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Executive Summary 
The National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory (LBNL), and 

Kevala Inc. (Kevala), in partnership with the U.S. Department of Energy, conducted this study to help 

answer key technical and deployment questions about whether the electric grid can accommodate new 

demands from transportation electrification. This study illuminates, at unprecedented local resolution, 

the charging network and associated distribution grid infrastructure needed to support increasing plug-

in electric vehicle (PEV) adoption. In particular, the study examines the anticipated impact of the U.S. 

Environmental Protection Agency’s (EPA's) rulemakings if finalized as proposed on greenhouse gas 

(GHG) emission standards for light-, medium-, and heavy-duty on-road vehicles (LDVs, MDVs, and HDVs, 

respectively).1,2 This study provides in-depth analysis of PEV charging infrastructure and distribution grid 

upgrades for five states: California, Illinois, New York, Oklahoma, and Pennsylvania, which are indicative 

of a variety of U.S. transportation demand and utility distribution infrastructure. 

If finalized as proposed, the EPA rules are likely to accelerate the ongoing adoption of PEVs beyond 

current policies and incentives. This report provides in-depth analysis of this incremental PEV adoption 

locally, as well as the investment required in charging infrastructure and distribution grid upgrades that 

the rules could motivate. As part of the proposed rules, the EPA developed potential modeled 

compliance pathways describing the potential number of PEVs on the road by 2032, and those pathways 

are examined in this work. Under the EPA’s projected compliance pathways, an additional 3.9 million 

PEVs could be on the road by 2032 across the five states under study, bringing the five-state total to 20 

million PEVs. The key takeaways of the analysis are that the proposed rules could—effectuated from 

2027 to 2032—for those five states: 

1. Result in an incremental increase of 3% in annual electric vehicle charging infrastructure 
installations (including public and private infrastructure), 

2. Result in an incremental distribution grid investment that equates to approximately 3% of 
current annual utility investments, 

3. Result in a 30% reduction of those annual utility investments using basic managed charging 
techniques, illustrating the potential for additional cost savings from local load optimization, 
and,  

4. Result in net consumer benefits, primarily in fuel savings, 2.5 times greater than the incremental 
charging and distribution grid costs.  

The report provides an in-depth presentation of the inputs, methodology, and context for the analysis. 

The report also presents key avenues for future work and the context of ongoing investment in charging 

and distribution infrastructure. The rest of the executive summary provides an overview of the report 

and more discussion of each of the key findings from the analysis. 

§ 

 
1 Proposed Rule by the EPA, Multi-Pollutant Emissions Standards for Model Years 2027 and Later Light-Duty and 
Medium-Duty Vehicles, Docket ID No. EPA–HQ–OAR–2022–0829 (May 5, 2023), 
https://www.federalregister.gov/documents/2023/05/05/2023-07974/multi-pollutant-emissions-standards-for-
model-years-2027-and-later-light-duty-and-medium-duty.  
2 Proposed Rule by the EPA, Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles, Phase 3, Docket ID No. 
EPA–HQ–OAR–2022–0985 (April 27, 2023), https://www.federalregister.gov/documents/2023/04/27/2023-
07955/greenhouse-gas-emissions-standards-for-heavy-duty-vehicles-phase-3. 

https://www.federalregister.gov/documents/2023/05/05/2023-07974/multi-pollutant-emissions-standards-for-model-years-2027-and-later-light-duty-and-medium-duty
https://www.federalregister.gov/documents/2023/05/05/2023-07974/multi-pollutant-emissions-standards-for-model-years-2027-and-later-light-duty-and-medium-duty
https://www.federalregister.gov/documents/2023/04/27/2023-07955/greenhouse-gas-emissions-standards-for-heavy-duty-vehicles-phase-3
https://www.federalregister.gov/documents/2023/04/27/2023-07955/greenhouse-gas-emissions-standards-for-heavy-duty-vehicles-phase-3
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U.S. climate goals for economy-wide net-zero GHG emissions by 2050 require the rapid decarbonization 

of the on-road transportation sector, and PEVs are poised to become a key technology for achieving this 

end.3 Recent EPA notices of proposed rulemakings for GHG emissions standards for light-, medium-, and 

heavy-duty on-road vehicles would further incentivize advancements already happening in the industry 

because of private investment, consumer demand, state-level policies, and federal incentives (notably 

from the Bipartisan Infrastructure Law and Inflation Reduction Act). This study provides timely estimates 

for the investments in charging infrastructure and grid upgrades necessary to support a possible PEV 

adoption scenario consistent with emissions reduction requirements in the proposed rulemaking.  

This study examines two scenarios of PEV adoption:  

• An “Action” scenario is used to reflect the adoption of two national GHG standards – one for 
LDVs and MDVs and the other for HDVs – as proposed by EPA in April 2023. These rules would 
regulate emissions from new motor vehicles for model years 2027 through 2032.4 

• A “No Action” scenario is used to reflect the absence of new national GHG standards for LDVs, 
MDVs, and HDVs but includes current state and federal policies and regulations.5 

Based on EPA’s modeling and assumptions of modeled compliance pathways, the Action scenario of this 

study examines one potential compliance pathway in which a total of 55 million PEVs are on the road 

nationally by 2032, including 920,000 HDVs. This contrasts with the No Action scenario, EPA’s baseline 

assuming no new federal GHG standards, which assumes that 41 million PEVs are on the road nationally 

by 2032, including 540,000 HDVs. 

Grid data from five states were leveraged for this study, with state selection capturing diversity in 

urban/rural populations, utility distribution grid composition, freight travel demands, and state-level 

PEV policies. The following five states were selected for detailed analysis: California, Illinois, New York, 

Oklahoma, and Pennsylvania. 

The EPA estimates that, under one possible compliance pathway, the proposed rules in the Action 

scenario could result in a total of 20 million PEVs— across all weight classes (including 260,000 heavy-

duty PEVs, Class 4–8)—on the road in these five states by 2032. The No Action scenario assumes that 

16 million PEVs (including 220,000 heavy-duty PEVs, Class 4–8) will be on the road in these five states by 

2032. 

With the goal of evaluating the potential infrastructure costs of the EPA’s proposed rules, this study 

focuses on the delta between the Action and No Action scenarios. As such, the term incremental is used 

 
3 Michael Berube, Andrew Wishnia, Karl Simon, Alexis Pelosi, Matteo Muratori, Tatjana Kunz, Aaron Hula, and 
Michael Freedberg, The U.S. National Blueprint for Transportation Decarbonization, Washington, D.C.: U.S. 
Department of Energy, DOE/EE-2674, 2023, https://www.energy.gov/sites/default/files/2023-01/the-us-national-
blueprint-for-transportation-decarbonization.pdf. 
4 LDV and MDV adoption is based on Alternative 3 from the 2027 and Later Light-Duty and Medium-Duty Vehicle 
Multipollutant proposed rule with HDV adoption based on an interim set of inputs and assumptions built off the 
Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles – Phase 3 Proposed Rule (HDP3). 
5 Includes electric vehicle provisions from the Inflation Reduction Act within the Optimization Model for reducing 
Emissions of Greenhouse gases from Automobiles (OMEGA) compliance model and compliance with 2023 and 
later GHG standards (86 FR 74434 2021), with the addition of heavy-duty vehicle (Class 4–8) charge demand 
estimated for the California Advanced Clean Trucks (ACT) Program. 

https://www.energy.gov/sites/default/files/2023-01/the-us-national-blueprint-for-transportation-decarbonization.pdf
https://www.energy.gov/sites/default/files/2023-01/the-us-national-blueprint-for-transportation-decarbonization.pdf
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in this study to reflect the difference between the Action and No Action regulatory scenarios, including 

differences in the number of PEVs on the road, the size of the necessary charging network, and the 

associated upgrades to local distribution networks. Across the five selected states in 2032, this 

translates to an estimated 3.9 million incremental PEVs on the road (including 40,000 incremental 

heavy-duty PEVs, Class 4–8). 

This work quantifies the value of proactive and intelligent vehicle grid integration by modeling two load 

flexibility scenarios. These scenarios have been designed to temporally shift charging loads at residential 

and depot locations within the bounds of simulated vehicle arrival and departure times. The simulated 

network size shown above is constant among the study’s two charge management scenarios: 

• A baseline “Unmanaged” scenario that assumes vehicles begin charging at full power 
immediately upon arrival (relative to the capabilities of the vehicle and the simulated charging 
infrastructure).  

• A “Managed” scenario that assumes that vehicles arriving at select charging locations will 
intentionally minimize charging power so that the session is completed just prior to the vehicle’s 
departure from that location. 

  

Key Finding #1: Annual charging infrastructure needs could increase by 

3% across five states in scenarios consistent with the EPA proposals. 

Five-state simulation results (Table ES-1) show that 14.3 million public and private charging ports are 

estimated as necessary to support 20 million PEVs across five states in the 2032 Action scenario. This 

represents 2.3 million incremental ports relative to the No Action scenario, an increase of 19%. As the 

EPA proposals apply to model years 2027 through 2032, this averages to an annual increase of 3% over 

six years. The vast majority of these incremental ports (97%) are used for alternating current (AC) 

charging of light- and medium-duty vehicles. However, incremental costs (including grid upgrades) for 

high-power direct current (DC) charging of heavy-duty vehicles remain significant because of unit costs 

that are 1–2 orders of magnitude larger.  

The $7.5 billion in funds currently available via the National Electric Vehicle Infrastructure Formula 

Program pursuant to the Infrastructure Investment and Jobs Act provide a foundational incentive to 

develop a national charging network across the states, both from an installation and manufacturing 

perspective. For context, based on current publicly-announced quantified capabilities, U.S. 

manufacturers can produce over 1,000,000 chargers each year, including 60,000 DC chargers.6 

Furthermore, though not quantified here, the Inflation Reduction Act of 2022 extended the Internal 

Revenue Code Section 30C tax credit, incentivizing up to 30 percent of the cost of recharging property 

(up to $100,000 for each item of depreciable property, and up to $1,000 otherwise) until 2032.7 

  

 
6 U.S. Department of Energy. Building America's Clean Energy Future. February 25, 2024. Available at:  
https://www.energy.gov/invest.  
7 U.S. Internal Revenue Service. Alternative Fuel Vehicle Refueling Property Credit. February 2, 2024. Available at: 
https://www.irs.gov/credits-deductions/alternative-fuel-vehicle-refueling-property-credit  

https://www.energy.gov/invest
https://www.irs.gov/credits-deductions/alternative-fuel-vehicle-refueling-property-credit
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Table ES-1. Simulated 2032 Network Size for the Five-State Study by Vehicle Weight Class and Electric Vehicle 
Supply Equipment Type. AC ports include Level 1 and Level 2 charging; DC ports include units rated for peak powers 
between 50 kW and 1.5 MW per port.

 

Key Finding #2: Incremental distribution grid investment needs 

represent approximately 3% of current annual utility investments in the 

distribution system for scenarios consistent with the EPA proposals. 

As shown in Table ES-2, this study estimates an incremental distribution grid investment of $2.3 billion 

over six years for the five states under study (2023 dollars). Incremental distribution grid upgrade 

investment needs8 can be compared to existing utility distribution system investments. Based on utility 

reports to the Federal Energy Regulatory Commission, data from electric co-ops, and extrapolation for 

the remaining utilities, we estimate that as of 2021, utility investments in distribution systems, 

nationwide, exceeded $60 billion annually.  

We estimate the share of that utility distribution investment for the five states evaluated in this study is 

$15 billion per year. Based on this, the EPA proposals represent approximately 3% of current annual 

utility investments in distributions systems between 2027 and 2032 across the five states studied. As 

also shown in the table, incremental charging infrastructure capital investment needed across the five 

states under study for 2027 is $865 million and gradually increases the deployment of charging to total 

$9.7 billion by 2032.  

Across the five states the study estimated a combined investment of $12.0 billion in incremental 

charging and distribution grid infrastructure in 2032. Over the six model years from 2027 through 2032, 

this averages to an annual incremental investment of $2.0 billion in charging and distribution grid 

infrastructure. This investment would support the incremental manufacturing and installation of 2.3 

million charging ports, eight distribution substations, 125 feeders, and 30,000 service transformers, 

 
8 By design, this study presents incremental grid upgrade results describing the relative investment difference 
between PEV adoption scenarios that could occur with and without the pending EPA regulations. The study 
identifies where and when the electric distribution grid may require capacity enhancements under certain PEV 
adoption and charging behavior scenarios. The study does not predict the absolute levels of distribution grid 
investment needed in the long term.  
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without the use of managed charging.  Notably, substation, transformer bank and service transformers 

built by 2027 mostly cover 2032 needs based off size assumptions for existing and new substations; 

feeder upgrades are still triggered in 2032.  

Table ES-2. Incremental 2027 and 2032 Simulation Results for the Five-State Study (relative to No Action)  

 

 

Identification of these costs, while important, is just the first step in understanding how to equitably 

allocate them. A key finding from this study is the importance of taking the next step to allocate 

distribution costs to PEV loads served by new distribution capacity as well as non-PEV loads that could 

also be served by such new capacity, the latter of which was out of scope. Follow-on analysis is needed 

to allocate distribution costs among these multiple types of customers. 
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Key Finding #3: Managed charging techniques can decrease 

incremental distribution grid investment needs by 30%, illustrating the 

potential for significant cost savings by optimizing PEV charging and 

other loads at the local level. 

Proactive utility planning, tariff structures, and vehicle-grid integration technologies and strategies will 

mitigate grid infrastructure investment needs. The incremental distribution grid capital investment of 

$2.3 billion estimated by this study is reduced 30% to $1.6 billion when PEV charging loads at home and 

depot locations are managed. This result is driven by the ability of PEVs to shift charging to off-peak 

hours based on parking durations that exceed the time necessary to charge and by strategically locating 

chargers, thereby avoiding potential overloading and thermal violations that otherwise drive distribution 

equipment upgrades. Managing charging could substantially reduce incremental grid components 

needs, including for substations by 50%, feeders by 40%, and service transformers by 30%. A 30% 

reduction in PEV peak load was simulated in the Action–Managed scenario.  

When considering all electric loads, this translates to a reduction in total peak load of between 0.4% and 

4.5% depending on the state. Although this management strategy ensures that peaks from PEV charging 

are reduced, within the context of this study, the strategy is agnostic to non-PEV residential, 

commercial, and industrial loads on the distribution network (meaning simulated PEV loads are not 

optimized relative to non-PEV loads). Accordingly, the results present a conservative estimate of the 

potential distribution grid savings from managing charging load locally. 

Key Finding #4: Consumer benefits from vehicle electrification 

significantly outweigh the estimated cost of charging and grid 

infrastructure costs in scenarios consistent with the EPA proposals. 

Based on levelized cost of driving from NREL’s 2022 Transportation Annual Technology Baseline,9 by 

2030, PEVs are expected to provide $8,300 per vehicle in lifetime net benefits to consumers, including 

fuel savings but excluding the value of avoided emissions (fleet-weighted average using the EPA’s 

adoption scenario and infrastructure costs consistent with this study). This conservative estimate of net 

benefits ($33 billion for the 3.9 million incremental PEVs by 2032), which does not allocate distribution 

costs among other potential loads that might use incremental grid infrastructure, is more than 2.5 times 

greater than the combined capital investment in charging infrastructure and grid upgrades estimated by 

this work. 

  

 
9 National Renewable Energy Laboratory, “Annual Technology Baseline,” https://atb.nrel.gov/. 

https://atb.nrel.gov/
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Introduction 
U.S. climate goals for economy-wide net-zero greenhouse gas (GHG) emissions by 2050 require the 

rapid decarbonization of the on-road transportation sector, and plug-in electric vehicles (PEVs) 

(including battery electric vehicles [BEVs] and plug-in hybrid electric vehicles [PHEVs]) are poised to 

become a key technology for achieving this end.10 U.S. Environmental Protection Agency (EPA) proposed 

rulemakings for GHG emissions standards in light-, medium-, and heavy-duty on-road vehicles11,12 would 

incentivize continued ongoing advancements already happening in the industry because of private 

investment, consumer demand, federal incentives (notably from the Bipartisan Infrastructure Law and 

Inflation Reduction Act), and state-level policies. Questions have been posed regarding the cost of the 

requisite charging infrastructure and associated upgrades to the nation’s electric grid.  

Charging infrastructure deployment costs are location-specific, with estimates requiring granular 

information on planned deployment, flexibility potential, and grid readiness. This multi-disciplinary team 

conducted a Multi-State Transportation Electrification Impact Study (TEIS) that quantitatively assesses 

the incremental investment necessary to enable the levels of vehicle electrification that may be induced 

by pending EPA regulation and to estimate the potential value of deferred investments in electric 

distribution infrastructure that would be enabled by proactive vehicle–grid integration planning and 

deployment. 

Research Team and Modeling Tools 

Given the technical challenges posed by this analysis, the DOE, the National Renewable Energy 

Laboratory (NREL), Lawrence Berkeley National Laboratory (LBNL), and Kevala, Inc. (Kevala) partnered to 

develop a novel national framework for estimating charging infrastructure costs across all on-road 

vehicle weight classes and the associated upstream electricity distribution system upgrade costs. This 

national framework leverages critical data and state-of-the-art modeling capabilities from each 

organization. 

NREL’s Electric Vehicle Infrastructure Analysis Suite (EVI-X) models light-duty vehicle (LDV) (Class 1–2a) 

charging demands across multiple use cases, including drivers with and without access to home 

charging, long-distance road trips, and ride-hailing electrification with national-level scope and county-

level resolution. EVI-X is also used within this study to model medium-duty vehicles (MDVs) (Class 2b–3), 

transit buses, and school buses. EVI-X was a key analytic component of the EPA’s regulatory impact 

 
10 Michael Berube, Andrew Wishnia, Karl Simon, Alexis Pelosi, Matteo Muratori, Tatjana Kunz, Aaron Hula, and 
Michael Freedberg, The U.S. National Blueprint for Transportation Decarbonization, Washington, D.C.: U.S. 
Department of Energy, DOE/EE-2674, 2023, https://www.energy.gov/sites/default/files/2023-01/the-us-national-
blueprint-for-transportation-decarbonization.pdf. 
11 Proposed Rule by the EPA, Multi-Pollutant Emissions Standards for Model Years 2027 and Later Light-Duty and 
Medium-Duty Vehicles, Docket ID No. EPA–HQ–OAR–2022–0829 (May 5, 2023), 
https://www.federalregister.gov/documents/2023/05/05/2023-07974/multi-pollutant-emissions-standards-for-
model-years-2027-and-later-light-duty-and-medium-duty.  
12 Proposed Rule by the EPA, Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles, Phase 3, Docket ID No. 
EPA–HQ–OAR–2022–0985 (April 27, 2023), https://www.federalregister.gov/documents/2023/04/27/2023-
07955/greenhouse-gas-emissions-standards-for-heavy-duty-vehicles-phase-3. 

https://www.energy.gov/sites/default/files/2023-01/the-us-national-blueprint-for-transportation-decarbonization.pdf
https://www.energy.gov/sites/default/files/2023-01/the-us-national-blueprint-for-transportation-decarbonization.pdf
https://www.federalregister.gov/documents/2023/05/05/2023-07974/multi-pollutant-emissions-standards-for-model-years-2027-and-later-light-duty-and-medium-duty
https://www.federalregister.gov/documents/2023/05/05/2023-07974/multi-pollutant-emissions-standards-for-model-years-2027-and-later-light-duty-and-medium-duty
https://www.federalregister.gov/documents/2023/04/27/2023-07955/greenhouse-gas-emissions-standards-for-heavy-duty-vehicles-phase-3
https://www.federalregister.gov/documents/2023/04/27/2023-07955/greenhouse-gas-emissions-standards-for-heavy-duty-vehicles-phase-3
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analysis and was central to NREL’s evaluation of national light-duty infrastructure needs, as published in 

The 2030 National Charging Network report.13 

LBNL’s Medium- and Heavy-Duty Electric Vehicle Infrastructure – Load Operations and Deployment 

(HEVI-LOAD) tool provides nationwide travel demand modeling capabilities for medium- and heavy-duty 

zero-emission vehicles (ZEVs) and projects load profiles and charging/refueling infrastructure needs at 

granular temporal and spatial scales. HEVI-LOAD leverages agent-based simulation techniques to resolve 

the integrated driving, parking, and charging/refueling behaviors of ZEVs over large-scale transportation 

networks and was central to the California Energy Commission’s (CEC’s) evaluation of statewide 

medium- and heavy-duty infrastructure needs, as published in the Second Assembly Bill (AB) 2127 

Assessment.14  

Kevala is a data and analytics company that develops software solutions designed to empower energy 

market participants to plan for a more robust, environmentally sustainable, effective, and safe grid. In 

this analysis, Kevala utilized high-resolution, distribution-level grid data synthesized through its 

proprietary data platform. The platform is organized around a foundational grid infrastructure data set 

mapped to geographic, parcel, and other socioeconomic data. This architecture enables Kevala to create 

load and distributed energy resource (DER) adoption propensity models at the parcel15 level, which are 

then associated with grid assets and used to perform grid capacity analysis. These capabilities were 

leveraged by the California Public Utilities Commission (CPUC) in a statewide Electrification Impacts 

Study, completed in 2023.16 This California study developed a highly granular load forecast of baseline 

load and DER adoption for more than 12 million premises across the state, which was then associated 

with the grid infrastructure from the parcel to the substation to evaluate when, where, and how much 

California’s major investor-owned utilities (IOUs) may need to invest in grid upgrades. 

Study Design 

This study’s parameters, inputs, and assumptions closely align with elements of the EPA proposal. Two 

scenarios of PEV adoption in 2027 and 2032 are considered to bookend the relevant vehicle model 

years. 

• An “Action” scenario is used to reflect the adoption of national GHG standards as proposed by 
the EPA in April 2023 (which would regulate emissions from new motor vehicles for model years 

 
13 Eric Wood, Brennan Borlaug, Matt Moniot, Dong-Yeon (D-Y) Lee, Yanbo Ge, Fan Yang, and Zhaocai Liu, The 2030 
National Charging Network, Golden, CO: National Renewable Energy Laboratory, NREL/TP-5400-85654, 2023, 
https://www.nrel.gov/docs/fy23osti/85654.pdf. 
14 California Energy Commission, Second Assembly Bill (AB) 2127 Electric Vehicle Charging Infrastructure 
Assessment, Assessing Charging Needs to Support Zero-Emission Vehicles in 2030 and 2035, CEC-600-2023-048, 
2023, https://www.energy.ca.gov/publications/2023/second-assembly-bill-ab-2127-electric-vehicle-charging-
infrastructure-assessment. 
15 A parcel is a real estate property or land and any associated structures that are the property of a person with 
identification for taxation purposes. 
16 Kevala Inc., Electrification Impacts Study Part 1: Bottom-Up Load Forecasting and System-Level Electrification 
Impacts Cost Estimates, prepared for the CPUC in support of Proceeding R.21-06-017 (Order Instituting Rulemaking 
to Modernize the Electric Grid for a High Distributed Energy Resources Future), May 9, 2023, 
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M508/K423/508423247.PDF.  

https://www.nrel.gov/docs/fy23osti/85654.pdf
https://www.energy.ca.gov/publications/2023/second-assembly-bill-ab-2127-electric-vehicle-charging-infrastructure-assessment
https://www.energy.ca.gov/publications/2023/second-assembly-bill-ab-2127-electric-vehicle-charging-infrastructure-assessment
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M508/K423/508423247.PDF
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2027 through 2032) and potential PEV adoption by vehicle manufacturers in response to 
standards across all on-road vehicle weight classes (Class 1–8).17 

• A “No Action” scenario is used to reflect the absence of new national GHG standards but 
includes current state and federal policies and regulations (as of April 2023).18 

Both the Action and No Action scenarios used in this report were developed by the EPA. PEV adoption 

scenarios for LDVs and MDVs (Class 1–3) were developed using the Optimization Model for reducing 

Emissions of Greenhouse gases from Automobiles (OMEGA).19 PEV adoption scenarios for heavy-duty 

vehicles (HDVs) were developed using the Heavy-Duty Technology Resources Use Case Scenario 

(HD TRUCS) model20 and the MOtor Vehicle Emission Simulator (MOVES).21 

Based on EPA modeling, a total of 55 million PEVs are assumed to be on the road nationally by 2032 in 

the Action scenario across all weight classes. This contrasts with the No Action scenario, which assumes 

41 million PEVs on the road nationally by 2032. Both the Action and No Action scenarios represent an 

increase in the national PEV population relative to today. For reference, as of November 2023, a total of 

4.5 million PEVs have been sold cumulatively in the United States since 2010.22 Although both scenarios 

may entail investments in charging infrastructure and grid upgrades, this analysis is designed to estimate 

the potential incremental charging infrastructure and grid upgrade costs associated with the EPA’s 

proposed rulemakings. 

A key challenge in assessing the grid impacts of transportation electrification is that charging forecasts 

do not necessarily spatially align with utility electric grid infrastructure. Prior studies have illustrated the 

benefits of using actual distribution feeder models in strategic investment and planning for PEVs;23 

however, a feeder can cross multiple geographic aggregation levels commonly used in PEV adoption and 

travel demand forecasting, such as census blocks24 or traffic analysis zones.25 Ultimately, a reliable and 

granular method of aligning charging forecasts and utility grid infrastructure is to disaggregate the 

 
17 LDV and MDV adoption is based on Alternative 3 from the 2027 and Later Light-Duty and Medium-Duty Vehicle 
Multipollutant proposed rule with HDV adoption based on an interim set of inputs and assumptions built off of the 
Greenhouse Gas Emissions Standards for Heavy-Duty Vehicles – Phase 3 Proposed Rule (HDP3). 
18 Includes electric vehicle provisions from the Inflation Reduction Act within the OMEGA compliance model and 
compliance with 2023 and later GHG standards (86 FR 74434 2021), with the addition of heavy-duty vehicle (Class 
4–8) charge demand estimated for the California Advanced Clean Trucks (ACT) Program. 
19 EPA, “Optimization Model for reducing Emissions of Greenhouse Gases from Automobiles (OMEGA), last 
updated September 21, 2023, https://www.epa.gov/regulations-emissions-vehicles-and-engines/optimization-
model-reducing-emissions-greenhouse-gases#omega-2.1.0.  
20 Lang Sui, Memorandum to Docket EPA-HQ-OAR-2022-0985, “Heavy Duty Technology Resource Use Case 
Scenario Tool (HD TRUCS),” April 14, 2023, https://www.regulations.gov/document/EPA-HQ-OAR-2022-0985-0830. 
21 Evan Murray, Memorandum to Docket EPA-HQ-OAR-2022-0985, “MOVES4.R3,” February 2024. 
22 Argonne National Laboratory, “Light Duty Electric Drive Vehicles Monthly Sales Updates,” Energy Systems and 
Infrastructure Analysis, n.d., https://www.anl.gov/esia/light-duty-electric-drive-vehicles-monthly-sales-updates. 
23 J. Coignard, P. MacDougall, F. Stadtmueller, and E. Vrettos, “Will Electric Vehicles Drive Distribution Grid 
Upgrades?: The Case of California,” IEEE Electrification Magazine 7, no. 2 (June 2019): 46–56, 
https://doi.org/10.1109/MELE.2019.2908794. 
24 Alan Jenn and Jake Highleyman, “Distribution Grid Impacts of Electric Vehicles: A California Case Study,” 
iScience 25, no. 1 (2022): 103686, ISSN 2589-0042, https://doi.org/10.1016/j.isci.2021.103686.  
25 California Energy Commission (CEC), EVSE Deployment and Grid Evaluation (EDGE) Tool, data last updated May 
11, 2023, https://www.energy.ca.gov/data-reports/reports/electric-vehicle-charging-infrastructure-assessment-
ab-2127/evse-deployment.  

https://www.epa.gov/regulations-emissions-vehicles-and-engines/optimization-model-reducing-emissions-greenhouse-gases#omega-2.1.0
https://www.epa.gov/regulations-emissions-vehicles-and-engines/optimization-model-reducing-emissions-greenhouse-gases#omega-2.1.0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.regulations.gov%2Fdocument%2FEPA-HQ-OAR-2022-0985-0830&data=05%7C02%7CEric.Wood%40nrel.gov%7Cb3eefbf05c0d4cb16b2008dc3876f842%7Ca0f29d7e28cd4f5484427885aee7c080%7C0%7C0%7C638447330864635167%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=fowaa92M0ezm2e95AY9jsJ4pFZNijPkixcL4XY1CJwY%3D&reserved=0
https://www.anl.gov/esia/light-duty-electric-drive-vehicles-monthly-sales-updates
https://doi.org/10.1109/MELE.2019.2908794
https://doi.org/10.1016/j.isci.2021.103686
https://www.energy.ca.gov/data-reports/reports/electric-vehicle-charging-infrastructure-assessment-ab-2127/evse-deployment
https://www.energy.ca.gov/data-reports/reports/electric-vehicle-charging-infrastructure-assessment-ab-2127/evse-deployment
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forecast at the parcel level.26 This method allows the associated PEV load to be attributed from the 

parcel to individual grid feeders and substations.  

Given the localized nature of charging infrastructure installation costs and grid upgrades, high-resolution 

spatial analysis of the electric distribution system is necessary. Although Kevala has developed an 

extensive inventory of high-resolution grid data at scale, full coverage of this information at the national 

level has yet to be synthesized and validated. Thus, the novel approach developed for this initial study 

was applied to a subset of states. The states were selected to capture diversity in urban/rural 

populations, utility distribution grid composition, freight travel demands, and state-level PEV policies. 

With this selection plan, and with guidance from Kevala on the spatial coverage of their data, the 

following five states were selected for detailed analysis:  

• California • Illinois • Oklahoma 

• Pennsylvania • New York  

A new statistical extrapolation method was developed by Kevala for this study, such that detailed 

modeling from these five states could be used to approximate incremental costs at the national level. 

This approach is discussed in Chapter 2 and 0 

Finally, this work attempts to quantify the value of proactive, intelligent vehicle–grid integration by 

modeling two load flexibility scenarios:  

• An “Unmanaged” scenario serves as the baseline in which vehicles arrive at locations where 
they intend to charge and begin doing so immediately and at full power (relative to the 
capabilities of the vehicles and the simulated charging infrastructure).  

• A “Managed” scenario is applied in which vehicles arriving at select charging locations will 
intentionally minimize charging power such that the session is completed just prior to the 
vehicle’s departure from that location.  

Arrival time, departure time, and charging energy (but not power) are enforced as identical in both the 

Managed and Unmanaged scenarios. Given these constraints, charging flexibility is exercised only at 

home and depot locations, which are considered most likely to have margin for adjusting the charging 

power without negative impacts on vehicle availability. Although this management strategy ensures that 

peaks from PEV charging are reduced, it ultimately was agnostic to non-PEV residential, commercial, and 

industrial loads on the distribution network and is therefore unable to more aggressively optimize 

charging schedules to better use extra capacity on the local distribution system. Therefore, the results of 

this grid integration strategy could be considered a conservative estimate of the benefits of managed 

charging.  

An additional charging management scenario, illustrated in 0, optimizes EV charging load with respect to 

local feeder loading conditions. Comparing the principal local capacity-agnostic approach with one that 

considers local constraints illustrates that grid integration strategies can be designed to dispatch load 

 
26 Jeremy Keen, Julieta Giraldez, Elizabeth Cook, Andy Eiden, Scott Placide, Alan Hirayama, Brian Monson, David 
Mino, and Fathalla Eldali, Distribution Capacity Expansion: Current Practice, Opportunities and Decision Support 
(Golden, CO: National Renewable Energy Laboratory, 2022), NREL/TP-6A40-83892, 
https://www.nrel.gov/docs/fy23osti/83892.pdf.  

https://www.nrel.gov/docs/fy23osti/83892.pdf
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control to support different reliability objectives at the transmission or distribution scales. Harmonizing 

multiscale control strategies could be the subject of future analysis as the scope of field load 

management techniques expands to mitigate local loading. As of January 2024, the UL 3141 Outline of 

Investigation describes testing procedures for power control systems, which begins to standardize an 

additional technology for managing charging load.27 This critical step toward standardizing load control 

technologies opens the door for more manufacturers to develop compliant products to manage 

charging as envisioned in this study. Further, these savings could be leveraged by electric utilities on 

behalf of their customers (independent of the EPA rules) via programs to incentivize cost-optimized 

vehicle charging patterns and demand response. 

This study design results in a total of eight scenarios across the following three dimensions: 

• Analysis years: 2027, 2032 

• PEV adoption (national, Class 1–8): 

o Action: 55 million PEVs 

o No Action: 41 million PEVs 

• Load flexibility: Managed, Unmanaged 

Potential differences between these scenarios are conceptually visualized for a single analysis year in 

Figure 1. The gray line is intended to depict theoretical future electric demands, absent PEVs. The blue 

lines reflect theoretical increased electric load with the addition of PEVs from the No Action scenario 

under two load shapes: Managed (solid) and Unmanaged (dashed). Two analogous shapes are captured 

with incremental demand from the Action scenario in orange. Though conceptual, these curves intend 

to convey potential interactions between PEV fleet size and load flexibility explored in this work. 

 
27 UL, an organization that develops standards for the electronics industry, drafted UL 3141, Outline of 
Investigation for Power Control Systems. Manufacturers will be able to use this outline when developing devices 
that utilities can use to limit the energy consumption of BEVs. The outline identifies five potential functions for 
power control systems. One function is to serve as a power import limit or power export limit. In these use cases, 
the power control system controls the flow of power between a local electric power system (most often the 
building wiring on a single premises) and a broader area electric power system (most often the utility’s system). 
Critically, the standardized power import limit function will enable smarter vehicle–grid integration by leveraging 
the flexibility of BEVs to charge during off-peak periods. Conforming products will give utilities a clear technological 
framework for use in load management programs. 
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Figure 1. Illustrative example of the four PEV policy and charging behavior scenarios compared in this study 

Absolute Versus Relative Scenario Analysis 

We define the study scope to identify where and when the electric distribution grid may require 

capacity enhancements under a relative comparison of certain PEV adoption policy and charging 

behavior scenarios. However, the study does not predict the absolute levels of electric distribution grid 

investment needed in the long term. Relative scenario comparisons were used in this study to isolate 

the effect of electrification and reduce confounding effects from including other variables. The study did 

not examine the benefit of non-wire alternatives (NWAs) to manage load, nor did the study account for 

ongoing investments related to resilience and aging infrastructure; when investments will occur; or 

drivers of asset failures, such as calendar age, temperature, and actual loading patterns. Though the 

study employs publicly available high-resolution grid asset data, the prevalence of underground lines 

introduces some uncertainty in cost estimation. It is important that these factors be considered in 

absolute cost analyses, but their absence here will have a muted effect on the relative costs between 

scenarios. 

Literature Review and Ongoing Studies 

This study is the first of its kind, owing to the unique combination of scale of the analysis (e.g., five-state 

with national extrapolation), load and distribution spatial and asset granularity (parcel- and feeder-level, 

respectively), scope of the EV impacts (L/M/HDV), and time horizon of the analysis (2032 and 

extrapolated 2050 impacts). A comparison of key DOE, Electric Power Research Institute (EPRI), Kevala, 

and NREL studies in this space is presented in Table 1. National-scale studies to date either have not 

included distribution impacts or have taken high-level econometric approaches to performing impact 

analysis. Detailed studies that have performed parcel-level load analysis (i.e., allocating load profiles and 

electrification growth at the building level) have typically involved smaller spatial extents (i.e., LA100 

analysis was for Los Angeles Department of Water & Power’s [LADWP’s] service area, EVs@Scale/FUSE 
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is investigating specific feeders in Virginia, and the CPUC’s Electrification Impact Study focused on IOU 

service areas in California). This study is unique in the large spatial extent (i.e., five states) coupled with 

the detailed load spatial resolution (parcel-level) conducted for the analysis. 

Table 1. Comparison of Multi-State Transportation Electrification Impact Study (TEIS) to other key DOE, NREL, 
EPRI, and Kevala Studies 

Project 
Final 

Analysis 
Year 

EV 
Adoption 
(Class- 

Dependent) 

EV 
Weight 
Class 

Charging 
Infrastructure 

Needs 

Spatial 
Extent 

Load Spatial 
Granularity 
(Demand) 

Generation 
Impacts 

Distribution 
Impacts 

Distribution 
Assets 

Granularity/ 
Analysis 
Method 

LA10028 2050 
80% Stock 

2045 
LDV Yes LADWP Parcels Yes Yes 

Distribution 

Transformer/ 

Power Flow 

2030 NCN  

(NREL)29,30 
2030 

15% Stock 
(50% Sales) 

LDV Yes National County No No No 

DECARB 

(DOE) 
2050 80% Stock 

L/M/ 

HDV 
No National County Yes Yes Econometric 

EVs on Bulk 

Power Systems 
(DOE)31 

2050 80% Stock 
L/M/ 

HDV 
No National County Yes No No 

EVs2Scale2030 
/eRoadMap 
(EPRI)32 

2030 
15% Stock 

(50% Sales) 
L/M/ 

HDV 
No National 

~0.28 mi2 
Cells 

No Yes 
Feeder 

(Selected 

Utilities) 

EVs@Scale/ 
FUSE (DOE)33 

2040 50% Stock 
L/M/ 

HDV 
Yes Virginia Parcels No Yes 

Feeder/ Power 

Flow 

Electrification 

Impact 

Study (CPUC)34 
2035 30% Stock 

L/M/ 

HDV 
Yes California Parcels No Yes 

Distribution 

Transformer/ 

Capacity 

Analysis 

Multi-State 

TEIS 
2032 20% Stock  

L/M/ 

HDV 
Yes 5-State Parcels No* Yes 

Feeder/ 

Capacity 

Analysis 

* EPA independently simulated generation capacity expansion using the PEV charging loads from this study. 

A key aspect of electrification impact studies is how load is modeled. The focus of this work is on 

examination of transportation electrification grid impacts and required upgrades. Models are developed 

to predict how specific types of loads will behave with regard to the amount and rate of energy they 

 
28 Bryan Palmintier, Meghan Mooney, Kelsey Horowitz, Sherin Abraham, Tarek Elgindy, Kwami Sedzro, Ben Sigrin, 
Jane Lockshin, Brady Cowiestoll, and Paul Denholm, “Chapter 7: Distribution System Analysis,” in The Los Angeles 
100% Renewable Energy Study, edited by Jaquelin Cochran and Paul Denholm (Golden, CO: National Renewable 
Energy Laboratory, 2021), NREL/TP-6A20-79444-7, https://www.nrel.gov/docs/fy21osti/79444-7.pdf. 
29 E. Wood, B. Borlaug, M. Moniot, D-Y Lee, Y. Ge, F. Yang, and A. Liu, The 2030 National Charging Network: 
Estimating U.S. Light-Duty Demand for Electric Vehicle Charging Infrastructure, NREL Technical Report 85654, June 
2023, https://www.nrel.gov/docs/fy23osti/85654.pdf. 
30 E. Wood, B. Borlaug, M. Moniot, D-Y Lee, Y. Ge, F. Yang, and Z. Liu, The 2030 National Charging Network: 
Estimating U.S. Light-Duty Demand for Electric Vehicle Charging Infrastructure, NREL Technical Report 85654, June 
2023, https://www.nrel.gov/docs/fy23osti/85654.pdf. 
31 B. Borlaug, E. Hale, P. Jadun, L. Lavin, C. Ledna, M. Muratori, and A. Yip, “Managing Increased Electric Vehicle 
Shares on Bulk Power Systems,” NREL Technical Presentation 86000, June 2023, 
https://www.nrel.gov/docs/fy24osti/86000.pdf. 
32 EPRI, “EVs2Scale2030,” accessed 2023, https://msites.epri.com/evs2scale2030.  
33 Andrew Meintz, “Electric Vehicles at Scale (EVs@Scale) Laboratory Consortium,” VGI/SCM Pillar, presentation at 
the DOE Vehicle Technologies Office (VTO) Annual Merit Review, June 22, 2022, 
https://www.nrel.gov/docs/fy22osti/82828.pdf. 
34 Kevala, “Electrification Impacts Study Part I: Bottom-up Load Forecasting and System-Level Electrification 
Impacts Cost Estimates,” prepared for CPUC Energy Division, 2023, 
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M508/K423/508423247.PDF. 

https://www.nrel.gov/docs/fy21osti/79444-7.pdf
https://www.nrel.gov/docs/fy23osti/85654.pdf
https://www.nrel.gov/docs/fy23osti/85654.pdf
https://www.nrel.gov/docs/fy24osti/86000.pdf
https://msites.epri.com/evs2scale2030
https://www.nrel.gov/docs/fy22osti/82828.pdf
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M508/K423/508423247.PDF
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need. Examples of load models developed for this study include baseline loads for various building types 

that reflect typical loads found in residential, commercial, and industrial locations. Models were also 

developed to predict loading from electric vehicle battery charging, and these were adjusted to reflect 

charging needs of different types of vehicles (L/M/HDVs of various types). Vehicle projections are 

provided by EPA modeling, with non-electrification load provided from projections from ICF Consulting. 

The EPA projections for LDVs and MDVs (Class 1–3) were developed using OMEGA,35 and projections for 

HDVs were developed using the EPA’s HD TRUCS model36 and MOVES.37 

Future work may consider refining the assumptions for the type and size of charging infrastructure 

under the managed charging scenario. This study predicts that for the baseline (No Action scenario) in 

California, there will need to be a total of 7,248,724 public and private chargers (charging ports) to serve 

around 10 million PEVs by 2032. The CEC forecasts that by 2030, California will need 1.01 million 

chargers to serve 7.1 million PEV passenger vehicles. By 2035, PEV passenger vehicle adoption is 

expected to reach 15.2 million vehicles and require 2.11 million chargers.13 The CEC report projects that 

by 2030, California’s fleet of 155,000 medium and heavy-duty electric vehicles will require 114,500 

chargers. By 2035, this will increase to a fleet of 377,000 vehicles requiring 264,500 chargers at depot 

and public en route locations. The CEC study notes that “[w]hile today's average electric passenger 

vehicle driver charges at home in a single-family dwelling, many Californians do not have convenient 

access to this option. People who live in multifamily dwellings or have no access to electricity where 

they park need convenient charging options. In addition, all electric vehicle drivers will need charging on 

long trips.”38 The CEC adjusted the number of public and private ports accordingly. 

The current study assumes that charging infrastructure is available and operational whenever it is 

needed. Future work may refine this assumption. Charger reliability has been raised as a concern in 

California,39 although it was recognized that more information is needed to understand this issue more 

clearly. Accordingly, the California Legislature required the CPUC 1) to develop charger uptime 

recordkeeping and reporting standards receiving for state-incentivized chargers and 2) to conduct 

biennial assessments of charger uptime. The current assumption for managed charging is that all home 

and depot charging participate in some form of managed charging. Future studies may choose to refine 

this assumption based on further analysis of customer adoption scenarios. For example, U.S. Energy 

Information Administration (EIA) data show that, for the five states that are a focus of the current study, 

 
35 For overview information on OMEGA, see EPA’s page at https://www.epa.gov/regulations-emissions-vehicles-
and-engines/optimization-model-reducing-emissions-greenhouse-gases#overview. Additional documentation on 
the model is provided at https://omega2.readthedocs.io/en/2.1.0/.  
36 Sui, Lang. Memorandum to Docket EPA-HQ-OAR-2022-0985. “Heavy Duty Technology Resource Use Case 
Scenario Tool (HD TRUCS)”. April 14, 2023. Available online: https://www.regulations.gov/document/EPA-HQ-OAR-
2022-0985-0830. 
37 Murray, Evan. Memorandum to Docket EPA-HQ-OAR-2022-0985. “MOVES4.R3”. February 2024. 
38 California Energy Commission Staff Report “Assembly Bill 2127 Electric Vehicle Charging Infrastructure 
Assessment: Assessing Charging Needs to Support Zero-Emission Vehicles in 2030 and 2035”, August 2023, CEC-
600-2023-048, (Executive Summary, page 2)  
39 California Energy Commission Staff Report “Assembly Bill 2127 Electric Vehicle Charging Infrastructure 
Assessment: Assessing Charging Needs to Support Zero-Emission Vehicles in 2030 and 2035”, August 2023, CEC-
600-2023-048. An overview of the report and link to the report is at https://www.energy.ca.gov/data-
reports/reports/electric-vehicle-charging-infrastructure-assessment-ab-2127 

https://www.epa.gov/regulations-emissions-vehicles-and-engines/optimization-model-reducing-emissions-greenhouse-gases#overview
https://www.epa.gov/regulations-emissions-vehicles-and-engines/optimization-model-reducing-emissions-greenhouse-gases#overview
https://omega2.readthedocs.io/en/2.1.0/
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.regulations.gov%2Fdocument%2FEPA-HQ-OAR-2022-0985-0830&data=05%7C02%7CEric.Wood%40nrel.gov%7Cb3eefbf05c0d4cb16b2008dc3876f842%7Ca0f29d7e28cd4f5484427885aee7c080%7C0%7C0%7C638447330864635167%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=fowaa92M0ezm2e95AY9jsJ4pFZNijPkixcL4XY1CJwY%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.regulations.gov%2Fdocument%2FEPA-HQ-OAR-2022-0985-0830&data=05%7C02%7CEric.Wood%40nrel.gov%7Cb3eefbf05c0d4cb16b2008dc3876f842%7Ca0f29d7e28cd4f5484427885aee7c080%7C0%7C0%7C638447330864635167%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=fowaa92M0ezm2e95AY9jsJ4pFZNijPkixcL4XY1CJwY%3D&reserved=0
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only 13% of customers are enrolled in demand response programs and 58% are enrolled in dynamic 

pricing programs (e.g., time-of-use).  

Distributed energy resources (DERs) are impacting utility net load and are not the focus of this study. 

Distributed battery energy storage systems, which act like traditional loads when they are charging and 

act like “negative loads” when they are discharging, can help manage utility peak demand. Other types 

of DERs include photovoltaic (PV) systems that appear as negative load when operational. PV system 

models were developed in this study. This study did not include additional PV adoption beyond what 

was included in the base case. Large-scale PV adoption can change the overall net load, resulting in large 

mid-day load valleys or duck curves,40 and has raised discussions on night versus day EV charging 

patterns to flatten the overall net load curve. The effect of PV systems was modeled based on an 

extrapolation of existing PV. To do this, Kevala’s Sunspot computer vision algorithm was used to identify 

locations and dimensions of existing rooftop PV systems, and then NREL’s PVWatts Calculator was used 

to estimate the time series generation (negative load) from the PV systems. PVWatts is typically 

configured to assume PV systems are installed at the ideal tilt and orientation for the specified location. 

Future work may refine the models based on more information about tilt and orientation of the PV 

systems, which are rarely ideal, owing to differing orientations of rooftops in housing developments. 

This may affect the shape (timing) of PV generation relative to load.  

Building electrification and other emerging load sectors were also not a focus of this study. Building 

electrification could be an important element to examine in future work, as it can share added grid 

capacity if the end-use peaks for each sector are not time-coincident. Recent work has shown that, for 

some regions, building electrification may account for more than half of future peak load growth, 

particularly in regions with electrification of high heating loads (i.e., heat pump adoption).41 Examining 

multi-sector electrification forecasts42 in the future, across multiple states, will further help delineate 

cost allocation and capacity expansion in the context of multiple drivers for load growth. 

For distribution analysis, the five-state TEIS in this report performs capacity analysis of distribution 

assets at a feeder level and aggregates the distribution transformer capacity for the analysis. Studies 

that take a more detailed distribution analysis approach (e.g., distribution primary power flow down to 

the distribution transformer) have typically focused on single utility service areas or performed analysis 

on selected feeders (e.g., LA100, EVs@Scale), using real utility datasets. A key enabling capability to 

perform state-level analysis has been Kevala’s synthesis of distribution asset data and connectivity. 

Kevala has used machine learning algorithms, trained on real distribution data, to be able to estimate 

distribution assets and topologies. This enables the analysis to leverage synthetic data, as opposed to 

trying to obtain datasets across the tens or hundreds of utility service areas that make up a typical U.S. 

state. 

 
40 R. Bowers, E. Fasching, and K. Antonio, “As solar capacity grows, duck curves are getting deeper in California,” 
EIA, June 2023, https://www.eia.gov/todayinenergy/detail.php?id=56880. 
41 National Grid, "Future Grid Plan: Empowering Massachusetts by Building a Smarter, Stronger, Cleaner and More 
Equitable Energy Future", September 2023, https://www.nationalgridus.com/media/pdfs/our-
company/massachusetts-grid-modernization/future-grid-full-plan-sept2023.pdf  
42 Mai, Trieu, Paige Jadun, Jeffrey Logan, Colin McMillan, Matteo Muratori, Daniel Steinberg, Laura Vimmerstedt, 
Ryan Jones, Benjamin Haley, and Brent Nelson. 2018. Electrification Futures Study: Scenarios of Electric Technology 
Adoption and Power Consumption for the United States. National Renewable Energy Laboratory. NREL/TP-6A20-
71500. https://doi.org/10.2172/1459351.  

https://www.eia.gov/todayinenergy/detail.php?id=56880
https://www.nationalgridus.com/media/pdfs/our-company/massachusetts-grid-modernization/future-grid-full-plan-sept2023.pdf
https://www.nationalgridus.com/media/pdfs/our-company/massachusetts-grid-modernization/future-grid-full-plan-sept2023.pdf
https://doi.org/10.2172/1459351
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This study focuses on the investment required as a result of transportation electrification, along with 

other load growth present in the Integrated Planning Model (IPM) forecasts that were used as inputs. 

Cost allocation and comparisons of other investment analysis become challenging because of the nature 

of how studies define cost categories. Utility rate cases delineate operational expenses and capital 

investments. One challenge of identifying “cost causation” due to electric vehicles is that individual 

distribution investments often achieve multiple objectives. Utilities’ increased use of integrated 

distribution planning promotes reliability alongside resilience, sustainability, and equity goals, while 

examining a broad solution space including customer programs and NWAs as an alternative to 

traditional grid upgrades or as potential bridge toward deferring or meeting load growth until load can 

be served with conventional expansions. Notable recent integrated distribution plans include those 

submitted to the Massachusetts Grid Modernization Advisory Council and those by the large IOUs in 

California and New York. These plans examine multiple investment drivers, such as aging infrastructure, 

reliability and resilience needs, and customer electrification. Building upon this study, future analysis 

decomposing the drivers of multipurpose investments that are out of scope here could reduce the 

estimated cost of transportation electrification, as could the use of NWAs. 

Report Structure 

The remainder of this report details assumptions and methodologies and discusses scenario results.  

• Chapter 2 presents methods for simulating charging needs to support transportation 
electrification scenarios, introduces assumptions for charging infrastructure capital costs, and 
explains estimating distribution grid upgrade costs.  

• Chapter 3 presents transportation electrification scenario results, including adoption scenarios, 
charging load shapes, and charging network costs.  

• Chapter 4 presents results from the relative scenario analysis on the distribution grid, including 
incremental costs of the EPA’s proposed rulemakings.  

• Chapter 5 discusses the key assumptions and approaches used and contextual information to 
aid in the interpretation of results. 

• Chapter 6 concludes with key takeaways from this study. 

The document’s appendices include additional details related to the results, methods, and study 

context. 

  



  March 2024 

 

11 

Modeling Approach 
Data were passed from one organization to another through a one-way data pipeline (see Figure 2) that 

began with the EPA’s PEV adoption scenarios and ended with capital cost estimates (charging 

equipment and grid infrastructure). LBNL used HEVI-LOAD to simulate the charging needs for HDVs 

(Class 4–8), while NREL performed the same task in parallel using EVI-X for LDVs (Class 1–2a), MDVs 

(Class 2b–3), and battery electric transit and school buses. NREL then translated charging needs into 

capital cost estimates for charging equipment and installation (on the customer side of the meter). 

Finally, Kevala took the county-level charging load profiles and infrastructure needs from both NREL and 

LBNL, spatially disaggregated charging demand to the parcel level, and overlaid this demand with non-

PEV demands to estimate distribution capacity expansion needs and associated capital costs. This 

chapter discusses the methods used in each step of this data pipeline, including the modeling 

assumptions and input data sources. 

 

Figure 2. Multi-organization data pipeline 

* Excluding school/transit buses, which are simulated by NREL 

** Data were used by EPA for production cost and capacity expansion modeling. 

Simulating Transportation Electrification 

Charging infrastructure terminology used in this report is consistent with definitions used by the U.S. 

Department of Transportation Federal Highway Administration43 and aligns with Open Charge Point 

Interface (OCPI) terminology for the hierarchy of PEV charging stations, as shown in Figure 3 (adapted 

from the DOE Alternative Fuel Data Center [AFDC]): 

 
43 Federal Highway Administration, National Electric Vehicle Infrastructure Standards and Requirements, February 
28, 2023, https://www.federalregister.gov/documents/2023/02/28/2023-03500/national-electric-vehicle-
infrastructure-standards-and-requirements.  

https://www.federalregister.gov/documents/2023/02/28/2023-03500/national-electric-vehicle-infrastructure-standards-and-requirements
https://www.federalregister.gov/documents/2023/02/28/2023-03500/national-electric-vehicle-infrastructure-standards-and-requirements
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• Station location refers to a site with one or more electric vehicle supply equipment (EVSE) ports 
at the same address. Examples include a parking garage or a mall parking lot.  

• An EVSE port provides power to charge only one vehicle at a time, even though it might have 
multiple connectors. The unit that houses EVSE ports is sometimes called a charging post, which 
can have one or more EVSE ports. 

• A connector is what is plugged into a vehicle to charge it. Multiple connectors and connector 
types (e.g., Tesla [SAE J3400], Combined Charging System, CHAdeMO) can be available on one 
EVSE port, but only one vehicle will charge at a time. Connectors are sometimes called plugs. 

As discussed in Wood et al. (2017)44, charging infrastructure needs can be thought of in terms of 

coverage and capacity, wherein coverage needs tend to be defined in terms of number of stations and 

capacity needs tend to be defined in terms of number of ports. This analysis is primarily concerned with 

estimating future charging capacity, and thus it presents results in terms of port counts (as opposed to 

stations). 

 
Figure 3. PEV charging infrastructure hierarchy (Source: AFDC (2023a))45 

Charging Demand from Light- and Medium-Duty Vehicles 

Light-duty PEV modeling in this report builds on the foundation of years of research and collaboration at 

NREL and beyond, most notably the recently published 2030 National Charging Network report.13 A brief 

explanation of this modeling approach is provided here; readers are directed to this previous work for 

more detailed explanations of the modeling approach and assumptions. 

In addition to modeling tools, several assumptions must be made to define vehicle use scenarios and 

estimate the corresponding charging demands. These include scenario-specific assumptions on vehicle 

adoption (number of PEVs with regional variation), fleet composition (PEV chassis types and preference 

for BEVs/PHEVs), technology attributes (e.g., vehicle efficiency/range, charging efficiency/speed), and 

 
44 Eric Wood, Clément Rames, Matteo Muratori, Sesha Raghavan, and Marc Melaina. 2017. National Plug-In 
Electric Vehicle Infrastructure Analysis. Washington, D.C.: U.S. Department of Energy Office of Energy Efficiency & 
Renewable Energy. DOE/GO-102017-5040. https://www.nrel.gov/docs/fy17osti/69031.pdf.  
45 Alternative Fuels Data Center: Electric Vehicle Charging Stations, 2023. 
https://afdc.energy.gov/fuels/electricity_stations.html  

https://www.nrel.gov/docs/fy17osti/69031.pdf
https://afdc.energy.gov/fuels/electricity_stations.html
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driving/charging behavior. A key determinant of charging behavior—particularly the demand for public 

charging—is the share of PEV owners able to access charging at their primary residences. Home charging 

is typically the most convenient and affordable charging location for those who have access, but many 

do not—as discussed at length by Ge et al. (2021).46 

The core tools used for modeling LDV charging demands in this study are: 

• EVI-Pro: For typical daily charging needs 

• EVI-RoadTrip: For fast charging along highways supporting long-distance travel 

• EVI-OnDemand: For electrification of transportation network companies. 

The development and application of individual models dedicated to specific use cases provide at least 

two benefits:  

1. Increased modularity maximizes the flexibility in our modeling—namely, models can be 
combined or run in isolation (where appropriate), as demonstrated in many studies listed in 
Wood et al. (2023).47 

2. Each model can be tailored to the unique driving and charging behaviors of their associated use 
cases.  

The models used in this study are a subset of the larger EVI-X modeling suite maintained by NREL for 

network planning, site design, and financial analysis across light-, medium-, and heavy-duty vehicles 

(NREL 2023).48 

LDV use cases vary widely and have unique infrastructure requirements that must be accommodated to 

facilitate a seamless transition to PEVs. Typical daily use of LDVs tends to be characterized by short trips 

with long dwell periods (e.g., 70% of daily driving less than 40 miles and 95% less than 100 miles, with 

vehicles typically parked 95% of their lifetimes). These periods present ample opportunities for 

destination charging (most notably at home and workplace locations) that is “right-speeded” to match 

typical dwell times. EVI-Pro assumes such an opportunistic approach to charging, attempting to make 

use of low-cost destination charging where convenient and rely on fast charging only when necessary.49 

 
46 Yanbo Ge, Christina Simeone, Andrew Duvall, and Eric Wood. 2021. There's No Place Like Home: Residential 
Parking, Electrical Access, and Implications for the Future of Electric Vehicle Charging Infrastructure. Golden, CO: 
National Renewable Energy Laboratory. NREL/TP-5400-81065. https://www.nrel.gov/docs/fy22osti/81065.pdf.  
47 Eric Wood, et al. 2023. The 2030 National Charging Network: Estimating U.S. Light-Duty Demand for Electric 
Vehicle Charging Infrastructure. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5400-85654. 
https://www.nrel.gov/docs/fy23osti/85654.pdf  
48 NREL EVI-X Modeling Suite of Electric Vehicle Charging Infrastructure Analysis Tools, 2023. 
https://www.nrel.gov/transportation/evi-x.html  
49 EVI-Pro assumes that fast charging is necessary only when long-dwell-time opportunities to charge slowly are 
not present in the detailed driving pattern data sets used as inputs. In reality, charging preferences will be dictated 
by myriad conditions that are challenging to anticipate in a model. Therefore, in this analysis, EVI-Pro has been 
configured to simulate a minority of BEV drivers (10%) as preferring fast charging over slower alternatives, 
including opportunities to charge at home. The size of this behavior cohort is believed to be consistent with the 
limited set of real-world charging behavior observations available in the literature. BEV manufacturers are arguably 
in the best position to observe actual charging behavior in the field and are encouraged to consider publishing 
aggregated charging behavior statistics to inform the efficient deployment of charging infrastructure. 

https://www.nrel.gov/docs/fy22osti/81065.pdf
https://www.nrel.gov/docs/fy23osti/85654.pdf
https://www.nrel.gov/transportation/evi-x.html
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In contrast, the use of PEVs for long-distance travel and in ride-hailing applications requires that they 

can pull over in convenient locations and quickly charge to either resume a road trip or return to service. 

EVI-RoadTrip and EVI-OnDemand both employ this charging behavior philosophy but rely on distinct 

data sets to describe the geographic footprint of long-distance versus ride-hailing travel patterns. Long-

distance travel requires a network of fast-charging stations along highways (including urban and rural 

areas that these highways pass through), whereas ride-hailing electrification necessitates access to fast 

charging within the urban areas where such services are most common (such as near urban centers and 

airport locations). Additional details of each model are discussed in the following subsections of this 

report. 

Each individual LDV model is integrated into a shared simulation pipeline (see Figure 4). Models are 

provided with a self-consistent set of exogenous inputs that prescribe the size, composition, and 

geographic distribution of the national PEV fleet; technology attributes of vehicles and charging 

infrastructure; assumed levels of residential/overnight charging access; and regional environmental 

conditions. Each model uses these inputs in bottom-up simulations of charging behavior by 

superimposing the use of a PEV over travel data from internal combustion engine vehicles. By relying on 

historical travel data from conventional vehicles, these models implicitly design infrastructure networks 

capable of making PEVs one-to-one replacements for internal combustion engine vehicles, effectively 

minimizing impacts to existing driving behavior and identifying the most convenient network of charging 

infrastructure capable of meeting driver needs. 

 

Figure 4. Shared simulation pipeline integrating EVI-Pro, EVI-RoadTrip, and EVI-OnDemand 

The independent (but coordinated) simulations produce a set of intermediate outputs estimating daily 

charging demands for typical PEV use, long-distance travel, and ride-hailing electrification. These 

intermediate outputs are indexed in time (hourly over a representative 24-hour period) and space (core-

based statistical area or county level) such that they can be aggregated into a composite set of charging 

demands across multiple use cases. Once combined, the peak hour for every combination of charging 
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type (e.g., Level 1 [L1], Level 2 [L2], direct current [DC]), location type (e.g., home, work, retail), and 

geography (e.g., core-based statistical area) is identified for the purpose of network sizing. Rather than 

sizing the simulated charging network to precisely meet the peak hourly demand in all situations, the 

simulation pipeline uses an assumed network-wide utilization rate in the peak hour to “oversize” the 

network by a margin that accounts for the fact that charging demands tend to vary seasonally and 

around holidays. 

Because the EVI-X modeling ensemble simulates demand on a typical day, the network sizing approach 

attempts to account for periods of peak demand, which could far exceed what is experienced on a 

typical day. This margin is calibrated based on an analysis of real-world utilization data, as described 

later in this section. The resulting final output of the LDV pipeline is a set of charging infrastructure port 

counts by region, location type, and charging type that can be aggregated to the national level or 

reported out for individual states or core-based statistical areas. 

The simulation of MDVs (Class 2b–3, gross vehicle weight rating [GVWR] 8,500–14,000 lbs.) leverages 

the EVI-X LDV pipeline with some key updates: 

• MDVs are disaggregated from the national level to counties in a manner proportional to existing 
registrations, as observed through data licensed from Experian. This contrasts with the LDV 
approach, which relies on a likely adopter model to assign PEVs to households with 
characteristics shown to correlate with PEV adoption. The development of a likely adopter 
model for MDVs is a potential subject of future research. 

• MDV travel patterns are derived from two sources based on chassis type: (1) vans are simulated 
based on data from NREL’s FleetDNA database, and (2) pickups are simulated based on data 
licensed from Wejo. This contrasts with the LDV approach, which relies on the 2017 National 
Household Travel Survey (NHTS). Bruchon et. al. collected additional driving data for MDVs.50 

• MDVs are owned by a variety of businesses, both in terms of company size and business type, 
and are often used for both personal and commercial use. Therefore, medium-duty PEVs in this 
study are assumed to be domiciled during off-shift periods at either a commercial property (e.g., 
a depot) or a private residential property (e.g., a single-family home). This study assumes that 
75% of medium-duty PEVs are domiciled at depots and 25% at single-family homes. Further 
research into the domicile locations of MDVs is warranted because data on this topic are scarce, 
especially at the national level. 

Table 2 summarizes the modeling assumptions used in the national LDV/MDV pipeline. Where 

necessary, these assumptions have been harmonized with EPA modeling. 

Table 2. 2032 Nominal EVI-X Modeling Assumptions Used for Light- and Medium-Duty PEVs 

Modeling Parameter Light-Duty (Class 1–2a) Medium-Duty (Class 2b–3) 

PEV fleet size No Action = 40 million 

Action = 53 million 

No Action = 0.4 million 

Action = 1.4 million 

PEV powertrain shares BEV = 99% BEV = 100% 

 
50 Bruchon, Matthew, Brennan Borlaug, Bo Liu, Tim Jonas, Jiayun Sun, Nhat Le, and Eric Wood. 2024. Depot-Based 
Vehicle Data for National Analysis of Medium- and Heavy-Duty Electric Vehicle Charging. Golden, CO: National 
Renewable Energy Laboratory. NREL/TP-5400-88241. https://www.nrel.gov/docs/fy24osti/88241.pdf. 
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Modeling Parameter Light-Duty (Class 1–2a) Medium-Duty (Class 2b–3) 

PHEV = 1% PHEV = 0% 

PEV body type distribution (Action 
scenario) 

Sedan = 34% 

C/SUV = 56% 

Pickup = 10% 

 

Pickup = 17% 

Van = 83% 

Average PEV electric range  BEV = 300 miles 

PHEV = 50 miles 

BEV van = 150 miles 

BEV pickup = 300 miles 

BEV minimum DC charge time (20%–
80% state of charge [SOC]) 

20 minutes a 

Maximum DC power rating (per port) 350 kW 

Geographic distribution Scaled proportional to existing PEV and gasoline–hybrid 
registrations with a ceiling of 35% of LDVs on the road in 2030 
representing PEVs in high-adoption areas, and a floor of 3% in low-
adoption areas 

PEVs with reliable access to 
overnight charging 

No Action: 87% 

Action: 84% 

100% 

Weather conditions Typical ambient conditions are used for each simulated region, 
affecting electric range accordingly 

Driving behavior EVI-Pro: Consistent with the Federal Highway Administration 2017 
NHTS 

EVI-RoadTrip: Directly applies the Federal Highway Administration 
Traveler Analysis Framework 

EVI-On Demand: Consistent with Balding et al. (2019)51 

Charging behavior All models attempt to maximize the use of home/depot charging 
(when available) and use charging away from home only as 
necessary. When fast charging is necessary, the preference for BEVs 
is the fastest compatible option, up to 350+ kW. 

Tesla recently reported an average charge duration of 27.5 minutes on their Supercharger network52 
and a median duration of 36 minutes has been calculated from public 50 kW DC chargers as part of the 
EV WATTS program53. These estimates are provided as context for the 2030 modeling assumption, even 
though neither statistic necessarily aligns with 20%–80% SOC events in all cases. 

Charging Demand from Heavy-Duty Vehicles 

Class 4–8 vehicles are modeled in LBNL’s HEVI-LOAD tool, an agent-based simulation tool that aims to 

inform charging infrastructure needs of, and provide charging load profiles for, HDVs with a GVWR of 

more than 10,000 lbs. The tool provides granular temporal and geospatial resolutions ranging from the 

 
51 Balding, M., T. Whinery, E. Leshner, and E. Womeldorff. 2019. “Estimated TNC Share of VMT in Six US 
Metropolitan Regions.” Fehr & Peers memorandum, Aug. 6, 2019. https://www.fehrandpeers.com/what-are-tncs-
share-of-vmt/. 
52 Mark Kane. “Tesla Reveals Charging Stats: Almost 2 Million Sessions Per Day.” InsideEVs, Motorsport Network. 
March 13, 2023. https://insideevs.com/news/656779/tesla-charging-supercharging-stats/  
53 Energetics EV WATTS Vehicle Dashboard, 2023. https://www.energetics.com/evwatts-vehicle-dashboard  

https://www.fehrandpeers.com/what-are-tncs-share-of-vmt/
https://www.fehrandpeers.com/what-are-tncs-share-of-vmt/
https://insideevs.com/news/656779/tesla-charging-supercharging-stats/
https://www.energetics.com/evwatts-vehicle-dashboard
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site (i.e., station location) level to traffic analysis zone, county, state, and freight corridors to national 

scale. HEVI-LOAD streamlines the complex modeling process—including trip generation, vehicle 

behavior design, dynamic routing, load profiling, and infrastructure assessment—to determine the type, 

quantity, and statistically informed charger locations. The tool can subsequently be used to provide 

informed decision support to various stakeholders.  

The HEVI-LOAD workflow consists of three major steps, as visually summarized in Figure 5:  

1. Data preprocess and scenario generation, wherein the tool takes input data for travel demand, 
charging infrastructure, and road networks to create simulation scenarios. 

2. Agent-based simulation, wherein the tool executes a detailed simulation using preprocessed 
input data, accounting for adopted heavy-duty ZEV truck trips, charging location details, and 
road network information, thus emulating real-world ZEV driving, parking, and charging 
behaviors for a specified analysis region. 

3. Results post-analysis, wherein the tool summarizes event-based output data and provides an 
energy demand analysis and infrastructure assessment. 

 



  March 2024 

 

18 

Figure 5. HEVI-LOAD tool flowchart. The gray boxes are data inputs, the green and blue boxes are methodology 

modules, and the yellow boxes are outputs of data from HEVI-LOAD. 

Heavy-Duty ZEV Trip Synthesis 

The heavy-duty ZEV trips in this study are generated based on a variety of national-scale data sets, 

including NHTS truck origin/destination (OD) data54 (county-level business patterns that provide the 

number of businesses, business size, and business type distribution at the county level), Experian vehicle 

registration data,55 INRIX OD data hosted on the DOE Livewire platform,56 and truck telematics data.57 

This approach creates a combined sampling and disaggregation methodology for the baseline travel 

demand synthesis. At the same time, additional constraints are applied to ensure that the synthesized 

trips match the geospatial distribution patterns of the trip ODs, the vehicle miles traveled (VMT), and 

the energy consumption metrics at the aggregated level. The detailed sampling and disaggregation 

method is shown in Figure 6–Figure 8.  

 

 

Figure 6. Experian registration data 

 

 
54 NHTS, “NextGen NHTS OD Data,” 2022, accessed January 16, 2024, https://nhts.ornl.gov/od/.  
55 Experian Automotive, “Vehicle in Operation Market Data & Reports (Data Set),” 2022, 
https://www.experian.com/automotive/vehicles-in-operation-vio-data.  
56 L. S. Luhring, “Livewire Data Platform: A Catalog of Transportation and Mobility Data” (Golden, CO: National 
Renewable Energy Laboratory, March 2021), DOE/GO-102021-5520, https://www.osti.gov/biblio/1784501.  
57 NREL, “Fleet DNA: Commercial Fleet Vehicle Operating Data,” Transportation and Mobility Research, accessed 
January 16, 2024, https://www.nrel.gov/transportation/fleettest-fleet-dna.html.  

https://nhts.ornl.gov/od/
https://www.experian.com/automotive/vehicles-in-operation-vio-data
https://www.osti.gov/biblio/1784501
https://www.nrel.gov/transportation/fleettest-fleet-dna.html
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Figure 7. County business pattern data 

 

 

Figure 8. Example travel demand model of heavy-duty ZEVs at the national scale from HEVI-LOAD 
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Vehicle/Trip Behavior Assumptions 

To include vehicle type identification in the trip data, vehicle classes, vocations, and weights were 

assigned for each trip based on vehicle information leveraged from various data sets, such as NHTS truck 

OD data, the Freight Analysis Framework,58 the EMission FACtor (EMFAC) from the California Air 

Resources Board (CARB),59 and FleetDNA. Because of the time differences in charging versus refueling 

behavior, we also investigated truck parking studies, chiefly the Federal Highway Administration’s 

Jason’s Law Truck Parking Survey,60 and truck telematics data such as parking duration, trip start time, 

and the initial battery SOC as ZEV trip inputs. 

Start time distribution. Vehicle start time assumptions are based on state-of-the-art travel demand data 

for trucks from EMFAC and Global Positioning System (GPS) location data from the University of 

California, Riverside (UCR) based on California trip start time data.61 As shown in Figure 9, significant 

variance in the trip start time has been identified among multiple vocations. The HEVI-LOAD analysis 

averaged start time distributions based on EMFAC and UCR GPS data to generate vehicle-specific trip 

start times. Such data collected in California has a more comprehensive and balanced HD truck stock 

representation in terms of vehicle type, vocation, and weight class. Thus, the California data was the 

primary data source in this study to inform temporal truck behaviors at the national scale, i.e., trip start 

times, although limited truck telematics data collected in other states, especially for the long-haul 

applications, were also used to augment the fidelity of truck behaviors. 

 
58 U.S. Department of Transportation Federal Highway Administration, “Freight Analysis Framework,” Freight 
Management and Operations, accessed January 16, 2024, https://ops.fhwa.dot.gov/freight/freight_analysis/faf/. 
59 CARB, “EMission FACtor (EMFAC),” accessed January 16, 2024, https://arb.ca.gov/emfac/. 
60 U.S. Department of Transportation Federal Highway Administration, “Jason’s Law Truck Parking Survey Results 
and Comparative Analysis: Introduction,” Freight Management and Operations, accessed January 16, 2024, 
https://ops.fhwa.dot.gov/freight/infrastructure/truck_parking/jasons_law/truckparkingsurvey/ch1.htm. 
61 Z. Wei, D. Brown, P. Hao, and K. Boriboonsomsin, “Real-World Heavy-Duty Truck Trajectories on Signalized 
Corridors,” Dryad, 3698578 bytes, June 2, 2022, https://doi.org/10.6086/D1BT3K . 

https://ops.fhwa.dot.gov/freight/freight_analysis/faf/
https://arb.ca.gov/emfac/
https://ops.fhwa.dot.gov/freight/infrastructure/truck_parking/jasons_law/truckparkingsurvey/ch1.htm
https://doi.org/10.6086/D1BT3K
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Figure 9. Start time distribution for different vehicle types 

Travel distance distribution. The trip distance depends on several factors, including the statistical 

distribution of existing trip data sets, VMT, geospatial OD pair distribution, and geospatial vehicle stock 

distribution. The trip statistics in the FleetDNA and UCR truck GPS data sets were compared with the 

HEVI-LOAD trip distance distribution to validate the trip generation process. The trip distance 

distribution was combined with the assumption of vehicle specifications—such as VMT, energy 

consumption rate, and battery capacity—from the adoption scenario shown in Table 3.  

Table 3. EPA Scenario Vehicle Simulation Assumptions 

 
VMT (50 percentile) 

per Vehicle 
per Day (mile) 

Energy Consumption 
(kWh/mile) 

Range 
(mile) 

Battery Capacity 
(kWh) 

Long-haul 391 3.11  1175 

HHD8 391 3.12 350 1200 

MHD67 391 3.06 250 600 

Short-haul 198 2.9  1024 

HHD8 197 2.98 350 1200 

MHD67 198 2.7 250 600 

Vocational 55.7 1.12  380 

HHD8 58.6 2.08 300 600 

LHD45 55.9 0.75 250 300 

MHD67 53.4 1.25 250 400 
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In addition, travel demand data, including the NHTS truck OD data, are used to inform the geospatial OD 

pair distribution. Finally, geospatial vehicle distributions were derived by disaggregating to a finer 

resolution the OD pair data at the Federal Highway Administration zone level from the NHTS OD data at 

the county/census block level using Experian vehicle registration data, county business pattern data, and 

INRIX OD data. Figure 10 shows the national average trip distance histogram for different vehicle classes 

(vocational versus short-haul) generated from the UCR data, FleetDNA, and HEVI-LOAD. 

 

Figure 10. Trip distance histogram comparison – national average 

Energy consumption rate. The energy consumption rates (kWh/mile) used in this study stem from the 

Action scenario based on HD TRUCS and MOVES, which considered a number of factors to determine 

the energy consumption rates observed on the grid side (between the step-down transformer and the 

charger). These factors include but are not limited to the electricity consumption by air conditioning, 

battery weight, the power loss caused by the AC/DC and DC/DC conversion within the charging stations, 

etc.—in addition to the powertrain energy consumption. Adopting such rates ensures consistency of 

energy consumption values at the state level. Therefore, grid-end energy consumption rates are utilized 

to quantify the encompassing energy demand by heavy-duty EVs on the distribution grids.  

Starting SOC distribution. Another critical parameter in the simulation is the initial SOC of the vehicle 

batteries at the beginning of trips. Unlike passenger EVs or gasoline/diesel trucks, there are limited 

existing data sets to show battery SOC/fuel tank status at the beginning of trips for PEV trucks; thus, 

assumptions are needed to characterize the driver’s/fleet operator’s baseline refueling behaviors. Based 

on the Jason’s Law Truck Parking Survey (on the refueling and rest behaviors of gasoline/diesel truck 

drivers) and the Run on Less project by the North American Council for Freight Efficiency,62 we assume 

the starting SOC in Figure 11. For trips starting in the early morning (2 a.m.–10 a.m.), the minimal 

starting SOC values are lifted from 40% to 65%, which suggests that these trips will likely have higher 

starting SOCs than trips starting during other time periods. Specifically, the minimal starting SOC 

increases between 12 a.m. and 5 a.m., due to the assumption that longer overnight charging time leads 

to more energy in vehicle batteries after 5 a.m. and more and more vehicles starting and then finishing 

 
62 North American Council for Freight Efficiency, “Run on Less – Electric,” accessed January 16, 2024, 
https://nacfe.org/research/run-on-less-electric/.  

https://nacfe.org/research/run-on-less-electric/
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their first trips of the day. Thus, the minimum starting SOC of the second trips will keep dropping but is 

assumed to remain above 40%. 

 

Figure 11. SOC versus trip start time distribution 

Charging Infrastructure Scenario  

Truck stops and rest areas along major freight networks were investigated to identify critical charging/

refueling locations. To preserve the privacy of the businesses at candidate locations, the exact location 

information was mapped to either the nearest freeway entrance of the freight network (public en route) 

or the centroid of the traffic analysis zones based on the required geospatial resolution. In addition, 

LBNL consulted with stakeholders on preferences in charger types, power levels, and quantities across 

location types. Figure 12 and Figure 13 show candidate parking locations for potential PEV public 

charger installations for California by location type and the United States, respectively, according to 

parking capacity. HEVI-LOAD constrains the size for the candidate charging stations, with a maximum of 

100 charging ports per location, with options to select 350 kW–1.5 MW chargers for en route charging. 

Table 4 maps charger power and location specifications to vehicle types. For each vehicle class, there are 

constraints on the maximum power levels, and chargers are selected based on a pre-assigned 

distribution. Note that for purposes of this portion of the analysis, “L2-Low” describes Level 2 chargers 

with power levels of 7.2 kW; “L2” describes Level 2 chargers with power levels of 19.2 kW. 



  March 2024 

 

24 

 

Figure 12. California candidate parking locations 

 

Figure 13. U.S. candidate parking locations from the Jason’s Law Truck Parking Survey 
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Table 4. EVSE Types for Heavy-Duty Applications 

Vehicle Type Weight Class Depot Public En Route 

Long-haul 
HHD8 DC50, DC150, DC250 DC350, DC500, DC1000, DC1500 

MHD67 DC50, DC150, DC250 DC350, DC500, DC1000, DC1500 

Short-haul 
HHD8 DC50, DC150, DC250 DC350, DC500, DC1000, DC1500 

MHD67 DC50, DC150, DC250 DC350, DC500, DC1000, DC1500 

Vocational 

HHD8 DC50, DC150, DC250 DC350, DC500, DC1000, DC1500 

LHD45 
L2-Low, L2, DC50, DC150, 

DC250 
DC350, DC500, DC1000 

MHD67 DC50, DC150, DC250 DC350, DC500, DC1000, DC1500 

Managed Charging for Heavy-Duty Applications  

Supplementing the explanation of the managed charging approach described in Chapter 1, LBNL 

developed a charging management strategy leveraging the load flexibility of the simulated depot 

charging sessions (i.e., the duration between plug-in time and plug-out time) from HEVI-LOAD. 

Specifically, the objectives of the charging management scheme include (1) reducing the peak load of 

the aggregated heavy-duty EV charging sessions at the depots and (2) flattening the load profile as much 

as possible. Two methods have been developed to manage the charging sessions in this study: a 

heuristics-based approach, which generates the managed charging load profiles that are fed into the 

Kevala grid upgrade analysis, and the optimization-based solution for comparison. In the heuristics-

based approach, the duration of all charging sessions was extended to twice the original duration. After 

the extension, if the new departure time is later than 7 a.m., it is then set to 7 a.m. The charging power 

is set to an average of the energy demand over the time duration of the session. The managed charging 

load (red) successfully reduces the evening load peak (blue) and the energy demand during daytime to 

avoid a possible coincidental peak period with the commercial baseload. Alternatively, the optimization-

based approach takes the same objectives and assumes perfect knowledge of the session parameters 

(session start time, end time, energy demand, etc.) and of the base demand profile on all feeders, 

leveraging empirical building load data sets.63 This assumes that all feeders share the same baseload 

shape, which might not be realistic; however, it serves as a benchmarking test case compared with the 

heuristic-based solution. Solving the optimization problem results in the optimized charging load profile 

(green curve in Figure 14). Specifically, the optimized charging load profile shows more sensitivity to the 

underlying baseload—as the baseload ramps up in the early morning, the optimized charging load 

suddenly drops. In addition, the original load peak in the evening is removed, and the overall load shape 

is flattened due to some charging activities that shifted from evening to after midnight.  

 
63 F. Angizeh, A. Ghofrani, and M. A. Jafari, “Dataset on Hourly Load Profiles for a Set of 24 Facilities from Industrial, 
Commercial, and Residential End-use Sectors,” Version 1, August 21, 2020, https://doi.org/10.17632/rfnp2d3kjp.1. 

https://doi.org/10.17632/rfnp2d3kjp.1
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Figure 14. Preliminary managed charging load profiles using the heuristics-based approach (red) and the 

optimization-based approach (green). The original unmanaged charging load is shown as the blue curve, and the 

assumed circuit baseload is shown as the black dashed curve.  

Charging Demand from Transit and School Buses 

A relatively small part of the heavy-duty fleet (Class 4–8), transit and school buses, feature unique 

driving schedules that are particularly well suited to electrification. Based on this and the wealth of 

publicly available data to describe transit bus driving schedules, in this analysis, transit and school buses 

are independently simulated from the rest of the heavy-duty fleet to represent charging demand more 

accurately. This transit and school bus modeling approach is described in greater detail.64 

Transit Buses 

At time of publication, there were more than 106,000 transit buses across 1,591 U.S. counties (Figure 

15). Transit bus modeling primarily relies on two major data sources (Figure 16):  

• The National Transit Database (NTD), which serves as a centralized hub for financial, operating, 
and asset information of transit agencies in the United States.17 The 2021 annual database was 
used to calculate transit bus population and support the generation of transit bus travel profiles.  

• The General Transit Feed Specification (GTFS), an open standard that transit agencies use to 
publish their service schedules (referred to here as the “GTFS Schedule”) and real-time 
operations (“GTFS Realtime”) for various software applications.  

Not every transit agency publishes its schedules or real-time operations in the GTFS format, and 

collecting every agency’s real-time operations data would be highly labor-intensive and computationally 

expensive; thus, we conduct a clustering analysis of transit agencies to extrapolate bus operations at a 

 
64 Bruchon et al., 2024. 
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larger scale using the information from representative transit agencies with publicly available GTFS data 

sets.  

We apply log transformation to all four variables to reduce skewness and to standardize the data to 

make variables comparable.  

To determine the optimal number of clusters, we use direct methods (i.e., elbow and average silhouette 

methods) and statistical testing methods (i.e., the gap statistic and 30 other indices) to compare results 

from two to six clusters. The results show that most methods suggest two and five as the optimal 

number of clusters. Given our goal of having a larger number of groups to represent various transit 

agency operating characteristics, we perform the final analysis and extract the results using five clusters 

for agencies with fleet sizes of less than 750 transit buses; thus, we categorize the NTD agencies into six 

clusters. 

 

Figure 15. County-level transit bus inventory in the United States 

Data source: NTD 2021 Annual Database
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Figure 16. Overview of transit bus modeling approach  

* According to the NTD 2021 annual database, 86% of cutaways are used for demand response, and GTFS data are 

available only for fixed-route services. For this reason, cutaways are included only in the fleet inventory and are not 

included in generating cluster bus shares for VMT/dwell time/load estimates. 

We rely on GTFS Schedule data sets, the estimated optimal time intervals, and the reported agency-level 

deadheading miles in the NTD to generate the travel profiles. We obtained GTFS Schedule data (Oct. 14–

16, 2023) for 37 transit agencies across all six clusters. The VMT estimates are calculated using Eq. 1.1–

Eq. 1.3, using the variables shown in Table 5. The deadheading time is estimated using the deadheading 

distance divided by the agency-level average deadheading speed, which is based on the NTD reported 

total deadheading miles and hours at the agency level. The deadheading time is added to the beginning 

and the end of each block that has associated deadheading trips.  

Figure 17 illustrates the distribution of the nationally scaled weighted average daily VMT of transit buses 

on a typical weekday. On average, the daily VMT of transit buses ranges from 57 miles (10th percentile) 

to 230 miles (90th percentile), with most buses traveling 141 miles (50th percentile) on a weekday. 

Figure 18 illustrates the distribution of the weighted average daily domicile dwell duration per vehicle 

on a typical weekday. Half the buses have a dwell time of at least 10.5 hours per day at the domicile, 

which exhibits great potential for nighttime depot charging with lower charger power requirements. For 

transit buses with shorter domicile duration, chargers with higher power levels can potentially support 

service provision without changing current schedules. 
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Figure 17. Distribution of daily VMT for transit bus data. The vertical line marks the median. 

(Weekdays, 10th–90th percentile range) 

 

Figure 18. Distribution of domicile dwell duration for transit bus data. The vertical line marks the median. 

(Weekdays, 10th–90th percentile range) 

We assume an energy consumption rate of 2.28 kWh/mile for battery electric transit buses, taken from 

the April 2023 version of the EPA’s HD TRUCS and MOVES tools and an overall charging efficiency of 

91.4%.2 We start by estimating the charging power and time for each bus with VMT and dwell time 

estimates. The minimal charging power for each bus is determined by its daily VMT and the dwell time 

(Eq. 1.1). When the minimal charging power needed is no greater than 19 kW, we assume that L2 

chargers of 19 kW would be deployed. When the minimal charging power needed is greater than 19 kW, 

the charging power is rounded up to the nearest 50 kW level. The charging time is then estimated using 

the rounded charging power level (Eq. 1.3).  

 

           𝑝𝑜𝑤𝑒𝑟𝑣
MIN =  𝑚𝑖𝑙𝑒𝑠𝑣

TOTAL  ∗
2.28 𝑘𝑤ℎ/𝑚𝑖𝑙𝑒 

91.4% ∗𝑡𝑖𝑚𝑒𝑣
DEPOT 

                                             (1.1) 

          𝑝𝑜𝑤𝑒𝑟𝑣
ADJUSTED

=  {
19, 𝑤ℎ𝑒𝑛 𝑝𝑜𝑤𝑒𝑟𝑣

MIN  ≤ 19 𝑘𝑊;  

50 ∗  𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
𝑝𝑜𝑤𝑒𝑟𝑣

MIN

50
) , 𝑤ℎ𝑒𝑛 𝑝𝑜𝑤𝑒𝑟𝑣

MIN > 19 𝑘𝑊 
   (1.2) 

         𝑡𝑖𝑚𝑒𝑣
CHARGE =  𝑚𝑖𝑙𝑒𝑠𝑣

TOTAL  ∗
2.28𝑘𝑤ℎ/𝑚𝑖𝑙𝑒

91.4% ∗𝑝𝑜𝑤𝑒𝑟𝑣
ADJUSTED

 
                                          (1.3) 

 

When the operating time of the bus is longer than 24 hours, we assume that the bus is not operated the 

next day and that charging spans from the end of the current service day to the beginning of its next 
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service day. The bus-level load profiles are aggregated to the cluster level for each hour during a 24-hour 

period and then normalized to obtain the per-vehicle hourly load profiles for each cluster. The cluster 

bus shares are used to generate the national weighted average per-vehicle hourly load profiles. 

School Buses 

Approximately 480,000 school buses are operating in the United States today.65 According to vehicle 

registration data curated by Experian, school buses falling under Classes 2–5 represent less than 2% of 

the national total, while 25% are classified as Class 6, 41% as Class 7, and 32% as Class 8. This section 

explains the approach taken to describe the operating patterns through the analysis and modeling of 

real-world data. First, we introduce the FleetDNA school bus data sample used to characterize and 

represent school bus operations in this study. Next, we describe how school bus depot dwell times are 

assigned for subsequent analysis. 

NREL hosts a database of real-world commercial vehicle operating data, called FleetDNA, hosted on the 

FleetREDI platform.4,5 FleetDNA offers statistical summaries derived from 1 Hz drive cycle data captured 

using onboard data loggers for commercial fleets spanning diverse vocations and geographic regions. To 

produce the data sets described in this report, we deduce from the 1 Hz speed and location data the 

daily driving (i.e., trip) patterns of school buses, including their driving distances and durations. We also 

determine when and how long they are parked at their depots, presenting potential charging 

opportunities for BEVs. Table 5 summarizes the sample of conventional school bus operating data used 

in this study, comprising 7 fleets, 279 buses, and more than 1,700 travel days with more than 106,000 

miles driven. The representation of GVWR classes in the sample closely aligns with the distribution of 

classes observed in the United States.  

Table 5. FleetDNA School Bus Operating Data Summary 

Location Year Bus Count GVWR Travel Days VMT 

Austin, TX 2009 2 6 10 429 

Thornton, CO 2010 99 6 428 29,371 

Schenectady, NY 2010 3 6 22 565 

Redmond, WA 2011 108 6 468 14,712 

Torrance, CA 2015 33 2,3,8 231 11,454 

Napa, CA 2015 8 8 88 4,830 

Rialto, CA 2017 26 8 492 45,381 

Total 2009–2017 279 2,3,6,8 1,739 106,742 

 

EVSE Capital Cost Assumptions  

Charging infrastructure costs are used within this study as a postprocessing step to estimate the 

cumulative capital investment required to deploy the simulated network. These costs are based on 

historical observations from public reports, as shown in Table 6. These costs include charging equipment 

 
65 World Resources Institute, “Dataset of Electric School Bus Adoption in the United States, accessed December 12, 
2023, https://datasets.wri.org/dataset/electric_school_bus_adoption. 

https://datasets.wri.org/dataset/electric_school_bus_adoption
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and installation costs that are intended to reflect labor and materials for construction on the customer 

side of the meter. 

Cost estimates exclude the costs of utility upgrades (such as new transformers and line extensions), 

DERs (such as onsite storage or generation), operating costs (such as utility energy and demand 

charges), maintenance costs (necessary to ensure a high level of reliability), and certain construction soft 

costs (such as delays associated with local permitting of the utility service connection). Although these 

additional cost elements are beyond the scope of this analysis (primarily because of a lack of publicly 

accessible data), they are nontrivial and could significantly contribute to overall costs for the national 

charging network. Additionally, lead times for these upgrades will dictate the pace of deployment. 

Previous studies have estimated that although charging infrastructure projects can often take 3–10 

months to complete, situations requiring feeder upgrades can add a year to this timeline, and substation 

upgrades can potentially add up to four years.66 

Table 6. Base-Year EVSE Capital Cost Assumptions 

Charger 

Hardware 
Unit Cost per 

Port in 2021 
Installation Cost per 

Port in 2021 
References 

L1 $0 $550 Mid values from Wood et al. (2023) 

L2 commercial $2,696  $3,810 Bloomberg New Energy Finance (2022)67 

L2 residential $800 $1,100 Mid values from Wood et al. (2023) 

DC 50 kW $23,000  $12,000 
Inferred from DC 150 kW costs (linear 

extrapolation by power level) 

DC 150 kW $69,000  $36,000 Bloomberg New Energy Finance (2022) 

DC 250 kW $75,500  $60,000 Bloomberg New Energy Finance (2022) 

DC 350 kW $82,000  $84,000 Bloomberg New Energy Finance (2022) 

DC 500 kW $117,143  $120,000  
Inferred from DC 350 kW costs (linear 

extrapolation by power level) 

DC 1,000 kW $234,286  $240,000  
Inferred from DC 350 kW costs (linear 

extrapolation by power level) 

 
66 Borlaug, B., Muratori, M., Gilleran, M., Woody, D., Muston, W., Canada, T., Ingram, A., Gresham, H., McQueen, 
C., 2021. Heavy-duty truck electrification and the impacts of depot charging on electricity distribution systems. 
Nature Energy 6, 673–682. 
67 Fisher, Ryan. Bloomberg New Energy Finance. Commercial EV Charger Price Survey 2022: Pressure Mounts. 
September 16, 2022. 
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Charger 

Hardware 
Unit Cost per 

Port in 2021 
Installation Cost per 

Port in 2021 
References 

DC 1,500 kW $351,429  $360,000  
Inferred from DC 350 kW costs (linear 

extrapolation by power level) 

Wright’s law is a common model-based approach for estimating future technology costs because of 

learning by doing or economies of scale. Originally identified as an empirical pattern by Wright in 1936, 

it posits that each doubling of experience (i.e., often proxied by cumulative production) for a given 

technology is associated with a cost reduction that is determined by a fixed and technology-specific 

learning rate.68 We applied Wright’s law to forecast how charging equipment costs may evolve in the 

future (Eq. 2).  

                                                     𝑦𝑡+1 =  𝑦𝑡(
𝑋𝑡+1

𝑋𝑡
)−𝑊𝑡+1                                                  Eq. 2 

where y is the unit technology cost, t is the year, and the exponent is 

determined by the learning rate, defined as 𝑟 =  1 −  2−𝑤 

Although there is no analysis estimating learning rates for EVSE cost reduction, recent studies have 

estimated or reviewed learning rates for various energy supply technologies (Meng et al. 2021; Rubin et 

al. 201569; Way et al. 202270), lithium-ion battery technology (Ziegler and Trancik 202171), and other 

energy-related technologies (Wei et al. 201772). Results from these studies indicate that learning rates 

vary by technology and deployment stage, and the empirically estimated learning rates range from 

1.4%–23% for energy supply technologies and 3.5%–30% for lithium-ion battery technology. NREL 

assumed conservative learning rates for forecasting charging equipment cost reductions, i.e., 5% under 

the business-as-usual scenario, 10% under the mid-EVSE advancement scenario (Mid), and 15% under 

the high EVSE advancement scenario (High). We obtained reported L2 (public, workplace, and 

multifamily home) and DCFC (public and workplace) port counts in 2021 from Brown et al. (202273) and 

used them as proxies for the cumulative production of L2 chargers and DCFCs, respectively. Projected L2 

and DCFC port counts under the same access types were used to approximate the cumulative 

production of EVSEs in 2027 and 2032. With these assumptions, we estimated the average annual 

 
68 Meng, L., et al. (2021). Comparing expert elicitation and model-based probabilistic technology cost forecasts for 
the energy transition. https://doi.org/10.1073/pnas.1917165118.  
69 Edward S. Rubin, Inês M.L. Azevedo, Paulina Jaramillo, Sonia Yeh, A review of learning rates for electricity supply 
technologies, Energy Policy, Volume 86, 2015, Pages 198-218, ISSN 0301-4215, 
https://doi.org/10.1016/j.enpol.2015.06.011.  
70 Rupert Way, Matthew C. Ives, Penny Mealy, J. Doyne Farmer, Empirically grounded technology forecasts and the 
energy transition, Joule, Volume 6, Issue 9, 2022, Pages 2057-2082, ISSN 2542-4351, 
https://doi.org/10.1016/j.joule.2022.08.009.  
71 Ziegler, Micah S. and Trancik, Jessika E., Re-examining rates of lithium-ion battery technology improvement and 
cost decline, The Royal Society of Chemistry, Volume 14, Issue 4, 2021, Pages 1635-1651,  ISSN 1754-5692, 
https://pubs.rsc.org/en/content/articlelanding/2021/ee/d0ee02681f.  
72 Max Wei, Sarah Josephine Smith, Michael D. Sohn, Non-constant learning rates in retrospective experience curve 
analyses and their correlation to deployment programs, Energy Policy, Volume 107, 2017, Pages 356-369, ISSN 
0301-4215, https://doi.org/10.1016/j.enpol.2017.04.035. 
73 Brown, Abby, Jeff Cappellucci, Emily White, Alexia Heinrich, and Emma Cost. 2022. Electric Vehicle Charging 
Infrastructure Trends from the Alternative Fueling Station Locator: Second Quarter 2022. Golden, CO: National 
Renewable Energy Laboratory. NREL/TP-5400-84263. https://www.nrel.gov/docs/fy23osti/84263.pdf.  

https://doi.org/10.1073/pnas.1917165118
https://doi.org/10.1016/j.enpol.2015.06.011
https://doi.org/10.1016/j.joule.2022.08.009
https://pubs.rsc.org/en/content/articlelanding/2021/ee/d0ee02681f
https://doi.org/10.1016/j.enpol.2017.04.035
https://www.nrel.gov/docs/fy23osti/84263.pdf
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percentages of charging equipment cost reductions for 2022–2027 and 2028–2032 (Table 7). Similarly, 

installation costs could decrease as installers continue to accumulate experience with charging projects 

and identify efficiencies, but installation costs are notorious for being site-specific (proximity to an 

existing transformer is a key consideration), and per-site costs could plausibly increase as low-hanging 

fruit continues to be picked. For these reasons, this analysis assumed no reductions in installation costs. 

The base-year installation costs were applied to all future years to generate future EVSE capital cost 

trajectories (Figure 19).  

Table 7. Estimated Average Annual Percentages of Equipment Cost Reductions by EVSE Technological 
Advancement Scenarios and Charger Type 

EVSE 
Scenarios 

Learning 
Rate 

L2 Chargers DCFCs 
2022–2027 

(Action/ 

No Action) 

2028–2032 

(Action/ 

No Action) 

2022–2027 

(Action/ 

No Action) 

2028–2032 

(Action/ 

No Action) 
Business  

as Usual 
5% 2.9%/2.8% 2.1%/1.7% 3.0%/2.7% 1.9%/1.8% 

Mid 10% 5.9%/5.7% 5.7%/3.4% 6.0%/5.4% 3.9%/3.7% 
High 15% 8.9%/8.6% 8.6%/5.1% 9.1%/8.2% 6.0%/5.6% 

 

 

 

Figure 19. Projected EVSE capital cost (combined equipment and installation cost) trajectories for 2021–2032: (a) 

No Action scenario and (b) Action scenario.  

Estimates for out-of-scope costs—including the strategies charging networks might take to account for 

utility, DER, operations and maintenance, and construction costs, as well as solutions to reduce the 

magnitude of these cost and time requirements—are the subject of forthcoming Argonne National 

Laboratory technical report, “Innovative Charging Solutions for Deploying the National Charging 

Network,” conducted in parallel with this electrification impact analysis.  



  March 2024 

 

34 

EVSE County-to-Parcel Disaggregation  

Kevala ingested NREL and LBNL county-level EVSE adoption targets and used them to allocate charging 

ports to parcels. The EVSE adoption targets were specified by several attributes: 

• Forecast year: 2027 or 2032 

• Forecast scenario: No Action–Unmanaged, No Action–Managed, Action–Unmanaged, Action–
Managed 

• Vehicle segment: LDV, MDV, HDV, school bus, transit bus 

• Location type: home – single family, home – multifamily, destination – all, destination – 
retail/recreational, workplace, en route, depot, public, truck stop 

• Access type: public, private, semiprivate 

• EVSE capacity: L1, L2, DC50, DC150, DC250, DC350, DC500, DC1000, and DC1500 

The methodology to disaggregate EVSE to parcels consisted of four steps: 

1. Eligibility: For each EVSE target, Kevala filtered the parcels in the relevant county to create a list 
of parcels that could potentially adopt the specified type of EVSE. The model specified which of 
NREL’s ResStock™ and ComStock™74 building types were allowed to adopt ports with a given 
vehicle segment, location type, and access type. A parcel could be eligible for more than one 
type of EVSE based on its building type. 

2. Adoption scoring: Each parcel selected in the eligibility step was then given a random adoption 
score, given the low quality of predictive features during this early market phase.  

3. Sizing: Kevala then determined how many ports a parcel would adopt if it were to be selected 
for adoption in the allocation step. 

4. Allocation: Once all eligible parcels were assigned an adoption score and port counts, Kevala 
allocated the available ports across parcels in descending order of adoption score until no ports 
remained unassigned.  

Each step is further described in the following subsections. 

  

 
74 ResStock (https://resstock.nrel.gov/) and ComStock (https://comstock.nrel.gov/) are physics-based simulation 
models that represent the energy use of the U.S. residential and commercial building stocks with high granularity 
at national, regional, and local scales. The models use a large number of representative building energy models—
tens of thousands or hundreds of thousands, depending on the application—to represent the building stock with 
high fidelity. The building characteristics used in those energy models are statistically sampled from the full stock 
to create a set of buildings with a realistic diversity of building types, vintages, sizes, construction practices, 
installed equipment, appliances, occupant behavior, and climate zones.  

https://resstock.nrel.gov/
https://comstock.nrel.gov/
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Eligibility 

In the load simulation step (see Section 0), Kevala assigned each parcel a building load profile from 

ComStock or ResStock based on its customer class and building square footage. Additionally, parcels 

known to contain truck stops according to the Jason’s law dataset were assigned a “truck stop” building 

type for the EVSE allocation.75  

Figure 20, Figure 21, and Figure 22 show which ResStock and ComStock buildings as well as truck stops 

were considered to be eligible to adopt each EVSE type. For a parcel to be eligible for a particular EVSE 

adoption target, it needed to be included on the list of eligible buildings for the vehicle segment, 

location type, and access type associated with the target.  

 

 
75 Kevala was not able to allocate 7% of truck stop ports because the parcel data set did not have complete 
coverage of all land mass in the continental United States. Even with a 200-meter buffer, some truck stops could 
not be associated with a parcel.  
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Figure 20. Vehicle segment mapping to ResStock and ComStock buildings (blue) and truck stop parcels (green) 

(Source: Kevala) 

 
Figure 21. EVSE access type mapping to ResStock and ComStock buildings (blue) and truck stop parcels (green) 

(Source: Kevala) 
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Figure 22. EVSE location type mapping to ResStock and ComStock buildings (blue) and truck stop parcels (green) (Source: Kevala) 
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Adoption Scoring 

As previously mentioned, adoption scores are currently random, given the lower quality of predictive 

features. This is not necessarily unexpected because the PEV market is still in its infancy.76  

Adoption Sizing 

Kevala customized the approach to adoption sizing to each type of charging location. Note that the port 

counts from this step were not necessarily the final numbers adopted at each parcel (see Section 0). 

Residential Sizing 

Single-family parcels were all sized for one port. Multifamily parcels received a port count based on the 

number of parking spots they contained. Kevala assumed that one parking spot would be available for 

each unit and used the California Building Standards Commission building codes (as summarized by the 

AFDC)77 to assign an appropriate number of ports for a given parking lot size. 

Nonresidential Sizing 

For nonresidential sizing, Kevala derived distributions of parcel port counts based on real-world data 

from four datasets: 

• AFDC EVSE locations78: 

o Destination locations: Selected chargers in public locations where the facility was not a 
parking lot, car dealer, or government. 

o Retail/recreational locations: Selected chargers in public locations where the facility 
was one of the following types: brewery, convenience store, co-op, grocery, hardware 
store, hotel, library, museum, national park, other entertainment, park, recreational 
sports, restaurant, retail, shopping center, shopping mall, travel center. 

o HDV charging: Used the six entries for L2 chargers and two entries for direct current fast 
charging (DCFC) included in the dataset.  

o Transit bus DCFC sizes: Used the same options as for HDV public charging. 

• Vehicle counts from a northeast utility: Used these vehicle counts to create distributions of 
port counts for depot locations by applying a 1:1 PEV:EVSE ratio for L1 and L2 ports and a 1:2 
PEV: EVSE ratio for DCFC ports. 

• National Transit Database79: Derived the distribution of transit bus counts per depot by 
assuming that one port would be available for every two buses or a 1:1 ratio if fewer than five 
buses were present. 

 
76 NREL, LBNL, and Kevala discussed other attributes, such as income, and collectively decided that randomized 
scoring was the appropriate path. 
77 AFDC, “Mandatory Electric Vehicle (EV) Charging Station Building Standards,” U.S. Department of Energy Office 
of Energy Efficiency and Renewable Energy, https://afdc.energy.gov/laws/11068.  
78 AFDC, “Electric Vehicle Charging Station Locations,” U.S. Department of Energy Office of Energy Efficiency and 
Renewable Energy, accessed 2023, 
https://afdc.energy.gov/fuels/electricity_locations.html#/find/nearest?fuel=ELEChttps://afdc.energy.gov/fuels/ele
ctricity_locations.html#/find/nearest?fuel=ELEC.  
79 Federal Transit Administration, “NTD Data,” https://www.transit.dot.gov/ntd/ntd-data. 

https://afdc.energy.gov/laws/11068
https://afdc.energy.gov/fuels/electricity_locations.html#/find/nearest?fuel=ELEC
https://afdc.energy.gov/fuels/electricity_locations.html#/find/nearest?fuel=ELEC
https://afdc.energy.gov/fuels/electricity_locations.html#/find/nearest?fuel=ELEC
https://www.transit.dot.gov/ntd/ntd-data
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• Clean School Bus Program80: Used the recent EPA Clean School Bus Rebate Program awards to 
build a distribution of school bus counts per depot and applied NREL’s assumption of 0.8 ports 
per bus to create the port count distribution. 

For each possible combination of vehicle segment, location type, and EVSE type, Kevala chose four port 

counts that could be selected with equal probability. These counts corresponded to the medians of the 

four quartiles of the relevant dataset. For example, in the AFDC dataset, the median of the fourth 

quartile (i.e., the 87.5th percentile, halfway between the 75th and 100th percentiles) of the distribution of 

the L1 port counts at the destination locations was 10 ports. The final sizing options are included in 

Table 8. 

 
80 EPA, “Clean School Bus Program Rewards,” Awarded CSB Rebates, last updated Sept. 29, 2023, 
https://www.epa.gov/cleanschoolbus/awarded-clean-school-bus-program-rebates.  

https://www.epa.gov/cleanschoolbus/awarded-clean-school-bus-program-rebates
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Table 8. Parcel Port Count Sizing Options (Source: Kevala) 

Vehicle Segment Location Type EVSE Capacity  No. of Ports—12.5 Pctl No. of Ports—37.5 Pctl No. of Ports—62.5 Pctl No. of Ports—87.5 Pctl 

LDV, MDV, 

LDV+MDV 

Home: single 

family 
Any 1 1 1 1 

LDV, MDV, 

LDV+MDV 
Home: multifamily Any 

Based on no. of units in 

the building 
   

LDV, MDV, 

LDV+MDV 
Destination L1 1 1 2 10 

LDV, MDV, 

LDV+MDV 
Destination L2 1 2 3 7 

LDV, MDV, 

LDV+MDV 
Destination DCFC 2 4 8 12 

LDV, MDV, 

LDV+MDV 
Retail recreation L1 1 1 1 5 

LDV, MDV, 

LDV+MDV 
Retail recreation L2 1 2 2 4 

LDV, MDV, 

LDV+MDV 
Retail recreation DCFC 2 6 12 16 

LDV, MDV, 

LDV+MDV 
Work L1 1 1 2 4 

LDV, MDV, 

LDV+MDV 
Work L2 1 2 4 16 

LDV, MDV, 

LDV+MDV 
Work DCFC 1 1 2 7 

LDV Depot L1 2 3 5 15 

LDV Depot L2 2 3 5 15 

LDV Depot DCFC 1 2 3 8 

MDV Depot L1 2 4 8 25 

MDV Depot L2 2 4 8 25 

MDV Depot DCFC 1 2 4 13 
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Vehicle Segment Location Type EVSE Capacity  No. of Ports—12.5 Pctl No. of Ports—37.5 Pctl No. of Ports—62.5 Pctl No. of Ports—87.5 Pctl 

HDV Depot L2-Low 1 2 5 10 

HDV Depot L2 1 2 5 10 

HDV Depot DCFC 1 1 3 5 

Bus transit Depot DCFC 1 4 14 62 

Bus school Depot L2 1 2 7 17 

HDV Truck stop L2 1 2 5 12 

HDV Truck stop DCFC 2 2 2 2 

Bus transit En route DCFC 2 2 2 2 
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Allocation 

Allocation was performed in two phases. In the first phase, for each EVSE target, Kevala sorted eligible 

parcels in descending order of adoption score and allocated ports until the target was reached. Because 

it was possible to allocate ports to all parcels in a county without reaching the target, in the second 

phase, Kevala distributed any remaining ports equally across all parcels in the county. The following 

example shows how this worked for 10 parcels in a county with a target of 25 ports. 

1. If the first allocation phase resulted in 1 port per parcel, 15 ports would remain at the beginning 
of the second phase.  

2. Kevala then gave each of the 10 parcels 1 additional port, and the 5 parcels with the highest 
adoption scores would be allocated 1 additional port. 

Residential parcels that adopted EVSE in the 2027 forecast year were not allowed to adopt again in 

2032. This restriction did not apply to any other location types. Two important things to note about this 

restriction: 

• It applied only to a specific EVSE type. This means that a single-family home parcel could adopt 
both an L1 and an L2 port in the same year or different years. 

• The second allocation phase allocated remaining ports regardless of prior year adoptions. For 
example, if a single-family home parcel adopted one port in 2027, and the county was not 
meeting its target for 2032 adoptions, that parcel could be assigned more ports in 2032. 

Estimating Baseline Load and Existing Photovoltaics  

This section describes the approach to modeling parcel-level baseline load, existing solar rooftop 

photovoltaics (PV), as well as load growth throughout the study forecast horizon. 

Estimating Baseline Load  

Kevala assigned parcels a load profile using building stock information from ResStock and ComStock. 

Each parcel from the Kevala software was assigned a simulated load based on building and parcel 

properties. The following properties were used to match the Kevala parcels to the NREL ResStock and 

ComStock load profiles: 

• State 

• County 

• Customer class 

• Building footprint (i.e., square footage) 

For each parcel, Kevala selected the residential or commercial building that had the closest footprint to 

the Kevala parcel’s building footprint from an eligible subset of NREL individual building models. If 

building square footage data were not available for the parcel, then the building was selected at random 

from the eligible subset. The eligible subset of building models was filtered to buildings in the same 

county and that have the same customer class (residential, commercial, or industrial). 

The “Commercial - Warehouse” building type from the ComStock database was used to model all 

industrial parcels, except for those in New York and Illinois. For New York and Illinois, Kevala 
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approximated industrial parcels to have a flat load profile after assessing the “Commercial - Warehouse” 

building profile and determining that it had a high load factor (see Figure 23 and Figure 24) that was 

distorting the overall contribution of industrial loads to the midday load.  
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Figure 23. Aggregate electricity consumption of “Commercial–-Warehouse” buildings in New York (Source: NREL ComStock) 

 

Figure 24. Aggregate electricity consumption of “Commercial–-Warehouse” buildings in California (Source: NREL ComStock) 



  March 2024 

 

45 

Approximately 20% of Kevala’s parcels did not have any customer class label. To address this, Kevala: 

1. Calculated the relative frequency of each customer class across a range of building and parcel 
sizes.  

Imputed a missing customer class value for a parcel by drawing at random from the distribution with the 

corresponding building or, if building square footage was not available, parcel square footage. For 

example, if a parcel had no known customer class, its building square footage was unknown, and its area 

slightly exceeded 10,000 square feet, Kevala would select the column just to the right of the “10^4” tick 

mark shown in  

2. Figure 25 and choose a customer class at random. In this example, “Residential - single family” 
would be the most likely selection.  

7 

 

Figure 25. Fraction of parcels versus parcel area and building square footage (Source: Kevala) 

Finally, the aggregated annual energy demand by state was calibrated to the 2021 aggregated energy 

gross load by state published by the EIA, so that the total gross load demand by state in the study 

matches the latest published historical numbers.  
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Estimating Existing PV  

The Kevala platform identifies existing solar rooftop PV using a proprietary computer vision algorithm 

called Sunspot. Sunspot identifies solar systems that are visible on rooftops via satellite imagery 

processing and sizes the PV systems using the dimensions of the spotted rooftop system. After 

identifying and sizing the existing visible solar systems via satellite imagery, Kevala uses NREL’s PVWatts® 

Calculator81 to estimate a time series of the solar rooftop system, which is added to the parcel-level 

baseload previously described. 

Non-PEV Load Growth  

To coordinate the study assumptions, the EPA provided the total energy growth for the No Action 

scenario throughout the study forecast horizon. Kevala subtracted the transportation electrification load 

provided by NREL and LBNL from the EPA-provided total energy to obtain the non-PEV-related load 

growth. The load growth was then added as an annual percent energy load growth to the baseline load 

to determine the non-PEV baseload for the study horizon. 

Distribution System Cost Methods  

The distribution system investments from the total load growth include the baseline load growth from 

the EPA (this is assumed to include new customers and other non-PEV-related DER growth) and PEV load 

growth, as Figure 26 shows. Grid capacity cannot be sized to perfectly meet the load additions and is 

discrete in nature (a choice to add a new transformer of available capacity, to add a new feeder line, 

etc.), meaning that upgrades will include the buildout of excess capacity. Although PEVs might result in 

the need for grid upgrades, they might not use the full capacity of new asset additions, and the 

remaining capacity can be used for other load growth (e.g., new customers, building electrification, new 

commercial or industrial loads).  

 

Figure 26. Incremental capacity from distribution system new infrastructure requirements due to load growth and 

PEV growth. (Source: Kevala) 

The new distribution infrastructure requirements and costs derived in this study are triggered by 

capacity needs only; other grid planning investment categories such as resiliency or asset aging are not 

evaluated. Operational grid investments such as program management, grid modernization technology, 

and new hardware/software investments are not included in the distribution system costs evaluated. 

Kevala’s approach to streamlining the capacity-driven upgrade requirements can be summarized in 

three steps: 

 
81 NREL, “NREL’s PVWatts Calculator,” https://pvwatts.nrel.gov/  

                

                        
                    

                

                                  

        

                                  

https://pvwatts.nrel.gov/
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1. Determine the peak load at different key infrastructure points of the grid to estimate if there is 
an overload. 

2. Determine the new infrastructure assets required to mitigate the overload. 

3. Use the unit cost for installed new assets to determine the costs. 

Creating parcel-level hourly disaggregated load profiles enables Kevala to calculate the peak load at 

different aggregation levels. For this study, Kevala calculated the distinct peak load for all feeders and 

substations to determine long-term thermal capacity upgrades for the different forecast scenarios and 

time horizons.  

A simplified grid diagram depicting the grid infrastructure assets and their connectivity is provided in 

Figure 27. From left to right, a transmission line feeds a distribution substation that typically has 

between two and four transformer banks. Each transformer bank serves several feeders to distribute 

power in the neighborhoods. From the feeders that serve thousands of customers, the service 

transformers on poles or underground pad-mounted transformers step down the voltage for a few 

customers (up to a dozen) to the customer utilization voltage.  

 

Figure 27. Grid infrastructure diagram. The dashed line highlights the grid assets in this study, including 

distribution substations, feeders, service transformers, and service lines. (Source: Kevala) 

New Infrastructure Requirements  

Kevala calculated the upgrade costs based on the following unit costs of grid assets and distribution 

design assumptions. 

Substation assumptions: 

• Evaluated overload at the substation level using a limit of 100%. Every substation was able to be 
expanded by adding one 30 MW substation transformer if the substation size was less than 100 
MW or a substation transformer sized to 35% of the existing substation size if the substation 
was larger than 100 MW. 

• If the substation expansion was not sufficient to mitigate the overload, a new 60 MW substation 
was built if the overload was less than 60 MW. A substation right sized to the overload was built 
if the substation overload was larger than 60 MW. 

Feeder assumptions: 

• Evaluated overload at every feeder connected to the same substation using a limit of 100%. 
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• Calculated the overload amount as well as the available capacity for every feeder and then 
simulated the load transfer capability.  

o If the overload on feeders reaching the thermal limit was less than 15% of the 
substation capacity, it could be transferred to feeders with available load hosting 
capacity.  

o If an overloaded feeder had EVSE public chargers, the location of such chargers could be 
transferred to feeders with remaining load hosting capacity. These geographically 
proximal feeders may often be served by the same substation, but that was not always 
the case.  

• If the feeder was still overloaded after the load transfer, a new feeder was added using the 
voltage-to-new feeder capacity size shown in Table 9. The new feeder voltage class was 
assumed to be the same as the existing overloaded feeder voltage class, except for 4 kV feeders 
that were assumed to be replaced with a 15 kV class conductor. 

Table 9. New Feeder Capacity Size (MW) by Voltage Class (Source: Kevala) 

 Voltage Class 
 0 kV–15 kV 16 kV–25 kV 26 kV–35 kV 

Overhead 11 24 30 

Underground 11 24 30 

 

• After determining the need to build a new feeder, feeder length was estimated. Kevala’s 
approach used the properties of the existing feeders of the substation the new feeder will be 
connected to and the economic load reach (ELR)82 of the ideal feeder sizes under a typical 
loading condition of the feeder. All the line segment lengths of the new feeder were sized to 
follow the ELR guidelines in which the cost-per-unit distance stays within the desired limits. The 
ELR is found to be dependent on the operating voltage of the feeder, which is presented in Table 
10. 

Table 10. ELR by Voltage Class (Source: Kevala) 

Voltage Class (kV)  Distance (mi) 

15  3.8  

25  7.1  

35  9.7  

 

• When a new feeder was required to solve an overload, two cases could arise:  

1. All existing feeders had the same ratings. 

2. Existing feeder ratings differed.  

The distance lELR provided by the ELR table bounded the set of lengths that could be considered 

to determine the length of the new feeder. The upper and lower bounds (ub, lb) were assumed 

 
82 ELR is the length of a feeder needed to deliver power while maximizing its economic lifetime use and keeping 
the voltage drop problems at bay. 
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to be ub =2 * lELR and lb = 0.2* lELR, respectively, to include the range of lengths expected for 

different loading conditions and the geography of a feeder.  

o For the first case, lELR corresponded to the ratings of that feeder as provided by Table 10. 
If the observed length of an existing feeder was within its bounds, the new feeder was 
assigned the observed length. If not, the new feeder length was assigned as lELR.  

o In the second case, a distance lELR was obtained for each distinct voltage rating of the 
feeders connected to the substation. The length of all the feeders with a common 
voltage rating was checked against the bounds. The feeders with feeder lengths that fell 
outside the bounds were filtered out from the candidate set. The median of the feeder 
lengths, after applying the filter, was selected as the length of the new feeder. If the 
resulting candidate was empty, the new feeder length was assigned as lELR. 

Service transformer assumptions: 

• Evaluated overload in aggregate for service transformers connected to the same feeder using a 
125% overloading criteria and excluding the DCFC contribution to feeder peak load.  

o Used diversity factors83 to estimate the aggregate service transformer peak load derived 
from the service transformer to the feeder peak load factors from the CPUC 
Electrification Impacts Study84 results in California: 0.77 in 2027 and 0.75 in 2032.  

o If the aggregate service transformer peak load was greater than 125% of the aggregate 
service transformer capacity connected to a feeder, then Kevala calculated the number 
of 50 kW service transformers required to serve the increase in load. 

DCFC service transformer assumptions: 

• Each parcel that adopted a DCFC charger had a dedicated three-phase service transformer 
assigned, following the sizing design parameters provided by NREL based on the DCFC charger 
size and number of ports per parcel (see Table 11). 

• The transformer size was determined by calculating the sum of the diversity factors multiplied 
by the DCFC charger size and number of ports. 

Table 11. Parcel-Level Diversity Factors by DCFC Port Power Rating, Vehicle Class, and Station Size (Source: 

NREL) 

DC Power, 

kW 
≤ 3 

Port 
LD ( 3 < Port 

≤ 8 ) 
LD (Port > 

8 ) 
MD ( 2 < Port 

≤ 8 ) 
MD ( Port 

> 8 ) 
HD ( 2 < Port 

≤ 8 ) 
HD ( Port > 

8 ) 

50 1 1 1 1 1 1 1 

150 1 1 0.5 1 1 1 1 

350 1 0.75 0.5 1 0.5 1 1 

500 1 0.75 0.5 1 0.5 1 0.5 

 
83 A diversity factor is the ratio of the sum of the individual noncoincident maximum loads of various subdivisions 
of the system to the maximum demand of the complete system. In this case, the subdivisions of the system are 
service transformers, and the complete system is the feeder. 
84 Kevala, Electrification Impacts Study Part 1: Bottom-Up Load Forecasting and System-Level Electrification Impacts 
Cost Estimates, prepared for the CPUC in support of Proceeding R.21-06-017 (Order Instituting Rulemaking to 
Modernize the Electric Grid for a High Distributed Energy Resources Future), May 9, 2023, 
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M508/K423/508423247.PDF.  

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M508/K423/508423247.PDF
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DC Power, 

kW 
≤ 3 

Port 
LD ( 3 < Port 

≤ 8 ) 
LD (Port > 

8 ) 
MD ( 2 < Port 

≤ 8 ) 
MD ( Port 

> 8 ) 
HD ( 2 < Port 

≤ 8 ) 
HD ( Port > 

8 ) 

750 1 0.75 0.5 0.75 0.5 1 0.5 

1,000 1 N/A N/A 0.75 0.5 0.75 0.5 

1,500 1 N/A N/A 0.75 0.5 0.75 0.5 

Unit Costs for New Infrastructure 

Kevala used the following assumptions to determine the new grid infrastructure costs by asset 

type. Table 12 provides the installed unit cost assumptions for a 30 MVA substation transformer and the 

equipment premium adder of $300,000/MVA for substation transformers larger than 30 MVA. Table 13 

provides new substation costs for rural, suburban, and urban substations, as well as a $/MVA cost for 

substations larger than 60 MVA.  

Table 12. New Substation Transformer Cost Calculations (Source: Kevala) 

X: Substation Capacity (MVA) Transformer Bank (MVA) Cost ($ Millions) 

X < 100 30 10 

X > 100 0.35*X 10 + 0.3*(0.35*X-30) 

 

Table 13. New Substation Cost Calculations by Type (Source: Kevala) 

X: Overload Type Cost ($ Millions) 

X < 60 MVA Rural 20 

X < 60 MVA Suburban 30 

X < 60 MVA Urban 60 

X > 60 MVA Rural 20+ (X-60)*0.3 

X > 60 MVA Suburban 30+ (X-60)*0.4 

X > 60 MVA Urban 60+ (X-60)*0.5 

 

Table 14 shows the conductor costs in $/foot used by voltage class and overhead and underground 

categories for rural and urban feeders.  

Table 14. New Feeder Conductor Costs ($/ft) by Voltage Class, Type, and Rural Versus Urban (Source: Kevala) 

 Voltage Class 

 Type 0 kV–15 kV 16 kV–25 kV 26 kV–35 kV 

Rural Overhead 100.00 100.00 100.00 

Rural Underground 558.27 558.27 558.27 

Urban Overhead 156.25 156.25 156.25 

Urban Underground 872.30 872.30 872.30 

The following are the feeder breaker costs by feeder voltage class: 
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• 0 kV–15 kV: $1 million 

• 16 kV–25 kV: $1 million 

• 26 kV–35 kV: $1.5 million 

National Extrapolation  

To derive a national estimate, Kevala extrapolated the results of the bottom-up study of representative 

states to the contiguous 48 states and the District of Columbia through 2055. Kevala performed this task 

by developing an average cost per EVSE type for the five study states and applying it to the nationwide 

EVSE forecasts produced by LBNL and NREL through 2055. These results were broken out by distribution 

upgrade costs required to serve baseline load growth and those costs required to serve transportation 

electrification in each of the four scenarios in the five-state study. Further, Kevala delivered these costs 

by Integrated Planning Model (IPM)85 region, while the cost results of the five-state study are defined by 

county.  

Figure 28 shows a high-level overview of Kevala’s extrapolation approach. Appendix B provides a more 

extensive description of the extrapolation method.

 
85 EPA, “Post-IRA 2022 Reference Case, EPA’s Power Sector Modeling Platform v6 Using IPM,” Power Sector 
Modeling, https://www.epa.gov/power-sector-modeling/post-ira-2022-reference-case.  

https://www.epa.gov/power-sector-modeling/post-ira-2022-reference-case
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Figure 28. Overview of extrapolation approach (Source: Kevala) 
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Transportation Electrification Scenarios 
This chapter presents the PEV adoption scenarios, simulated charging load shapes, and network size 

requirements for light-, medium-, and heavy-duty PEVs (Class 1–8). 

Vehicle Adoption Scenarios 

The study’s parameters closely align two scenarios of PEV adoption in 2027 and 2032, to bookend the 

analysis with the  model years under EPA consideration:  

• An “Action” scenario is used to reflect the adoption of two national GHG standards – one for 
LDVs and MDVs and the other for HDVs – as proposed by EPA in April 2023. These rules would 
regulate emissions from new motor vehicles for model years 2027 through 2032..  

• A “No Action” scenario is used to reflect the absence of new national GHG standards for LDVs, 
MDVs, and HDVs but includes current state and federal policies and regulations.  

Based on EPA modeling, a total of 55 million PEVs are assumed to be on the road by 2032 in the Action 

scenario across all weight classes. This contrasts with the No Action scenario, which assumes 41 million 

PEVs on the road by 2032.  

Figure 29 provides a PEV adoption summary for the five states included in this work (California, 

Oklahoma, Illinois, Pennsylvania, and New York) broken down by scenario (2027 and 2032, and Action 

and No Action). Percentage annotations provide the relative increase in PEVs on the road between the 

Action and No Action scenarios for each simulation year. 



  March 2024 

 

54 

 

Figure 29. PEV adoption (absolute and relative increases) by weight class and scenario for the five selected states 

Charging Load Shapes 

This section presents simulated charging load shapes for light-, medium-, and heavy-duty PEVs (Class 1–

8). This analysis attempts to quantify the value of proactive vehicle–grid integration by modeling two 

load-flexibility scenarios: 

• An “Unmanaged” scenario serves as the baseline in which vehicles arrive at locations where 
they intend to charge and begin doing so immediately and at full charging speed (relative to the 
capabilities of their vehicle and the simulated charging infrastructure).  

• A “Managed” scenario is implemented such that vehicles arriving at select charging locations 
will intentionally minimize their charging speed such that the session is completed just prior to 
departure from that location.  
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In this analysis, arrival time, departure time, and charging energy (but not charging power) are enforced 

as identical in both the Managed and Unmanaged scenarios. Given these constraints, charging flexibility 

is exercised only at home and depot locations, which are considered most likely to have margins for 

adjusting charging speed without negatively impacting vehicle availability. Although this management 

strategy ensures that peaks from PEV charging are reduced, it ultimately was agnostic to non-PEV loads 

on the distribution network and is therefore unable to more aggressively optimize charging schedules 

and better utilize the local distribution system. 

Light- and Medium-Duty Vehicles 

Figure 30 provides an example of PEV load shapes for the Managed and Unmanaged charging scenarios 

of LDVs and MDVs. As previously discussed, the Unmanaged scenario assumes that vehicles begin 

charging immediately and at full power. Given the high level of overnight (residential and depot) 

charging assumed for LDVs/MDVs, the Unmanaged scenario tends to peak in the early evening as 

vehicles return to their domicile. Conversely, the Managed scenario is relatively flat with respect to time 

of day. By prolonging charging events (informed by departure time but agnostic of other grid loads), the 

peak of the Unmanaged scenario in the early evening is dampened in the Managed scenario, with said 

energy deferred to fill the load “valley” in the overnight hours. 

 

Figure 30. Example load profiles for Managed and Unmanaged charging of LDVs and MDVs 

Composite Charging Profiles (Class 1–8) 

Figure 31 and Figure 32 provide the composite charging profiles across all weight classes (Class 1–8) for 

California in the Action scenario (Unmanaged and Managed, respectively). In the case of California, a 
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30% reduction in the EV charging peak load can be observed in the Managed scenario, and this example 

is representative of the other four states under study. As expected, the Managed scenario tends to 

reduce EV coincident peaks by deferring charging from the evening to overnight hours. Given that the 

Managed scenario was developed agnostic to the baseline non-transportation loads, there is no 

guarantee that the Managed scenario reduces the total load across all parts of the distribution system 

(as further discussed in the chapter Load and Distribution System Impacts and Costs).  

 

Figure 31. Composite (Class 1–8) PEV charging load profile for California by EVSE type in 2032  

(Action–Unmanaged scenario) 

 

Figure 32. Composite (Class 1–8) PEV charging load profile for California by EVSE type in 2032  

(Action–Managed scenario) 

The Action scenario has a generally homogenous impact in increasing overall energy consumption and 

peak loads relative to the No Action policy scenario across the five states, as shown in Figure 33. The 

increase between the No Action–Unmanaged and Action–Unmanaged scenarios ranges from 1.6% 

(Oklahoma) to 2.7% (California) in energy consumption by 2032 and from 0.6% (Oklahoma) to 3.0% 

(Illinois) in peak load by 2032. Those same ranges are less differentiated by 2027: from 0.1% (Oklahoma) 

to 0.3% (California) for energy and 0.1% (New York and Oklahoma) to 0.2% (California, Illinois, and 
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Pennsylvania) for peak load. Additional statistics regarding peak load and energy can be found in Table 

21 and Table 22, respectively. 

The increase in energy consumption between the No Action and Action scenarios occurs regardless of 

whether the Managed or Unmanaged scenario is used; however, the increase in peak load is reduced to 

0.4%–1.4% in the presence of charge management, as shown in Figure 34. 

 
Figure 33. Peak load and energy increases (expressed as a percentage) in 2032 of the Action–Unmanaged scenario 

relative to the No Action–Unmanaged scenario 
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Figure 34. Peak load and energy increases (expressed as a percentage) in 2032 of the Action–Managed scenario 

relative to the No Action–Managed scenario 

Charging Network Size and Cost 

We used the combined equipment and installation costs and projected port count by EVSE type, access 

type, and scenario to estimate charging network costs in 2027 and 2032. We have considered potential 

effects of economies of scale in developing equipment cost trajectories for future years. In this section, 

we summarize the estimated cost impacts with respect to both total charging network capital costs and 

average charging network capital costs on a per-port basis.  

Table 15 through Table 19 provide state-level summaries of the charging network size and cost for each 

of the five states in the study, including breakouts by scenario and access type (public or private). In 

2032, the Action scenario is estimated to increase the relative charging network capital costs by as little 

as 13% in California and as much as 62% in Oklahoma. As with other parts of this study, there are key 

differences between the relative and absolute costs. Due to significant differences in the simulated PEV 

fleet size, California and Oklahoma are inverted when ranking the absolute incremental charging 

network capital costs; California sees a $3.8-billion increase in charging network capital costs under the 

Action scenario, whereas Oklahoma sees a $0.5-billion increase. Except for L1 chargers, the average 

capital costs on a per-port basis for EVSEs are estimated to be lower under the Action scenario than the 

No Action scenario in both 2027 and 2032 (Table 20) due to economies of scale. By 2032, the average 

capital cost ranges from $550 per port for L1 chargers to $630,165/$639,207 per port for 1.5-MW 

DCFCs. 
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Table 15. California Simulated PEV Charging Network Size and Capital Cost (Excluding Grid Upgrades) by Scenario 
and Access Type (Public/Private). The percentage increases in the network capital costs in 2027 and 2032 resulting 
from the Action scenario are provided in the bottom row. The small decrease in costs in 2027 results from economies 

of scale. (BAU = business as usual) 

 

 

Table 16. Illinois Simulated PEV Charging Network Size and Capital Cost (Excluding Grid Upgrades) by Scenario 
and Access Type (Public/Private). The percentage increases in the network capital costs in 2027 and 2032 resulting 
from the Action scenario are provided in the bottom row. 

 

  

CA

Access Type No Action Action Delta No Action Action Delta

private 4,131,964        4,256,181        124,217        6,915,555        7,716,900        801,345        

public 95,705             98,272             2,567            333,169           405,476           72,307          

total 4,227,669        4,354,453        126,784        7,248,724        8,122,376        873,652        

Access Type No Action Action Delta No Action Action Delta

private 8,709$             9,062$             353$             19,171$           21,837$           2,666$          

public 3,115$             3,063$             (52)$             10,519$           11,701$           1,182$          

total 11,824$           12,125$           301$             29,690$           33,538$           3,848$          

3% 13%

Network Size (Ports)

Network Cost (millions) - EVSE BAU Scenario

2027 2032

2027 2032

IL

Access Type No Action Action Delta No Action Action Delta

private 361,583           394,792           33,209          1,252,753        1,665,327        412,574        

public 5,121               5,643               522               18,731             50,491             31,760          

total 366,704           400,435           33,731          1,271,484        1,715,818        444,334        

Access Type No Action Action Delta No Action Action Delta

private 804$                939$                135$             2,777$             4,096$             1,319$          

public 182$                204$                22$               799$                1,445$             646$             

total 986$                1,143$             157$             3,576$             5,541$             1,965$          

16% 55%

Network Size (Ports)

2027 2032

Network Cost (millions) - EVSE BAU Scenario

2027 2032
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Table 17. New York Simulated PEV Charging Network Size and Capital Cost (Excluding Grid Upgrades) by Scenario 
and Access Type (Public/Private). The percentage increases in the network capital costs in 2027 and 2032 resulting 
from the Action scenario are provided in the bottom row.  

 

 

Table 18. Oklahoma Simulated PEV Charging Network Size and Capital Cost (Excluding Grid Upgrades) by Scenario 
and Access Type (Public/Private). The percentage increases in the network capital costs in 2027 and 2032 resulting 
from the Action scenario are provided in the bottom row.  

 

NY

Access Type No Action Action Delta No Action Action Delta

private 936,360           981,803           45,443          2,101,338        2,499,428        398,090        

public 26,245             27,401             1,156            87,173             118,545           31,372          

total 962,605           1,009,204        46,599          2,188,511        2,617,973        429,462        

Access Type No Action Action Delta No Action Action Delta

private 2,660$             2,821$             161$             8,132$             9,440$             1,308$          

public 722$                741$                19$               2,428$             2,953$             525$             

total 3,382$             3,562$             180$             10,560$           12,393$           1,833$          

5% 17%

Network Size (Ports)

2027 2032

Network Cost (millions) - EVSE BAU Scenario

2027 2032

OK

Access Type No Action Action Delta No Action Action Delta

private 43,246             48,566             5,320            218,525           338,855           120,330        

public 796                  918                  122               3,513               5,269               1,756            

total 44,042             49,484             5,442            222,038           344,124           122,086        

Access Type No Action Action Delta No Action Action Delta

private 127$                167$                40$               551$                944$                393$             

public 61$                  73$                  12$               251$                357$                106$             

total 188$                240$                52$               802$                1,301$             499$             

28% 62%

Network Size (Ports)

2027 2032

Network Cost (millions) - EVSE BAU Scenario

2027 2032
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Table 19. Pennsylvania Simulated PEV Charging Network Size and Capital Cost (Excluding Grid Upgrades) by 
Scenario and Access Type (Public/Private). The percentage increases in the network capital costs in 2027 and 2032 
resulting from the Action scenario are provided in the bottom row.  

 

 

Table 20. Average Network Capital Cost ($/Port) by Scenario and EVSE Type across the Five States 

EVSE Type 2021 
2027 2032 

Action No Action Action No Action 

L1  $                 550   $                  550   $                   550   $                   550   $                   550  

L2 residential  $              1,900   $                1,771   $                1,775   $                1,734   $                1,748 

L2 commercial  $              6,779   $                6,298   $                6,314   $                6,118   $                6,183  

DC50  $            35,000   $              31,158   $              31,517   $              29,714   $              30,192  

DC150  $          105,000   $              93,475   $              94,550   $              89,439   $              90,725  

DC250  $          135,500   $            122,889   $            124,065   $            118,498   $            119,887  

DC350  $          166,000   $            152,304   $            153,581   $            147,283   $            149,014  

DC500  $          237,143   $            217,577   $            219,402   $            210,776   $            213,004  

DC1000  $          474,286   $            435,154   $            438,803   $            421,604   $            425,372  

DC1500  $          711,429   $            652,731   $            658,205   $            630,165   $            639,207  

 

 

  

PA

Access Type No Action Action Delta No Action Action Delta

private 334,687           372,812           38,125          1,056,106        1,462,503        406,397        

public 8,228               8,873               645               38,080             50,367             12,287          

total 342,915           381,685           38,770          1,094,186        1,512,870        418,684        

Access Type No Action Action Delta No Action Action Delta

private 741$                883$                142$             2,406$             3,644$             1,238$          

public 250$                283$                33$               1,112$             1,446$             334$             

total 991$                1,166$             175$             3,518$             5,090$             1,572$          

18% 45%

Network Size (Ports)

2027 2032

Network Cost (millions) - EVSE BAU Scenario

2027 2032
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Load and Distribution System Impacts and Costs  

Impact on Peak Load Between Scenarios 

Table 21 compares all scenarios to the No Action–Unmanaged scenario in terms of peak load increase or 

decrease for 2027 and 2032. Table 22 makes the same comparison on an energy basis. Note the 

following: 

• The No Action–Managed scenario has a lower peak load than the No Action–Unmanaged 
scenario for all states and years simulated.  

• The Action–Unmanaged scenario has a higher peak load than the No Action–Unmanaged 
scenario, ranging from 0.6% to 3% by 2032.  

• The Action–Managed scenario can reduce the peak-load impact relative to the Action–
Unmanaged case.  

o In California, Illinois, and Pennsylvania, in 2032, the peak load of the Action–Managed 
case is less than the peak load in the No Action–Unmanaged scenario.  

o In New York and Oklahoma, the Action–Managed scenario reduces the peak load by 
44% and 83%, respectively, compared to the Action–Unmanaged scenario, but it is still 
slightly higher than the No Action–Unmanaged scenario, with increases of 0.5% and 
0.1%, respectively, by 2032.  

• The energy requirements do not change based on whether or not PEV charging is managed. 

Table 21. Percentage (%) Difference in Peak Load by Scenario as Compared to the No Action–Unmanaged Scenario 

in 2027 and 2032 (Source: Kevala) 

Year Scenario California New York Oklahoma Illinois Pennsylvania 

2027 

No Action–Unmanaged – – – – – 

No Action–Managed -2.3 -0.2 -0.1 -0.9 -0.6 

Action–Unmanaged 0.2 0.1 0.1 0.2 0.2 

Action–Managed -2.0 -0.1 0.0 -0.8 -0.5 

2032 

No Action–Unmanaged – – – – – 

No Action–Managed -3.1 -0.4 -0.3 -2.8 -1.5 

Action–Unmanaged 1.7 0.9 0.6 3.0 1.8 

Action–Managed -1.8 0.5 0.1 -1.5 -0.5 
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Table 22. Percentage (%) Difference in Energy by Scenario as Compared to the No Action Scenarios in 2027 and 

2032 (Source: Kevala) 

Year Scenario California New York Oklahoma Illinois Pennsylvania 

2027 

No Action–
Unmanaged/Managed – – – – – 

Action–
Unmanaged/Managed 0.3 0.2 0.1 0.2 0.2 

2032 

No Action–
Unmanaged/Managed – – – – – 

Action–
Unmanaged/Managed 2.7 2.4 1.6 2.3 2.2 

 

Peak Load Demand Shapes  

Figure 35 is an illustrative example of the daily load shapes for the different scenarios in California on 

the day of the peak load. The chart inset indicates that the Action–Managed peak load value is 1.8% 

lower than the No Action–Unmanaged peak load value, reflecting the critical benefit of managing 

charging to integrate incremental PEV loads and infrastructure into the grid without commensurate 

additions to system capacity. 

 

Figure 35. Peak-day load shapes for California in 2032 for all scenarios (Source: Kevala) 

Peaks by Time of Day at Grid Asset Levels 

The peak load value was calculated at multiple grid asset levels. Figure 36 compares the peak load time 

of day for distribution feeders in California for different pairs of scenarios: 

• Baseload–No EVs scenario versus Action–Unmanaged (left): The charging infrastructure 
increases the frequency of the feeders peaking in the evening, particularly from 7 p.m. to 9 p.m.  
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• No Action–Unmanaged versus Action–Managed (middle) and Action–Unmanaged versus 
Action–Managed (right): The Managed charging scenario is effective at reducing the evening 
peak loads, particularly at 7 p.m. and 8 p.m., compared to the Unmanaged scenarios; however, 
it increases the frequency of the feeders peaking in the morning at 6 a.m. and 7 a.m. 

 

 
Figure 36. Frequency of peak load time of day for feeders in California in 2032 between the Baseload–No EVs and 

Action–Unmanaged (left), No Action–Unmanaged and Action–Managed (middle), and Action–Unmanaged and 

Action–Managed scenarios (right) (Source: Kevala) 

Cost Comparison Between Scenarios 

Table 23 compares all scenarios to the No Action–Unmanaged scenario in terms of peak load increase or 

decrease for 2027 and 2032. Note the following: 

• The Action–Unmanaged scenario increases grid capacity upgrade costs by between 3.3% and 
4.3% across the five states by 2032. 

• Managed charging reduces grid capacity upgrade costs relative to scenarios that allow charging 
to remain unmanaged for both the No Action and Action cases.  

o In California, Illinois, and Pennsylvania, the Action–Managed scenarios require less total 
distribution grid investment cost than the No Action–Unmanaged scenario in 2032. 

o In New York, the Action–Managed scenario has a slightly higher total grid investment 
cost in 2032 than the No Action–Unmanaged case; however, managed charging would 
reduce costs 75% compared to the Action–Unmanaged scenario (i.e., 0.8% versus 3.3%). 

o In Oklahoma, the Action–Unmanaged and Action–Managed scenarios do not impact the 
distribution investment costs in 2027. Counterintuitively, in 2032, the No Action–

Managed scenario results in 0.4% higher costs than the No Action–Unmanaged scenario. 
This is because the algorithm to delay charging for home- and fleet-based EVSE was not 
effective at reducing local distribution capacity criteria due to the Oklahoma Baseload–
No EVs scenario’s load shape being higher in the morning than in the evening hours.  
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Table 23. Percentage (%) Difference in Total Distribution Costs by Scenario as Compared to the No Action–
Unmanaged Scenario in 2027 and 2032 (Source: Kevala) 

Year Scenario California New York Illinois Pennsylvania Oklahoma 

2027 

No Action–Unmanaged – – – – – 

No Action–Managed -1.6 -0.8 -0.5 0.2 -0.4 

Action–Unmanaged 0.7 0.1 0.6 0.3 0.0 

Action–Managed -1.4 -0.8 -0.1 0.4 0.0 

2032 

No Action–Unmanaged – – – – – 

No Action–Managed -3.3 -1.4 -3.9 -0.6 0.4 

Action–Unmanaged 3.6 3.3 4.3 3.3 3.5 

Action–Managed -0.8 0.8 -0.9 -1.8 3.1 

National Extrapolation 

National extrapolation of the bottom-up results mirrored trends observed in the five study states. For 

example, the Action scenarios resulted in greater degrees of distribution grid investments, scaling more 

rapidly beyond 2032. This is largely due to a parallel increase in EVSE counts, the parameter on which 

the extrapolated costs are largely based. Further, the scale of those investments was tempered in the 

Managed scenarios, as expected. By the end of the forecast period (2055), there is a larger impact of 

managed charging on distribution costs in the Action scenario due to higher overall EVSE counts as well 

as a more rapid scaling of EVSE adoption types eligible for management (i.e., LDVs and fleets) in the 

context of the study.  

The cumulative national distribution costs resulting from support of PEV/EVSE growth, by scenario, are 

shown in Figure 37 and are further explored in Appendix B. 

 

 
Figure 37. Extrapolated nationwide cumulative distribution costs for all scenarios from 2027 through 2055. 

Although these costs are national, the extrapolation is conducted to reflect the cost components of the five study 

states in 2027 and 2032 in the bottom-up study. (Source: Kevala) 
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As referenced elsewhere, the widening gap between each set of colored lines in Figure 37 is a testament 

to the growing impact of charge management over the forecast horizon; there is an increasing 

proportion of EVSEs eligible for charge management in later years under the Action scenarios. 

Furthermore, comparing the scenarios in Figure 37 reveals that implementing managed charging in the 

Action case could reduce grid upgrade costs by approximately 19%. 

To confirm these results, Kevala examined the share of EVSE costs from the five-state study and 

compared them to the extrapolated nationwide results. Figure 38Figure 38 shows that the five states 

account for approximately 30%–35% of total costs, depending on the scenario, with Unmanaged 

scenarios showing a greater share of the total costs than the Managed scenarios. This is explored further 

in 0 

 
Figure 38. Five-state costs as a percentage of the nationally extrapolated costs (Source: Kevala) 

Although this proportion of costs seems sufficient based on EVSE, PEV, economic, and demographic 

factors, more study is needed to determine how best to support national cost analyses with bottom-up 

electrification impact studies. For example, variable regulation, labor and procurement costs, driving 

habits, and dynamic charge management could play major roles in the overall impacts of transportation 

electrification. With increased support and additional location-specific data availability, the project team 

could conduct additional bottom-up studies for other U.S. states.  

 

The final results of the national extrapolation were broken down by IPM region (see Appendix F for a list 

of these IPM regions); relative costs between these regions are shown in Figure 39. Note that there is a 

“long tail” of IPM regions with significantly lower costs, which is driven by those areas having a lower 

proportion of vehicles forecasted to be adopted and operated.
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Figure 39. Extrapolated nationwide distribution costs by IPM region for the No Action–Unmanaged scenario in 2032 (Source: Kevala)  
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Discussion 

Contextualizing Costs  

As shown in Table 24, this study estimated a $12.0-billion incremental charging and distribution grid 

infrastructure investment as being necessary to support an additional 3.9 million light-, medium-, and 

heavy-duty PEVs on the road in 2032 across five states, as are estimated to be induced under the Action 

scenarios. Of this $12.0 billion, $9.7 billion (81%) is estimated as necessary for capital expenses related 

to charging equipment and installation at publicly and privately accessible locations. The remaining $2.3 

billion (19%) of the infrastructure estimate is allocated for grid upgrades, including service transformers, 

feeders, and substations. 

Table 24. Year 2032 Simulation Results for the Five-State Study 

 

 
For context regarding the magnitude of these costs, consider the following: 

• Distribution grid upgrade costs estimated in this work can be compared to existing utility 
distribution system investments. Based on utility reports to the Federal Energy Regulatory 
Commission, data from electric co-ops, and extrapolation for the remaining utilities, we 
estimate that the national investment in distribution systems exceeded $60 billion annually as of 
2021. A high-level approach for scaling the national distribution system investment to the five 
states under study was applied to estimate that $15 billion of distribution system investment 
occurred in 2021. This study estimates the incremental investment in distribution networks (to 
accommodate the estimated PEV growth under the Action scenario) to be an additional $2.3 
billion of grid investment for PEVs in the Unmanaged scenario. Annualizing this between 2027 
and 2032 results in an estimated annual cost of $0.4 billion, or approximately 3% of existing 
annual distribution investments, from the EPA’s proposed rules across the five states (see 
Appendix D). 
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• Based on NREL’s 2022 Transportation Annual Technology Baseline (ATB),86 by 2030 PEVs are 
expected to provide $8,300 per vehicle in lifetime net benefits accrued to EV users, primarily 
from fuel cost savings (based on a fleet-weighted average using the EPA’s adoption scenario and 
consistent infrastructure costs). Scaling these net benefits to a fleet of 3.9 million PEVs implies a 
fleet-weighted net benefit of $33 billion across the lifetime of the 2032 PEV fleet in the five 
states under study. This is at least 2.5 times greater than the capital investment needs for 
charging infrastructure and grid upgrades estimated by this work. 

• The $9.7 billion increase in charging network capital costs is approximately a 19% increase over 
what would be necessary for charging infrastructure in the No Action scenario, with the majority 
of the cost (approximately 70%) expected to be needed at privately accessible locations 
(including single-family homes and commercial depots). 

Proactive utility distribution planning, dynamic tariff structures, and vehicle–grid integration 

technologies provide levers to efficiently forecast grid infrastructure investment needs for PEVs and 

other loads and serve them with the least associated costs. The incremental distribution grid capital 

investment of $2.3 billion (Action–Unmanaged versus No Action–Unmanaged) is reduced to $1.6 billion 

when assuming that charging loads at home and depot locations are managed (Action–Managed versus 

No Action–Managed). This result is driven by the ability of PEVs to shift charging to off-peak hours based 

on parking durations that exceed the time necessary to charge. For example, a 30% reduction in 

California’s PEV peak load was simulated in the Action–Managed scenario, and this example is 

representative of the other four states under study. When considering all electric loads, this translates 

to a reduction in total peak load between 0.4% and 4.5% (depending on the state). 

Although this management strategy ensures that peaks from PEV charging are reduced, it is agnostic to 

non-PEV residential, commercial, and industrial loads on the distribution network in the context of this 

study, and therefore charging schedules were not further optimized in this study to better use the local 

distribution system. Exploratory research presented in Appendix E suggests that further savings, in the 

form of deferred grid upgrade costs, can be achieved by managing the charging patterns of particular 

vehicle classes to actively respond to local, feeder-level congestion and capacity constraints. These 

potential savings are more significant on feeders with greater adoption of more easily manageable 

vehicle classes (namely, those at locations with home and depot charging).  

Comparisons to Other Work on a Marginal Cost Basis 

To check the validity of PEV grid costs, results can be compared with grid costs associated with historical 

load increases. The marginal cost of service metric is used to perform this check, defined as the cost of 

infrastructure investments relative to the change in peak load (i.e., $ investment divided by MW change 

in peak load). To be consistent with this five-state study, only capital costs are examined. Yearly 

operations and maintenance and capital carrying costs are not included. Using this definition, the 

marginal cost of service for the Action–Unmanaged scenario for 2032 is $640/kW-peak-load averaged 

across the five states in the study.  

The calculated ($640/kW-peak-load) marginal cost of service for the five-state study is higher than other 

reported values in the literature and suggests that actual costs may be lower than reported in this study. 

 
86 National Renewable Energy Laboratory, “Annual Technology Baseline,” https://atb.nrel.gov/. 

https://atb.nrel.gov/
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Using a regression on Federal Energy Regulatory Commission (FERC) Form 1, data87 results in an average 

marginal cost of service of $34/kW from 1994 to 2014. This value derived from FERC Form 1, however, is 

lower than values reported by utilities. In New York, 2018 data from New York State Electric And Gas 

Corporation (NYSEG) reports88 a $169/kW-peak-load marginal cost of service. ConEdison reports89 values 

ranging from $59/kW-peak-load to $186/kW-peak-load. Beyond these comparisons, the 2032 $640/kW-

peak-load figure may be further reduced under other accounting methods (such as the discounted total 

investment method) that levelize investment between (for example) 2027 and 2032 on a year-over-year, 

as opposed to stepwise, basis.  

The difference between the marginal cost of service in this study and other reported values might, in 

part, be attributed to the lumpiness of distribution investments and the fact that this study does not 

attempt cost allocation. The capacity utilization of assets needed to meet PEV load growth in 2032 is 

low. For example, the capacity utilization of a substation in 2032 for the Action–Unmanaged scenario is 

5%. This suggests the potential for more efficient infrastructure investments (for example, using load 

balancing, non-wire alternatives, or right-sizing assets). 

Future Work for Refining the Analysis 

With a study of this breadth, there are several key areas for future work to refine the analysis. The 

identified key areas for future work are as follow. We expect many of the areas for future work to have 

a lower impact on the overall incremental analysis of this study than their impact on total investment 

(i.e., the investment differences between the Action and No Action scenarios). A more detailed 

breakdown of the key caveats and context for the areas for future work are given in Appendix C. 

1. Contingency conditions for substations: The study examined the need for future substation 
capacity growth. One key area for future work should consider how substation capacity can 
accommodate electrification growth while considering power-flow, reliability, and N-1 
conditions (i.e., contingency for load transfer). Not considering that substations keep overhead 
capacity for load transfer in contingency conditions can underestimate the upgrades required.  

2. Large standard deviation of loading/capacity of grid assets: Many assets are overloaded in the 
2023 asset utilization dataset, which would require upgrades that should not be attributed to 
electrification. Refining loading estimates and electrical asset capacities might reduce 
incremental upgrades required for electrification. 

3. Low utilization of new substation transformer banks and new substations: The buildout of new 
substations and the expansion of existing substations results in many transformer banks with 
low loading conditions. Conducting a cost allocation among benefitting customer classes other 
than PEVs could help account for the costs associated with expanded substation capacity, which 

 
87 Robert L. Fares and Carey W. King, “Trends in transmission, distribution, and administration costs for U.S. 
investor-owned electric utilities,” Energy Policy 105 (June 2017): 354–362, 
https://doi.org/10.1016/j.enpol.2017.02.036. 
88 New York State Electric And Gas Corporation (NYSEG), “Derivation of Systemwide Marginal Costs,” 2018, 
https://www.nyseg.com/documents/40132/5899056/NYSEG%2BElec%2BLSRV%2BDRV%2BMC%2B2018-07-
30.xlsx/3327dcf5-7e8f-a58b-30e7-2110729877fb?version=1.0&t=1645136501943. 
89 P.Q. Hanser, T.B. Tsuchida, P. Donohoo-Vallet, L. Zhang, and J. Schoene, “Marginal Cost of Service Study,” 
prepared for conEdison, published July 30, 2018, 
https://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7BF99CFC43-2D67-44DB-AB02-
A7ACDA5E6341%7D. 

https://doi.org/10.1016/j.enpol.2017.02.036
https://www.nyseg.com/documents/40132/5899056/NYSEG%2BElec%2BLSRV%2BDRV%2BMC%2B2018-07-30.xlsx/3327dcf5-7e8f-a58b-30e7-2110729877fb?version=1.0&t=1645136501943
https://www.nyseg.com/documents/40132/5899056/NYSEG%2BElec%2BLSRV%2BDRV%2BMC%2B2018-07-30.xlsx/3327dcf5-7e8f-a58b-30e7-2110729877fb?version=1.0&t=1645136501943
https://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7BF99CFC43-2D67-44DB-AB02-A7ACDA5E6341%7D
https://documents.dps.ny.gov/public/Common/ViewDoc.aspx?DocRefId=%7BF99CFC43-2D67-44DB-AB02-A7ACDA5E6341%7D
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could be used for future load growth but would not be used by electrification for the study’s 
focal years (2027–2032). An important area for future work is examining how much of the 
added electrical infrastructure is utilized by PEVs. PEV load growth may result in grid capacity 
asset additions with low utilization, where overhead capacity can be used for load growth in 
other sectors (e.g., building electrification). Using cost allocation of utilized capacity may 
appropriately lower the investment attributed to vehicle electrification. 

4. Undergrounding costs: Estimating underground distribution infrastructure is challenging and 
does not lend itself well to machine-learning- and satellite-image-based estimation techniques. 
A more detailed examination of underground infrastructure will be important for future studies 
to improve cost estimation given that undergrounding costs five to 10 times more than 
overhead costs.  

5. Drivers of grid investment not considered: The key focus of this study was to examine relative 
grid capacity investment from the perspective of incremental electrification between the No 
Action and Action scenarios. Given that utilities are motivated to continue investment in the 
distribution system based on other factors (e.g., resilience investments and replacing aging 
assets), to the extent that these investments also result in capacity expansions, this analysis 
would overestimate grid costs attributable to transportation electrification. 

6. PEV demand profiles: This study examines two PEV charging profiles. Given that there are 
several ways to optimize charging profiles—e.g., based on location (public versus at home), the 
provision of grid balancing services (such as coincident with midday solar or nighttime-valley 
filling), or to reduce emissions (while matching charging with the geographic and temporal 
attributes of generators)—additional sensitivity analysis would refine the investment associated 
with PEV grid integration and provide greater insight into which forms of managed charging and 
utility programs may provide the greatest benefits. 

7. Sensitivity analysis of unit costs for grid equipment: This study applies unit costs for grid 
equipment (e.g., transformer, overhead line, and underground conductor costs) based on 2023 
dollars. Future studies could account for supply chain dynamics in cost forecasting that reflect 
recently announced90 and expected additional domestic supplies for grid component 
manufacturing in response to improved demand forecasting, utility regulators’ valuation of 
NWA (including the deployment of station- and distribution-level power control systems), and 
efforts to standardize transformer design. 

8. Refining forecasted demand for other sectors: Other non-PEV sector demand (e.g., building 
electrification, energy efficiency, and commercial and industrial load growth) and the growth of 
DERs (e.g., rooftop solar and behind-the-meter storage) are not the focus of this study, but both 
can impact the costs of vehicle electrification and its impact on system peak demand (e.g., using 
transactive controls among PEVs and other end uses to ensure that sector demand does not 
coincide with system peak demand, using DERs as an NWA). For example, distributed solar can 
change the timing and magnitude of system peak demand, which may, given coordinated 
charging, lower the impact of transportation demand on system peak. 

 
90 CorePower Magnetics, “CorePower Magnetics Awarded $20M from DOE to Establish Domestic Manufacturing 
Facility in Pittsburgh,” published November 28, 2023, https://www.corepowermagnetics.com/post/corepower-
magnetics-awarded-20m-from-doe-to-establish-domestic-manufacturing-facility-in-pittsburgh. 

https://www.corepowermagnetics.com/post/corepower-magnetics-awarded-20m-from-doe-to-establish-domestic-manufacturing-facility-in-pittsburgh
https://www.corepowermagnetics.com/post/corepower-magnetics-awarded-20m-from-doe-to-establish-domestic-manufacturing-facility-in-pittsburgh
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9. Capacity-aware charge management: The Managed scenarios modeled in this study were based 
on behaviors observed to date in existing high-penetration PEV markets, and thus they did not 
precisely suit each state or utility’s baseline load. The distribution grid investment costs in 
Oklahoma for the No Action–Managed scenario resulting in, counterintuitively, 0.4% higher 
costs than the No Action–Unmanaged scenario, illustrate the need to implement charge 
management strategies that account for and are aware of the relevant local patterns in electric 
demand and asset-specific capacity constraints. The project team anticipates that more 
technologies will be developed and deployed to directly orchestrate charging in certain market 
segments to reduce peak load impacts on distribution infrastructure. Accordingly, Kevala ran an 
additional management scenario specifically designed to migrate charging load from peak times 
to less costly periods to minimize capacity investments, where dwell times allow, resulting in the 
potential for capacity savings that increase in proportion to charging load. The approach and the 
detailed results of this scenario are discussed in Appendix E. 

10. Expansion of utility-level analysis to reduce reliance on extrapolation: The five study states 
account for approximately 25% of electric customers in the United States and 20% of overall 
utility peak demand across the country.91 Additionally, the states overall represent those with 
high IOU presence; the five-state average for IOU service is ~84% of customers, whereas IOUs 
serve approximately 69% of customers nationwide. Extrapolation from a five-state study to 
national-scale is challenging due to the diversity in U.S. distribution systems (i.e., variations in 
load density, underground versus overhead lines, loading conditions, and historic investment 
across different service areas). Conducting further analysis using utility-specific datasets and 
examining the diversity in utility distribution systems would enhance the accuracy of any future 
work. As previously referenced, while not a central aspect of this study, the costs for the five-
state study were extrapolated to the rest of the continental United States (including the District 
of Columbia); this approach and the corresponding results are detailed in Appendix B. 

 

  

 
91 Based on NREL analysis of 2021 EIA Form 861 data. 
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Study Conclusions 

Key Finding #1: Annual charging infrastructure needs could increase by 

3% across five states in scenarios consistent with the EPA proposals. 

Five-state simulation results (Table 25) show that 14.3 million public and private charging ports are 

estimated as necessary to support 20 million PEVs across five states in the 2032 Action scenario. This 

represents 2.3 million incremental ports relative to the No Action scenario, an increase of 19%. As the 

EPA proposals apply to model years 2027 through 2032, this averages to an annual increase of 3% over 

six years. The vast majority of these incremental ports (97%) are used for alternating current (AC) 

charging of light- and medium-duty vehicles. However, incremental costs (including grid upgrades) for 

high-power direct current (DC) charging of heavy-duty vehicles remain significant because of unit costs 

that are 1–2 orders of magnitude larger. 

The $7.5 billion in funds currently available via the National Electric Vehicle Infrastructure Formula 

Program pursuant to the Infrastructure Investment and Jobs Act provide a foundational incentive to 

develop a national charging network across the states, both from an installation and manufacturing 

perspective. For context, based on current publicly-announced quantified capabilities, U.S. 

manufacturers can produce over 1,000,000 chargers each year, including 60,000 DC chargers.92 

Furthermore, though not quantified here, the Inflation Reduction Act of 2022 extended the Internal 

Revenue Code Section 30C tax credit, incentivizing up to 30 percent of the cost of recharging property 

(up to $100,000 for each item of depreciable property, and up to $1,000 otherwise) until 2032.93 

Table 25: Simulated 2032 Network Size for the Five-State Study by Vehicle Weight Class and EVSE Type. AC ports 
include Level 1 and Level 2 charging; DC ports include units rated for peak powers between 50 kW and 1.5 MW per 
port. 

 

 
92 U.S. Department of Energy. Building America's Clean Energy Future. February 25, 2024. Available at:  
https://www.energy.gov/invest.  
93 U.S. Internal Revenue Service. Alternative Fuel Vehicle Refueling Property Credit. February 2, 2024. Available at: 
https://www.irs.gov/credits-deductions/alternative-fuel-vehicle-refueling-property-credit  

https://www.energy.gov/invest
https://www.irs.gov/credits-deductions/alternative-fuel-vehicle-refueling-property-credit
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Key Finding #2: Incremental distribution grid investment needs 

represent approximately 3% of current annual utility investments in the 

distribution system for scenarios consistent with the EPA proposals. 

As shown in Table 26, this study estimates an incremental distribution grid investment of $2.3 billion 

over six years for the five states under study (2023 dollars). Incremental distribution grid upgrade 

investment needs94 can be compared to existing utility distribution system investments. Based on utility 

reports to the Federal Energy Regulatory Commission, data from electric co-ops, and extrapolation for 

the remaining utilities, we estimate that as of 2021, utility investments in distribution systems, 

nationwide, exceeded $60 billion annually.  

We estimate the share of that utility distribution investment for the five states evaluated in this study is 

$15 billion per year. Based on this, the EPA proposals represent approximately 3% of current annual 

utility investments in distributions systems between 2027 and 2032 across the five states studied. As 

also shown in the table, incremental charging infrastructure capital investment needed across the five 

states under study for 2027 is $865 million and gradually increases the deployment of charging to total 

$9.7 billion by 2032.  

Across the five states the study estimated a combined investment of $12.0 billion in incremental 

charging and distribution grid infrastructure in 2032. Over the six model years from 2027 through 2032, 

this averages to an annual incremental investment of $2.0 billion in charging and distribution grid 

infrastructure. This investment would support the incremental manufacturing and installation of 2.3 

million charging ports, eight distribution substations, 125 feeders, and 30,000 service transformers, 

without the use of managed charging.  Notably, substation, transformer bank and service transformers 

built by 2027 mostly cover 2032 needs based off size assumptions for existing and new substations; 

feeder upgrades are still triggered in 2032.  

 
94 By design, this study presents incremental grid upgrade results describing the relative investment difference 
between PEV adoption scenarios that could occur with and without the pending EPA regulations. The study 
identifies where and when the electric distribution grid may require capacity enhancements under certain PEV 
adoption and charging behavior scenarios. The study does not predict the absolute levels of distribution grid 
investment needed in the long term.  
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Table 26. Incremental 2027 and 2032 Simulation Results for the Five-State Study (relative to No Action)  

 

Identification of these costs, while important, is just the first step in understanding how to equitably 

allocate them. A key finding from this study is the importance of taking the next step to allocate 

distribution costs to PEV loads served by new distribution capacity as well as non-PEV loads that could 

also be served by such new capacity, the latter of which was out of scope. Follow-on analysis is needed 

to allocate distribution costs among these multiple types of customers. 
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Key Finding #3: Managed charging techniques can decrease 

incremental distribution grid investment needs by 30%, illustrating the 

potential for significant cost savings by optimizing PEV charging and 

other loads at the local level. 

Proactive utility planning, tariff structures, and vehicle-grid integration technologies and strategies will 

mitigate grid infrastructure investment needs. The incremental distribution grid capital investment of 

$2.3 billion estimated by this study is reduced 30% to $1.6 billion when PEV charging loads at home and 

depot locations are managed. This result is driven by the ability of PEVs to shift charging to off-peak 

hours based on parking durations that exceed the time necessary to charge and by strategically locating 

chargers, thereby avoiding potential overloading and thermal violations that otherwise drive distribution 

equipment upgrades. Managing charging could substantially reduce incremental grid components 

needs, including for substations by 50%, feeders by 40%, and service transformers by 30%. A 30% 

reduction in PEV peak load was simulated in the Action–Managed scenario.  

When considering all electric loads, this translates to a reduction in total peak load of between 0.4% and 

4.5% depending on the state. Although this management strategy ensures that peaks from PEV charging 

are reduced, within the context of this study, the strategy is agnostic to non-PEV residential, 

commercial, and industrial loads on the distribution network (meaning simulated PEV loads are not 

optimized relative to non-PEV loads). Accordingly, the results present a conservative estimate of the 

potential distribution grid savings from managing charging load locally. 

 

Key Finding #4: Consumer benefits from vehicle electrification 

significantly outweigh the estimated cost of charging and grid 

infrastructure costs in scenarios consistent with the EPA proposals. 

Based on levelized cost of driving from NREL’s 2022 Transportation Annual Technology Baseline,95 by 

2030, PEVs are expected to provide $8,300 per vehicle in lifetime net benefits to consumers, including 

fuel savings but excluding the value of avoided emissions (fleet-weighted average using the EPA’s 

adoption scenario and infrastructure costs consistent with this study). This conservative estimate of net 

benefits ($33 billion for the 3.9 million incremental PEVs by 2032), which does not allocate distribution 

costs among other potential loads that might use incremental grid infrastructure, is more than 2.5 times 

greater than the combined capital investment in charging infrastructure and grid upgrades estimated by 

this work.  

 
95 National Renewable Energy Laboratory, “Annual Technology Baseline,” https://atb.nrel.gov/. 

https://atb.nrel.gov/
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Appendix A. State Distribution Investment Costs 

The total costs for all scenarios for 2027 and cumulative through 2032 by grid asset category type are 

shown in the following figures. Note that “New Substation Costs” specifically refers to new substations 

in each figure in this Appendix section. 
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Appendix B. Extrapolation of Results 

The bottom-up distribution network cost results for the five states developed by Kevala corresponded to 

a county-wide geography and the years 2027 and 2032. The EPA benefit-cost analysis has a different 

scope, namely 2028–2055 at IPM-region resolution. This scope required an extrapolation of the five-

state cost results (see Figure 28 in the Modeling Approach chapter for a high-level overview of the 

methodology to take the five-state study costs to the national level). 

Specifically, the extrapolation required extending the five-state costs to the 64 IPM regions for the 

contiguous 48 states, including the District of Columbia, in 2027 and 2032. Kevala used these results to 

interpolate costs between 2027 and 2032 and extrapolate temporally to 2055 in five-year increments 

starting in 2035.  

Because the five-state cost estimates Kevala developed were based on load growth between 2023 and 

2027 and then from 2027 to 2032, the costs needed to differentiate between baseline load and 

transportation electrification load growth. Kevala used its baseline load forecast and the EVSE load 

curves provided by NREL and LBNL to estimate the contribution to the change in coincident peak from 

2023 to 2027 and 2027 to 2032 for each driver of growth. Table Error! No text of specified style in 

document.-1 shows the percentage change in incremental coincident peak attributable to EVSE load by 

state, year, and scenario. 

Table Error! No text of specified style in document.-1. Contribution to Incremental Coincident Peak Resulting from 

EVSE Load (Source: Kevala) 

 2027 2032 

 No Action Action No Action Action 

State Unmanaged Managed Unmanaged Managed Unmanaged Managed Unmanaged Managed 

CA 42% 29% 42% 30% 40% 31% 43% 35% 

IL 30% 18% 33% 20% 40% 26% 56% 34% 

NY 23% 21% 24% 22% 29% 27% 33% 31% 

OK 17% 13% 20% 15% 30% 23% 40% 32% 

PA 18% 10% 20% 11% 23% 14% 31% 20% 

 

The relationship of costs by scenario for EVSE also changed because of applying the contribution to peak 

values. As Figure Error! No text of specified style in document.-1 shows, the difference between the 

Managed and Unmanaged scenarios is much greater. 
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Figure Error! No text of specified style in document.-1. Comparison of EVSE distribution costs for five states in 

2027 and 2032 (Source: Kevala) 

Kevala then developed two methodologies for extrapolating the baseline load and EVSE-related costs. 

To extrapolate the baseline load, Kevala estimated a cost per gigawatt-hour (GWh) using the annual 

energy and baseline allocated costs for each state in 2027 and 2032. Table Error! No text of specified 

style in document.-2 shows these estimates.  

Table Error! No text of specified style in document.-2. Cost ($) per GWh of Load (Source: Kevala) 

 2027 2032 

State No Action Action No Action Action 

 Unmanaged Managed Unmanaged Managed Unmanaged Managed Unmanaged Managed 

CA 1,650 1,964 1,636 1,951 2,575 2,829 2,492 2,746 

IL 506 593 491 581 597 711 454 656 

NY 6,529 6,654 6,502 6,595 8,214 8,328 7,958 7,974 

OK 251 262 241 256 275 303 243 277 

PA 2,544 2,785 2,494 2,753 3,326 3,676 3,057 3,498 

AVG 1,288 1,434 1,270 1,419 1,746 1,902 1,630 1,818 
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These costs per GWh were then applied to the forecasted loads, less transportation, for each IPM region 

in 2027 and 2032. These results were then interpolated for 2028 and 2032 using the compound average 

growth rate (CAGR) between 2027 and 2032, calculated as shown in Equation B-1. 

 

Equation Error! No text of specified style in document.-1. Estimation of CAGR 

 

This same CAGR was then used to extrapolate 2032 through 2055. Note that the load growth is slightly 

different across the four scenarios because the contribution to peak due to baseline load growth 

differed among the scenarios. Kevala chose to use a cost per kilowatt-hour (kWh) rather than a cost per 

coincident peak because the coincident peak of each IPM region was not available. 

To extrapolate the EVSE-related costs, Kevala developed a multistep method. The primary challenge was 

to develop a method that could translate cost estimates based on asset type (feeder, service 

transformer, and substation) to geographically defined costs (IPM region). Kevala chose to estimate a 

cost per EVSE derived from the five-state costs attributed to EVSE. The first step was to compute a cost 

per kilowatt (kW) of additional capacity, defined as the asset’s rating (see Equation Error! No text of 

specified style in document.-2). 

Equation Error! No text of specified style in document.-2. Estimation of cost per kW for each asset 

 

Figure Error! No text of specified style in document.-2 shows the average cost per kilowatt by asset 

type and state. These costs per kilowatt by asset type were assigned to parcels connected to and making 

use of that particular asset.  
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Figure Error! No text of specified style in document.-2. Average marginal costs per kW of capacity (Source: 

Kevala) 

To estimate the cost of an EVSE at a parcel, Kevala first estimated the cost per kilowatt of EVSE demand 

at the parcel by applying a contribution to the noncoincident peak of an EVSE type, by county, relative to 

the cumulative noncoincident peak of all EVSE in the county. This contribution to noncoincident peak 

value was then applied to the $/kW cost at the parcel to reflect the costs allocated to that parcel. Last, 

Kevala applied the cost per EVSE kW attributable to the parcel to the noncoincident peak of the EVSE 

load at the parcel to derive the total cost at the parcel for the EVSE load and then aggregated the parcel 

costs and parcel ports by county to estimate a port-weighted cost per EVSE by county.  

Initially, Kevala tried to use these county estimates of costs per EVSE along with key census data (e.g., 

commuting by car, homeownership, population density, and income) at a county level to develop a 

statistical model to extrapolate the EVSE costs to all counties nationwide using county-specific census 

data; however, Kevala could not find a reliable statistical relationship among these variables. This is due 

to the lack of correlation between existing and additional grid infrastructure capacity and demographics, 

which is reasonable given that energy delivered via the electric grid has evolved largely independently 

from transportation demand. As a result, Kevala adopted a weighted average approach using the EVSE 

cost for all counties in the five states and calculating an average cost per EVSE type, weighted by ports.  

Kevala applied this cost per EVSE type to the forecasts of ports by IPM region in 2027, 2028, 2030, 2032, 

2035, 2040, 2045, 2050, and 2055 provided by NREL and LBNL. The sum total provided the estimate of 

EVSE costs out to 2055. Because this method involved several averaging steps, the results deviate from 

the five-state result. Similarly, because costs were estimated at two points in time (2027 and 2032), the 

change in cost per EVSE between these two periods needed to be interpolated to better reflect the 

gradual change in 2028 and 2030 of the cost per EVSE rather than a step-function change in 2032.  

Kevala used two techniques to calibrate and smooth these results. To calibrate, Kevala calculated the 

equivalent of the extrapolation values for the five study states in 2027 and 2032 and applied the CAGR for 

the cumulative cost change to obtain an estimate of extrapolated costs in 2028 and 2030. Interpolating 2028 
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and 2030 costs from the five-state study costs allocated to EVSE by CAGR from 2027 to 2032, Kevala was able 

to estimate equivalent study results for all four years. Kevala applied the ratio of extrapolated costs to the 

five-state costs to scale the final results and smooth the cost between 2027 and 2032 (see Figure Error! No 

text of specified style in document.-3). 

 

Figure Error! No text of specified style in document.-3. Extrapolated nationwide cumulative distribution costs for 

all scenarios from 2027 through 2055. Although these costs are national, the extrapolation is conducted to reflect the 

cost components for the five study states in 2027 and 2032 in the bottom-up study. (Source: Kevala) 

To confirm the results, Kevala examined the share of EVSE costs from the five-state study and compared 

them to the extrapolated nationwide results. Figure Error! No text of specified style in document.-4 

shows that the five states include approximately 30%–35% of the total costs, depending on the scenario, 

with the Unmanaged scenarios showing a greater share of total costs than the Managed scenarios.  
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Figure Error! No text of specified style in document.-4. Comparison of five-state costs to national cost (Source: 

Kevala) 

Because the extrapolation for EVSE costs is greatly driven by EVSE port forecasts, Kevala also looked at 

the level ports adopted by EVSE type and the change in that forecast from the No Action to the Action 

scenarios. Figure Error! No text of specified style in document.-5 and Figure Error! No text of specified 

style in document.-6 show the distribution of ports by EVSE type by scenario in 2032. Figure Error! No 

text of specified style in document.-7 shows the change in port forecasts by EVSE type. 
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Figure Error! No text of specified style in document.-5. Distribution of ports by EVSE type in 2032 (No Action scenario) (Source: Kevala) 
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Figure Error! No text of specified style in document.-6. Distribution of ports by EVSE type in 2032 (Action scenario) (Source: Kevala) 
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Figure Error! No text of specified style in document.-7. Change in port forecasts by EVSE type in 2032 based on policy adoption (Source: Kevala)
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The final step was to derive the cost per EVSE type by scenario that could be applied to other studies. 

This involved scaling the weighted average cost per EVSE derived from the five-state study to the 

calibration targets used. These distribution grid upgrade costs per EVSE are shown in Table Error! No 

text of specified style in document.-3. 

Figure Error! No text of specified style in document.-8 shows the extrapolated distribution costs by 

region. This shows that 10 IPM regions (PJM_EMAC, four Western Electricity Coordinating Council 

regions [CALN, SCE, PNW, and LADW], NENGREST, FRCC, ERC_West, S_VACA, and S_SOU) comprise 

approximately 50% of the total EVSE costs (see Appendix F for a list of IPM regions). 

In the future, additional studies could be undertaken using parcel-level granularity similar to that of the 

five states analyzed in this study.
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Figure Error! No text of specified style in document.-8. Extrapolated nationwide distribution costs by IPM region for the No Action–Unmanaged scenario, 

EVSE costs by IPM (Source: Kevala)  
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Table Error! No text of specified style in document.-3. Total Distribution Grid Upgrade Costs per EVSE Type (Source: Kevala) 

EVSE Type 

2027 2032 

No Action Action No Action Action 

Unmanaged Managed Unmanaged Managed Unmanaged Managed Unmanaged Managed 

evse_Bus_School_depot_L2 16,773 5,839 33,603 14,391 9,718 3,579 21,857 9,797 

evse_Bus_Transit_depot_DC50 37,177 27,371 44,932 32,770 22,188 17,446 31,004 24,040 

evse_Bus_Transit_en_route_DC350 8,197 7,269 8,824 7,888 9,410 8,883 11,125 10,363 

evse_Class_4_8_depot_DC150 64,990 50,433 70,947 53,947 37,160 30,967 47,054 37,979 

evse_Class_4_8_depot_DC50 74,944 49,769 61,711 42,722 41,267 29,674 40,279 29,838 

evse_Class_4_8_depot_L2-Low 12,441 10,635 16,726 14,650 7,114 6,539 11,415 10,627 

evse_Class_4_8_depot_L2 51,469 35,878 44,584 35,339 28,338 21,629 28,963 24,729 

evse_Class_4_8_public_DC1000 117,918 88,918 123,388 92,560 74,372 60,096 92,763 73,547 

evse_Class_4_8_public_DC1500 210,406 150,903 365,946 248,219 145,342 113,096 256,578 187,379 

evse_Class_4_8_public_DC250 41,921 32,617 33,923 26,305 24,450 20,384 23,866 19,575 

evse_Class_4_8_public_DC350 57,184 43,691 54,973 42,377 34,253 28,121 39,422 32,178 

evse_Class_4_8_public_DC500 68,719 53,527 82,419 66,705 41,773 34,874 57,923 49,316 

evse_LDV_destination_L2 5,056 4,955 4,962 4,913 2,982 3,094 3,500 3,625 

evse_LDV_home_mfh_L2 2,039 1,438 2,194 1,544 1,218 906 1,554 1,137 

evse_LDV_home_sfh_L1 196 305 208 322 116 188 146 232 

evse_LDV_MDV_home_sfh_L2 1,992 1,679 2,105 1,783 1,189 1,039 1,499 1,296 

evse_LDV_MDV_retail_recreation_

DC350 
84,942 72,214 87,604 74,855 51,066 46,481 62,836 56,702 

evse_LDV_retail_recreation_DC150 41,585 35,726 41,569 36,197 25,091 23,058 29,743 27,354 

evse_LDV_retail_recreation_DC250 60,723 51,183 66,304 56,444 39,368 34,945 48,713 44,200 

evse_LDV_work_L2 7,220 7,017 7,187 7,090 4,253 4,391 5,017 5,207 

evse_MDV_depot_L2 31,371 17,596 33,730 19,109 17,377 10,336 22,718 13,334 
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Cost Scenarios and Sensitivity Analysis 

To better understand the sensitivities of the results, Kevala generated high-case and low-case scenarios. 

The high case was based on assuming that substation costs are 15% higher and all other asset costs are 

10% higher. Similarly, the low case was based on assuming that substation costs are 15% lower and all 

other asset costs are 10% lower. Table Error! No text of specified style in document.-4 shows the 

percent change in the high and low cases relative to the baseline. These percentages can be applied 

directly to the extrapolated value to develop high and low extrapolation results. 

Table Error! No text of specified style in document.-4. Scenario Costs and Percent (%) Change From Base (Source: 
Kevala) 

 2027 2032 

 No Action Action No Action Action 

State 
Un-

managed 
Managed 

Un-
managed 

Managed 
Un-

managed 
Managed 

Un-
managed 

Managed 

High Case (percent from base) 

California 111 111 111 111 111 111 111 111 

Illinois 111 111 111 111 110 110 110 110 

New York 111 111  111 111 110 110 110 110 

Oklahoma 110 110 110 110 110 110 110 110 

Pennsylvania 111 111 111 111 110 111 110 110 

Low Case (percent from base) 

California 89 89 89 89 89 89 89 89 

Illinois 89 89 89 89 90 90 90 90 

New York 89 89 89 89 90 90 90 90 

Oklahoma 90 90 90 90 90 90 90 90 

Pennsylvania 89 89 89 89 90 89 90 90 
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Appendix C. Future Work and Context of the Analysis  

This section provides detailed qualitative and, where available, quantitative indications of where the 

upgrade analysis will benefit from future work to refine results with respect to absolute investment 

costs. The key focus of the study was on the incremental investment projected to be needed under the 

Action and No Action scenarios; it is expected that incremental costs may be less sensitive to some of 

the areas of future work raised here. Key areas identified include the following: 

1. Contingency conditions for substations: Substation expansion and new substation investment 
represent more than one-third of the study’s calculated total grid investment costs (see 
Appendix A). The study was able to identify both expansions of existing substations and new 
substation requirements. Utilities operate substations for N-1 contingency conditions, meaning 
that, typically, they are neither loaded at nor exceed nameplate capacity to facilitate load 
transfer in a contingency event (e.g., for a substation with four transformer banks, loading 
should not exceed 75%96 such that the failure of any one bank can be absorbed by the other 
transformers). The loading threshold could be revisited in future studies to account for reduced 
available capacity that reflects utility practices for contingency ratings.  

2. Large standard deviation of loading/capacity: Accurate estimates of capacity are critical for 
estimating available capacity and overloading. Future work will benefit from ensuring that errors 
in capacity estimates are not a significant driver of simulated capacity replacements. In this five-
state study, the standard deviation for grid asset loading for some states sometimes exceeded 
100%, resulting in substations that are overloaded even before vehicle electrification takes 
place. These should be examined in detail, and efforts should be taken to ensure that assets are 
not overloaded before electrification growth is added and, specifically, that upgrades required 
by existing overloads are not attributed to electrification growth. 

3. Low utilization of new substation transformer banks and new substations: The mean 
utilization of new substations transformer banks (4.65% across all scenarios and all states in 
2032, not adjusting for state capacity) and new substations (3.18% across all scenarios and all 
states in 2032, not adjusting for state capacity) is very low. As this utilization level could be used 
to support additional non-PEV loads, it is critical to perform cost allocation only to the capacity 
used by PEVs. If significant grid capacity were added that could be used for future electrification 
and other load growth, the overall impact would result in a lower cost allocation to PEVs. 

4. Undergrounding costs: Estimating underground distribution infrastructure is a challenge, 
particularly when using machine-learning- and satellite-image-based estimation techniques. 
Estimates from 2007 calculated that, nationwide, approximately 18% of the distribution system 
was underground. For four of the states in this study, the estimates for the volume of 
underground grid infrastructure appear lower than other state and national statistics. Improving 
estimated underground infrastructure could provide significant impacts to estimated 
investments given that underground costs can be five to 10 times those of overhead costs.97 

 
96 Liberty Utilities, Electric Distribution Planning Criteria (Londonderry, NH: 2019), New Hampshire Public Utilities 
Commission, https://www.puc.nh.gov/Regulatory/Docketbk/2019/19-120/INITIAL%20FILING%20-
%20PETITION/19-120_2019-07-15_GSEC_ATT2_TESTIMONY_JOHNSON_RIVERA_STRABONE_TEBBETTS.PDF. 
97 EIA, “Power Outages Often Spur Questions Around Burying Power Lines,” Today in Energy, July 25, 2012, 
https://www.eia.gov/todayinenergy/detail.php?id=7250. 

https://www.puc.nh.gov/Regulatory/Docketbk/2019/19-120/INITIAL%20FILING%20-%20PETITION/19-120_2019-07-15_GSEC_ATT2_TESTIMONY_JOHNSON_RIVERA_STRABONE_TEBBETTS.PDF
https://www.puc.nh.gov/Regulatory/Docketbk/2019/19-120/INITIAL%20FILING%20-%20PETITION/19-120_2019-07-15_GSEC_ATT2_TESTIMONY_JOHNSON_RIVERA_STRABONE_TEBBETTS.PDF
https://www.eia.gov/todayinenergy/detail.php?id=7250
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5. Drivers of grid investment not considered: The focus of this study was on examining the 
incremental investment required by Action and No Action scenarios, with a brief examination of 
how the incremental investment relates to ongoing investment. The study focus was not to 
quantify the total relative investment increase for electrification versus regular investment nor 
any potential overlap with ongoing and other investment categories (i.e., the analysis does not 
present how upgrades increase the rate of ongoing regular annual investment). Future work 
examining absolute investment costs would be critical to understand the overlap in investments 
for replacing aging infrastructure (i.e., utilities practicing upsizing, rather than like-for-like 
replacement, when assets fail) and resilience programs (again, where utilities might upsize 
assets while executing undergrounding programs). 

6. PEV demand profiles: The composite hourly demand from EVs was developed by NREL using the 
EVI-PRO, EVI-RoadTrip, and EVI-OnDemand models (see Figure 35 in the Load and Distribution 
System Impacts and Costs chapter, which shows the composite hourly demand for the 
Transportation Electrification Impact Study). Changes to the demand profile, such as when peak 
charging occurs, affect the forecast for peak load growth. The study focus was on two PEV 
charging profiles for unmanaged and managed charging. Examining further sensitivities 
regarding how to optimize managed charging—based on location (public and workplace versus 
home), provision of grid services (peak shaving and interconnection agreements), and timing 
(nighttime-valley filling or midday solar coincident charging)—will help inform the design of 
utility programs and provide greater insights into future demand profiles. 

7. Sensitivity analysis for unit costs of grid equipment: The study assumes the unit costs shown in 
Table Error! No text of specified style in document.-5. Additional cost sensitivity analysis can 
provide context by utility and asset class to inform future investment needs.  

Table Error! No text of specified style in document.-5. Unit Cost Assumptions for California, No Action–Unmanaged 

Scenario 

 2027 2032 

Category Median Cost Mean Cost 
Median 

Cost 
Mean Cost 

Substation $30,000,000 $51,162,646 $30,000,000 $40,526,316 

Substation transformer 
bank 

$10,000,000  $10,274,259 $10,000,000  $10,850,913 

New feeder98 $611,420 $1,606,343 $611,420 $1,602,036 

Feeder $/ft $30.49/ft  $30.49/ft  

Service transformer—
non-DCFC 

$20,000 $20,000 $20,000 $20,000 

Service transformer—
DCFC 

$50,000 $75,401 $50,000 $69,421 

 
8. Refining forecasted demand from other sectors: The study focus was on PEV growth and 

impacts. An important area for future work will be examining net load curves to see how other 
electrification and distributed resources impact overall peaks and investment needs. Explicitly 
forecasting load growth and other distributed energy resources—such as photovoltaics, battery 
energy storage systems, energy efficiency, and building electrification—from the bottom up can 

 
98 Divergences in median and mean costs for new feeders can be attributed to calculating feeder breaker costs as a 
function of voltage rating, causing more variability and “lumpiness” in discrete asset costs.  
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improve the locational synergies of customer-sited resources in the distribution system demand 
profiles. These can identify investments that will share network capacity and explore how DERs 
may change overall peak demand. 

9. Capacity-aware charge management: The Managed scenarios modeled in this study were based 
on behaviors observed in existing high-penetration PEV markets, and thus they did not precisely 
suit each state’s baseline load. The project team anticipates that more technologies will be 
developed and deployed to directly orchestrate charging in certain market segments to reduce 
peak load impacts on distribution infrastructure. Accordingly, Kevala ran an additional 
“Capacity-Aware Charge Management Scenario” (discussed in Appendix E) specifically designed 
to migrate charging load from peak times to less costly periods to minimize capacity 
investments where dwell times allow. Future studies may build upon this approach to estimate 
the potential for additional local avoided costs. 

Caveats for National Extrapolation 

Caveats for the national extrapolation are an extension of the limitations mentioned for the five-state 

study. Additionally, this study does not reflect the variation of network characteristics (such as loading, 

percentage of overhead and underground feeders, length of lines, load density, voltage classes, etc.) by 

state. Future extrapolations should consider state-level distribution statistics and variations by state for 

more accurate estimates. 

Results: 

We found that the sum of the five states’ EV distribution costs is 28%–39% of the 2027 national costs 

and 23%–37% of the 2032 national costs, depending on the scenario. These numbers are potentially 

high based on other investment indicators of the relative ongoing distribution investment for the five 

states compared to national investment. For example, the five states represent approximately 19.4% of 

2021 nationwide utility noncoincident peak demand and account for 28% of investor-owned utility 

national investment (IOUs serve 83% of customers in the five states). The five states do represent those 

with more aggressive EV targets and adoption rates, which might partially explain the relatively high 

investment in these states. For example, California will enforce an Advanced Clean Cars II regulation, 

which requires all new cars sold in the state to be zero emissions by 2035; therefore, the PEV load and 

contribution to the total investment might be higher than in a state where there are no regulations on 

vehicles sold. Special consideration of EV legislation for each state might be required to provide more 

accurate PEV load estimates.  

Discussion on Benchmarking: 

The national extrapolation to 2055, presented in the final section of the Load and Distribution System 

Impacts and Costs chapter, established distribution costs attributed to PEV load increases of between 

$147 billion and $375 billion and total national distribution investments due to PEVs, other load growth, 

and added distribution capacity of between $1.07 trillion and $1.245 trillion across all scenarios. For 

context, the 2021 IOU investment in distribution system capital expenses was $39 billion, which includes 

all investment across multiple programs (e.g., replacements, resilience, new customers, electrification, 

metering, etc.). Extracting the specific investment categories that Kevala analyzed, utilities invested 

$33.2 billion (or approximately 85% of the total investment) in line transformers, underground conduit, 

underground conductors and devices, overhead conductors and devices, pole towers and fixtures, and 



  March 2024 

 

98 

substation equipment. The analysis of ongoing national investment is detailed in Appendix D, which 

extrapolates to obtain ongoing national distribution system investment (including cooperatives, 

municipals, and other utilities) of approximately $48.7 billion in 2021. If the same rate of investment 

stayed constant, and not controlling for inflation or including higher rates or load growth and 

investment in modernization and hardening, utilities would invest $1.37 trillion between 2023 and 2050. 

This provides some context to the total investment, not the incremental investment, estimated in this 

study. Finally, additional work is required to understand how much the national extrapolation of 

investments from PEVs and other load growth would overlap or be purely additive to the rate of ongoing 

and planned utility investments.  
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Appendix D. Context of Ongoing Utility Investment  

Part of the analysis in this work presents costs for upgrading and expanding distribution system capacity. 

An important area of context is the volume of ongoing and planned investment in the distribution 

system that covers ongoing maintenance and replacement, hardening, upgrading, grid modernization, 

resilience, and other investment categories. In this section, NREL examines the context of the ongoing 

and planned utility investment. Obtaining annual investment by utilities in the distribution system is 

challenging; however, the Federal Energy Regulatory Commission collects data for investor-owned 

utilities on an annual basis through its Form 1 – Electric Utility Annual Report (see Figure Error! No text 

of specified style in document.-9). These data provide some insights into the level of annual investment 

specifically for IOUs and help benchmark investment. Note that there are more than 3,000 distribution 

utilities in the United States, with approximately 140 IOUs, 2,000 municipal utilities, and 900 

cooperative utilities. IOUs accounted for 69% of electricity customers in 2021.99 For 2021, IOU total 

distribution investment accounted for more than $39 billion, which includes all investment across 

multiple programs (e.g., replacements, resilience, new customers, electrification, metering, etc.). 

 

Figure Error! No text of specified style in document.-9. FERC Form 1 annual distribution system investments by 

investor-owned utilities 

Using the 2021 capital investment data from FERC Form 1 and extracting the specific investment 

categories that Kevala analyzed, utilities invested $33.2 billion in line transformers, underground 

 
99 EIA, “Investor-Owned Utilities Serve 72% of U.S. Electricity Customers in 2017,” Today in Energy, August 15, 
2019, https://www.eia.gov/todayinenergy/detail.php?id=40913.  

https://www.eia.gov/todayinenergy/detail.php?id=40913
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conduits, underground conductors and devices, overhead conductors and devices, pole towers and 

fixtures, and substation equipment. Again, these investments would cover all capital investment 

categories, such as ongoing and planned maintenance, replacement, hardening, grid modernization, and 

growth. 

Expanding to examine non-IOU spending is challenging due to a lack of data. The National Rural 

Electrical Cooperative Association commissioned a report, published in October 2023, that stated that 

cooperative utilities’ annual average capital expense spending from 2018–2022 was $9.4 billion.100 

Extrapolating IOU and cooperative utility investment to municipal, political subdivision, and other state 

and federal utilities with power delivery, we estimate the annual capital investment for distribution 

utilities to be approximately $60.4 billion. Straight-lining investment from 2023 to 2050 would result in 

approximately $1.633 trillion in distribution investment, not controlling for any growth rate or increase 

in investment above those seen in 2021. 

Additional key areas for comparison are 5- and 10-year utility investment plans. We examined 

investment plans that use key elements of proposed integrated distribution planning processes101 and 

have holistic load forecasting (planning across multiple investment categories) and some consideration 

for load management and non-wire alternatives. These plans include detailed future forecasts for net 

load growth due to electrification. Key investment plans include the following highlights: 

1. The Massachusetts Grid Modernization Advisory Council has requested detailed Electric Sector 
Modernization Plans102 from the major regulated IOUs. These future grid plans, including 5- and 
10-year investment plans, present detailed analysis of the current state of the distribution 
system (asset ages, loading, etc.) and load forecasts and are best-in-class examples of how to 
examine grid upgrade needs. Key highlights from individual utility plans include the following: 

i. The National Grid utility serves approximately 1.3 million customers in Massachusetts. 
The utility’s base peak demand is 4,614 MW, and the utility forecasts peak growth that 
includes a base growth of 988 MW, PEV growth of 3,103 MW, and heating electrification 
growth of 2,837 MW. The utility is proposing $6.035 billion in capital investments from 
2025–2029, with $2.34 billion of that covering “future grid” investments (which include 
network, information technology/operational technology/digital, customer, and EV 
categories) and, of that, $1.89 billion covers “future grid – network” investments. From 
2025–2034, the utility is proposing more than $13 billion in capital investments, which 
includes $5.68 billion for “future grid,” and $4.7 billion covers “future grid – network” 
investments. 

 
100 National Rural Utilities Cooperative Finance Corporation and National Rural Electric Cooperatives Association, 
Economic Powerhouses: The Economic Impacts of America’s Electric Cooperatives (October 2023), 
https://static1.squarespace.com/static/5f8721831dd8c167b78e87b1/t/653aad11fc65411ee1bb6a7a/1698344212
103/Strategen_Economic_Powerhouses_Final.pdf.  
101 U.S. Department of Energy, Office of Electricity, Modern Distribution Grid DSPx, Next-Generation Distribution 
System Platform: Strategy & Implementation Planning Guidebook (June 2020), Pacific Northwest National 
Laboratory, https://gridarchitecture.pnnl.gov/media/Modern-Distribution-Grid_Volume_IV_v1_0_draft.pdf. 
102 Commonwealth of Massachusetts Grid Modernization Advisory Council (GMAC), “Electric Sector Modernization 
Plans (ESMPs),” 2023, https://www.mass.gov/info-details/grid-modernization-advisory-council-gmac#electric-
sector-modernization-plans-(esmps)-information-.  

https://static1.squarespace.com/static/5f8721831dd8c167b78e87b1/t/653aad11fc65411ee1bb6a7a/1698344212103/Strategen_Economic_Powerhouses_Final.pdf
https://static1.squarespace.com/static/5f8721831dd8c167b78e87b1/t/653aad11fc65411ee1bb6a7a/1698344212103/Strategen_Economic_Powerhouses_Final.pdf
https://gridarchitecture.pnnl.gov/media/Modern-Distribution-Grid_Volume_IV_v1_0_draft.pdf
https://www.mass.gov/info-details/grid-modernization-advisory-council-gmac#electric-sector-modernization-plans-(esmps)-information-
https://www.mass.gov/info-details/grid-modernization-advisory-council-gmac#electric-sector-modernization-plans-(esmps)-information-
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ii. Eversource serves approximately 1.475 million customers in Massachusetts. The 
investment plan forecasts a 20% increase in net electric demand in the next 10 years, 
from 6.1 GW to 7.4 GW,103 and a 150% increase in demand by 2050—50% of this 
increase is electric heating, 25% is transportation, and 25% is normal load growth. 
Eversource has proposed $6.1 billion in capital investments from 2025–2029 covering 
electric operations, clean energy enablement, and resilience. 

iii. Unitil, a utility with approximately 30,500 customers, proposes to invest $131 million in 
capital spending from 2025–2029104 across multiple categories, with more than $38 
million planned across distribution, substation, grid modernization, and “EV charging 
and make ready” investments. 

2. The Joint Utilities of New York105 are also requesting detailed capital investment plans. Key 
highlights from individual utility plans include the following: 

i. ConEdison, a utility of 3.6 million customers, is forecasting an investment of $14.1 billion 
between 2022 and 2031 for clean energy investments in energy efficiency, building 
electrification, and EVs. ConEdison has also identified multi-value categories that include 
clean energy hubs and asset reinforcement and reliability totaling $23.3 billion. Both these 
investments are part of their capital and regulatory asset investments, which total $53.5 
billion across multiple initiatives.  

3. Recent analysis by Wood Mackenzie106 examining 25 investment filings by IOUs accounted for 
$36.4 billion for grid modernization. Of those investments, 80% focus on grid hardening, 
distribution automation, and advanced metering infrastructure, with more than $15 billion 
solely focused on hardening.  

 
103 Eversource, Electric Sector Modernization Plan (September 2023), Commonwealth of Massachusetts, 
https://www.mass.gov/doc/gmacesmp-
drafteversource/download?_gl=1%2Ako8zfs%2A_ga%2ANzUwNDI5MDE3LjE.  
104 Unitil, Electric Sector Modernization Plan (September 2023), Commonwealth of Massachusetts, 
https://www.mass.gov/doc/gmacesmp-draftunitil/download.  
105 Joint Utilities of New York, “Capital Investment Plans,” June 30, 2023, https://jointutilitiesofny.org/utility-
specific-pages/system-data/capital-investment-plans. 
106 Wood Mackenzie, “US$36.4B of Grid Modernization Planned by Investor-Owned Utilities,” April 18, 2023, 
https://www.woodmac.com/press-releases/$36.4b-of-grid-modernization-planned-by-investor-owned-utilities/. 

https://www.mass.gov/doc/gmacesmp-drafteversource/download?_gl=1%2Ako8zfs%2A_ga%2ANzUwNDI5MDE3LjE
https://www.mass.gov/doc/gmacesmp-drafteversource/download?_gl=1%2Ako8zfs%2A_ga%2ANzUwNDI5MDE3LjE
https://www.mass.gov/doc/gmacesmp-draftunitil/download
https://jointutilitiesofny.org/utility-specific-pages/system-data/capital-investment-plans
https://jointutilitiesofny.org/utility-specific-pages/system-data/capital-investment-plans
https://www.woodmac.com/press-releases/$36.4b-of-grid-modernization-planned-by-investor-owned-utilities/
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Appendix E. Capacity-Aware Charge Management Scenario 

As an extension of the scope of the Transportation Electrification Impact Study, Kevala developed and 

implemented a capacity-aware managed charging model. This model orchestrates and schedules PEV 

charging to minimize daily peak demand on a given feeder, thereby quantifying deferred upgrade costs, 

particularly compared to the scenarios described in this study. This methodology was applied to every 

feeder for the five study states (California, Illinois, New York, Oklahoma, and Pennsylvania) for each day 

of the forecast years of 2027 and 2032. 

Electric vehicle supply equipment with location types of single-family home, multifamily home, and fleet 

depot were considered eligible for capacity-aware managed charging given that those locations are 

more likely to be schedulable and dispatchable. EVSE with location types of work, retail, destination, en-

route transit, and truck stop were not considered eligible for managed charging due to the smaller and 

less predictable charging windows of vehicles using these EVSE. 

The EVSE type (L1, L2, and DC) from the capacity-agnostic Managed scenario was used to set the upper 

limit of the available charging capacity on the feeder. To realistically limit the available flexible loads at 

any given hour, each combination of individual location type and vehicle segment used representative 

weekday and weekend driving schedules to determine the available amount of EVSE capacity for each 

type of charger on an individual feeder. In addition, the methodology required that the total kilowatt-

hours of daily EVSE charging in the capacity-agnostic and capacity-aware scenarios be equal, preventing 

load shedding or load shifting across multiple days and limiting differences in the scenario to charging 

strategy alone. Table Error! No text of specified style in document.-6 shows the different combinations 

of EVSE categories available at each feeder and the modeled maximum kilowatt output per port for each 

EVSE category. These values provide constraints to the charging levels used, but charging levels did not 

necessarily reach these output levels. For example, Class 4–8 depot charging did not exceed 11.1 kW, 

which is the maximum value seen from LBNL’s profiles for this class and charger type.  

Table Error! No text of specified style in document.-6. EVSE Categories and Max EVSE Output per Port (kW) 
(Source: Kevala) 

Vehicle 
Segment 

Location 
Type 

EVSE 
Type 

Max EVSE Output 
per Port (kW) 

LDV home_sfh L1 1.9 

LDV home_mfh L2 7.2 

LDV+MDV home_sfh L2 7.2 

MDV depot L2 19.2 

Class 4–8 depot 
L2-

Low 
7.2107 

Class 4–8 depot L2 19.2 

Class 4–8 depot DC50 50 

Class 4–8 depot DC150 150 

School bus depot L2 19.2 

 
107 Although exceeding typical power output ratings for “Level 1” chargers commonly used by LDVs, this L1 EVSE is 
named as such as a model parameter where its value was empirically derived from the LBNL-provided county-level 
charging curves by comparing average county-level charging curves with the number of installed Class 4–8 L1 
chargers. 
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Transit bus depot DC50 50 

To determine the total demand on each feeder, the linear optimization model must consider all load on 

the feeder for each day of the forecast period. To account for this, each 1-day period includes the 

following constants: 

• Hourly baseline demand (kW) and 

• Hourly inflexible EVSE demand (kW). 

Objectives 

Each linear optimization model includes two objectives: 

1. Minimize the total hourly peak demand on the feeder during a 1-day period. This objective 
considers the sum of all hourly load on the feeder, including non-EVSE load and inflexible EVSE 
load. This objective is heavily weighted for importance in the model, and Kevala performed 
testing to ensure that the secondary set of objectives did not change the daily minimum peak 
demand value on the feeder. 

2. Minimize the Euclidean distance between each capacity-agnostic and capacity-aware EVSE 
charging hourly kilowatt value for each EVSE category. This results in charging curves that 
resemble the capacity-agnostic curves as closely as possible while minimizing the overall peak 
demand on the feeder. 

This second objective prevents the model from allocating electric vehicle charging to unlikely or 

inconvenient hours for vehicles on that feeder. Although the charging hours are defined by the average 

weekday and weekend driving schedules of the vehicles using each category of EVSE, without this set of 

objectives the model can arbitrarily place charging in any feasible hour without considering the hourly 

continuity of charging sessions for individual vehicles. This second objective leverages the highly 

detailed modeling of vehicle and charger interactions by NREL and LBNL in their capacity-agnostic 

Managed charging scenario to guide the capacity-aware managed charging model toward hours in 

which to allocate charging load without negatively impacting the feeder-level peak demand. 

Model Criteria 

The linear optimization model must account for the minimum and maximum kilowatt output for each 

hour of each EVSE category. These parameters are calculated by multiplying the EVSE installed capacity 

on the feeder for each EVSE category by the hourly fraction of vehicle availability for each EVSE 

category.  

Kevala derived the installed capacity of EVSE on the feeder by multiplying the adopted EVSE port count 

on each feeder by the max output rating (kW) of each EVSE category (Table Error! No text of specified 

style in document.-6). This fraction of vehicle availability represents the proportion of vehicles that 

would be available at the EVSE location to charge in each hour of the day. The fraction of vehicle 

availability was found for a typical weekday and weekend and used across the forecast year. 

The fraction of vehicle availability was derived from two data sources:  
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1. Single-family and multifamily homes used the 2017 National Household Travel Survey108, where 
the fraction of vehicle availability was calculated for an average weekday and weekend day for 
each state (California, Illinois, New York, Oklahoma, and Pennsylvania) in the study. Vehicle trips 
departing and arriving from traveler homes were used to find the fraction of vehicles at home 
during each hour of the day for weekdays and weekends. 

2. Fleet vehicles leveraged the NREL Fleet DNA: Commercial Fleet Vehicle Operating Data109 set to 
calculate the fraction of vehicle availability. First, a representative vehicle type in the Fleet DNA 
dataset was chosen to represent the vehicle types using each category of EVSE. Next, the first 
depot departure and final depot return time stamps of all available vehicle trips by that vehicle 
type were used to find the fraction of vehicles available at the charging depot for each hour of 
the day. Where vehicle types had a sufficient sample size of trip data, separate weekday and 
weekend fractions of vehicle availability were calculated. Because only the day start and day end 
of this dataset can be confidently mapped to depot location, the fraction of vehicle availability 
derived does not consider inter-day stops at the depot and might underestimate vehicle 
availability between first departure and last arrival. 

The optimization model must also meet the following criteria: 

• Capacity-agnostic total flexible charging (kWh) = capacity-aware total flexible charging (kWh): 
This energy balance criterion ensures that the total flexible charging over a 1-day period from 
the capacity-agnostic scenario for that feeder is equal to the capacity-aware total flexible 
charging. The model will not perform load shedding or load shifting across separate days. 

• Peak hourly feeder demand (kW) >= baseline load (kW) + inflexible EVSE (kW) + flexible EVSE 
(kW): This criterion defines the peak hourly demand as the sum of the baseline load, inflexible 
EVSE, and flexible EVSE. In practice, the peak demand always equals the sum of its parts and is 
not greater than them because the objective function aims to minimize the peak hourly feeder 
demand. 

• Similarity metric for each hour of each EVSE category >= Euclidean distance between capacity-
agnostic and capacity-aware kW charging value for each hour and each EVSE category: This 
criterion defines the similarity metric for each EVSE category as the Euclidean distance between 
the capacity-agnostic and capacity-aware kilowatt charging value for each hour and each EVSE 
category. In practice, the similarity metric is equal to the right-hand side of the equation and not 
greater than it, given that the objective function aims to minimize the similarity metric across all 
hours and EVSE categories. 

Results 

This approach yielded encouraging results, indicating that additional savings across all scenarios are 

possible. For example, in California, feeder peak energy was depressed by an average of 2% compared 

to the 2032 Action–Capacity-Agnostic Managed scenario, with reductions of up to 27% on feeders with 

especially high PEV penetration (see Figure Error! No text of specified style in document.-10). 

 
108 U.S. Department of Transportation Federal Highway Administration, “National Household Travel Survey,” 2019, 
https://nhts.ornl.gov/. 
109 NREL, “Fleet DNA: Commercial Fleet Vehicle Operating Data,” n.d., 
https://www.nrel.gov/transportation/fleettest-fleet-dna.html. 

https://nhts.ornl.gov/
https://www.nrel.gov/transportation/fleettest-fleet-dna.html
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Figure Error! No text of specified style in document.-10. Percentage reduction in California feeder peak power via 

capacity-aware PEV charge management for the Action Scenario in 2032 (Source: Kevala) 

The project team developed comparisons in cost between this capacity-aware management scenario 

and other scenarios modeled as part of the five-state study. Following the same pattern in reduced peak 

demand across assets, costs were lower in the capacity-aware management case, as shown in Figure 

Error! No text of specified style in document.-11 

 through Figure Error! No text of specified style in document.-15. Note that the scenario compared is 

the Action–Managed scenario, which is used as the baseline to determine how much additional cost 

savings are achievable by more intelligent, grid-responsive orchestration of charging patterns.  
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Figure Error! No text of specified style in document.-11. Comparison of Action–Managed and Action–Capacity-

Aware Managed scenario costs by asset type for California in 2027 and 2032 (Source: Kevala) 
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Figure Error! No text of specified style in document.-12. Comparison of Action–Managed and Action–Capacity-

Aware Managed scenario costs by asset type for Illinois in 2027 and 2032 (Source: Kevala) 
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Figure Error! No text of specified style in document.-13. Comparison of Action–Managed and Action–Capacity-

Aware Managed scenario costs by asset type for New York in 2027 and 2032 (Source: Kevala) 
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Figure Error! No text of specified style in document.-14. Comparison of Action–Managed and Action–Capacity-

Aware Managed scenario costs by asset type for Oklahoma in 2027 and 2032 (Source: Kevala) 
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Figure Error! No text of specified style in document.-15. Comparison of Action–Managed and Action–Capacity-

Aware Managed scenario costs by asset type for Pennsylvania in 2027 and 2032 (Source: Kevala) 
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Appendix F. IPM Regions 

Table Error! No text of specified style in document.-7. Integrated Planning Model (IPM) Regions and Descriptions 

IPM Model 
Region 

Model Region Description Notes 

ERC_FRNT ERCOT_Tenaska Frontier Generating Station 
Electric Reliability Council of Texas 

(ERCOT) 

ERC_GWAY ERCOT_Tenaska Gateway Generating Station  

ERC_PHDL ERCOT_Panhandle  

ERC_REST ERCOT_Rest  

ERC_WEST ERCOT_West  

FRCC Florida Reliability Coordinating Council (FRCC)  

MIS_AMSO 
MISO_Amite South (including Downstream of Gypsy 

[DSG]) 
Midcontinent Independent System 

Operator (MISO) 

MIS_AR MISO_Arkansas  

MIS_D_MS MISO_Mississippi Has also been represented as “MIS_MS” 

MIS_IA MISO_lowa  

MIS_IL MISO_Illinois  

MIS_INKY MISO_Indiana (including parts of Kentucky)  

MIS_LA MISO_Louisiana  

MIS_MAPP MISO_MT, SD, ND  

MIS_LMI MISO_Lower Michigan  

MIS_MIDA MISO_lowa-MidAmerican  

MIS_MNWI MISO_Minnesota and Western Wisconsin  

MIS_MO MISO_Missouri  

MIS_WOTA MISO_WOTAB (including Western) 
West of the Achafalaya Basin 

(WOTAB) 

MIS_WUMS MISO_Wisconsin–Upper Michigan (WUMS)  

NENG_CT ISONE_Connecticut ISO New England (ISONE) 

NENG_ME ISONE_Maine  

NENGREST ISONE_MA, VT, NH, RI (Rest of ISO New England)  

NY_Z_D NY_Zone D (North)  

NY_Z_G-I NY_Zone G-I (Downstate NY)  

NY_Z_A NY_Zone A (West)  

NY_Z_B NY_Zone B (Genesee)  

NY_Z_C&E NY_Zone C&E  

NY_Z_F NY_Zone F (Capital)  

NY_Z_J NY_Zone J (New York City [NYC])  

NY_Z_K NY_Zone K (Long Island [LI])  

PJM_WMAC PJM_Western Mid-Atlantic Area Council (MAAC)  

PJM_West PJM_West  
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IPM Model 
Region 

Model Region Description Notes 

PJM_ATSI 
PJM_American Transmission Systems, Incorporated 

(ATSI) 
 

PJM_AP PJM_Allegheny Power (AP)  

PJM_COMD PJM_ComEd  

PJM_EMAC PJM _EMAAC  

PJM_PENE PJM_Pennsylvania Electric Company (PENELEC)  

PJM_SMAC PJM_SWMAAC  

PJM_Dom PJM_Dominion  

S_C_KY SERC_Central_Kentucky SERC Reliability Corporation (SERC) 

S_C_TVA SERC_Central_TVA Tennessee Valley Authority (TVA) 

S_D_AECI SERC_Delta_AECI 
Associated Electric Cooperative 

Incorporated (AECI) 

S_SOU SERC_Southeastern  

S_VACA SERC_VACAR Virginia–Carolinas (VACAR) 

SPP_KIAM SPP_Klamichi Energy Facility Southwest Power Pool (SPP) 

SPP_N SPP_North (Kansas, Missouri)  

SPP_NEBR SPP_Nebraska  

SPP_SPS SPP_SPS (Texas Panhandle) 
Southwestern Public Service Company 

(SPS) 

SPP_WAUE SPP_Western Area Upper Great Plains East (WAUE)  

SPP_WEST SPP_West (Oklahoma, Arkansas, Louisiana)  

WEC_CALN 
WECC_Northern California (not including Balancing 

Authority of Northern California [BANC]) 
Western Electricity Coordinating 

Council (WECC) 

WEC_LADW WECC_LADWP  

WEC_SDGE WECC_San Diego Gas and Electric  

WECC_AZ WECC_Arizona  

WECC_CO WECC_Colorado  

WECC_ID WECC_Idaho  

WECC_IID WECC_Imperial Irrigation District (ID)  

WECC_MT WECC_Montana  

WECC_NM WECC_New Mexico  

WECC_NNV WECC_Northern Nevada  

WECC_PNW WECC_Pacific Northwest  

WECC_SCE WECC_Southern California Edison  

WECC_SNV WECC_Southern Nevada  

WECC_UT WECC_Utah  

WECC_WY WECC_Wyoming  

WEC_BANC WECC_BANC  

  



 

 

Appendix G. Glossary 

Agent-based simulation techniques: Agent-based modeling is a computational method for the 

simulation of complex systems, enabling autonomous decision-making entities (i.e., agents) to perform 

prescribed activities, assess their own situations, and make rule-based decisions. In this study, medium- 

and heavy-duty ZEVs are defined as agents in the simulation to perform activities related to driving 

(route selection), parking (en-route charging location selection), and charging (when- and where-to-

charge decision-making).  

Bottom-up grid impact study: A bottom-up method forecasts the generation and load impact from 

distributed energy resources based on adoption models that are run at a lower level of resolution—in 

this case, at the customer level—and aggregated up to determine the impact at higher aggregation 

levels, such as feeders, substations, or an entire service territory.  

Coincident peak: Local (e.g., at a meter, feeder, or service transformer) power demand at the time of a 

system-wide peak demand for a given time period. 

Connector: What is plugged into a vehicle to charge it. Multiple connectors and connector types (e.g., 

Tesla [SAE J3400], Combined Charging System, and CHAdeMO) can be available on one EVSE port, but 

only one vehicle will charge at a time. Connectors are sometimes called plugs. 

Diversity factor: Ratio of the sum of the individual noncoincident maximum loads of various subdivisions 

of the system to the maximum demand of the complete system.  

Economic load reach (ELR): The length of a feeder needed to deliver power while maximizing its 

economic lifetime use and avoiding voltage-drop problems. 

Electric vehicle supply equipment (EVSE) port: Provides power to charge only one vehicle at a time even 

though it might have multiple connectors. The unit that houses EVSE ports is sometimes called a 

charging post and can have one or more EVSE ports. 

Gross vehicle weight rating (GVWR): The maximum allowable weight of the fully loaded vehicle 

(including passengers and cargo) as rated by the automobile manufacturer.  

Incremental: In this study, “incremental” is used to refer to the difference between the U.S. 

Environmental Protection Agency’s Action and No Action policy scenarios, including differences in the 

number of PEVs on the road, the size of the necessary charging network, and the associated upgrades to 

local distribution networks. 

Linear optimization model: A linear optimization model includes constraints and an objective, all of 

which are modeled as linear functions. The goal of a linear optimization model is to maximize the output 

of the objective function while remaining compliant with the model’s constraints. In this study, we refer 

to the model’s constraints as “Model Criteria” in Appendix E. 



 

 

Long-haul: The transport of heavier goods with larger vehicles over a long distance, typically 250 miles 

or more. Long-haul truckers typically drive on highways more than on city roads and will spend more 

time away from their home locations.  

Noncoincident peak: Local (e.g., at a meter) maximum power demand for a given time period. 

On-road vehicle weight classes: 

• Light-duty vehicle (LDV): Class 1–2a 

• Medium-duty vehicle (MDV): Class 2b–3 

• Heavy-duty vehicle (HDV): Class 4–8 

Parcel: A real-estate property or land and any associated structures that are the property of a person 

with identification for taxation purposes. 

Plug-in electric vehicle (PEV): Includes battery electric vehicles and plug-in hybrid electric vehicles.  

Short-haul: The transport of large goods with smaller vehicles over a shorter distance, typically within a 

150–250 mile radius of the truck’s home location. Short-haul trucks often operate on city roads and 

return to their home location each day. 

Station location: A site with one or more EVSE ports at the same address. Examples include a parking 

garage or a mall parking lot. Additional location types are defined for heavy-duty applications to include 

depots and public en-route locations, such as truck stops and rest areas. 

Vocation heavy-duty: All other types of truck vocations except long-haul and short-haul. Examples 

include mobile homes, service trucks, and refuse trucks. 
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