

Chapter **06**

Sustainability and Good Practices

Table of Contents

)	Sustair	nability and Good Practices	128				
	Summary	7	128				
	6.1 K	ey Benefits of Producing and Harvesting Biomass	131				
	6.1.1	Climate Change Services, Carbon Management, and Carbon Intensities	131				
	6.1.2	Other Agricultural Ecosystem Services	133				
	6.1.3	Benefits of Woody Biomass Harvest in Forests	134				
	6.1.4	Benefits of Waste Collection and Utilization	135				
	6.2 Re	elaxing Sustainability Constraints	135				
	6.2.1	Relaxing Sustainability Constraints: Agriculture	136				
Smart Technology Enables More Sustainable Farming							
	6.2.2	Relaxing Sustainability Constraints: Forestry	140				
	6.3 Re	eview of Potential Environmental Outcomes	144				
	6.3.1	Good Management Practices	144				
	6.3.2	LUC	145				
	6.3.3	Good Management Practices in Agriculture	154				
	6.3.4	Good Management Practices in Forestry	162				
	6.4 C	oncluding Thoughts	164				
	References 166						

6 Sustainability and Good Practices

Rebecca A. Efroymson,¹ Matthew H. Langholtz,¹ Keith L. Kline,¹ Daniel De La Torre Ugarte,¹ Chad Hellwinckel,¹ Troy R. Hawkins,² Esther S. Parish,¹ Michael Shell,³ Maggie R. Davis,¹ Burton C. English,⁴ and John Field¹

Suggested citation: Efroymson, R. A., M. H. Langholtz, K. L. Kline, D. de la Torre Ugarte, C. Hellwinckel, T. R. Hawkins, E. S. Parish, et al. 2024. "Chapter 6: Sustainability and Good Practices." In *2023 Billion-Ton Report*. M. H. Langholtz (Lead). Oak Ridge, TN: Oak Ridge National Laboratory. doi: 10.23720/BT2023/2316172.

This report and supporting documentation, data, and analysis tools are available online:

Report landing page: https://www.energy.gov/eere/bioenergy/2023-billion-ton-report-assessment-us-renewable-carbon-resources

Data portal: https://bioenergykdf.ornl.gov/bt23-data-portal

Summary

Sustainability constraints applied to the biomass modeled in this report illustrate how the United States can increase biomass supplies in ways that support net carbon sequestration, water conservation, and other ecosystem services through land management practices, or what some modelers might describe as beneficial land use change (LUC). Whereas the report identifies specific sustainable supply opportunities, one cannot be certain that land management for biomass production will evolve following the assumed constraints. Thus, consistent monitoring, assessment, and good management practices are necessary for avoiding or minimizing detrimental effects on soil, water, and ecosystem services. This chapter:

- Describes the impact of relaxing select sustainability constraints on estimates of potential biomass.
- Estimates carbon intensity.
- Reviews LUC concepts, potential effects of BT23 biomass supply scenarios on the environment, and potential good management practices that can improve environmental sustainability of biomass.

The supply estimates and analyses are independent of a specific policy or end use. In contrast, the EPA publishes a triennial report to Congress on biofuels that estimates specific environmental effects of a policy, the Renewable Fuel Standard (Clark et al. 2022). Other

¹ Oak Ridge National Laboratory

² Argonne National Laboratory

³ U.S. Department of Energy Bioenergy Technologies Office

⁴ University of Tennessee (retired)

environmental analyses of biofuel are tied to specific current or future policies (e.g., Chen et al. 2021; Austin et al. 2022), whereas potential biomass and related analyses in this report are not. Key points:

- Broad agreement exists on the essential role for biomass to achieve climate and circular
 economy goals. Agricultural and forest scenarios in other chapters of this report estimate
 sustainable U.S. biomass supplies under assumptions (sustainability constraints) that
 reflect good practices to protect the environment and mitigate impacts on food and forest
 product markets. This chapter considers the range of potential impacts that might result if
 specific constraints are relaxed or removed.
- Removing the sustainability constraints from model assumptions (e.g., residue removal limits, timberland clearcut restrictions, tree diameter limits, distance from roads, harvest intensities for timberlands) increases potential biomass production from agriculture and timberlands¹ but adds risk of adverse environmental effects.
 - Relaxing sustainability constraints for corn stover suggests that removals to maximize profit could approximately double the stover removal rates, going from about one-third of national supply to about two-thirds of national supply.
 - Relaxing sustainability constraints for logging residues increases overall collection rates from about 45% of total logging residues to about 60%, but about 40% remains unharvested after relaxing the constraints.
 - o Removal of larger-diameter (i.e., >11-inch-DBH) trees is constrained by the biomass price of \$70 per dry ton. If prices increase to \$75 per dry ton, approximately 30 million tons per year of trees greater than 11-inch DBH could be added to the harvested quantity. For reference, about 30 million tons represents less than 1% of timberland growing stock.
- Some sustainability constraints applied in the report (e.g., residue removal limits in many
 forests) are aligned with prevailing management practices, historic trends, and economic
 and biophysical feasibility, and thus are likely to be implemented. However, due to
 limited market experience and social science research, data are not available to determine
 whether agricultural residue retention recommendations will be followed.
- Effects of biomass production on crop prices and food security may be beneficial for some groups (rural producers), detrimental for others (urban consumers), or, most likely, negligible relative to other factors. Harvesting forest biomass does not affect food security.

¹ Timberlands are defined as forestlands with potential to produce more than 20 cubic feet of industrial wood per acre per year. Timberlands exclude reserved forests (e.g., National Park Service forests and other protected forests).

129

- Under BT23 mature-market scenarios, many environmental benefits, such as improved
 water quality in streams (nutrients and pesticides) and carbon sequestration, could
 increase because of increased perennial and cover crop acreage. Benefits could be
 enhanced with more efficient and precision management practices at the field or subfield
 scale.
- Uncertainties in future land management scenarios are unavoidable and would affect any environmental projection. Differences in LUC projections are large and have potentially significant impacts on estimates of biomass greenhouse gas (GHG) emissions intensity and sustainability. Monitoring and responsive decision-making are important to mitigate potential negative effects associated with land cover and management practices.
- Common sustainability concerns about producing and harvesting biomass could be mitigated by using good management and siting practices and mechanisms for increasing their adoption.
- Biomass resource estimates could be lower or higher depending on criteria applied to support sustainability.

GHG emissions, primarily from the combustion of fossil fuels, are causing temperature increases, increased frequencies and magnitudes of extreme events, and associated health and environmental impacts. Applying good practices for the production and use of biomass is essential to advancing sustainability goals, such as reducing fossil emissions associated with power, transportation, fuel, chemicals, and materials (IEA 2021, 2022). The important role of biomass in achieving national climate goals is driving global efforts to identify and develop sustainable biomass supply chains (IEA 2023). *The U.S. National Blueprint for Transportation Decarbonization* (DOE, USDOT, EPA, and HUD 2023) and a National Academies report on accelerating decarbonization (National Academies of Sciences, Engineering, and Medicine 2023) target GHG emissions reductions from aviation and other hard-to-electrify sectors with biofuels.

As with any energy technology, and particularly any production system based on land management, trade-offs among social, economic, and environmental objectives are necessary (Robertson et al. 2017; Dale et al. 2018). An evaluation of the environmental sustainability effects and potential trade-offs associated with the U.S. biomass potential estimated in BT16 was the subject of a companion report (DOE 2017), herein called BT16 Volume 2, that includes supporting analyses, glossaries, and datasets. BT16 Volume 2 evaluated changes in land cover and management, soil carbon, water quality, water availability, air emissions, and biodiversity for many biomass feedstocks as a function of production and harvest scenarios and prices. It also considered potential changes in biomass production based on a set of climate change projections. The BT16 Volume 2 analyses remain relevant and applicable to BT23. Rather than repeat those analyses, here we focus on questions raised by stakeholders:

1. Which aspects of sustainability were incorporated in estimates of national biomass potential and potentially serve as constraints or guardrails?

- 2. How might the sustainability attributes of biomass supply vary if producers do not follow these assumed sustainability constraints or guardrails?
- 3. How would biomass supply potential change if sustainability constraints were relaxed?
- 4. Which aspects of sustainability have not yet been explicitly considered in these estimates of biomass potential but are important for siting or managing biomass?
- 5. Which management practices can promote more sustainable biomass production?

The first question is addressed in the report's introduction and in individual biomass supply chapters. The remaining questions are addressed in this chapter and focus on agriculture and forestry. Expected benefits associated with the biomass supply scenarios are discussed, followed by analyses of expected effects of relaxing specific sustainability constraints associated with BT23 supplies. Environmental and other effects of potential production and harvesting of biomass are also discussed, including LUC, potential impacts on food security, forest conservation, biodiversity, water, and air quality.

6.1 Key Benefits of Producing and Harvesting Biomass

6.1.1 Climate Change Services, Carbon Management, and Carbon Intensities

Broad agreement exists on the essential role for biomass to achieve climate and circular economy goals. Production of biofuel, biopower, and bioproducts can mitigate climate change by avoiding combustion of fossil fuels, accumulating soil carbon, and displacing more carbon-intensive products and materials (IEA 2022). Net benefits depend on proper resource management, including minimization of GHG emissions during the biomass production stage (Robertson et al. 2017; Dale et al. 2014). As described in Chapter 5, purpose-grown energy crops (hereafter "energy crops") in the mature-market medium scenario reference price can achieve a net flux reduction of about 18 million metric tons of CO₂.

Carbon emissions intensity (i.e., carbon intensity) is CO₂-equivalent (CO₂e) emissions per unit of energy or product. Carbon intensities are typically measured for products rather than feedstocks, but some general principles pertain to biomass. Modeled carbon intensity estimates for crops used for bioenergy and bioproducts vary widely depending on baseline land allocation and assumed emission profiles (Wise et al. 2015). Other factors being equal, the biomass carbon intensity declines as annual yields increase because of better seed varietals and growing conditions such as soil and climate (Wise et al. 2015). However, if yield improvements are achieved by using more emissions-intense production practices, such as greater applications of fertilizer or pesticides, carbon intensity may not improve with higher yields.

Carbon intensities were calculated for major biomass feedstocks in this study (Table 6.1) using Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy Use in Technologies (GREET) model (Wang, Elgowainy, et al. 2022). The model captures upstream impacts, including fuels and chemicals manufacturing for biomass that requires fertilizer or pesticide. In Table 6.1, carbon uptake is the CO₂ absorbed by the plant during growth, treated as biogenic. It does not include LUC-related emissions, which can release soil organic carbon

(SOC). The supply chain emissions include biomass production, harvest or collection, and handling prior to transportation to the biorefinery. Transportation emissions and end use emissions are not included. Also not included are estimates of indirect emissions such as indirect LUC emissions, as have been assessed by the EPA for the RFS program or the California Air Resources Board for the Low Carbon Fuel Standard program. Differences between these estimates can be large and can have significant impacts on the overall carbon intensity estimates. A general discussion of LUC concepts is in Section 6.3.2. The carbon intensity values for petroleum include only crude oil recovery. Upstream emissions from exploration and related activities, as well as indirect effects, can be significant (Parish et al. 2013; National Research Council 2003).

Table 6.1. Example Carbon Intensity Values of Key Biomass and Fossil Resources, Based on GREET 2022

Revision 1

Category	Examples	Carbon Uptake ^a	Supply Chain Emissions ^b	Feedstock Total ^c	Unit (Short Tons)
Agricultural	Corn stover	1,600,000	28,000	-1,572,000	g CO ₂ e/dry ton
residues, primary	Wheat straw	1,300,000	240,000	-1,060,000	g CO ₂ e/dry ton
	Logging residues	1,700,000	13,000	-1,687,000	g CO ₂ e/dry ton
Primary forest residues	Hardwood	1,700,000	21,000	-1,679,000	g CO ₂ e/ton
	Softwood	1,700,000	21,000	-1,679,000	g CO ₂ e/ton
Herbaceous energy crops ^d	Miscanthus	1,600,000	67,000	-1,533,000	g CO ₂ e/dry ton
	Switchgrass	1,600,000	73,000	-1,527,000	g CO ₂ e/dry ton
Woody energy crops	Willow	1,600,000	36,000 ^e	-1,564,000	g CO ₂ e/dry ton
	Poplar	1,700,000	55,000	-1,645,000	g CO ₂ e/dry ton
0.040	Pine	1,700,000	51,000	-1,649,000	g CO ₂ e/dry ton
Animal	Hog manure	1,500,000	-1,100,000 g	-2,600,000	g CO ₂ e/ton solids
manures ^f	Cow manure	1,600,000	5,500	-1,594,000	g CO ₂ e/ton solids
Municipal solid waste f	Food waste	460,000	-250,000	-710,000	g CO ₂ e/wet ton
	Paper and paperboard	540,000	250,000	-290,000	g CO ₂ e/wet ton
	Yard waste	270,000	-53,000	-323,000	g CO ₂ e/wet ton
Range for crude oils h	Conventional crude oil, sand recovery values, shale oil, U.S. average crude		200,000- 1,300,000		g CO ₂ e/ton

^a Based on biogenic carbon content of each feedstock, per dry ton.

^b Includes everything up to the "edge of field"/forest road.

^c Credits feedstock with carbon uptake.

d Energy cane and eucalyptus are not parameterized in GREET.

^e GHG emissions are lower for willow than for poplar and pine because trucks with higher fuel efficiency are assumed to be used for transport of the former.

f Avoided "BAU" emissions are incorporated in supply chain results. However, the practice of allocating credits based on reductions relative to counterfactual BAU emissions is currently under review by the California Air Resources Board.

Carbon uptake values are large for all crops and residues in Table 6.1. The supply chain carbon intensity for hog manure is shown as large and negative in the table because in this case, unlike other biogenic feedstocks, the value reflects an assumed avoidance of methane emissions relative to a counterfactual fate of the manure. Carbon intensity values for the biomass production and supply chains are consistently lower than for fossil fuel supply chains, though, as noted, the estimates presented in Table 6.1 exclude certain categories of potentially substantial emissions.

6.1.2 Other Agricultural Ecosystem Services

Energy crops can generate ecosystem services beyond the carbon uptake benefits described above and carbon sequestration benefits in Chapter 5. People who consume water or use waterways for recreation can benefit from water purification and soil conservation services offered by lands managed for energy crops (Cacho et al. 2017; Jager et al. 2022). Additional ecosystem services provided by energy crops include wildlife habitat and pollination (Robertson et al. 2017). Growing these energy crops, as well as harvesting residues, also provides pest protection for adjacent crops (Robertson et al. 2017; Helms et al. 2020; Sindelar et al. 2013). Furthermore, energy crops can be used to restore abandoned mine land (Quinkenstein et al. 2012).

Ecosystem services provided by energy crops may have substantial economic value that could decrease net costs if realized through incentives. Riparian buffers planted with perennial energy crops can provide targeted water quality benefits, many of which could be monetized (Jager et al. 2023). Nitrate and sediment removal services of energy crops have been valued or monetized in previous studies (Mishra et al. 2019; Jager et al. 2022; Ssegane et al. 2016). Services include water-based recreation, as well as wildlife viewing and pheasant hunting. Supporting pollinators could be of economic value to farmers (Donnison et al. 2021), even if these services are not monetized. Research projects funded through USDA conservation programs with Inflation Reduction Act funds may produce more data on the value of good management practices in the future (USDA 2023).

However, estimating the magnitude of ecosystem services generated under specific planting and harvesting scenarios is challenging because of a lack of empirical data and models adapted to local conditions and energy crop opportunities (Ventura et al. 2012). An exception and example of this future research direction is a recent study in Iowa that was able to use subfield data to show landscape- and watershed-scale differences in soil carbon sequestration and water quality indicators under different combinations of agricultural management practices related to corn stover harvesting and switchgrass plantings (Parish et al. 2023).

g Scientific and policy consensus on allocating credits for reductions in BAU emissions from historical manure management has not been reached; therefore, this credit may be eliminated by carbon intensity scoring systems or by the California Air Resources Board.

^h The supply chain emissions range (g CO₂e/ton) for crude oils includes conventional crude oil (230,000), oil sand recovery values (surface mining, 520,000; in situ production, 830,000; surface mining + bitumen, 1,100,000; or synthetic crude oil, 1,300,000), shale oil (Bakken, 370,000; or Eagle Ford, 310,000), and U.S. average crude, 310,000. Notably, much more processing is needed for biomass than for crude oils. Note: These values do not include estimates of indirect land use changes.

Cover crops and "intermediate" crop rotations, as described in Chapter 5, also provide ecosystem services (Daryanto et al. 2018). Cover crops are grasses, legumes, or small grains grown between the harvest and planting season of traditional commodity crops like corn, soybeans, and cotton. Cover crops provide soil conservation and conditioning services by providing cover to reduce erosion and through incorporation into soils when a field is ready for the next crop. By USDA definition, "cover crops" are unharvested. If a cover crop is harvested it becomes an "intermediate crop," which may also be described as double cropping or adding another crop into the rotation. Planting intermediate crops may improve conditions for the primary crop. Herbaceous cover crops such as rye, winter wheat, and hairy vetch offer ecosystem services including reductions in soil erosion and increased soil organic matter, improved water quality, weed suppression, and increased wildlife and pollinator habitat, along with increased yields of the main crop (Blanco-Canqui et al. 2015; Darysanto et al. 2018). Cover and intermediate crops can mitigate adverse environmental impacts of crop residue removal for biofuel production (Blanco-Canqui et al. 2015). However, lignocellulosic cover crops are more costly and difficult to refine into useful fuels than oilseeds. Oilseed intermediate crops such as pennycress, camelina, and carinata (Chapter 5) produce oil that can be converted to SAF, for example, without expanding the land base used for production of other products. However, cover and intermediate crops are not widely grown in the United States, comprising less than 6% of total cropland in 2017 (Wallander et al. 2021). Thus, the ecosystem services of these cover crops (Cubins et al. 2019) and effects of harvesting on ecosystem services (Blanco-Canqui et al. 2020) are less well studied. Recent studies (Taheripour, Sajedinia, and Karami 2022; Field et al. 2022) offer insight into opportunities to generate biomass from integrated production systems that incorporate cover and intermediate crops for multiple markets and services, generating climate benefits and biomass without reducing traditional commodity production.

6.1.3 Benefits of Woody Biomass Harvest in Forests

Mechanically thinning trees is a common wildfire fuel reduction treatment (i.e., "fuel treatment"). Mechanical thinning is intended to open the forest structure and reduce fire intensity, severity, and frequency by removing surface fuels and increasing the vertical distance to the canopy (Kalies and Kent 2016; Graham 2003; Reinhardt et al. 2008). As a fuel treatment, mechanical thinning is an alternative to prescribed burns, mastication, or manual pile and burn. Skog and Barbour (2006) identified timberland areas in Western states where thinning treatments would be needed to reduce fire hazard and could make forest products economically feasible. Kline (2004) summarizes many benefits or services promoted by reducing wildfire risk, including carbon sequestration, timber products, and recreation. Additional benefits of reduced wildfire risk would be improved water quality and reduced risk to homes, wildlife habitat, historic places, and sacred sites.

Benefits in addition to reduced wildfire risk can result. Collecting forest biomass for biofuel or bioproducts can reduce GHG emissions and air pollutant emissions from open pile burning of woody residues from logging operations. Furthermore, bioenergy market demand can help retain or increase forest area and productivity (Duden et al. 2023; Jonker et al. 2018).

6.1.4 Benefits of Waste Collection and Utilization

Collecting waste products and transforming them to a resource for energy and other uses has benefits and value (Tuck et al. 2012) that depend on the waste resource, including reducing demand on disposal facilities (e.g., landfills, waste treatment facilities), protecting water quality, improving air quality (e.g., reduction in field burning of residues, reduced emissions from raw manure), and controlling odor (from manure).

Managing MSW can reduce GHG emissions, with several potential options: capturing biogas from landfills, composting organic waste, anaerobically digesting organic waste, and reducing MSW generation (Hoy et al. 2023; Cuéllar and Webber 2008; Powell, Pons, and Chertow 2016). Reducing solid waste upstream (e.g., less consumption) and downstream through recycling and other means may be environmentally preferable and would reduce waste-based feedstock for bioenergy and bioproducts. The use of MSW for bioenergy may alleviate some concerns related to conventional disposal pathways such as limited landfill space for disposal and significant methane emissions from landfills (Powell, Pons, and Chertow 2016).

The collection of manures for biogas or other uses has environmental benefits that include protecting water quality by destroying potentially pathogenic bacteria and reducing biological oxygen demand, which can improve water quality and protect aquatic biodiversity. Reducing storage of livestock waste in lagoons can also reduce odors and emissions of methane and nitrous oxide (N₂O) from those lagoons.

6.2 Relaxing Sustainability Constraints

"With the proper safeguards, the likelihood of environmental payoff [of producing biomass] appears high" (Robertson et al. 2017). As discussed in Chapter 1, constraints on potential biomass supply (Figure 6.1) were implemented in the models to move toward the sourcing of more sustainable biomass (See Table 1.3, agriculture, and Table 1.4, forestry). Thus, the model scenarios reflected areas where new biomass could not be grown, harvested, or collected, as well as assumptions on sustainable management practices or restrictions on unsustainable management practices.

Transitions to or from forest or agricultural land cover were not options in the simulations, nor were transitions to or from other land cover types, including many grasslands. These constraints could not be relaxed because they are endogenous to the POLYSYS and ForSEAM models.

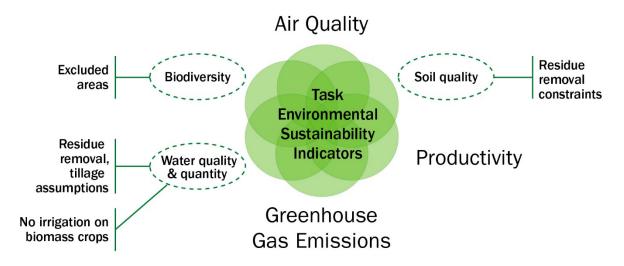


Figure 6.1. Sustainability constraints and sustainability indicator categories (green dashed circles) implemented in this report

This report illustrates how much and where different types of biomass *could* be supplied while attempting to minimize significant adverse environmental or food crop impacts. However, model simulations do not attempt to predict what *will* happen. For example, model results provide no guarantee that competition for biomass will not occur among different potential market demands (food, feed, fiber, bioenergy, and other bioproducts). Model simulations of what could be supplied sustainably do not preclude potential for adverse environmental effects if safeguards are not in place. If good management practices are not followed and excessive residue is removed, leaving soils unprotected, for example, accelerated soil erosion and nutrient loss could result (Hawks et al. 2023).

To address concerns about the effects of sustainability constraints assumed in this study, we tested scenarios in which certain constraints were relaxed. Results of the sensitivity analyses differ slightly from final results presented in Chapters 1, 4, and 5, but are presented to indicate directionality and magnitude. Thus, POLYSYS (used for agricultural lands) relaxed the residues collection constraint, and ForSEAM (used for timberlands) "freed up" timberland resources to supply biomass in addition to the quantity that could be supplied with these specific sustainability constraints in place. The new simulations illustrate how potential biomass supplies, prices, and locations change when residue retention limits and forestry demands are modified. We also consulted literature on farmer behavior and economic and physical harvesting constraints to begin to examine the likelihood that the sustainability constraints would be employed.

6.2.1 Relaxing Sustainability Constraints: Agriculture

To explore the effects of relaxing sustainability constraints on agricultural production of biomass, we altered the POLYSYS modeling runs to allow residues to be removed from conventionally tilled acres without regard to wind and water erosion or soil carbon loss. This meant relaxing the following constraints from Table 1.3:

- Crop residue removal prohibited in conventionally tilled acres.
- Crop residue removal limited based on wind and water erosion estimates and soil carbon loss.
- Acceptable residue removal different for reduced and no-till acres.

At current residue harvest machinery efficiency, a maximum of 50% of residues can be collected, but as machinery efficiency improves, up to 90% of residues could theoretically be removed if unconstrained by erosion and carbon limits. Relaxing the sustainability constraints (and applying only economic constraints and an operational efficiency constraint of up to 90%) led to a 140% increase in biomass from agricultural residues—from 174 million to 419 million dry tons at a reference price of \$70 per dry ton. Thus, implementing the residue removal constraints in POLYSYS leads to a conservative estimate of the supply potential, which meets a specified environmental target (that may itself be conservative; see Khanna and Paulson 2016). However, if the machinery were available to cost-effectively remove higher volumes, and if contracts or regulations did not prevent it, operators could remove higher volumes of residues, and incentives to exceed assumed removal constraints increase with higher biomass prices. In one study, southern Illinois producers were willing to supply over 40% of their corn stover and wheat straw for bioenergy or bioproducts (Altman and Sanders 2012). The authors found a difference between maximum willingness to supply residues for bioenergy and willingness to supply at a given price.

A salient question is: Are farmers likely to harvest residues within the constraints assumed in this report, or are they likely to harvest more biomass than would meet sustainability targets? The risk of harvesting beyond sustainable targets is influenced by economic, technical, and social factors. Farmers could overharvest corn stover and other residues for short-term economic gain. Some who lease rather than own land may be less motivated to retain the nutrients from residues for long-term soil productivity. However, a 90% removal rate may not be technically, socially, or economically feasible in many contexts because it would require collection of smaller, less dense, and soil-contaminated residues that are costly to collect and transport, and that require additional advanced processing. A U.S. effort to commercialize cellulosic ethanol using corn stover shows the importance of technical constraints. Harvest guidelines were supported by machinery designed to collect and remove only the top 30% of the dried corn plant along with the cobs and husks from the sheller, thereby reducing dirt and ash content and ensuring high levels of residue remained on soils (BETO 2023; Slupska and Bushong 2019).

Constraints related to residue retention are included in POLYSYS at county-level resolution. However, many good practices for farmers harvesting residues are best determined at the subfield scale, based on grain yield data, slope, and soil characteristics (Muth et al. 2012; Parish et al. 2023). Precision agriculture applied to biomass production holds promise to reduce soil erosion, increase SOC, and improve profitability for the grower. In addition, smart combines can ensure that residue removal is limited to subfield-level sustainability constraints (see textbox).

However, data are not available for many locations to populate POLYSYS with good residue removal practices at the subfield scale. As noted above, actual residue retention for agriculture or forestry could be lower or higher than sustainable targets.

Site-specific sustainability targets that prevent erosion and protect health, such as residue removal limits, could be built into operations of cellulosic biofuels producers (i.e., energy crop users) (Kemp 2015). Economic incentives or regulations could increase the likelihood that sustainable quantities of residues are harvested (Searle and Bitnere 2017). Biorefineries have an interest in documenting that resources are sustainably managed, and contractual conditions to limit residue collection rates can be established with stover suppliers.

Energy crops are another important biomass resource, but sustainability constraints for these feedstocks, such as the prohibition of production in regions where irrigation would be required, were not relaxed in this chapter. In this report, potential biomass from energy crops is constrained economically, as discussed in Chapter 5.

Smart Technology Enables More Sustainable Farming

Software and state-of-the-art technology are making it easier for farmers to produce crops in an energy-efficient, cost-effective, and sustainable manner. Maintaining or improving soil conditions, harvesting only what's needed, and making use of biomass that otherwise would be wasted are some of the areas where new technology can enable efficiencies.

For example, a new kind of harvester header, the Straeter Cornrower Header, named for its inventor, Jim Straeter, can enable sustainable corn stover removal. Such a machine provides variable-rate harvest controls that respond to changing topography and soil conditions. This allows sustainable stover removal of about 1.5–2 tons of corn stover per acre in fields producing an average of 200 bushels of corn.

The process relies on a unique header that takes material off the field while leaving enough corn stover to maintain or improve soil carbon and keep the soil condition in shape for the next crop or cover crop. Using software developed at lowa State University, algorithms determine when the door under the combine should be opened to let the farmer leave more or less stover on the field. A conveyor under the combine takes the biomass and puts it straight into a baler so it never hits the ground. Thus, the header eliminates the need for the farmer to make an additional pass over the field, as the machine combines two steps in one. Eliminating that extra pass saves labor, time, fuel, and overall costs.

The resulting stover bales contain 20% more biomass, which translates to less storage space required for the user. The farmer doesn't need shredders or rakes and gets more volume in a bale and a variable harvest rate. This is one example of smart technologies that promote more energy-efficient, cost-efficient, and sustainable ways to do agriculture.

Photo from William Belden, ANTARES Group Inc.

6.2.2 Relaxing Sustainability Constraints: Forestry

To explore the effects of relaxing sustainability constraints in ForSEAM on production of biomass from timberlands, we altered the following assumptions from the analysis in Chapter 4 to the description in parentheses:

- Exclude Class 1 trees—i.e., >11-inch DBH (relaxed to include Class 1 trees).
- Retain 30% of logging residues on slopes less than 40% (21.8°) (relaxed to 10% retention rate).
- Limit to land access within half-mile of roads, including USFS roads, where applicable (relaxed to within 3 miles of roads).
- Constrain maximum harvest intensity to 5% (relaxed to 10%).
- Constrain region-specific historic clearcut (relaxed to 100%).

Relaxing the above modeling constraints explores the risk of harvesting large trees for biomass, harvesting a greater percentage of logging residues than is recommended in many regions of the country (Titus et al. 2021), harvesting timberland biomass at a greater distance from roads, harvesting a larger area within each region within a year, or harvesting all biomass with clearcuts

In addition, forest and cropland area are held constant in scenarios with sustainability constraints and in those where constraints are relaxed. What would happen to the areas of those land cover types without the constraints is uncertain, and the literature provides mixed assessments of what is possible (Rose et al. 2020). Historic evidence and modeling indicate that strong forest product markets can contribute to retention of or expansion of forest area (Galik and Abt 2016; Wear et al. 2013). For example, even though biomass demand for energy or bioproducts represents a relatively small part of total forest sector production, the impact of this demand on forest area is expected to be positive (i.e., contributing to an expanding forest area) if scenarios with and without bioenergy demand are compared in the Southeastern United States (Duden et al. 2023). Nonetheless, commodity prices and land rents can influence whether intensification or extensification occurs to meet market demand (Tian et al. 2018). The evidence from USFS FIA data and research to date suggest that the impact of bioenergy demand on total forest area is likely to be marginal relative to other drivers that determine forest area (Dale et al. 2017). If there is a notable effect, increasing woody biomass demand for energy is expected to facilitate small increases in forest area in the long term. Thus, whereas there is uncertainty, the assumption to keep forest area constant is probably somewhat conservative.

ForSEAM solves for national price and regional harvest distribution under a specified biomass demand pathway (e.g., a linear increase from 0 to 65 million tons per year from 2021 to 2050). A concern is that increased demand for biomass could drive prices up to the point that harvests could exceed the sustainability constraints specified in Table 1.4. For this report, the highest level of demand for which prices for woody biomass do not exceed \$70 per dry ton (in 2022)

dollars) was selected to be consistent with the national mature-market reference price for energy crops (comparable to the reference price of \$60 per dry ton in 2014 dollars used in BT16). The resulting ForSEAM demand pathway is to harvest up to 54 million tons from timberlands in mature-market conditions (simulated as 2045). Relaxing this constraint to simulate biomass prices up to \$75 per dry ton suggest about an additional 30 million tons per year of Class 1 trees could be harvested, as shown in Figure 6.2. Risk associated with increased demand or deviating from the sustainability constraints modeled in ForSEAM is explored below.

Relaxing the assumption of exclusion of Class 1 trees (largest diameter) and increasing the demand pathway were simulated simultaneously. For SEAM models tree sizes as Class 1, 2, or 3. A Class 1 forest stand has an average DBH >11 inches, Class 2 has a DBH of 5–11 inches, and Class 3 has a DBH <5 inches. Results from the mature-market reference scenario suggest that increasing the mature-market demand target above 54 million tons per year (including 19 million and 35 million from logging residues and small-diameter trees, respectively) could drive market-equilibrium roadside prices above \$70 per dry ton, which could incentivize harvest of Class 1 forest stands for biomass. Figure 6.2 illustrates a scenario targeting 75 million tons per year of biomass from timberlands by 2050. This scenario drives prices high enough to incentivize the harvest of Class 1 trees for biomass after demand surpasses 60 million tons per year in 2044. Class 1 trees generally have two to three times the market value of Class 2 trees due to their suitability for higher-value dimension lumber products and longer growth period to maturity. Thus, using Class 1 trees is likely to be cost prohibitive for biofuel uses. For context, 35 million tons per year of small-diameter trees is about 11% of approximately 314 million tons per year of U.S. roundwood harvests for conventional forest products in 2019 (estimated from USFS 2023a).

While not incorporated in current ForSEAM scenarios, management of naturally regenerating forests using selective harvesting to maintain an uneven stand age with canopy structural complexity has been shown to be advantageous for carbon uptake rates, carbon storage, and the maintenance of ecological functions (Gough et al. 2021; Hardiman et al. 2011; Toda et al. 2023; Scheuermann et al. 2018; Murphy et al. 2022; Crockett et al. 2023). The research suggests that good management for some temperate forests can support increased harvests for both conventional timber markets and residual biomass, while maintaining net carbon uptake relative to unmanaged sites. The profitability of uneven-aged management of forests and plantations depends on tree species, residual basal area, and length of cutting cycle (Suseata et al. 2023), among other variables.

_

² For illustration, assuming \$70 per ton and a biofuel yield of 60 gallons per ton indicates a feedstock cost of over \$1 per gallon of biofuel, before logistics and conversion costs. Historical sawtimber stumpage prices in the range of \$50–\$60 per dry ton (timbermart-south.com, assuming 50% moisture content), plus an estimated \$20 per dry ton harvest cost, exceed \$70 per dry ton.

C1 Scenario with Sawtimber to Biomass Option for Public and Private Timberland: Public Values are Transparent

Figure 6.2. Example forest modeling results illustrating risk of exceeding \$70 per dry ton roadside. Producing more than 60 million tons of biomass from timberlands risks driving market prices higher than \$70 per dry ton at roadside and incentivizing production of Class 1 (C1) trees (i.e., >11-inch DBH) for bioenergy.

Relaxing the other forestry sustainability constraints under the base case also provided insights. For example, relaxing the logging residue constraint increased residue harvesting from 19 million to 25 million tons in 2050. For context, this is about 45% and 58% of the estimated 42 million tons per year of logging residues currently left in forests, respectively (USFS 2023b). Relaxing distance to roads or harvest intensity had little impact on production but decreased price in some outyears by up to \$4 per ton. Relaxing the constraint on clearcutting also had little impact on production or price but resulted in up to 3.4 million additional tons of biomass from Class 1 plantations. In sum, these results suggest that if biomass prices exceed \$70 per ton (dry basis, before delivery), biomass supplies from timberland could exceed about 55 million tons per year, and pressure could increase to deviate from sustainability constraints assumed in this analysis. For context, 55 million tons per year is less than 1% of about 22 billion tons of U.S. timberland growing stock (estimated from USFS 2023a). Given recent growth of woody biomass production in other nations, global competition is a key factor that is likely to moderate prices for woody biomass over the long term (e.g., Johnston and Kooten 2016; Aguilar et al. 2022).

As with agriculture, an important question is: Are forest managers likely to harvest residues within the constraints assumed in this report, or might they harvest beyond sustainable targets? Here we show that (1) sustainable residue retention and related good practices vary depending on environment and jurisdiction, (2) regionally limited field studies suggest that residues are not overharvested, and (3) mechanical and economic constraints generally prevent foresters from harvesting biomass beyond sustainable limits. Still, more studies are needed.

Several states are developing or have developed good management practices for residual biomass retention (Dirkswager et al. 2011; Titus et al. 2021). Residue retention targets range from at least 10% retained (Wisconsin) to 100% (part of Massachusetts), with most targets ranging from at least 20% to 33% (Titus et al. 2021, supplemental information). Notably, state retention targets are reported for the Pacific Northwest but not for other Western states or regions where rainfall is sparse (Titus et al. 2021). In fire-prone Western forests, rather than targets for residue retention, targets for biomass removals are set to bring total forest biomass down to recommended forest biomass density or stocking rates to improve productivity and fire resilience (North et al. 2022; USFS 2022).

Spatially explicit residue removal constraints could be imposed in forest models of biomass production, such as ForSEAM. The Forest Stewards Guild (2023) publishes regional forest biomass retention and harvesting guidelines. Some states caution harvesters against removal of biomass from specific soil types, such as poorly drained or low-nutrient soils (Benjamin 2010; Bronson et al. 2014), and this guidance could be reflected in model assumptions. The residue retention limit in this report is conservative for most environments.

Residues are not typically overharvested. Studies of effects of biomass versus conventional harvest sites in Virginia found greater residue removal at biomass sites than conventional sites but still sufficient downed woody debris and heavy slash to ensure best management practice (BMP) implementation related to erosion (Garren et al. 2022; Hawks et al. 2023; Barrett et al. 2016a). Similar results were documented in Michigan when historical records across 40 years were compared for whole-tree (including residue removal) and stem-only harvests (Premer, Froese, and Vance 2019). More importantly, whole-tree biomass removals did not impact stand productivity relative to stem-only removals. Following biomass collection, quantities of remaining downed woody debris averaged 10.98 tons/acre in the mountains (Garren et al. 2022) and 10.22 tons/acre in the Coastal Plain (Hawks et al. 2023). Residues and slash piles remaining in the Piedmont covered about 12% of the area (Barrett et al. 2016a).

Concerns about overharvesting forest residues often overlook the fact that harvesting technology and low prices, along with market requirements for clean, high-quality biomass, limit economic and technical feasibility of excessive residue removal (Premer, Froese, and Vance 2019). For example, large quantities of woody debris (about 18 tons/acre in Missouri) remain even where there are no removal restrictions (Kabrick, Goyne, and Stelzer 2019). Furthermore, methods to ensure that woody debris is retained are not specified in guidance documents, and the quantification of debris remaining is challenging (Fritts et al. 2014). Many studies show that retention recommendations are exceeded (i.e., far more debris is left following biomass collection) without deliberate effort (see references listed in Premer, Froese, and Vance 2019). In the Southeast, debris collection is limited by current operational and economic efficiencies rather than by less restrictive limits in the biomass harvest guidelines (Fritts et al. 2014). The minimum volume of residues retained in a North Carolina field study was three times the volume

recommendation for the Piedmont and Coastal Plain physiographic regions (Forest Guild Southeast Biomass Working Group 2012).

Surveys find that both social and economic factors influence whether forest landowners are willing to harvest biomass (Butler et al. 2010; Gruchy et al. 2012; Hodges et al. 2019). For example, Hodges et al. (2019) find landowners consider the offered price along with other land management and conservation goals. However, information about the quantities of logging residue that forest owners and managers are willing to harvest or retain is limited, and survey results are complicated by variable interpretation of terminology. Some landowners may not be willing to harvest logging residues at all (Swinton, Dulys, and Klammer 2021). Others might be willing to collect a large quantity of residues, given an adequate price (Wolde et al. 2016). A financial analysis of forest biomass in Montana showed that harvesting can expand farther from bioenergy facilities, including along unpaved roads, if prices are high (Jones et al. 2013). Yet nonindustrial landowners may not be aware of technical constraints on residue removal, and some landowners may not be aware of applicable BMPs (Hodges et al. 2019). Forest management goals are affected by ownership tenure, history, role of hunting and other uses, whether land was purchased or inherited, size of forestland, forestland ownership objectives, and demographic features like household size and education (Hodges et al. 2019; Wolde et al. 2016).

6.3 Review of Potential Environmental Outcomes

Environmental implications of the further production and use of biomass in the economy go beyond the factors included among the sustainability constraints above. Here we present several categories of potential environmental outcomes associated with producing and harvesting agricultural and forest biomass, including plausible outcomes that may result depending on the degree to which producers choose to follow good management practices. This section addresses several specific environmental outcomes that may be affected by the adoption, or lack thereof, of sustainability practices: LUC, food availability, water consumption, air quality, and biodiversity. If products of biomass are needed for GHG reduction strategies, "what is the most effective and least harmful way of doing so?" (Pierrehumbert 2022).

6.3.1 Good Management Practices

Good management practices are recommended approaches that contribute to progress toward environmental sustainability of biomass production and harvesting. Management practices included in the modeling of potential biomass and termed "sustainability constraints" (Section 1.3) are a first step. Good management practices balance multiple societal goals such as improving environmental conditions or food security with the economic and productivity goals of producers.

Good management practices are sometimes documented as "BMPs" and may be officially designated by cognizant organizations. BMPs aim to be cost-effective, practical, and generally accepted. Some guidelines and certification processes are voluntary, context-specific, and just one way to do things (Lattimore, Smith, and Richardson 2010). Numerous good practices are

available for agriculture and forestry, as well as for microalgae (Efroymson et al. 2021). Most BMPs are designed to protect water quality, but good management practices go beyond water quality. General good practices to ensure sustainable biomass production and use were recently developed under the Clean Energy Ministerial (Biofuture CEM 2023), emphasizing the importance of local context and engagement of local stakeholders. We use the general term "good management practice," except where BMPs are published and clearly recognized in the context of a specific activity and jurisdiction.

Good management practices can be used to refine model assumptions and outputs. Some practices may increase the price or reduce the quantity of potential biomass. On the other hand, some management practices, like the use of irrigation where sufficient water is available, could increase the quantity of potential biomass compared to quantities in this report. Some good management practices could serve as future sustainability constraints for modeling biomass or lead to biomass that is even more sustainable than the biomass in this study. Some practices are implemented at spatial scales much smaller than county-level simulations. The management practices highlighted below are examples, not a comprehensive review.

6.3.2 LUC

Land can provide simultaneous services (e.g., food, energy, species habitat), but land is a limited resource, and concerns about competition for land are growing (Searchinger et al. 2023). Therefore, research including biomass and bioenergy studies attempts to identify and apportion causes of LUC (Oladosu et al. 2012; Efroymson et al. 2016) and to quantify its environmental and human impacts (Robertson et al. 2017; Dunn et al. 2017). Land use, which typically includes land cover and land management, is defined by the IPCC (2022) as "the total of arrangements, activities and inputs applied to a parcel of land," and any change in these arrangements, including governance and zoning, is considered LUC.³ Sustainability constraints applied to biomass models in this report are intended to support changes in land cover and management that are beneficial for societal goals and environmental outcomes. In other words, the biomass production is based on beneficial LUC.

The primary type of land change associated with the potential biomass supply estimates in this report consists of changes in agricultural land management practices, with modeling results indicating increases in land area under perennial crop cover and in productivity. The results show that energy crops are economically competitive only where conventional agricultural crops offer marginal returns (Figure 6.3). Change is minimal in areas where conventional crops have a comparative advantage, such as in the Corn Belt. It would be unreasonable to assume that most corn fields will transition to perennial grasses if it is not profitable to do so (Clark et al. 2013).

To model compensation for displaced forage production on pastureland, the agricultural modeling with POLYSYS includes assumptions of management-intensive grazing (described in

-

³ LUC includes any change in land cover, management, or function associated with human activities. In this report, indirect or induced LUC is considered a part of total LUC.

the appendix to Chapter 5).⁴ To estimate sustainable supply potential, change in primary land use was not permitted, and thus interactions between land in agricultural use and forestland were not modeled. Agricultural land available for biomass may depend on crop yields, livestock yields, and trends in dietary patterns and consumption of animal products (Donnison et al. 2021).

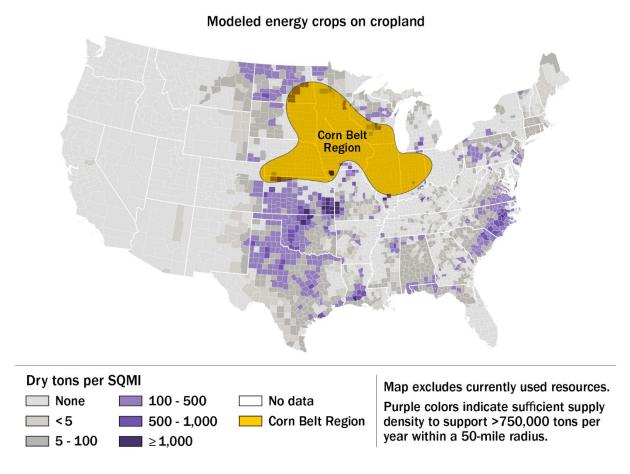


Figure 6.3. Spatial distribution of purpose-grown energy crops under the mature-market medium reference scenario on cropland, illustrating the comparative economic advantage of commodity crops in the Corn Belt

6.3.2.1 LUC-Related Concerns and Analytic Approaches

A specific concern about LUC is that expanded biomass production for bioenergy will directly or indirectly lead to the loss of grasslands, forests, and other carbon-rich ecosystems. Changes in land cover and management associated with biomass production can occur directly on the lands where biomass is grown and harvested or indirectly on distant lands through market-mediated effects such as higher commodity prices and shifts in trade flows. Bioenergy-induced LUC and the extent of its effects are typically estimated through modeling (Searchinger et al. 2023; Lark et al. 2022; Clark et al. 2022) and represent a great source of uncertainty regarding the carbon intensity and sustainability of biomass production. Land management and land cover influence

-

⁴ Access BT23 appendices at www.energy.gov/eere/2023-billion-ton-report.html.

GHG emissions, food security, biodiversity, water quality, and water quantity, which are discussed later in this chapter.

Inferring and testing causal relationships between biomass and LUC may help analysts better estimate the effects of biomass production and use. However, to date, few papers have attempted to quantify causal connections between biomass production and LUC (e.g., Li, Miao, and Khanna 2019; Oladosu, Kline, and Langeveld 2021; Lee et al. 2021; Chen and Khanna 2018). The challenges of attribution analyses are discussed in *Biofuels and the Environment: Third Triennial Report to Congress* (Clark et al. 2022).

Results of LUC simulations depend on comparing a range of bioenergy scenarios with different reference or counterfactual scenarios (Koponen et al. 2018). A transparent land reference is especially important for determining results of bioenergy assessments (Koponen et al. 2018).

6.3.2.2 LUC-Related Models, Assumptions, and Data

Outputs of models of bioenergy and LUC are sensitive to assumptions (e.g., Khanna, Rajagopal, and Zilberman 2021; Oladosu et al. 2012). Some types of assumptions are unverifiable, but others can be tested empirically (Field 2021). Assumptions about the role of crop prices in LUC, for example, are in dispute (Persson 2016). Modeling is also founded on different assumptions about land ownership and management (Daioglou et al. 2020; Daioglou 2022; Efroymson et al. 2016; Kline et al. 2011). Agricultural land needs of the future are uncertain, and biomass crop yield improvements related to technology improvement and climate change are also the subject of debate (Field et al. 2020; Aggarwal et al. 2019; Zilberman 2017). Assumptions about coproducts are critical for estimating LUC attributable to biofuels and other end uses of biomass (Szabó 2023). Agricultural subsidies and programs such as the USDA Conservation Reserve Program (CRP) vary over time and are difficult to incorporate in models but are widely recognized to influence cropland area and prices in the United States (Taheripour and Tyner 2014; Frisvold 2004).

The concept and measurement of LUC are dependent on the model and user-selected parameters (e.g., land categories, definitions, time periods). Change estimates vary widely depending on the points in time being compared and specific geographic areas included in an analysis, in part because land cover and management associated with agriculture and forestry are extremely dynamic, as illustrated in Figure 6.4.

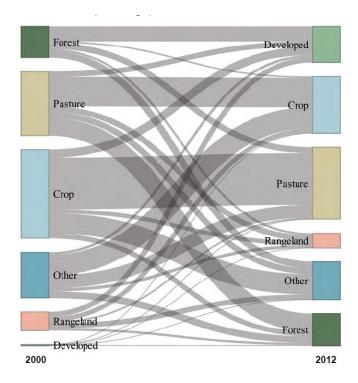


Figure 6.4. Gross LUC in the CONUS from 2000 to 2012. For land moving out of a specific land use in 2000 (bars on left), the width of the gray flows indicate the relative area moving into each new use in 2012 (bars on right).

Source: Riitters et al. 2023

Variable land cover classifications affect LUC estimates (Singh et al. 2017). Variability from year to year in reported acreage in different categories used by the USDA Census of Agriculture (USDA 2019)—including idle, summer fallow, non-cultivated, and harvested cropland—and discrepancies in classification due to field boundaries, changing remote sensing technologies, and other factors can result in a range of ± 20 million acres in reported cropland in a given year (Wang, Wander, et al. 2022), further complicating LUC analyses. Independent of classification errors, the Census of Agriculture finds that harvested cropland varied by ±20 million acres around a 305-million-acre midpoint, and total cropland area decreased slightly (-10 million acres) from 2007 to 2017 (Clark et al. 2022, Figure 5.3), while harvested cropland increased slightly (+10 million acres). The increase in harvested acres reflects the expiration of contracts paid to farmers to take cropland out of production under federally funded set-asides such as the CRP. Thus, LUC estimates depend on the time periods and data sources selected for analysis, how CRP lands are classified, and how uncertainty is considered (Copenhaver et al. 2021). For example, some studies focus on the recent expansion of cultivated crops and calculate LUC for any return of CRP grassland to its prior use (cultivated crops) (Lark et al. 2020). Others focus on the persistent loss of farms and prime cropland to urban and other developments (Francis et al. 2012; Hunter et al. 2022). Further, as discussed above, literature establishing causal historical connections between cropland change and biomass or bioenergy production is preliminary and inconclusive.

The gaps and uncertainties associated with land cover and management data, aggregation, and definitions required to assign land "use" classes, as well as choices of model assumptions, illustrate why model results associated with LUC have large margins of uncertainty. For example, an analysis sponsored by the EPA estimated that between zero acres and a maximum of 2 million acres of new cropland (or 0%–0.5% of total cropland) are attributable to the RFS (Clark et al. 2022).

Because LUC modeling is dependent on multiple assumed relationships and general land use classifications, minor differences in approach lead to widely disparate estimates of LUC impacts of biomass and bioenergy production (e.g., Scully et al. 2021; Broch, Hoekman, and Unnasch 2013) with contrasting conclusions—i.e., that highly detrimental (Searchinger et al. 2008) or beneficial (Donnison et al. 2021; Oladosu et al. 2012) effects associated with land and GHG emissions are likely. Modeled estimates of indirect LUC attributable to bioenergy production are unverifiable (Babcock 2009; Smith et al. 2014; Scarlat and Dallemand 2019). A recent EPA literature review of biofuel carbon intensity modeling found widely varying LUC, as well as overall GHG emissions results, varying with study, modeling framework, and scenario assumptions for both corn starch ethanol and soybean oil biodiesel (EPA 2023b).

6.3.2.3 Cropland, Forest, and Grassland Areas and Interactions with Commodity Prices

Crop price and acreage responses in models are influenced by elements that impact extensive and intensive responses. The extensive response is the addition of new land, and the intensive response is the intensification of existing agricultural land by improvement in technology, the introduction of double cropping, or other practices to improve yields. Reviews by Babcock (2015) and Khanna, Rajagopal, and Zilberman (2021) present theoretical and empirical evidence of the importance of intensification in the response of prices to changes in biofuels demand and on the response of cropland.

Modeling results related to price and LUC can be sensitive to assumptions in the dynamics of the response to the extensive and intensive margin. Whereas elasticity factors have been applied to perform LUC modeling since the early 2000s (Hertel et al. 2010), the price elasticities that determine LUC responses in the models are based on sparse data (Lambin and Meyfroidt 2011).

One limitation of this billion-ton report is the assumption that agricultural prices have zero impact on the intensification of land use, and therefore on increasing yields. Consequently, model results could overestimate the increase in crop prices. However, the crop yield improvement assumptions in the low, medium, and high mature-market scenarios in POLYSYS could represent future crop intensification (DOE 2009), and the management-intensive grazing described above represents a type of intensification on pastureland.

An example of the importance of the intensification can be obtained by looking at the commodity crop price increase in the \$70/dry-ton, mature-market high scenario, in which the price of corn compared to the mature-market medium reference case drops from \$4.20/bu to

\$3.82/bu. As a result of this crop intensification, the quantity of the biomass produced increases from 575 million tons per year to 838 million tons per year.

Regarding causation, some studies find that U.S. biofuel policies or corn ethanol production are drivers of higher crop prices and cropland acreage expansion (Li, Miao, and Khanna 2019; Lark et al. 2022), and others find no significant influence of U.S. corn ethanol production as a driver of LUC via the causal mechanisms of higher prices or displacement of exports (Oladosu, Kline, and Langeveld 2021). The expansion of total agricultural land may be more influenced by non-price elements than by commodity prices or bioenergy markets (Zilberman 2017; Kline et al. 2011). Land tenure regimes, government development policies, agricultural subsidies, infrastructure development, existence of production contracts, policy incentives to convert nonagricultural land (i.e., primary forest and natural pasture), and other localized sociopolitical and economic factors are important drivers of LUC (Kline et al. 2009, 2015; Kline and Dale 2020).

Under the mature-market medium scenario at a biomass price of \$70 per dry ton in Chapter 5, 398 million tons per year of energy crops are produced. This production is on 76 million acres of agricultural land, including 26 million acres of cropland and 50 million acres of pastureland (Figure 5.9). Farmers are expected to produce crops that have local comparative economic advantage. Thus, modeling in Chapter 5 explores likely interactions with U.S. conventional crop markets. Under modeled price impacts of the mature-market medium scenario, wheat has the largest price increase (19%), followed by soybeans (9%) and corn (5%), compared to the extended USDA baseline. This results in a weighted average price increase of 6% (Figure 5.11). In all cases, these price increases are far below the price spikes experienced in 2007–2008 and 2011–2012. These price increases, and the low total U.S. agricultural land price elasticities reported by Barr et al. (2011)⁵ and Roberts and Schlenker (2013), suggest land use responses to changes in price may be relatively inelastic. Li et al. (2023) analyzed data from USDA and reported that for the last 20 years or more, the U.S. aggregate cropland remained relatively constant between 2000 and 2021. Results also suggest there is an inelastic response to price, but there is a trend of increasing acreage for corn and soy production as a replacement for other crops in the 1980s (USDA NRCS 2023b). The historical data reported in the Food and Agricultural Policy Research Institute's 2023 agricultural outlook show that annual variations in U.S. land use for major crops, hay, and CRP for the last 20 years have been in the range of ±0.3% despite significant crop price variations (FAPRI 2023).

⁵ Barr et al. (2011) found that the elasticity of total land used in agriculture with respect to agricultural prices is 0.03, and in Brazil the same elasticity stabilized at 0.05 after 2000, even in the presence of soaring prices. One additional finding is that the elasticity of total land use in Brazil is much lower when pastureland is included than when only crops are considered; this indicates a significant shift from pasture to cropland and could indicate a small impact on deforestation. A later econometric study by Roberts and Schlenker (2013) found similar results for the cropland elasticity in Brazil, but significantly higher (0.28) for the United States. However, when they introduce set-asides and land retirement programs, the supply response drops sharply, and it is inconclusive. This remains an area of uncertainty in the literature.

Economic theory suggests that the risks of induced LUCs are higher as prices for commodity crops increase. These risks are uncertain and unquantified in this study. Figure 5.11 shows that commodity crop price impacts under the \$70/ton, mature-market medium scenario are in the range of approximately 5% to 19%, a wide range that varies both by crop and the level of biomass demanded. These simulated price responses reflect the effects of changes in the demand for agricultural land, while other factors are assumed to be held constant. Despite persistently increasing global demand, long-term trends for corn, wheat, and soybean prices show declines in real terms. The fall in real prices is driven mostly by the intensification of agricultural land; 95% of global food growth has come from the increase of output per hectare (Maletta 2016). Because the current modeling approach includes only changes in land use in the United States, the global intensification or extensification of agricultural lands (including both cropland and livestock pasture) into nonagricultural lands and associated environmental impacts resulting from these price increases cannot be quantified in this study. Impacts on non-U.S. commodity consumption, production, and demand are not quantified in this study and could range from small to very substantial, although that is an area of substantial uncertainty.

Local policies, technical assistance, and financing are among factors that influence whether production intensifies and allows for expansion of conserved areas (as occurred in most highincome nations over the past 50 years), or if agriculture expands and impacts forests and potentially biodiversity (as occurred in nations with less stable governance and land tenure regimes). Characterizing potential impacts of increased commodity prices on forests is complex, as effects vary greatly depending on local context (Zabel et al. 2019; Kline et al. 2015). Global commodity prices influence crop choice, but there are various factors that lead to deforestation including local drivers (Kline and Dale 2020). The fieldwork required to determine actual causes of deforestation and changes in biodiversity is difficult, costly, and often dangerous. Thus, most published research is based on remotely sensed land cover data, correlations, and models that do not always incorporate factors such as local land acquisition customs, governance, security, property rights, illegal logging, incremental forest degradation, wildfires, or land invasions (Efroymson et al. 2016; Kline et al. 2009). A recent analysis by Brazilian researchers illustrates the critical role of local governance in Brazil, independent of agricultural commodity prices (Rochedo et al. 2018). For these reasons, it is not possible to determine with certainty how a small increase in U.S. commodity prices could affect forests, but evidence suggests that any effects, whether beneficial via intensification or detrimental via extensification, and also have uncertainty similar to other factors impacting forests, such as those related to changing climate, including sea level rise, extreme weather events, and wildfires (Kline and Dale 2020; Kline et al. 2015). Wildfire-burned areas, for example, are trending upward in the United States (Salguero et al. 2020).

Corn ethanol and, to a lesser extent, soybean oil biodiesel have been the focus of simulations of future market-mediated impacts of potential biomass-induced agricultural price increases on forest extent. This literature suggests a very wide range of potential global impacts (EPA 2023b) whose uncertainty would increase if energy crops were planted. A recent large-scale attempt to

understand such impacts, the Stanford Energy Modeling Forum's EMF 33 study, also suggests a very wide range of potential LUC impacts associated with cellulosic biomass. Further research is needed to better quantify the range of potential market-mediated impacts of energy crops compared to those of corn- and soy-based bioenergy.

In addition to modeling energy crop production on cropland, results in the mature-market medium reference scenario at a price of \$70 per ton of biomass include energy crop production on 50 million acres of pastureland. This represents 12% of the 415 million acres of pastureland on farmland, or 8% of the 655 million total acres classified as grassland pasture and range by the USDA's National Agricultural Statistics Service (USDA 2014).

In light of studies that attempt to quantify grassland-to-agriculture transitions in recent years (Mladenoff et al. 2016; Lark, Salmon, and Gibbs 2015; Lark et al. 2019, 2020; Comer et al. 2018; Gage, Olimb, and Nelson 2016), the question arises whether energy crop production might further threaten grasslands. Several studies document correlations between conventional biofuel production and recent transitions of grassland to cultivated cropland in the United States (e.g., Li, Miao, and Khanna 2019; Lark et al. 2020). Researchers have identified grasslands likeliest to transition to agriculture in the future (Gage, Olimb, and Nelson 2016; Olimb and Robinson 2019) based on soil, climate, and topographic variables. Others acknowledge that commodity prices and revenues are likely to influence land cover transitions as well (Rashford, Walker, and Bastian 2011). However, estimates of extents of transition have large uncertainties (Rashford, Albeke, and Lewis 2013; Singh et al. 2017). Little research, if any, projects potential effects of energy crop expansion on grasslands. Environmental consequences will depend on the types of crops, management practices, and conditions of the grasslands. Better understanding of causal relationships that influence cropland expansion could help direct future conservation and energy policy (Olimb and Robinson 2019).

6.3.2.4 Sustainability Constraints and LUC in BT23

BT23 scenarios are based on sustainability constraints applied to the agricultural (Table 1.3) and forest (Table 1.4) model parameters and land classes. The analyses attempt to minimize transformation of new lands, exclude biomass harvest in administratively reserved forestlands, and apply practices (e.g., conservation, no tillage) that support or improve important ecosystem functions and services. Agricultural and forestry lands remain fixed in the agricultural land model (POLYSYS, described in Chapter 5). The restriction that no forest or pastureland may transition to annual cropland is assumed so that estimates of potential biomass in this report do not rely on deforestation or other transition of natural land in the United States. However, this modeling restriction does not ensure that these transitions will not actually happen. The constraints could drive intensification, but that is not endogenously modeled.

Some concerns about induced LUC are addressed in BT23 scenarios by ensuring that primary demands (food feed, forage, and fiber, Table 1.3) are met in tandem with additional biomass production while demonstrating the potential to expand perennial cover in regions of lower-profit

(economically marginal) pasture and croplands. The bioenergy scenarios result in higher land productivity overall. Food security is addressed in more detail in Section 6.3.3.1.

The constraint of avoiding planting energy crops, or crops in general, on nonagricultural land (Table 1.3) is consistent with observations that overall acreage in agricultural production is not sensitive to price changes in ranges considered here (Dunn et al. 2017). Cultivated agricultural area in the United States fell by 70 million acres between 1982 and 2007 and then rebounded by 10 million acres from 2007 to 2017 (USDA NRCS 2023b). Government subsidies and land set-aside programs exert large influence on crops and total area under cultivation in the United States (Frisvold 2004). Thus, while cultivated cropland area increased by 10 million acres from 2007 to 2017, more than 13 million acres were released back to farmers for potential cultivation because of expiring CRP contracts over the same period.

There is no way to ensure that biomass production will evolve following assumed constraints and land distribution illustrated in Figure 6.3. Monitoring land cover, land management, and associated environmental effects, combined with public access to transparent and consistent reporting, are important steps to help identify if problems arise that merit corrective action. Timely monitoring can support safeguards and management to minimize potential detrimental changes in land cover and management.

6.3.2.5 Moving Forward with LUC Studies and Good Practices

Additional research is needed to verify historical changes in land cover and land management, and to discern causal drivers. Quantifying LUC involves uncertainties but is nonetheless important. The uncertainties underlying LUC models are irreducible unless verifiable land cover categories are applied consistently to understand historical trends in conjunction with analyses to identify local drivers for land management decisions, focusing on areas where critical changes occur. Research is also needed to explore the potential magnitude and impacts of cropland extensification into nonagricultural lands in response to biomass production scenarios; this could involve linking POLYSYS and ForSEAM. Balboni et al. (2023) conclude that research is needed to go beyond traditional economic modeling approaches, to employ rapidly improving remotely sensed data on land cover and carbon stocks, and to collect field data on local variables that influence LUC such as local political cycles, accountability, subsidies, enforcement capabilities, and land insecurity.

In addition, constructive resolution of questions about LUC requires testing, especially place-based testing, of causal inferences related to biomass and LUC. A basic question relates to the direction of causation. Some statistical causal analysis studies based on empirical data (e.g., Katrakilidis et al. 2015; Natanelov et al. 2011; Roman, Górecka, and Domagała 2020) find that ethanol production quickly responds to, rather than causes, price changes. Monitoring land cover conditions in near real time is now technologically possible and can help distinguish effects of biomass production from effects of other agents. Understanding causation can help analysts identify effective solutions that promote beneficial changes in land management and associated

ecosystem functions (Daioglou et al. 2020; Daioglou 2022; Efroymson et al. 2016; Kline et al. 2011).

Good practices can mitigate concerns associated with LUC. For example, growing perennial energy crops on degraded grassland or low-fertility lands can provide ecological benefits and reduce the likelihood that forest or grassland transition to annual cropland (Gelfland et al. 2013; Robertson et al. 2017; Daioglou et al. 2020). In a study in the Northeastern United States, landowners who owned marginal lands were more likely to plant energy crops and for a lower price than landowners who did not own these marginal lands (Jiang, Zipp, and Jacobson 2018). The use of agricultural and forest residues reduces competition for land (Calvin et al. 2020; Daioglou et al. 2020). Investments in integrated production systems, infrastructure, and technologies that improve land management and productivity can convert concerns about competition to synergies and co-benefits (Dale et al. 2014; Souza et al. 2017; Kline, Msangi, et al. 2017). Protecting lands with high carbon or biodiversity value is a good practice (Daioglou et al. 2020) that is a sustainability constraint in POLYSYS and ForSEAM. Other opportunities for beneficial LUC are not considered in BT23 but may merit additional study. Many of these add costs but could benefit from payments for ecosystem services, in addition to biomass supplied. For example, one recent study found that the technical potential of biomass from diverse sustainable sources—such as biomass grown and managed as part of land reclamation from contaminants, restoration of former mining lands, removal of invasive species to improve habitat for native or endangered species, improved regulation of runoff in catchment basins, and biomass removal (rather than mowing, herbicides, or fire) to manage vegetation in powerline and road rights-of-way—is estimated at half a billion tons per year or more (Field et al. 2023). The same study found that another 100 million metric tons of biomass could be generated by reducing wildfire risks in the West. These biomass resources do not compete for land for other productive uses. Information describing and quantifying adoption of good practices will lead to more realistic future scenarios of biomass production.

Good practices that safeguard sustainability need to be appropriate for local conditions; consider the practical, place-based opportunities and constraints; and be developed with stakeholders who are informed by reliable monitoring and evaluation data to support continual improvement. Biomass markets that provide performance-based incentives support safeguards by promoting investment in technologies for more sustainable agricultural practices that reduce supply chain emissions and other detrimental effects.

6.3.3 Good Management Practices in Agriculture

Many good management practices, including guidelines and official BMPs (usually termed conservation practices), have been developed for agriculture. The Natural Resources Conservation Service is the main source of agricultural BMPs for water and soil quality. U.S. states and researchers from the National Corn Growers Association, Water Research Foundation, and United Soybean Board have contributed to BMPs. However, the knowledge base to support the development and implementation of good practices may still be low for some energy crops.

A few studies of adoption of good management practices have been undertaken in agriculture. The USDA found that more than 80% of farm acreage has adopted tillage, nutrient management, and irrigation management practices. In the same study, cover crops were found to be adopted by only 40.5% of farmland and 61.3% of farmers (USDA NASS 2022). In contrast, Wade, Claasen, and Wallander (2015) found much lower adoption rates for good practices by farmers growing annual commodity crops (e.g., 40% of combined acreage of corn, soy, wheat, and cotton in notill/strip-till in 2010–2011). Adoption rates differ by region and crop, with adoption rates high for some crops (e.g., soy) and some regions (e.g., Southern seaboard) (Wade, Claasen, and Wallander 2015). Factors that determine adoption by farmers include information, profits (farm income and off-farm income), land tenure, farm size, experience, and education (Liu, Bruins, and Heberling 2018). Access to good information, government subsidies, environmental consciousness, and profits associated with practices leads to greater adoption of BMPs (Liu, Bruins, and Heberling 2018), and additional social science research can increase understanding of how to increase adoption of good practices (Delaroche 2020). BMP compliance can be affected by regulatory push and community pull (Welch and Marc-Aurele 2001). The performance of certification programs has not been evaluated (Liu, Bruins, and Heberling 2018). Rates of adoption of good practices for farmers growing energy crops or harvesting crop residues (as mentioned above) are uncertain. Identifying decision makers who could increase the likelihood of compliance with good management practices and regulations for harvesting stover would be important. Decision makers could include farmers, harvesters, stover aggregators, biomass users (Kemp 2015), or policymakers.

6.3.3.1 Food Security

Food security questions in the context of biomass are not new, and guidelines have been published to build synergies between the development of biomass markets, food security, and other sustainable development goals (e.g., FAO 2014). BT23 estimates potential biomass while meeting food, feed, and fiber needs concurrently. Integrated modeling of the bioeconomy helps inform strategies to avoid unintended impacts of LUC on food crops (Daioglou et al. 2020).

As specified above and in Chapter 5, production of nearly 400 million tons of energy crops per year under the mature-market medium scenario could cause commodity crop prices to increase, raising farmer returns above the costs of production and raising corn prices 5%, wheat prices 19%, and soy prices 9%. These are modest increases compared with those observed in 2008, 2012, and 2022. Associated impacts on food prices would be low given that food commodities comprised an average of 16.6% of the price of finished food prices from 1993 to 2022 (USDA ERS 2023), with the remaining 83.4% attributed to off-farm costs. Thus, commodity price increases in the range of 5%–20% would correspond to finished food price increases of 0.8%–3.3%.

Key determinants of hunger are not commodity prices, but rather the political and governance conditions that influence access to social safety nets in times of need (e.g., crop failures, natural disasters) and, of course, poverty (Kline, Msangi, et al. 2017), with the rural poor consistently at

highest risk (FAO 2017). As noted in *Enough: Why the World's Poorest Starve in an Age of Plenty*, people are at risk of food insecurity and hunger in modern times not because of a lack of global food production, but rather because of poor distribution of wealth and resources (Thurow and Kilman 2009). Changes in commodity prices have a more direct effect on income for agricultural producers than for consumers. This can be beneficial for food security because more than two-thirds of global poor live in rural areas, and their incomes strongly depend on agriculture (World Bank 2015). Economic growth in the agricultural sector has two to four times the impact of growth in any other sector in reducing poverty (World Bank 2007, 2015). Consequently, increases in commodity prices paid to farmers improve farm wages and food security, and in countries in which agriculture provides a significant proportion of rural employment, these increases are likely to reduce overall poverty rates (Headey and Hirvonen 2023).

Integrating food crop and biomass crop production improves resource management (Kline, Msangi, et al. 2017). For example, the use of cover and intermediate crops is a good management practice that integrates food cropland and energy crops without requiring more land. Food concerns are also mitigated, as scenarios target croplands that are economically marginal because of relatively low productivity and higher operational costs. Expanding marketing options and allowing flexible end use of crops can help ensure sufficient food surplus to help meet unforeseen supply disruptions, along with ecosystem services, biofuel, and bioproducts (Vural-Gursel et al. 2021).

As shown in Chapter 5, the contribution of biomass production to farmers' total net market returns is projected to be \$27 billion/year, or 52% over baseline for the case of the mature-market medium scenario at \$70 per dry ton. These increased returns are generated by higher crop prices (26%), residue collection (9%), and harvesting of purpose-grown energy crops (18%). This not only offers a significant increase in income for farmers and rural communities, but also implies a reduction of government support and subsidies to agricultural income. Such an increase in crop prices could be expected to reduce the level of subsidized U.S. agricultural exports and contribute to increased agricultural incomes of farmers and rural communities around the globe. Increased rural incomes contribute to improved food security for the more than 800 million poor whose incomes depend on agriculture.

6.3.3.2 GHG Emissions

The carbon benefits of growing and harvesting energy crops, including uptake of CO₂ by vegetation and carbon sequestration by soils, were described above and in Chapter 5. We revisit the GHG emissions topic here to describe good management practices and remaining concerns. We acknowledge that it is impossible to predict the extent to which producers will choose to follow all good management practices, and adoption rates are not within the scope of this study.

Many recommended practices for mitigating agricultural GHG emissions are related to fertilizer management (e.g., Langholtz et al. 2021) and soil carbon sequestration. Purpose-grown, perennial energy crops generally have lower fertilizer requirements than annual crops, as

discussed below. Soil carbon can be enhanced through crop selection, harvesting practices, nutrient management, residue management, erosion control, and improved management on marginal or degraded lands. Growing perennial biomass on former cropland, for example, can improve sequestration of soil carbon (West and Post 2002). BT16 estimated SOC changes from simulated biomass, with benefits where potential deep-rooted feedstocks were simulated to grow (Canter et al. 2017). Life cycle and other analyses show that planting perennial crops provides greater GHG emissions reductions than corn (Farrell et al. 2006; Morales et al. 2015; Davis et al. 2012; Wang et al. 2012). Follett et al. (2012) describe management parameters for switchgrass that lead to increases in soil carbon in subsoil. Good management practices for residues led to many of the sustainability constraints in Table 1.3. Altering the plant microbiome for energy crops could lead to further carbon gains (Robertson et al. 2017).

More intensive crop management systems can reduce net GHG emissions, in part by allowing the succession of uncultivated lands to forests (Snyder, Bruulsema, and Jensen 2007; Barbier, Burgess, and Grainger 2010; Yeo and Huang 2013), as has occurred in the United States, especially in Eastern states (e.g., Thompson et al. 2013).

Existing literature suggests purpose-grown biomass may realize minimal to substantial net GHG benefits, depending on factors such as the initial site conditions, on-site management practices used, and the severity and direction of market-mediated impacts. Whereas market-mediated price changes for commodity crops were estimated in POLYSYS scenarios, potential impacts of price changes on net GHG emissions were not estimated. Further research will be needed to quantify these impacts. N₂O is the dominant GHG source from agriculture (on a warming potential basis) and the third-largest GHG source for the country as a whole (EPA 2023a). Thus, the question of whether biomass production scenarios will lead to higher or lower net N₂O emissions is important (Robertson et al. 2017).

N₂O emissions are highly variable and difficult to model. Fertilizer application rates and emissions factors for energy crops are among the largest uncertainties for projections of future N₂O emissions (Davidson and Kanter 2014). Therefore, additional field studies (e.g., poplar in Robertson, Paul, and Harwood [2000]) are needed to help researchers identify concerns and good management practices. However, there is strong evidence that perennial energy crops have lower N₂O emissions per area (Whitaker et al. 2018) and per unit of nitrogen applied (Field 2015) than annual cropping systems, likely due to their greater nitrogen use efficiency enabled by more developed root systems.

Few recommendations for biomass crop management are focused on N₂O. The source, application rate, timing, placement, and nutrient balance of fertilizer can affect N₂O emissions rates (Snyder, Bruulsema, and Jensen 2007), so optimizing fertilizer nitrogen use efficiency (Smeets et al. 2009; van Groenigen et al. 2011; Wang et al. 2015), increasing yield (Smeets et al. 2009), and possibly switching the form of nitrogen applied or using nitrification inhibitors (Smeets et al. 2009; Subbarao and Searchinger 2021) are good management practices. Practices

that reduce N₂O currently emitted from wet soils in the Corn Belt would also be important (Lawrence et al. 2021).

Fertilizer production is a GHG emission-intensive process, and the associated CO₂e is an important component of biomass production and the bioproduct life cycle, given the fertilizer needs of energy crops (Wang et al. 2012). Energy required to produce fertilizer through the Haber-Bosch process using fossil energy sources and process emissions are sources of CO₂ emissions, while the nitric acid production process also releases N₂O, which has a substantially higher global warming potential (Camargo, Ryan, and Richard 2013). GHG emissions could be reduced by using renewable energy for the process or by planting legumes as cover crops or in rotations to meet part of the crop nitrogen requirement (Camargo, Ryan, and Richard 2013; Northrup et al. 2021).

6.3.3.3 Water Quantity

Competition for water can affect biomass production or alter the preferred feedstock and possibly the total potential biomass in this report. Groundwater storage volumes are declining rapidly in many parts of the Ogallala Aquifer (Bailey, Schipanski, and Kisekka 2020), and demand is increasing in the Apalachicola-Chattahoochee-Flint Basin in the Southeast, which includes Atlanta (Schlef, Steinschneider, and Brown 2018). Warming temperatures and declining precipitation, along with population growth, are reducing water availability, especially for new uses (Wu et al. 2020).

Could the potential energy crops in this report use more or less water than the vegetation they replace, altering groundwater and surface water flows? Crop type, climate, and management practices influence water use (Ferchaud et al. 2015; Moore et al. 2015). Some energy crops (e.g., eucalyptus) use more water than others (e.g., switchgrass); deep-rooted perennial grasses and short-rotation woody crops grow well without irrigation (Gerbens-Leenes, Hoekstra, and van der Meer 2009; Wu and Ha 2017). However, studies show similar water use by maize and perennial systems in the Midwest (Hamilton et al. 2015; Abraha et al. 2015). A review of water use efficiencies suggests that the evapotranspiration rate of energy crops would have little negative impact on water balances in temperate humid areas (Robertson et al. 2017).

Concerns about irrigation (Stenzel et al. 2021) are important but not pertinent to BT23 model outputs because energy crops are not irrigated, a sustainability constraint in POLYSYS. Groundwater consumption for irrigation in this study could decrease largely because energy crops, which would replace some irrigated crops, are assumed not to be irrigated, as in BT16 (Wu and Ha 2017). The irrigation constraint was not relaxed in model scenarios, so we do not know how potential biomass supply or prices might be affected by irrigation. Some regions, such as some watersheds in the Ogallala Aquifer (Irmak et al. 2010), restrict the amount of water available for irrigation, and cooperative, dynamic management of this common water resource can lead to low to no groundwater depletion (Steiner et al. 2021).

Water requirements for processing biomass, which are not considered in POLYSYS modeling, may influence local market demand for biomass in a region. Some regions may have high biomass potential but possibly insufficient water for a biorefinery (e.g., the Great Plains). New biorefineries could diminish limited surface water and groundwater resources, especially in the Arkansas-White-Red River basin in the Great Plains, and also in the Republican River basin in the High Plains, the California Central Valley, and the Columbia-Snake River basin in Washington (Yang, Piao, and Cai 2022). In contrast, watersheds in the Midwest, the Mississippi Delta, Appalachia, and the Northeast have abundant water and potential biomass feedstock for bioenergy and bioproducts. Existing water supply infrastructure might need to be expanded to meet processing needs (Yang, Piao, and Cai 2022).

In water-limited regions, good management practices for water conservation need to consider competing demands for water resources and associated restrictions (Berndes 2002). For example, farmers in nearby counties that lack access to Ogallala groundwater employ management practices that are less water intensive and more drought resistant (Hornbeck and Keskin 2014). Wastewater or processing water could be used in some water-competitive or arid locations (Zema et al. 2012). Good water use management practices can include irrigation scheduling (if irrigation is used), as well as crop residue management and conservation tillage (to conserve soil moisture) (Texas Water Development Board 2005), which are important for maintaining soil carbon and promoting water quality as well. Good practices on water-stressed sites can include selection for drought-tolerant genotypes (Zalesny et al. 2019).

In flood-prone agricultural areas, deep-rooted perennial energy crops, including grasses and trees, can be an adaptation strategy (Jager et al. 2020; Langholtz et al. 2014). In addition to droughts, floods will likely increase in frequency in the future climate, and perennial crops are superior to annuals for controlling erosion during flood events.

6.3.3.4 Water Quality

Water quality can represent a benefit or a risk of producing and harvesting biomass, depending on the crop, location, and previous land cover and land management. Fertilizer requirements and related nutrient runoff tend to be lower for perennials like switchgrass than for annuals like corn. Similarly, perennial energy crops do not require as much herbicide or insecticide as annual crops (e.g., *Salix* spp. in Nordberg, Cederberg, and Berndes [2014]), and pesticide runoff from perennials is lower than for annuals. In contrast, transitions of grassland to energy crops would likely increase fertilizer use and could increase the use of herbicides, which are applied during establishment, potentially decreasing water quality in streams or groundwater. Trade-offs among water quality variables (nitrate, total suspended solids, and total phosphorus) were simulated in BT16, with short-rotation woody crops, for example, offering water quality benefits (Jager, Wu, et al. 2017).

Modeling of agricultural biomass resources in this report does not include constraints for protecting water quality, other than the residue retention targets and use of cover crops. For

example, in POLYSYS we do not exclude highly fertilized corn from riparian zones that exceed nutrient-related federal water quality criteria.

Good management practices would improve environmental effects by reducing the quantity of nutrients and sediments moving to streams. In biomass field and modeling studies, riparian buffers, cover crops, and switchgrass planting decreased nutrient and sediment loadings from annual cropland (Ha and Wu 2017; Brandes et al. 2018; Jager et al. 2023). These benefits, along with those of cover crops, slow-release nitrogen fertilizer, and tile-drain control, were also demonstrated in BT16 (Jager, Wu, et al. 2017). Minimizing the quantity of fertilizer is clearly a best practice. Harvest cutting height and timing can be optimized for water quality and to retain nutrients on-site (Ventura et al. 2012). For short-rotation woody crops, coppicing is typically done at the end of the growing season to retain nutrients (Ventura et al. 2012).

6.3.3.5 Air Quality

Air pollutant emissions from biomass occur at stages from field preparation through harvest, including chemical application and on-farm (or on-forest) transportation, along with transportation and preprocessing prior to the biorefinery or other end use. The full implications of the production and use of biomass will vary depending on many factors, including counterfactual assumptions and how the substitution effects are considered in terms of decreased fossil-related emissions. Inventories of seven non-GHG regulated air pollutants were estimated for BT16, not including upstream air emissions (e.g., from fertilizer production) (Warner et al. 2017). In BT16, about a quarter of U.S. counties growing the potential biomass were estimated to emit direct and precursor criteria pollutant mass emissions equivalent to 1% to 10% of the current National Emissions Inventory (Warner et al. 2017). The National Emissions Inventory is a triennial estimate of air emissions of criteria pollutants, their precursors, and hazardous air pollutants from emissions sources.

Emissions resulting from increased biomass feedstock production could pose challenges for local compliance with air quality regulations in some areas (Warner et al. 2017). Thus, Clean Air Act nonattainment areas—i.e., those with worse air quality than National Ambient Air Quality Standards—may affect if and how energy crops could be grown or harvested. In addition, an industrial facility converting biomass to fuel or other products may be collocated near biomass production and would create more air pollution (Lee et al. 2021). Current sustainability constraints in POLYSYS do not address air quality; if implemented, such model constraints could modify potential biomass quantities estimated in this report. However, locations of nonattainment areas can change as standards change and as industrial facilities are built and closed. So, whereas nonattainment areas could be excluded from the POLYSYS land base, they may be more dynamic than wilderness areas, wetlands, and other excluded areas.

Agricultural activities contribute to air quality issues in some regions of the United States, and air quality conservation measures, developed by the USDA Natural Resources Conservation Service and EPA, minimize wind erosion and machinery particulate matter generation (USDA NRCS 2012) and could be applied to biomass production. These include methods to maintain

soil surface cover (e.g., residue and tillage management, mulching, cover crops); minimize infield vehicle passes while tilling, planting, mowing, fertilizing, etc.; modify timing of operations; manage unpaved roadways; provide wind barriers; modify equipment; and manage fire and smoke. Additional good practices for farm machinery have been published, such as restrictions on idling time of farm machinery (Pennsylvania Department of Environmental Protection 2013).

Species and site selection may be important predictors of air quality in actual and potential biomass fields that represent good practices. In general, emissions for cellulosic feedstocks are lower than for corn grain (Warner et al. 2017). For example, isoprene, an ozone precursor, was not detected above a *Miscanthus* canopy (Copeland, Cape, and Heal 2012). Isoprene emissions at the scale of current poplar plantations in Europe do not significantly affect ground-level ozone concentration (Zenone et al. 2016). However, ozone was projected to increase under some conditions where the giant cane *Arundo donax* and short-rotation coppice willow, *Salix* spp., could be cultivated. (Porter et al. 2012).

Good management practices for reducing air emissions (per mass of biomass) include higher yields, lower tillage, and lower fertilizer and chemical inputs. Getting lightweight, bulky residues and grasses to a depot or biorefinery can take more truck trips than conventional crops. Using biomass more locally or using more fuel-efficient long-distance transportation methods (e.g., rail, densified biomass) could potentially decrease emissions from truck transport (Warner et al. 2017).

6.3.3.6 Biodiversity

How does biomass crop production affect the diversity of plant and animal species? The answer depends on whether and where land cover and management would be modified, as well as what land management practices are replaced. In this study, the structure of the POLYSYS model restricted the U.S. agricultural land base from changing. This study does not address the potential for impacts on biodiversity due to any biomass production-induced LUC in other nations.

Transitions to cropland from other land cover types such as grassland can reduce diversity of flora through fertilization (Werling et al. 2014) or diversity of fauna by altering landscape structure (Fletcher et al. 2011; Lark 2023). Changes from perennial cover (e.g., grasslands) to annual crops have negatively impacted biodiversity (LeDuc et al. 2022). Furthermore, the extent of fragmentation and the adjacency of cropland to valued animal species habitat are important factors determining biodiversity (Lark 2023). Crop management schedules may affect different species differently and can be designed to favor specific species of concern (Jager and Kreig 2018).

Growing energy crops on arable cropland can increase the abundance and diversity of birds and arthropods and microbial biomass and plant species richness (Werling et al. 2014; Donnison et al. 2021; Helms et al. 2020). Greater benefits were observed when land transitioned from arable land to short-rotation woody crops (e.g., poplar and willow), compared to grasses (*Miscanthus*, switchgrass, and prairie grass) (Donnison et al. 2021). The benefits may be dependent on

landscape heterogeneity. Grassland birds respond negatively to corn and soy planted in a North Dakota grassland region (van der Burg, Otto, and MacDonald 2023). Simulations of birds in BT16 showed varied changes in occupancy or richness depending on feedstock, climate, land use, and land management (Jager, Wang, et al. 2017). As in many simulations, high uncertainties were associated with the lack of empirical data for many species and regions. Effects of biomass production and harvesting on mammals is a research gap (Donnison et al. 2021).

Would conserving land to protect species limit the quantity of biomass potentially available? This study employed a model constraint in which many high-biodiversity lands (wetlands, wilderness areas, and legally protected areas) were excluded from production. Regulations keep biomass from being grown on protected lands, many of which are state- or federally managed.

The Conservation Reserve Enhancement Program and several state and local programs provide incentives to employ specific management practices in productive agricultural systems to "enhance critical threatened and endangered plant and animal species survival" and restore wildlife habitats (USDA FSA 2023). The Environmental Quality Incentives Program helps producers manage habitat for targeted bird species through selective use of crop planting and harvest timing (USDA NRCS 2023a). There are also state- and local-level programs to promote biodiversity conservation on agricultural lands where biomass is produced and harvested. Avoiding cultivation of nonnative or invasive energy crops on land with conservation value would be important (Robertson et al. 2017). Integrating prairie strips (i.e., native perennial vegetation) with row crops can improve abundance and diversity of birds, insect pollinators (Schulte et al. 2017), and some arthropods (Kemmerling et al. 2022).

6.3.4 Good Management Practices in Forestry

Good management practices are common in forestry, and their implementation would maintain or increase sustainability of potential forest biomass. Relevant forestry management activities relate to timber and biomass harvesting, site preparation, stream crossings, riparian management, road construction, and fire management (Shepard 2006; Southern Group of State Foresters 2018). BMPs can be mandatory in some states (Ice et al. 2004) and voluntary in others (Ice and Stuart 2001; Kilgore and Blinn 2004; Shepard 2006). Studies of compliance with BMPs are more common in forestry than in agriculture (Wang and Goff 2008; Ice, Schilling, and Vowell 2010), including for biomass harvesting (Barrett et al. 2016b). We describe good management practices for forest biomass harvesting below.

Several sustainability categories are not addressed below. It is important to note that harvesting biomass from forests has no impact on food security. Because Sun et al. (2017) estimated little change in water yields from thinning of forests for biomass in BT16, we do not review water availability. However, it is notable that when fuel treatments for wildfire risk reduction are undertaken in the West, water availability in streams or for vegetation may increase (Bart et al. 2020). Air quality effects and best practices are not addressed. Fuel use was the major source of ammonia and nitrogen oxides for logging residues and whole-tree biomass in BT16 (Warner et al. 2017). Sources of particulate emissions are fuel combustion and fugitive dust emissions.

Clearly, reducing fuel use would be a good practice for promoting air quality. GHG emissions from forestry are reviewed in BT16 (Canter et al. 2017). Life cycle emissions from production of forest biomass and especially residues are generally lower than for agricultural crops because of the lower quantities of diesel fuel used for site preparation and sparing use of fertilizer.

6.3.4.1 Water Quality

Water quality effects of harvesting forest biomass were roughly estimated in BT16 based on an empirical model. For example, sediment load for harvesting biomass from plantations was estimated to be less than 9 Mg/ha over 4.4 years (Rau et al. 2017), a rate much lower than that associated with agriculture, especially with BMPs (Hill 1991). Potential forest biomass estimates in this report do not reflect any constraints intended to protect water quality, though residue retention constraints, which minimize ground disturbance, are useful for that purpose.

The driver for development of most forestry BMPs is the Clean Water Act; thus, most federal BMPs were established to protect water quality by controlling nonpoint source pollution. State and nongovernment publications also recommend management practices to protect water quality. Most national forests and grasslands monitor implementation of BMPs.

Blinn and Kilgore (2001) reviewed state guidelines for managing and protecting riparian resources in forests. Most riparian guidelines include three components: width of riparian management zone, minimum quantity of trees remaining following timber harvest, and other management practices (e.g., management of forbs and grasses) (Blinn and Kilgore 2001), all of which can be implemented in biomass harvest zones (Shepard 2006). State guidelines vary, and some depend on the local or regional context (Blinn and Kilgore 2001).

BMP implementation in forests is generally high, including in a biomass harvesting context (Garren et al. 2022; Hawks et al. 2023). The overall national rate of BMP implementation in forestry was estimated in 2010 to be 89% (Ice, Schilling, and Vowell 2010). In one study, implementation of some BMPs at biomass harvest sites in Virginia was lower than for conventional harvests—these related to adequacy of streamside management zones and design and installation of stream crossings, roads, and skid trails (Barrett et al. 2016b).

6.3.4.2 Biodiversity

Woody biomass harvest, including residue treatment, can affect diversity of overstory and understory communities, potentially increasing them (Premer et al. 2016). Vertebrate biodiversity can be altered through changes in forest structure at the stand (e.g., canopy cover, residues) and landscape scales (e.g., distribution of stand ages following age-dependent harvesting) (Janowiak and Webster 2010; Donner, Wigley, and Miller 2017). Forest types, structural heterogeneity (including snags and down deadwood), and species life history traits would be some of the determinants of species diversity and related metrics. Forest harvest residues provide habitat for small mammals such as voles (Sullivan et al. 2011) and birds (Grodsky et al. 2016), and the abundance and richness of species may be dependent on the

quantity of downed woody debris. However, leaving too much forest debris in place can increase the risk of wildfires, an ecosystem disservice.

Biomass can be harvested using management practices that promote forest biodiversity. For example, habitats of rare and valued species that are not already excluded from harvesting (and the biomass simulations in this report) can be avoided. However, many habitat areas suitable for specific species occur at spatial scales smaller than the county-level resolution of ForSEAM, and most do not occur in production timberlands where ForSEAM is applied. Also, the timing and spacing of harvests that maintain biodiversity metrics (e.g., suitable wildlife habitat, number of avian species present) could be applied across broader areas. The timing of harvest can be conducted so that diverse ecosystem structure is maintained across the landscape. In the specific context of salvage logging in disturbed areas, there is a concern that mechanical operations could impede recovery of native species and increase invasion by nonnative species. Stands with the highest bioenergy potential may also have the highest recruitment of new seedlings and saplings that could be damaged (Barrette, Thiffault, and Paré 2013). Species that germinate by fire could be vulnerable to post-fire salvage logging (Knapp and Ritchie 2016). Timing salvage logging to mitigate adverse impacts on biodiversity would be important (Barrette, Thiffault, and Paré 2013).

Five principles have been recommended to guide the development of BMPs for biodiversity in forests: maintaining connectivity, maintaining landscape heterogeneity, maintaining stand structural complexity, maintaining aquatic ecosystem integrity, and aligning human disturbance regimes with natural disturbance regimes (Lindenmayer, Franklin, and Fischer 2006). These principles are compatible with biomass harvesting in forests. Some BMPs designed to protect water quality may have synergistic benefits, such as streamside management zones that protect wildlife habitat (USFS 2012). Evaluating potential environmental costs of biomass harvest from forests requires site-specific analyses, as there can be a wide range of benefits for biodiversity, ecosystem function, and other services in many situations (Premer et al. 2016; Kline and Dale 2020).

Many of these BMPs could be integrated in ForSEAM. However, most BMPs are site-specific and applied only in certain contexts and at subcounty scales. Thus, the practices could be more easily applied if the model were run at finer resolution.

6.4 Concluding Thoughts

Some studies question whether sufficient land (Searchinger et al. 2023) and water (Damerau, Patt, and van Vliet 2016) are available for both food and energy crops. Other studies suggest that what is lacking is good management (Woods et al. 2015; Kline, Msangi, et al. 2017). Overall, there is significant uncertainty regarding the degree to which producers will adopt good management practices and what environmental outcomes may result from the large-scale production of biomass.

Effects of biomass supply on GHG emissions, other environmental metrics, and food depend on context (Efroymson et al. 2013) and are affected by feedstock, management practices, climatic

regions, scale of deployment, reference land cover, land management, and energy systems, as well as by spatial and temporal scales (Calvin et al. 2020; DOE 2017). In this report, national biomass resource potential is quantified as a function of price, market maturity, and specified economic and environmental modeling assumptions, including constraints specifically designed to support more sustainable land management.

To test effects of deviating from sustainability constraints in the mature-market medium scenario under a reference price of \$70 per ton, we relaxed sustainability constraints in models specified in Chapters 4 and 5. Results suggest:

- The simulated production of small-diameter trees from timberland is bound by economic assumptions, competing market demands, and the \$70-per-ton reference price. A higher price could incentivize harvest of additional biomass from timberlands, some potentially from trees greater than 11-inch DBH. Expanding the permitted distance to road restriction also increases available forest residues.
- The simulated production of logging residues from timberland is estimated to increase from about 45% of total logging residues to 60% under the reference offered price of \$70 per ton. While there is always a possibility that excessive volumes of residues are removed relative to local site requirements, this analysis suggests that about 40% of logging residues in the forest is stranded due to economic or operational accessibility. Experience suggests that for forest biomass harvesting in at least some regions, machinery designed to meet market quality requirements for low ash and contaminants also supports the sustainability constraints assumed here.
- The simulated production of agricultural residues is bound by the environmental sustainability constraints assumed in this report. Potential supply could more than double if the sustainability constraints in POLYSYS were relaxed. While deviation of future practices (e.g., harvest limits for agricultural residues) from those assumed in this report could lead to risk of overharvesting and unintended environmental consequences, market requirements for clean and sustainable biomass mitigate this risk.
- The simulated production potential of energy crop supply is determined by local profitability, competing market demands, and the \$70-per-ton reference price. A higher price could drive more energy crop production. Simulation results showed energy crops established on 7% of cropland and 12% of pastureland. Modifying the model assumptions to expand energy crop production on nonagricultural land was not explored.

"Good" or "best" management practices, if employed, may contribute to sustainability and what has been termed a "social license for a growing bioeconomy" (Titus et al. 2021). Better management of productive landscapes to provide ecosystem services along with biomass products for food, feed, fiber, and fuels via integrated systems is necessary to achieve climate goals (Schulte et al. 2022; DeFries et al. 2022; Robertson et al. 2022; IEA 2021). Monitoring, outreach, incentives for ecosystem services, and regulation are options to reduce risk of

undesirable sustainability outcomes. Sustainability constraints used here indicate future needs for certification or regulation to promote or enforce good practices.

Good practices that safeguard sustainability need to fit local conditions; consider practical, place-based opportunities and constraints; and incorporate knowledge of stakeholders who are informed by reliable monitoring and evaluation data to support continual improvement. This national-scale assessment does not capture opportunities that local stakeholders may identify for synergistic practices to increase both biomass potential and ecosystem services. Biomass markets that provide performance-based incentives support safeguards by promoting investment in technologies for more sustainable agricultural practices that reduce supply chain emissions and other detrimental effects.

Furthermore, biomass markets offer advantages related to sustainable development goals that were not discussed in this chapter. These include employment and reduction of wastes (Blair et al. 2021; Kline et al. 2021). The reduction of wildfire risk through fuel treatments (thinning of forests) was only touched on in this chapter and has the potential to increase biomass and benefit society.

Social acceptability is also required before the potential biomass in this report can be realized. Engaging with the public, farmers (Donnison et al. 2021), and foresters (Gruchy et al. 2012) will be important for understanding and achieving social acceptability of biomass production and harvesting. Transportation, processing, and end uses for bioenergy and bioproducts could raise additional concerns about water availability, air pollution, and distributional or environmental justice. In general, agricultural and forestry models and future resource assessments such as this could benefit from social science perspectives and applied research on human decision-making and behavior (Schrieks et al. 2021).

BT16 Volume 2 estimated the environmental impacts of harvesting about 1 billion tons of biomass. This chapter begins to evaluate the role of sustainability constraints used in U.S. national renewable carbon resource assessments in limiting potential biomass and minimizing adverse environmental effects. Monitoring and research are needed to determine whether these sustainability constraints and other good practices are being followed, and which interventions are most effective in supporting sustainable development goals.

References

- Abraha, M., et al. 2015. "Evapotranspiration of annual and perennial biofuel crops in a variable climate." *GCB Bioenergy* 7: 1344–1356.
- Aggarwal, P., S. Vyas, P. Thornton, B.M. Campbell, and M. Kropff. 2019. "Importance of considering technology growth in impact assessments of climate change on agriculture." *Global Food Security* 23: 41–48.
- Aguilar, F.X., H. Sudekum, R. McGarvey, et al. 2022. "Impacts of the US southeast wood pellet industry on local forest carbon stocks." *Sci Rep* 12: 19449. doi.org/10.1038/s41598-022-23870-x.

- Altman, I., and D. Sanders. 2012. "Producer willingness and ability to supply biomass: Evidence from the U.S. Midwest." *Biomass and Bioenergy* 36: 176–181.
- Austin, K.G., J.P.H. Jones, and C.M. Clark. 2022. "A review of domestic land use change attributable to U.S. Biofuel policy." *Renewable and Sustainable Energy Reviews* 159: 112181.
- Babcock, Bruce A. 2009. "Measuring Unmeasurable Land-Use Changes from Biofuels." *Iowa Ag Review* 15 (3): 4–6, 11.
- Babcock, Bruce A. 2015. "Extensive and Intensive Agricultural Supply Response." *Annual Review of Resource Economics* 7 (1): 333–348.
- Bailey, R.T., M. Schipanski, and I. Kisekka. 2020. "Special issue introduction: Managing the Ogallala." *Agricultural Water Management* 242: 106405.
- Balboni, C., A. Berman, R. Burgess, and B.A. Olken. 2023. "The economics of tropical deforestation." *Annual Review of Economics* 15: 723–754.
- Barbier, E.B., J.C. Burgess, and A. Grainger. 2010. "The forest transition, towards a more comprehensive theoretical framework." *Land Use Policy* 27: 98–107.
- Barr, K.J., B.A. Babcock, M.A. Carriquiry, A.M. Nassar, and L. Harfuch. 2011. "Agricultural land elasticities in the United States and Brazil." *Applied Economic Perspectives and Policy* 33: 449–462.
- Barrett, S.M., W.M. Aust, M.C. Bolding, W.A. Lakel III, and J.F. Munsell. 2016a. "Estimated erosion, ground cover, and best management practices audit details for postharvest evaluation of biomass and conventional clearcut harvests." *J For* 114: 9–16.
- Barrett, S.M., W.M. Aust, M.C. Bolding, W.A. Lakel III, and J.F. Munsell. 2016b. "Implementation of forestry best management practices on biomass and conventional harvesting operations in Virginia." *Water* 8: 89.
- Barrette, J., E. Thiffault, and D. Paré. 2013. "Salvage harvesting of fire-killed stands in Northern Quebec: Analysis of bioenergy and ecological potentials and constraints." *Journal of Science & Technology for Forest Products and Processes* 3 (5): 16–25.
- Bart, R.R., M. Safeeq, J.W. Wagenbrenner, and C.T. Hunsaker. 2020. "Do fuel treatments decrease forest mortality or increase streamflow? A case study from the Sierra Nevada (USA)." *Ecohydrology* 2021: 14e2254.
- Benjamin, J.G. 2010. Woody Biomass Retention Guidelines. Considerations and recommendations for retaining woody biomass on timber harvest sites in Maine. Orono, ME: University of Maine, Maine Agricultural and Forest Experiment Station.

 forestbioproducts.umaine.edu/wp-content/uploads/sites/202/2010/10/Woody-Biomass-Retention-Guidelines-2010.pdf
- Berndes, G. 2002. "Bioenergy and water—the implications of large-scale bioenergy production for water use and supply." *Global Environmental Change* 12: 253–271.
- Bioenergy Technologies Office (BETO). 2023. "POET-DSM: Project Liberty." energy.gov/eere/bioenergy/poet-dsm-project-liberty.

- Biofuture CEM. 2023. *Good Practices for Sustainable Biomass*. Produced for the Clean Energy Ministerial 2023 by the Biofuture Platform Initiative Workstream on Biomass Quantification and Sustainability Governance.
- Blair, M.J., B. Gagnon, A. Klain, and B. Kulišić. 2021. "Contribution of biomass supply chains for bioenergy to sustainable development goals." *Land* 10: 181.
- Blanco-Canqui, H., S.J. Ruis, C.A. Proctor, C.F. Creech, M.E. Drewnoski, and D.D. Redfearn. 2020. "Harvesting cover crops for biofuel and livestock production: Another ecosystem service?" *Agronomy Journal* 112: 2373–2400.
- Blanco-Canqui, H., T.M. Shaver, J.L. Lindquist, C.A. Shapiro, R.W. Elmore, C.A. Francis, and G.W. Hergert. 2015. "Cover crops and ecosystem services: Insights from studies in temperate soils." *Agronomy Journal* 107: 2449–2474.
- Blinn, C.R., and M.A. Kilgore. 2001. "Riparian management practices—a summary of state guidelines." *Journal of Forestry* 99 (8): 11–7.
- Brandes, E., G.S. McNunn, L.A. Schulte, D.J. Muth, A. VanLoocke, and E.A. Heaton. 2018. "Targeted subfield switchgrass integration could improve the farm economy, water quality, and bioenergy feedstock production." *GCB Bioenergy* 10: 199–212.
- Broch, A., S.K. Hoekman, and S. Unnasch. 2013. "A review of variability in indirect land use change assessment and modeling in biofuel policy." *Environ Sci & Policy* 29: 147–157.
- Bronson, D.R., G.J. Edge, C.R. Hardin, S.K. Herrick, and T.G. Knoot. 2014. *Wisconsin's Forestland Woody Biomass Harvesting Guidelines*. Madison, WI: WI DNR Division of Forestry and Wisconsin Council on Forestry. PUB-FR-435-2014.
- Butler, B.J., Z. Ma, D.B. Kittredge, and P. Catanzaro. 2010. "Social versus biophysical availability of wood in the northern United States." *N J Appl For* 27 (4): 151–159.
- Cacho, J.F., M.C. Negri, C.R. Zumpf, and P. Campbell. 2017. "Introducing perennial biomass crops into agricultural landscapes to address water quality challenges and provide other environmental services." *WIREs Energy and Environment* 7: e275. doi.org/10.1002/wene.275.
- Calvin, K., et al. 2020. "Bioenergy for climate change mitigation: Scale and sustainability." *GCB Bioenergy* 13: 1346–1371.
- Camargo, G.G.T., M.R. Ryan, and T.L. Richard. 2013. "Energy use and greenhouse gas emissions from crop production using the Farm Energy Analysis Tool." *BioScience* 63: 263–273.
- Canter, C.E., Z. Qin, H. Cai, J.B. Dunn, M. Wang, and D.A. Scott. 2017. "Fossil energy consumption and greenhouse gas emissions, including soil carbon effects, of producing agriculture and forestry feedstocks." In 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. R. A. Efroymson, M. H. Langholtz, K.E. Johnson, and B. J. Stokes (Eds.). Oak Ridge, TN: Oak Ridge National Laboratory. ORNL/TM-2016/727. doi 10.2172/1338837.

- Chen, L., D. Debnath, J. Zhong, K. Ferin, A. VanLoocke, and M. Khanna. 2021. "The economic and environmental costs and benefits of the renewable fuel standard." *Environ Research Letters* 16: 034021.
- Chen, X., and M. Khanna. 2018. "Effect of Corn Ethanol Production on Conservation Reserve Program Acres in the US." *Applied Energy* 225: 124–134.
- Clark C.M., J. Burch, D. Burkholder, R. Efroymson, K.L. Kline, D. Korotney, A. Levy, et al. 2022. "Attribution: Corn Ethanol and Corn." In *Biofuels and the Environment: Third Triennial Report to Congress (External Review Draft)*. Washington, D.C.: EPA. EPA/600/R-22/273. cfpub.epa.gov/ncea/biofuels/recordisplay.cfm?deid=353055.
- Clark, C.M., Y. Lin, B.G. Bierwagen, L.M. Eaton, M.H. Langholtz, P.E. Morefield, C.E. Ridley, L. Vimmerstedt, S. Peterson, and B.W. Bush. 2013. "Growing a sustainable biofuels industry: economics, environmental considerations, and the role of the Conservation Reserve Program." *Environ Research Letters* 8: 025016.
- Comer, P.J., J.C. Hak, K. Kindscher, E. Muldavin, and J. Singhurst. 2018. "Continent-scale landscape conservation design for temperate grasslands of the Great Plains and Chihuahuan Desert." *Natural Areas Journal* 38: 196–211.
- Copeland, N., J.N. Cape, and M.R. Heal. 2012. "Volatile organic compound emissions from Miscanthus and short rotation coppice willow bioenergy crops." *Atmospheric Environment* 60: 327–335.
- Copenhaver, K., Y. Hamada, S. Mueller, and J.B. Dunn. 2021. "Examining the Characteristics of the Cropland Data Layer in the Context of Estimating Land Cover Change." ISPRS Int. J. Geo-Inf. 10: 281.
- Crockett, E. T.H., et al. 2023. "Structural and species diversity explain aboveground carbon storage in forests across the United States: Evidence from GEDI and forest inventory data." *Remote Sensing of Environment* 295: 113703. https://doi.org/10.1016/j.rse.2023.113703
- Cubins, J.A., et al. 2019. "Management of pennycress as a winter annual cash cover crop. A review." *Agronomy for Sustainable Development* 39: 46.
- Cuéllar, A.D., and M.E. Webber. 2008. "Cow power: the energy and emissions benefits of converting manure to biogas." *Environ Research Letters* 3: 034002.
- Daioglou, V. 2022. "Review of land use change emission estimates, a summary presentation for EPA." Workshop on Biofuel Greenhouse Gas Modeling, March 1, 2022. PBL Netherlands Environmental Assessment Agency. epa_gov/system/files/documents/2022-03/biofuel-ghg-model-workshop-luc-emission-estiim-2022-03-01.pdf.
- Daioglou, V., et al. 2020. "Progress and barriers in understanding and preventing indirect landuse change." *Biofuels, Bioproducts and Biorefining* 14 (5): 924–934. doi.org/10.1002/bbb.2124.
- Dale, B., J. Anderson, R. Brown, S. Csonka, V.H. Dale, G. Herwick, R. Jackson, et al. 2014. "Take a Closer Look: Biofuels Can Support Environmental, Economic and Social Goals." *Environmental Science & Technology* 48 (13): 7200–7203.

- Dale, V.H., E. Parish, K.L. Kline, and E. Tobin. 2017. "How is wood-based pellet production affecting forest conditions in the southeastern United States?" *Forest Ecology and Management* 396: 143–149.
- Dale, V.H., K.L. Kline, T.L. Richard, D.L. Karlen, and W.W. Belden. 2018. "Bridging biofuel sustainability indicators and ecosystem services through stakeholder engagement." *Biomass and Bioenergy* 114: 143–156. doi.org/10.1016/j.biombioe.2017.09.016.
- Damerau, K., A.G. Patt, and O.P.R. van Vliet. 2016. "Water saving potentials and possible trade-offs for future food and energy supply." *Global Environmental Change* 39: 15–25.
- Daryanto, S., B. Fu, L. Wang, P.-A. Jacinthe, and W. Zhao. 2018. "Quantitative synthesis on the ecosystem services of cover crops." *Earth-Science Reviews* 185: 357–373.
- Davidson, E.A., and D. Kanter. 2014. "Inventories and scenarios of nitrous oxide emissions." *Environ Res Lett* 9: 105012.
- Davis, S.C., W.J. Parton, S.J. Del Grosso, C. Keough, E. Marx, P.R. Adler, and E.H. DeLucia. 2012. "Impact of second-generation biofuel agriculture on greenhouse gas emissions in the corn-growing regions of the US." *Frontiers in Ecology and the Environment* 10 (2): 69–74.
- DeFries, R., et al. 2022. "Land management can contribute to net zero." *Science* 376: 1163–1165.
- Delaroche, M. 2020. "Adoption of conservation practices: what have we learned from two decades of social-psychological approaches?" *Current Opinion in Environmental Sustainability* 45: 25–35.
- Dirkswager, A.L., M.A. Kilgore, D.R. Becker, C. Blinn, and A. Ek. 2011. "Logging business practices and perspectives on harvesting forest residues for energy: A Minnesota case study." *North J Appl For* 28 (1): 41–46.
- Donner, D.M., T.B. Wigley, and D.A. Miller. 2017. "Forest biodiversity and woody biomass harvesting." In 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. R. A. Efroymson, M. H. Langholtz, K.E. Johnson, and B. J. Stokes (Eds.). Oak Ridge, TN: Oak Ridge National Laboratory. ORNL/TM-2016/727. doi 10.2172/1338837.
- Donnison, C., R.A. Holland, Z.M. Harris, F. Eigenbrod, and G. Taylor. 2021. "Land-use change from food to energy: meta-analysis unravels effects of bioenergy on biodiversity and cultural ecosystem services." *Environ Res Lett*: 113005.
- Duden, A.S., P.A. Verweij, A.P.C. Faaij, R.C. Abt, M. Junginger, and F. van der Hilst. 2023. "Spatially-explicit assessment of carbon stocks in the landscape in the southern US under different scenarios of industrial wood pellet demand." *Journal of Environmental Management* 342: 118148. doi.org/10.1016/j.jenvman.2023.118148.
- Dunn, J. B., D. Merz, K. L. Copenhaver, and S. Mueller. 2017. "Measured extent of agricultural expansion depends on analysis technique." *Biofuels, Bioproducts and Biorefining* 11 (2): 247–57.

- Efroymson, R.A., H.I. Jager, S. Mandal, E.S. Parish, and T.J. Mathews. 2021. "Better management practices for environmentally sustainable production of microalgae and algal biofuels." *Journal of Cleaner Production* 289: 125150.
- Efroymson, R.A., K.L. Kline, A. Angelsen, P.H. Verburg, V.H. Dale, J.W. Langeveld, and A. McBride. 2016. "A causal analysis framework for land-use change and the potential role of bioenergy." *Land Use Policy* 59: 516–527.
- Efroymson, R.A., V.H. Dale, K.L. Kline, A.C. McBride, J.M. Bielicki, R.L. Smith, E.S. Parish, P.E. Schweizer, and D.M. Shaw. 2013. "Environmental indicators of biofuel sustainability: What about context?" *Environmental Management* 51: 291–306.
- Farrell, A.E., et al. 2006. "Ethanol can contribute to energy and environmental goals." *Science* 311: 506–508.
- Ferchaud, F., G. Vitte, F. Bornet, L. Strullu, and B. Mary. 2015. "Soil water uptake and root distribution of different perennial and annual bioenergy crops." *Plant and Soil* 388: 307–322.
- Field J., K.L. Kline, M. Langholtz, and N. Singh. 2023. Sustainably sourcing biomass feedstocks for bioenergy with carbon capture and storage in the United States. Energy Futures Initiative. efifoundation.org/wp-content/uploads/sites/3/2023/06/EFI_BECCS-Taking-Root_Sustainable-Feedstocks-White-Paper.pdf.
- Field, J.L. 2015. "Towards the systematic identification of low-cost ecosystem-mediated carbon sequestration opportunities in bioenergy supply chains." Ph.D. thesis, Colorado State University. proquest.com/docview/1719467003/abstract/FC43511C01C54021PQ/1.
- Field, J.L. 2021. "Revisiting 'additional carbon': Tracking atmosphere-ecosystem carbon exchange to establish mitigation and negative emissions from bio-based systems." *Frontiers in Climate* 3: 603239.
- Field, J.L., et al. 2020. "Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels." *PNAS* 117: 21968–21977.
- Field, J.L., et al. 2022. "Modeling Yield, Biogenic Emissions, and Carbon Sequestration in Southeastern Cropping Systems With Winter Carinata." *Frontiers in Energy Research* 10. doi: 10.3389/fenrg.2022.837883.
- Fletcher, R.J., B.A. Robertson, J. Evans, P.J. Doran, J.R. Alavalapati, and D.W. Schemske. 2011. "Biodiversity conservation in the era of biofuels: risks and opportunities." *Front Ecol Environ* 9: 161–168.
- Follett, R.F., K.P. Vogel, G.E. Varvel, R.B. Mitchell, and J. Kimble. 2012. "Soil carbon sequestration by switchgrass and no-till maize grown for bioenergy." *Bioenergy Research* 5: 866–875.
- Food and Agricultural Policy Research Institute (FAPRI). 2023. *U.S. Agricultural Market Outlook*. FAPRI-MU Report #02-23. <u>fapri.missouri.edu/wp-content/uploads/2023/03/2023-Baseline-Outlook.pdf</u>.
- Food and Agriculture Organization of the United Nations (FAO). 2014. FAO's BEFS (Bioenergy & Food Security) Approach: Implementation Guide. fao.org/3/i3672e/i3672e.pdf.

- ——. 2017. The State of Food and Agriculture: Leveraging Food Systems for Inclusive Rural Transformation. fao.org/3/I7658e/I7658e.pdf.
- Forest Guild Southeast Biomass Working Group. 2012. Forest Biomass Retention and Harvesting Guidelines for the Southeast. foreststewardsguild.org/wp-content/uploads/2019/05/FG Biomass Guidelines SE.pdf.
- Forest Stewards Guild. 2023. "Research and Management Publications." https://foreststewardsguild.org/research-and-management-publications/.
- Francis, C.A., T.E. Hansen, A.A. Fox, P.J. Hesje, H.E. Nelson, A.E. Lawseth, and A. English. 2012. "Farmland conversion to non-agricultural uses in the US and Canada: current impacts and concerns for the future." *International Journal of Agricultural Sustainability* 10: 8–24.
- Frisvold, G.V. 2004. "How federal farm programs affect water use, quality, and allocation among sectors." *Water Resources Research* 40: W12S05. doi: 10.1029/2003WR002753.
- Fritts, S.R., C.E. Moorman, D.W. Hazel, and B.D. Jackson. 2014. "Biomass Harvesting Guidelines affect downed woody debris retention." *Biomass and Bioenergy* 70: 382–391.
- Gage, A.M., S.K. Olimb, and J. Nelson. 2016. "Plowprint: tracking cumulative cropland expansion to target grassland conservation." *Great Plains Research* 26: 107–116.
- Galik, C.S., and R.C. Abt. 2016. "Sustainability guidelines and forest market response: an assessment of European Union pellet demand in the southeastern United States." *GCB Bioenergy* 8: 658–669.
- Garren, A.M., M.C. Bolding, S.M. Barrett, W.M. Aust, and T.A. Coates. 2022. "Best management practices, estimated erosion, residual woody debris, and ground cover characteristics following biomass and conventional clearcut harvests in Virginia's mountains." *Forest Sci* 68: 299–311.
- Gelfland, I., R. Sahajpal, X. Zhang, R.C. Izaurralde, K.L. Gross, and G.P. Robertson. 2013. "Sustainable bioenergy production from marginal lands in the US Midwest." *Nature* 493: 514.
- Gerbens-Leenes, W., A.Y. Hoekstra, and T.M. van der Meer. 2009. "The water footprint of bioenergy." PNAS 106: 10219–10223.
- Gough, Christopher M., Jeff W. Atkins, Ben Bond-Lamberty, et al. 2021. "Forest Structural Complexity and Biomass Predict First-Year Carbon Cycling Responses to Disturbance." *Ecosystems* 24: 699–712.
- Graham, R.T. 2003. Hayman Fire Case Study. Washington, D.C.: USFS. RMRS-GTR-114.
- Grodsky, S.M., C.E. Moorman, S.R. Fritts, D.W. Hazel, J.A. Homyack, S.B. Castleberry, and T.B. Wigley. 2016. "Winter bird use of harvest residues in clearcuts and the implications of forest bioenergy harvest in the southeastern United States." *Forest Ecology and Management* 379: 91–101.
- Gruchy, S.R., D.L. Grebner, I.A. Munn, O. Joshi, and A. Hussain. 2012. "An assessment of nonindustrial private forest landowner willingness to harvest woody biomass in support

- of bioenergy production in Mississippi; A contingent rating approach." *Forest Policy and Economics* 15: 140–145.
- Ha, M., and M. Wu. 2017. "Land management strategies for improving water quality in biomass production under changing climate." *Environ Research Letters* 12: 034015.
- Hamilton, S.K., M.Z. Hussain, A.K. Bhardwaj, B. Basso, and G.P. Robertson. 2015. "Comparative water use by maize, perennial crops, restored prairie and poplar trees in the US Midwest." *Environ Res Lett* 10: 064015.
- Hardiman, Brady S., Gil Bohrer, Christopher M Gough, Christoph S. Vogel, and Peter S. Curtisi. 2011. "The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest." *Ecology* 92: 1818–1827.
- Hawks, E.M., M.C. Bolding, W.M. Aust, and S.M. Barrett. 2023. "Best management practices, erosion, residual woody biomass, and soil disturbances within biomass and conventional clearcut harvests in Virginia's Coastal Plain." *Forest Science* 69: 200–212.
- Headey, D., and K. Hirvonen. 2023. "Higher food prices can reduce poverty and stimulate growth in food production." *Nat Food*. doi.org/10.1038/s43016-023-00816-8.
- Helms, J.A., S.E. Ijelu, B.D. Wills, D.A. Landis, and N.M. Haddad. 2020. "Ant diversity and ecosystem services in bioenergy landscapes." *Agriculture, Ecosystems & Environment* 290: 106780.
- Hertel, T.W., et al. 2010. "Effects of US maize ethanol on global land use and greenhouse gas emissions: Estimating market-mediated responses." *Bioscience* 60: 223–231.
- Hill, C.L. 1991. Effects of land-management on sediment yields in Northeastern Guilford County, North Carolina. Raleigh, NC: U.S. Geological Survey. Water-Resources Investigations Report 90-4127. pubs.usgs.gov/wri/1990/4127/report.pdf.
- Hodges, D.G., B. Chapagain, P. Watcharaanantapong, N.C. Poudyal, K.L. Kline, and V.H. Dale. 2019. "Opportunities and attitudes of private forest landowners in supplying woody biomass for renewable energy." *Renewable and Sustainable Energy Reviews* 113: 109205.
- Hornbeck, R., and P. Keskin. 2014. "The historically evolving impact of the Ogallala aquifer: Agricultural adaptation to groundwater and drought." *American Economic Journal: Applied Economics* 6 (1): 190–219.
- Hoy, Zheng Xuan, Kok Sin Woon, Wen Cheong Chin, Yee Van Fan, and Seung Jick Yoo. 2023. "Curbing global solid waste emissions toward net-zero warming futures." *Science* 382: 797–800
- Hunter, M., A. Sorensen, T. Nogeire-McRae, S. Beck, S. Shutts, and R. Murphy. 2022. Farms Under Threat 2040: Choosing an Abundant Future. Washington, D.C.: American Farmland Trust.
- Ice, G., L. Dent, J. Robben, P. Cafferata, J. Light, B. Sugden, and T. Cundy. 2004. "Programs assessing implementation and effectiveness of state forest practice rules and BMPs in the West." *Water, Air, and Soil Pollut: Focus* 4: 143–169.

- Ice, G.G., E. Schilling, and J. Vowell. 2010. "Trends for forestry best management practices implementation." *Journal of Forestry* 108: 267–273.
- Ice, G.G., and G.W. Stuart. 2001. State nonpoint source pollution control programs for silvicultural sustained success: The National Association of State Foresters 2000 Progress Report. Washington, D.C.: National Association of State Foresters.
- Intergovernmental Panel on Climate Change (IPCC). 2022. "Annex II: Glossary." V. Möller, R. van Diemen, J.B.R. Matthews, C. Méndez, S. Semenov, J.S. Fuglestvedt, and A. Reisinger (eds.). In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, et al. (eds.). Cambridge, UK: Cambridge University Press. doi: 10.1017/9781009325844.029.
- International Energy Agency (IEA). 2021. *Net Zero by 2050: A Roadmap for the Global Energy Sector*. <u>iea.org/reports/net-zero-by-2050</u>.
- . 2022. *IEA Bioenergy Report 2023: How bioenergy contributes to a sustainable future*. <u>ieabioenergyreview.org/wp-content/uploads/2022/12/IEA_BIOENERGY_REPORT.pdf</u>.
- ———. 2023. "Bioenergy." https://www.iea.org/energy-system/renewables/bioenergy.
- Irmak, et al. 2010. "Nebraska Agricultural Water Management Demonstration Network (NAWMDN)." *Applied Engineering in Agriculture* 26: 599–613.
- Jager, H., G. Wang, J. Kreig, N. Sutton, and I. Busch. 2017. "Simulated response of avian biodiversity to biomass production." In 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. R. A. Efroymson, M. H. Langholtz, K.E. Johnson, and B. J. Stokes (Eds.). Oak Ridge, TN: Oak Ridge National Laboratory. ORNL/TM-2016/727. doi 10.2172/1338837.
- Jager, H.I., and J.A.F. Kreig. 2018. "Designing landscapes for biomass production and wildlife." *Global Ecology and Conservation* 16: e00490.
- Jager, H.I., E.S. Parish, M.H. Langholtz, and A.W. King. 2020. "Perennials in flood-prone areas of agricultural landscapes: A climate adaptation strategy." *BioScience* 70: 278–280.
- Jager, H.I., M. Wu, M. Ha, L. Baskaran, and J. Kreig. 2017. "Water quality responses to simulated management practices on agricultural lands producing biomass feedstocks in two tributary basins of the Mississippi River." In 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. R. A. Efroymson, M. H. Langholtz, K.E. Johnson, and B. J. Stokes (Eds.). Oak Ridge, TN: Oak Ridge National Laboratory. ORNL/TM-2016/727. doi 10.2172/1338837.
- Jager, H.I., M.R. Hilliard, M.H. Langholtz, R.A. Efroymson, C.C. Brandt, S. Surendran Nair, and J.A.F. Kreig. 2022. "Ecosystem service benefits to water users from perennial biomass production." *Science of the Total Environment* 834: 155255.

- Jager, H.I., S. Surendran Nair, R.A. Efroymson, C.R. DeRolph, E.S. Parish, and G. Wang. 2023. "Ecosystem services from partially harvested riparian buffers can offset biomass production costs." *Science of the Total Environment* 889: 164199.
- Janowiak, M.K., and C.R. Webster. 2010. "Promoting ecological sustainability in woody biomass harvesting." *Journal of Forestry* 108: 16–23.
- Jiang, W., K. Zipp, and M. Jacobson. 2018. "Economic assessment of landowners' willingness to supply energy crops on marginal lands in the northeastern of [sic] the United States." *Biomass and Bioenergy* 113: 22–30.
- Johnston, C.M.T., and G.C. Kooten. 2016. "Global trade impacts of increasing Europe's bioenergy demand." *Journal of Forest Economics* 23: 27–44.
- Jones, G., D. Loeffler, E. Butler, S. Hummel, and W. Chung. 2013. "The financial feasibility of delivering forest treatment residues to bioenergy facilities over a range of diesel fuel and delivered biomass prices." *Biomass and Bioenergy* 48: 171–180.
- Jonker, J.G.G., F. van der Hilst, D. Markewitz, A.P.C. Faaij, and H.M. Junginger. 2018. "Carbon balance and economic performance of pine plantations for bioenergy production in the Southeastern United States." *Biomass and Bioenergy* 117: 44–55.
- Kabrick, J.M., K.W. Goyne, and H.E. Stelzer. 2019. "Woody debris and nutrient retention following alternative biomass harvesting guidelines." *For Sci* 65: 235–244.
- Kalies, E.L., and L.L.Y. Kent. 2016. "Tamm Review: Are fuel treatments effective at achieving ecological and social objectives? A systematic review." *Forest Ecology and Management* 375: 84–95.
- Katrakilidis, et al. 2015. "An Empirical Investigation of the Price Linkages between Oil, Biofuels and selected Agricultural Commodities." *Procedia Economics and Finance* 33: 313–320. doi: 10.1016/S2212-5671(15)01715-3.
- Kemmerling, L.R., et al. 2022. "Prairie strips and lower land use intensity increase biodiversity and ecosystem services." *Frontiers in Ecology and Evolution* 10: 833170.
- Kemp, L. 2015. *Cellulosic ethanol from corn stover: Can we get it right?* National Resources Defense Council. R-15-08-A. https://www.nrdc.org/sites/default/files/corn-stover-biofuel-report.pdf.
- Khanna, M., and N. Paulson. 2016. "To harvest stover or not: Is it worth it?" *farmdoc daily* 6: 32. <u>farmdocdaily.illinois.edu/wp-content/uploads/2016/04/fdd180216.pdf</u>.
- Khanna, M., Deepak Rajagopal, and David Zilberman. 2021. "Lessons Learned from US Experience with Biofuels: Comparing the Hype with the Evidence." *Review of Environmental Economics and Policy* 15 (1) 67–86.
- Kilgore, M.A., and C.R. Blinn. 2004. "Policy tools to encourage the application of sustainable timber harvesting practices in the United States and Canada." *Forest Policy and Economics* 6: 111–127.
- Kline, J.D. 2004. "Issues in evaluating the costs and benefits of fuel treatments to reduce wildfire in the Nation's forests." Research Note PNW-RN-542. USFS Pacific Northwest Research Station.

- Kline, K.L., A.L. Mayer, F.S. Martinelli, R. Medeiros, C.O.F. Oliveira, G. Sparovek, A. Walter, and L. Venier. 2015. "Bioenergy and biodiversity: Key lessons from the Pan America Region." *Environmental Management* <u>link.springer.com/article/10.1007%2Fs00267-015-0559-0</u>.
- Kline, K.L., and V.H. Dale. 2020. "Protecting Biodiversity through Forest Management: Lessons Learned and Strategies for Success." *Int J Environ Sci Nat Res.* 26 (4): 556194. dx.doi.org/10.19080/IJESNR.2020.26.556194.
- Kline, K.L., G.A. Oladosu, V.H. Dale, and A.C. McBride. 2011. "Scientific analysis is essential to assess biofuel policy effects." *Biomass and Bioenergy* 35: 4488–4491.
- Kline, K.L., M.R. Davis, J.B. Dunn, L. Eaton, and R.A. Efroymson. 2017. "Land allocation and management: land-use change (LUC) implications under *BT16* scenarios." In 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. R. A. Efroymson, M. H. Langholtz, K.E. Johnson, and B. J. Stokes (Eds.). Oak Ridge, TN: Oak Ridge National Laboratory. ORNL/TM-2016/727. doi 10.2172/1338837.
- Kline, K.L., S. Msangi, V.H. Dale, J. Woods, G. Souza, P. Osseweijer, J. Clancy, et al. 2017. "Reconciling food security and bioenergy: priorities for action." *Global Change Biology Bioenergy* 9 (3): 557–576. doi.org/10.1111/gcbb.12366.
- Kline, K.L., V.H. Dale, E. Rose, and B. Tonn. 2021. "Effects of production of woody pellets in the southeastern United States on the Sustainable Development Goals." *Sustainability* 13: 821.
- Kline, K.L., V.H. Dale, R. Lee, and P. Leiby. 2009. "In Defense of Biofuels, Done Right." *Issues in Science and Technology* 25 (3): 75–84. issues.org/25.3/kline.html.
- Knapp, E.E., and M.W. Ritchie. 2016. "Response of understory vegetation to salvage logging following a high-severity wildfire." *Ecosphere* 7: e01550.
- Koponen, K., S. Soimakallio, K.L. Kline, A. Cowie, and M. Brandão. 2018. "Quantifying the climate effects of bioenergy Choice of reference system." *Renewable and Sustainable Energy Reviews* 81: 2271–2280.
- Lambin, E.F., and P. Meyfroidt. 2011. "Global land use change, economic globalization, and the looming land scarcity." *PNAS* 108: 3465–3472.
- Langholtz, M., B. H. Davison, H. I. Jager, L. Eaton, L. M. Baskaran, M. Davis, and C. C. Brandt. 2021. "Increased nitrogen use efficiency in crop production can provide economic and environmental benefits." *Sci Total Environ* 758: 143602. doi.org/10.1016/j.scitotenv.2020.143602.
- Langholtz, M., E. Webb, B. L. Preston, A. Turhollow, N. Breuer, L. Eaton, A. W. King, S. Sokhansanj, S. S. Nair, and M. Downing. 2014. "Climate Risk Management for the U.S. Cellulosic Biofuels Supply Chain." *Climate Risk Management* 3: 69–115. doi.org/10.1016/j.crm.2014.05.001.
- Lark, T.J. 2023. "Interactions between U.S. biofuels policy and the Endangered Species Act." *Biological Conservation* 279: 109869.

- Lark, T.J., B. Larson, I. Schelly, S. Batish, and H.K. Gibbs. 2019. "Accelerated conversion of native prairie to cropland in Minnesota." *Environmental Conservation* 46: 155–162.
- Lark T.J., J.M. Salmon, and H.K. Gibbs. 2015. "Cropland expansion outpaces agricultural and biofuel policies in the United States." *Environmental Research Letters* 10: 0440023.
- Lark, T.J., N.P. Hendricks, A. Smith, N. Pates, S, A. Spawn-Lee, M. Bougie, E.G. Booth, C.J. Kucharik, and H.K. Gibbs. 2022. "Environmental outcomes of the US Renewable Fuel Standard." *Proceedings of the National Academy of Sciences* 119 (9): e2101084119. doi.org/10.1073/pnas.2101084119.
- Lark, T.J., S.A. Spawn, M. Bougie, and H.K. Gibbs. 2020. "Cropland expansion in the United States produces marginal yields at high costs to wildlife." *Nature Communication* 11: 4295.
- Lattimore, B., T. Smith, and J. Richardson. 2010. "Coping with complexity: Designing low-impact forest bioenergy systems using an adaptive forest management framework and other sustainable forest management tools." *The Forestry Chronicle* 80: 20–27
- Lawrence, N.C., C.G. Tenesaca, A. VanLoocke, and S.J. Hall. 2021. "Nitrous oxide emissions from agricultural soils challenge climate sustainability in the US corn belt." *PNAS* 118: e2112108118.
- LeDuc, S.D., J.N. Carleton, A.J. Duff, T. Greaver, H.I. Jager, S.D. Kaylor, L.C. Moorhead, C.R.V. Otto, and R.B. Rice. 2022. "Terrestrial Ecosystem Health and Biodiversity." In *Biofuels and the Environment: Third Triennial Report to Congress (External Review Draft)*. EPA/600/R-22/273. cfpub.epa.gov/ncea/biofuels/recordisplay.cfm?deid=353055.
- Lee, E.K., X.X. Romeiko, W. Zhang, B.J. Feingold, H.A. Khwaja, X. Zhang, and S. Lin. 2021. "Residential proximity to biorefinery sources of air pollution and respiratory diseases in New York State." *Environ Sci Technol* 55: 10035–10045.
- Li, X., H. Tian, S. Pan, and C. Lu. 2023. "Four-century history of land transformation by humans in the United States: 1630–2020." *Earth System Science Data* 15 (2). doi.org/10.5194/essd-15-1005-2023.
- Li, Y., R. Miao, and M. Khanna. 2019. "Effects of ethanol plant proximity and crop prices on land-use change in the United States." *American Journal of Agricultural Economics* 101: 467–491.
- Lindenmayer, D.B., J.F. Franklin, and J. Fischer. 2006. "General management principles and a checklist of strategies to guide forest biodiversity conservation." *Biological Conservation* 131: 433–445.
- Liu, T., R.J.F. Bruins, and M.T. Heberling. 2018. "Factors influencing farmers' adoption of Best Management Practices: A review and synthesis." *Sustainability* 10: 432.
- Maletta, Hector E. 2016. *Towards the End of Hunger*. Universidad del Pacifico Press. ssrn.com/abstract=2882004.
- Mishra, S.K., M.C. Negri, J. Kozak, J.F. Cacho, J. Quinn, S. Secchi, and H. Ssegane. 2019. "Valuation of ecosystem services in alternative bioenergy landscape scenarios." *GCB-Bioenergy* 11: 748–762.

- Mladenoff, D.J., R. Sahajpal, C.P. Johnson, and D.E. Rothstein. 2016. "Recent land use change to agriculture in the U.S. lake states: Impacts on cellulosic biomass potential and natural lands." *PLOS ONE* 11 (20): e0148566.
- Moore, B. C., A. M. Coleman, M. S. Wigmosta, R. L. Skaggs, and E. R. Venteris. 2015. "A high spatiotemporal assessment of consumptive water use and water scarcity in the conterminous United States." *Water Resour. Manag.* 29: 5185–5200.
- Morales, M., J. Quintero, R. Conejeros, and G. Aroca. 2015. "Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance." *Renew Sustain Energy Rev* 42: 1349–1361.
- Murphy, B. A., May, J. A., Butterworth, B. J., Andresen, C. G., and A. R. Desai. 2022. "Unraveling forest complexity: Resource use efficiency, disturbance, and the structure-function relationship." *Journal of Geophysical Research: Biogeosciences* 127: e2021JG006748. https://doi.org/10.1029/2021JG006748.
- Muth, D.J. Jr., D.S. McCorkle, J.B. Koch, and K.M. Bryden. 2012. "Modeling sustainable agricultural residue removal on the subfield scale." *Agron J* 104: 970–981.
- Natanelov, V., M.J. Alam, A.M. McKenzie, and G.V. Huylenbroeck. 2011. "Is there comovement of agricultural commodities futures prices and crude oil?" *Energy Policy* 39: 4971–4984.
- National Academies of Sciences, Engineering, and Medicine. 2023. *Accelerating Decarbonization in the United States: Technology, Policy, and Societal Dimensions*. Washington, D.C.: The National Academies Press. nap.nationalacademies.org/catalog/25931/accelerating-decarbonization-in-the-united-states-technology-policy-and-societal.
- National Research Council. 2003. *Cumulative Environmental Effects of Oil and Gas Activities on Alaska's North Slope*. Washington, D.C.: The National Academies Press. doi.org/10.17226/10639.
- Nordberg, M., C. Cederberg, and G. Berndes. 2014. "Modeling potential freshwater ecotoxicity impacts due to pesticide use in biofuel feedstock production: The cases of maize, rapeseed, Salix, soybean, sugar cane, and wheat." *Environ Sci Technol* 48: 11379–11388.
- North, et al. 2022. "Operational resilience in western US frequent-fire forests." Forest Ecology and Management 507: 120004.
- Northrup, D. L., B. Basso, M. Q. Wang, C. L. S. Morgan, and P. N. Benfey. 2021. "Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production." *Proceedings of the National Academy of Sciences* 118 (28). doi.org/10.1073/pnas.2022666118.
- Oladosu, G., K. Kline, and J. W. A. Langeveld. 2021. "Structural Break and Causal Analyses of U.S. Corn Use for Ethanol and Other Corn Market Variables." *Agriculture* 11 (3): 267.
- Oladosu, G., K. Kline, P. Leiby, et al. 2012. "Global economic effects of US biofuel policy and the potential contribution from advanced biofuels." *Biofuels* 3: 703–723.
- Olimb, S.K., and B. Robinson. 2019. "Grass to grain: Probabilistic modeling of agricultural conversion in the North American Great Plains." *Ecological Indicators* 102: 237–245.

- Pennsylvania Department of Environmental Protection. 2013. "Diesel Idling and Act 124 Information."
- Parish, E.S., D.L. Karlen, K.L. Kline, K.S. Comer, and W.W. Belden. 2023. "Designing Iowa agricultural landscapes to improve environmental co-benefits of bioenergy production." *Sustainability* 15: 10051.
- Parish, E.S., K.L. Kline, V.H. Dale, R.A. Efroymson, A.C. McBride, T.L. Johnson, M.R. Hilliard, and J.M. Bielicki. 2013. "Comparing scales of environmental effects from gasoline and ethanol production." *Environmental Management* 51: 307–338.
- Persson, U.M. 2016. "The impact of biofuel demand on agricultural commodity prices: A systematic review." In *Advances in Bioenergy: The Sustainability Challenge*. P.D. Lund, J. Byrne, G. Berndes, and I.A. Vasalos (eds). West Sussex, UK: Wiley, Chichester. onlinelibrary.wiley.com/doi/epdf/10.1002/9781118957844.fmatter.
- Pierrehumbert, R. 2022. "Plant power: Burning biomass instead of coal can help fight climate change—but only if done right." *Bulletin of the Atomic Scientists* 78: 125–127.
- Porter, William C., Kelley C. Barsanti, Eowyn C. Baughman, and Todd N. Rosenstiel. 2012. "Considering the air quality impacts of bioenergy crop production: A case study involving *Arundo donax*." *Environ Sci Technol*. 46: 9777–9784.
- Powell, J.T., J.C. Pons, and M. Chertow. 2016. "Waste informatics: Establishing characteristics of contemporary U.S. landfill quantities and practices." *Environ Sci Technol* 50: 10877–10884.
- Premer, M.I., R.E. Froese, and E.D. Vance. 2019. "Whole-tree harvest and residue recovery in commercial aspen: Implications to forest growth and soil productivity across a rotation." *Forest Ecology and Management* 447: 130–138.
- Premer, M.I., R.E. Froese, C.R. Webster, and L.M. Nagel. 2016. "Vegetation response to logging residue removals in Great Lakes aspen forests: Long-term trends under operational management." *Forest Ecology and Management* 382: 257–268.
- Quinkenstein, A., D. Freese, C. Böhm, P. Tsonkova, and R.F. Hüttl. 2012. "Agroforestry for mine-land reclamation in Germany: Capitalizing on carbon sequestration and bioenergy production." In *Agroforestry The Future of Global Land Use*. P.K.R. Nair and D. Garrity, eds. Springer Science + Business Media, Dordrecht.
- Rashford, B.S., J.A. Walker, and C.T. Bastian. 2011. "Economics of Grassland Conversion to Cropland in the Prairie Pothole Region." *Conservation Biology* 25 (2): 276–284.
- Rashford, B.S., S.E. Albeke, and D.J. Lewis. 2013. "Modeling grassland and conversion: Challenges of using satellite imagery data." *Amer J Agr Econ* 95: 404–411.
- Rau, B., A. Muwumba, C. Trettin, S. Panda, and D.M. Amatya. 2017. "Water quality response to forest biomass utilization." In 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. R. A. Efroymson, M. H. Langholtz, K.E. Johnson, and B. J. Stokes (Eds.). Oak Ridge, TN: Oak Ridge National Laboratory. ORNL/TM-2016/727. doi 10.2172/1338837.

- Reinhardt, Elizabeth D., Robert E. Keane, David E. Calkin, and Jack D. Cohen. 2008. "Objectives and considerations for wildland fuel treatment in forested ecosystems of the interior western United States." *Forest Ecology and Management* 256: 1997–2006.
- Riitters, Kurt, John W. Coulston, Christopher Mihiar, Evan B. Brooks, Eric J. Greenfield, Mark D. Nelson, Grant M. Domke, Miranda H. Mockrin, David J. Lewis, and David J. Nowak. 2023. "Land Resources." In *Future of America's Forest and Rangelands: Forest Service 2020 Resources Planning Act Assessment*. Washington, D.C.: USFS. Gen. Tech. Rep. WO-102. doi.org/10.2737/WO-GTR-102-Chap4.
- Roberts, M. J., and W. Schlenker. 2013. "Identifying supply and demand elasticities of agricultural commodities: Implications for the US ethanol mandate." *American Economic Review* 103 (6): 2265–2295.
- Robertson, G.P., E.A. Paul, and R.R. Harwood. 2000. "Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere." *Science* 289: 1922–1925.
- Robertson, G.P., S. K. Hamilton, K. Paustian, and P. Smith. 2022. "Land-based climate solutions for the United States." *Global Change Biology* 28: 4912–4919.
- Robertson, G.P., S. K. Hamilton, R. L. Barham, B. E. Dale, R. C. Izaurralde, R. D. Jackson, D. A. Landis, S. M. Swinton, K. D. Thelen, and J. M. Tiedje. 2017. "Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes." *Science* 356:1349.
- Rochedo, P.R.R., B. Soares-Filho, R. Schaeffer, et al. 2018. "The threat of political bargaining to climate mitigation in Brazil." *Nature Clim Change* 8: 695–698. doi.org/10.1038/s41558-018-0213-y.
- Roman, Monica, Aleksandra Górecka, and Joanna Domagała. 2020. "The Linkages between Crude Oil and Food Prices." *Energies* 13: 6545. doi:10.3390/en13246545.
- Rose, S.K., N. Bauer, A. Popp, et al. 2020. "An overview of the Energy Modeling Forum 33rd study: assessing large-scale global bioenergy deployment for managing climate change." *Climatic Change* 163: 1539–1551. doi.org/10.1007/s10584-020-02945-6.
- Salguero, J., J. Li, A. Farahmand, and J.T. Reager. 2020. "Wildfire trend analysis over the contiguous United States using remote sensing observations." *Remote Sens* 12: 2565.
- Scarlat, N., and J.-F. Dallemand. 2019. "Chapter Ten Future Role of Bioenergy." In *The Role of Bioenergy in the Bioeconomy*. C. Lago, N. Caldés, and Y. Lechón (eds.). Academic Press. doi.org/10.1016/B978-0-12-813056-8.00010-8.
- Scheuermann, C.M., L.E. Nave, R.T. Fahey, K.J. Nadelhoffer, and C.M. Gough. 2018. "Effects of canopy structure and species diversity on primary production in upper Great Lakes forests." *Oecologia* 188: 405–415.
- Schlef, K.E., S. Steinschneider, and C.M. Brown. 2018. "Spatiotemporal impacts of climate and demand on water supply in the Apalachicola-Chattahoochee-Flint Basin." *J Water Resour Plann Manage* 144: 05017020.
- Schrieks, T., W.J.W. Botzen, M. Wens, T. Haer, and J.C.J.H. Aerts. 2021. "Integrating behavioral theories in agent-based models for agricultural drought risk assessments." *Frontiers in Water* 3: 686329.

- Schulte, L.A., B.E. Dale, S. Bozzetto, M. Liebman, et al. 2022. "Meeting global challenges with regenerative agriculture producing food and energy." *Nature Sustainability* 5: 384–388.
- Schulte, L.A., J. Niemi, M.J. Helmers, et al. 2017. "Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean croplands." *PNAS* 114: 11247–11252.
- Scully, Melissa L., Gregory A. Norris, Tania M. Alarcon Falconi, and David L. MacIntosh. 2021. "Carbon intensity of corn ethanol in the United States: state of the science." *Environ. Res. Lett.* 16: 043001.
- Searchinger, T., L. Peng, J. Zionts, and R. Waite. 2023. *The Global Land Squeeze: Managing the Growing Competition for Land*. World Resources Institute. <u>files.wri.org/d8/s3fs-public/2023-07/the-global-land-squeeze-report.pdf</u>.
- Searchinger, T., R. Heimlich, R.A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. Hayes, and T.-H. Yu. 2008. "Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change." *Science* 319: 1238–1240.
- Searle, S., and K. Bitnere. 2017. "Review of the impact of crop residue management on soil organic carbon in Europe." International Council on Clean Transportation Working Paper 2017-15. theicct.org/wp-content/uploads/2021/06/EU-crop-residue-mgmt_ICCT-working-paper 15122017 vF.pdf.
- Shepard, J.P. 2006. "Water quality protection in bioenergy production: The US system of forestry Best Management Practices." *Biomass Bioenergy* 30: 378–384.
- Sindelar, A.J., J.A. Coulter, J.A. Lamb, and J.A. Vetsch. 2013. "Agronomic responses of continuous corn to stover, tillage, and nitrogen management." *Agron. J.* 105: 1498–1506.
- Singh, N., K. L. Kline, R. A. Efroymson, B. Bhaduri, and B. O'Banion. 2017. "Uncertainty in Estimates of Bioenergy-Induced Land Use Change." Chapter 10 in *Bioenergy and Land Use Change*. Zhangcai Qin (ed.). John Wiley & Sons, Inc. doi.org/10.1002/9781119297376.ch10.
- Skog, K.E., and R.J. Barbour. 2006. "Estimating woody biomass supply from thinning treatments to reduce fire hazard in the U.S. West." In *Fuels Management—How to measure success: Conference Proceedings*. Fort Collins, CO: USFS Rocky Mountain Research Station. RMRS-P-41.
- Slupska, M., and D. Bushong. 2019. "Lessons from commercialization of cellulosic ethanol—a POET perspective." *Biofuels Bioproducts & Biorefining* 13: 857–859.
- Smeets, E.M.W., L.F. Bouwman, E. Stehfest, D.P. van Vuuren, and A. Posthuma. 2009. "Contribution of N₂O to the greenhouse gas balance of first-generation biofuels." *Global Change Biology* 15: 1–23.
- Smith, P., M. Bustamante, H. Ahammad, H. Clark, H. Dong, E.A. Elsiddig, H. Haberl, et al. 2014. "Agriculture, Forestry and Other Land Use (AFOLU)." In *Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.* O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, et al. (eds.). Cambridge, UK: Cambridge University Press.

- Snyder, C.S., T.W. Bruulsema, and T.L. Jensen. 2007. "Best management practices to minimize greenhouse gas emissions associated with fertilizer use." *Better Crops* 91 (4): 16–18.
- Southern Group of State Foresters. 2018. *Implementation of Forestry Best Management Practices*. 2018 Southern Region Report.
- Souza, G.M., et al. 2017. "The role of bioenergy in a climate-changing world." *Environmental Development* 23: 57–64. doi.org/10.1016/j.envdev.2017.02.008.
- Ssegane, H., C. Zumpf, M.C. Negri, P. Campbell, J.P. Heavy, and T.A. Volk. 2016. "The economics of growing shrub willow as a bioenergy buffer on agricultural fields; A case study in the Midwest Corn Belt." *Biofuels, Bioprod, Bioref* 10: 776–789.
- Steiner, J.L., D.L. Devlin, S. Perkins, J.P. Aguilar, B. Golden, E.A. Santos, and M. Unruh. 2021. "Policy, technology, and management options for water conservation in the Ogallala aquifer in Kansas, USA." *Water* 13: 3406.
- Stenzel, F., P. Greve, W. Lucht, S. Tramberend, Y. Wada, and D. Gerten. 2021. "Irrigation of biomass plantations may globally increase water stress more than climate change." *Nature Communications* 12: 1512.
- Subbarao, G. V., and T. D. Searchinger. 2021. "Opinion: A 'more ammonium solution' to mitigate nitrogen pollution and boost crop yields." *Proceedings of the National Academy of Sciences* 118 (22). doi.org/10.1073/pnas.2107576118.
- Sullivan, T.P., D.S. Sullivan, P.M.F. Lindgren, D.B. Ransome, J.G. Bull, and C. Ristea. 2011. "Bioenergy or biodiversity? Woody debris structures and maintenance of red-backed voles on clearcuts." *Biomass and Bioenergy* 35: 4390–4398.
- Sun, G., L. Zhang, K. Duan, and B. Rau. 2017. "Ch. 7: Impacts of forest biomass removal on water yield across the United States." In 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. R. A. Efroymson, M. H. Langholtz, K.E. Johnson, and B. J. Stokes (Eds.). Oak Ridge, TN: Oak Ridge National Laboratory. ORNL/TM-2016/727. doi 10.2172/1338837.
- Suseata, A., A. Sharma, K. Klizentyte, and D.C. Adama. 2023. "Economic analysis of unevenaged forest management in the southeastern United States." *Canadian Journal of Forest Research* 53: 38–47.
- Swinton, S.M., F. Dulys, and S.S.H. Klammer. 2021. "Why biomass residue is not as plentiful as it looks: Case study on economic supply of logging residues." *Applied Economic Perspectives and Policy* 43: 1003–1025.
- Szabó, Z. 2023. "Biofuel policy-making based on outdated modelling? The cost of road transport decarbonization in EU." *Fuels* 4: 354–362.
- Taheripour, F., and W. E. Tyner. 2014. "Chapter 36 Welfare Assessment of the Renewable Fuel Standard: Economic Efficiency, Rebound Effect, and Policy Interactions in a General Equilibrium Framework." In *Modeling, Dynamics, Optimization and Bioeconomics I*. A.A. Pinto and D. Zilberman (eds.). Springer Proceedings in Mathematics & Statistics. doi: 10.1007/978-3-319-04849-9.

- Taheripour, F., E. Sajedinia, and O. Karami. 2022. "Oilseed Cover Crops for Sustainable Aviation Fuels Production and Reduction in Greenhouse Gas Emissions Through Land Use Savings." *Frontiers in Energy Research* 9. doi: 10.3389/fenrg.2021.790421.
- Texas Water Development Board. 2005. Water conservation best management practices (BMP) guide for agriculture in Texas. Report 362. Water Conservation Implementation Task Force. tsswcb.texas.gov/sites/default/files/files/programs/agency-reports/Water%20Conservation%20Best%20Management%20Practices%20Guide%20for%20Agriculture%20in%20Texas.pdf.
- Thompson, J.R., D.N. Carpenter, C.V. Cogbill, and D.R. Foster. 2013. "Four Centuries of Change in Northeastern United States Forests." *PLoS One* 8 (9).
- Thurow, R., and S. Kilman. 2009. *Enough: Why the World's Poorest Starve in an Age of Plenty*. Public Affairs Publishing.
- Tian, X., B. Sohngen, J. Baker, S. Ohrel, and A.A. Fawcett. 2018. "Will U.S. forests continue to be a carbon sink?" *Land Economics* 94: 97–113.
- Titus, B.D., et al. 2021. "Sustainable forest biomass: a review of current residue harvesting guidelines." *Energy, Sustainability, and Society* 11: 10.
- Toda, M., et al. 2023. "Simulated effects of canopy structural complexity on forest productivity." *Forest Ecology and Management* 538: 120978.
- Tuck, C.O., I.T. Horváth, R.A. Sheldon, and M. Poliakoff. 2012. "Valorization of biomass: Deriving more value from waste." *Science* 337: 695–699.
- U.S. Department of Agriculture (USDA). 2014. 2012 Census of Agriculture: United States Summary and State Data, Volume 1. Washington, D.C.: USDA. agcensus.library.cornell.edu/wp-content/uploads/usv1.pdf.
- ———. 2019. 2017 Census of Agriculture: United States Summary and State Data, Volume 1. Washington, D.C.: USDA. nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume 1, Chapter 1 US/usv1.pdf.
- ———. 2023. "Biden-Harris Administration Announces Availability of Inflation Reduction Act Funding for Climate-Smart Agriculture Nationwide." Press release, Feb. 13, 2023.
- USDA Economic Research Service (ERS). 2023. "Documentation." Accessed Dec. 1, 2023. ers.usda.gov/data-products/food-dollar-series/documentation/.
- USDA Farm Service Agency (FSA). 2023. "Farm Service Agency." <u>fsa.usda.gov/</u>.
- USDA National Agricultural Statistics Service (NASS). 2022. "Conservation Practice Adoption Motivations, 2021." NASS Highlights, October 2022. No. 2022-8. nass.usda.gov/Publications/Highlights/2022/CPAMS.pdf.
- USDA Natural Resources Conservation Service (NRCS). 2012. *Agricultural Air Quality Conservation Measures. Reference Guide for Cropping Systems and General Land Management*. U.S. Department of Agriculture Natural Resources Conservation Service. epa.gov/sites/default/files/2016-06/documents/agaqconsmeasures.pdf.
- ——. 2023a. "Natural Resources Conservation Service." <u>nrcs.usda.gov/</u>.
- ——. 2023b. "National Resources Inventory." <u>nrcs.usda.gov/nri</u>.

- U.S. Department of Energy (DOE). 2009. *High-Yield Scenario Workshop Series Report*. bioenergy.inl.gov/Workshop%20Documents/Executive%20Summary%20High-yield%20scenario%20workshop%20series%20report%202009.pdf.
- ———. 2017. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. Washington, D.C. DOE. ORNL/TM-2016/727. bioenergykdf.net/2016-billion-ton-report-vol-2.
- U.S. Department of Energy (DOE), Department of Transportation (USDOT), Environmental Protection Agency (EPA), and Department of Housing and Urban Development (HUD). 2023. *The U.S. National Blueprint for Transportation Decarbonization*. DOE/EE-2674. energy.gov/eere/us-national-blueprint-transportation-decarbonization-joint-strategy-transform-transportation.
- U.S. Environmental Protection Agency (EPA). 2023a. "Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021." epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021.
- ——. 2023b. Renewable Fuel Standard (RFS) Program: Standards for 2023-2025 and Other Changes. Regulatory Impact Analysis. Washington, D.C.: EPA. nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1017OW2.pdf.
- U.S. Forest Service (USFS). 2012. National Best Management Practices for water quality management on national forest system lands. Volume 1: National Core BMP Technical Guide. FS-990a.
 - fs.usda.gov/sites/default/files/FS National Core BMPs April2012 sb.pdf.
- ——. 2022. Confronting the Wildfire Crisis: Initial Landscape Investments to Protect Communities and Improve Resilience in America's Forests. FS-1187d. fs.usda.gov/sites/default/files/WCS-Initial-Landscape-Investments.pdf.
- ———. 2023a. Future of America's Forests and Rangelands. Forest Service 2020 Resource Planning Act. GRT-WO-102. fs.usda.gov/research/inventory/rpaa/2020.
- ——. 2023b. "Timber Products Output Data Download." Accessed Aug. 15, 2023. fia.fs.usda.gov/program-features/tpo/.
- van Groenigen, J.W., O. Oenema, K.J. van Groenigen, G. Velthof, and C. van Kessel. 2011. "Best nitrogen management practices to decrease greenhouse gas emissions." *Better Crops* 95 (2):16–17.
- van der Burg, M.P., C. Otto, and G. MacDonald. 2023. "Trending against the grain: Bird population responses to expanding energy portfolios in the US Northern Great Plains." *Ecological Applications* e2904.
- Ventura, S., S. Hull, R. Jackson, G. Radloff, D. Sample, S. Walling, and C. Williams. 2012. "Guidelines for sustainable planting and harvest of nonforest biomass in Wisconsin." *Journal of Soil and Water Conservation* 67: 17A-20A.
- Vural-Gursel, I., F. Quist-Wessel, J. Langeveld, K.L. Kline, M. Slingerland, P. Grassini, K. Kwant, and W. Elbersen. 2021. "Variable demand as a means to more sustainable biofuels and biobased materials." *Biofuels, Bioproducts & Biorefining* 15 (1): 15–31.

- Wade, T., R. Claasen, and S. Wallander. 2015. "Conservation-practice adoption rates vary widely by crop and region." USDA Economic Research Service. Economic Information Bulletin Number 147.
- Wallander, S., D. Smith, M. Bowman, and R. Claassen. 2021. *Cover Crop Trends, Programs, and Practices in the United States*. Washington, D.C.: USDA Economic Research Service. EIB 222.
- Wang, J., and W.A. Goff. 2008. "Application and effectiveness of forestry best management practices in West Virginia." *North J Appl. For.* 25: 32–37.
- Wang, L., Y. Qian, J.E. Brummer, J. Zheng, S. Wilhelm, and W.J. Parton. 2015. "Simulated biomass, environmental impacts and best management practices for long-term switchgrass systems in a semi-arid region." *Biomass and Bioenergy* 75: 254–266.
- Wang, M., A. Elgowainy, U. Lee, K. H. Baek, A. Bafana, P. T. Benavides, A. Burnham, et al. 2022. *Summary of Expansions and Updates in GREET® 2022*. Lemont, IL: Argonne National Laboratory. ANL/ESIA-22/1.
- Wang, M., J. Han, J.B. Dunn, H. Cai, and A. Elgowainy. 2012. "Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use." *Environ Research Letters* 7: 045905.
- Wang, M., M. Wander, S. Mueller, N. Martin, and J.B. Dunn. 2022. "Evaluation of survey and remote sensing data products used to estimate land use change in the United States: Evolving issues and emerging opportunities." *Environ Sci & Policy* 129: 68–78.
- Warner, E., Y. Zhang, D. Inman, A. Eberle, A. Carpenter, G. Heath, and D. Hettinger. 2017. "Implications of air pollutant emissions from producing agricultural and forestry feedstocks." In 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. R. A. Efroymson, M. H. Langholtz, K.E. Johnson, and B. J. Stokes (Eds.). Oak Ridge, TN: Oak Ridge National Laboratory. ORNL/TM-2016/727. doi 10.2172/1338837.
- Wear, D.N., R. Huggett, R. Li, B. Perryman, and S. Liu. 2013. Forecasts of Forest Conditions in U.S. Regions Under Future Scenarios: A Technical Document Supporting the Forest Service 2010 RPA Assessment. Asheville, NC. Gen. Tech. Rep. SRS-170.
- Welch, E.W., and F.J. Marc-Aurele. 2001. "Determinants of farmer behavior: Adoption of and compliance with best management practices for nonpoint source pollution in the Skaneateles Lake watershed." *Journal of Lake and Reservoir Management* 17: 233–245.
- Werling, B.P., T. L. Dickson, R. Isaacs, H. Gaines, C. Gratton, K.L. Gross, H. Liere, et al. 2014. "Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes." *PNAS* 111: 1652–1657.
- West, T.O., and W.M. Post. 2002. "Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis." *Soil Sci Soc Am J.* 66: 1930–1946.
- Whitaker, J., J. L. Field, C. J. Bernacchi, C. E. P. Cerri, R. Ceulemans, C. A. Davies, E. H. DeLucia, et al. 2018. "Consensus, uncertainties and challenges for perennial bioenergy crops and land use." *GCB Bioenergy* 10 (3): 150–164. doi.org/10.1111/gcbb.12488.

- Wise, M., E.L. Hodson, B.K. Mignone, L. Clarke, S. Waldhoff, and P. Luckow. 2015. "An approach to computing marginal land use carbon intensities for bioenergy in policy applications." *Energy Economics* 5050: 337–347.
- Wolde, B., P. Lal, J. Alavalapati, P. Burli, and P. Iranah. 2016. "Soil and water conservation using the socioeconomics, sustainability concerns, and policy preference for residual biomass harvest." *Journal of Soil and Water Conservation* 71: 476–483.
- Woods, J., L.R. Lynd, M. Laser, M. Batistella, D. de Castro, K.L. Kline, and A. Faaij. 2015. "Chapter 9: Land and Bioenergy." In *Scientific Committee on Problems of the Environment (SCOPE), Bioenergy & Sustainability: bridging the gaps. SCOPE 72*. G.M. Souza, R.L. Victoria, C.A. Joly, and M. Verdade, eds. Paris, France and Sao Paulo, Brazil. ISBN: 978-2-9545557-0-6.
- World Bank. 2007. World Development Report 2008: Agriculture for Development. Washington, D.C.: World Bank.
- ———. 2015. Ending Poverty and Hunger by 2030: An Agenda for the Global Food System. Washington, D.C.: World Bank.
- Wu, M., and M. Ha. 2017. "Water consumption footprint of producing agriculture and forestry feedstocks." In 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1. R. A. Efroymson, M. H. Langholtz, K.E. Johnson, and B. J. Stokes (Eds.). Oak Ridge, TN: Oak Ridge National Laboratory. ORNL/TM-2016/727. doi 10.2172/1338837.
- Wu, W.-Y., M.-H. Lo, Y. Wada, J. S. Famiglietti, J. T. Reager, P. J. Yeh, A. Ducharne, and Z. L. Yang. 2020. "Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers." *Nat. Commun.* 11: 3710.
- Yang, P., X. Piao, and X. Cai. 2022. "Water availability for biorefineries in the contiguous United States and the implications for bioenergy production distribution." *Environ Sci Technol* 56: 3748–3757.
- Yeo, I.-Y., and C. Huang. 2013. "Revisiting the forest transition theory with historical records and geospatial data: A case study from Mississippi (USA)." *Land Use Policy* 32.
- Zabel, F., R. Delzeit, J.M. Schneider, R. Seppelt, W. Mauser, and T. Vaclavik. 2019. "Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity." *Nature Communications* (10): 2844. nature.com/articles/s41467-019-10775-z.
- Zalesny, R.S., et al. 2019. "Positive water linkages of producing short rotation poplars and willows for bioenergy and phytotechnologies." *WIREs Energy and Environment* 8: e345.
- Zema, D.A., G. Bombing, S. Andiloro, and S.M. Zimbone. 2012. "Irrigation of energy crops with urban wastewater: Effects on biomass yields, soils and heating values." *Agricultural Water Management* 115: 55–65.
- Zenone, T., C. Hendriks, F. Brilli, E. Fransen, B. Giolo, M. Portillo-Estrada, M. Schaap, and R. Ceulemans. 2016. "Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level." *Scientific Reports* 6: 32676.

Zilberman, D. 2017. "Indirect land use change: much ado about (almost) nothing." <i>GCB Bioenergy</i> 9: 485–488. doi.org/10.1111/gcbb.12368g.