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Al and ML Applications for PV Reliability & System Performance
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PV Fleets: Automated Data QA and Metadata Verification

Automated Metadata Satellite Analysis using Deep Learning Automated QA: Clipping Detection, Time Shift
Estimation, Capacity Shift Detection

PVAnalytics package:

 NREL Panel-Segmentation Package Panel-Segmentation
» Uses deep learning models to automatically do the following: package:
* Locate solar installation in Google Maps satellite image
» Extract solar azimuth
* Determine the mounting configuration (rooftop, carport,
ground; fixed or tracking)
* Imagery analysis great use case for deep learning
» Useful for analyzing fleets where metadata is unknown or
iIncorrect

» Developed supervised and unsupervised ML algorithms

for finding issues/features in measured PV data

» Clipping/curtailment detection: Logic-based Al
method and supervised ML method (XGBoost).
Creates mask of clipped/non-clipped periods | —

» Time shift detection: Unsupervised changepoint : 1
detection (CPD) to identify time shifts between
modeled and measured solar noon

Normalized AC Power
—

_ _ » Capacity shift detection: Unsupervised CPD to o] —d
Semantic segmentation: ° detect abrupt capacity shifts in measured PV data A
VGG16 model. Find > » All functions validated with “ground-truth” labeled data C T T 7T
pixel mask of arrays . : T |
and results published fi 5NN
) * Functions publicly available in Python PVAnalytics 2 o E- [;é 1
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Edge Detection and Hough - _
Google Maps Image Line Transform: get the 0 lsa,'fi?tgf;fndﬁf’;igg{
azimuth associated with each colors) using CPD
Mounting configuration array algorithm.
detection: Resnet-50 model. | Daily heatmap of AC power values before automated time
All arrays determined to be D-. i 1an m m i shift correction and after, respectively, for a data stream with
carport-fixed tilt daylight savings time (DST).
Statistical Learning in PVinsight PV Validation Hub
» Developing white-box machine learning models based on statistical * Allow developers to submit PV analytics algorithms for validation.
sighal processing, convex optimization, and domain expertise « Degradation, soiling, tilt/azimuth estimation, etc.
» Deep neural networks are not part of our toolkit! » Well-curated validation data sets and procedures
» Methods: we have a monograph' and a no-math, no-code tutorial + Consistent labeled data sets allow for side-by-side comparison of
« Applications: check out this report® and this dissertation* different algorithms
» As opposed to neural networks, this flavor of machine learning is » Public leaderboards and documentation facilitate tech transfer
* interpretable (good for science and troubleshooting!) « Enables rapid development and benchmarking of solar algorithms

* highly data efficient (good models with 75% data loss!)
» computationally efficient (less energy, water, cost, ...)

Submit code
Create {e]3

Code runs Private
on validation Leaderboara report sent

account designated engine updated to developer
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The Validation Hub is intended to be a clearinghouse for the transfer of
novel algorithms and software from the research community to industr

who submitted the algorithm (e.g., links to GitHub pages, documentation websites, etc.), high-level accuracy metrics, and standardized performance metrics.

Researc h Our Story
Ims SLAC began in 1962 with construction of a 2

of fundamental particles and unbelievably fast processes to
astrophysical phenomena of cosmic dimensions. Our research opens

Main page of the site List of tasks Example leaderboard
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Al-based Optimal Design and Controls Can Greatly
Reduce Carbon Emissions and Enhance Resilience
In Residential Communities in Cold Climates

Al-Driven Smart Community Control
for Accelerating PV Adoption and
Enhancing Grid Resilience
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Introduction

* Net-zero energy residential communities are crucial for achieving
decarbonization goals, but the high-penetration PV in those
communities is posing challenges to the distribution grid.

* Traditional design and operation of net-zero communities rely on
rule-of-thumb methods and may not work in complex scenarios.

* Al/ML methods can optimally size PV for net-zero energy, identify
user preferences and usage patterns, and fully unlock the potential
of DERs to address distribution grid issues.

How is AlI/ML used in this project

* PV sizing: ML-based automated workflow identifies the optimal
placement of rooftop PV in a residential community to maximize
solar production and operational cost savings.

« Data-driven learning: Various data-driven methods were used
to identify building models, user preferences, and user behavior
to inform decision-making.

« Control: Optimization-based control of BTM resources in a
residential community to improve grid reliability and resilience.

Challenges and best practices

» User preferences and behavior are uncertain. Solution: Retrain
ML models periodically with a mix of new data and old data and
focus on predicting behavior that has a higher impact on control.

* Optimization-based control of a large population of BTM
resources is computationally challenging. Solution: Formulate the
complex problem in a hierarchical manner to make it scalable.

Key takeaways and future work

« Key takeaways: Al/ML can help residential communities meet
the net-zero energy design goal without over sizing the PV and
improve grid reliability and resilience through advanced controls.

* Future work: Large-scale demonstration in real-world
environment under various operational scenarios.

NREL is a national laboratory of the U. S. Department of Energy, Office of Energy Efficiency
and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

The information contained in this poster is subject to a government license.

Research Highlights

Al-driven Hierarchical Control for Scalable Management of DERs: HEMS manages each home'’s
behind-the-meter DERs, and community-level aggregators coordinate the HEMS and the grid.
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ML-based Optimal Rooftop PV Placement: An automated, ML-based workflow was implemented
in architectural design software to optimally place rooftop PV in a residential community to achieve
the net-zero energy goal considering roof geometry, orientation, shading, irradiance, etc.
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(a) Automated PV panel layout (b) Solar radiation study (c) Panels selection

Addressing overvoltage issues caused by high-penetration PV: Unlike HEMS that focuses on
utility bill savings, community aggregators and VAR support effectively reduce the overvoltage
frequency and severity. Utility coordination reduces the severity but not the frequency of overvoltage.
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Field Demonstration in an Affordable Housing Community: Performed field demonstration in
four homes at the Basalt Vista community in Colorado. Achieved 3.1 kW average load reduction
and 4.5 kW peak demand reduction during a 5-hour peak period in field experiments.

Photo Credit: Habitat for Humanity Roaring Fork Valley .
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Al-Based Protection Schemes for DER

Award # DE-EE0036533:“Adaptive Protection and Control for High Penetration PV and Grid Resilience”
Principal Investigator: Matthew Reno

Introduction: How is AI/ML used in this project?

* Distribution system protection is becoming more complicated Multiple Use Cases for Al/ML in Protective Relays Considered:
with DER producing reverse fault current, decreasing short

circuit capabilities, and inverters’ unpredictable response for
current injection characteristics and angles

* Embedding machine learning in relays can improve the

|) For adaptive protection, ensures reliable communication-free
operation by local learning at each relay of expected
communication from other devices for the grid state — learning
settings/trends [1]

protection system reliability, speed, and accuracy T e
"
* Al algorithms in relays can provide: ‘ E ’
= Backup under resilience scenarios when communication is lost ; ., ’
" Faster response time than some conventional protection algorithms . . A \"‘1‘ ” ~
T R R BTl
Challenges: s us_v_ i R R .
* There are very few faults in the field that can be used as training =1 _ _; E T T T e T R
data \
* Therefore simulation data generally has to be used, which requires =
extensive simulation time and is reliant on the model accuracy 1 @
* Each relay is unique with different surrounding system - [ verer
topologies, types of protection (overcurrent vs. distance), and 2) AI/ML based fault detection, classification, and location using

experiences different fault currents NB/NN [2], CNN [3][4], transfer learning [5], Graph NN [6],

* Protection operates in milliseconds, so the AI/ML algorithm has SVM [7-9], and Random Forest [|0]
to be able to run in real-time very quickly

* Even with 99.9% success rate of an Al/ML protection scheme, resture

Extraction

dozens of daily misoperations or nonoperations would result if .
the technology is widely deployed across a major grid

* Adoption is challenging for black-box Al methods that are not
explainable (training) or verifiable (certification testing)
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Best Practices: T TS mmin,

* Working with IEEE PSRC Standards to develop best practices for JPM =Y - - "‘M‘“h
“Applications of Artificial Intelligence and Machine Learning in = Oatalabeling Learing
Power System Protection and Control”

Online Machine Learning Algorithm
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*  While algorithms are trained based on simulations of the actual R < (g 504 s0-
, : : 80 ®oe%g e o _

system, in order to evaluate the accuracy of the algorithm, it 2 "L Tl
Dimension 1 Dimension 1 Dimension 1

must be tested on real fault data

3) Developed custom Al-based relays to test the algorithms in Opal-
RT HIL side-by-side with the SEL relays to validate the
performance [l |] and finally deployed for field testing [|2]

* In order to test the speed of the algorithm, it must be
implemented in actual hardware (not just simulation) to evaluate
the real-time speed using hardware-in-the-loop (HIL) testing or
field testing \ R

DETL W=V T

OPAL-RT Simulator

IEEE 123 Feeder

o

Key Takeaways:

* If Al uses the same features/patterns used by relays, why would it
be able to create a more dependable and secure classifier?

* If Al uses more complex and abstract features/patterns that have
no transparent relation to the underlying physics, and thresholds
(separation planes) are created simply by learning through data, o e
. [ITA. Summers,T. Patel, R. Machews, and M. J. Reno, Predlctl?‘n of'ReIay Set.tlngs in an Adaptive Protfectlon System ,IEI'EE Innovative Smart C.ir’l’dTechnoIoglejs (ISGT), 202.2. .
why would it work better? T e ot

networks, 2023.
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. . . [4] S. Paul, S. Grijalva, M. Jiménez-Aparicio, and M. ]. Reno, “Knowledge-based Fault Diagnosis for a Distribution System with High PV Penetration”, IEEE Innovative Smart Grid Technologies (ISGT), 2022.
® A I / M L S h O u I d b e aP P I I e d to P rOte Ctl 0 n P ro b I e m S Wh e re P hys I C S - [5] S. Paruthiyil, A. Bidram, and M. J. Reno,“A Physics-informed Learning Technique for Fault Location of DC Microgrids Using Traveling Waves,” IET Generation, Transmission, and Distribution, 2022.
[6] M. Jimenez-Aparicio, ]. Hernandez-Alvidrez,A.Y. Montoya, M. J. Reno, "Embedded Real-Time and Distributed Traveling Wave Fault Location Method using Graph Convolutional Neural Networks" Energies, 2022
o [7] C.B.Jones,A. Summers, M. ]. Reno, “Machine Learning Embedded in Distribution Network Relays to Classify and Locate Faults,” IEEE Innovative Smart Grid Technologies (ISGT), 2021.
bas e d m O d e I S a_ re n Ot a,s aP P I I Ca b I e 0 r We I I - u n d e rStOO d [8] B. P. Poudel,A. Bidram, M. J. Reno, and A. Summers, “Zonal Machine Learning-based Protection for Distribution Systems”, IEEE Access, 2022.

[9] R. Montoya, B. Poudel,A. Bidram, M. J. Reno,“DC Microgrid Fault Detection Using Multiresolution Analysis of Traveling Waves,” International Journal of Electric Power & Energy Systems, 2022.
[10] EWilches-Bernal, M. Jiménez-Aparicio, and M. . Reno, “Algorithm for Fast Fault Location and Classification Based on Mathematical Morphology and Machine Learning”, IEEE Innovative Smart Grid
Technologies (ISGT), 2022.
[11] M. Jimenez-Aparicio, J. Hernandez-Alvidrez,A.Y. Montoya, and M. J. Reno, “Micro Random Forest: A Local, High-Speed Implementation of a Machine-Learning Fault Location Method for Distribution Power
Systems”, IEEE PES General Meeting, 2023.
[12] S. Paruthiyil, A. Bidram, M. Jimenez Aparicio, J. Hernandez, and M. . Reno, “Hardware Implementation of a Traveling Wave Protection Device for DC Microgrids” IEEE Kansas Power & Energy Conference, 2023.
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INE S ol Laboratories




SOLAR ENERGY

TECHNOLOGIES OFFICE Artificial Intelligence-based PV Power Forecast and Energy Management Systems of
Power Plants and Utility-Scaled Hybrid PV+ BESS

U.S. Department Of Energy

&) FAMU-FSU
College of Engineering,

[Introduction }

» Research team received field data from City of Tallahassee Electric & Gas Utility
(TAL), Florida, of ¥62 MW hourly power generation in two years (2020-2021),
including two PV power plants (20 MW and 42 MW), and CC/IC generators to
perform PV power forecast and battery energy storage system (BESS) management.

» Energy storage is assessed in terms of economic benefits, battery sizing, reserve
reduction for power grid.

» Problem statement

= PV Forecast error rises energy storage size, power plant/grid operation cost.

= BESS is applied to replace conventionally IC-based reserve capacity, however, high

capital investment of BESS, makes it crucial to utilize it profitably.

" PV generation is weather-sensitive = Uncertainty in battery power — State-of-

charge cycles — Cyclic degradation — Cost increasing.

» Tasks performed: Energy management controller design and development

= 24 hr.-ahead (HA) PV power forecast implementation, evaluation and assessment

= Battery life-cycle and economic costs modeling and simulation

" Energy scheduling control algorithms development and implementation

[How is Al/ML used in this project }

o Multiple machine learning approaches are evaluated and assessed for prediction to
increase PV power forecast accuracy over the baseline (persistence method).
o A dynamic programming (DP) based battery management system (BMS) algorithm
is developed to substitute the IC units for reserves to improve economic benefit.
o Areal-time degradation estimation approach for batteries in hybrid power plant is
developed.
v’ Gaussian Process Regression with different kernels and outlier detection, which scores >
30% error improvement on 24 —HA nRMSE index vs. persistence and solar power index

(SP|) , SVM, boost and bagged tree. Howevier SPI nnitnarfarme (GPR mndal timaccgles <
30min5. 'Cacua:ngc?;i(r)?{; ata (Ineichen

ECMWF GHI, DNI, DHI

nnnnnnnn

Train/Test model with holdout/Cross Validation

Residual vs. Predicted value plots ML-based solar power forecast process

v BESS management based on Dynamic programming, using Rule Base (RB)

management as a baseline

(24 Ppgx A
Total cost = min- Z Z Cost(ni) ¢
\TL=1 1= —Phax J

Li iron battery
degradation cost

Construct the dynamic path
tree and weight paths with
power production cost

000
S0Coae SOCpax S0Coae SOCpae
DOD LI-Ion battery Set the starting and ending
(%) degradation nodes of the dynamic tree
cost(cents/kWh) Initialize the shortest path
SOC(2,i) . . SOC(N-1,) algorithm
20 084 $0C : : : : SOCy
40 2.30 R
60 5.06 . . . . es
° ° ° °
80 792 : - : o Use the optimal path index to
SOC find optimal load scheduling

1 0 5 1 3 50 Coin S0Cuin SOCpi SOCpin
DP Algorithm and flow chart

Stage 1 Stage 2 Stage N-1 Stage N

Limitations: significant burden for battery real-time degradation estimation system —
timely battery health information monitoring is impractical & cost tracking for capacity
fade during battery operation is impractical.

Cost Policy Proposed: Real-Time Method
Recurrent structure with memory S,

>
>
>

deginctot+1 = f (@(§t+1)) — f(@(st))

S, = [1(S0C,)SOC,,1(SOC;)SOCy, -+, 1(SOC,)SOC,]
1(SOC,) € {0,1} is the indicator function.
Siiq1 = [S;|SOC,, ] is the appended memory

Memory management 1(SOC;)

In each recurrence, the “Drop” block evaluates the memory by setting indicator
functions, drops noncritical samples.

“Drop” evaluates 4 cases sequentially: Half-cycle Extension — Full-cycle —
Unextendible half-cycle = Extendible half-cycle.

S;.1 is the outcome of “Drop” and passed to the next recurrence (incremental
degradation of next SOC sample).

The size of actively-updated memory S; is independent from the length of
evaluation period. Computation complexity of Dy_,; with n samples: O(n)

[Best Practices }
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nRMSE
January February March April May June July August September  October November December

HSVYM MBoostTree M Bagged Tree M Persistence MS5PI BGPR-SEOD

Average monthly prediction error of GPR vs. persistent, SPI, SVM, boosted, and
bagged tree methods

v 24h-ahead prediction with nRMSE performance index
v" GPR improved accuracy by > 30% over persistent method.
v SPI approach outperforms other approaches at timescales < 30 mins, consistent

with NREL report (E. Ibanez, et al).

Hector Akuta’l, Yuan Li?%, Caleb Crow?3, Uthandi Selvarasu*, Shumeng Wang>, Mahshid Amirabadi®, Brad Lehman’

1.2Florida State University, 3City of Tallahassee Electric Utility, 4>’ Northeastern University

This material is partially based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies
Office Award Number DE-EE0009340, Unified Universal Control and Coordination of Inverter-Based Resources, and Validation for a PV + Battery Hybrid Plant, Pl: Fang Zheng Peng.

IC generation
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BMS by DP algorithm

 BMS is optimized using the DP
algorithm, particularly with the
battery capacities which can
substitute the smallest |C unit
for less than an hour.

BESS Annual Revenue BESS Revenue/MWh
1600000 50000
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1200000 -
& 1000000 Z 30000
& 800000 =<
£ 600000 2 20000
400000 I I I S o000 &_\
;aaaag — 'k . D
2 4 8 20 40 60 80 100 120 2 4 8 20 40 60 80 100 120
Battery energy capacity (MWh) Bat. Energy Capacity (MWh)
®RB algorithm 1 ®RB algorithm 2 ®DP algorithm =®=RB-1 =@ RB-2 DP
Battery annual revenue DP vs. RB
RB and DP algorithms are = The revenue/MWh s
simulated for each day of the declining  rapidly  and
annual load for various battery reaches the saturation
capacities (2MW-120MW). after 40 MWh.

The DP algorithm generates mora |t shows that a BESS with
revenue than RB algorithms for all g capacity smaller than the
the battery capacities, which reduce gmallest IC backup unit

the payback period of the BESS. has more revenue/MWh

rate than larger batteries.

Using the subset of 39907 consecutive samples of LFP battery testing from
Sandia National Laboratories.

Proposed online model
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Contribution: Critical SOC history is accurately stored, computation complexity is
greatly reduced, enabling real-time degradation estimation for batteries.

@ey Takeaways }

v’ GRP algorithm compares favorably with naive machine learning algorithm, and persistent {Publications }
forecast. The forecast error improves on day-ahead forecast horizon, which is have more
than 30% nRMSE errors improvement compared to persistence methods used by utilities.
v Improves forecast errors achieved better battery sizing, and cost saving on reserves.

v' DP-based optimization of BESS to substitute low-efficiency IC units is more advantageous

than traditional RB scheduling methods and yields economic benefits.

v' The proposed method successfully predicts the actual measurement capacity fade with a
low error. Additionally, the memory list size during operation demonstrates lower
omputational complexity compared to the conventional evaluation methods for real-

C
\cime operation.

[1] S. Wang, M. Mahshid, B. Lehman, "A Real-Time Degradation Estimation Approach for
Batteries in PV and Battery Hybrid Plant Operation,” IEEE Energy Conversion Conference

Expo, Nashville, Nov. 2023.

[2] U. Selvarasu, M. Mahshid, Y. Li, C. Crow, B. Lehman, “DP-Based Optimization of BESS to
Substitute RICE Reserves for Improved Economic Benefits,” IEEE Energy Conversion

Conference Expo, Nashville, Nov. 2023. /
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Background and Motivation

** This work Is part of the project, Secure and Resilient Operations

Using Open-Source Distributed Systems Platform (OpenDSP).

* The goal I1s to develop a multi-layer multi-channel cyber-
physical defense and survival mechanism for operating
distribution networks with high penetration of solar, IBR, and DER.

*» Challenges Include, 1) new cyber-physical vulnerabilities from
grid-edge DERSs; 2) renewable energy sources with uncertainty and
variability; 3) Iimbalanced data between normal operations and
compromised or attacked states; 4) traditional machine learning
and data-driven approaches are difficult to train, leading to long
computation time, and less suitable for large-scale power systems.

Key Contributions

This work proposes a Bayesian Generative Adversarial Network
(BGAN)-based approach for cyber attack detection.

*» A data-driven cyber-attack detection approach that, while building
upon existing Bayesian GANSs, Iintroduces a customized model
architecture and modified training procedure to enhance both
speed and sensitivity in performance.

*» A solution to the imbalanced data distribution problem, which is
commonly encountered In practical applications.

** The method accounts for the uncertainty of renewable energy
sources and generates scenarios that align with the historical data
distribution, leading to more precise detection results.

New Security Challenges

*» Uncertainty modeling with renewable: take PV as an example, as
their distributed nature represents different modes of uncertainty.

¢ Targeted cyber attacks on renewable DERs: coordinated attacks,
like multiwave attacks where the attackers sequentially target
PVs by manipulating their respective inverter reference voltages.
In Fig. 1, even If the attacker targets only a small subset of DERS,
any altered measurements can disrupt system functionalities.

** Unbalanced data sampling: the historical training data of the
secure class iIs much more than that of the attacked class.

**» Unobservable cyber attacks: the attacker can manipulate the
measurements to bypass the residual-based detection methods.
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Fig. 1. Voltage disturbance due to  Fig. 2. Residual-based detection with
multiwave cyber attack on DERS unobservable attack

in Active Distribution Grids with DERs

Jian Xie, Airin Rahman, and Dr. Weil Sun, ECE Dept., Univ. of Central Florida
Secure and Resilient Operations Using Open-Source Distributed Systems Platform (OpenDSP), DE-EE0009339

Bayesian GAN for FDIA

*» Addressing the imbalanced data: the proposed BGAN-based approach combines
Bayesian probability and GAN for fully probabilistic inference. Accurate estimation
can be obtained by posteriors of 8%and 0° after training with different samples.

logp{6P|0¢} = Ex|D(X,0°)| — E;[D(G(Z,0%),8P)]+ logp {6°|y"}

**» The Bayesian approach is employed to update the distributions through parameters
with adversarial feedback. Inference Is performed by iteratively sampling from the
following conditional posteriors:

(0510°, 7) o 1_[ D(G(z; 6%); 8°)p(65|¥%)
=1

p(6P]6€,2,X) o [T, D(x;; 6°) _H?=1 (1 — D(G(z;; 6%); eD)) p(6°|y?)

*» Accounting for PV uncertainty: extend the Bayesian approach to capture the
uncertainty of PV output by teaching the model to generate data that not only
resembles the tube PV output but also accounts for its inherent uncertainty.
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Fig. 4. The flowchart of the proposed scheme

Attributes of BGAN-based FDIA

The BGAN-based attack detection method offers the following features:
*+ Robust performance against uncertainties related to renewable energy sources.

** High performance and accurate detection of erroneous data, even with imbalanced
training data and measurement noise.

» Maintain high accuracy under varying and extreme load conditions.
» Efficient for practical applications in real-world active distribution systems.
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Table I. Detection performance on IEEE 13-node and 123-node systems

Data Accuracy%  Detection time/ms  Accuracy%
Train-Labeled 100 - 100
Train-Unlabeled 97.83 - 08.58
Test 97.52 8.97 98.13

Detection time/ms

100 . . ; : . 100

I BGAN

Precision/%
Recall/%

A

50 60 70 80 50 60

70 80

Ratio of normal samples/% Ratio of normal samples/%

Fig. 5. Comparison of precision and recall scores from different

methods under different imbalanced scenarios.

Table Il. Performance comparison Table Ill. Detection Performance
Accuracy with different load
Algorithm  |EEE 13.node  IEEE 123-
system node system 10% 09026 0.9031
BGAN 97.52 98.13 90% 0.9114 0.9095
GAN 94.27 95.01 100% 0.9152 0.9131
A= ezl indle 110% 0.9167 0.9123
KNN 85.35 86.22
100F SNR=15dB SNR=20dB SNR=30dB -
Table IV. Detection Performance F 7 - 53
with different number of generator oo F H
7 0.8943 0.8915 <l : T
8 0.9024 0.9061 ] Eij
9 0.9107 0.9084 ol i
10 0.9152 0.9131
11 0.9115 0.9120 Fig. 6. Accuracy comparison in

different SNR level conditions.

Conclusions

This work proposes a Bayesian GAN-based approach for
detecting FDIA In active distribution systems. The
suggested method utilizes a novel Bayesian GAN to
achieve accurate FDIA detection by learning data features
with a small amount of imbalanced training data. BGAN Is
completely data-driven and does not require any system
model or typology parameters. Simulation results and
comparisons demonstrate that the method exhibits higher

accuracy and robustness.
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* State estimation (SE) in distribution systems can be done at high-speeds if
only micro-phasor measurement unit (WPMU) data is used

* Leveraging the high-speed of a uPMU-only state estimator, a coordinated
inverter control algorithm can be implemented to achieve high
photovoltaic (PV) hosting capacity (HC) in active distribution systems

* Challenges:

* Linear state estimation (LSE) needs the distribution system to be fully
observed by uPMUs

 Weighted least squares, which is most often used for upPMU-based LSE,
IS not robust against non-Gaussian measurement noise

* The distribution system often undergoes topology changes, which, if not
accounted for, can degrade SE performance

* Traditional inverter control solutions do not: (a) use full state
information, (b) have a sufficiently accurate sensitivity matrix (SM), and
(c) take cross-phase sensitivity into account

* Solution:

 Deep neural network (DNN)-based topology identification (Tl) is done
first to track topology in real-time from sparsely placed uPMUs

* A DNN-based state estimator is developed next to estimate states in a
fast, time-synchronized manner

* Transfer learning is employed to account for the effects of topology
changes on DNN-based SE

A control algorithm is proposed that iteratively refines the voltage-
reactive power SM to mitigate voltage violations at high PV penetrations

* The proposed control recognizes the diminishing effects of cross-phase
sensitivity and incorporates it in the optimization

 The proposed control avoids active power curtailment (APC) as well as
changes in capacitor bank (CB) and step voltage regulator (SVR) settings

B : Ay J »JA D
)

e Consider measurements, z, and states, x, as random variables
 Create a minimum mean-squared error (MMSE) estimator to minimize
the estimation error:

min E(Il x — 2(2) I) = 27(2) = E(x]2)

Shiva Moshtagh, Dhaval Dalal, and Anamitra Pal
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 VV control reduces the
violations to =500

e VV also reduces max
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* Optim R2 restricts max
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* The proposed Bayesian approach for high-speed time-synchronized
SE in real-time unobservable distribution systems via DNNSs
facilitates creation of a coordinated inverter control strategy that
achieves high PV HC in comparison to the state-of-the-art

Key Takeaways

* The proposed DNN-based Tl and DSSE framework:
1. Does not require complete observability by uPMUs
2. Does not rely on slow timescale data during online operation
3. Outperforms LSE with a significantly smaller number of PMUs
4. Can quickly detect network topologies in reconfigurable systems
5. Ensures reliable SE for different topologies
6. Is robust against non-Gaussian measurement noise, non-parametric

oad variations, and renewable energy fluctuations

* The proposed coordinated control algorithm demonstrated tripling of HC
compared to unity power factor (UPF) and VV control. These results were

achieved with:

1. No APC (no revenue loss)

2. No participation of SVRs and capacitor banks (low maintenance costs)
3. Minimum reactive power intervention (lower control burden and

lower stress on inverters)

4. Worst-case conditions (equivalent to cold-start)
5. Consideration of wide range of use cases

* These results are possible due to the following reasons:
1. Availability of high-resolution, synchronized, accurate system-wide

voltage data

2. Iterative refinement of sensitivity matrix

3. Recognition of the cross-phase

incorporation in the optimization algorithm

* Ongoing Work:

* We are currently developing strategies to

trustworthiness
guarantees to our DNN-SE performance

* We are trying to reduce the runtime of the
optimization algorithm by using a subset of the

provide  robustness

and

most critical network voltages

* We are exploring use of a trained DNN to by-
pass the optimization during real-time operation

sensitivity effects and their
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Challenges and Best practices
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Key takeaways and Future work

Two Machine Learning Models

Introduction
Thrust | : Net-Load Probabilistic Forecasting | | Challenges

The rapid integration of behind-the-meter (BTM) : e
using Fuzzy Decision Tree and NGBoost

solar-plus-storage in the grid has made point load . Inferring and aligning daylight savings from

forecasting less accurate. « Suitable for short-term forecasts where only missing or duplicated hours in March and
small amounts of training data is available.

Key Takeaways

 Machine-learning is suitable for prediction
tasks where little to no information is available
November. about the data-generating process.

* Identification and repair of incorrect, missing, or | | Future Work
out-of-range net-load and temperature samples.

To overcome the variability of renewable resources,
it is advantageous to leverage the recent advances
In predictive data analytics and big data. Moreover,

 Predicts the probabilities of all net-load
outcomes for each forecasted time point.

for improved decision-making and risk assessment, | |* Fast training and real-time prediction. . Interpretation of ML-leamed internal parameters. . Clomt_)tirr:ing I(t)ad fo;fecasts with optimization

it is beneficial to use probabilistic forecasting instead | | Thrust Il : Net-Load Probabilistic Forecasting Obtaining th ol ound ¢ algorl. ms 10 periorm energy resource
of point forecasting. using Transformer-Based Architecture  Obtaining theoretical lower bound for accuracy. planning.

. Suitable for long-term forecasts with large | | Best Practices * Forecasting the real-time demand response

Load Forecasting Methods complex datasets. . Verify the time zone alignment and daylight potential to assist in the decision-making in

: - demand response events.
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INTRODUCTION

How do birds respond to photovoltaic (PV) solar facilities? How many birds collide with solar panels? Our
understanding remains incomplete without observations of bird activities, including collisions, and their
outcomes. Since March 2020, Argonne researchers have been developing an edge-computing, machine-
vision system to collect data on such opportunistic events at PV solar facilities. The technology aims to
continually monitor bird activities around PV facilities, more specifically fly-over, fly-through, perching,
landing, and collisions, during daytime to answer critical questions on avian-solar interactions.

CAMERA SYSTEM

The Sighthound DNNCam system (Fig.1), a true-color or visible-
spectrum camera, Is built with an NVIDIA Xavier edge computing
processor capable of running computer vision (CV) and artificial
Intelligence/machine learning (AlI/ML) algorithms on the camera
itself. The system uses a docker based framework for running
custom applications and allows for direct graphical processing unit
(GPU) access. We utilize this framework to build our software and
optimize our code for GPU execution.

Fig.1 DNNCam (https://www. sighthound.com/products/hardware).

CHALLENGES & BEST PRACTICES

CHALLENGE SOLUTION /BEST PRACTICE

Creating ML models that would
execute fast enough to be near-real
time on the DNNCam edge computing
processor. We needed to execute the
combination of moving object
detection and tracking; object
classification; and collision detection
algorithms fast enough for near real
time notifications.

(1) Create models complex enough to achieve high accuracy
but not so complex as to take a long time to compute and
(2) Utilize CV and ML libraries optimized for fast execution
on GPUs.
We used the TensorRT framework to convert our ML models
to execute quickly on the camera's NVIDIA Xavier processor,
and we used several GPU-enabled OpenCV libraries. This
required re-writes of several pieces of code and model
optimization and porting.

Limited computational power of
current camera technology for
executing all models simultaneously.

Prioritize daytime computation for detecting and tracking
moving objects, classifying objects, and detecting collisions.
Activity classification is performed at nighttime (Fig.2).

Not being able to collect video of bird
collisions with PV because such events
are very rare.

Simulate bird collisions using decoys. We threw the decoys
from the rooftop of a 2-story building to mimic realistic
collisions. Trajectory, speed, and shape of descending birds
could not be exactly replicated.

Automatically turned on at sunrise All computational
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Fig.2 Timeline of video monitoring, model execution, and output transfer.
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To maximize the distance from which the camera was able to detect birds, we needed an AlI/ML algorithm that could classify relatively small and indistinct objects. Therefore, we utilize an architecture capable of
analyzing an entire sequence of images of the same object through time to perform the classification. We first employ a moving object detection algorithm in conjunction with a tracking algorithm to obtain a sequence of
Images for a “track” (Fig.3). Then we use this "track™ data as input into a series of different Al/ML models to complete the moving object identification and bird activity classification software.

Fig.3 Birds detected and tracked at a PV site (Left) and a “track” of images, in sequence, generated by the moving object detection and
tracking model (Right). The system executes the model continually during daytime, triggering the collision detection model when an object
IS identified as a bird, while storing data on all bird activities. It executes the activity classification model during nighttime using the stored
data and transfers the output to the server. The stored data is discarded each night to clear space for the next day.

The moving object detection component is the first area where ML is used. We utilize a background subtraction algorithm known as a Gaussian Mixture Model (MOG2) that learns what the background of a sequence of
video frames looks like for removal. We then use a ML model to classify the object as bird or not-bird based on the track meta-data. The entire sequence of frames along with information about the x/y location, speed,
and area are used in a multiple instance learning (MIL) ML model (Fig.4a). When an object is classified as a bird, a hybrid ML model (Fig. 4b) is used to classify collision vs. non-collision events, by utilizing
Bidirectional Long Short-Term Memory (BILSTM) layers to generate feature vectors as input to a Support Vector Machine (SVM). Finally, a Fusion-BILSTM model (Fig.4c) consisting of a combination of several
convolutional layers feeding into a 1D-input LSTM, using the x/y location and a 2D-input LSTM, using the x/y location as well as cropped images of the bird from the track, classifies the birds' activity.
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Fig.4 Architectures of machine learning models. (a) Multiple instance learning (MIL) model for differentiating birds
from other moving objects, (b) Hybrid model with support vector machine (SVM) for classifying collision vs. non-
collision events, and (c) Fusion-Bidirectional Long Short-Term Memory (BiLSTM) model for classifying bird activities
into 5 classes (i.e., fly-over, fly-through, perch on panel, land on ground, and perch in background).

KEY TAKEAWAYS & FUTURE WORK

Building a portable machine-vision based, edge-Al system that maximizes accuracy at great distances requires trade-offs in model architectures used and software execution pipelines. We achieved the desired result by
breaking the object detection, classification, and activity determinization into separate model components executed at different times while creating novel architectures for track-based data input. The challenge of having
limited computational resources for deploying complex Al models also required a focus on model optimization and use of certain GPU-enabled algorithms to maximize accuracy along with efficiency and speed.

COMING SOON! Starting in Spring 2024, we will deploy our system at operational PV solar facilities at multiple U.S. regions. By incorporating conventional bird carcass surveys, we will answer outstanding questions
on avian-solar interactions and clarify misconceptions on the topic.

THANK YOU! Aggelos Katsaggelos and Yuri Balasanov for expert guidance in Al model development; University of Chicago Master of Science in Analytics students for model architecture research; Sighthound for
technical support integrating models into the DNNCam; partner solar facilities for providing study sites; and the advisory committee for guidance with keeping our technology relevant for solar energy development.
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Introduction

» Granular data of solar PV installations is essential for tracking the progress of
decarbonization, designing energy policies, identifying energy injustice issues, and
integrating renewable energy into the grid.

Existing datasets of PV installations are either not comprehensive in geographical
scope, not sufficiently granular—from both spatial and temporal perspectives—or
not publicly accessible to enable spatiotemporal analysis of PV adoption at the
nationwide scale.

Conventional data collection approaches relying on data reporting, surveying, or
crowdsourcing are incapable of constructing and maintaining a complete solar PV
dataset covering the entire country, especially states that lag behind in PV adoption.

Al for mapping solar PVs

1 * Input data: Satellite and aerial images
POSITIVE Semi-supervised ' 4 - ] ] .
M E E = Geospatial mapping: Fully-supervised
T AT image-level binary classification —
1 i M ) Semi-supervise m) : _ _ _ _
% : semi-supervised size estimation —
M . subtype classification
NEGATIVE NULL

KB - ) =

= Timelapse uncovering: Deep Siamese

EEE N D,

Network for identifying the year of
installation (86% accuracy)

= Deployment: 1 billion image tiles

Our contributions:

/-1 = Leveraged Al to construct a U.S.-wide
e spatiotemporal solar PV installation
database.

ldentified heterogeneity in the dynamics of
PV adoption.
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DeepSolar dataset / Solar adoption dynamics \
* The geospatial dataset constructed in 2017 contains 1.5 million solar installations 10 hre-  Rampup Ramp-down |Saturated Low Income High Income

=
o

pre-diffusion 1.0 pre-diffusion

ramp-up ramp-up
ramp-down 0.8 1 ramp-down
B saturated B saturated

diffusion

In the contiguous U.S. with geo-coordinate, size, and subtype information.

= |ts 2023 updated version contains 3 million solar installations in the whole U.S.
iIncluding Alaska and Hawaii, which will be made publicly available soon.
included the year of

== : installation information for
Rt ‘ T every residential and
commercial PVs.

= Datasets can be downloaded
at https://deepsolar.web.app

= Usages: socioeconomic,
policy, grid integration,
resilience analyses, etc.

o
o

o
o
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0471 PV adoption
onset

0.4 1

PV adoption rate
(# PV systems per building)

B
|

Fraction of block groups

= DeepSolar++ dataset further

I

ll
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0.2 1

0.0 -
2006 2008 2010 2012 2014 2016
Year

' , ' S S (N 0.0 P T
2006 2008 2010 2012 2014 2016 2018 2020 2006 2008 2010 2012 2014 2016 2018 2020
Year Year

We analyze the non-linear dynamics of residential PV adoption using technology
diffusion model (Bass model). Specifically, we use Bass model to estimate the time
of adoption onset and saturated adoption level in each census block group.

* We find that, low-income communities are not only delayed in their adoption onset,
but also more likely to saturate at lower levels.

* The median saturated adoption level is 28 systems per 1000 buildings in low-income
communities and 38 systems per 1000 buildings in high-income communities.

= Wealthier communities started adoption at lower levels of PV benefit (with rebate/
grant), yet the PV benefit (with rebate/grant) they experienced is higher. This
suggests a potential for re-distribution of existing upfront subsidies to lower income
communities to make PV adoption more equitable.
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[ Policy insights ‘
[ . . I
| Correlations: saturated adoption level vs. Causations: heterogenous effect of performance-based incentives Correlational analysis: \
: incentives Natural experiment 1: Georgia Natural experiment 2: Tennessee ~ ®  Although rebate and property tax incentives are positively correlated with saturated |
| 351 — control 35 — control adoption level for high and mid-high income communities, there is no statistically |
1.0 - — — . . . . . “yn
| 30 sl 30- e = significant correlation in low-income communities. :
:g 05 L | : } g% g2s = By contrast, performance-based incentives are associated with higher saturation in :
L ? = 2.0 1 S 20 - . "y . . .
P | S | IS . by S S low-income communities but not in high-income ones.
15 g 15 g 15 I
g > z .
18 - —y—— £ 10, g . Causal analysis: |
L o Income 05- \ - = By utilizing causal forest model to estimate the heterogeneous intervention effect, 1|
| P High income 00f - we find that performance-based incentive is more effective in low-income :
'\ Rebate Property Tax  Performance-Based B eien hausshart income (4) K oo K e ome oK communities, corroborating the correlational evidence. l'
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Publications Challenges and Future Work

= Privacy challenge. Geo-coordinate information of solar installations is not made
publicly available due to privacy concern. Future work can explore advanced
methods for sharing the data in its highest granularity while preserving privacy.

Fairness challenge. Machine learning models may not perform equally well across
different regions and communities, which could bias the PV adoption analysis. This
deserves further investigation.

Continuous update. We aim to build a data processing pipeline to update the
dataset on a yearly basis.

. = Community solar. We aim to identify community solar and analyze its adoption. )

» Zhecheng Wang, Marie-Louise Arlt, Chad Zanocco, Arun Majumdar, and Ram Rajagopal (2022).
DeepSolar++: Understanding Residential Solar Adoption Trajectories with Computer Vision
and Technology Diffusion Models. Joule.

» Zhecheng Wang, Michael Wara, Arun Majumdar, and Ram Rajagopal (2023). Local and Utility-
Wide Cost Allocations for a More Equitable Wildfire-Resilient Distribution Grid. Nature
Energy.

= Kevin Mayer, Benjamin Rausch, Marie-Louise Arlt, Gunther Gust, Zhecheng Wang, Dirk
Neumann, and Ram Rajagopal (2022). 3D-PV-Locator: Large-Scale Detection of Rooftop-
Mounted Photovoltaic Systems in 3D. Applied Energy.

gl I Il Il I S S S S S S -y,
|

= Kevin Mayer, Zhecheng Wang, Marie-Louise Arlt, Dirk Neumann, and Ram Rajagopal (2020).
DeepSolar for Germany: A Deep Learning Framework for PV System Mapping from Aerial
Imagery. International Conference on Smart Energy Systems and Technologies (SEST).
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» Zhengcheng Wang*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2019). Identify
Solar Panels in Low Resolution Satellite Imagery with Siamese Architecture and Cross-
Correlation. NeurlPS Tackling Climate Change with Machine Learning Workshop.

= Jiafan Yu*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2018). DeepSolar: A
Machine Learning Framework to Efficiently Construct a Solar Deployment Database in the
United States. Joule.
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End-of-Line Solar Cell Binning via Machine Learning

Lena Bruno, Adrienne L. Blum, Harrison Wilterdink, Ronald A. Sinton
Sinton Instruments, Boulder, CO, USA

ABSTRACT: Sinton Instruments is developing an in-line current-voltage (I-V) and line-scan photoluminescence (PL) tool to characterize solar cells. The tool
will operate at line-speed to provide near-contactless binning of solar cells and defect recognition. We are in the process of creating a Machine Learning
model that classifies cells based on their line-scan PL and |-V characteristics. We anticipate this will have a wide range of applications with the solar industry.

Line-Scan PL System Cells without Defects:

Line-scan PL [1] is a powerful imaging technique that can be
performed on-the-fly at line speed. It shows many of the same —
features as conventional electroluminescence (EL) without the need s
for probe bars that shade the cell during imaging. I

Acceptable cells can span a range of brightness while still being functional.
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Binning

End-of-line characterization and binning of solar cells is necessary to
both sort out defective cells and group similarly performing cells to
avoid power mismatch in PV modules. We use a Convolutional
Neural Network (CNN) to automate this process, sorting cells based Machine Learning Code
on their line-scan PL image and |-V data.

Currently, the code performs binary sorting: classifying cells as either good

Cells with Defects: or bad. This utilizes a number of CNNs built into Pytorch.

Defects can manifest in a number of visually detectable ways as seen

below. False color is applied to enhance visibility of some defects. Based off a sample set of 1000 line-scan PL images, the binary sorting
code classifies them with the following efficiencies:

Dark Spots
.. Predicted Class
97.1 % True Positive
Good Bad
56.6 % True Negative
” True False
. s Positive Negative
28.4 % False Positive et
:3-5- False True
0] : (&
Cracks and Scratches 1.0 % False Negative < Positive Negative
“':::::Wr:m;“ﬁ:;“:rmnm"f'ﬁ':" T R ————

MR hi

Binary sort is inadequate for end-of-line cell characterization, but provides
a proof-of-concept for using CNNs in this application. This iteration of the
code also only uses the line-scan PL data, and does not yet take into
account the I-V data.

Code Goals and Open Questions

Light Spots and Finger Breaks ,
e Sorting by Defect: Sort cells by a number of defects

* How to accurately address concurrent defects?

e Utilization of I-V Data: Incorporate |-V data from cells into program
* Can we quantify power lost to individual defects?

* Binning Thresholds: Allow users to fine-tune reject criteria
 What thresholds are appropriate to make adjustable?

Oxygen Rings
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 Defect Localization: Have the code output the location of defects
detected on the cell.
 Can we do so using UNSW’s trained CNN (LumiNet [2])?

n;,‘o'w,l I e N 'm(

-

» Data Aggregation: Ability to save defect binning/localization outputs so
that customers can use it for production improvements.
* What data is the most valuable/reliable for this purpose?

References:

[1] I. Zafirovska, M. Juhl, J. Weber, O. Kunz, and T. Trupke, “Module inspection using line scanning photoluminescence imaging”, in 32nd EU PVSEC, Munich, 2016

[2] Y. Buratti, A. Sowmya, R. Evans, T. Trupke, and Z. Hameiri, “Half and full solar cell efficiency binning by deep learning on electroluminescence images”, in Progress in Photovoltaics: Research and
Applications, Vol. 30, Issue 3, 2021

[3] J. Wong, P. Teena, and D. Inns, “Griddler Al: new paradigm in luminescence image analysis using automated finite element methods”, in 44" IEEE PVSC, 2017
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Project Overview

OBJECTIVE: I imple-to-Impl Rule-Based Triggers Complex Models

To provide a new generation of prognostics, operations and maintenance (O&M) Industry Stondard Emerging Technology Industry Access via this Project

approaches for PV inverters in an effort to: Approach @ Periodic Mai = of TS Prognostics-Based Maintenance

v' Reduce maintenance costs and LCOE (through accurate determination of inverters in o 2 AN (Proposed Method) |
need of service, optimizing opportunistic maintenance, reducing operational Limisati Based on population-specific Does not predict future degradation Requires detailed stochastic
needor: ic Not ble to ive O&M fons to mode! fatic
implications due to outages) 4 4

v' Enhance inverter service life (by replacing them efficiently before onset of failure,
rather than relying on a set schedule) Enablers: Data, Facilities, Team

v' Reduce inverter unavailability (by minimizing failures and modeling economic 30T8B of Sensor Data from Industry - Accelerated Life Testing Capabilities - 2 Labs, 2 Universities, 3 Solar Developers
dependencies) 1 1

APPROACH: Task 1: Sensor-Driven Prognostics for PV Systems Task 2: Adaptive Decision Models for 0&M

v Develop prognostic models for inverters by analyzing a large-scale sensor data +  Fusing domain knowledge with sensor-data analytics «  Building stochasti progr ing for jon for joint
repository from industry and laboratory data »  Pinpointing degradation root causes via system data PR imization of inspection, and operatic

v Develop efficient reformulations and modeling approaches to embed the developed *  Addressing big sensor data chalienges z EXDF’CFHV modeling complex economic and degrﬂn'ﬂﬂon
RLD predictions and prognostic models within stochastic programming *  Developing real-time predictions on evalving failure risks dependencies as a function of prognostic predictions

v Build large-scale O&M optimization models and associated solution methodologies 1y 1

v' Co-develop open-source tools for prognostics and O&M schedules, in cooperation Task 3 : Proof-of-Concept (POC) with Industry Partners and Validation of Open Source Tool

with the industry partners

Project Approach — from Streaming Sensor Data to Experiments

. ;:;l_mlw‘: PREDICTIVE MODELS - Degradation Modeling, Remaining Life Prediction for Inverters
DATA: Parformance = =
v' Accelerated life testing (ALT) for solar inverter and corresponding database Mihiantes Beterde
* Experiment types: (1) High Temperature Operating Life Testing (HTLT); (2) Powered Thermal e s
Cycling (PTC) Test; (3) Damp heat test; (4) Lightning surge e S Wt
« Temporal coverage of over 2 years, temporal resolution up to every 1 second Intograting Sensor Data
v Industrial inverter data and maintenance records o bl i et 4 e
Popuiaton Degrada Prodictio 4 Single
« 751 inverters in 443 sites, with 4 inverter manufacturers, string inverters and micro-inverters Based Estmates Trajeciories | Failure Risks Maintenance
* Inverters locates in 6 states across U.S. (IA, MN, M, TX, NC, VA) ;n‘mlw Aow;r-mure L - Sonie
« Diversified terrains and applications (agricultural and urban) 2 i = 3] To T Msximizing Profit nd Mitigating
T . . P PR I N Financial Risks in PV Inverier Floels.
* Temporal coverage of over 10 years, temporal resolution up to every 5 minutes Integrating Modeling Approaches s
* Over 2300 alert records related to maintenance and failure history Condttion ;| Prognostic | ’ i el
Monitoring | Models. Ey +Fugo SmoYa €0 + Modling Markat Pricas and Impact
Operational and Risk
EXPERIMENTS: “Eiinaes | Fotee s letEsmssvase e
v' Predictive Model #1: Inverter diagnostics and prognostics using ALT experiment data Anomaly Failure
v Predictive Model #2 : Inverter diagnostics using industrial data i i (PRESCRIFTVE MODELS - Dectalon Making for Float Loval Operations and Malnienance
* (1) Health Indicator-Based Degradation; (2) Anomaly Events-Based Degradation i DATA & MODELS | — PREDICTION r>| DECISION |

v' Prescriptive Model: Prognostics-driven operations and maintenance

Prediction of Inverter Life — from Laboratory Experiments to Industrial Applications

Multi-observation predictions Single-observation predictions

Predicted Label Accuracy Score: 0883y

e
v Classification-based diagnostics and prognostics for ALT datasets. Feature Extraction stage ‘@ 3 x P -“II -0
« Leveraged high-fidelity laboratory data from ALT experiments to develop '—LT\ mt mﬁg_:« . ':g' i
models for classifying degradation states of inverters "m 'y puticloss g 4o ool sl ¥ .
* Asset conditions are defined as a function of time to failure Preprcessing Feoture rﬂm o 3 el
¢ Two models were developed: (i) Single-observation model is used to provide ﬁmm frrecton ooiner 'MMN p—
fast prediction, and (ii) multi-observation model uses multiple observations - mwwm FOREARR o I S
to offer a slower but more accurate prediction of inverter condition ".»ﬂ moy : o
* Multi-observation prediction model achieved 91-97% prediction accuracy o @ e
lassification Stage o
v Anomaly detection based diagnostics for industrial datasets
* Leveraged sequential industrial data (i.e. weekly patterns) to discover latent } { oty
signs of degradation in inverters
detnct difforant pattarns.

* Developed methods to decouple confounding environment impacts on sensor
data to enable diagnostics in dynamic operational environments

* Formulated a ensemble method to fuse the strength of multiple novelty
detectors to capture a wide range of degradation behavior

* Demonstrated statistically significant improvements in novelty detection, to alert PR [Esesg Steai
operators of evolving degradation processes i - — J

Periods of time prior to failure (weeks)

Portion of samples detected as anomalous

Spectra Profie of a Heathy Inverter

v' Prognostic modeling — mathematical formulations to predict future failure risks Step 1 - Degradation model for inverter i
* Modeled long-term behavior of degradation using Brownian Motion based Di(t) = ¢i(t: k,0;) + e:(t;0)
degradation models, and use first-passage time to predict future failure risks || ) . 0 Undabc Remeining
. o A N Wit N Wl Step 2 - Given observations df, we By Lifg Distributions
* Used Bayesian statistics to continuously update the degradation parameters, == R tirl update the degradation parameters £z
and the associated predictions for the remaining life distribution of inverters Spectal rofile of  Degraded nverter w(®) = P(0;]d?) = P(d?|0,)m:(0,) Eg

| Spmseg veres  Spce s

* Proposed approach captures population-based degradation characteristics and
finetunes them using data-driven asset-specific degradation characteristics |

« Showcased significant improvements in prediction accuracy compared to
benchmark models based on reliability-based prediction

Step 3 - Reevaluate the prediction on the Operating Time.
remaining life distribution of inverter i

, -
H",JffJNI'I"N’*‘L'c;L,, PRy > 1) = fl’( sup (s} < v\,‘”,‘x‘y.fs) w(8,)dé;
taSagtast

Prognostics-Driven Operations and Maintenance — from Prognostic Predictions to Fleet Optimal O&M Decisions

expected
v’ Prognostics-driven decision optimization models for operations and maintenance maintenance corective preventive
+ Developed a novel decision optimization model that inherently captures inverter fevenue cost cost cost ot cost
degradation and prognostic predictions on failure risks \ l / //

#allures

* Modeled economical dependencies across assets including maintenance crew routing, max  aly— (b'x +clz + d'v + etu)
>

- - ) X R Ao

spare part logistics, opportunistic maintenance, and operational implications s A ot . W )ty 112 9. 4 365%

N . . " . 8 Sf — i Unused Life 8.62 6855 728%

* Modeled planned maintenance actions as first stage variables, and corrective et oDy < . . — ;m i ";2“
+ . . . . x v S g — i i = n

maintenance, rerouting and operational decisions as second stage variables ExdFosGy Sh fnersy . 319500 588500 L 4S8

* Demonstrated significant improvements in maintenance cost (>45.8%), and crew costs 366000 576000 4365

(>36.5%) by proactive planning of O&M decisions using prognostic predictions.

Sanda WAYNE STATE ~ [OWA STATE sdea
Argonne & (i) i, e Qe o W © N mmw

Mu+Nz+Pv <n ——s Degradation update constraints




Sandia National Laboratories

Intelligent Model Fidelity (IMoFi)

Award # DE-EE0034226:"Physics-Based Data-Driven Modelling to Accelerate Accurate PV Integration”
Principal Investigator: Matthew Reno

(
Customer Transformers\

ldentify which transformer

each meter is connected toJ

(e - - =
Setting and State Determlnatlon\
Determine the controls andstate of

g distribution automation equipment )\ A=

~{ Parameter Estimation |

Estimate cable lengthand
topology of the low-

voltage system PA

e Reconfiguration 2

Detect the state of
switches, including load

_— -
! ,/ ¢
o /"'

(" Detailed Load Modeling

Improved spatial and temporal

_transters to other feeders resolution for phase-specific,
e | - : N \voltage-sensmve load models
X PV Detection o i
AN % Detect PV configuration (size, v
3 zz_\\ - . 2 : :
q- tilt, and azimuth) and settings
v A L ) and etings > ]

Phase Identification
ldentify the phase of laterals and
\phase ofsingle-phasetransformersj

s : : '
PV Dynamic Modeling ||
Determine dynamic .\

model parameters for PV

L &
) Challenges:
Introduction: g . :
* Acquiring and processing the data for these methods is
* Modern distribution analysis algorithms and tools are continually challenging. For example, instantaneous vs average voltage
improving (hosting capacity analysis, QSTS, and DERMS) but use measurements, missing data, time synch between data sources,
feeder models based on manual data entry that is prone to error and insufficient measurement resolution; additionally, utilities
and often out of date with little validation or calibration often have differing data collection practices

* The PV hosting capacity is highly sensitive to the feeder model - A
few volts difference can result in PV hosting capacity varying by

Best Practices:

AMI Data Collection Recommendations

o
more than 200/’ Data Consideration Recommendation
* Improved models provide more accurate interconnection Measurement Interval 15-minute intervals
. . . . Meter Precision At least one decimal on voltage (240), real power, and reactive power measurements
screening (reducmg PV interconnection COStS) Meter Bias Bias does not impact the algorithms developed in this project
o e - Measurement Noise < 0.35% maximum uniform random noise is recommended
e Recent additions of Advanced Meterlng Infrastructure (AMI), or I —— For most situations using 15-min intervals will compensate for time synch issues.
- f y 'me synchronization However correct date/time and daylight savings time settings are required
smart meters, PrOV|de measurements o eaCh customers POWGr Missing Data Developed algorithms are robust to some amounts of missing data
. - 5 c - hs i ded ini d di he algorithm. 6- hs i
consumption, and possibly other quantities, such as voltage, that Data Availability O e ended 2 bost moatica. o2 MOMASES
provide new insights and levels of accuracy in distribution system
modeling How is AI/ML used in this project?:

* This project leveraged unsupervised ML (phase identification),
Key Takeaways: regression techniques (parameter estimation &
meter/transforming pairing), deep learning (PV detection), and

* Leveraging physics, such as power-flow equations and models, . . o
correlation analysis (meter/transform pairing)

within data-driven methods is key
» Data management is a critical consideration for successful AI/ML * Algorithms published as open-source:

implementations https://github.com/sandialabs/distribution-system-model-calibration
* Data-driven methods provide significant time-saving benefits * Algorithms published on NRECA Open Modeling Framework:
compared to traditional model calibration methods https://www.omf.coop/ (phase ID)

* Tools should interface directly in utility GIS systems

Physics-Based
Models

[I] M.].Reno, et al,“IMoFi (Intelligent Model Fidelity): Physics-Based Data-Driven Grid Modeling to Accelerate Accurate PV Integration Field Measurements 4 High-Resqution )
Updated Accomplishments”, Technical Report SAND?2022-12669, Sandia National Laboratories, 2022. .

[2] L. Blakely, M. J. Reno, “Phase Identification Using Co-Association Matrix Ensemble Clustering," IET Smart Grid, 2020. AMI, SCADA, Novel Algorithms Accurate

[3] B. D. Pena, L. Blakely, M. ]. Reno,“Data-Driven Detection of Phase Changes in Evolving Distribution Systems”, TPEC, 2022. PMU, PV, ... Distribution

[4] L. Blakely and M. J. Reno, “Identification and Correction of Errors in Pairing AMI Meters and Transformers,” IEEE Power and Energy

Conference at lllinois (PECI), 2021. \_ System Models

[5] L. Blakely, M. ]. Reno,“Identification and Correction of Errors in Pairing AMI Meters and Transformers”, PECI, 2021. Data-Driven
[6] C. Gomez-Peces, S. Grijalva, M. ]. Reno, L. Blakely, “Estimation of PV Location Based on Voltage Sensitivities in Distribution Systems with A h
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Discrete Voltage Regulation Equipment”, IEEE Powertech, 2021.
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