistries and system designs.  
FECM has identified numerous potential roles 
that AI can play in the RD&D of carbon 
conversion, as outlined in Figure 3. This figure 
extends across two pages and serves as a direct 
outline for the topics discussed in this 
document. Topics are categorized based on the 
three key aforementioned pathways—Catalytic 
Conversion, Biological Uptake, and 
Mineralization—along with a fourth section on 
Cross-Cutting Issues, which looks at how AI can 
help conversion approaches across the board. 

Figure 2: Key CO2 Conversion Pathways and Products 

Recent FECM solicitations and business opportunities 
in carbon conversion include the following:  

• BIL FOA 2829 - Carbon Utilization Procurement 
Grants: provide up to $100 million to assist in 
purchasing products made from converted carbon 
emissions. 

• Lab Call - Core Laboratory Infrastructure for 
Market Readiness (CLIMR): supports accelerated 
stress testing capabilities for materials created from 
carbon conversion.  

(FECM 2023b) 
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Figure 3: Summary of Potential AI Roles in Carbon Conversion (Note: Chart reflects document structure.) 
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Figure 3. Summary of Potential AI Roles in Carbon Conversion (continued) 
(Note: Chart reflects document structure.) 
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The FECM Carbon Conversion Program engages with a broad range of investment, consumer, governmental, and 
community stakeholders to develop cost-effective carbon-conversion methods and the required supporting 
infrastructure. The Program’s RD&D portfolio includes public-private partnerships, university-based research 
grants, and agreements that leverage the resources and expertise of the national laboratories. 

The National Energy Technology 
Laboratory’s (NETL’s) Research and 
Innovation Center helps implement 
FECM’s portfolio of RD&D efforts, 
targeting key projects across each of 
the three previously mentioned 
technology pathways. The locations 
of currently funded projects relating 
to catalyst-, biologic-, and 
mineralization-based carbon 
conversion are shown in Figure 4, 
the NETL website provides project 
3summaries and additional details 
(NETL 2023). The catalytic pathways 
target cost-effective CO2 conversion 
into a broad selection of carbon-
derived chemicals, polymers, and 
other products, including formic 
acid, ethylene, polyesters, plastics, 
and synthesized fuels. The biologic 
projects, which explore carbon 
uptake by algae, target cost-
effective solutions that optimize CO2 
absorption while decreasing overall 
system energy needs, and the 
mineralization projects primarily focus on identifying the specific materials and conditions to maximize long-
term CO2 storage in widely used building supplies.  

AI and machine-learning (ML) capabilities can expedite progress throughout these three core technology areas, 
and the following sections identify some of the key opportunities within each area. Decarbonization efforts 
across the nation are actively exploring carbon-conversion technologies, and AI/ML can assist in finding the 
approaches that are most cost-effective, optimized for a specific application, and beneficial in attaining U.S. 
carbon-reduction and sustainability goals. While the topics addressed below are by no means comprehensive in 
identifying the potential of AI/ML technologies in the carbon-conversion space, they are intended to highlight 
current opportunities and suggest broader ways in which AI/ML techniques may overcome hurdles to progress. 

 

  

Figure 4. Current NETL-Administered CO2 Conversion Projects 
(Source: NETL 2023) 
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Catalytic Conversion 

FECM’s research into carbon conversion pursues the most cost-effective catalytic pathways to convert CO2 into 
economically viable products. To reduce the energy input needed for CO2 conversion, researchers seek catalysts 
that can attach themselves to CO2 molecules just long enough to facilitate a reaction, then break away to serve 
this role again and again (Clark 2013)—improving conversion efficiency and cost-effectiveness. The Carbon 
Conversion Program specifically pursues catalyst-based research along four general tracks: thermochemical, 
electrochemical, plasma-mediated, and hybrid systems (FECM n.d.). A brief description of each track is provided 
in the accompanying sidebar. 

The various types of catalytic reactions and diverse 
resulting products generate numerous conversion 
pathways for exploration. Currently funded FECM/NETL 
RD&D efforts include catalytic carbon conversion 
processes that create products like renewable natural gas, 
methanol, formic acid, dimethyl carbonate, bioplastics, 
carbon nanotubes, sodium bicarbonate, ethylene, 
propylene, propionic acid, syngas, ethylene, acetate, and 
recyclable polyester (NETL 2023). Integrated systems that 
include reactive capture and conversion processes enable 
the conversion of a dilute CO2 stream into useful products 
without incurring the costs to purify or transport the CO2 
(FECM 2023b). 

Beyond the wide array of potential catalytic reactions, 
chemical pathways, and end products, catalytic carbon 
conversion technologies confront challenges common to 
other fields undergoing significant innovation. Catalytic 
conversion is a highly dynamic RD&D space, with many 
possible conversion approaches currently at relatively low 
technology readiness levels (FECM n.d.). Future research 
will identify the most promising options for development 
toward commercial feasibility. Additional information on 
currently funded projects can be found on the NETL 
website.1 

Key engineering, technical, and financial parameters for down-selecting technologies for further research are 
still under development. Integrated field testing can help validate high-potential technologies, while Front-End 
Engineering Design (FEED) studies or operational demonstration projects can accelerate development of 
selected first-generation systems (FECM 2022). Associated needs include building the supply chains and other 
infrastructure to support these emerging catalytic-conversion systems. Future systems may integrate multiple 
advanced technologies, potentially incorporating CO2 conversion approaches alongside hydrogen production.  

For catalytic approaches, “All paths rely on high activity, high selectivity, and stable conversion catalysts” (Chen 
2023a). Opportunities presented by catalyst-based conversion technologies remain largely in their infancy, and 

 
1 NETL Carbon Dioxide Conversion Program project: https://netl.doe.gov/carbon-management/carbon-conversion 

Key Catalytic Conversion Approaches 

Catalysts can serve to selectively initiate 
and speed up different types of reactions. 
The four main catalytic-conversion 
approaches targeted by FECM are as 
follow: 
Thermochemical: Energy is provided in the 
form of heat (and pressure), and the reaction 
is often driven by a catalyst. 

Electrochemical: Energy is provided in the 
form of electricity, and catalyzed reactions 
take place in an electrochemical cell. 

Plasma-mediated: CO2 is activated by 
energetic electrons instead of heat, and the 
reaction is often driven by a catalyst. 

Hybrid Systems: These include biocatalysis, 
reactive capture, and conversion or systems 
that include a combination of 
thermochemical, electrochemical, or plasma-
mediated approaches. 
                                                                         (FECM 

 

https://netl.doe.gov/carbon-management/carbon-conversion
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emerging AI tools could deliver considerable benefit by identifying the most-promising chemical pathways and 
moving the resulting conversion technologies to commercialization quickly and effectively. Some of the main 
FECM-identified opportunities for AI in catalytic conversion are discussed in the following sections. 

Improve/Discover New Catalysts 

AI- and ML-driven methodologies are particularly well equipped to tackle the complex nature of catalytic 
reactions and the vast potential search space for cost-effective catalysts and reaction pathways (Zhang 2022). 
Finding and optimizing effective catalysts with ideal performance and durability characteristics are critical steps 
in developing carbon-conversion technologies that meet the needs of industry.  

Predict Catalyst Performance and Durability 
To effectively identify promising catalysts, thermodynamic 
simulation software (including packages that incorporate 
CALculation of PHAse Diagrams [CALPHAD] methods) can be used 
to predict the phases and properties (e.g., melting temperatures) 
of potential catalytic materials. The synthetic phase information 
generated by such thermodynamic software can then be coupled 
with density-functional theory (DFT) to predict catalyst 
performance. Such approaches can be used by AI to predict the 
phases and properties of existing catalysts and to generate 
sufficient synthetic data to help train AI models to find optimal 
solutions. An example of the iterative feedback loops used in 
supervised learning models is outlined in Figure 5. 

An insufficient supply of up-to-date catalyst data can constitute 
a major hurdle in training a neural network. The volume of 
specialized data needed for effective ML frequently exceeds the 
amount that can be obtained experimentally. While data 
acquired through synthetic modeling may be computationally 
more expensive and quantitatively less accurate than measured 
data at the outset, it can be qualitatively valuable. Checking 
synthetic data through physical experimentation and 
validation—particularly using an iterative approach between 
modeling and selective real-world testing—can improve the 
effectiveness of such AI-driven efforts over time. An enormous 
quantity of synthetic data would be needed, and the AI training 
set would need to be rigorously verified. To properly train such 
models and ensure that they are effectively modeling reality 
often requires cooperative efforts by experienced 
electrochemists, data scientists, and AI experts. 

Additional challenges in predicting catalyst performance include uncertainties regarding approximations 
resulting from the DFT predictions; projected material costs, stability, and CO2-adsorption effects; and the “black 
box” nature of decision making in AI models (Zhang 2022). The last of these challenges is typical of AI/ML-based 
models that require significant accountability—as in the autonomous-vehicle segment, where the process for 
making situation-based decisions is critically important.  

Density-Functional Theory 

“Density-functional theory (DFT) is 
a successful theory to calculate the 
electronic structure of atoms, 
molecules, and solids. Its goal is the 
quantitative understanding of 
material properties from the 
fundamental laws of quantum 
mechanics.”   (Kurth 2005) 

Figure 5: Example of Supervised Learning 
Approach Using Iterative Feedback Loops 

(Source: modified from Chen 2023a) 
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While AI must overcome numerous challenges when applied to exploring catalyst behavior, the potential 
rewards are significant. Coupling phase simulation software and DFT predictions (as described above) can help 
train neural networks that should ultimately be able to design novel catalysts by simulating processes and 
products from an atomic level. This capability could potentially save substantial cost and effort in experimental 
studies and accelerate the development of novel approaches to cost-effective carbon conversion. 

Optimize Electrochemical CO2 Conversion Materials 
Ideally, electrochemical CO2 conversion processes will use cost-
effective catalysts and renewable electricity to convert CO2 into 
value-added materials. Figure 6 shows a typical electrochemical 
schematic. The effectiveness of such conversion technologies 
depends upon numerous process efficiencies, including how 
much current/energy is required to power the reactions; how 
quickly these reactions occur; how effective the given catalysts 
and reactor setups are at generating the desired downstream 
products (i.e., “Faradaic efficiency”); and how long a system can 
continue operating before the catalysts deteriorate, become 
deactivated, or no longer function effectively (i.e., “durability”) 
(Overa 2022). Optimizing an electrochemical system’s catalysts, 
configuration, long-term durability, and other key parameters is 
crucial to creating a financially viable CO2 conversion method. 

One challenge in understanding the performance of these systems 
is knowing precisely which chemical reactions are occurring within 
the electrochemical cell (Kempler 2023). This challenge applies 
specifically to the Faradaic efficiency mentioned above—i.e., what 
are the electrochemical reactions producing, and how much of 
from the supplied CO2 is in the desired product(s)? For any given 
system, gases of various compositions will be present near the 
electrochemical cathodes and anodes, and simply measuring 
current between the electrodes does not provide a full 
understanding of system effectiveness (Kempler 2023).  

A key optimization challenge, then, is to predict the performance 
of diverse compositions of gases within an electrochemical system. The focus here is on optimizing the anode 
and cathode elements, potentially using a simplified, one-dimensional model of the electrochemical device and 
synthetically providing it with device gases of various compositions, current densities, and overpotentials. 
Ultimately, the goal is to maximize the cell’s performance in terms of efficiency, conversion, waste heat 
generated, product output, etc. 

Based on the literature, AI/ML techniques have not been widely applied in modeling electrochemical CO2 
conversion; however, researchers have used a chemoinformatics-based ML model to improve the prediction of 
CO2 absorption by physical solvents. Precise descriptors (like chemical bond structures and thermodynamic 
factors) were fed to the ML neural network, which more accurately fit the properties of solvents to their CO2 
solubility (Li 2019). This success suggests that a similar approach, using ML and detailed data on the 
characteristics of various device gases, might potentially be applied to predict or possibly optimize the 

Figure 6: Example Schematic of Electro-
chemical CO2 Reduction Reaction 

(© Chang 2022, Creative Commons 
 Attribution 4.0 International) 

Faradaic Efficiency 

“Faradaic efficiency (FE) describes the 
overall selectivity of an electrochemical 
process and is defined as the amount 
(moles) of collected product relative to 
the amount that could be produced 
from the total charge passed, expressed 
as a fraction or a percent.” 

(Kempler 2023) 
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electrochemical conversion of CO2. Similarly, key parameters such as chemical kinetics, Faradaic efficiencies, 
current densities, and other properties might help optimize anode/cathode elements via multi-variate analysis, 
enabling AI-based techniques to optimize system configuration and maximize electrochemical CO2 conversion. 

Optimize Electrochemical Reaction Conditions 
AI systems might go beyond enhancing or optimizing the electrode configurations for electrochemical reactions 
(as discussed above) to optimize overall electrochemical systems. Specifically, AI can assist in scaling up the 
processes to a commercial scale—including optimizing the catalysts involved, analyzing potential reactor 
configurations, and fine-tuning process efficiencies. 

One crucial application of AI is to tune existing catalytic conversion approaches to yield products not yet 
produced at scale. Reaction conditions for electrochemical conversions can be optimized to favor products that 
have not yet been made selectively or at sufficiently high rates, such as methanol and methane. Methanol, for 
example, is used as a primary feedstock for making a wide range of organic compounds and bulk chemicals. 
Decentralized, cost-effective production of this feedstock could yield diverse options for integrating this type of 
carbon conversion into current and future supply chains (Ganesh 2016).  

Building on recent advances in density functional theory for predicting material properties, AI/ML approaches 
can help fine-tune existing catalytic conversion pathways to achieve full-scale commercialization. Improvements 
may include modifying the catalyst, reactor configuration, or electrolyte—essentially targeting any process-
related components/characteristics that can be better tuned through advanced computing optimizations. Efforts 
could also explore pathways integrating capture and conversion by evaluating and optimizing different 
potential chemical pathways. Identifying catalysts that minimize methane production (in turn minimizing a 
system’s need for methane purges) or tolerate high levels of oxygen impurity can improve the productivity and 
economic opportunities of certain carbon-conversion pathways (Cordero-Lanzac 2022).  

AI-based analytics can further be used to optimize catalysts to improve cost, process energy, and yield. 
Complex lifecycle analyses, like those targeting net reductions of CO2 emissions (including emissions from a 
catalyst’s production and conversion processes), could also be considered in the optimization process. Catalyst 
deactivation behavior may also be better quantified, as catalysts gradually change over time and physical 
experiments to measure the degradation effects can take a long time to produce useful data.  

In general, long-term electrode durability studies are in short supply relative to experiments emphasizing 
efficiency and performance (Nwabara 2020). AI/ML methods implemented in tandem with the aforementioned 
DFT analyses and thermodynamic software could help synthetically model these electrochemical conversion 
systems and improve current understanding of how they perform over extended periods—with reduced need 
for physical testing. Such efforts would improve our ability to determine system lifecycle impacts, which can be 
greatly affected by the longevity of catalysts and electrode materials. 

Convert CO2 into Non-Traditional Products 

In addition to improving upon established catalytic conversion pathways, AI techniques can help identify 
opportunities to convert CO2 into other materials. Key examples include products with a substantial number of 
carbon–carbon bonds (e.g., carbon nanotubes, polymers, ethylene, etc.), raising the potential to cost-effectively 
manufacture a wide range of chemicals, pharmaceuticals, plastics, and more. Using CO2 to produce polymers is 
of particular interest, as these can be made using relatively little energy, possess significant market value, and 
can incorporate CO2 at rates above half of the resultant polymer’s final mass (IEA 2019). The combined use of AI 
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and chemoinformatics data is becoming increasingly 
common—particularly in areas such as analytical 
chemistry and pharmaceutical drug discovery (Saldívar-
González 2020). A recent collaboration between 
Microsoft and Pacific Northwest National Laboratory used 
AI to greatly accelerate the discovery of new battery 
materials (Bolgar 2024). Such approaches might also find 
new catalytic conversion opportunities far more 
efficiently than through experimentation alone.  

Find Optimal Reaction Pathways to Target Products 
As different reaction pathways can lead to different 
optimizations or carbon–carbon bonds, AI technologies 
could prove particularly useful for determining optimum 
configurations and pathways for achieving targeted end 
products. Such approaches could help predict outcomes 
of varying thermodynamic and kinetic parameters based 
on different reaction temperatures, pressures, species 
ratios, catalytic surfaces, etc.—with the core goal of 
obtaining the highest species yield and CO2 conversion for 
a specific end use. By using AI/ML approaches to explore 
a broad range of potential reaction pathways, the target 
end products (and perhaps the best available catalyst) 
might be selected in advance. For example, AI-based 
algorithms have helped screen catalysts for efficient 
reaction pathways to convert CO2 into ethylene (Sexton 
2020).  

Opportunities for cost-effective carbon conversion can 
depend heavily upon local and regional market considerations. It follows, therefore, that AI-based screenings 
utilizing localized inputs and nearby supply chains can help to select the best available catalyst and target 
products for a given market/region. Ultimately, this ability to pre-screen opportunities for a large number of 
locations can greatly enhance the targeting and efficacy of carbon-conversion programs. 

For pre-screening approaches that use AI in tandem with methodologies such as chemoinformatics or DFT, it will 
be particularly important to ensure that simulated data sources match reality. Some identified opportunities 
may be overly idealistic or unachievable with the current state of a particular technology. Other opportunities 
simply might not offer a sufficiently large improvement in production or efficiency versus more established 
systems and reaction pathways. The accuracy of DFT, for instance, is not always well understood. It may turn out 
that interesting formulations and reaction conditions, when tested experimentally, simply highlight areas in 
which DFT makes poor predictions rather than something more interesting. Synthetic data will require 
experimentation and validation. 

Optimize Reactors/Processes for Conversion Paths 
AI/ML-based approaches for determining optimal reactors and processes for CO2 conversion pathways can be 
used in tandem with supplemental models such as chemoinformatic datasets or computational fluid dynamics 

The Open Catalyst Project 

One of the most frequent issues with creating 
AI/ML models is the lack of sufficiently large and 
accessible datasets to train such models. 
Generating the needed data exclusively from 
physical experiments can be incredibly difficult, 
if not impossible.  

The Open Catalyst Project, a collaboration 
between Meta AI’s Fundamental AI Research 
and Carnegie Mellon University’s Department of 
Chemical Engineering, seeks to overcome this 
limitation by making large datasets of catalyst 
behavior publicly available (Open Catalyst 
Project 2023). The goal is to encourage the 
creation of low-cost catalysts to enable cost-
effective renewable energy storage. 

Currently available resources include one 
dataset with over 1.3 million molecular 
relaxations (characterizing catalyst reactions and 
resulting from over 260 million DFT calculations) 
and another set with 62,000 relaxations focused 
on oxide electrocatalysis (Nature 2022). 
Additional information on the project, including 
downloadable datasets and documentation, can 
be found at opencatalystproject.org. 

 

https://opencatalystproject.org/
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(CFD). Such efforts can help optimize reactors and processes 
for various conversion pathways, potentially allowing 
developers to design the initial process to “set and forget” 
by incorporating such parameters as heat transfer 
requirements, contact areas, etc., into the system. 
Optimizing the conversion pathways would serve to lessen 
any required long-term maintenance, helping to drive down 
operating costs and improve overall cost-effectiveness.  

The systems could additionally be designed for ongoing 
improvement via smart control, taking advantage of the 
improved monitoring capabilities afforded by AI-powered 
monitoring and control devices. Advanced smart sensors and responsive feedback systems can help to advance 
the above-mentioned “set and forget” approach, responding to any changing parameters that affect the 
conversion process in real time—and ultimately learning to improve such responses over time. Smart-
manufacturing approaches have proven their ability to reduce energy use and emissions by 30%–50% in many 
cases, while smart grids using advanced onsite controls can cut electricity bills by 20% or more (Chen 2023b). 
Applying similar AI-based technologies to catalytic and other CO2 conversion systems could help to realize 
comparable savings along with improved operations. 

Advanced computing techniques can also be used to predict reactor shapes that could maximize catalyst 
contact area in these conversion systems, improving operational efficiencies. This framework of geometric 
optimization—synthetically testing out a broad selection of potential design shapes, without having to build 
actual prototypes for each—is particularly suited to the type of iterative optimization at which AI-based 
solutions excel. As one example of this approach, AI algorithms were recently used to evaluate the effectiveness 
of various system geometries in a direct air capture (DAC) reactor, helping to optimize the system’s ability to 
capture CO2 (Weber 2023). 

Identify New/Replacement Products That Use High Amounts of CO2  
Other efforts to improve catalytic conversion of CO2 using AI/ML methods could explore opportunities for new 
or replacement products that can be derived from CO2. These non-traditional conversion pathways would ideally 
target high-intensity applications that would be able to incorporate large quantities of CO2. Such efforts would 
design products for high-use applications (e.g., construction). AI approaches could be directed toward a specific 
application, product replacement, or novel material chemistries and product. For example, developers might 
target existing products for replacement by materials that store high levels of CO2 for the long term.  

A sizable portion of current research into novel, high-CO2-use products is understandably directed at building 
materials for the construction industry—which require enormous amounts of base materials that typically need 
to be mined or pumped. Construction materials represent a huge potential long-term sink for CO2. Current 
research efforts include using CO2 to create concrete, paper, and plastic fillers (by combining CO2 with 
magnesium and calcium from steelmaking by-products), and, to a lesser degree, high-value materials like carbon 
nanotubes and graphene (Cho 2019). As with all of these catalytic conversion processes, success will require 
improving process efficiencies and lifecycle costs to a degree that makes these CO2-based products economically 
viable. 

  

Computational Fluid Dynamics 

“Computational fluid dynamics (CFD) is a 
science that, with the help of digital 
computers, produces quantitative 
predictions of fluid-flow phenomena 
based on the conservation laws 
(conservation of mass, momentum, and 
energy) governing fluid motion.” 

 (Hu 2012) 
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Biological Uptake 

FECM’s Carbon Conversion Program supports research into pathways for the biological uptake of CO2 via algae-
based systems and the subsequent conversion of the resulting biomass into cost-competitive products. Instead 
of using catalysts to lower the energy needs of CO2 conversion, biological-uptake approaches utilize the highly 
efficient photosynthetic processes of micro- or blue-green algae (cyanobacteria) (NETL 2023). Microalgae use 
CO2 as their main source of carbon, and some can incorporate CO2 more than 100 times faster than terrestrial 
plants (Farooq 2022). The high growth rates and carbon-uptake capabilities of more than 3,000 identified strains 
of microalgae make them a highly promising route for carbon conversion (Fu 2019). AI can help to advance 
RD&D that leverages these algae-based biological uptake systems to mitigate CO2 emissions.  

Biological CO2 conversion systems can produce a 
wide range of useful materials, including chemicals, 
food products, soil supplements, pharmaceuticals, 
and biofuels (FECM 2023a). Figure 7 highlights a 
selection of these products. The Bioenergy 
Technologies Office (BETO) within DOE’s Office of 
Energy Efficiency and Renewable Energy (EERE) 
focuses on algae-to-fuel pathways, while FECM-led 
carbon conversion efforts focus on non-fuel algae-
based products. 

Current research primarily focuses on microalgae or 
cyanobacteria cultivated in either photobioreactors 
(PBRs) or outdoor ponds (NETL 2023). Outdoor ponds 
(i.e., open raceway ponds) are discussed in more 
detail starting on page 16. PBR-based systems aerate 
the microalgae with CO2 and replicate conditions 
(e.g., light, temperature, nutrients, pH, gas flow rate, 
etc.) deemed optimal for CO2 uptake and algae 
growth (Fu 2019). These systems are typically 
enclosed and pass CO2-enriched gas through an 
aerator before bubbling it into the microalgae. A key 
challenge in making these systems cost-effective is 
increasing the efficiencies with which CO2 is delivered 
to the system and integrated into the algal biomass 
(Fu 2019). Research has explored numerous PBR 
geometries to find those that can most effectively 
generate valuable end products. 

Algae generated from PBRs and outdoor pond systems can be broken into different biochemical fractions or 
components (e.g., proteins, carbohydrates, and a variety of different lipid classes), which can then be used to 
create diverse end products (Elst 2018). To date, product application values have tended to be inversely related 
to market size (Crocker 2017). The types and proportions of biochemical compounds generated depend on the 
particular strain(s) of microalgae used (Elst 2018) as well as the cultivation and production characteristics of the 
PBR (Crocker 2017).  

Figure 7: Key Materials Created by Algae-Based CO2 
Conversion Systems 

(Data sources: Elst 2018, NETL n.d., Sun 2023) 
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As discussed below, improving the cost-effectiveness of biological-uptake conversion systems involves diverse 
strategies. Beyond fine-tuning system operating parameters (e.g., geometries, flow rates, and feedback loops), it 
requires minimizing energy use, maximizing carbon uptake, and optimizing production of the target biomass 
fractions. Ensuring efficient CO2 uptake is a major consideration throughout. Other central concerns include 
choosing optimal algae strains for a given application to enable cost-effective operation. 

FECM’s Carbon Conversion Program is addressing key challenges of algae-based systems by conducting RD&D to 
develop advanced algal concepts, field test and scale up emerging technologies, integrate novel technologies 
with existing commercial systems, and coordinate with other researchers on tool development (e.g., the 
Greenhouse Gases, Regulated Emissions, and Energy Use in Technologies [GREET] Model). Currently funded 
projects through NETL’s Carbon Dioxide Conversion Program include various efforts to improve system 
efficiencies and potential revenue, lower energy needs, and streamline CO2 delivery and uptake. Further 
information about these projects can be found through NETL’s program website.2 

Develop Novel Algal CO2 Delivery Systems 

As noted above, DOE’s work on algae-based conversion systems emphasizes the ability to cost-effectively 
capture, deliver, and utilize CO2 in value-added products. One of the largest energy losses in these systems arises 
from compressing the sourced CO2 to create the bubbles that help deliver it to the algae. Potential CO2 sources 
include ambient air, flue gas, and commercially purified CO2. Various approaches currently deliver this gas to the 
system, including direct bubbling, micro or nanobubbles, and porous or non-porous membranes (Zheng 2018). 
CO2 can account for over half of a system’s raw material costs; however, depending on the system, over half of 
the CO2 delivered may fail to be taken up by the microalgae (Zheng 2018)—underscoring the critical importance 
of optimizing CO2 delivery in these technologies.  

The following sections outline key opportunities for AI/ML techniques to address these challenges.  

Search/Assess Reports on Cost-Effective Algal Strains 
Given the importance of cost-effectiveness and the challenges of attaining it, algae-based systems are still 
typically at the phase of bench-scale or pilot testing (Rafa 2021). A key opportunity at this point is to use AI-
driven search tools or natural-language processing (NLP) models to evaluate the existing literature on cost-
effective algal strains for high-volume CO2 conversion. Such efforts could include reviewing the literature to 
compile useful parameters and metrics for identifying promising algal strains or analyzing scientific research 
studies to identify key gaps or overlaps in the current RD&D landscape.  

Analyzing current RD&D publications, patent trends, and similar resources could potentially help direct research 
funds more effectively. Using a combination of learning models and science-based rules, AI tools might 
efficiently comb through copious volumes of existing research to enable an industry-wide analysis of research 
opportunities (Chen 2023a). 

Simulate Nanobubbles To Reduce Parasitic Losses 
Nanobubble technology, which typically involves generating miniscule gas bubbles (diameters of no more than a 
few hundred nanometers), has proven a promising approach for improving gas uptake in gas–liquid systems 
(Patel 2021). CO2 uptake levels are a major limiting factor in algae conversion systems, and studies have shown 
that nanobubbles can exhibit lifespans of more than a month while enabling greater overall biomass growth and 
significantly increasing the percentage of introduced CO2 that these systems can utilize (Patel 2021). Ultimately, 

 
2 NETL Carbon Dioxide Conversion Program: https://netl.doe.gov/carbon-management/carbon-conversion  

https://netl.doe.gov/carbon-management/carbon-conversion
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these benefits help offset the parasitic losses that result from bubbling in the CO2 that is not taken up by the 
algae. 

AI/ML techniques could help explore and answer two key questions in this space: (1) what is the most efficient 
way to create nanobubbles and (2) how do nanobubbles interact with the microalgae?  

The first problem may be more of a computational challenge: how to best generate and distribute these CO2 
nanobubbles within the system. Nanometer-scale bubbles help to maximize the surface-area-to-volume ratio of 
CO2 that is available for biological uptake. Maximizing the availability of CO2 translates into less work and 
pressure needed for gas delivery. Again, this part of the process helps lower the associated parasitic energy 
losses from nanobubble production. 

The second problem is more immediately amenable to an AI-based approach and is based on the huge physical 
size differences between nanobubbles (measured in nanometers) and the microalgae (typically at the 
micrometer scale). This vast difference in scale (nano versus micro) means that it can be especially difficult to 
model the relatively massive number of nanobubbles that would interact with the algae at any reasonable 
model size. It is not entirely clear whether these large numbers of interactions would be best modeled through 
fluid dynamics simulations or direct numerical simulations (with the latter approach being more computationally 
expensive). AI techniques could help to generate and refine the synthetic data needed to model the numerous 
and complex interactions that occur between the CO2 nanobubbles and the much larger algae. Such an approach 
may also help researchers better link algae growth rates to CO2 uptake across the cell membrane. 

Optimize PBR Design, ORP Placement, or Hybrid Designs 
Photobioreactors (PBRs) and open raceway ponds (ORPs) are the two main types of configurations used by 
algae-based CO2 conversion systems. Figure 8 shows some examples of the various configurations in use. PBRs, 
in particular, have been made in a wide variety of designs intended to optimize CO2 uptake as well as the 
photosynthetic activity of the enclosed microalgae. Some PBR examples include stirred-tank, flat-panel, tubular, 
bag, pyramidal, and hybrid designs. Each of these approaches offers benefits and drawbacks in terms of light 
exposure, ease of cultivation, scalability, space 
requirements, cost, and ease of control 
(Chanquia 2021). ORP systems can be more cost-
effective but tend to be less efficient and 
controlled because they are often exposed to 
ambient air and, therefore, more variable 
conditions. A hybrid approach to PBR/ORP 
systems is another route for research, potentially 
offering the benefits of both types (Crocker 
2017).  

Algae-based CO2 conversion systems are highly 
dependent on CO2 flow rates, nutrient 
transmissions, temperature, sunlight availability, 
and other variable conditions that affect the 
algae’s photosynthetic processes (Fu 2019). 
AI/ML methods can be used to explore and 
optimize these systems, including simulating the 

Figure 8: Different approaches to algae-based conversion 
systems: (a) open raceway pond (ORP), (b) flat-plate 
photobioreactor (PBR), (c) inclined tubular PBR, and  
(d) horizontal/continuous PBR. 

(© Du 2020, Creative Commons Attribution 3.0 Unported) 
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interactions of photons and biological media in PBR designs, potentially using digital twins or simulation-based 
training. To take such considerations from a computational approach to an AI-based one, optimization efforts 
might include an iterative series of PBR or ORP designs that take advantage of transfer-learning techniques—
using previously trained models for these systems in subsequent design efforts to explore a broad design space 
and gradually improve performance. Such efforts might proceed along lines similar to those discussed earlier in 
optimizing design shapes for catalyst-based systems. An iterative methodology could also be applied to optimize 
system designs for cost and productivity. 

Select Best Strain for CO2 Uptake in a Specific Project 
Along with CO2 bubble size, light availability, pH, and other key system characteristics, the particular strain of 
microalgae used in a biological uptake system will have a significant effect on the amount of CO2 that can be 
incorporated (Thawechai 2016). Identifying an ideal strain among the 3,000+ known varieties of microalgae 
presents a considerable optimization challenge. Selecting the most important variables to optimize (e.g., CO2 
fixation rate, system energy costs, biomass generated, etc.) will also be crucial (Thawechai 2016). Similar to the 
preceding discussion about optimal PBR design, AI-based techniques can be used to help determine an optimal 
algae strain for CO2 uptake in a specific project given parameters like feed source, weather, and geography.  

Optimize Algal/Plant Genes for CO2 Retention 
The optimization of gene sequencing through ML and deep-learning techniques is the focus of numerous 
ongoing AI-based initiatives (Buvailo 2023). These tools can scour an enormous amount of genetic data, helping 
to efficiently generate synthetic gene sequences that are tuned to effectively perform specific biological 
activities (Buvailo 2023). By applying these AI methods to the criteria of carbon-conversion systems, the genes of 
algae strains and plants could be tweaked to increase CO2 retention as well as produce specific, high-value 
biological products. Potentially, multiple optimization efforts could be performed simultaneously—optimizing 
PBR design and strain selection. 

Screen for Pretreatment Approaches to Boost Efficiency of Photosynthesis  
As previously noted, a system’s specific algae strain and cultivation parameters will influence its photosynthetic 
efficiency as well as the balance of biological compounds produced by the algae (including proteins, lipids, 
carbohydrates, etc.) (Elst 2018). The types and amounts of nutrients provided within a system can enhance 
system efficiency, as can the overexpression of certain types of enzymes, among other factors (Vermaas 2021). 
Numerous factors play into optimizing the long-term operation of a conversion system, and an AI-expedited 
search of existing literature could help identify both algae pretreatment strategies and system nutrients that can 
enhance photosynthetic efficiency. 

Pick Locations and Processes to Maximize Benefits 
Ultimately, AI-supported approaches can help tune system 
performance across numerous potential optimization 
parameters, such as: best locations and algal processes for a 
given system type; ideal environmental and social impacts; 
lowest costs (transportation, energy, capital, operating, etc.); 
optimal usage of low-cost/low-carbon energy, land, and 
water; and, especially, highest CO2 capture rates. Large-scale 
analyses of this sort could also help address challenges in 
measuring, monitoring, and crediting carbon removal. 

“The CO2 solubility and uptake 
efficiency can be enhanced by 
controlling the bubble size, design of 
the photobioreactor, proper selection 
of microalgae strain, and selecting 
appropriate operating conditions, such 
as flow rate, the concentration of CO2, 
and pH.”                                   (Farooq 2022) 
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Implementing AI-based smart controls in a system can enhance long-term performance and efficiency, helping 
ensure that the desired performance metrics are achieved.  

Develop Advanced Algal Systems  

The following sections briefly address advanced, system-wide opportunities for putting AI technologies to work 
to improve algal-based conversion systems. Whereas preceding sections emphasized CO2 delivery and 
optimizing its uptake by the microalgae or cyanobacteria strain, the following discussions build upon that 
emphasis to target system-wide, long-term optimization of cost and performance. 

Obtain Data to Optimize Operations for Site/Market 
System performance can be fine-tuned by selecting operating characteristics (e.g., CO2 gas quality, sunlight 
utilization, algal species, PBR/ORP design, and other parameters) that align with site- and market-specific data. 
Site data (such as energy sources and weather conditions) could support optimal energy-saving decisions, and 
market data (biochemical products in demand by accessible manufacturing facilities or markets) could influence 
the selection of a particular algal species. Incorporating transfer-learning techniques could prove useful to 
iterate on promising system optimizations and ensure that projected annual benefits outweigh any weather-
related or operational setbacks a system is likely to encounter. Using AI to optimize a microalgae system based 
on site-specific weather conditions, for example, has been shown to improve profitability and could be widely 
applicable to these types of systems (Jayaraman 2015).  

Improve Smart Control of Cultivation/Nutrients 
Incorporating smart controls with AI could significantly improve the effectiveness of added nutrients and 
cultivation efficiency in a conversion system. Algae growth rates are directly affected by a system’s pH, 
temperature, substrate, and light availability (Penn State n.d.), so feedback loops that monitor and trigger 
appropriate system responses to real-time conditions can improve algae growth and overall yield. A recent study 
developed a predictive kinetic model for the addition of nutrients (nitrogen and phosphorus), and the 
experimental results demonstrated increased yields of both starches (+270%) and lipids (+74%) (Figueroa-Torres 
2021).  

Predict Decomposition/Deactivation Behaviors 
Finally, as discussed for catalytic conversion, AI coupled with smart sensors and controls can help to monitor and 
ultimately predict decomposition/deactivation behaviors in algae-based systems. Microalgae can be susceptible 
to bacteria, fungus, and parasites. Particularly in flue-gas and open-system applications, these and other 
contaminants could interact with the biomass in a way that diminishes system productivity and CO2 uptake. 
These deactivation effects can have a major, adverse impact on the long-term productivity and effectiveness of 
these systems. AI-based controls can help to identify the causes of such degradation behaviors, the potential 
effects on end-product quality, and the point at which a system will cease to produce effectively.  

 

Mineralization 

FECM’s Carbon Conversion Program supports RD&D into pathways to accelerate and improve carbon 
mineralization—a natural process by which CO2 is bound into rock as a solid carbonate mineral. This process 
occurs when CO2 reacts with alkaline materials (like magnesium or calcium) exposed in crushed rock generated 
by a range of industrial processes such as mining or steelmaking (Sandalow 2021).  



19 

Whereas the previous section focuses on using CO2 to grow microalgae for conversion into organic value-added 
products, this section focuses on reacting CO2 with alkaline materials to create inorganic value-added products. 
CO2 will react with these materials without added energy—a major benefit to these approaches. Furthermore, 
the products of mineralization can be used in building materials like cement, concrete, and paper/plastic fillers, 
which have huge potential markets and offer long-term CO2 storage (FECM 2023a). This section addresses ways 
in which AI technologies can potentially support RD&D efforts to make mineralization systems more efficient. 

Despite the clear benefits, mineralization approaches face numerous challenges: the process tends to occur 
slowly, the best mineral resources for mineralization are not fully understood, the products (e.g., building 
materials) tend to be of relatively low commercial value, and most mineralization efforts to date have 
operated on a small scale (Sandalow 2021).  

FECM’s Carbon Conversion Program supports key RD&D 
efforts to address challenges in mineralization. These 
efforts include lab- and bench-scale testing and 
validation of carbonation rates and other critical factors, 
demonstrating emerging mineralization technologies 
that complement other carbon-capture approaches, and 
field-testing novel mineralization systems (FECM 2022). 
Currently funded CO2 mineralization initiatives through 
NETL’s Carbon Dioxide Conversion Program aim to 
accelerate the speed of mineralization, increase the 
amount of CO2 converted, develop and scale up novel 
pathways or processes, and enhance the commercial end 
products (NETL 2023). Further information about current 
projects can be found on NETL’s program website.3 

Characterize Waste Products 

For CO2 conversion systems using enhanced mineralization reactions, the needed alkaline materials can come 
from many sources, including mining activities; concrete, cement, and fertilizer facilities; and processes 
incorporating coal combustion (Sandalow 2021). AI/ML-based techniques could help clarify the performance of 
these diverse resources to make CO2 mineralization systems more effective at carbon mitigation. 

Improve Datasets to Characterize Waste Materials 
Waste products can be highly heterogenous, varying widely in physical, chemical, and biological characteristics. 
A range of geological surveys could characterize and map the available resources (Sandalow 2021) to overcome 
the challenge this variability could pose to enhanced mineralization processes. Robust datasets would support 
the use of AI to identify the specific property mixes of alkaline materials that optimize conversion. Using AI to 
collect better data on waste materials and their characteristics could also potentially increase the availability of 
suitable resources for these mineralization systems. 

Building such datasets may require significant time and effort—as will learning to characterize waste products 
using emergent AI technologies. Depending on the waste streams and processes, reliably predicting the 
composition of certain waste products may prove difficult. 

3 NETL Carbon Dioxide Conversion Program: https://netl.doe.gov/carbon-management/carbon-conversion 

“With strong and sustained policy 
support from governments around the 
world, carbon mineralization processes 
could remove 1 GtCO2 from the 
atmosphere per year by 2035 and 10 
GtCO2 per year by 2050. More research 
is needed to test this hypothesis and 
define conditions under which carbon 
mineralization could achieve this 
potential.”   

(Sandalow 2021) 

https://netl.doe.gov/carbon-management/carbon-conversion
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Optimize Waste Streams for Efficient Mineralization 
AI technologies could further improve the utilization of identified alkaline waste streams. Smart sensors and 
controls could help optimize the generation and composition of waste products for use in mineralization 
systems, improve collection and sorting, and monitor storage conditions in real time. Given that waste streams 
are frequently not homogeneous and can be part of complex supply chains, AI could potentially maximize 
resource usage while adjusting processes in response to the changing availability and chemical makeup of waste 
products.  

Identify End Uses for Mineralized Products 
Successful mineralization processes will identify value-added end products that can optimally leverage 
nationwide opportunities and also take advantage of local or regional resources. For example, facilities could be 
located and processes fine-tuned to exploit nearby alkaline resources as well as markets for the end products. 
To better assess and optimize these opportunities, AI could be used to conduct a literature review (e.g., studies 
and concepts) of key mineralization properties and potential end uses/markets from existing literature and data 
sources. These efforts could potentially find higher-value product opportunities for mineralization systems or 
identify novel mineralization pathways and opportunities for converting CO2 into value-added materials. AI-
based research efforts incorporating a literature review and key regional parameters could help focus initial 
design efforts and identify the best potential product options to explore for a given site location.  

As an example, mineralization systems currently tend to offer calcium-based end products. This is unsurprising 
given that calcium oxide bonds more readily to CO2 than magnesium oxide, and industrial waste products are 
more likely to contain high amounts of calcium than magnesium. However, significant amounts of magnesium-
based alkaline materials are available from natural minerals and brines, and these might become more widely 
utilized as technologies advance (Woodall 2019). 

Analyses of products and their applications 
should consider the longevity of CO2 storage 
(avoiding those that would readily release the 
CO2 back into the atmosphere). Figure 9 
identifies some of the most common industrial 
uses of calcium- and magnesium-based 
carbonate materials, such as fertilizers, 
refractory metals, pharmaceuticals, and building 
materials. Of these, the construction industry 
currently offers the largest and most promising 
long-term CO2 storage solutions (Woodall 2019). 
To reliably determine how long converted 
carbon remains sequestered by mineralization, 
smart sensors could monitor and compare the 
degradation of concrete and other end 
products.  

Integrate/Optimize Carbon Capture with Mineral Carbonation 

AI/ML-based analysis can further support the integration of mineralization techniques with other carbon 
capture and carbon removal methodologies. Specifically, AI-enhanced tools and smart controls could help 

Figure 9: Typical Uses of Calcium and Magnesium Carbonates 
(© Woodall 2019, Creative Commons Attribution 4.0 International) 
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optimize the integration and operation of these complex systems over time. In cement and concrete production, 
for instance, mineralization techniques could be used in combination with point-source carbon capture and 
other mitigation measures to further reduce the emissions of these processes (Sandalow 2021).  

Optimize Processing for Waste Streams in Real Time 
AI can expedite the processing of various waste streams in real 
time, smartly managing the available alkaline materials while 
optimizing the operating parameters of the mineralization 
process. These smart processing systems might combine AI with a 
multi-physics simulation model to determine ideal operating 
conditions based on the characteristics of the incoming waste 
streams (which may be under partial control) and the desired 
properties of the end products. Smart controls could provide real-time feedback (and apply analyses of historical 
data on material properties/product quality) to optimize system operations for current resources. In a parallel 
concept, AI is already applied to advanced recycling processes to efficiently handle complex waste streams, 
elevate sorting capabilities, reduce contamination, and optimize diverse supply chains (BIS Research 2023). 

 

Cross-Cutting Issues 

Beyond the challenges and opportunities for applying AI specifically to catalytic conversion, biological uptake, 
and mineralization (discussed above), AI/ML-based methodologies hold the potential to improve CO2 conversion 
systems more broadly. This section highlights some of these cross-cutting areas, including optimizing conversion 
locations, developing lifecycle and techno-economic analyses to validate system benefits, optimizing designs to 
maximize affordable CO2 uptake, and integrating CO2 utilization into advanced manufacturing.    

Optimize Locations Based on Geospatial Data 

Successful CO2 conversion systems must be properly matched with the resources available in a given region. This 
synchronization is commonly referred to as the “tri-location challenge,” allowing access to reliable CO2 sources, 
inexpensive renewable electricity, and favorable commercial markets for the end products (FECM 2022). Two 
key applications of AI technologies to establish effective CO2 conversion operations are to (1) set up proper 
location-based criteria for site selection and (2) conduct smart monitoring of critical infrastructure to ensure 
successful long-term operation. 

Set Criteria for Siting/Structuring Future Projects 
Regardless of the specific type(s) of carbon conversion system being considered, AI could assist in identifying the 
best locations for potential projects and in fine-tuning system operations to leverage resources in a particular 
region. Key considerations may include proximity to metropolitan areas with viable markets or ready access to 
favorable transportation networks. For example, defining maximum haul distances, based on factors like 
expected fuel prices or required transportation modes to markets, might help refine economic analyses. 
Similarly important site considerations may include long-term access to CO2 emissions sources or pipelines and 
the costs and carbon intensities of available energy sources. Project planning efforts will benefit from careful 
data management and prioritization of critical factors.  

“AI algorithms can be used to 
analyze and identify different types 
of materials in waste streams, 
enabling automated sorting and 
separation.”    (BIS Research 2023) 
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Ultimately, being able to specify a feasible range of critical parameters for AI optimization can improve the 
efficiency and effectiveness of project identification efforts. While decision makers must remain aware of 
variables that could change significantly over the lifetime of a project, an informed and streamlined screening of 
initial options can expedite planning and avoid lengthy delays associated with the need to evaluate the vastly 
complex and interrelated criteria at many potential sites. 

Proactively Ensure Infrastructure Integrity 
Proactive maintenance can help to ensure the long-term integrity of infrastructure. AI combined with smart 
sensors can monitor the condition of pipelines, wellbores, and other utilities so that proactive repairs or timely 
maintenance activities can minimize disruption to operations. AI control systems that react appropriately to 
input from sensors that monitor diverse conditions (e.g., CO2 pipeline stress) could require significant upfront 
training and will improve with feedback-based learning. 

Assess Life Cycles and Techno-Economics 

Properly quantifying project impacts will help ensure that carbon conversion efforts lead to positive outcomes. 
Lifecycle analysis (LCA), techno-economic analysis (TEA), and other types of studies look at the various energy 
and economic resources input to these systems as well as the resultant benefits, including the amount of CO2 
converted and storage duration. However, significant work is needed to accurately quantify and standardize LCA 
and TEA considerations in the context of CO2 conversion systems—particularly as such analyses help guide 
governmental procurement and regulations to improve the overall effectiveness of these systems (FECM 2022). 

Use LCA/TEA to Predict Performance Ranges of Conversion Technologies to Inform Decisions 
Given the typical complexity of LCA/TEA evaluations when applied to CO2 conversion systems, AI-based methods 
could help gather and summarize the primary data for analysis. More accurate and detailed data might provide 
better initial LCA/TEA estimates for systems in development. In practice, these efforts would likely share 
similarities with the aforementioned AI-assisted literature reviews. 

LCAs and TEAs depend on numerous variables, suggesting that the results may best be regarded as a response 
surface rather a single value to inform decisions. Some of these variables (e.g., catalyst durability) are directly 
related to a specific conversion process, while others (e.g., future fuel costs or the financial competitiveness of 
other carbon management methods) are generally independent of the process under consideration. AI-
enhanced approaches may help to both conduct these complex analyses and optimize project designs based on 
the defined priorities. These studies would likely need to account for hard-to-predict factors like future carbon-
management technologies and the mix of electricity generation (fossil/renewable) sources. 

Optimize Process Design for CDR and Cost 

Regardless of system type, AI methods could be used to simultaneously optimize the carbon uptake and cost-
effectiveness of conversion processes. This approach fundamentally differs from optimizing project designs 
based on cost alone and may involve tuning operations to maximize CO2 abatement while producing end 
products at a price point that markets will accept. This AI-based design optimization could be ongoing—
responding to real-time prices, resources, and other variables. 

Monitor Long-Term Durability of Carbon Removal 
A critical measure of any CO2 conversion system is how long the resulting materials provide effective carbon 
removal, which is tied to product use profiles and durability. Concrete and synthetic aggregates tend to afford 
particularly long-term storage opportunities for CO2, and AI-based smart sensors could help measure and 
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monitor the durability of these and other end products to better quantify CDR benefits. Long-term monitoring 
could further improve how these materials are produced in the first place and how they are combined with 
other materials to maximize the carbon management benefits. 

Apply CO2 in Advanced Manufacturing 

Novel manufacturing techniques could be developed to incorporate captured CO2 into advanced materials that 
offer superior properties. Ideally, large markets would place a high value on such materials, which, in the case of 
stronger and lighter structural materials, might further reduce CO2 emissions during the use of these materials 
(Mission Innovation 2017). AI tools might assist in converting CO2 for use in additive manufacturing (i.e., 3D 
industrial printing) or 3D design to improve performance.  

Explore CO2 Use in Advanced Materials and Alloys 
Carbon-based composite materials like nanotubes and 
nanofibers are currently targeted as potential end 
products of CO2 conversion systems. These products 
offer relatively high commercial value but can be 
difficult to manufacture in large quantities (Kim 2020). 
Computation-based optimization of 3D designs have 
proven highly successful over the years. An early 
example would be the CFD-based simulations that Oak 
Ridge National Laboratory used to improve designs for 
distillation columns (Eldridge 2005). AI tools could 
take design innovation to a new level. 

Current AI-driven technologies can streamline design by requiring fewer experiments and might more effectively 
incorporate CO2 into complex composite materials like nanotubes. CO2 could further be incorporated in additive 
manufacturing technologies and alloys, helping to identify opportunities using non-traditional shapes or 
optimizing the amount of CO2 that can be incorporated into a design to achieve certain performance criteria.  

AI tools can ultimately help to effectively integrate CO2 to optimize materials performance (e.g., nanotubes, 
nanomaterials, and packing in distillation columns) while improving the range and value of potential end 
products. AI-based solutions might also help conversion systems adapt to changing conditions and available 
materials to ensure material quality. As with preceding discussions involving CFD and other physics-based 
simulations, real-world testing and verification will be necessary to properly verify promising results. 

 

  

“Crosscut activities will enable new and 
improved materials, processes, and systems 
across supply chains and product lifecycles. 
Advanced Manufacturing is critical for a 
transformation of the national and global 
energy systems to meet our climate goals, 
and create a competitive, resilient, agile 
manufacturing sector.” 
                 (DOE n.d.) 
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