

# The #H2IQ Hour

## Today's Topic: 45VH2-GREET Model

This presentation is part of the monthly H2IQ hour to highlight hydrogen and fuel cell research, development, and demonstration (RD&D) activities including projects funded by U.S. Department of Energy's Hydrogen and Fuel Cell Technologies Office (HFTO) within the Office of Energy Efficiency and Renewable Energy (EERE).

### HOUSEKEEPING

# This webinar is being recorded and will be available on the <u>H2IQ webinar archives</u>.

#### **Technical Issues:**

- If you experience technical issues, please check your audio settings under the "Audio" tab.
- If you continue experiencing issues, direct message the host, Kyle Hlavacek

#### **Questions?**

- There will be a Q&A session at the end of the presentation
- To submit a question, please type it into the Q&A box; do not add questions to the Chat

DOE will only respond to questions on how to use 45VH2-GREET. DOE will not respond to questions about the 45V tax credit or eligibility for the credit.



# The #H2IQ Hour Q&A

| Please type your questions<br>into the <u>Q&amp;A Box</u>                                            | ✓ Q&A × All (0)                                                                                      |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Open the Q&A panel                                                                                   |                                                                                                      |
| To open the Q&A panel, click Panel options (Windows) or More options (Mac) and select <b>Q&amp;A</b> | Select a question and then type your answer here, There's a 256-character limit. Send Send Privately |



Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

#### 45VH2-GREET Model for Well-to-Gate Emissions of Hydrogen Production

Neha Rustagi, Analysis and Codes & Standards Program Manager, Hydrogen and Fuel Cell Technologies Office Amgad Elgowainy- Senior Scientist and Distinguished Fellow, Electrification and Infrastructure Group Leader, Argonne National Laboratory

January 26, 2024



#### Webinar Agenda

- Background on 45VH2-GREET
- Demonstration of model
- Next steps for 45VH2-GREET
- Q&A about model

#### **45VH2-GREET Background**

- 45VH2-GREET is a tool that determines emissions rates for the Clean Hydrogen Production Tax Credit under Title 26, Section 45V
- The Internal Revenue Service Notice of Proposed Rulemaking (NPRM) on accessing the 45V tax credit is here: <u>https://www.regulations.gov/docket/IRS-2023-0066</u>
- The IRS's NPRM adopts a specific version of GREET, 45VH2-GREET, to determine emissions rates for the purposes of 45V.
  - Model was released Dec. 22, 2023
  - Model, FAQs, and supporting documentation available at: <u>https://www.energy.gov/eere/greet</u>
- Questions on how to use 45VH2-GREET should be directed to DOE at: <u>45VH2GREETSupport@ee.doe.gov</u>
- Questions on 45V tax credit and eligibility for the tax credit should be directed to the Internal Revenue Service at: <u>https://www.irs.gov/</u>

#### **45VH2-GREET Well-to-Gate System Boundary**



Net GHG emissions associated with production of biomass feedstocks Illustrative - actual sources of emissions will vary based on feedstock type, technology type and deployment design. For a complete definition of the well-to-gate system boundary, please see the 45V NPRM.

### **Composition of 45VH2-GREET**

45VH2-GREET includes two Microsoft Excel files:

1) 45VH2-GREET file

2) GREET1\_2023 file inside GREET1\_dependency folder

 Name
 Date modified
 Type

 Image: GREET1\_dependency
 1/21/2024 7:07 PM
 File folder

 Image: A5VH2-GREET2023
 1/3/2024 12:58 PM
 Microsoft Excel M...

- Parameters within the model are categorized as:
  - "Background data" Fixed assumptions that may not be changed by the user<sup>1</sup>
  - "Foreground data" Values that users must input in order to characterize well-to-gate emissions. All user inputs should be in the 45VH2-GREET file
- Examples of background data: upstream methane emissions leakage, grid carbon intensity, counterfactual scenarios. Parameters are itemized in GREET1\_2023.
- Examples of foreground data: amount of electricity consumption onsite, rate of carbon capture, amount of feedstock consumption. Values must be input in 45VH2-GREET file.

<sup>1.</sup> Defined in NPRM as "parameters for which bespoke inputs from hydrogen producers are unlikely to be independently verifiable with high fidelity, given the current status of verification mechanisms".

### **Key features of 45VH2-GREET**



## Key features of 45VH2-GREET (continued)

Input units for chemical energy should be in LHV



- Emissions are adjusted for hydrogen production pressure above and below 300 psia
  - Limited to between 14.5 psia 725.2 psia
- Hydrogen purity and impurities in product gas must be specified
  - Impurity concentration affects functional unit
  - $\blacktriangleright$  Carbon containing impurities assumed to ultimately be converted to CO<sub>2</sub>
- Co-products must be specified if they are valorized
  - For SMR with and without CCS, user input values are capped in alignment with the 45V NPRM and based on independent lab modeling
  - User defined option for feedstock properties
    - Including LHV and C% by wt

| Custom Corn Stover Properties |          |                          |   |  |  |  |  |
|-------------------------------|----------|--------------------------|---|--|--|--|--|
| Lower Heating Value           | 14716000 | Btu/short ton (dry)      |   |  |  |  |  |
| C ratio (% by wt)             | 46.7%    | (g of Carbon)/(g of Fuel | ) |  |  |  |  |
|                               |          |                          |   |  |  |  |  |



| Process Outputs              | Value       |
|------------------------------|-------------|
| ture Electrolysis            |             |
| Hydrogen                     | Enter Value |
| Hydrogen Production Pressure | 300         |
| inverogen inouaction measure | 500         |

| К                            | L       | М                  | N |
|------------------------------|---------|--------------------|---|
| Product Hydrogen Composition | mol [%] | Molar Mass [g/mol] |   |
| Hz                           | 100.00% | 2.016              |   |
| N <sub>2</sub>               | 0.00%   | 28.020             |   |
| O <sub>2</sub>               | 0.00%   | 32.000             |   |
| H <sub>2</sub> O             | 0.00%   | 18.015             |   |
| со                           | 0.00%   | 28.010             |   |
| CO2                          | 0.00%   | 44.010             |   |
| CH₄                          | 0.00%   | 16.040             |   |
| NH <sub>3</sub>              | 0.00%   | 17.031             |   |
| H <sub>2</sub> S             | 0.00%   | 34.082             |   |
| S                            | 0.00%   | 32.065             |   |
| Ar                           | 0.00%   | 39.948             |   |
| All others                   | 0.00%   | 0.000              |   |
| Total                        | 100.00% |                    |   |

### 45VH2-GREET demonstration for selected $H_2$ pathways

| AutoSave Off ☐ C - =                                  | 45VH2-GREET2023 - Excel<br>Data Review View Automate | Help                | ₽ Search                                                                  |                                                                                                                      |                                                              |                                           |                    |            |                                          |                    |
|-------------------------------------------------------|------------------------------------------------------|---------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------|--------------------|------------|------------------------------------------|--------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                      |                     |                                                                           |                                                                                                                      |                                                              |                                           |                    |            |                                          |                    |
| A                                                     | В                                                    | С                   | D                                                                         |                                                                                                                      |                                                              |                                           |                    |            |                                          |                    |
| 1                                                     | Hydrogen Production Technologies                     | Technology Sha      | are [%] Process Inpu                                                      | ts                                                                                                                   |                                                              |                                           |                    |            |                                          |                    |
| 2 Simulation Year 🗧 🔀                                 |                                                      |                     | AutoSave 💽 🔚 🤆 - 🗢                                                        | 45VH2-GREET2023 - Excel                                                                                              | ₽ Search                                                     |                                           |                    |            | Sign in                                  | m – ø              |
|                                                       |                                                      |                     | File Home Insert Page Layout Formulas                                     | iata Review View Automate Help                                                                                       |                                                              |                                           |                    |            | P0                                       | Comments 🗌 🖻 Share |
| 2022                                                  |                                                      |                     | B1 * I × ✓ <i>f</i> e Hydrogen Production                                 | n Technologies                                                                                                       |                                                              |                                           |                    |            |                                          |                    |
| 4 2023                                                |                                                      |                     | A                                                                         | В                                                                                                                    | с                                                            | D                                         | E                  | F          | G                                        | н                  |
| 5 2024 ~                                              |                                                      |                     | 1                                                                         | Hydrogen Production Technologies                                                                                     | Technology Share [%]                                         | Process Inputs                            | Value              | Units      | Process Outputs                          | Value              |
| 6                                                     |                                                      | Ratar Dates of D    | 2 Simulation Year 🔅 🙀                                                     | ow Temperature Electrolysis                                                                                          | 100%                                                         | The set of the set                        |                    | Low Temper | rature Electrolysis                      |                    |
| 7 Hydrogen Production Technolog 🐲 📉                   |                                                      | Lancea reforcess of | 4 2022                                                                    |                                                                                                                      |                                                              | Electricity<br>Electric Generation Source | 55<br>Solar        | kWh        | Hydrogen<br>Hydrogen Production Pressure | 1                  |
| Steam Methane Reforming (SMR)                         |                                                      |                     | 5 2024                                                                    |                                                                                                                      |                                                              |                                           |                    |            |                                          |                    |
| 9 Low Temperature Electrolysis                        |                                                      | Reset               | 6<br>7 Hydrogen Production Technologies ﷺ №                               |                                                                                                                      | Enter Process Details                                        | Oxygen Co-Product                         | No                 |            |                                          |                    |
| 10 High-temperature electrolysis (Nuclear)            |                                                      | Custom Fredd        | 8 Steam Methane Reforming (SMR)                                           |                                                                                                                      | Reset                                                        |                                           |                    |            |                                          |                    |
| Coal Gasification                                     |                                                      | Custom Feeds        | 9 Low remperature Electrolysis 10 High-temperature electrolysis (Nuclear) |                                                                                                                      |                                                              |                                           |                    |            |                                          |                    |
| Biomass Gasification                                  |                                                      | Properties          | 11 Coal Gasification                                                      |                                                                                                                      | Custom Feedstock<br>Properties                               |                                           |                    |            |                                          |                    |
| 12 Autothermal Referming (ATR)                        |                                                      |                     | 12 Biomass Gasification                                                   |                                                                                                                      | Calculate                                                    |                                           |                    |            |                                          |                    |
| 13 Autothermal kelorming (ATR)                        |                                                      |                     | 13 Automerinar keronning (ATK)                                            |                                                                                                                      | Carculate                                                    |                                           |                    |            |                                          |                    |
| 14                                                    |                                                      |                     | 15                                                                        | As described in the 45VH2-GREET 2023 user manual, if                                                                 | a user is accounting for                                     |                                           |                    |            |                                          |                    |
| 15                                                    |                                                      |                     | 16                                                                        | iectricity consumption from a specific type of generato<br>i.e., solar, wind, geothermal, hydropower, nuclear, nati  | r or combination of generators<br>ural gas turbines with and |                                           |                    |            |                                          |                    |
| 16                                                    |                                                      |                     | 18                                                                        | vithout CCS, coal, residual oil combustion, and logging i<br>lectricity claimed must have been verified via the purc | esidue combustion) the<br>hase and retirement of             |                                           |                    |            |                                          |                    |
| 17                                                    |                                                      |                     | 19                                                                        | ualifying EACs, which are EACS that meet specified crit                                                              | eria provided in the 45V NPRM.                               |                                           |                    |            |                                          |                    |
| 18                                                    |                                                      |                     | 21                                                                        |                                                                                                                      |                                                              |                                           |                    |            |                                          |                    |
| 19                                                    |                                                      |                     | 22                                                                        | missions                                                                                                             | Direct Facility Emissions                                    | Indirect Emissions                        | Co-Product Credits | Total      | Units                                    |                    |
| 20                                                    |                                                      |                     | 24                                                                        | 02 (w/ C in VOC & CO)                                                                                                | 0                                                            |                                           | 0 0                |            | 0 g/MMBtu H2                             |                    |
| 20                                                    |                                                      |                     | 25                                                                        | HGs                                                                                                                  | 0                                                            |                                           | 0 0                |            | 0 g_CO2e/MMBtu H2                        |                    |
| 21                                                    |                                                      |                     | 20                                                                        |                                                                                                                      |                                                              |                                           |                    | 0.0        | UU Kg_CUZe/Kg HZ                         |                    |
| 22                                                    |                                                      |                     | 28                                                                        |                                                                                                                      |                                                              |                                           |                    |            |                                          |                    |
| 23                                                    |                                                      |                     | 30                                                                        |                                                                                                                      |                                                              |                                           |                    |            |                                          |                    |
| 24                                                    |                                                      |                     | 31                                                                        |                                                                                                                      |                                                              |                                           |                    |            |                                          |                    |
| https://www.energy.gov/sites/default/files/20         | )24-01/45vh2-greet-2023.zip                          |                     | 32                                                                        |                                                                                                                      |                                                              |                                           |                    |            |                                          |                    |
|                                                       | <u> </u>                                             |                     | Copyright Instructions H2_User_Input                                      | •                                                                                                                    |                                                              |                                           | •                  |            |                                          |                    |

- ✓ User friendly interface
- ✓ Results include direct (i.e., facility level) and indirect (i.e. upstream) GHG emissions
- $\checkmark$  Process inputs and outputs by user in various units

#### **Next Steps for 45VH2-GREET**

- Grid regions will be adapted to include those in the DOE National Transmission Needs Study
- New hydrogen production pathways may be added periodically
- Background data may be updated periodically
- User-friendliness of model will continue to be improved

45VH2-GREET is being developed and maintained with funding from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy's Hydrogen and Fuel Cell Technologies Office and U.S. Department of the Treasury.

#### **Questions?**

## Thank You!

## **45VH2-GREET tool is available at:** GREET | Department of Energy

For questions, please contact 45VH2GREETSupport@ee.doe.gov