Jacobs. Challenging today. Reinventing tomorrow.

Measuring Life-Cycle Greenhouse Gas Emissions from Water Resource Recovery Facilities Workshop

U.S. DOE Industrial Efficiency & Decarbonization Office January 2024

My journey measuring GHG emissions in the UK water sector

(Very) recent R&D and evening viewing on GHG measurement which summarises global practice, best evidence and experience to date

Science Search

< Back

WT15130

A review of the measures to reduce Greenhouse Gas (GHG) Emissions from the wastewater treatment sector, including the benefits and costs - WT15130

UK Government, 2023

https://randd.defra.gov.uk/ProjectDetails?ProjectId=20451

QUANTIFYING AND REDUCING DIRECT GREENHOUSE GAS **EMISSIONS FROM WASTE AND** WATER TREATMENT **PROCESSES - PHASE 2**

QUANTIEVING AND REDUCING

DIRECT GREENHOUSE GAS **EMISSIONS FROM WASTE AND** WATER TREATMENT **PROCESSES - PHASE 2** A Good Practice Guide

International Water Association Masterclass series on Scope 1 emissions, 2022

Masterclass 1: https://voutu.be/KW-0MyYnWQU?si=TGisi66-wtrnNBtN Masterclass 2: https://voutu.be/VQNeznELmh4?si=8G-G8wEWOyakxKrd Masterclass 3: https://voutu.be/eLTAxkJkYm0?si=TtVRm7bHIQ652VTV Masterclass 4: https://youtu.be/VbNc3hYJjSE?si=sTQ-0Xwk-owgiPvc

International Water Association Series, Danish lessons for global practice, 2023

Webinar 1: Towards a Climate Neutral Water Sector: the Nordic experience https://voutu.be/wvplv3tSKpw?si=PB_g1R6oNf2iAg5s Webinar 2: N₂O https://youtu.be/-szhUdQpYqA?si=OCahjYWa0GSlOvvD Webinar 3: CH₄ <u>https://youtu.be/FvjdxKpY_jA?si=bl1tvMQ8dHAqTTJS</u> Webinar 4: Life Cycle Analysis https://youtu.be/fT_SzTuWhJw?si=OCzLtkwAnwdkkEUO

UK Water Industry Research, 2023

https://ukwir.org/water-industry-research-report?object=940bba8a-048a-4665-b344-11fba7187af3 https://ukwir.org/c0397784-85ad-4ae7-acaf-6c455fd341d5?object=12c38fea-3890-48d8-abb0-a17d7bc6d347

Recommendations from research projects (links in prior slide)

- Start measuring
- Do National Monitoring Programmes (e.g. Danish; approx. \$500,000, 9 WRRFs)
- Develop improved sector level guidance
- Mitigate emissions
 - Stop methane leaks at AD facilities
 - Process optimisation for N₂O
- R&D to reduce emissions low N₂O technologies, abatement, N recovery
- R&D incentives for mitigation e.g. tax, improved cost data
- Abatement costs limited
 - Methane \$350/tCO₂e, range -\$2,800 to \$5,000
 - Nitrous oxide \$65-\$500 /tCO₂e; campaign costs \$60,000-80,000 per WRRF site

Greenhouse gas emissions from WRRFs

https://iwa-network.org/publications/greenhousegas-emissions-and-wwrfs/

As carbon intensity of electricity generation decreases, process emissions of N₂O and CH₄ become key for WRRFs

Anglian Water Route Map, 2021

generated.

of World Energy (2023) OurWorldInData.org/energy | CC BY

Process emissions of CH₄ and N₂O are also key on life cycle carbon basis

We know where our significant GHG emissions are generated and where we can take action

9

We know how to reduce GHG emissions of CH₄ and N₂O

on denitrificat	ion
tion recovery	

Everything starts with measurement and we know our options

Site-wide	 Captures all emissions (that day/week)
	 Campaign based (not continuous)
	Limited granularity
	 Compare, prioritise
	Much CH ₄ work, some N ₂ O
Process unit-level	 Discrete (methane leak detection) Continuous (liquid/gas N₂O) Captures seasonal/operational variation – Supports process understanding, root cau

©Jacobs 2023

use, mitigation

- key

Various wind dispersion models for N₂O quantification

N₂O quantified with direct ventilated air flow measurement

N₂O quantified with air flow derived from operational (e.g. blower) data

Process unit air flow estimation approaches

N₂O quantification with air flow based on diffuser details

N₂O quantification with direct air flow measurement on hood

N₂O quantified with air flow based on control valve details

N₂O quantified with measured tank/zone air flow

acobs 2023

Progress in measuring N₂O emissions (vast majority process unit level)

Progress in measuring CH₄ emissions (site and process-unit level)

Category	Mean (%)	Median (%)
Sewage sludge treatment	2.5	2.6
- of which digestate handling	1.8	1.3
Co-digestion plants1	1.1	0.9
- of which digestate handling	0.8	0.1
All plants	1.7	1.2
 of which digestate handling 	1.2	0.9

To mitigate? To prioritise ? Benchmarking for national EF?

Data science, modelling approaches; quality of data and analysis

Where can we look for good practice?

UKWIR

Methods and monitoring techniques – demonstrated at scale

Good Practice Guide 3.2 Process Unit Monitoring Process unit monitoring techniques are required for identification of key sources of GHG emissions from within a WRRF. Refer to (Ye, et al., 2022) for detailed a compound the total emission can be calculated. (EPA, 2011) analysis of flux chambers studies and site-specific considerations for design of a measurement campaign including number and coverage of hoods, size and construction and key data required. 3.4.1 Monitoring Method: Thermal Infrared (IR) Imaging Camera Given the focus on understanding pathways and drivers for N2Q production and emission most work to date in academic and industry studies has focused on How it Works monitoring of N2O in individual treatment units - largely ASP treatment facilities, undergoing carbonaceous, nitrifying or nitrifying-denitrifying biological treatment, with some work across biofilm processes but a lack of established 'good practice' given lack of literature, published or otherwise. Passive thermal IR spectroscopy uses the difference in heat radiation betwee the target and the background. When a handheld thermal IR camera is used This section provides an overview of process unit monitoring methods applicable for both N2O and CH4, with changes on the analytical detector for quantification. inspection around leaked gases, the sensor will pick this up when there is a Specific analytical techniques for each of these GHG are describe in sections 3.3 and 3.4. temperature difference between it and the surroundings. 3.2.1 Monitoring Method: Flux Chambers How it Works Strengths Flux chambers, also known as floating hoods, are upturned chambers which are Widely used across research applications, thus operating procedures and placed a few centimetres into the surface of open fluids or onto soils. The techniques are well documented in literature, such as in (Chandran, et al., enclosed space of the flux chamber collects the exhaust gases and with the 2016). known surface area under the chamber, the specific flux (mass per area per Simple in design and can be made in a variety of sizes and shapes to meet the time) of the gaseous compounds Figure 3-19: An Infrared Imaging Camera showing the temperature profile on an requirements of the monitoring scheme. The Surface Emission Isolation Flux can be determined individual (Teledyne FLIR, 2020) Chamber (SEIFC) (Schmidt, 1994), in special, have been widely used in WRRFs as endorsed by the United States Environmental Protection Agency (USEPA) as 10 Limitations A detailed methodology can be a device for monitoring gaseous emissions from liquid surfaces - thus, there is a found in Chandran (2011). This is It cannot be used to calculate a quantitative CH₄ concentration or emission. standard. Arrangement or repositioning of the chambers can be carried out to PLC the only method endorsed by the It cannot separate between different gases that absorbs in this spectral regio understand spatial variations across large areas. USEPA for N2O monitoring at it is mainly used to find possible leaks for follow-up measurements using oth WWREs A refined approach has methods. been recently proposed by (Gruber, Several sensors would be required to achieve site coverage, which would et al., 2021) to estimate a country increase the costing to run this. wide N₂O EF in Switzerland in longterm monitoring study of 14 full-If the temperature of the leak is similar to the atmosphere, then it will be scale WRRFs. difficult to detect. Biological Figure 3-9: Surface emission isolation flux chamber (SEIFC) (Chandran, 2011 Figure 3-8: Schematic of equipment used in by Gruber et al. (Gruber, et al., 2021) UKWIR UKWIR

Quantifying and Mitigation Process Emissions, Good Practice Guide, UKWIR, 2023

gas analyser where CH₄ and N₂O were detected in separate trials. The gas flow rate was measured at least three times during the measuring campaigns at different points along the pipe. When this is used in conjunction with the internal pipe diameter the flow rate can be determined and when multiplied by the concentration of

ər	The technology can be used in a variety of setu point source sensor or move to scan a site. Mul wide <u>coverage</u> , or can be incorporated as part of page the sensor	ips. Single units can be used as a tiple units can be set up for site of a drone to allow for unmanned
	Provides real time detection and the location of leaks is not needed to be known beforehand.	
	This unit is cost effective and can be operated quickly without interrupting plant operations (EPA, 2011).	
		Figure 3-20: Infrared Imaging Camera (Quantum Design, n.d.)
	Equipment	- 1612 III 46 IIII14644 96
1985	Equipment The sensor comes in a self-contained unit and equipment. However, the full site coverage and costly than an individual unit. For the latter, the intensive the equipment, the more impact it wit times.	will not require any additional I aerial versions will be more e heavier and more power Il have on the maximum flight

Methane CH₄ quantification – site level

- Inverse dispersion modelling (IDMM)
- Differential absorption light detecting and ranging (DIAL) \downarrow
- Mobile tracer gas dispersion modelling (MTDM)
- Drone flux method (DFM)

Image courtesy NPL

Image courtesy NPL

Concentrations + weather data + inverse dispersion modelling Wind data is key |

Methane measurement – process unit level

- Sweden programme
 - 25 biogas plants
 - 30 upgrading plants

35% biogas/38% biomethane

Category	Emissions as a share of the amount of methane produced, upper quartile (%)			
	Round 3	Round 4		
A) chemical scrubber & facilities with RTO	0.27	0.33		
of which residual gas	0.047	0.074		
B) water scrubber & PSA	1.8	1.8		
of which residual gas	1.7	1.6		
All facilities	1.2	1.5		
of which residual gas	1.1	1.2		

Self-monitoring of methane emissions - Avfall Sverige

Quantitative at process unit level but expects AD facilities to have proactive LDAR in place

© Jacobs 2023

RI SE

Danish national methane monitoring programme

- Multiple methods | certified laboratory measurements | data collation and reporting | included mitigation
- Has supported Denmark GHGI
- Has informed regulation

Denmark - 69 biogas facilities – 7.5% ave WRRFs

Summary – good practice for methane measurement campaigns

- **Process unit level** leak detection and repair, quantification
 - Initial characterisation of leaks and follow up surveys
 - Can be qualitative (e.g. thermal imaging with OGI) or quantitative (FID plus air flow assessment) ____
 - Suited to leaks from tanks/covers/pipework/valves PRV settings can be important
 - May not pick up every emission source

Handbok metanmätningar. Revidering 2016

- Site level quantification of emissions
 - Tends to be campaign based though can be fixed; continuous methods exist
 - Provides a site baseline at point in time, comparable if high quality campaigns
 - May not allow pinpointing of emissions sources
- Multiple proven and emerging methods exist depending on constraints of site/campaign
- Monitoring, verification, reporting approaches exist (Sweden, Denmark)
- Has led to demonstrated mitigation (Denmark)
- Required to design mitigation interventions with sufficient engineering certainty and HSE

ISO/BS Standards for gases, components exist but not for methodologies or for N₂O or CH₄ specifically. These are work in progress globally. Good LDAR examples exist already.

Rapport 2016:1

National nitrous oxide monitoring campaign – Denmark

-2018		2	2018-2019		2020		2021		2023		
Various projects funded > 3 M €		Dedicated N₂O funding pool for data generation ~ 0.5 M €) Clima or politio n agree greer secto	Climate action political agreement for a green waste sector		"Paris-model" for water companies		N ₂ O Legislation detailed and comes into force Jan. 202		
Renseanlæg	kg N ₂ O-N _{udledt} /år	kg N ₂ O _{udledt} /år	.udledt/år	% N2O-N/T-Nfjernet	St.afv.	% N2O-N/T-Nindleb	St.afv.	n målepunkter	mg N ₂ O-N/PE-N/d		
Ejby Mølle*	81.943	128.768	8.373	20,9	34,9	17,9	29,5	11			
parallel	16.415	25.795	7.687	5,73	9,78	4,48	7,11	7			
serie	196.320	308.502	91.934	48	49	41	41	4			
Sidestrøms- tank	3.234	5.082	1.514	6,1	4,8	n.a.	879	55			
Fredericia	139	219	65	0,03	0,03	0,02	0,03	20	3,0		
Hyllingeriis	82	129	38	0,46	0,78	0,39	0,62	13	46		
Kalundborg	506	795	237	0,48	0,19	0,38	0,15	19	45		
Marselisborg	7.392	11.615	3.461	1,28	15	1,12	100	15	134		
Luftningstanke	5.755	9.044	2.695	1,32	1,36	1,21	1,23	88			
Sidestrøms- tank	1.636	2.572	766	5,65	5,13	5,14	4,69	50			
Næstved*	165	260	77	0,06	0,09	0,06	0,08	37	7		
maj-aug. 2019	268	420	125	0,12	0,10	0,11	0,09	19	13		
Skanderborg	1.136	1.785	532	1,36	1,03	1,24	0,98	39	149		
uden festival	972	1.527	455	1,13	0,88	1,02	0,83	34			
kun festival	113	178	53	2,86	0,59	2,74	0,55	5			
Søholt*	897	1.410	420	0,30	0,28	0,29	0,28	13	35		
Aalborg Øst	881	1.385	413	0,28	0,18	0,24	0,15	25	28		

- \$500,000(!) co-funded from EPA
- **WRRFs**
- $(4-6\%N_2O_N/TN_{in})$

overfladebeluftede renseanlæg

Results from Danish National Monitoring Programme MUDP (2020)

• High variation $(0.24 - 1.24N_2O_N/TN_{inlet})$ • Increased emissions from higher loaded

High emissions from sidestream processes

Danish monitoring programme and ongoing work

Conclusions from Danish national monitoring N₂O work

- Outcome new EF for N₂O of 0.84%N₂O_N/TN_{inlet}
- Led to mitigation
 - Importance of measurement (critical to mitigation)
 - Opportunities for mitigation (load balancing, control interventions)
 - Cost of abatement 2-15 euros for measurement + optimisation
- Continued measurement and mitigation
- Ongoing technology trials and development

National nitrous oxide monitoring campaign – France

- Led to recommended EFs for 3 typologies
- Coordinated approach
- Consistent methods
- Med-long term campaigns
- Robust research institute oversight

Cas	Process	Foreign literature min-max (number) [ref]	Recommendation Astee 2022
	BA designed to treat carbon pollution alone	0,99 - 8 (3) [5, 12]	None
1. Free culture methods	BA designed to nitrify	0,005 – 2,8 (37) [13, 14] 0,012 – 7,4 (10) [15, 16]	0,06
	Membrane filtration process (MBR)	<u>0,004 – 0,5 (2)</u> [18, 19]	0,06
	Biofilters designed to nitrify	1,4 (1) [5]	1,65
2. Fixed or mixed culture	Granular slurry process (GSBR)	0, <mark>33</mark> (1) [23] 0,35 (1) [23]	None
processes	Fluidized bed process combining free and fixed culture (IFAS)	1,4 (1) [5]	None
3. Secondary	Partial nitration process (E.G)	1,7 – 3,8 (3) [20, 21] 3,1 – 7 (3) [20, 22]	None
stream processing methods	Anammox Partial Nitritation Process (NPA)	0,14 – 2 (2) [17]	None
4.	Horizontal flow planted filter	0,04 – 3,0 (8) [17]	None
Extensive processing	Vertical flow planted filter	0,001 – 0,096 (22) [17]	None
methods	Lagoon	- 0,05 - 0,43 (24) [17]	None

Filali et al. (2022)

National monitoring work - Switzerland

- 14 monitoring campaigns (N₂O)
- Led to recommended EFs for 3 typologies
- Long term off-gas method
- EAWAG oversight ETH Zurich
- Has led to commercial off-gas incountry spinoff
- Has supported N₂O and CH₄ abatement programme

Elaboration of a data basis on greenhouse gas emissions from wastewater management -Final report N2OklimARA

Authors: Wenzel Gruber¹, Adriano Joss¹, Manuel Luck¹, Thomas Kupper², Marcel Bühler², Tobias Bührer¹

Affiliations

¹Eawag, Swiss Federal Institute for Aquatic Science and Technology, 8600 Duebendorf, Switzerland

²Bern University of Applied Sciences School of Agricultural, Forest and Food Sciences, 3052 Zollikofen, Switzerland

UK sector work on GHG emissions

N2O drivers and mitigating process conditions, AWS

TWL, ASP aerobic zone liquid N_2O

STW, Cakepad monitoring, CH₄

Results from UK measurement work to date

- Variable and not very coordinated but now over 20 sites
- Range of methods, mostly established, some experimental
- Supported by UK and Irish Community of Practice
- Good Practice Guide and Recommendations for National Monitoring Programme

UK Good practice guide – standardising campaign and EF reporting

WRRF Campaign attribute	
Loading/capacity and consent	PE, average:peak Q_COD/BOD:TN:NH4:TP
Catchment and plant type	E.g. combined catchment, plug flow nitrifying ASP, anaerobic digestion
Sludge imports	tDS/day
MLSS	Kg/m3
F:M	BOD/COD:MLSS
SRT	Aerobic/anoxic
SS/VSS	ratio
Average temperature	deg C
Average in coming N load(s)	N, NH4, including liquors if relevant
% removal	TN reduction, NH4 reduction
Sludge management	Including any sidestream, liquors balancing, sludge storage, AD
Measurement methods	Technology type Site wide or process unit level

Good practice exists and national monitoring programmes have happened or are happening

- UK and Irish Water Industry Research (UKWIR)
 - > Quantifying and reducing direct GHG emissions (2019)
 - > Quantifying and reducing (Phase 2) (2023)
 - Good practice guidance and sector monitoring summary
 - Recommendations for National Monitoring Programme
- Netherlands STOWA, 2023
- France INRAE, 2022
- Switzerland Eawag, 2021
- Germany DWA, 2022

Advice on design of national monitoring programme (NMP)

Framework

- Health and safety
- Roles and responsibilities
- Coordination and communication
- **Opportunities aligned** with IED
- Data management

Processes

- Standardisation
- Data quality, quantity and sharing
- ✓ Lessons learned from ongoing work
- ✓ Funding, procurement and commercial
- ✓ Leveraging local knowledge and teams
- ✓ Knowledge sharing

- ✓ Site selection
- ✓ Site and process choices
- Specification and procurement
- Installation and commissioning
- ✓ Calibration, maintenance and replacement

			a. Was methane leakage detected 1		3. Enter	4. Specify
		1. Potential emission object			ment (if any)	action
		DIGESTER				
		Safety valve				1
		Water trap and collection tank				
Enviro		Dynamic valves				
ERIC Research Data		Static valves				
open Institutional Collection		Roof				
		In the sealing strip of hatches on the roof (e.g. manhole)				
		Transition between wall and roof				(
Organizations / Wastewater /	Off-gas monitorin	Overflow channels				
		BIOGAS RESIDUE STORAGE VESSEL				
Off-gas monitoring system for		Safety valve on biogas residue tank				
wastewater treatment	Package 👹 F	Water trap on biogas residue tank				1
		Dynamic valves on biogas residue tank	1			1.
Organization	billion//doi: org	Static valves on biogas residue tank				
	Off-gas m	Roof on biogas residue tank (especially if it is a concrete roof)				
		In the sealing strip of hatches on the roof				
559X7	A package describing a a spatially highly resolve	off-gas monitoring system for wastewater treatment plants. Th ed monitoring of compounds in wastewater reactor systems.	e system uses floating	g flux chamber	s for	
	Data and Resource	ces			_	
	Description_M	onitoring_System.zip		r* Explor		
	Readme Monit	toring System and				

Technical

Considerations of site control and mitigation potential

Advice on design of a National Monitoring programme – UKWIR, 2023

Central organisation and funding including expert advisory group - utilities, academia and supply community

Clear objectives: to understand emissions to support and prioritise action, to support improvement of National EF

Builds on existing starting point for sector

Data and monitoring requirements clear

Nitrous oxide monitoring and analysis

Methane monitoring and analysis

Data, results collation and interpretation

Outcomes: revised GPG, industry protocols

Attribution: CC BY-NC-ND 3.0

Thank you

amanda.lake@jacobs.com

