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Decarbonization, Carbon

. . - . . The largest incremental contributors to industrial emissions in

Waste is a major contri butc_)r t-O industrial 2010-2019 were industrial processes at 40%, then indirect emissions

greenhouse gas (GHG) emissions (25%), and only then direct combustion (21%), followed by waste

(14%; Figure 11.4). Therefore, to stop emission growth and to switch

to a zero-carbon pathway more mitigation efforts should be focused

(a) Industrial emissions by source (left scale) and emissions structure (right scale). Comb — indicates direct emissions from fuel onindustrial processes, PdeUCt use and waste decarbonisation,along

combustion. IPPU — indicates emissions from industrial processes and product use. Indirect emissions from electricity and heat generation  wyith the transition to low-carbon electrification (Hertwich et al. 2020).
are shown on the top. Shares on the right are shown for direct emissions
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Greenhouse gas emissions from wastewater sector is unique, important and need better

understanding
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US Water Alliance, 2022

Global Water Intelligence, 2022
Wang et al., Scientific Data, 2022
U.S.EPA, 2023

In 2021, EPA estimated that in the United State

- The treatment of wastewater emitted 42.0 MMT CO, Eq.

- Cement production was responsible for emitting ~41.3 million MtCO,e.
- Emissions from iron and steel production and metallurgical coke
production were 41.7 MMT CO, Eq.
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Domestic wastewater treatment as an important urban source of CH, and N,O
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Revised from Brower, Lang & Willis, WEF Fact Sheet, 2021

A single national-level emission factor oversimplifies the estimated emissions

» The top 1% of treatment plants in the U.S. treats 45% of the wastewater
» The top 50% of the plants treats over 98% of the wastewater
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High discrepancies between estimated and actual CH, or N,O emissions

* The most recent EPA inventory highlighted wastewater treatment as 2" largest anthropogenic N,O source after
agriculture.

* Waste sector is also the 3™ largest CH, source in the U.S, behind agriculture and energy, emitting equivalent of
624.2 MMT CO2 per year.

* The new IPCC 2019 N,O emission factor (1.6% influent TN emitted as N,O-N) is orders of magnitude higher than
its 2006 (0.032% influent TN emitted as N,0-N), which tripled the emission estimates of WRRFs N,O emissions

* However, the current inventories are based on very limited literature and studies and doesn’t represent the
diverse emission scenarios (7 studies for CH,, and 31 studies for N,0).
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Not every utility is created equal

Emissions from Treatment Plants in New York City
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Not every utility is created equal

Emissions from Treatment Plants in Toronto
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Rather than relying on a national EF, utilities can conduct their own measurements
- Mobile Lab with GHG Sensors for Facility-integrated Measurements

* Sample 10+ facilities in one day
* Can be operated by one person
* No on-site access is required

* Inverse Gaussian Plume methods for

integration .
Prof. Mark Zondlo, Princeton

Frequency (Hz) |Precision |
I LICOR L1 7700 Ne:NERIMY) 10 6 ppbv @ 10 Hz
NH; (9.06 pm) 10 0.7 ppbv @ 10 Hz

O VLo R N,O (4.54 pm) 10 0.2 ppbv @ 10 Hz
CO (4.54 pm) 10 8.2 ppbv @ 1 Hz

Arduino GPS Location 10 3 meters

Airmar WX200 Temperature 1 1.1°C
‘ Barometric Pressure 1 1 hPa
Wind speed 1 0.5ms!+10%
Wind direction 1 5°

11
1Ta0 at el. 2015; 2Miller et al. 2015; 3Golston et al. 2020
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* Blue: N,O
* Empirically determined to be from
aeration tanks

* Max: 360 ppb (background is 338 ppb)
* Red: CH,

* Main source: digesters

* Max: 3.6 ppm (background is 2.1ppm)
* Green: NH;

* Primarily from lagoons/compost

* Max: 411 ppb (background is 9 ppb)

COURORET,

Pubracsorgrest

Underestimation of Sector-Wide Methane Emissions from United
States Wastewater Treatment

Daniel P. Moore, Nathan P. Li, Lars P. Wendt, Sierra R. Castafieda, Mark M. Falinski, Jun-Jie Zhu,
Cuihong Song, Zhiyong Jason Ren, and Mark A. Zondlo*

Cite This: Environ. Sci. Technol. 2023, 57, 40824090 I:I Read Online
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Measured 63 plants with 95 observational periods:

Ratio of measured CH,4 emissions

to IPCC-based estimates

Results show CH, emissions are 1.9 times (95% Cl: 1.5-2.4) greater than current EPA inventory

average flow rate (MGD)
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Leveraging big data for comprehensive analyses of wastewater methane emission
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? Factors influencing CH, emissions
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Treatment Systems

Cite This: Environ. Sci. Technol. 2023, 57, 2248-2261

Read Online

Critical Review

Methane Emissions from Municipal Wastewater Collection and

Cuihong Song, Jun-Jie Zhu, John L. Willis, Daniel P. Moore, Mark A. Zondlo, and Zhiyong Jason Ren*
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[Wastewater collection]

A comprehensive
literature mining and
analysis on
wastewater methane
emissions
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{Various sludge treatment pmcessss[

[Typical wastewater treatment processes]
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Song, et al., ES&T, 2023
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Plant-wide CH, Emissions Vary Significantly Among Different Treatment Processes
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* Plant-wide CH, emissions vary by orders of magnitude, from 0.01 to 110 g CH,/m?
* High emissions are associated anaerobic digestion or stabilization ponds.
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Treatment Unit Level CH, Emissions

+ Sludge treatment with AD has the

highest emission of 13.3 (7.3-20.1) g 20
3
CH“/'T] . . Air stripping of dissolved CH,
« This is an order of magnitude higher c stemming from sewer
than other treatment units K] 151 networks, anoxic tank, recycled
3 sludge or side stream
€ E
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* Sludge with AD: install vacuum degassing, switch = 57 (darfier . iank _jtankiclarifier, iand storage ;
digester feeding from in parallel to in series
* Sludge storage: reduce temperature or increase O, o4 i P —
supply, add ammonia for sanitizing purpose n=49 n=34n=67 n=41 n=26 n=16
* Secondary treatment: separate treatment of return Primary Secondary Sludge Sludge
without AD with AD

sludge or sidestream deammonification
* Primary treatment: reducing CH, production in
sewer

Process unit in WRRFs
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The overall estimated annual CH, emission is 2x the IPCC Tier 2 estimates,

but different plants vary significantly

Plant-wide CH, emission

]
90+ o
o Monte Carlo

604 = i c analysis

E |

WRRF Stabilization Other
with AD pond WRRF

Methane emission intensity
(g CH4 /m® treated wastewater)

Gravity
sewer

Rising
main

U.S. nationwide emission

1.00 4

o

~

o
L

bt

@

o
L

10.9£7.0 MMT

0.25+

Cumulative probability

0.00 4

0 20 40 60 80
Annual methane emission (MMT CO; eq)

* Atotal of 10.9 + 7.0 MMT CO,-eq/year of CH, is estimated to emit from the sewer networks and

WRRFs in the U.S.

» This is about twice the IPCC (2019) Tier 2 estimates (4.3-6.1 MMT CO,-eq/year).
* Around 80% of the total emissions come from WRRFs with AD (7.9 + 6.7 MMT CO,-eq/year) and

stabilization ponds (0.7 + 0.4 MMT CO,-eq/year)

Song, et al., ES&T, 2023
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Some Thoughts

PRINCETON
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The wastewater sector GHG emission is complex and needs better understanding

IPCC based single emission factor method is not sufficient

Much more monitoring and quantifications are needed

Both unit (technology) and plant level characterizations are needed

Technology deployment, policy making, and net-zero emission plans should be guided by such information

zjren@princeton.edu
http://ren.princeton.edu

@zjasonren
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