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Chapter 10
Effects of Noise on Marine Mammals

Christine Erbe, Rebecca Dunlop, and Sarah Dolman

Abstract Marine mammals (whales, dolphins, seals, sea lions, sea cows) use sound 
both actively and passively to communicate and sense their environment, covering 
frequencies from a few hertz to greater than 100  kHz, differing with species. 
Although a few documents on marine mammal sound production and reception date 
back 200 years, concern about the effects of man-made noise on marine mammals 
has only been documented since the 1970s. Underwater noise can interfere with key 
life functions of marine mammals (e.g., foraging, mating, nursing, resting, migrat-
ing) by impairing hearing sensitivity, masking acoustic signals, eliciting behavioral 
responses, or causing physiological stress. Many countries are developing and 
updating guidelines and regulations for underwater noise management in relation to 
marine mammal conservation. In the United States, the Marine Mammal Protection 
Act, enacted in 1972, is increasingly being applied to underwater noise emission. 
Common mitigation methods include (1) time/area closures, (2) the establishment 
of safety zones that are monitored by visual observers or passive acoustics and that 
lead to shut-down or low-power operations if animals enter these zones, (3) noise 
reduction gear like bubble curtains around pile driving, and (4) noise source modi-
fications or operational parameters like soft starts. Mitigation management mostly 
deals with single operations (like a one-month seismic survey). Key questions that 
remain are how noise impacts accumulate over time and multiple exposures, how 
multiple acoustic and nonacoustic stressors interact, and how effects on individuals 
affect a population as a whole.
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10.1  Introduction

There are about 130 species of marine mammals taxonomically grouped into 21 
families (Table 10.1). Cetaceans (whales, dolphins, and porpoises) and sirenians 
(sea cows) are fully aquatic. The marine carnivores (seals, sea lions, and otters), 
however, split their time between land and water. Marine mammals inhabit all of the 
world’s oceans, from the deep offshore waters (with sperm whales [Physeter mac-
rocephalus], elephant seals [Mirounga sp.], and Cuvier’s beaked whales [Ziphius 

Table 10.1 Marine mammal taxonomy

Latin name Common name

  Order Cetacea   Whales, dolphins & porpoises
  Suborder Mysticeti   Baleen whales
  Family Balaenidae   Right and bowhead whales
  Family Neobalaenidae   Pygmy right whale
  Family Balaenopteridae   Rorquals
  Family Eschrichtiidae   Gray whale
  Suborder Odontoceti   Toothed whales
  Family Delphinidae   Oceanic dolphins
  Family Platanistidae   South Asian river dolphins
  Family Iniidae   Amazon river dolphin, boto
  Family Lipotidae   Chinese river dolphin, baiji
  Family Pontoporiidae   Franciscana
  Family Phocoenidae   Porpoises
  Family Monodontidae   Narwhal and beluga
  Family Physeteridae   Sperm whale
  Family Kogiidae   Pygmy and dwarf sperm whales
  Family Ziphiidae   Beaked whales
  Order Sirenia   Sea cows
  Family Trichechidae   Manatees
  Family Dugongidae   Dugongs
  Order Carnivora   Carnivores
  Family Mustelidae   Marine otters
  Family Ursidae   Polar bear
  Suborder Pinnipedia   Seals, sea lions, and walrus
  Family Phocidae   True seals
  Family Otariidae   Eared seals and sea lions
  Family Odobenidae   Walrus
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cavirostris] diving down to 2–3 km; e.g., Schorr et al. 2014) to the shallow coastal 
waters, and a few species, such as river dolphins, are in rivers.

Marine mammals live in a medium through which sound propagates better than 
potential cues or signals of any other sensory modality, such as light. They have 
therefore evolved to use sound both actively and passively in all biologically impor-
tant behaviors (Tyack 2000), including socializing, traveling, hunting, breeding, and 
parental care. Examples of marine mammal sounds are the behavior-specific and 
signature whistles of dolphins (Caldwell and Caldwell 1965; Herzing 1996) and the 
song of humpback whales (Megaptera novaeangliae; Payne and McVay 1971). 
Cultural transmission of sound structure is evident in killer whales (Orcinus orca; 
Ford 1991) who have dialects that can be used to distinguish between populations 
living in the same area. Odontocetes (toothed whales) also emit sound to echolocate 
during navigation and foraging (Au 1993). Examples of passive sound usage include 
listening to acoustic cues from the environment, predators, and prey (e.g., Deecke 
et al. 2002; Gannon et al. 2005).

Knowledge of the auditory capabilities of marine mammals is important to 
understand their acoustic ecology, how they sense their environment, over what 
ranges they remain in acoustic contact, whether they can detect predators and prey, 
and how they receive ambient and man-made noise. Studies examining the hearing 
of marine mammals date back two centuries (e.g., Home 1812). However, it was not 
until the 1970s that underwater sound emitted by human activities in the oceans was 
first recognized to sometimes be in conflict with marine mammals. Payne and Webb 
(1971) concluded that ship noise decreased the communication range of baleen 
whales, a concern still echoing 40 years later (Clark et al. 2009). Impacts docu-
mented in the 1970s also include hauled-out walrus (Odobenus rosmarus) distur-
bance by aircraft associated with Arctic petroleum exploration (Salter 1979) and, 
opportunistically, a beaked whale mass stranding coincident with naval maneuvers 
(van Bree and Kristensen 1974). The Marine Mammal Protection Act (MMPA; 
passed in 1972) and the Endangered Species Act (ESA; passed in 1973) set the legal 
framework for conservation (including marine mammals) in the United States. A 
symposium on the effects of sound on wildlife held in Spain in 1977 included dis-
cussions of the impacts of man-made sound on marine biological systems and 
resulted in a book on the effects of man-made noise on wildlife (Fletcher and Busnel 
1978).

Since then, dedicated research rather than opportunistic observations has grown 
(Williams et al. 2015), leading to the landmark book Marine Mammals and Noise 
(Richardson et al. 1995). In the 1990s, the Heard Island Feasibility Test and the 
Acoustic Thermometry of Ocean Climate (ATOC) experiments caused widespread 
public concern, which resulted in a large-scale marine mammal research program 
(National Research Council 1994, 2000). Much of the research on the sound impacts 
on marine mammals over the past two decades has been driven by “take” authoriza-
tions under the MMPA1 that require baseline and in situ monitoring. In fact, the 
MMPA has increasingly been applied to sound sources so that nearly all “incidental 

1 The MMPA defines “take” as “hunt, harass, capture, or kill.”
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take” authorizations issued under the Act today are at least partly, and in many cases 
primarily, focused on acoustic impacts (Roman et al. 2013). Public concern in the 
United States has culminated in law suits under the MMPA and ESA, specifically 
criticizing the US Navy’s use of active sonar (Zirbel et al. 2011).

Underwater sound from human activities can have a variety of immediate effects 
on marine mammals, including injury, temporary loss of hearing, behavioral 
responses, masking, and stress (Fig.  10.1). Severity of the impacts typically 
decreases with the range from the sound source and depends on the specific scenario 
consisting of the type of sound, the acoustic environment, and the receiving indi-
vidual. At the longest ranges, the sound might barely be audible or discernible above 
the ambient noise. The animal’s hearing abilities and the level of ambient noise 
determine the range of audibility.

In extreme cases, close to the source, injuries such as tissue or organ damage 
(e.g., a permanent loss of hearing called permanent threshold shift [PTS]; see 
Southall et al. 2007) may be found (see Saunders and Dooling, Chap. 4). If hearing 
loss recovers with time, it is termed a temporary threshold shift (TTS). TTS has 
been demonstrated in a number of odontocetes and pinnipeds (walruses, seals, and 
sea lions) in controlled sound exposure experiments (e.g., Kastelein et al. 2013). 
Severe to profound hearing loss has been measured in some wild, stranded odonto-
cetes (Mann et al. 2010), but the cause and whether this was TTS or PTS is unknown. 
Less extreme behavioral responses might be seen both near and far from the source. 
Beluga whales (Delphinapterus leucas), for example, responded to faraway (tens of 

Fig. 10.1 Assuming a source of sound is located on the left side, its received level decreases with 
range. Near the source, a variety of bioacoustic impacts may be possible. Some effects such as 
stress, behavioral responses, or masking of communication may extend to long ranges where the 
sound is just audible. The ranges over which the above effects happen and the order of effects by 
range may depend on the type of sound, its spectral and temporal characteristics, the local sound 
propagation environment, ambient-noise conditions, the characteristics of the auditory system of 
the receiving animal, its current behavioral state, and/or past experience

C. Erbe et al.
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kilometers) icebreakers that were expected to be barely audible (Finley et al. 1990). 
Acoustic masking occurs when noise interferes with the detection of acoustic sig-
nals important to animals. This can also happen at long ranges, such as when the call 
of a faraway conspecific is masked by similarly faint man-made noise. Such 
“extreme” scenarios were modeled for icebreakers and beluga whales based on 
behavioral masked hearing experiments with a captive beluga whale involving 
beluga calls and different types of icebreaker sound at different levels (Erbe and 
Farmer 1998, 2000). Stress is a physiological response and might be a direct result 
of exposure to man-made sounds that are unknown or resemble the sounds of preda-
tors or are an indirect result of exposure when injury or masking cause stress (Wright 
et al. 2007). Therefore, stress can occur at various ranges. The concept of impact 
ranges or zones, as illustrated in Fig. 10.1, applies to the immediate impacts on 
individual animals near an active source, and most evidence of sound impacts on 
marine mammals is related to short-term, individual responses. Figure 10.1 does not 
capture extreme responses like mass strandings (Cox et al. 2006), where whales 
were likely subjected to only moderate received levels not expected to cause physi-
cal damage and yet stranded and died due to perhaps more complex processes.

The National Research Council (2005) defined an effect as “biologically signifi-
cant” if it keeps an animal from growing, surviving, and reproducing, thereby 
potentially affecting the survival of its population. The challenge is to figure out 
how temporary responses accumulate over space, time, and individuals to ultimately 
lead to population-level effects. Behavioral effects might accumulate over many 
years before such impacts are realized. However, in the case of sound-related mass 
strandings, a single instance of behavioral disturbance can affect the local popula-
tion. A framework to develop the progression from immediate, individual impacts 
to population impacts is provided by the population consequences of disturbance 
(PCoD) model, and this chapter is organized along the stages of the PCoD model.

10.2  Underwater Sound

In this chapter, the focus is on waterborne sound. Pinnipeds, polar bears (Ursus 
maritimus), and otters (Lutrinae) spend time both on land and in water and are 
hence subject to sound impacts in both media. Responses to airborne sound are not 
reviewed here. Instead, the reader is referred to the comprehensive review work by 
Richardson et al. (1995).

Understanding the ambient sound conditions in marine mammal habitats is 
important because ambient sound limits the detection of and likely response to man- 
made sound (see Larsen and Radford, Chap. 5). The ocean is naturally noisy. Wind, 
rain, breaking waves, cracking polar ice, and subsea earthquakes and volcanoes all 
contribute to the ambient noise in certain geographic regions. Some of these natural 
sounds propagate over hundreds to thousands of kilometers so that Antarctic ice 
breakup is recorded on hydrophones near Australia (Gavrilov and Li 2007). Wenz 
(1962) summarized the spectral characteristics of typical ambient-noise sources, 

10 Noise and Marine Mammals
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yielding the widely used Wenz curves. Other significant contributors to underwater 
sound are, of course, marine animals, including mammals, fishes, crustaceans, and 
urchins, many of which create biological choruses (Cato 1978). Under conditions 
where many animals call at the same time, they can raise the ambient level in a 
characteristic frequency band for several hours. Typical spectra of such choruses 
along with wind-dependent ambient noise and distant shipping are shown in 
Fig. 10.2.

All marine operations produce underwater sound: shipping, transport, oil and 
gas, defense, tourism, fishing, offshore minerals, offshore wind and water energy, 
and on- and near-shore construction (Richardson et al. 1995; Wyatt 2008). Sound 
produced in air, such as by airplanes and helicopters, transmits into the water at 
incidence angles less than 13° from the vertical. Similarly, sound produced in air on 
ship decks or oil platforms enters the water by radiation through the hull or support 
legs. Figure 10.3 shows smoothed and simplified example source spectra of under-
water noise emitted by human activities. Such source spectra are typically used in 
conjunction with sound propagation models (e.g., Jensen et  al. 2011) to predict 
received levels at some range for the purpose of environmental impact assessment.

The nature of the sound propagation environment plays an important role because 
it changes the spectral and temporal characteristics of a sound as it travels from the 

Fig. 10.2 Typical source spectra of ambient noise: wind, biological choruses, and distant ship-
ping. Distant shipping sound was recorded at five locations: off California in the late 1990s (CA 
90s; Andrew et al. 2002) and early 1960s (CA 60s; Wenz 1969); in the Tasman Sea, Australia; in 
the southeast Indian Ocean; and in Australian deep water remote from shipping lanes. Wind- 
dependent noise is shown at four different wind speeds. The tropical biological choruses vary with 
location, time of day, and season (Cato 1978). Shrimp noise typically only exists in shallow 
(<40 m) water. Based on Cato (2008)

C. Erbe et al.
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source to the receiver (see Larsen and Radford, Chap. 5), in this case, a marine 
mammal. Hence, propagation affects the potential for bioacoustic impact. Overall, 
the broadband received sound level attenuates with range, but the rate of attenuation 
depends on the bathymetry, the hydroacoustic profile of the water column, and the 
geoacoustic parameters of the upper seafloor. The spectral characteristics change 
with range because energy at different frequencies is attenuated at different rates. In 
deep water, energy at low frequencies (<100 Hz) can travel over very long ranges, 
which is why ship noise has the potential to mask the calls of baleen whales over 
many tens of kilometers. In the case of pulsed sound, the duration of the pulse typi-
cally increases with range. Thus, sound from a seismic airgun array might consist of 
100-ms pulses every few seconds and marine mammals close to the source likely 
detect the calls of conspecifics through the quiet gaps in the seismic sound pattern. 
At a 100-km range, however, each pulse might be several seconds long (Guerra 
et al. 2011), forming a continuous (albeit band-limited) sound.

As the waveform of the sound changes during propagation, the various acoustic 
quantities, which might be responsible for different types of effects in different 
animal species, also change. Obviously, source level alone is no indicator for impact. 
The received root-mean-square sound pressure level (SPLrms), the received sound 
exposure level (SEL; weighted or not), and the received peak SPL (SPLpeak) have 
most commonly been investigated as potential indicators for impact (e.g., Southall 
et al. 2007). Other parameters might play a role, e.g., the signal-to-noise ratio, kur-
tosis, duty cycle, and/or pulse rise time. Different acoustic quantities, either alone or 
in combination, are likely linked to different types of effect, and this link might be 
different in different species. Comparing sound sources merely by source level or 
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source spectrum is inappropriate. As such, Fig. 10.3 should not be used to rank the 
likelihood of impact of different types of sound.

10.3  Responses to Sound

10.3.1  Responses to Natural Sound

Marine mammals have evolved in a world that is filled with natural sound. Wind- 
dependent elevation of ambient noise is ubiquitous and overlaps in frequency with 
many marine mammal communication sounds. How do marine mammals cope with 
this?

The changes in human speech in response to elevated ambient noise are collec-
tively known as the Lombard effect, where signalers modify vocal characteristics 
such as level, pitch, and/or rate of signal production in a noisy environment by 
which they may improve signal detection probability at the receiver (Lombard 
1911). Humpback whales were found to increase the source level of their social 
vocalizations by 0.9  dB for every 1-dB increase in wind-elevated ambient noise 
(Dunlop et al. 2014), maintaining about 60-dB signal excess above the ambient- 
noise level in medium wind conditions. There was evidence, however, of an upward 
limit to this response, perhaps due to anatomical constraints. When the ceiling is 
reached, a change in spectral characteristics or call type might be an alternative 
option by which to communicate in noisy conditions. Another study found that 
humpback whales switched communication signal type from primarily vocal sig-
nals to mechanical signals generated at the surface (breaches, slaps) in the same 
spread of ambient-noise levels as in the Lombard study (Dunlop et al. 2010). It is 
unclear whether the use of different signal types changed the message sent or main-
tained the original communication.

Vocalizing conspecifics, such as singing humpback whales, also raise the back-
ground noise in which animals must continue to communicate with one another. 
The “cocktail party effect” (Cherry 1953) is experienced by receivers due to acous-
tic interference from multiple vocalizing conspecifics (akin to the challenge humans 
face when communicating with each other at a noisy party). To some extent, the 
receiver is able to focus on the signaler and filter out the background noise of con-
specific sounds. Most of the research on how animals communicate in noisy social 
aggregations has been carried out in birds and frogs (see Bee and Micheyl 2008 for 
a review; see also Simmons and Narins, Chap. 7). Many marine mammals live in 
large groups too, making a cacophony of calls. How one group member is able to 
communicate successfully with another in among the chatter has not been studied.

Currently, there is no information in the literature on behavioral changes (e.g., in 
diving behavior or movement patterns) or physiological changes (e.g., TTS or 
stress) in response to natural fluctuations in ambient noise. Understanding the 

C. Erbe et al.
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 natural repertoire of responses and their frequency of occurrence might aid in 
assessing the biological significance of responses to man-made noise.

10.3.2  The Population Consequences of Disturbance 
Framework

The biggest challenge in bioacoustic impact assessments and in the management of 
underwater sound is how to progress from short-term observations of individual 
responses to predictions of population-level consequences. The population conse-
quences of acoustic disturbance (PCAD) model (National Research Council 2005) 
was developed as a conceptual framework linking behavioral and some physiologi-
cal responses to man-made sound with biologically significant, population-level 
effects (Fig. 10.4). The PCAD model breaks the causal relationship between indi-
vidual behavior change and population effects into a set of more manageable stages 
connected by transfer functions. The model starts with measurements of sound 
characteristics, such as the spectral characteristics and the duration, and links these 
via transfer function 1 to short-term, individual behavior change, such as a change 
in dive pattern or vocalization rate. A sudden change in diving might affect an ani-
mal’s foraging activity. An onset of avoidance might disrupt resting or nursing. 
Disruption of vocalization might interfere with breeding. Transfer function 2 makes 
these links between behavioral change and the life functions immediately affected. 
If feeding is repeatedly disrupted, an animal might suffer caloric and nutritional 
deficiencies affecting its survival. Interrupted breeding comes at a cost to reproduc-
tion. Transfer function 3 links life functions to vital rates. Transfer function 4 yields 
population effects, such as a reduced population growth rate and changes in popula-
tion structure. Unfortunately, the paucity of data underlying the various stages and 

Fig. 10.4 Population consequences of acoustic disturbance (PCAD) model breaking down the 
link between sound and population-level impact into a set of stages connected by transfer functions 
(F1-F4). Modified from the National Research Council (2005)

10 Noise and Marine Mammals
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transfer functions limits the PCAD model to a conceptual rather than predictive 
model.

The PCAD framework was broadened to include disturbance other than man- 
made noise and to account for the impact of disturbance on physiology in addition 
to behavior (Harwood et al. 2014; New et al. 2014). The result is the PCoD model 
(Fig. 10.5). PCoD begins with a disturbance (either acoustic or not), which results 
in a behavioral or physiological response. In the acute case, these responses imme-
diately affect vital rates (e.g., survival or reproduction). For chronic disturbance, the 
animal’s health is impaired, eventually impacting vital rates. Changes in vital rates 
lead to changes in population dynamics.

The PCoD model has been translated into a formal, mathematical model that can 
be parameterized with data from case studies. The data needed to implement the 
PCoD model for the case of acoustic disturbance include the sound field around the 
source, the sound parameters and their levels that cause behavioral or physiological 
responses (ideally as dose-response curves), the number of animals that are likely 
going to be exposed to these levels, the relationship between physiological impacts 
and vital rates (ideally by age and gender), the relationship between the number of 
behavioral disturbances and vital rates, the population size, and demographic 
parameters. Uncertainty in all of these input parameters can be included in the 
model (Harwood et al. 2014).

10.3.3  Disturbance

Disturbance in the PCoD model can be any interruption of “normal” functioning 
and leads to behavioral or physiological changes in an animal. The disturbance 
might be some form of alteration of the environment such as climate change, artifi-
cial light at nighttime, chemical discharge, the mere presence of an oilrig or vessel, 
or the sound emitted by industrial operations. Within the legal framework of the US 

Fig. 10.5 Population consequences of disturbance (PCoD) model linking disturbance of individu-
als to population-level effects (Harwood et al. 2014)

C. Erbe et al.
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MMPA, disturbance is considered Level B harassment. For the purpose of this chap-
ter, disturbance is deemed acoustic disturbance as a result of underwater sound from 
anthropogenic activities. For brevity, acoustic disturbance to hauled-out pinnipeds 
by airborne sound, such as that from overflying aircraft, is excluded in this 
overview.

10.3.4  Behavioral Change

Behavioral response study (BRS) designs are often followed to assess whether or 
not there is a significant behavioral change in an animal in response to an acoustic 
stimulus. BRSs in marine mammals have focused on five main research areas 
(Deecke 2006): (1) to determine the function of conspecific vocalizations, (2) as a 
method of wildlife management (e.g., using heterospecific sounds to deter animals 
from specific areas), (3) to study predator-prey interactions, (4) to study individual 
and kin recognition, and (5) to determine the response to anthropogenic noise, the 
focus of this chapter.

In the literature, BRSs using an anthropogenic stimulus are sometimes called 
“controlled exposure experiments” (CEEs), although this implies the anthropogenic 
stimulus is given in carefully controlled doses, which may not always be true. The 
experimental design is a “before, during, and after” (BDA) procedure, where the 
behavior of the animals is measured before, during, and after the stimulus is given. 
An appropriate before period provides one type of control. The before behavior is 
compared with the during behavior to look for a significant change. The after period 
allows the assessment of the animals’ behavioral “recovery” and to determine if the 
behavioral change was short term (only in the during phase) or long term (i.e., the 
animals continue to display a change in behavior after the stimulus has ended). The 
during phase can be classified according to the “treatment” given: usually either an 
“active” treatment (where the sound stimulus is presented) or a “control” treatment 
(where no stimulus is given but everything else remains the same). The control 
treatment helps determine other factors that may have contributed to the behavioral 
response (e.g., a response to the tow vessel rather than to the towed airguns, as stud-
ied in the Behavioural Response of Australian Humpback whales to Seismic Surveys 
(BRAHSS) experiment; Dunlop et al. 2015, 2016; Fig. 10.6). Treatments could also 
be sounds from other cetaceans. Sometimes the calls of killer whales, the apex 
predator, are used (e.g., Allen et al. 2014). One can then compare the behavioral 
response to the anthropogenic stimulus with the response to a “biologically mean-
ingful” stimulus.

Although the majority of literature on “marine mammals and man-made sounds” 
reports behavioral responses, carrying out a scientifically robust BRS is not easy, 
resulting in common errors (Campbell and Stanley 1966), which make interpreta-
tion of results and comparison among studies difficult. The experimenter might 
wrongly attribute an observed behavioral change to the acoustic stimulus, when, in 
fact, it was due to some other environmental parameter (internal validity error). A 
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common mistake is that replicates are either spatially or temporally segregated. 
Furthermore, conclusions are commonly generalized (e.g., to other man-made 
sounds, entire populations, or other species) beyond the validity of the experiment 
(external validity error). Exposing animals to more exemplars of the stimulus in 
multiple geographic regions or ecological settings and using more species will over-
come this problem, although this will often require a larger number of experiments 
and will have cost and ethical implications.

Summaries of behavioral responses of marine mammals to man-made noise 
show a large variability in the received levels (differing by many tens of decibels) 
and the severity in the response from minor to severe (Richardson et  al. 1995; 
Southall et al. 2007; Gomez et al. 2016). These differences are partly due to differ-
ent populations, sound sources, contexts, and environments (Ellison et  al. 2012; 
Dunlop et al. 2013). The large within-species variability might be explained by indi-
vidual differences such as prior exposure (habituation versus sensitization), motiva-
tion, age, gender, and health. One would not expect all animals in a population to 

Fig. 10.6 In the Behavioural Response of Australian Humpback whales to Seismic Surveys 
(BRAHSS) experiment, migrating humpback whales were tracked by boat (top left) and from 
shore (top right), yielding tracks (bottom; blue line, boat based; red line, land based of the same 
group) that were compared between noise exposure and control conditions
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respond at the same received level all the time. Rather, the response of a population 
can be represented as a dose-response curve (Fig. 10.7), showing the range in sound 
levels over which a certain percentage might react (e.g., Miller et al. 2014). The 
usefulness of the received level as a predictor for the behavioral response remains 
questionable (Gomez et al. 2016), and the criteria to determine whether or not an 
animal responds can be difficult to define. Movement and avoidance metrics (e.g., a 
deviation in course, speed, or dive profile), or a change in behavioral state (e.g., 
from feeding to traveling) might be too broad scale. Animals may be exhibiting 
more subtle reactions like changes in vocal signals or fine-scale movement. The use 
of a multisensor digital acoustic recording tag (DTAG; Johnson and Tyack 2003), 
which, along with the acoustic data, simultaneously records orientation and move-
ment of the whales, has advanced these studies, finding changes in fluke rate, dura-
tion and rate of descent and ascent (DeRuiter et al. 2013), and changes in acoustic 
behavior (Miller et al. 2009).

When exposed to naval low-frequency sonar, humpback whales increased the 
length of song (Miller et al. 2000; Fristrup et al. 2003), beaked whales ceased echo-
location (Tyack et  al. 2011; DeRuiter et  al. 2013), and long-finned pilot whales 
(Globicephala melas) increased their call rate (Rendell and Gordon 1999). In the 
presence of boat noise, killer whales increased their call duration (Foote et al. 2004) 
and level (Holt et al. 2009); beluga whales increased their call level, reduced their 
call rate, and shifted the mean frequency up (Lesage et al. 1998; Scheifele et al. 
2005); bottlenose dolphins (Tursiops truncatus) increased their whistle rate 
(Buckstaff 2004); and fin whales (Balaenoptera physalus) decreased their call dura-
tion and bandwidth (Castellote et al. 2012). These acoustic responses could be due 

received SPL [dB re 1µPa]

130 140 150 160 170 180 190 200

%
 o

f a
 p

op
ul

at
io

n 
re

sp
on

di
ng

0

0.2

0.4

0.6

0.8

1
Dose-Response Curve

odontocetes & pinnipeds
mysticetes

Fig. 10.7 Dose-response relationship used by the US Navy to estimate the percentage of a popula-
tion of marine mammals responding to naval sonar during the Atlantic Fleet active sonar training 
exercises and the Gulf of Alaska Navy training activities (US Department of the Navy 2008, 2009). 
SPL sound pressure level

10 Noise and Marine Mammals



290

to the boat disturbance per se, changes in context due to the presence of the boat, 
changes in social behavior, a response to experienced masking, or any combination 
of these.

10.3.5  Physiological Change

 Masking

Masking is the interference of ambient noise with the detection or recognition of 
signals (e.g., whale communication sounds or dolphin echolocation clicks). The 
frequencies emitted by various groupings of marine mammals are sketched in 
Fig. 10.8, covering a range from 10 Hz to 200 kHz. Underwater sound of abiotic, 
biotic, or anthropogenic origin covers a similar range (see Figs.  10.2 and 10.3), 
likely making masking a common and ubiquitous phenomenon.

Various parameters relating to an animal’s hearing capabilities play a role in 
masking (Erbe et al. 2016a). Any sound within the hearing range of an animal can 
be masked. The audiograms (i.e., hearing thresholds as a function of frequency) of 
marine mammals are summarized by Erbe et al. (2016a). The minimum thresholds 
recorded from individuals belonging to several species grouped by family are shown 
in Fig. 10.9. No audiogram exists for any of the mysticete species, sperm whales, 
and polar bears under water.

Masking depends on the spectral characteristics of both signal and noise at the 
receiver (see Dooling and Leek, Chap. 2). At a low signal-to-noise ratio, the signal 
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Fig. 10.8 Rough bandwidths of sound emitted by several marine mammal families. Modified 
from Erbe (2012)
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might merely be detectable but not recognizable. A higher signal-to-noise ratio is 
needed for the animal to recognize or discriminate the signal, as known from studies 
with birds (Dooling et al. 2009; see also Halfwerk, Lohr, and Slabbekoorn, Chap. 
8). The critical ratio (CR) is defined as the difference in the signal (tone) intensity 
level and the power spectrum density level of masking (white) noise at the detection 
threshold. CRs have been measured in a dozen marine mammal species (Erbe et al. 
2016a). The CR has proven to be a strong predictor for masking in birds (Dooling 
and Blumenrath 2014) when the noise is continuous and broadband and the signal 
has strong tonal character. The CR was also a good predictor for the masking of a 
tonal beluga call in broadband ship noise (Erbe and Farmer 1998; Erbe 2008).

In realistic listening scenarios, signal and noise have complex spectral and tem-
poral structures and likely arrive at the listener from different directions. If the 
ambient noise is amplitude modulated across a wide band of frequencies, the animal 
can use information from outside the band of the signal to determine when the sig-
nal occurs, simply as a difference in correlation between bands. This is called a 
comodulation masking release and has been demonstrated with beluga whales, bot-
tlenose dolphins, California sea lions (Zalophus californianus), and harbor seals 
(e.g., Branstetter and Finneran 2008; Erbe 2008). If the ambient noise has quieter 
gaps (as in the case of strongly amplitude-modulated ship noise and natural ice- 
cracking noise), and if the signal is long or repetitive, the animal might detect the 
signal from the pieces that emerge through the intermittent noise pattern by gap 
listening, as shown in beluga whales (Erbe 2008). If the signal and the noise arrive 
from different directions, a spatial release from masking occurs based on directional 
hearing capabilities, as measured in bottlenose dolphins, California sea lions, and 
harbor seals (e.g., Turnbull 1994; Holt and Schusterman 2007). The above  processes 
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occur within the listener’s auditory system. There are additional antimasking strate-
gies that the caller can employ (Lombard effect). For most marine mammal vocal-
izations, their biological function is unknown, and hence an assessment of the 
significance of masking to vital rates is difficult.

 Hearing Impairment

Although the auditory pathways to the inner ear (the cochlea) differ among marine 
mammal species (including the ear canal and middle ear in pinnipeds and the acous-
tic channel of the lower jaw in odontocetes; Norris and Harvey 1974), the neuro-
physiological processes are the same. As the pressure waves move through the 
cochlea, they cause cilia on the top of specialized sensory cells (called sensory hair 
cells) to bend, which causes release of a neurotransmitter that stimulates innervating 
eighth nerve neurons to transport the signal to the brain.

A PTS occurs when the neurophysiological process is permanently damaged 
(see Saunders and Dooling, Chap. 4). One of the most common ways is damage to 
the sensory hair cells from overexposure to sound, causing hair cell death and/or 
damage to the innervating neurons of the eighth nerve. A PTS is measured as a per-
manent increase in the hearing threshold (audiogram) at various frequencies. A TTS 
occurs when there is temporary impairment of the sensory hair cells; in other words, 
the animal’s hearing threshold recovers to the normal audiogram after acoustic 
exposure (see Saunders and Dooling, Chap. 4). However, recent studies have shown 
that even a TTS may not be completely recoverable in that the nerves that transport 
the electrical signal to the brain may be irreversibly damaged, a damage that does 
not affect the audiogram but affects hearing in noisy conditions (Kujawa and 
Liberman 2009; Liberman 2016).

There are no data on the sound characteristics that could cause PTS in any marine 
mammal because, for ethical reasons, PTS has not been intentionally induced in 
controlled experiments. Rather, small amounts of TTS have been induced with pure 
tones, sonar signals, band-limited white noise, or airguns in beluga whales, bottle-
nose dolphins, harbor porpoises (Phocoena phocoena), Yangtze finless porpoises 
(Neophocaena phocaenoides asiaeorientalis), California sea lions, harbor seals, 
and elephant seals. The level of TTS depends on a number of factors that may 
include sound level, pressure rise time, duration, duty cycle, and spectral character-
istics. Maximum TTS is typically seen at frequencies higher than the stimulus fre-
quency (Kastak et al. 2008), and this difference was shown to increase with the 
sound level (Kastelein et al. 2014a). The relationship between exposure level and 
frequency agrees with equal loudness contours (Finneran and Schlundt 2013). 
Pinnipeds seem equally susceptible to airborne and underwater sound if exposure 
levels are given in terms of sensation levels (relative to the audiogram; Kastak et al. 
2006). Exposures with equal cumulative SELs but different interpulse intervals pro-
duced different amounts of TTS (Kastelein et al. 2014b). TTS recovery has fol-
lowed a −10log (minute) slope in some individuals (Kastak et al. 2006).
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There is interesting evidence of a conditioned hearing sensitivity reduction in 
false killer whales (Pseudorca crassidens) and bottlenose dolphins whereby a brief 
and loud “warning” sound reduced the sensitivity to a subsequent sound (Nachtigall 
and Supin 2013, 2014). This mechanism might reduce the potential for hearing 
damage in certain circumstances.

 Stress

The stress response in animals involves two different but interconnected systems 
(Hall 2011). The first is the sympathetic nervous system response in which the 
release of epinephrine and norepinephrine triggers fast physiological changes. 
These include an increase in heart rate, blood pressure, and gas exchange as well as 
a redistribution of blood to the brain and muscles, away from the stomach and other 
organs that are nonessential for fight or flight responses. These short-term stress 
responses act as adaptive countermeasures to potentially life-threatening events and 
can co-occur with a range of fight-or-flight behavioral responses. The second type 
of stress response, the hypothalamic-pituitary-adrenal (HPA) axis, is a chain of 
endocrine reactions, with the goal of restoring homeostasis. The whole HPA process 
usually begins between 3 and 5 min after the stress event and can last up to several 
hours after the event has ceased.

Studies with land and marine vertebrates have shown that acute stress responses 
can lead to a number of detrimental effects including poor body condition, poor 
immune function and disease resistance, decreased reproductive rates, and, in some 
animals, increased mortality rates (Romero and Butler 2007). Chronic (i.e., lasting 
days or longer) stress responses may become maladaptive if there is a prolonged 
activation of the stress response. For example, if animals are in a constant state of 
stress, particular behaviors such as the ability to find food, escape from predators, 
and socialize with conspecifics may be hindered (reviewed by Chrousos and Gold 
1992).

Anthropogenic sources of underwater sound have the potential to cause a stress 
response in marine mammals. Cetaceans are subject to physiological challenges 
such as those associated with deep diving, prolonged fasting, thermoregulation, and 
osmoregulation. These processes are under endocrine control, and the breakdown of 
such systems may dramatically impact on the survival of an individual, especially 
one that lives near mammalian physiological limits (Wright et al. 2011). Acute or 
chronic stress in animals is quite difficult to measure given that there is potential 
stress associated with sampling (e.g., Ortiz and Worthy 2000; Lanyon et al. 2012). 
Normal diurnal (e.g., Suzuki et al. 2003) and seasonal fluctuations (e.g., Mashburn 
and Atkinson 2004; Myers et  al. 2010) should also be taken into account. An 
increase in cortisol in the blood is commonly used as an indicator of stress. One of 
the few available studies on the physiological response to a sound stimulus involved 
a captive beluga whale and a captive bottlenose dolphin. Both were blood sampled 
before and after exposure to various levels of a seismic water gun as well as a pure 
tone resembling a sonar ping (Romano et al. 2004). Several physiological  parameters 
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were measured, indicating an increase in stress after exposure to high-level sounds. 
However, this type of study would be extremely difficult to carry out in the wild. 
Measuring levels of glucocorticoids from fecal (Rolland et al. 2012), blubber (Trana 
et al. 2015), or blow (Hogg et al. 2009) samples may be more practicable in wild 
animals; however, such studies carry other risks and uncertainties.

 Other Physiological Effects

Sound exposure may also induce other physiological effects that are more subtle or 
hard to measure unless they are extensive enough to materialize in the form of 
increased levels of stress hormones or reduced fitness over long periods of time; it 
is possible that marine mammals may, in at least some cases, suffer from sound- 
induced neurological disorders that go undetected (Tougaard et al. 2015).

Beaked whales may be particularly susceptible to other physiological impacts. 
After a review of recent findings (e.g., Jepson et al. 2003; Fernandez et al. 2005) and 
of the anatomy and physiology of beaked whales (Rommel et al. 2006), Cox et al. 
(2006) suggested that rapid surfacing on sound exposure might cause gas-bubble 
disease in deep-diving beaked whales and explain the morbidity and mortality seen 
after sonar trials. Tyack et al. (2006) calculated that decompression problems are 
more likely to result from an abnormal behavioral response at the surface, such as 
repeated shallow dives, and ruled out a direct acoustic effect that triggers bubble 
growth. The mechanism(s) by which intense sound may lead to stranding and some-
times the death of beaked whales remains undetermined.

10.3.6  Changes in Health, Vital Rates, and Population 
Dynamics

Relating a change in physiology and/or behavior to a change in the animal’s health 
(if chronic) or vital rates (if acute) is difficult and requires targeted work on the 
biological significance of the change. A short-term change in behavior or physiol-
ogy may not necessarily be biologically significant, and therefore, it cannot be 
assumed that every change in behavior in response to an acoustic disturbance will 
lead to a change in an animal’s health or vital rates. However, it cannot be assumed 
that because an animal or population shows little or no response, they are not vul-
nerable (Beale and Monaghan 2004). Even prolonged changes in behavior might 
not have long-term population impacts. Prolonged seismic surveys did not lead to 
permanent or broad-scale displacement of harbor porpoises into a suboptimal habi-
tat (Thompson et al. 2013). However, steady increases in ambient shipping noise 
might have led to permanent changes in the vocalization parameters of right whales 
(Parks et al. 2007). The population dynamics of bottlenose dolphins were modeled 
and found to be unaffected by large increases in disturbance from vessels (New 
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et al. 2013). Gray whales (Eschrichtius robustus) and killer whales returned after 
multiyear abandonment of their habitat due to anthropogenic disturbance (Bryant 
et al. 1984; Morton and Symonds 2002). Therefore, a species may be capable of 
short- and long-term modifications at the population level in response to changes in 
background noise conditions. Such long-term studies show that marine mammals 
have the ability to cope, to some extent, with changes in their acoustic environment. 
However, the question remains as to whether or not there is an upper limit to these 
changes as well as whether or not these changes have an associated cost.

It is easy to conceive different pathways from disturbance to population conse-
quences through the PCoD model. Underwater sound might mask the song of 
whales, impacting mating success and ultimately population survival. Loud sound 
might cause TTS, putting animals at temporarily increased risk of ship strike or 
predation because they cannot detect the threat. Although these pathways are con-
ceptually simple, determining the biological significance of the initial disturbance 
and quantifying the various transfer functions are extremely difficult.

The most tangible approach to populating the PCoD model is a bioenergetics 
pathway. The idea is that underwater sound disrupts foraging, leading to reduced 
energy intake and perhaps additional energy expenditure in avoidance, impacting 
maternal fitness and resulting in reduced birth rate and pup health, potentially lead-
ing to pup or adult death (Costa 2012). To fully parameterize the PCoD model, years 
of baseline data on foraging behavior, general health, and vital rates of individuals 
within that population as well as background information on the demographics and 
dynamics of the population are needed. Perhaps the only species for which a full 
PCoD model can be established at this stage is the elephant seal, for which good 
data on at-sea movement patterns, foraging behavior, reproductive biology, and 
demography are available, and the link between maternal mass and pup mass and 
survival is understood. In addition, this species is an ideal PCAD/PCoD candidate 
because all vital behaviors happen on land, with only foraging occurring at sea and 
hence being subject to disturbance by underwater sound (Costa et al. 2016).

Another data-rich species is the bottlenose dolphin, where some links between 
an acoustic stimulus and behavioral change, between health and vital rates, and 
between vital rates and population dynamics have been made (for a review, see New 
et al. 2013). The lack of data to parameterize the transfer functions for other species 
leads to the development of models that are based on expert opinion and simulated 
data. An agent-based model gives each “agent” (animal) various behavioral and/or 
physiological rules (including movement and dive parameters) based on a combina-
tion of observations and expert opinion. Simulations on how the agents respond to 
a sound stimulus are then carried out to assess the potential for impacts on the popu-
lation (e.g., Nabe-Nielsen et al. 2014).
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10.4  Mitigation

Reducing SELs is the most effective available means of reducing actual and poten-
tial impacts on both individuals and populations of marine mammals. Mechanisms 
to achieve this include reducing sound levels at the source, reducing sound propaga-
tion, or avoiding noisy activities at times and in places where sensitive species are 
present.

Figure 10.10 illustrates mitigation methods that involve the source (e.g., using 
the lowest practical power for all operations, vibratory pile driving, or alternative 
foundations like pile screwing instead of impact pile driving), additional sound level 
reduction gear installed near the source (e.g., bubble curtains or cofferdams around 
piles being driven), location/timing of operations (e.g., time/area closures), opera-
tional parameters (e.g., reducing ship speed and hence cavitation noise; soft start 
during seismic surveying and pile driving intended as a warning to marine mam-
mals; this also includes acoustic deterrent devices), and mitigation procedures (e.g., 
the observation of a safety zone and reducing power or shutting down if animals 

Fig. 10.10 Mitigation at the source (e.g., by using alternative, quieter technology or by modifying 
operational parameters), immediately near the source (e.g., by installing noise absorption gear), 
around the source (e.g., by using marine mammal observers [MMOs] or passive acoustic monitor-
ing [PAM] to detect animals within certain safety zones), or over larger areas and times of year by 
establishing time/area closures (e.g., in marine protected areas [MPA])
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enter the zone). Mitigation options for differing operations including seismic airgun 
surveys, naval sonar, pile driving, shipping, and explosions have been reviewed and 
their effectiveness and practicality have been discussed (Wright 2014). There are 
still many remaining questions regarding the effectiveness of the various mitigation 
methods.

The most commonly applied mitigation is the use of safety zones. During opera-
tions, these zones are monitored for animal presence, and if animals are sighted, 
often the operation switches to low power or shuts down to reduce injury to indi-
viduals. Safety zones are mostly monitored by marine mammal observers (MMOs) 
using binoculars. This is only practical in daylight and during good visibility. 
Sometimes passive acoustic monitoring is used, but it only works for vocalizing 
animals (Erbe 2013). Infrared, sonar, and other tools have been used to improve 
monitoring in certain circumstances. Common criticisms are that the size of safety 
zones is often determined by practicality and not (just) impact and the risk of not 
detecting animals. Wider impacts might happen at longer ranges and lower levels. 
Furthermore, these mitigation methods consider a single operation. Animals, how-
ever, are potentially exposed to multiple operations over considerable space and 
time. It is therefore difficult to assess, manage, and mitigate for these long-term, 
cumulative, and cross-border effects. A combination of wider marine spatial plan-
ning and effective mitigation measures around the source as well as collaboration 
among stakeholders and consistency in mitigation and regulation across jurisdic-
tions and political borders is needed to achieve adequate management.

10.5  Regulation

Although research on underwater sound impacts on marine mammals has grown 
steadily over recent decades, there continue to be pressing data needs for conserva-
tion management. Furthermore, there is a significant delay in science transfer, 
meaning that guidance and policy lag behind the current state of scientific 
knowledge.

The existing legal mechanisms and guidance available to managers for reducing 
the impacts of individual sound sources have been reviewed (e.g., Weir and Dolman 
2007; Dolman et al. 2009). Details of the limitations in existing management and 
mitigation, including their effectiveness, have been summarized for various juris-
dictions (Parsons et al. 2009; Herschel et al. 2014).

The Joint Nature Conservation Committee (JNCC) first produced seismic guide-
lines in 1995. Thresholds and guidance were replicated, to various degrees, by 
numerous countries around the world. Guidance for a wider range of sound sources, 
including pile driving and explosives use, has since been developed (Joint Nature 
Conservation Committee 2010a, b). Currently, shipping remains unregulated with 
regard to sound pollution globally, but the International Maritime Organization 
(IMO) has issued voluntary guidelines for quieting underwater radiated sound from 
commercial ships (International Maritime Organization 2012). The “state of the art” 
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in mitigation and monitoring has been described for seismic surveys (Nowacek 
et al. 2013).

The United States set the first thresholds for levels of sound beyond which marine 
mammals should not be exposed to prevent injury and disturbance under the US 
MMPA. The MMPA regulates Level A and B harassment (i.e., injury and distur-
bance respectively). Specifically, the 1994 amendments defined Level A harassment 
as “any act of pursuit, torment or annoyance which has the potential to injure a 
marine mammal or marine mammal stock in the wild” and Level B harassment as 
“any act of pursuit, torment, or annoyance which has the potential to disturb a 
marine mammal or marine mammal stock in the wild by causing disruption of 
behavioral patterns including, but not limited to, migration, breathing, nursing, 
breeding, feeding, or sheltering.”

The United States recently published an Ocean Noise Strategy (Gedamke et al. 
2016) and a technical guidance providing thresholds for the onset of TTS and PTS 
(National Marine Fisheries Service 2016), which involved a complex review pro-
cess and has taken a decade to complete. Thresholds for the onset of observable 
behavioral impacts have been slower, largely due to considerable variability and 
lack of supporting field data, although a requirement for criteria has been identified 
and a matrix framework that incorporates contextual factors by categorizing spe-
cies, activities, and geographic areas to develop a series of step functions based on 
available literature documenting behavioral links was suggested (Fitch et al. 2011). 
This expert panel also stated that injury and behavioral harassment criteria neglect 
physiological stress, masking, and other factors (Fitch et al. 2011). The auditory 
impact criteria are now under review pursuant to Trump’s 2017 Executive Order 
(13795) entitled “America First Offshore Energy Strategy.”

Although the number and scale of field studies on underwater sound impacts 
have increased dramatically, policy is still based on studies with a few individuals 
of a few species, and management mostly addresses one event at a time. Mitigating 
immediate impacts on individuals is important, as is monitoring for long-term 
effects. Detecting any declines in populations, especially cryptic ones such as 
beaked whales, will require a large increase in monitoring effort and collaboration 
among countries and jurisdictions.

Conservation management is completely lacking throughout large parts of the 
world. Sound regulation in Antarctic and Arctic waters continues to be managed by 
individual nations and varies accordingly (Scott and Dolman 2006). Sound-related 
resolutions and statements of concern issued by various international bodies, such 
as the Convention on Migratory Species (CMS), have been reviewed elsewhere 
(Dolman et al. 2011; Simmonds et al. 2014).

The European Union (EU) first formally enshrined underwater sound in law for 
the determination of good environmental status (GES) under the Marine Strategy 
Framework Directive (2008/56/EC; Dekeling et  al. 2016). Member states are 
required to monitor and may need to limit the amount of anthropogenic noise in 
European waters (van der Graaf et al. 2012). Two sound-related indicators are being 
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defined under the Directive: one for intense sounds of short duration such as sonar, 
seismic surveys, and pile driving (Indicator 11.1.1) and one for low-frequency 
ambient noise associated primarily with shipping. No thresholds have been set and 
no impact indicator exists currently. Dekeling et al. (2013) outline monitoring guid-
ance with respect to these MSFD indicators, including establishing registers of most 
intense sound sources and monitoring programs for ambient noise.

Fortunately, there seems to be a gradual shift from management that focuses on 
near-field source mitigation to prevent injury to wider, more holistic management 
that begins early in the planning process and is based on an effective reduction of a 
wider range of possible impacts. Improved early and transparent planning will help 
reduce the overlap between marine mammals and human activities. In addition to 
wide, often national-level spatial measures, habitat-based solutions such as marine 
protected areas can provide an effective method of reducing impacts in known areas 
of importance during sensitive periods (Dolman et  al. 2009; Hoyt 2011). More 
holistic, habitat-based, multisectoral management also allows that cumulative 
stressors (acoustic and nonacoustic, e.g., bycatch, prey depletion, and contami-
nants) from different human activities be addressed. Regulators face the consider-
able challenge of managing these cumulative and interacting impacts with little 
scientific guidance.

A number of new tools are being proposed and developed to help assess the 
overall impact of multiple threat exposures. The United States has developed a 
product called CetSound (http://cetsound.noaa.gov/) to aid in the assessment and 
management of cumulative impacts. CetSound provides best available distribution 
and density maps for every cetacean species and maps of additional, biologically 
important areas for small resident populations and migratory species across the 
entire US territorial sea and exclusive economic zone. Through the CetMap process, 
the National Marine Fisheries Service is mapping sound levels from major chronic 
and intermittent sources across entire US waters.

In a pivotal case, the mass stranding of Cuvier’s beaked whales was linked to 
naval sonar operations in the Bahamas. A prominent lawsuit followed in 2008, 
when a Los Angeles federal court ruled in favor of the defendant (Natural 
Resources Defense Council) that the US Navy should adopt specific safety mea-
sures during active sonar use to protect marine mammals (Zirbel et al. 2011). The 
mitigation measures included a ban on the use of sonar within 12 nautical miles 
of the California coast, shutdown when marine mammals entered within 2200 
yards of the source, and power down during surface ducting conditions. The US 
Navy appealed, and the case ended up in the Supreme Court, where two of the six 
mitigation measures were overturned (Parsons et al. 2008). In September 2015, a 
US federal court settled a case that included, for the first time, spatial-temporal 
restrictions during active sonar and explosive use off Hawaii and California (Case 
No. 1:13-CV-00684-SOM-RLP).
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10.6  Summary and Conclusions

Research is active on all aspects of marine mammal bioacoustics and sound impacts, 
including hearing and sound perception, sound production and call repertoires, 
behavioral responses to sound, masking, TTS, and stress. Studies are increasing in 
complexity, becoming multivariate, addressing complex questions in acoustic ecol-
ogy, and considering cumulative exposures, potentially long-term impacts, and 
population consequences. As the complexity of studies grows, it is essential that 
researchers with diverse backgrounds collaborate. Studying marine mammals can 
be difficult, time consuming, and expensive, in particular in the wild. As a result, the 
sample size is often small, and variability and uncertainty are poorly understood. 
Pooling data from multiple studies is nearly impossible because of differences in 
measurement and analysis methodology, and reporting. Having agreed guidelines 
for best practice or standards would be invaluable but require dedicated effort and 
time to develop (Erbe et al. 2016b).

In behavioral-response experiments in the field, the experimental condition typi-
cally exposes animals to sound from an anthropogenic source, and in the control 
condition, animals are observed with the source present but off. The baseline study 
should observe the same animals in the absence of the source and its sound, assumed 
quiet. However, in the field, the baseline is hardly ever quiet. In many regions on 
Earth, the baseline and the control include ambient anthropogenic and nonanthropo-
genic noise. So really, these projects study the effect of additional anthropogenic 
noise to an already noisy ocean. How can one work out the “additional response” to 
the “additional noise”? This question was considered within the framework of the 
International Quiet Ocean Experiment (Boyd et al. 2011), which also included an 
interesting thought experiment: What if one could treat animals with silence? What 
if one could temporarily switch off all sound in a restricted habitat? What behavioral 
and other responses would be observed?

In order to “judge” animal responses to anthropogenic noise, it would be sensible 
to examine their responses to natural sounds (e.g., from wind or biological cho-
ruses). Such studies could put observed behaviors into “perspective.” It is surprising 
how little attention this research question has received. Another important field of 
research is the effectiveness of common as well as novel mitigation methods.

The big questions remain. What are the population consequences of acoustic 
disturbance? How do impacts accumulate over multiple exposures as well as with 
acoustic and nonacoustic stressors? The PCoD model provides a framework within 
which these questions can begin to be addressed. A combination of long-term sur-
veillance and well-replicated and controlled experiments, including behavioral- 
response studies, is needed to assess population-level effects with any confidence 
(Nowacek et al. 2007). Implementing solutions will require innovative approaches.

As legislation and public profile have become more focused on marine sound 
issues in recent years, our understanding of the range of potential impacts has 
advanced, monitoring technologies have become more sophisticated, mitigation 
methods have been developed, and research funding has increased. Although the 
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translation of science into policy is slow and somewhat convoluted, all of these 
advances have directed the research focus, influenced policy, and, as a result, have 
improved our knowledge and management of marine sound pollution in marine 
mammal habitats.
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