Lab Reporting Batch ID: DX093

EDD Filename: DX093_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value
-	

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX093

Lab Reporting Batch ID: DX093 Laboratory: LL

EDD Filename: DX093_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: AQ	ВВ			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1540B370528	6/7/2011 5:28:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 0CDF	3.82 pg/L 2.66 pg/L 1.23 pg/L 0.888 pg/L 1.05 pg/L 0.712 pg/L 1.06 pg/L 1.50 pg/L 1.50 pg/L 1.18 pg/L 0.895 pg/L 1.18 pg/L 0.343 pg/L 0.343 pg/L 0.368 pg/L 9.88 pg/L 3.74 pg/L	EB11-SA8N-SB-052611
BLK1710B371926	6/23/2011 7:26:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF CODD OCDF	6.67 pg/L 1.14 pg/L 0.982 pg/L 0.509 pg/L 0.363 pg/L 0.434 pg/L 0.765 pg/L 0.608 pg/L 0.249 pg/L 0.310 pg/L 0.530 pg/L 0.557 pg/L 13.7 pg/L	EB09-SA5DN-SS-052611

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB09-SA5DN-SS-052611(RES)	1,2,3,4,6,7,8-HPCDD	5.91 pg/L	5.91U pg/L
EB09-SA5DN-SS-052611(RES)	1,2,3,4,6,7,8-HPCDF	0.601 pg/L	0.601U pg/L
EB09-SA5DN-SS-052611(RES)	1,2,3,4,7,8,9-HPCDF	0.365 pg/L	0.365U pg/L
EB09-SA5DN-SS-052611(RES)	1,2,3,4,7,8-HXCDF	0.256 pg/L	0.256U pg/L
EB09-SA5DN-SS-052611(RES)	1,2,3,6,7,8-HXCDD	0.287 pg/L	0.287U pg/L
EB09-SA5DN-SS-052611(RES)	1,2,3,6,7,8-HXCDF	0.345 pg/L	0.345U pg/L
EB09-SA5DN-SS-052611(RES)	1,2,3,7,8,9-HXCDD	0.429 pg/L	0.429U pg/L
EB09-SA5DN-SS-052611(RES)	1,2,3,7,8,9-HXCDF	0.183 pg/L	0.183U pg/L
EB09-SA5DN-SS-052611(RES)	1,2,3,7,8-PECDD	0.349 pg/L	0.349U pg/L
EB09-SA5DN-SS-052611(RES)	2,3,4,6,7,8-HXCDF	0.169 pg/L	0.169U pg/L
EB09-SA5DN-SS-052611(RES)	2,3,4,7,8-PECDF	0.426 pg/L	0.426U pg/L
EB09-SA5DN-SS-052611(RES)	OCDD	14.2 pg/L	14.2U pg/L
EB09-SA5DN-SS-052611(RES)	OCDF	1.12 pg/L	1.12U pg/L
EB11-SA8N-SB-052611(RES)	1,2,3,4,6,7,8-HPCDD	2.70 pg/L	2.70U pg/L
EB11-SA8N-SB-052611(RES)	1,2,3,4,6,7,8-HPCDF	1.71 pg/L	1.71U pg/L
EB11-SA8N-SB-052611(RES)	1,2,3,4,7,8,9-HPCDF	0.593 pg/L	0,593U pg/L
EB11-SA8N-SB-052611(RES)	1,2,3,4,7,8-HxCDD	0,457 pg/L	0.457U pg/L
EB11-SA8N-SB-052611(RES)	1,2,3,4,7,8-HXCDF	0.439 pg/L	0.439U pg/L
EB11-SA8N-SB-052611(RES)	1,2,3,6,7,8-HXCDD	0.323 pg/L	0,323U pg/L
EB11-SA8N-SB-052611(RES)	1,2,3,7,8,9-HXCDD	0.483 pg/L	0.483U pg/L

9/27/2011 12:07:23 PM ADR version 1.4.0.111 Page 1 of 6

Lab Reporting Batch ID: DX093

Laboratory: LL

EDD Filename: DX093_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB11-SA8N-SB-052611(RES)	1,2,3,7,8,9-HXCDF	0.579 pg/L	0.579U pg/L
EB11-SA8N-SB-052611(RES)	1,2,3,7,8-PECDD	0.411 pg/L	0.411U pg/L
EB11-SA8N-SB-052611(RES)	1,2,3,7,8-PECDF	0.247 pg/L	0.247U pg/L
EB11-SA8N-SB-052611(RES)	2,3,4,6,7,8-HXCDF	0.882 pg/L	0.882U pg/L
EB11-SA8N-SB-052611(RES)	2,3,4,7,8-PECDF	0.695 pg/L	0.695U pg/L
EB11-SA8N-SB-052611(RES)	2,3,7,8-TCDD	0.301 pg/L	0.301U pg/L
EB11-SA8N-SB-052611(RES)	OCDD	6.60 pg/L	6.60U pg/L
EB11-SA8N-SB-052611(RES)	OCDF	2.18 pg/L	2.18U pg/L

Method: 1613 Matrix: SO	BB			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1600B371929	6/10/2011 7:29:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 0CDD 0CDD	0.165 ng/Kg 0.0916 ng/Kg 0.0916 ng/Kg 0.0865 ng/Kg 0.0405 ng/Kg 0.0410 ng/Kg 0.0321 ng/Kg 0.0212 ng/Kg 0.0266 ng/Kg 0.0765 ng/Kg 0.0422 ng/Kg 0.0406 ng/Kg 0.0475 ng/Kg 0.0451 ng/Kg 0.0851 ng/Kg 0.0262 ng/Kg 0.0358 ng/Kg 0.272 ng/Kg	DUP09-SA8N-QC-052611 SL-002-SA8N-SB-9.0-10.0 SL-170-SA5DN-SS-0.0-0.5 SL-171-SA5DN-SS-0.0-0.5 SL-173-SA5DN-SS-0.0-0.5 SL-173-SA5DN-SS-0.0-0.5 SL-173-SA5DN-SS-0.0-0.5 SL-174-SA5DN-SS-0.0-0.5 SL-184-SA5DN-SS-0.0-0.5 SL-184-SA5DN-SS-0.0-0.5 SL-184-SA5DN-SS-0.0-0.5 SL-184-SA5DN-SS-0.0-0.5
BLK1640B370048	6/19/2011 12:48:00 AM	2,3,7,8-TCDF	0.0331 ng/Kg	SL-002-SA8N-SB-4.0-5.0 SL-008-SA8N-SB-4.0-5.0 SL-008-SA8N-SB-9.0-10.0 SL-164-SA5DN-SS-0.0-0.5 SL-165-SA5DN-SS-0.0-0.5 SL-174-SA5DN-SS-0.0-0.5 SL-176-SA5DN-SS-0.0-0.5
BLK1640B371219	6/15/2011 12:19:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDD	0.441 ng/Kg 0.125 ng/Kg 0.129 ng/Kg 0.0282 ng/Kg 0.0646 ng/Kg 0.0834 ng/Kg 0.0428 ng/Kg 0.0428 ng/Kg 0.103 ng/Kg 0.0678 ng/Kg 0.0678 ng/Kg 0.0741 ng/Kg 0.0741 ng/Kg 0.0312 ng/Kg 0.0312 ng/Kg 1.24 ng/Kg	SL-002-SA8N-SB-4.0-5.0 SL-008-SA8N-SB-4.0-5.0 SL-008-SA8N-SB-9.0-10.0 SL-164-SA5DN-SS-0.0-0.5 SL-165-SA5DN-SS-0.0-0.5 SL-174-SA5DN-SS-0.0-0.5 SL-176-SA5DN-SS-0.0-0.5

9/27/2011 12:07:23 PM ADR version 1.4.0.111 Page 2 of 6

Lab Reporting Batch ID: DX093 Laboratory: LL

EDD Filename: DX093_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP09-SA8N-QC-052611(RES)	1,2,3,4,6,7,8-HPCDD	0.193 ng/Kg	0.193U ng/Kg
DUP09-SA8N-QC-052611(RES)	1,2,3,4,6,7,8-HPCDF	0.128 ng/Kg	0.128U ng/Kg
DUP09-SA8N-QC-052611(RES)	1,2,3,4,7,8,9-HPCDF	0.0500 ng/Kg	0.0500U ng/Kg
DUP09-SA8N-QC-052611(RES)	1,2,3,4,7,8-HXCDF	0.0210 ng/Kg	0.0210U ng/Kg
DUP09-SA8N-QC-052611(RES)	1,2,3,6,7,8-HXCDD	0.0196 ng/Kg	0.0196U ng/Kg
DUP09-SA8N-QC-052611(RES)	1,2,3,6,7,8-HXCDF	0.0253 ng/Kg	0.0253U ng/Kg
DUP09-SA8N-QC-052611(RES)	1,2,3,7,8,9-HXCDD	0.0217 ng/Kg	0.0217U ng/Kg
DUP09-SA8N-QC-052611(RES)	1,2,3,7,8,9-HXCDF	0.0377 ng/Kg	0.0377U ng/Kg
DUP09-SA8N-QC-052611(RES)	1,2,3,7,8-PECDD	0.0255 ng/Kg	0.0255U ng/Kg
DUP09-SA8N-QC-052611(RES)	1,2,3,7,8-PECDF	0.0318 ng/Kg	0.0318U ng/Kg
DUP09-SA8N-QC-052611(RES)	2,3,4,6,7,8-HXCDF	0.0688 ng/Kg	0.0688U ng/Kg
DUP09-SA8N-QC-052611(RES)	2,3,4,7,8-PECDF	0.0611 ng/Kg	0.0611U ng/Kg
DUP09-SA8N-QC-052611(RES)	OCDD	0.568 ng/Kg	0.568U ng/Kg
DUP09-SA8N-QC-052611(RES)	OCDF	0.173 ng/Kg	0.173U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.519 ng/Kg	0.519U ng/Kg
SL-002-SA8N-SB-4,0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0,0465 ng/Kg	0.0465U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0386 ng/Kg	0.0386U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0232 ng/Kg	0.0232U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0223 ng/Kg	0.0223U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0295 ng/Kg	0.0295U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0257 ng/Kg	0.0257U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0642 ng/Kg	0.0642U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0345 ng/Kg	0.0345U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0398 ng/Kg	0.0398U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0511 ng/Kg	0.0511U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0277 ng/Kg	0.0277U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0831 ng/Kg	0.0831U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0342 ng/Kg	0.0342U ng/Kg
SL-002-SA8N-SB-4.0-5.0(RES)	OCDD	1.49 ng/Kg	1.49U ng/Kg
SL-002-SA8N-SB-4,0-5,0(RES)	OCDF	0.131 ng/Kg	0.131U ng/Kg
SL-002-SA8N-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.520 ng/Kg	0.520U ng/Kg
SL-002-SA8N-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.232 ng/Kg	0.232U ng/Kg
SL-002-SA8N-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.257 ng/Kg	0.257U ng/Kg
SL-002-SA8N-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.122 ng/Kg	0.122U ng/Kg
SL-002-SA8N-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.102 ng/Kg	0.102U ng/Kg
SL-002-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.204 ng/Kg	0.204U ng/Kg
SL-002-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0895 ng/Kg	0.0895U ng/Kg
SL-002-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0849 ng/Kg	0.0849U ng/Kg
SL-002-SA8N-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.182 ng/Kg	0.182U ng/Kg
SL-002-SA8N-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.111 ng/Kg	0.111U ng/Kg

9/27/2011 12:07:23 PM ADR version 1.4.0.111 Page 3 of 6

Lab Reporting Batch ID: DX093 Laboratory: LL

EDD Filename: DX093_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-002-SA8N-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0355 ng/Kg	0.0355U ng/Kg
SL-002-SA8N-SB-9.0-10.0(RES)	OCDF	0.578 ng/Kg	0,578U ng/Kg
SL-008-SA8N-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.07 ng/Kg	1.07U ng/Kg
SL-008-SA8N-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.438 ng/Kg	0.438U ng/Kg
SL-008-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.265 ng/Kg	0.265U ng/Kg
SL-008-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.313 ng/Kg	0.313U ng/Kg
SL-008-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.252 ng/Kg	0.252U ng/Kg
SL-008-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.214 ng/Kg	0.214U ng/Kg
SL-008-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.355 ng/Kg	0.355U ng/Kg
SL-008-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.321 ng/Kg	0,321U ng/Kg
SL-008-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.188 ng/Kg	0,188U ng/Kg
SL-008-SA8N-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.241 ng/Kg	0.241U ng/Kg
SL-008-SA8N-SB-4.0-5.0(RES)	OCDD	3.93 ng/Kg	3.93U ng/Kg
SL-008-SA8N-SB-4.0-5.0(RES)	OCDF	1.04 ng/Kg	1.04U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.600 ng/Kg	0.600U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0907 ng/Kg	0.0907U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0363 ng/Kg	0.0363U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0339 ng/Kg	0.0339U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0378 ng/Kg	0.0378U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0596 ng/Kg	0.0596U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RE\$)	1,2,3,6,7,8-HXCDF	0.0489 ng/Kg	0.0489U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0750 ng/Kg	0.0750U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0456 ng/Kg	0.0456U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0572 ng/Kg	0.0572U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0487 ng/Kg	0.0487U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0399 ng/Kg	0.0399U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0,0862 ng/Kg	0.0862U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	OCDD	2.65 ng/Kg	2.65U ng/Kg
SL-008-SA8N-SB-9.0-10.0(RES)	OCDF	0.302 ng/Kg	0.302U ng/Kg
SL-164-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.215 ng/Kg	0.215U ng/Kg
SL-164-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.197 ng/Kg	0.197U ng/Kg
SL-164-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0544 ng/Kg	0.0544U ng/Kg
SL-165-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.322 ng/Kg	0.322U ng/Kg
SL-165-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0640 ng/Kg	0.0640U ng/Kg
SL-170-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.105 ng/Kg	0.105U ng/Kg
SL-170-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.140 ng/Kg	0.140U ng/Kg
SL-170-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.204 ng/Kg	0.204U ng/Kg
SL-170-SA5DN-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.214 ng/Kg	0.214U ng/Kg
SL-170-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.336 ng/Kg	0.336U ng/Kg
SL-170-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0480 ng/Kg	0.0480U ng/Kg

9/27/2011 12:07:23 PM ADR version 1.4.0.111 Page 4 of 6

Lab Reporting Batch ID: DX093

Laboratory: LL

EDD Filename: DX093_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-171-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.421 ng/Kg	0.421U ng/Kg
SL-172-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.136 ng/Kg	0,136U ng/Kg
SL-172-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.119 ng/Kg	0.119U ng/Kg
SL-172-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.0679 ng/Kg	0.0679U ng/Kg
SL-172-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.203 ng/Kg	0.203U ng/Kg
SL-172-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.172 ng/Kg	0.172U ng/Kg
SL-172-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0626 ng/Kg	0.0626U ng/Kg
SL-172-\$A5DN-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.141 ng/Kg	0.141U ng/Kg
SL-172-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.196 ng/Kg	0.196U ng/Kg
SL-172-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0650 ng/Kg	0.0650U ng/Kg
SL-173-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.403 ng/Kg	0.403U ng/Kg
SL-173-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.223 ng/Kg	0.223U ng/Kg
SL-173-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.177 ng/Kg	0.177U ng/Kg
SL-173-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0375 ng/Kg	0.0375U ng/Kg
SL-174-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.396 ng/Kg	0.396U ng/Kg
SL-174-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.203 ng/Kg	0.203U ng/Kg
SL-174-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.291 ng/Kg	0.291U ng/Kg
SL-174-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.124 ng/Kg	0.124U ng/Kg
SL-175-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0863 ng/Kg	0.0863U ng/Kg
SL-176-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.343 ng/Kg	0.343U ng/Kg
SL-176-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.366 ng/Kg	0,366U ng/Kg
SL-176-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.327 ng/Kg	0.327U ng/Kg
SL-176-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0980 ng/Kg	0.0980U ng/Kg
SL-179-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.146 ng/Kg	0.146U ng/Kg
SL-179-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.189 ng/Kg	0.189U ng/Kg
SL-179-SA5DN-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.231 ng/Kg	0.231U ng/Kg
SL-179-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.389 ng/Kg	0.389U ng/Kg
SL-179-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0659 ng/Kg	0.0659U ng/Kg
SL-180-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.126 ng/Kg	0.126U ng/Kg
SL-180-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0,161 ng/Kg	0.161U ng/Kg
SL-180-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.195 ng/Kg	0,195U ng/Kg
SL-180-SA5DN-SS-0,0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.168 ng/Kg	0.168U ng/Kg
SL-180-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.305 ng/Kg	0.305U ng/Kg
SL-180-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0482 ng/Kg	0.0482U ng/Kg
SL-181-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.399 ng/Kg	0.399U ng/Kg
SL-181-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0453 ng/Kg	0.0453U ng/Kg
SL-182-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.178 ng/Kg	0.178U ng/Kg
SL-182-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.152 ng/Kg	0.152U ng/Kg
SL-182-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.135 ng/Kg	0,135U ng/Kg
SL-182-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.125 ng/Kg	0.125U ng/Kg

9/27/2011 12:07:23 PM ADR version 1.4.0.111 Page 5 of 6

Lab Reporting Batch ID: DX093 Laboratory: LL

EDD Filename: DX093_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	A STATE OF THE STA			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-182-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0698 ng/Kg	0.0698U ng/Kg
SL-182-SA5DN-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.174 ng/Kg	0.174U ng/Kg
SL-182-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.259 ng/Kg	0.259U ng/Kg
SL-182-SA5DN-\$\$-0.0-0.5(RE\$)	2,3,7,8-TCDD	0.0212 ng/Kg	0.0212U ng/Kg
SL-183-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.195 ng/Kg	0.195U ng/Kg
SL-183-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.199 ng/Kg	0.199U ng/Kg
SL-183-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.138 ng/Kg	0.138U ng/Kg
SL-183-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0596 ng/Kg	0.0596U ng/Kg
SL-183-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.282 ng/Kg	0.282U ng/Kg
SL-184-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.104 ng/Kg	0.104U ng/Kg
SL-184-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.0870 ng/Kg	0.0870U ng/Kg
SL-184-SA5DN-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.0939 ng/Kg	0.0939U ng/Kg
SL-184-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.107 ng/Kg	0.107U ng/Kg
SL-184-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.106 ng/Kg	0.106U ng/Kg
SL-184-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0636 ng/Kg	0.0636U ng/Kg
SL-184-SA5DN-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.118 ng/Kg	0,118U ng/Kg
SL-184-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.242 пд/Кд	0.242U ng/Kg
SL-184-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0441 ng/Kg	0.0441U ng/Kg

Page 6 of 6

Field Duplicate RPD Report

Lab Reporting Batch ID: DX093

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

EDD Filename: DX093	_v1
Method: 160.3M	

Method: 160.3M Matrix: SO					
	Concentr	ation (%)			
Analyte	SL-002-SA8N-SB-4.0- 5.0	DUP09-SA8N-QC- 052611	Sample RPD	eQAPP RPD	Flag
MOISTURE	16.3	15.3	6		No Qualifiers Applied

Method:	1613B
Matrix:	SO

	Concentrat	Concentration (ng/Kg)			
Analyte	SL-002-SA8N-SB-4.0- 5.0	DUP09-SA8N-QC- 052611	Sample RPD	eQAPP RPD	Flag ,
1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF OCDF	0.0386 0.0223 0.0295 0.0257 0.0345 0.0398 0.0511 0.0831 0.131	0.0500 0.0210 0.0196 0.0253 0.0377 0.0255 0.0318 0.0611 0.173	26 6 40 2 9 44 47 31 28	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	No Qualifiers Applied
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDD	0.519 0.0465 0.0232 0.0642 0.0277 0.0342 0.0368 1.49	0.193 0.128 5.86 U 0.0217 0.0688 1.17 U 1.17 U 0.568	92 93 200 99 85 200 200 90	50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)

ADR version 1.4.0.111 9/27/2011 12:02:55 PM Page 1 of 1

Lab Reporting Batch ID: DX093 Laboratory: LL

EDD Filename: DX093_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB09-SA5DN-SS-052611	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	5.91 0.601 0.365 0.256 0.287 0.345 0.429 0.183 0.349 0.169 0.426 14.2	10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)
EB11-SA8N-SB-052611	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	2.70 1.71 0.593 0.457 0.439 0.323 0.483 0.579 0.411 0.247 0.882 0.695 0.301 6.60 2.18	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	PAL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613B

SO

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP09-SA8N-QC-052611	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0,3,4,7,8-PECDF	JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	0.193 0.128 0.0500 0.0210 0.0196 0.0253 0.0217 0.0377 0.0255 0.0318 0.0688 0.0611 0.568 0.173	5.86 5.86 5.86 5.86 5.86 5.86 5.86 5.86	PQL	ng/Kg	J (all detects)

Lab Reporting Batch ID: DX093 Laboratory: LL

EDD Filename: DX093_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-002-SA8N-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	明明のののは、日本のは、日本のは、日本のは、日本のは、日本のは、日本のは、日本のは、	0.519 0.0465 0.0386 0.0232 0.0223 0.0295 0.0257 0.0642 0.0345 0.0398 0.0511 0.0277 0.0831 0.0342 0.0368 1.49 0.131	5.87 5.87 5.87 5.87 5.87 5.87 5.87 5.87	PQL	ng/Kg	J (all detects)
SL-002-SA8N-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	B	0.520 0.232 0.257 0.122 0.233 0.102 0.172 0.154 0.204 0.0895 0.0849 0.182 0.111 0.0355 0.0223 2.00 0.578	5.84 5.84 5.84 5.84 5.84 5.84 5.84 5.84	PQL	ng/Kg	J (all detects)
SL-008-SA8N-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JB JBQ JBQ JB	1.07 0.438 0.265 0.237 0.313 0.252 0.214 0.355 0.321 0.188 0.225 0.278 0.241 0.0719 3.93 1.04	5.85 5.85 5.85 5.85 5.85 5.85 5.85 5.85	PQL	ng/Kg	J (all detects)

Lab Reporting Batch ID: DX093

EDD Filename: DX093_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO Lab Reporting RLSamplelD Analyte Qual Result Limit Type Units Flag SL-008-SA8N-SB-9.0-10.0 0.600 1,2,3,4,6,7,8-HPCDD JB 5.69 **PQL** ng/Kg 1,2,3,4,6,7,8-HPCDF 0.0907 5.69 **PQL** JB ng/Kg JB 0.0363 5.69 PQL ng/Kg 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD **JBQ** 0.0339 5.69 **PQL** ng/Kg PQL JΒ 1,2,3,4,7,8-HXCDF 0.0378 5.69 ng/Kg 1,2,3,6,7,8-HXCDD **JBQ** 0.0596 5.69 **PQL** ng/Kg PQL 0.0489 1,2,3,6,7,8-HXCDF 5.69 ng/Kg JB 1,2,3,7,8,9-HXCDD **JBQ** 0.0750 5.69 **PQL** ng/Kg J (all detects) PQL **JBQ** 0.0456 5.69 ng/Kg 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD JB 0.0572 5.69 **PQL** ng/Kg 1,2,3,7,8-PECDF PQL ng/Kg JB. 0.0487 5.69 2,3,4,6,7,8-HXCDF **JBQ** 0.0399 5.69 **PQL** ng/Kg PQL 2,3,4,7,8-PECDF JB 0.0862 5.69 ng/Kg OCDD JB 2.65 11.4 **PQL** ng/Kg OCDF JB 0.302 **PQL** ng/Kg 11.4 SL-164-SA5DN-SS-0.0-0.5 JB 1,2,3,4,6,7,8-HPCDF 1.94 5.42 PQL ng/Kg 1,2,3,4,7,8,9-HPCDF JB 0.215 5.42 **PQL** ng/Kg 5.42 ng/Kg 1,2,3,4,7,8-HxCDD JB 0.191 **PQL** 1,2,3,4,7,8-HXCDF JB 0.494 5.42 PQL ng/Kg 5.42 1,2,3,6,7,8-HXCDD JΒ 0.881 **PQL** ng/Kg **PQL** 1,2,3,6,7,8-HXCDF JB 0.261 5.42 ng/Kg 5.42 1,2,3,7,8,9-HXCDD JB 0.854 **PQL** ng/Kg J (all detects) 1,2,3,7,8,9-HXCDF JΒ 0.605 5.42 **PQL** ng/Kg **JBQ** 1,2,3,7,8-PECDD 0.197 5.42 PQL ng/Kg **PQL** 5.42 1,2,3,7,8-PECDF JΒ 0.531 ng/Kg 2,3,4,6,7,8-HXCDF **JBQ** 0.419 5.42 **PQL** ng/Kg **PQL** 2,3,4,7,8-PECDF JB. 0.804 5.42 ng/Kg 2,3,7,8-TCDD **JBQ** 0.0544 1.08 **PQL** ng/Kg PQL ng/Kg 2,3,7,8-TCDF 0.386 1.08 JQ **OCDF** JB 5.29 10.8 **PQL** ng/Kg JB SL-165-SA5DN-SS-0.0-0.5 1,2,3,4,7,8,9-HPCDF 1.04 5.33 **PQL** ng/Kg JΒ 5.33 1,2,3,4,7,8-HxCDD 0.622 **PQL** ng/Kg 1,2,3,4,7,8-HXCDF JB 0.617 5.33 **PQL** ng/Kg JB **PQL** 1,2,3,6,7,8-HXCDD 2.35 5.33 ng/Kg 1,2,3,6,7,8-HXCDF JB 0.631 5.33 PQL ng/Kg 1,2,3,7,8,9-HXCDD JΒ 5.33 **PQL** 1.06 ng/Kg 1,2,3,7,8,9-HXCDF JB 0.322 5.33 **PQL** ng/Kg J (all detects) 1,2,3,7,8-PECDD **PQL** JB 0.345 5.33 ng/Kg 1,2,3,7,8-PECDF JB 1.86 5.33 **PQL** ng/Kg 2,3,4,6,7,8-HXCDF JΒ 0.753 5.33 **PQL** ng/Kg 2,3,4,7,8-PECDF JB 0.749 5.33 **PQL** ng/Kg 2,3,7,8-TCDD JB 0.0640 1.07 **PQL** ng/Kg 2,3,7,8-TCDF 0.524 1.07 **PQL** ng/Kg

Laboratory: LL

Lab Reporting Batch ID: DX093 Laboratory: LL

EDD Filename: DX093_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Watrix: 50	,	Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-170-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	JB JBQ JBQ JB JB JBQ JBQ JBQ JBQ JBQ	4.31 0.625 0.105 0.140 0.314 0.286 0.229 0.206 0.204 0.273 0.287 0.214 0.336 0.0480 0.0809	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	PQL	ng/Kg	J (all detects)
SL-171-SA5DN-SS-0.0-0.5	OCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF	JB JB JB JB JB JB JB JB JB JB JB JB JB J	2.27 0.421 1.74 0.783 0.729 3.49 1.88 0.324 0.975 1.07 0.220 0.225	5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.24	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-172-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0,2,3,7,8-TCDD	JB JBQ JB JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	1.20 0.136 0.119 0.0679 0.430 0.110 0.376 0.203 0.172 0.0626 0.141 0.196 0.0650 0.0468 2.65	5.31 5.31 5.31 5.31 5.31 5.31 5.31 5.31	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX093

Laboratory: LL

EDD Filename: DX093_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

	1						
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Eloa
•	<u> </u>	<u> </u>	Result	Limit	Туре	 	Flag
SL-173-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	0.403	5.26	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.460	5.26	PQL	.ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.480	5.26	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.80	5.26	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.676	5.26	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF	JB JB	1.08 0.223	5.26 5.26	PQL PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-1ACDF 1,2,3,7,8-PECDD	JB JB	0.223	5.26	PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.230	5.26	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.665	5.26	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.898	5.26	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0375	1.05	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.380	1.05	PQL	ng/Kg	
SL-174-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	3.48	5.10	PQL	ng/Kg	
•	1,2,3,4,7,8,9-HPCDF	JB	0.396	5.10	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.288	5.10	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.408	5.10	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.09	5.10	PQL	ng/Kg	
<u> </u>	1,2,3,6,7,8-HXCDF	JB	0.311	5.10	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.646	5.10	PQL	ng/Kg	14 11 1 4 4 5
-	1,2,3,7,8,9-HXCDF	JB	0.203	5.10	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB JB	0.291 0.465	5.10 5.10	PQL PQL	ng/Kg	
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JB JB	0.465	5.10	PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF	JB JB	0.376	5.10	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.407	1.02	PQL	ng/Kg	
]	2,3,7,8-TCDF	J	0.124	1.02	PQL	ng/Kg	
	OCDF	JΒ	8.25	10.2	PQL	ng/Kg	
SL-175-SA5DN-SS-0.0-0.5	1,2,3,4,7,8-HxCDD	JBQ	1.80	5.21	PQL	ng/Kg	
1	1,2,3,4,7,8-HXCDF	JB	1.53	5.21	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	1.65	5.21	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	4.34	5.21	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.464	5.21	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	1.06	5.21	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.307	5.21	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	2.76	5.21	PQL	ng/Kg	
	2,3,4,7,8-PECDF 2,3,7,8-TCDD	JB JBQ	0.528 0.0863	5.21 1.04	PQL PQL	ng/Kg	
	2,3,7,8-1CDD 2,3,7,8-TCDF	J	0.0663	1.04	PQL	ng/Kg ng/Kg	
SL-176-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	2.13	5.14	PQL	ng/Kg	
02-170-070511-00-0:0-0:0	1,2,3,4,7,8,9-HPCDF	JB	0.343	5.14	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.261	5.14	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	1.51	5.14	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.24	5.14	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.984	5.14	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.933	5.14	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.366	5.14	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.327	5.14	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.483	5.14	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.473	5.14	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.566	5.14	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0980	1.03	PQL	ng/Kg	
	2,3,7,8-TCDF OCDF	JB JB	0.364 4.22	1.03 10.3	PQL PQL	ng/Kg ng/Kg	
l <u> </u>	0001	νĐ	4.22	10.3	- VL	Hyrny	

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX093 Laboratory: LL

EDD Filename: DX093_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO				,			
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SampleID SL-179-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	20年年 20年 20年 20年 20年 20年 20年 20年 20年 20年	1.37 0.146 0.208 0.207 0.526 0.220 0.378 0.189 0.277 0.260 0.231 0.389 0.0659	5.23 5.23 5.23 5.23 5.23 5.23 5.23 5.23	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
	2,3,7,8-TCDF OCDF	J JB	0.323 3.18	1.05 10.5	PQL PQL	ng/Kg ng/Kg	
SL-180-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	まではなるまままないませんないま	1.06 0.126 0.161 0.316 0.371 0.179 0.276 0.195 0.284 0.243 0.168 0.305 0.0482 0.115 3.19	5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-181-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	а <mark>в в в в в в в в в в</mark> в в в в в в в в в	0.399 0.576 1.20 2.22 0.490 1.26 0.469 0.382 0.301 0.521 0.759 0.0453 0.526	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	PQL	ng/Kg	J (all detects)

Lab Reporting Batch ID: DX093 Laboratory: LL

EDD Filename: DX093_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Matrix: SO							
	·	Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-182-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	1.95	5.23	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.178	5.23	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.152	5.23	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.472	5.23	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.566	5.23	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.132	5.23	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.407	5.23	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.135	5.23	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.125	5.23	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0698	5.23	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.174	5.23	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.259	5.23	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0212	1.05	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.167	1.05	PQL	ng/Kg	
	OCDF	JB	5.36	10.5	PQL	ng/Kg	
SL-183-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	2.53	5.10	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.195	5.10	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.402	5.10	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.199	5.10	PQL	ng/Kg	•
	1,2,3,6,7,8-HXCDD	JB	1.19	5.10	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.254	5.10	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.835	5.10	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.138	5.10	PQL	ng/Kg	- (
	1,2,3,7,8-PECDD	JB	0.357	5.10	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0596	5.10	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.270	5.10	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.282	5.10	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.104	1.02	PQL	ng/Kg	
	OCDF	JB	5.25	10.2	PQL	ng/Kg	
SL-184-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	0.898	5.17	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.104	5.17	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0870	5.17	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.374	5.17	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.318	5.17	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0939 0.264	5.17 5.17	PQL PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB JB	0.264	5.17	PQL	ng/Kg	L(all datacta)
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JB JB	0.107	5.17	PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECD5 1,2,3,7,8-PECDF	JB	0.0636	5.17	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0030	5.17	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.118	5.17	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.242	1.03	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.161	1.03	PQL	ng/Kg	
	OCDF	JB	2.26	10.3	PQL	ng/Kg	
	TOOD!	0.0	۷.۷۰	10.5	1 0(1	119/179	

LDC #: 2625D(

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

MA N/A

Was the overall quality and usability of the data acceptable?

#		Date	Sample ID	Finding	(Sl∪M) -Ascociated Samples	Qualifications
			SC-176-SA 5DIFSS-0,0-05	2,3,7 8-7CDF	186298	R/H
		!				h
				and the state of t		
Comr	Comments:					
ŀ						

SAMPLE DELIVERY GROUP

DX094

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
27-May-2011	DUP09-SA5DN-QC-052711	6301508	FD	METHOD	1613B	IţI
27-May-2011	SL-091-SA5DN-SS-0.0-0.5	6301498	N	METHOD	1613B	111
27-May-2011	SL-092-SA5DN-SS-0.0-0.5	6301499	N	METHOD	1613B	m
27-May-2011	SL-093-SA5DN-SS-0.0-0.5	6301500	N	METHOD	1613B	Ш
27-May-2011	SL-117-SA5DN-SS-0.0-0.5	6301501	N	METHOD	16 1 3B	III
27-May-2011	SL-117-SA5DN-SS-0.0-0.5MS	6301502	MS	METHOD	1613B	III
27-May-2011	SL-117-SA5DN-SS-0.0-0.5MSD	6301503	M\$D	METHOD	1613B	Ш
27-May-2011	SL-118-SA5DN-SS-0.0-0.5	6301504	N	METHOD	1613B	III
27-May-2011	SL-119-SA5DN-SS-0.0-0.5	6301505	N	METHOD	1613B	III
27-May-2011	SL-071-SA5DN-SS-0.0-0.5	6301497	N	METHOD	1 613B	111
27-May-2011	SL-122-SA5DN-SS-0.0-0.5	6301507	N	METHOD	1613B	111
27-May-2011	SL-003-SA8N-SB-4.0-5.0	6301509	N	METHOD	1613B	411
27-May-2011	SL-003-SA8N-SB-9.0-10.0	6301510	N	METHOD	1613B	OI .
27-May-2011	SL-120-SA5DN-SS-0.0-0.5	6301506	N	METHOD	1613B	111
31-May-2011	SL-013-SA5DN-SB-9.0-10.0	6302810	N	METHOD	1613B	111
31-May-2011	SL-008-SA5DN-SB-4.0-5.0	6302804	N	METHOD	1613B	111
31-May-2011	SL-008-SA5DN-SB-9.0-10.0	6302805	N	METHOD	1613B	III
31-May-2011	SL-010-SA5DN-SB-4.0-5.0	6302806	N	METHOD	1613B	ш
31-May-2011	SL-010-SA5DN-SB-9.0-10.0	6302807	N	METHOD	1613B	111
31-May-2011	DUP-10-SA5DN-QC-053111	6302808	FD	METHOD	1613B	111
31-May-2011	SL-013-SA5DN-SB-4.0-5.0	6302809	N	METHOD	1613B	Ш

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Collected: 5/27/2011 10:55:00 Sample ID: DUP09-SA5DN-QC-052711 Analysis Type: RES Dilution: 1 Data Review Lab Lab DLRLReason Analyte Result Qual DLType RLUnits Qual Code Type MDL PQL FD 1,2,3,4,6,7,8-HPCDD 95.1 В 0.119 5.50 ng/Kg 1,2,3,4,6,7,8-HPCDF 7.10 В 0.0331 MDL 5.50 **PQL** J FD ng/Kg 0.544 JB 0.0397 MDL 5.50 **PQL** Z. FD 1,2,3,4,7,8,9-HPCDF ng/Kg J J 0.0501 MDL PQL. J 1,2,3,4,7,8-HxCDD 0.817 5.50 ng/Kg Z, FD 1,2,3,4,7,8-HXCDF 0.633 JB 0.0383 MDL 5.50 **PQL** J Z, FD ng/Kg 0.0519 MDL PQL J 1,2,3,6,7,8-HXCDD 3.25 JB 5.50 ng/Kg Z, FD ng/Kg J 1,2,3,6,7,8-HXCDF 0.454 JB 0.0367 MDL 5.50 **PQL** Z, FD J 2.34 JB 0.0492 MDL 5.50 PQL 1,2,3,7,8,9-HXCDD ng/Kg Z, FD 1.25 JB 0.0398 MDL 5.50 **PQL** ng/Kg J Z, FD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 0.526 JB 0.0444 MDL 5.50 PQL J Z, FD ng/Kg 0.560 0.0328 MDL 5.50 **PQL** ng/Kg 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 0.727 JΒ 0.0365 MDL 5.50 PQL J Z, FD ng/Kg 2,3,4,7,8-PECDF 1.07 JB 0.0295 MDL 5.50 PQL ng/Kg J Z, FD 0.0789 JB 0.0149 MDL 1.10 PQL UJ B, FD 2,3,7,8-TCDD ng/Kg 2,3,7,8-TCDF 0.255 JB 0.0562 MDL 1.10 PQL ng/Kg 0.0859 OCDD 1510 В MDL 11.0 PQL J FD ng/Kg J OCDF 25.7 В 0.0310 MDL 11.0 PQL ng/Kg FD

Sample ID: DUP-10-SA5DN-QC-053111 Collected: 5/31/2011 11:45:00 Analysis Type: RES Dilution: 1

Sample ID: DOF-10-SASDN-QC-055111	Conec	teu. 5/3//2	.011 11.45.	.00 A	iiaiysis i)	pe. KLS		Dilution. 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,4,6,7,8-HPCDD	0.594	JBQ	0.0264	MDL	5.51	PQL	ng/Kg	U	В			
1,2,3,4,6,7,8-HPCDF	0.198	JB	0.0121	MDL	5.51	PQL	ng/Kg	UJ	B, FD			
1,2,3,4,7,8,9-HPCDF	0.0355	JBQ	0.0218	MDL	5.51	PQL	ng/Kg	บม	B, FD			
1,2,3,4,7,8-HxCDD	0.0136	U	0.0136	MDL	5.51	PQL	ng/Kg	บา	FD			
1,2,3,4,7,8-HXCDF	0.0545	JB	0.00962	MDL	5.51	PQL	ng/Kg	UJ	B, FD			
1,2,3,6,7,8-HXCDD	0.0227	JBQ	0.0143	MDL	5.51	PQL	ng/Kg	UJ	B, FD			
1,2,3,6,7,8-HXCDF	0.0269	JBQ	0.00848	MDL	5.51	PQL	ng/Kg	ΝJ	B, FD			
1,2,3,7,8,9-HXCDD	0.0490	JBQ	0.0136	MDL	5.51	PQL	ng/Kg	UJ	B, FD			
1,2,3,7,8,9-HXCDF	0.0233	JBQ	0.0103	MDL	5.51	PQL	ng/Kg	UJ	B, FD			
1,2,3,7,8-PECDD	0.0199	JB	0.0154	MDL	5.51	PQL	ng/Kg	UJ	B, FD			
1,2,3,7,8-PECDF	0.0304	JBQ	0.00792	MDL	5.51	PQL	ng/Kg	UJ	B, FD			
2,3,4,6,7,8-HXCDF	0.0658	JBQ	0.00882	MDL	5.51	PQL	ng/Kg	U	В			
2,3,4,7,8-PECDF	0.0641	JB	0.00826	MDL	5.51	PQL	ng/Kg	UJ	B, FD			

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/27/2011 1:50:47 PM ADR version 1.4.0.111 Page 1 of 13

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method Categor	y: SVOA		
Method:	1613B	Matrix:	so

Sample ID: DUP-10-SA5DN-QC-053111 Collected: 5/31/2011 11:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDD	0.0230	JBQ	0.0160	MDL	1.10	PQL	ng/Kg	U	В
OCDD	2.38	JB	0.0264	MDL	11.0	PQL	ng/Kg	υJ	B, FD
OCDF	0.214	JBQ	0.0284	MDL	11.0	PQL	ng/Kg	UJ	B, FD

Sample ID: SL-003-SA8N-SB-4.0-5.0 Collected: 5/27/2011 9:10:00 Analysis Type: RES Dilution: 1

campie is: es ecc crieit es ille cie				_	,	,			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.535	JB	0.0296	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0675	JBQ	0.0145	MDL,	5.82	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0243	JB	0.0191	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0134	JBQ	0.00912	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0208	JBQ	0.0166	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0137	JBQ	0.00818	MDL	5.82	PQL	ng/Kg	U	В
,2,3,7,8,9-HXCDD	0.0386	JBQ	0.0152	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0312	JBQ	0.00889	MDL	5.82	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0106	JBQ	0.00818	MDL	5.82	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0418	JBQ	0.00770	MDL	5.82	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0226	JBQ	0.0179	MDL	1.16	PQL	ng/Kg	υ	В
OCDD	3.17	JB	0.0255	MDL	11.6	PQL	ng/Kg	U	В
OCDF	0.174	JBQ	0.0329	MDL	11.6	PQL	ng/Kg	U	В
OCDF	0.174	JBQ	0.0329	MDL	11.6	PQL	ng/Kg	U	

Sample ID: SL-003-SA8N-SB-9.0-10.0 Collected: 5/27/2011 9:30:00 Analysis Type: RES Dilution: 1

sumple is: as are an investigation						•			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.582	JBQ	0.0489	MDL	6.14	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.129	JBQ	0.0195	MDL	6.14	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0876	JBQ	0.0263	MDL	6.14	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0515	JQ	0.0333	MDL	6.14	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0595	JB	0.0155	MDL	6.14	PQL	ng/Kg	C	В
1,2,3,6,7,8-HXCDD	0.0656	JBQ	0.0340	MDL	6.14	PQL	ng/Kg	Ü	В
1,2,3,6,7,8-HXCDF	0.0321	JB	0.0138	MDL	6.14	PQL	ng/Kg	Ü	В
1,2,3,7,8,9-HXCDD	0.0711	JBQ	0.0320	MDL	6.14	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0693	JBQ	0.0150	MDL	6.14	PQL	ng/Kg	Ü	В
1,2,3,7,8-PECDD	0.0314	JBQ	0.0192	MDL	6.14	PQL	ng/Kg	C	В
1,2,3,7,8-PECDF	0.0296	JB	0.0115	MÐL	6.14	PQL.	ng/Kg	Ü	В

^{*} denotes a non-reportable result

9/27/2011 1:50:47 PM ADR version 1.4.0.111 Page 2 of 13

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-003-SA8N-SB-9.0-10.0 Collected: 5/27/2011 9:30:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,6,7,8-HXCDF	0.0411	JBQ	0.0138	MDL	6.14	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0732	JB	0.0103	MDL	6.14	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0435	JBQ	0.0183	MDL	1.23	PQL	ng/Kg	U	В
OCDD	1.59	JB	0.0396	MDL	12.3	PQL	ng/Kg	U	В
OCDF	0.273	JB	0.0399	MDL	12.3	PQL	ng/Kg	U	В

Sample ID: SL-008-SA5DN-SB-4.0-5.0 Collected: 5/31/2011 3:44:00 Analysis Type: RES Dilution: 1

Sample ID: SL-008-SA5DN-SB-4.0-5.0	Collec	tea: 513/112	011 3:44:0	U A	naiysis iy	/pe: K⊑o			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.428	JBQ	0.0329	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0757	JBQ	0.0125	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0382	JBQ	0.0152	MDL	5.77	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0243	J	0.0180	MDL	5.77	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0296	JBQ	0.0129	MDL	5.77	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0220	JB	0.0194	MDL	5.77	PQL	ng/Kg	Ų	В
1,2,3,6,7,8-HXCDF	0.0225	JB	0.0116	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0536	JBQ	0.0181	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0474	JBQ	0.0115	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0213	JBQ	0.00997	MDL	5.77	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0277	JB	0.0108	MDL	5.77	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0463	JB	0.00892	MDL	5.77	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0273	JBQ	0.0187	MDL	1.15	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.0191	JBQ	0.0151	MDL	1.15	PQL	ng/Kg	U	В
OCDD	1.19	JB	0.0342	MDL	11.5	PQL	ng/Kg	U	В
OCDF	0.163	JВ	0.0294	MDL	11.5	PQL	ng/Kg	υ	В

Sample ID: SL-008-SA5DN-SB-9.0-10.0 Collected: 5/31/2011 3:49:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.425	JB	0.0238	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0823	JB	0.00957	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0332	JBQ	0.0128	MDL	5.52	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0411	J	0.0151	MDL	5.52	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0748	JB	0.00990	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0645	JBQ	0.0156	MDL	5.52	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-008-SA5DN-SB-9.0-10.0 Collected: 5/31/2011 3:49:00 Analysis Type: RES Dilution: 1

Analyte .	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDF	0.0645	JB	0.00957	MDL.	5.52	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0762	JBQ	0.0148	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0544	JB	0.0109	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0779	JBQ	0.0145	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.112	JB	0.00768	MDL	5.52	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.0584	JB	0.00979	MDL	5.52	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.121	JB	0.00712	MDL	5.52	PQL	ng/Kg	υ	В
2,3,7,8-TCDD	0.0141	JB	0.0133	MDL	1.10	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.0153	JBQ	0.0127	MDL	1.10	PQL	ng/Kg	υ	В
OCDD	1.29	JB	0.0263	MDL	11.0	PQL	ng/Kg	U	В
OCDF	0.127	JB	0.0216	MDL	11.0	PQL	ng/Kg	U	В

Sample ID: SL-010-SA5DN-SB-4.0-5.0 Collected: 5/31/2011 2:25:00 Analysis Type: RES Dilution: 1

Sample ID. SE-STO-SHODIT-SD-4.0-3.0	Conec	010 112		7.	nanyono ny	pco			onacion. I
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.481	JB	0.0237	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.260	JВ	0.0101	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0480	JB	0.0139	MDL	5.56	PQL	ng/Kg	U	8
1,2,3,4,7,8-HxCDD	0.0762	JQ	0.0157	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.164	JB	0.0156	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0882	JB	0.0162	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.134	JBQ	0.0143	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0865	JBQ	0.0149	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.110	JB	0.0164	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.133	JB	0.0162	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.215	JB	0.00826	MDL	5.56	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.153	JBQ	0.0147	MDL	5.56	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.208	JB	0.00803	MDL	5.56	PQL	ng/Kg	υ	В
2,3,7,8-TCDD	0.0448	JBQ	0.0138	MDL	1.11	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.0252	JBQ	0.0108	MDL	1.11	PQL	ng/Kg	U	В
OCDD	1.31	JB	0.0266	MDL	11.1	PQL	ng/Kg	U	В
OCDF	0.228	JB	0.0216	MDL	11.1	PQL	ng/Kg	U	В

Page 4 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX094

Laboratory: LL

EDD Filename: DX094_v1

eQAPP Name: CDM_SSFL_110509

Method Category	? SVOA		de de la	en la tradición de diferencia
Method:	1613B	Matrix:	so	

Sample ID: SL-010-SA5DN-SB-9.0-10.0 Collected: 5/31/2011 2:31:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason DLRL Units Analyte Result Qual Type Type Qual Code 0.445 JВ 0.0219 MDL **PQL** Ų В 1,2,3,4,6,7,8-HPCDD 5.62 ng/Kg 0.207 0.00882 MDL 5.62 PQL ng/Kg U В 1,2,3,4,6,7,8-HPCDF JB U В JBQ 0.0123 MDL 5.62 **PQL** ng/Kg 1,2,3,4,7,8,9-HPCDF 0.0541 JQ 0.0131 MDL 5.62 **PQL** Z 1,2,3,4,7,8-HxCDD 0.0458 ng/Kg PQL U 0.0610 JΒ 0.0116 MDL 5.62 ng/Kg В 1,2,3,4,7,8-HXCDF 0.0725 JBQ 0.0139 MDL 5.62 PQL ng/Kg U 1,2,3,6,7,8-HXCDD U В JВ 5.62 **PQL** 1,2,3,6,7,8-HXCDF 0.0668 0.0109 MDL ng/Kg U JBQ 0.0128 MDL 5.62 **PQL** ng/Kg В 1,2,3,7,8,9-HXCDD 0.0733 PQL JΒ 0.0121 MDL 5.62 ng/Kg U R 1,2,3,7,8,9-HXCDF 0.0670 1,2,3,7,8-PECDD U 0.0527 JBQ 0.0135 MDL 5.62 **PQL** ng/Kg В JB 0.00813 MDL 5.62 PQL ng/Kg U В 1,2,3,7,8-PECDF 0.0594 2,3,4,6,7,8-HXCDF 0.0817 JВ 0.0110 MDL 5.62 **PQL** ng/Kg U В JВ 0.00756 MDL 5.62 PQL U В 2,3,4,7,8-PECDF 0.102 ng/Kg OCDD 1.13 JΒ 0.0242 MDL 11.2 **PQL** ng/Kg U

Sample ID: SL-013-SA5DN-SB-4.0-5.0 Collected: 5/31/2011 10:11:00 Analysis Type: RES Dilution: 1

0.0220

MDL

11,2

POL

ng/Kg

u

В

JBQ

0.201

Sample ID: SE-013-SASDN-SB-4.0-8.0	Conec	Conected: 9/3/1/2011 10:11:30 Analysis Type. NC3								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.422	JB	0.0195	MDL	5.66	PQL	ng/Kg	Ų	В	
1,2,3,4,6,7,8-HPCDF	0.217	JB	0.00844	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0278	JB	0.0138	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0299	JBQ	0.0131	MDL	5.66	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDD	0.131	JBQ	0.0158	MDL	5.66	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.0427	JB	0.0113	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.237	JB	0.0153	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.268	JB	0.0127	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0197	JBQ	0.0145	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0362	JBQ	0.00763	MDL	5.66	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0577	JBQ	0.0121	MDL	5.66	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0825	JBQ	0.00751	MDL	5.66	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0203	JBQ	0.0132	MDL	1.13	PQL	ng/Kg	υ	В	
OCDD	1.32	JB	0.0276	MDL	11.3	PQL	ng/Kg	υ	В	
OCDF	0.207	JB	0.0239	MDL	11.3	PQL	ng/Kg	υ	В	

^{*} denotes a non-reportable result

OCDF

Page 5 of 13

Lab Reporting Batch ID: DX094

Laboratory: LL

EDD Filename: DX094_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B

Matrix: SC

Sample ID: SL-013-SA5DN-SB-9.0-10.0 Co	ollected: 5/31/2011 10:19:00	Analysis Type: RES	Dilution: 1
--	------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.445	JB	0.0218	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.208	JBQ	0.00788	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0233	JBQ	0.0130	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0438	JBQ	0.0107	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0277	JBQ	0.0116	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0250	JBQ	0.00982	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0238	JBQ	0.0112	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0135	JB	0.00788	MDL	5.53	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0716	JBQ	0.00970	MDL	5.53	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0384	JBQ	0.00742	MDL	5.53	PQL	ng/Kg	υ	В
OCDD	0.990	JBQ	0.0299	MDL	11.1	PQL	ng/Kg	U	В
OCDF	0.184	JB	0.0209	MDL	11.1	PQL	ng/Kg	U	В

Sample ID: SL-071-SA5DN-SS-0.0-0.5

Collected: 5/27/2011 8:25:00

Analysis Type: RES

Dilution: 1

Sample 12. 0 = 17. 17. 10 = 1. 0 = 1.0									
Analyte	Lab Result	Lab Qual	DL_	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.502	JB	0.0842	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	1.06	J	0.130	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.720	JB	0.0731	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.24	JB	0.137	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.550	JB	0.0720	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.74	JВ	0.129	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.478	JB	0.0827	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.561	JB	0.0522	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	2.11	JB	0.0622	MDL	5.40	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.517	JB	0.0691	MDL	5.40	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.743	JB	0.0576	MDL	5.40	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0837	JB	0.0233	MDL	1.08	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.397	JB	0.134	MDL	1.08	PQL	ng/Kg	J	Z

Sample ID: SL-091-SA5DN-SS-0.0-0.5

Collected: 5/27/2011 9:05:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.655	JB	0.0772	MDL	5.38	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.985	J	0.0975	MDL	5.38	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/27/2011 1:50:47 PM

ADR version 1.4.0.111

Page 6 of 13

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method Categ	ory: SVOA	The second of the second	To be strong or the		
Method:	1613B		Matrix:	so	

Sample ID: SL-091-SA5DN-SS-0.0-0.5 Collected: 5/27/2011 9:05:00 Analysis Type: RES Dilution: 1

·	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,7,8-HXCDF	0.773	JB	0.0728	MDL	5.38	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	3.37	JB	0.102	MDL	5.38	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.447	JBQ	0.0686	MDL	5.38	PQL	ng/Kg	j	Z
1,2,3,7,8,9-HXCDD	2.52	JB	0.0985	MDL	5.38	PQL	ng/Kg	j	Z
1,2,3,7,8,9-HXCDF	1.00	JBQ	0.0899	MDL	5.38	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.951	JBQ	0.0534	MDL	5.38	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.747	JB	0.0459	MDL	5.38	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.657	JB	0.0696	MDL	5.38	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.714	JB	0.0463	MDL	5.38	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0818	JB	0.0225	MDL	1.08	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.302	JB	0.101	MDL	1.08	PQL	ng/Kg	J	Z

Sample ID: SL-092-SA5DN-SS-0.0-0.5 Collected: 5/27/2011 9:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.39	JB	0.0383	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.334	JB	0.0503	MDL	5.36	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.503	J	0.0698	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.746	JB	0.0540	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.95	JB	0.0725	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.358	JB	0.0526	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.64	JB	0.0706	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.958	JB	0.0589	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.315	JB	0.0438	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.679	JB	0.0483	MDL	5.36	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.492	JB	0.0523	MDL	5.36	PQL	ng/Kg	J	Z.
2,3,4,7,8-PECDF	0.790	JB	0.0465	MDL	5.36	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0317	JBQ	0.0223	MDL	1.07	PQL	ng/Kg	U	В

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.53	JB	0.0412	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.360	JB	0.0539	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.583	JQ	0.102	MDL	5.43	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

9/27/2011 1:50:47 PM ADR version 1.4.0.111 Page 7 of 13

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-093-SA5DN-SS-0.0-0.5 Collected: 5/27/2011 10:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	0.582	JB	0.0639	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.23	JB	0.111	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.340	JBQ	0.0616	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.78	JB	0.105	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.13	JΒ	0.0713	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.400	JB	0.0511	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.606	JB	0.0511	MDL	5.43	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.537	JB	0.0609	MDL	5.43	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.936	JB	0.0477	MDL	5.43	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0487	JB	0.0245	MDL	1.09	PQL	ng/Kg	Ų	В
2,3,7,8-TCDF	0.310	JB	0.0854	MDL	1.09	PQL	ng/Kg	J	Z

Sample ID: SL-117-SA5DN-SS-0.0-0.5 Collected: 5/27/2011 10:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	15.6	В	0.0886	MDL	5.50	PQL	ng/Kg	J	Q, FD
1,2,3,4,6,7,8-HPCDF	2.47	JB	0.101	MDL	5.50	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8,9-HPCDF	0.165	JB	0.146	MDL	5.50	PQL	ng/Kg	υJ	B, FD
1,2,3,4,7,8-HxCDD	0.180	J	0.0755	MDL	5.50	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	0.137	JBQ	0.0593	MDL	5.50	PQL	ng/Kg	UJ	B, FD
1,2,3,6,7,8-HXCDD	0.855	JB	0.0802	MDL	5.50	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDF	0.215	JB	0.0572	MDL	5.50	PQL	ng/Kg	ΩĴ	B, FD
1,2,3,7,8,9-HXCDD	0.693	JB	0.0779	MDL	5.50	PQL	ng/Kg	J	Z, FD
1,2,3,7,8,9-HXCDF	0.642	JB	0.0696	MDL	5.50	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDD	0.127	JBQ	0.0413	MDL	5.50	PQL	ng/Kg	υJ	B, FD
1,2,3,7,8-PECDF	0.757	JB	0.0441	MDL	5.50	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.206	JB	0.0572	MDL	5.50	PQL	ng/Kg	υJ	B, FD
2,3,4,7,8-PECDF	0.300	JBQ	0.0425	MDL	5.50	PQL	ng/Kg	UJ	B, FD
2,3,7,8-TCDD	0.0217	U	0.0217	MDL	1.10	PQL	ng/Kg	UJ	FD
2,3,7,8-TCDF	0.219	JB	0.0981	MDL	1.10	PQL	ng/Kg	J	Z
OCDD	180	В	0.101	MDL	11.0	PQL	ng/Kg	J	Q, Q, FD
OCDF	7.02	JB	0.0602	MDL	11.0	PQL	ng/Kg	J	Z, FD

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX094

Laboratory: LL

EDD Filename: DX094_v1

eQAPP Name: CDM_SSFL_110509

Method Categ	ory: SVOA 🦈		
Method:	1613B	Matrix:	SO

Sample ID: SL-118-SA5DN-SS-0.0-0.5	Collec	Collected: 5/27/2011 11:05:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	3.07	JB	0.0305	MDL	5.26	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.348	JBQ	0.0432	MDL	5.26	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.327	J	0.0727	MDL	5.26	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.485	JB	0.0559	MDL	5.26	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	1.83	JB	0.0766	MDL	5.26	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.373	JB	0.0540	MDL	5.26	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.43	JB	0.0758	MDL	5.26	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	1.38	JB	0.0613	MDL	5.26	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.407	JB	0.0431	MDL	5.26	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.454	JB	0.0206	MDL	5.26	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.363	JB	0.0546	MDL	5.26	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.417	JB	0.0200	MDL	5.26	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0941	JB	0.0195	MDL	1.05	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.150	JBQ	0.0352	MDL	1.05	PQL	ng/Kg	U	В	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.98	JB	0.103	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	3.41	J	0.132	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.88	JB	0.0711	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.70	JB	0.0698	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.55	JB	0.0711	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.97	JB	0.0814	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.31	JB	0.0563	MDL	5.49	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	2.12	JB	0.0684	MDL	5.49	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.45	JB	0.0530	MDL	5.49	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.226	JВ	0.0203	MDL	1.10	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.722	JВ	0.117	MDL	1.10	PQL	ng/Kg	J	Z
OCDD	17900	EB	0.371	MDL	11.0	PQL	ng/Kg	J	*XI

Sample ID: SL-120-SA5DN-SS-0.0-0.5 Collected: 5/27/2011 11:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.28	JB	0.0755	MDL	5.27	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 9/27/2011 1:50:47 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DX094

Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-120-SA5DN-SS-0.0-0.5	Collected: 5/27/2011 11:25:00	Analysis Type: RES	Dilution: 1
------------------------------------	-------------------------------	--------------------	-------------

Sample ID: SL-120-SA5DN-SS-0.0-0.5	Collec	Collected: 5/27/2011 11:25:00 Analysis Typ						1	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HxCDD	2.29	J	0.0932	MDL	5.27	PQL	ng/Kg	L	Z	
1,2,3,4,7,8-HXCDF	1.46	JB	0.0687	MDL	5.27	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.941	JB	0.0645	MDL	5.27	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	1.40	JB	0.0648	MDL	5.27	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	1.20	JB	0.0756	MDL	5.27	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	1.07	JB	0.0545	MDL	5.27	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.12	JB	0.0610	MDL	5.27	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	1.27	JB	0.0516	MDL	5.27	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.161	JB	0.0237	MDL	1.05	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.532	JB	0.116	MDL	1.05	PQL	ng/Kg	J	Z	
OCDD	5320	EB	0.195	MDL	10.5	PQL	ng/Kg	J	*XI	

Sample ID: SL-122-SA5DN-SS-0.0-0.5

Collected: 5/27/2011 9:25:00

Analysis Type: RES

Dilution: 1

Out., p. c			7117019010 197001 11				2,,4,,5,,,		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	5.69	JB	0.0439	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.401	JBQ	0.0472	MDL	5.78	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	1.15	J	0.0844	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.494	JB	0.0569	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	3.24	JB	0.0885	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.345	JBQ	0.0547	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.05	JB	0.0840	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.27	JB	0.0527	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.98	JB	0.0604	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.416	JB	0.0404	MDL	5.78	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.484	JB	0.0495	MDL	5.78	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.270	JB	0.0368	MDL	5.78	PQL	ng/Kg	υ	В
2,3,7,8-TCDD	0.155	JBQ	0.0225	MDL	1.16	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.389	JB	0.0987	MDL	1.16	PQL	ng/Kg	J	Z

Page 10 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX094

EDD Filename: DX094_v1

EQAPP Name: CDM_SSFL_110509

Reason Code Legend

Description
Duplicate Sample Count = 0
Duplicate Sample Count > 1
Illogical Fraction
Laboratory Control Sample Count = 0
Laboratory Control Sample Count > 1
Matrix Spike Sample Count = 0
Matrix Spike Sample Count > 1
Method Blank Sample Count = 0
Method Blank Sample Count > 1
Percent Moisture
Compound Quantitation and Reported CRQLs
ICP Serial Dilution
Calibration Blank Contamination
Method Blank Contamination
Continuing Calibration Verification Correlation Coefficient
Continuing Calibration Verification Percent Difference Lower Estimation
Continuing Calibration Verification Percent Difference Lower Rejection
Continuing Calibration Verification Percent Difference Upper Estimation
Continuing Calibration Verification Percent Difference Upper Rejection
Initial Calibration Correlation Coefficient
Initial Calibration Percent Relative Standard Deviation
Initial Calibration Verification Correlation Coefficient
Initial Calibration Verification Percent Difference Lower Estimation
Initial Calibration Verification Percent Difference Lower Rejection
Initial Calibration Verification Percent Difference Upper Estimation
Initial Calibration Verification Percent Difference Upper Rejection
Laboratory Control Precision
Laboratory Duplicate Precision
Laboratory Triplicate Precision
Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509 Equipment Blank Contamination

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
н	Sampling to Leaching Estimation
н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
I	Internal Standard Estimation
ī	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
M	Continuing Tune
М	Initial Tune
M	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Laboratory Triplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX094 Laboratory: LL

eQAPP Name: CDM SSFL 110509

Matrix Spike Upper Rejection R Continuing Calibration Verification Percent Recovery Lower Estimation R Continuing Calibration Verification Percent Recovery Lower Rejection R Continuing Calibration Verification Percent Recovery Upper Estimation R Continuing Calibration Verification Percent Recovery Upper Rejection R Continuing Calibration Verification Relative Response Factor R Initial Calibration Relative Response Factor R Initial Calibration Verification Percent Recovery Lower Estimation R Initial Calibration Verification Percent Recovery Lower Rejection R Initial Calibration Verification Percent Recovery Upper Estimation R Initial Calibration Verification Percent Recovery Upper Rejection R Initial Calibration Verification Relative Response Factor s Surrogate/Tracer Recovery Lower Estimation S Surrogate/Tracer Recovery Lower Rejection S Surrogate/Tracer Recovery Upper Estimation s Surrogate/Tracer Recovery Upper Rejection Т Trip Blank Contamination z Reporting Limit Z Reporting Limit > Project Maximum Contamination Limit Z Reporting Limit Trace Value

EDD Filename: DX094 v1

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX094

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO	В			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1610B371343	6/14/2011 1:43:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD CCDD CCDF	0.392 ng/Kg 0.236 ng/Kg 0.107 ng/Kg 0.0820 ng/Kg 0.0749 ng/Kg 0.0553 ng/Kg 0.0556 ng/Kg 0.0995 ng/Kg 0.0393 ng/Kg 0.0495 ng/Kg 0.0978 ng/Kg 0.0978 ng/Kg 0.0978 ng/Kg 0.0978 ng/Kg 0.0792 ng/Kg 0.0293 ng/Kg 0.0325 ng/Kg 0.908 ng/Kg 0.347 ng/Kg	DUP09-SA5DN-QC-052711 DUP-10-SA5DN-QC-053111 SL-003-SA8N-SB-4.0-5.0 SL-003-SA8N-SB-9.0-10.0 SL-008-SA5DN-SB-4.0-5.0 SL-008-SA5DN-SB-9.0-10.0 SL-010-SA5DN-SB-4.0-5.0 SL-010-SA5DN-SB-4.0-5.0 SL-013-SA5DN-SB-9.0-10.0 SL-013-SA5DN-SB-9.0-10.0 SL-071-SA5DN-SB-9.0-10.0 SL-071-SA5DN-SS-0.0-0.5 SL-093-SA5DN-SS-0.0-0.5 SL-193-SA5DN-SS-0.0-0.5 SL-117-SA5DN-SS-0.0-0.5 SL-118-SA5DN-SS-0.0-0.5 SL-118-SA5DN-SS-0.0-0.5 SL-119-SA5DN-SS-0.0-0.5 SL-119-SA5DN-SS-0.0-0.5 SL-119-SA5DN-SS-0.0-0.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP09-SA5DN-QC-052711(RES)	2,3,7,8-TCDD	0.0789 ng/Kg	0.0789U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	1,2,3,4,6,7,8-HPCDD	0.594 ng/Kg	0.594U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	1,2,3,4,6,7,8-HPCDF	0.198 ng/Kg	0.198U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	1,2,3,4,7,8,9-HPCDF	0,0355 ng/Kg	0.0355U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	1,2,3,4,7,8-HXCDF	0.0545 ng/Kg	0.0545U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	1,2,3,6,7,8-HXCDD	0.0227 ng/Kg	0.0227U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	1,2,3,6,7,8-HXCDF	0.0269 ng/Kg	0.0269U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	1,2,3,7,8,9-HXCDD	0.0490 ng/Kg	0.0490U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	1,2,3,7,8,9-HXCDF	0.0233 ng/Kg	0.0233U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	1,2,3,7,8-PECDD	0.0199 ng/Kg	0.0199U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	1,2,3,7,8-PECDF	0.0304 ng/Kg	0.0304U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	2,3,4,6,7,8-HXCDF	0.0658 ng/Kg	0.0658U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	2,3,4,7,8-PECDF	0.0641 ng/Kg	0,0641U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	2,3,7,8-TCDD	0.0230 ng/Kg	0.0230U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	OCDD	2,38 ng/Kg	2.38U ng/Kg
DUP-10-SA5DN-QC-053111(RES)	OCDF	0.214 ng/Kg	0.214U ng/Kg
SL-003-SA8N-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,535 ng/Kg	0.535U ng/Kg
SL-003-SA8N-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0675 ng/Kg	0.0675U ng/Kg
SL-003-SA8N-SB-4,0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0243 ng/Kg	0,0243U ng/Kg
SL-003-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0134 ng/Kg	0.0134U ng/Kg
SL-003-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0208 ng/Kg	0.0208U ng/Kg
SL-003-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0,0137 ng/Kg	0.0137U ng/Kg
SL-003-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0386 ng/Kg	0.0386U ng/Kg
SL-003-\$A8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0312 ng/Kg	0.0312U ng/Kg
SL-003-SA8N-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0106 ng/Kg	0.0106U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/27/2011 1:50:17 PM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	YANA NATABILIPAN MAKAMBAN PARAMI			
Method Blan Sample ID	k	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-003-SA8N-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0418 ng/Kg	0.0418U ng/Kg
SL-003-SA8N-SB-4.0-5.0(RES)	2,3.7,8-TCDD	0.0226 ng/Kg	0.0226U ng/Kg
SL-003-SA8N-SB-4.0-5.0(RES)	OCDD	3.17 ng/Kg	3.17U ng/Kg
SL-003-SA8N-SB-4.0-5.0(RES)	OCDF	0.174 ng/Kg	0.174U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.582 ng/Kg	0.582U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.129 ng/Kg	0.129U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0876 ng/Kg	0.0876U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0595 ng/Kg	0.0595U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0656 ng/Kg	0.0656U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0321 ng/Kg	0.0321U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0711 ng/Kg	0.0711U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0693 ng/Kg	0.0693U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0314 ng/Kg	0.0314U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0296 ng/Kg	0.0296U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0411 ng/Kg	0.0411U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0732 ng/Kg	0.0732U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0435 ng/Kg	0.0435U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	OCDD	1.59 ng/Kg	1.59U ng/Kg
SL-003-SA8N-SB-9.0-10.0(RES)	OCDF	0.273 ng/Kg	0.273U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.428 ng/Kg	0.428U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0757 ng/Kg	0.0757U ng/Kg
SL-008-\$A5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0382 ng/Kg	0.0382U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0296 ng/Kg	0,0296U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0220 ng/Kg	0.0220U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0225 ng/Kg	0.0225U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0,0536 ng/Kg	0,0536U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0474 ng/Kg	0.0474U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0213 ng/Kg	0,0213U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0277 ng/Kg	0.0277U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0463 ng/Kg	0,0463U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0273 ng/Kg	0.0273U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0,0191 ng/Kg	0,0191U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	OCDD	1.19 ng/Kg	1.19U ng/Kg
SL-008-SA5DN-SB-4.0-5.0(RES)	OCDF	0.163 ng/Kg	0.163U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.425 ng/Kg	0.425U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0823 ng/Kg	0.0823U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0332 ng/Kg	0.0332U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/27/2011 1:50:17 PM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	en e			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-008-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0748 ng/Kg	0.0748U ng/Kg
SL-008-SA5DN-SB-9,0-10.0(RES)	1,2,3,8,7,8-HXCDD	0.0645 ng/Kg	0.0645U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0645 ng/Kg	0.0645U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0762 ng/Kg	0.0762U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0,0544 ng/Kg	0.0544U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0779 ng/Kg	0.0779U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.112 ng/Kg	0.112U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0584 ng/Kg	0.0584U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.121 ng/Kg	0.121U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0141 ng/Kg	0.0141U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0153 ng/Kg	0.0153U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	OCDD	1.29 ng/Kg	1.29U ng/Kg
SL-008-SA5DN-SB-9.0-10.0(RES)	OCDF	0.127 ng/Kg	0,127U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.481 ng/Kg	0.481U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.260 ng/Kg	0.260U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0480 ng/Kg	0.0480U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.164 ng/Kg	0.164U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0882 ng/Kg	0.0882U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.134 ng/Kg	0,134U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0865 ng/Kg	0.0865U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.110 ng/Kg	0,110U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.133 ng/Kg	0.133U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.215 ng/Kg	0,215U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.153 ng/Kg	0.153U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.208 ng/Kg	0,208U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0448 ng/Kg	0.0448U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RE\$)	2,3,7,8-TCDF	0.0252 ng/Kg	0.0252U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	OCDD	1.31 ng/Kg	1.31U ng/Kg
SL-010-SA5DN-SB-4.0-5.0(RES)	OCDF	0.228 ng/Kg	0.228U ng/Kg
SL-010-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.445 ng/Kg	0.445U ng/Kg
SL-010-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.207 ng/Kg	0.207U ng/Kg
SL-010-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0541 ng/Kg	0.0541U ng/Kg
SL-010-\$A5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0610 ng/Kg	0.0610U ng/Kg
SL-010-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0725 ng/Kg	0.0725U ng/Kg
SL-010-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0668 ng/Kg	0.0668U ng/Kg
SL-010-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0733 ng/Kg	0.0733U ng/Kg
SL-010-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0670 ng/Kg	0.0670U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/27/2011 1:50:17 PM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method: 161 Matrix: SO	3B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-010-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0527 ng/Kg	0.0527U ng/Kg
SL-010-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0594 ng/Kg	0.0594U ng/Kg
SL-010-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0817 ng/Kg	0.0817U ng/Kg
SL-010-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.102 ng/Kg	0,102U ng/Kg
SL-010-SA5DN-SB-9.0-10.0(RES)	OCDD	1.13 ng/Kg	1.13U ng/Kg
SL-010-SA5DN-SB-9.0-10.0(RES)	OCDF	0.201 ng/Kg	0.201U ng/Kg
SL-013-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.422 ng/Kg	0.422U ng/Kg
SL-013-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.217 ng/Kg	0.217U ng/Kg
SL-013-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0278 ng/Kg	0.0278U ng/Kg
SL-013-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0299 ng/Kg	0.0299U ng/Kg
SL-013-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.131 ng/Kg	0.131U ng/Kg
SL-013-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0427 ng/Kg	0.0427U ng/Kg
SL-013-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.237 ng/Kg	0.237U ng/Kg
SL-013-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.268 ng/Kg	0.268U ng/Kg
SL-013-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0197 ng/Kg	0.0197U ng/Kg
SL-013-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0362 ng/Kg	0.0362U ng/Kg
SL-013-SA5DN-SB-4,0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0577 ng/Kg	0.0577U ng/Kg
SL-013-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0825 ng/Kg	0,0825U ng/Kg
SL-013-SA5DN-SB-4,0-5,0(RE\$)	2,3,7,8-TCDD	0,0203 ng/Kg	0.0203U ng/Kg
SL-013-SA5DN-SB-4.0-5.0(RES)	OCDD	1.32 ng/Kg	1.32U ng/Kg
SL-013-SA5DN-SB-4.0-5.0(RES)	OCDF	0.207 ng/Kg	0.207U ng/Kg
SL-013-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.445 ng/Kg	0,445U ng/Kg
SL-013-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.208 ng/Kg	0.208U ng/Kg
SL-013-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0233 ng/Kg	0.0233U ng/Kg
SL-013-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0438 ng/Kg	0.0438U ng/Kg
SL-013-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0277 ng/Kg	0.0277U ng/Kg
SL-013-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0250 ng/Kg	0.0250U ng/Kg
SL-013-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0238 ng/Kg	0.0238U ng/Kg
SL-013-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0135 ng/Kg	0.0135U ng/Kg
SL-013-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0716 ng/Kg	0.0716U ng/Kg
SL-013-SA5DN-SB-9,0-10.0(RES)	2,3,4,7,8-PECDF	0.0384 ng/Kg	0.0384U ng/Kg
SL-013-SA5DN-SB-9.0-10.0(RES)	OCDD	0,990 ng/Kg	0.990U ng/Kg
SL-013-SA5DN-SB-9.0-10.0(RES)	OCDF	0.184 ng/Kg	0.184U ng/Kg
SL-071-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.502 ng/Kg	0.502U ng/Kg
SL-071-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.478 ng/Kg	0.478U ng/Kg
SL-071-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0837 ng/Kg	0.0837U ng/Kg
SL-091-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0818 ng/Kg	0.0818U ng/Kg

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	Committee of the second of			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-092-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.334 ng/Kg	0.334U ng/Kg
SL-092-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0317 ng/Kg	0.0317U ng/Kg
SL-093-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.360 ng/Kg	0.360U ng/Kg
SL-093-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0487 ng/Kg	0.0487U ng/Kg
SL-117-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.165 ng/Kg	0.165U ng/Kg
SL-117-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.137 ng/Kg	0.137U ng/Kg
SL-117-SA5DN-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.215 ng/Kg	0.215U ng/Kg
SL-117-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.127 ng/Kg	0.127U ng/Kg
SL-117-SA5DN-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.206 ng/Kg	0,206U ng/Kg
SL-117-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.300 ng/Kg	0.300U ng/Kg
SL-118-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.348 ng/Kg	0.348U ng/Kg
SL-118-SA5DN-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.363 ng/Kg	0.363U ng/Kg
SL-118-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0941 ng/Kg	0.0941U ng/Kg
SL-118-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.150 ng/Kg	0.150U ng/Kg
SL-122-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.401 ng/Kg	0.401U ng/Kg
SL-122-SA5DN-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.484 ng/Kg	0.484U ng/Kg
SL-122-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.270 ng/Kg	0.270U ng/Kg

9/27/2011 1:50:17 PM ADR version 1.4.0.111 Page 5 of 5

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX094

Laboratory: LL

Page 1 of 1

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-117-SA5DN-SS-0.0-0.5MS SL-117-SA5DN-SS-0.0-0.5MSD (SL-117-SA5DN-SS-0.0-0.5)	1,2,3,4,6,7,8-HPCDD OCDD	172 781	197 986	40.00-135.00 40.00-135.00	23 (20.00)	1,2,3,4,6,7,8-HPCDD OCDD	J (all detects)

Field Duplicate RPD Report

Lab Reporting Batch ID: DX094

EDD Filename: DX094_v1

Laboratory: LL

Page 1 of 1

eQAPP Name: CDM_SSFL_110509

	Concenti	entration (%)			
Analyte	SL-117-SA5DN-SS-0.0- 0.5	DUP09-SA5DN-QC- 052711	Sample RPD	eQAPP RPD	Flag
MOISTURE	9.5	9.5	0		No Qualifiers Applied
	Concenti	ration (%)			
Analyte	SL-014-SA5DN-SB-4.0- 5.0	DUP-10-SA5DN-QC- 053111	Sample RPD	eQAPP RPD	Flag
MOISTURE	12.300000000	11.6	6		No Qualifiers Applied

77974	HW8:	d.	7	7
1/1-1	11(*)	* /		-1-

Vlat	rix:	SO

	Concentrat	ion (ng/Kg)			
	SL-117-SA5DN-SS-0.0-	DUP09-SA5DN-QC-	Sample	eQAPP	
Analyte	0.5	052711	RPD	RPD	Flag
1,2,3,7,8-PECDF	0.757	0.560	30	50.00	No Ovalifiare Applied
2,3,7,8-TCDF	0.219	0.255	15	50.00	No Qualifiers Applied
1,2,3,4,6,7,8-HPCDD	15.6	95.1	144	50.00	
1,2,3,4,6,7,8-HPCDF	2.47	7.10	97	50.00	
1,2,3,4,7,8,9-HPCDF	0.165	0.544	107	50.00	
1,2,3,4,7,8-HxCDD	0.180	0.817	128	50.00	
1,2,3,4,7,8-HXCDF	0.137	0.633	129	50.00	
1,2,3,6,7,8-HXCDD	0.855	3.25	117	50.00	
1,2,3,6,7,8-HXCDF	0.215	0.454	71	50.00	I/all data stat
1,2,3,7,8,9-HXCDD	0.693	2.34	109	50.00	J(all detects)
1,2,3,7,8,9-HXCDF	0.642	1.25	64	50.00	UJ(all non-detects)
1,2,3,7,8-PECDD	0.127	0.526	122	50.00	
2,3,4,6,7,8-HXCDF	0.206	0.727	112	50.00	
2,3,4,7,8-PECDF	0.300 .	1.07	112	50.00	
2,3,7,8-TCDD	1.10 U	0.0789	200	50.00	
OCDD	180	1510	157	50.00	
OCDF	7.02	25.7	114	50.00	

	Concentrat	ion (ng/Kg)			
Analyte	SL-014-SA5DN-SB-4.0- 5.0	DUP-10-SA5DN-QC- 053111	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF	0.723 0.118	0.594 0.198	20 51	50.00 50.00	
1.2.3.4.7.8.9-HPCDF	0.132	0.0355	115	50.00	
1,2,3,4,7,8-HxCDD	0.0832	5.51 U	200	50.00	
1,2,3,4,7,8-HXCDF	5.58 U	0.0545	200	50.00	
1,2,3,6,7,8-HXCDD	0.102	0.0227	127	50.00	
1,2,3,6,7,8-HXCDF	0.0759	0.0269	95	50.00	
1,2,3,7,8,9-HXCDD	0.0975	0.0490	66	50.00	J (all detects)
1,2,3,7,8,9-HXCDF	0.106	0.0233	128	50.00	UJ (all non-detects)
1,2,3,7,8-PECDD	0.0696	0.0199	111	50.00	1,2,3,4,6,7,8-HPCDD.
1,2,3,7,8-PECDF	0.0708	0.0304	80	50.00	2,3,4,6,7,8-HXCDF,
2,3,4,6,7,8-HXCDF	0.0768	0.0658	15	50.00	2,3,7,8-TCDD No Qual
2,3,4,7,8-PECDF	0.117	0.0641	58	50.00	Within Limits
2,3,7,8-TCDD	0.0223	0.0230	3	50.00	vvidin Emilo
OCDD	5.37	2.38	77	50.00	
OCDF	0.385	0.214	57	50.00	

9/27/2011 1:25:31 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

10100		100000				Water of	
Matrix: SO SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP09-SA5DN-QC-052711	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	安安安安安安安安安安安安	0.544 0.817 0.633 3.25 0.454 2.34 1.25 0.526 0.560 0.727 1.07 0.0789 0.255	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg	J (all detects)
DUP-10-SA5DN-QC-053111	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	3	0.594 0.198 0.0355 0.0545 0.0227 0.0269 0.0490 0.0233 0.0199 0.0304 0.0658 0.0641 0.0230 2.38 0.214	5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.51	POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-003-SA8N-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD	# # # # # # # # # # # # # # # # # # #	0.535 0.0675 0.0243 0.0134 0.0208 0.0137 0.0386 0.0312 0.0106 0.0418 0.0226 3.17 0.174	5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: \$0

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-003-SA8N-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.582	6.14	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.129	6.14	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0876	6.14	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0515	6.14	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0595	6.14	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0656	6.14	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0321	6.14	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0711	6.14	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0693	6.14	PQL	ng/Kg	o (an acteolo)
	1,2,3,7,8-PECDD	JBQ	0.0314	6.14	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0296	6.14	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0411	6.14	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0732	6.14	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0435	1.23	PQL	ng/Kg	
	OCDD	JB	1.59	12.3	PQL	ng/Kg	
	OCDF	JB	0.273	12.3	PQL	ng/Kg	
SL-008-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.428	5.77	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0757	5.77	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0382	5.77	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0243	5.77	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0296	5.77	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0220	5.77	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0225	5.77	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0536	5.77	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0474	5.77	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.0213	5.77	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0277	5.77	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0463	5.77	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0273	1.15	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0191	1.15	PQL	ng/Kg	
	OCDD	JB	1.19	11.5	PQL	ng/Kg	
	OCDF	JB	0.163	11.5	PQL	ng/Kg	
SL-008-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.425	5.52	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0823	5.52	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0332	5.52	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0411	5.52	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0748	5.52	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0645	5.52	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JВ	0.0645	5.52	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0762	5.52	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.0544	5.52	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0779	5.52	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.112	5.52	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0584	5.52	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.121	5.52	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0141	1.10	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0153	1.10	PQL	ng/Kg	
	OCDD	JB	1.29	11.0	PQL	ng/Kg	
	OCDF	JB	0.127	11.0	PQL	ng/Kg	

Lab Reporting Batch ID: DX094

Laboratory: LL

EDD Filename: DX094_v1

eQAPP Name: CDM_SSFL_110509

Method:	1613B	gen Weeking.			zállá s ná.	
Matrix:	so					
		 Lab	Reporting	RL		

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-010-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD		0.481 0.260 0.0480 0.0762 0.164 0.0882 0.134 0.0865 0.110 0.133	5.56 5.56 5.56 5.56 5.56 5.56 5.56 5.56	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDD OCDF	JBQ JBQ JBQ JBQ JBQ JBB	0.215 0.153 0.208 0.0448 0.0252 1.31 0.228	5.56 5.56 5.56 1.11 1.11 11.1	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	
SL-010-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0CDD OCDF	明明の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	0.445 0.207 0.0541 0.0458 0.0610 0.0725 0.0668 0.0733 0.0670 0.0527 0.0594 0.0817 0.102 1.13 0.201	5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	POL	ng/Kg	J (all detects)
SL-013-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD OCDD OCDD	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・<	0.422 0.217 0.0278 0.0299 0.131 0.0427 0.237 0.268 0.0197 0.0362 0.0577 0.0825 0.0203 1.32 0.207	5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66	PQL	ng/Kg	J (all detects)

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO Lab Reporting RI

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-013-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	HERE BEENER HERE	0.445 0.208 0.0233 0.0438 0.0277 0.0250 0.0238 0.0135 0.0716 0.0384 0.990 0.184	5.53 5.53 5.53 5.53 5.53 5.53 5.53 5.53	PAL	ng/Kg	J (all detects)
SL-071-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		0.502 1.06 0.720 2.24 0.550 1.74 0.478 0.561 2.11 0.517 0.743 0.0837 0.397	5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40	PQL	ng/Kg	J (all detects)
SL-091-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HCDF 2,3,4,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	0.655 0.985 0.773 3.37 0.447 2.52 1.00 0.951 0.747 0.657 0.714 0.0818 0.302	5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38	Pal Pal Pal Pal Pal Pal Pal Pal Pal Pal	ng/Kg	J (all detects)
SL-092-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	HE I HE	4.39 0.334 0.503 0.746 1.95 0.358 1.64 0.958 0.315 0.679 0.492 0.790 0.0317	5.36 5.36 5.36 5.36 5.36 5.36 5.36 5.36	PQL	ng/Kg	J (all detects)

Lab Reporting Batch ID: DX094

Laboratory: LL

EDD Filename: DX094_v1

eQAPP Name: CDM_SSFL_110509

Method:	1613E
Matrix:	so

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-093-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,8-TCDD 2,3,7,8-TCDD	ង	4.53 0.360 0.583 0.582 2.23 0.340 1.78 1.13 0.400 0.606 0.537 0.936 0.0487 0.310	5.43 5.43 5.43 5.43 5.43 5.43 5.43 5.43	PQL	ng/Kg	J (all detects)
SL-117-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	ងមង្គមធម្មិមធម្មិមធម្ម	2.47 0.165 0.180 0.137 0.855 0.215 0.693 0.642 0.127 0.757 0.206 0.300 0.219 7.02	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	PQL	ng/Kg	J (all detects)
SL-118-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	_{មិ} ជ្ជ-ឧធិធិធិធិធិធិធិធិធិ	3.07 0.348 0.327 0.485 1.83 0.373 1.43 1.38 0.407 0.454 0.363 0.417 0.0941 0.150	5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26	PQL	ng/Kg	J (all detects)
SL-119-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD 2,3,7,8-TCDD	ਖ਼ ੵਖ਼ਖ਼ਖ਼ਖ਼ਖ਼ਖ਼	2.98 3.41 1.88 1.70 1.55 1.97 1.31 2.12 1.45 0.226 0.722	5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX094 Laboratory: LL

EDD Filename: DX094_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-120-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	ង់ដង់ដង់ដង់	1.28 2.29 1.46 0.941 1.40 1.20 1.07 1.12 1.27 0.161 0.532	5.27 5.27 5.27 5.27 5.27 5.27 5.27 5.27	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-122-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	明治・明明の明明の明明の明明の明明の明明の明明の明明の明明の明明の明明の明明の明明の	5.69 0.401 1.15 0.494 3.24 0.345 3.05 1.27 1.98 0.416 0.484 0.270 0.155 0.389	5.78 5.78 5.78 5.78 5.78 5.78 5.78 5.78	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

(18292) # DOI

VALIDATION FINDINGS WORKSHEET

Compound Quantitation and Reported CRQLs

Page: of Reviewer:

2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Y N N/A

Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary). Y N N/A

Qualifications	J/P						
Associated Samples	1 range	O .					
Finding	OCOO 7 Cal range						
Sample ID	S-119-5A 5DN-55-0,0-6.5	SL-170-SASDV-SK-0.0-0.5					
Date							
#							

SAMPLE DELIVERY GROUP

DX095

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
31-May-2011	SL-102-SA5DN-SS-0.0-0.5	6302786	N	METHOD	1613B	111
31-May-2011	SL-014-SA5DN-SB-4.0-5.0MS	6302776	MS	METHOD	1613B	111
31-May-2011	SL-014-SA5DN-SB-4.0-5.0MSD	6302777	M\$D	METHOD	1613B	III
31-May-2011	SL-014-SA5DN-SB-9.0-10.0	6302778	N	METHOD	1613B	111
31-May-2011	EB11-SA5DN-SB-053111	6302779	EB	METHOD	1613B	111
31-May-2011	SL-094-SA5DN-SS-0.0-0.5	6302780	N	METHOD	1613B	111
31-May-2011	SL-095-SA5DN-SS-0.0-0.5	6302781	N	METHOD	1613B	111
31-May-2011	SL-097-SA5DN-SS-0.0-0.5	6302782	N	METHOD	1613B	111
31-May-2011	SL-098-SA5DN-SS-0.0-0.5	6302783	N	METHOD	1613B	Ш
31-May-2011	SL-014-SA5DN-SB-4.0-5.0	6302775	N	METHOD	1613B	Ш
31-May-2011	SL-101-SA5DN-SS-0.0-0.5	6302785	N	METHOD	1613B	Ш
31-May-2011	EB10-SA5DN-SS-053111	6302796	EB	METHOD	1613B	III
31-May-2011	SL-103-SA5DN-SS-0.0-0.5	6302787	N	METHOD	1613B	III
31-May-2011	SL-104-SA5DN-SS-0.0-0.5	6302788	N	METHOD	1613B	III
31-May-2011	SL-110-SA5DN-SS-0.0-0.5	6302789	N	METHOD	1613B	III
31-May-2011	SL-111-SA5DN-SS-0.0-0.5	6302790	N	METHOD	1613B	III
31-May-2011	SL-112-SA5DN-SS-0.0-0.5	6302791	N	METHOD	1613B	111
31-May-2011	SL-113-SA5DN-SS-0.0-0.5	6302792	N	METHOD	1613B	111
31-May-2011	SL-114-SA5DN-SS-0.0-0.5	6302793	N	METHOD	1613B	III
31-May-2011	SL-121-SA5DN-SS-0.0-0.5	6302794	N	METHOD	1613B	III
31-May-2011	SL-125-SA5DN-SS-0.0-0.5	6302795	N	METHOD	1613B	111
31-May-2011	SL-099-SA5DN-SS-0.0-0.5	6302784	N	METHOD	1613B	III

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: AQ

Sample ID: EB10-SA5DN-SS-053111 Collected: 5/31/2011 12:15:00 Analysis Type: RES Dilution: 1 Data Review Lab DLRLReason Lab DLRLUnits Analyte Result Type Qual Code Qual Type JBQ 0.539 MDL 10.8 **PQL** U В 1,2,3,4,6,7,8-HPCDD 3.37 pg/L JΒ **PQL** U 1,2,3,4,6,7,8-HPCDF 2.34 0.264 MDL 10.8 pg/L В 1,2,3,4,7,8,9-HPCDF pg/L 0.949 JB 0.261 MDL 10.8 POL U В υ 1.14 JBQ 0.418 MDL 10.8 **PQL** 1,2,3,4,7,8-HXCDF pg/L В 1,2,3,6,7,8-HXCDF 0.974 0.389 10.8 pg/L U В JB MDL PQL 0.729 0.344 MDL 10.8 PQL U В 1,2,3,7,8,9-HXCDD **JBQ** pg/L 0.707 JBQ 0.297 MDL Ų 1,2,3,7,8-PECDF 10.8 **PQL** pg/L В U 2,3,4,6,7,8-HXCDF 1.07 JΒ 0.273 MDL 10.8 PQL pg/L В 0.704 0.259 MDL U В 2,3,4,7,8-PECDF JB 10.8 **PQL** pg/L U OCDD JB 0.526 MDL 21.7 **PQL** В 8.31 pg/L

Sample ID: EB11-SA5DN-SB-053111 Collected: 5/31/2011 12:50:00 Analysis Type: RES Dilution: 1

0.731

JB

3.04

MDL

21.7

PQL

pg/L

U

Page 1 of 13

	Lab	Lab		DL	·	RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	2.31	JBQ	0.317	MDL	10.3	PQL	pg/L	U	В
1,2,3,4,6,7,8-HPCDF	1.67	JBQ	0.144	MDL	10.3	PQL	pg/L	υ	В
1,2,3,4,7,8,9-HPCDF	0.454	JB	0.156	MDL	10.3	PQL	pg/L	υ	В
1,2,3,4,7,8-HxCDD	0.347	JBQ	0.202	MDL	10.3	PQL	pg/L	Ų	В
1,2,3,4,7,8-HXCDF	0.656	JB	0.197	MDL	10.3	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDD	0.346	JBQ	0.221	MDL	10.3	PQL	pg/L	υ	В
1,2,3,6,7,8-HXCDF	0.656	JBQ	0.189	MDL	10.3	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDD	0.448	JBQ	0.205	MDL	10.3	PQL	pg/L	υ	В
1,2,3,7,8,9-HXCDF	0.833	JB	0.164	MDL	10.3	PQL	pg/L	υ	В
1,2,3,7,8-PECDD	0.315	JB	0.257	MDL	10.3	PQL	pg/L	υ	В
1,2,3,7,8-PECDF	0.368	JB	0.164	MDL	10.3	PQL	pg/L	U	В
2,3,4,6,7,8-HXCDF	0.601	JB	0.150	MDL	10.3	PQL	pg/L	U	В
2,3,4,7,8-PECDF	0.841	JBQ	0.153	MDL	10.3	PQL	pg/L	U	В
OCDD	6.43	JB	0.326	MDL.	20.7	PQL	pg/L	U	В
OCDF	2.24	JВ	0.441	MDL	20.7	PQL	pg/L	U	В

OCDF

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-014-SA5DN-SB-4.0-5.0 Collected: 5/31/2011 11:40:00 Analysis Type: RES Dilution: 1

Campie in, Or olf Ontoni on 4.0 0.0	001160	(60. 0/0 //2	011.11.40	.00 _	o Analysis Type. 1100				Diamon.		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.723	JB	0.0241	MDL	5.58	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.118	JB	0.0119	MDL	5.58	PQL	ng/Kg	UJ	B, FD		
1,2,3,4,7,8,9-HPCDF	0.132	JB	0.0185	MDL	5.58	PQL	ng/Kg	UJ	B, FD		
1,2,3,4,7,8-HxCDD	0.0832	JBQ	0.0180	MDL	5.58	PQL	ng/Kg	UJ	B, FD		
1,2,3,4,7,8-HXCDF	0.0121	U	0.0121	MDL	5.58	PQL	ng/Kg	UJ	FD		
1,2,3,6,7,8-HXCDD	0.102	JBQ	0.0179	MDL	5.58	PQL	ng/Kg	UJ	B, FD		
1,2,3,6,7,8-HXCDF	0.0759	JBQ	0.0107	MDL	5.58	PQL	ng/Kg	υJ	B, FD		
1,2,3,7,8,9-HXCDD	0.0975	JB	0.0180	MDL	5.58	PQL	ng/Kg	υJ	B, FD		
1,2,3,7,8,9-HXCDF	0.106	JB	0.0139	MDL	5.58	PQL	ng/Kg	υJ	B, FD		
1,2,3,7,8-PECDD	0.0696	JB	0.0225	MDL	5.58	PQL	ng/Kg	UJ	B, FD		
1,2,3,7,8-PECDF	0.0708	JBQ	0.0117	MDL	5.58	PQL	ng/Kg	UJ	B, FD		
2,3,4,6,7,8-HXCDF	0.0768	JBQ	0.0116	MDL	5.58	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.117	JBQ	0.0120	MDL	5.58	PQL	ng/Kg	UJ	B, FD		
2,3,7,8-TCDD	0.0223	JB	0.0201	MDL	1.12	PQL	ng/Kg	U	В		
OCDD	5.37	JB	0.0252	MDL	11.2	PQL	ng/Kg	UJ	B, FD		
OCDF	0.385	JB	0.0271	MDL	11.2	PQL	ng/Kg	UJ	B, FD		

Sample ID: SL-014-SA5DN-SB-9.0-10.0 Collected: 5/31/2011 11:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.57	JB	0.438	MDL	5.75	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	1.80	JBQ	0.192	MDL	5.75	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	2.83	JB	0.383	MDL	5.75	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.88	JB	0.315	MDL	5.75	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.60	JBQ	0.264	MDL	5.75	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.84	JB	0.326	MDL	5.75	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.73	JBQ	0.224	MDL	5.75	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.86	JB	0.351	MDL	5.75	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	2.26	JBQ	0.356	MDL	5.75	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.82	JB	0.368	MDL	5.75	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.42	JB	0.172	MDL	5.75	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.45	JBQ	0.237	MDL	5.75	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.58	JB	0.183	MDL	5.75	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.449	JB	0.322	MDL	1.15	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-014-SA5DN-SB-9.0-10.0 Collected: 5/31/2011 11:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.343	JBQ	0.337	MDL	1.15	PQL	ng/Kg	j	Z
OCDD	5.43	JB	0.589	MDL	11.5	PQL	ng/Kg	υ	В
OCDF	5.90	JB	0.774	MDL	11.5	PQL	ng/Kg	J	Z Z

Sample ID: SL-094-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 8:40:00 Analysis Type: RES Dilution: 1

Campic ID: CL-00+ CAODII CC 0.0 0.0	00000		U I I U. TU. U	•	rolaly blo Type: 1120				Direction: 1		
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDF	4.64	JB	0.0210	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.376	JB	0.0269	MDL	5.42	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.469	JBQ	0.0345	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	0.661	JB	0.0285	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	2.25	JB	0.0357	MDL,	5.42	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.422	JBQ	0.0253	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	1.60	JB	0.0346	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	1.01	JB	0.0245	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.411	JB	0.0386	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.830	JB	0.0323	MDL	5.42	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.601	JB	0.0252	MDL	5.42	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.891	JB	0.0297	MDL	5.42	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.0369	JВ	0.0203	MDL	1.08	PQL	ng/Kg	υ	В		

Sample ID: SL-095-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 9:05:00 Analysis Type: RES Dilution: 1

campional care contains an one one						,				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	0.635	JB	0.0446	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.556	JB	0.0459	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.599	JB	0.0358	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	2.15	JB	0.0488	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.463	JB	0.0350	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.64	JB	0.0467	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.768	JB	0.0326	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.417	JB	0.0497	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.499	JBQ	0.0447	MDL	5.31	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.551	JB	0.0348	MDL	5.31	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.860	JB	0.0412	MDL	5.31	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

Page 3 of 13

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method Categ	ory: SVOA		
Method:	1613B	Matrix:	

Sample ID: SL-095-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 9:05:00 Analysis Type: RES Dilution: 1

Analyte		Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDD	0.0720	JBQ	0.0289	MDL	1.06	PQL	ng/Kg	U	В

Sample ID: SL-097-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 9:30:00 Analysis Type: RES Dilution: 1

• • · · · /• · • · · · · · · · · · · · · · · · · ·											
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8,9-HPCDF	0.753	JB	0.0531	MDL	5.59	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HxCDD	0.782	JB	0.0614	MDL	5.59	PQL	ng/Kg	j	Z		
1,2,3,4,7,8-HXCDF	1.05	JB	0.0557	MDL	5.59	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	3.77	JB	0.0623	MDL	5.59	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.538	JB	0.0549	MDL	5.59	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	2.20	JB	0.0622	MDL	5.59	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	1.12	JB	0.0597	MDL	5.59	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.398	JBQ	0.0634	MDL	5.59	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.862	JB	0.0539	MDL	5.59	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.597	JB	0.0519	MDL	5.59	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.882	JB	0.0515	MDL	5.59	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.0808	JBQ	0.0315	MDL	1.12	PQL	ng/Kg	U	В		
2,3,7,8-TCDF	0.339	JBQ	0.103	MDL	1.12	PQL	ng/Kg	J	Z		

Sample ID: SL-098-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 9:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	5.40	JB	0.0960	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	4.03	JB	0.0678	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	3.71	JB	0.0591	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	2.00	JB	0.0570	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.75	JB	0.0600	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.45	JB	0.0548	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.48	JB	0.0469	MDL	5.55	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	2.59	JB	0.0583	MDL	5.55	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.09	JB	0.0454	MDL	5.55	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.266	JBQ	0.0244	MDL	1.11	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.527	JB	0.0915	MDL	1.11	PQL	ng/Kg	J	Z
OCDD	12600	EB	0.189	MDL	11.1	PQL	ng/Kg	J	*XI

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-099-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 2:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL_	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.26	JB	0.0669	MDL	5.11	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	3.05	JB	0.0673	MDL	5.11	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.55	JB	0.0481	MDL	5.11	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.37	JВ	0.0466	MDL	5.11	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.31	JB	0.0515	MDL	5.11	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.04	JB	0.0627	MDL	5.11	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.59	JB	0.0507	MDL	5.11	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.49	JB	0.0466	MDL	5.11	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.42	JB	0.0478	MDL	5.11	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.256	JBQ	0.0274	MDL	1.02	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.580	JB	0.110	MDL	1.02	PQL	ng/Kg	J	Z
OCDD	8970	EB	0.196	MDL	10.2	PQL	ng/Kg	J	*XI

Sample ID: SL-101-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 3:30:00 Analysis Type: RES Dilution: 1

bumple ib. oz ioi oriobii oo oib bio	001,00			Thanyon Typer				#		
<i>Inalyte</i>	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	0.642	JB	0.0387	MDL	5.29	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	1.01	JBQ	0.0473	MDL	5.29	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	1.30	JB	0.0407	MDL	5.29	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	2.96	JB	0.0506	MDL	5.29	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	1.18	JB	0.0400	MDL	5.29	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	2.37	JB	0.0483	MDL	5.29	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	1.06	JB	0.0394	MDL	5.29	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	1.03	JB	0.0566	MDL	5.29	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	1.56	JB	0.0516	MDL	5.29	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.941	JB	0.0364	MDL	5.29	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	1.53	JB	0.0478	MDL	5.29	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.208	JBQ	0.0309	MDL	1.06	PQL	пд/Кд	J	Z	
2,3,7,8-TCDF	0.815	JB	0.103	MDL	1.06	PQL.	ng/Kg	J	Z	

Sample ID: SL-102-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 1:20:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.41	JB	0.0808	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	3.21	JB	0.0709	MDL	5.48	PQL	ng/Kg	J	Z

Page 5 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-102-SA5DN-SS-0,0-0.5 Collected: 5/31/2011 1:20:00 Analysis Type: RES Dilution: 1

cample is: of its chasit of the old	00,,00				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
<i>Inalyte</i>	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HXCDF	2.43	JB	0.0508	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	1.22	JB	0.0481	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	1.09	JB	0.0552	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	2.04	JB	0.0543	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.523	JB	0.0395	MDL	5.48	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.37	JB	0.0473	MDL	5.48	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.991	JB	0.0377	MDL	5.48	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.209	JB	0.0295	MDL	1.10	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.373	JB	0.0685	MDL	1.10	PQL	ng/Kg	J	Z	
OCDD	8510	EB	0.195	MDL	11.0	PQL	ng/Kg	J	*XI	

Sample ID: SL-103-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 11:05:00 Analysis Type: RES Dilution: 1

- u.;, p. e ; p. ; c = ; c = c ; c = c ; c = c ; c									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.21	JВ	0.0658	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	2.03	JB	0.0653	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.32	JB	0.0530	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.24	JB	0.0514	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	4.89	JB	0.0641	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.24	JB	0.0589	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.43	JB	0.0566	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.480	JВ	0.0443	MDL	5.28	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.37	JB	0.0521	MDL	5.28	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.04	JB	0.0421	MDL	5.28	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.130	JB	0.0267	MDL	1.06	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.464	JBQ	0.0904	MDL	1.06	PQL	ng/Kg	J	Z
OCDD	6190	EB	0.194	MDL	10.6	PQL	ng/Kg	J	*XI

Sample ID: SL-104-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 11:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.04	JB	0.0632	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.725	JB	0.0701	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.867	JB	0.0486	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	4.88	JB	0.0702	MDL	5.28	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	ry: SVOA		
Method:	1613B	Matrix:	SO

Sample ID: SL-104-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 11:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDF	0.570	JB	0.0491	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.46	JB	0.0679	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.839	ĴΒ	0.0543	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.429	JB	0.0533	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.690	JB	0.0467	MDL	5.28	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.702	JB	0.0467	MDL	5.28	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.712	JB	0.0448	MDL	5.28	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0383	JB	0.0270	MDL	1.06	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.414	JB	0.115	MDL	1.06	PQL	ng/Kg	J	Z

Sample ID: SL-110-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 3:50:00 Analysis Type: RES Dilution: 1

campioner carried and an arrangement					, ,				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.600	JB	0.0681	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.702	JB	0.0717	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.643	JB	0.0465	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	3.22	JB	0.0734	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.426	JB	0.0455	MDL	5.44	PQL	ng/Kg	· J	Z
1,2,3,7,8,9-HXCDD	2.14	JB	0.0728	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.14	JB	0.0484	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.560	JB	0.0599	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.355	JB	0.0429	MDL	5.44	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.606	JB	0.0428	MDL	5.44	PQL	ng/Kg	j	Z
2,3,4,7,8-PECDF	0.812	JB	0.0419	MDL	5.44	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0819	JB	0.0314	MDL	1.09	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.264	JB	0.0901	MDL	1.09	PQL	ng/Kg	J	Z

Sample ID: SL-111-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 1:45:00 Analysis Type: RES Dilution: 1

Analista	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Analyte	Result	wuai	UL.	rype	I AL		Uillis	Quai	Cone
1,2,3,4,7,8,9-HPCDF	1.02	JB	0.0621	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.929	JB	0.0626	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.06	JB	0.0448	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.575	JB	0.0417	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.86	JB	0.0625	MDL	5.53	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

9/27/2011 2:02:36 PM ADR version 1.4.0.111 Page 7 of 13

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method Category	: SVOA	
Method:	1613B	Matrix: SO

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDF	1.25	JB	0.0467	MDL	5.53	PQL	ng/Kg	L	Z
1,2,3,7,8-PECDD	0.443	JB	0.0465	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.337	JB	0.0339	MDL	5.53	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.658	JB	0.0456	MDL	5.53	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.523	JB	0.0316	MDL	5.53	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0543	JB	0.0228	MDL	1.11	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.213	JB	0.0679	MDL	1,11	PQL	ng/Kg	J	Z

Sample ID: SL-112-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 2:45:00 Analysis Type: RES Dilution: 1

Campie ib: CE Till Groupit GG Gis Gis	00,,00		=	•	, 0.0 . ,	PO			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.776	ЈВ	0.0568	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.867	JB	0.0667	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.853	JB	0.0408	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	4.29	JB	0.0697	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.595	JB	0.0377	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.30	JB	0.0730	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.922	JB	0.0415	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.523	JB	0.0442	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.697	JB	0.0414	MDL	5.41	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.680	JB	0.0400	MDL	5.41	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.788	JВ	0.0378	MDL	5.41	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.101	JBQ	0.0240	MDL	1.08	PQL	ng/Kg	Ų	В
2,3,7,8-TCDF	0.300	JBQ	0.0871	MDL	1.08	PQL	ng/Kg	J	Z

Sample ID: SL-113-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 2:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	3.41	JB	0.0706	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	2.92	JB	0.0979	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	4.78	JB	0.0600	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.98	JB	0.0598	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	2.08	JB	0.0559	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.37	JB	0.0719	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.55	JB	0.0510	MDL	5.47	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

9/27/2011 2:02:36 PM ADR version 1.4.0.111 Page 8 of 13

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method Category	: SVOA	
Method:	1613B	Matrix: SO

 Sample ID: SL-113-SA5DN-SS-0.0-0.5
 Collected: 5/31/2011 2:25:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,6,7,8-HXCDF	2.18	JВ	0.0565	MDL	5.47	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.30	JB	0.0489	MDL	5.47	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.213	JB	0.0248	MDL	1.09	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.558	JB	0.0971	MDL.	1.09	PQL	ng/Kg	J	Z
OCDD	9240	EB	0.178	MDL	10.9	PQL	ng/Kg	J	*XI

Sample ID. SE-114-SASDIN-SS-0.0-0.5	Conec	ieu. Viviiz	.011 3.10.0	, A	nanyono nj	pe. neo			manon. I
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.43	JB	0.0334	MDL	5.22	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.368	JB	0.0420	MDL	5.22	PQL	ng/Kg	Ų	В
1,2,3,4,7,8-HxCDD	0.414	JB	0.0624	MDL	5.22	PQL	ng/Kg	Ų	В
1,2,3,4,7,8-HXCDF	0.558	JB	0.0364	MDL	5.22	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.53	JB	0.0632	MDL	5.22	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.393	JB	0.0369	MDL	5.22	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.26	JB	0.0617	MÐL	5.22	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.760	JB	0.0365	MDL	5.22	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.393	JB	0.0429	MDL	5.22	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.479	JB	0.0464	MDL	5.22	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.346	JB	0.0347	MDL	5.22	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.594	JB	0.0400	MDL	5.22	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.103	JBQ	0.0294	MDL	1.04	PQL	ng/Kg	U	В
2,3,7,8-TCDF ·	0.320	JB	0.0783	MDL	1.04	PQL	ng/Kg	J	Z
		•	•		• • • • • • • • • • • • • • • • • • • •	•			

Sample ID: SL-121-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 10:40:00 Analysis Type: RES Dilution: 1

our,p:0 /2/ 02 (2) 0.00 (0)											
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8,9-HPCDF	2.08	JB	0.0600	MDL	5.32	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HxCDD	2.95	JB	0.0866	MDL	5.32	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	1.96	JB	0.0498	MDL	5.32	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	1.55	JB	0.0496	MDL	5.32	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	1.12	JB	0.0505	MDL	5.32	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	1.63	JB	0.0764	MDL	5.32	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	2.39	JB	0.0651	MDL	5.32	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	1.87	JB	0.0468	MDL	5.32	PQL	ng/Kg	J	Z		

^{*} denotes a non-reportable result

9/27/2011 2:02:36 PM ADR version 1.4.0.111 Page 9 of 13

Lab Reporting Batch ID: DX095

Laboratory: LL

EDD Filename: DX095_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix:

Sample ID: SL-121-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 10:40:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL_	RL Type	Units	Data Review Qual	Reason Code
2,3,4,7,8-PECDF	2.76	JB	0.0634	MDL	5.32	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.255	JB	0.0315	MDL	1.06	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	1.03	JB	0.140	MDL	1.06	PQL	ng/Kg	J	Z
OCDD	6220	EB	0.151	MDL	10.6	PQL	ng/Kg	J	*XI

SO

Sample ID: SL-125-SA5DN-SS-0.0-0.5 Collected: 5/31/2011 10:15:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.13	JВ	0.0615	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.54	JB	0.0546	MDL	5.40	PQL	ng/Kg	J .	Z
1,2,3,4,7,8-HXCDF	1.07	JB	0.0462	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.736	JВ	0.0433	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.86	JВ	0.0544	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.28	JB	0.0483	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.773	JB	0.0572	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.868	JB	0.0431	MDL	5.40	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.876	JB	0.0465	MDL	5.40	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.995	JB	0.0388	MDL	5.40	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.105	JB	0.0286	MDL	1.08	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.403	JB	0.0815	MDL	1.08	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 9/27/2011 2:02:37 PM ADR version 1.4.0.111

Page 10 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX095

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX095_v1

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI	Compound Quantitation and CRQLs
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
C	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Laboratory Triplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
1	Internal Standard Estimation
1	Internal Standard Rejection
Ļ	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
М	Initial Tune
М	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Laboratory Triplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
-	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX095

Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX095

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: AQ	В	hatsinossA						
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples				
BLK1540B370528	6/7/2011 5:28:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 0,3,7,8-TCDD 0,5,7,8-TCDD 0,5,7,8-TCDD 0,5,7,8-TCDD 0,5,7,8-TCDD	3.82 pg/L 2.66 pg/L 1.23 pg/L 0.888 pg/L 1.05 pg/L 0.712 pg/L 1.06 pg/L 1.07 pg/L 1.07 pg/L 1.07 pg/L 1.0885 pg/L 0.885 pg/L 0.885 pg/L 0.885 pg/L 0.885 pg/L 3.74 pg/L 0.888 pg/L 3.74 pg/L	EB10-SA5DN-SS-053111 EB11-SA5DN-SB-053111				

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB10-SA5DN-SS-053111(RES)	1,2,3,4,6,7,8-HPCDD	3.37 pg/L	3.37U pg/L
EB10-SA5DN-SS-053111(RES)	1,2,3,4,6,7,8-HPCDF	2.34 pg/L	2.34U pg/L
EB10-SA5DN-SS-053111(RES)	1,2,3,4,7,8,9-HPCDF	0.949 pg/L	0.949U pg/L
EB10-SA5DN-SS-053111(RES)	1,2,3,4,7,8-HXCDF	1.14 pg/L	1.14U pg/L
EB10-SA5DN-SS-053111(RES)	1,2,3,6,7,8-HXCDF	0.974 pg/L	0.974U pg/L
EB10-SA5DN-SS-053111(RES)	1,2,3,7,8,9-HXCDD	0.729 pg/L	0.729U pg/L
EB10-SA5DN-SS-053111(RES)	1,2,3,7,8-PECDF	0.707 pg/L	0.707U pg/L
EB10-SA5DN-SS-053111(RES)	2,3,4,6,7,8-HXCDF	1.07 pg/L	1.07U pg/L
EB10-SA5DN-SS-053111(RES)	2,3,4,7,8-PECDF	0.704 pg/L	0.704U pg/L
EB10-SA5DN-SS-053111(RES)	OCDD	8.31 pg/L	8.31U pg/L
EB10-SA5DN-SS-053111(RES)	OCDF	3.04 pg/L	3.04U pg/L
EB11-SA5DN-SB-053111(RES)	1,2,3,4,6,7,8-HPCDD	2.31 pg/L	2.31U pg/L
EB11-SA5DN-SB-053111(RES)	1,2,3,4,6,7,8-HPCDF	1.67 pg/L	1.67U pg/L
EB11-SA5DN-SB-053111(RES)	1,2,3,4,7,8,9-HPCDF	0.454 pg/L	0.454U pg/L
EB11-SA5DN-SB-053111(RES)	1,2,3,4,7,8-HxCDD	0.347 pg/L	0.347U pg/L
EB11-SA5DN-SB-053111(RES)	1,2,3,4,7,8-HXCDF	0.656 pg/L	0.656U pg/L
EB11-SA5DN-SB-053111(RES)	1,2,3,6,7,8-HXCDD	0.346 pg/L	0.346U pg/L
EB11-SA5DN-SB-053111(RES)	1,2,3,6,7,8-HXCDF	0.656 pg/L	0.656U pg/L
EB11-SA5DN-SB-053111(RES)	1,2,3,7,8,9-HXCDD	0.448 pg/L	0.448U pg/L
EB11-SA5DN-SB-053111(RES)	1,2,3,7,8,9-HXCDF	0.833 pg/L	0.833U pg/L
EB11-SA5DN-SB-053111(RES)	1,2,3,7,8-PECDD	0.315 pg/L	0.315U pg/L
EB11-SA5DN-SB-053111(RES)	1,2,3,7,8-PECDF	0.368 pg/L	0.368U pg/L
EB11-SA5DN-SB-053111(RES)	2,3,4,6,7,8-HXCDF	0.601 pg/L	0.601U pg/L
EB11-SA5DN-SB-053111(RES)	2,3,4,7,8-PECDF	0.841 pg/L	0.841U pg/L
EB11-SA5DN-SB-053111(RES)	OCDD	6.43 pg/L	6.43U pg/L
EB11-SA5DN-SB-053111(RES)	OCDF	2.24 pg/L	2.24U pg/L

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/27/2011 2:02:01 PM ADR version 1.4.0.111 Page 1 of 3

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1640B370705	6/17/2011 7:05:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	0.463 ng/Kg 0.111 ng/Kg 0.112 ng/Kg 0.0874 ng/Kg 0.0874 ng/Kg 0.0717 ng/Kg 0.0862 ng/Kg 0.0613 ng/Kg 0.127 ng/Kg 0.115 ng/Kg 0.0563 ng/Kg 0.0563 ng/Kg 0.0661 ng/Kg 0.0686 ng/Kg 0.0796 ng/Kg 0.0351 ng/Kg 0.0163 ng/Kg 0.118 ng/Kg 0.393 ng/Kg	SL-014-SA5DN-SB-4.0-5.0 SL-014-SA5DN-SB-9.0-10.0 SL-094-SA5DN-SS-0.0-0.5 SL-095-SA5DN-SS-0.0-0.5 SL-098-SA5DN-SS-0.0-0.5 SL-099-SA5DN-SS-0.0-0.5 SL-101-SA5DN-SS-0.0-0.5 SL-102-SA5DN-SS-0.0-0.5 SL-104-SA5DN-SS-0.0-0.5 SL-110-SA5DN-SS-0.0-0.5 SL-111-SA5DN-SS-0.0-0.5 SL-111-SA5DN-SS-0.0-0.5 SL-111-SA5DN-SS-0.0-0.5 SL-112-SA5DN-SS-0.0-0.5 SL-112-SA5DN-SS-0.0-0.5 SL-113-SA5DN-SS-0.0-0.5 SL-113-SA5DN-SS-0.0-0.5 SL-113-SA5DN-SS-0.0-0.5 SL-112-SA5DN-SS-0.0-0.5 SL-121-SA5DN-SS-0.0-0.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-014-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.723 ng/Kg	0.723U ng/Kg
SL-014-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.118 ng/Kg	0.118U ng/Kg
SL-014-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.132 ng/Kg	0.132U ng/Kg
SL-014-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0832 ng/Kg	0.0832U ng/Kg
SL-014-SA5DN-SB-4,0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.102 ng/Kg	0.102U ng/Kg
SL-014-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0759 ng/Kg	0.0759U ng/Kg
SL-014-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0975 ng/Kg	0.0975U ng/Kg
SL-014-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.106 ng/Kg	0.106U ng/Kg
SL-014-SA5DN-\$B-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0696 ng/Kg	0.0696U ng/Kg
SL-014-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0708 ng/Kg	0.0708U ng/Kg
SL-014-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0768 ng/Kg	0.0768U ng/Kg
SL-014-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.117 ng/Kg	0.117U ng/Kg
SL-014-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0223 ng/Kg	0.0223U ng/Kg
SL-014-SA5DN-SB-4.0-5.0(RES)	OCDD	5.37 ng/Kg	5.37U ng/Kg
SL-014-SA5DN-SB-4.0-5.0(RES)	OCDF	0.385 ng/Kg	0.385U ng/Kg
SL-014-SA5DN-SB-9.0-10.0(RES)	OCDD	5.43 ng/Kg	5.43U ng/Kg
SL-094-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.376 ng/Kg	0.376U ng/Kg
SL-094-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0369 ng/Kg	0.0369U ng/Kg
SL-095-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0720 ng/Kg	0.0720U ng/Kg
SL-097-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0808 ng/Kg	0.0808U ng/Kg
SL-103-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.130 ng/Kg	0.130U ng/Kg
SL-104-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0383 ng/Kg	0.0383U ng/Kg
SL-110-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.600 ng/Kg	0.600U ng/Kg
SL-110-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0819 ng/Kg	0.0819U ng/Kg
SL-111-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0543 ng/Kg	0.0543U ng/Kg

9/27/2011 2:02:01 PM ADR version 1.4.0.111 Page 2 of 3

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method: 161 Matrix: SO	BB			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-112-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.101 ng/Kg	0.101U ng/Kg
SL-114-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.368 ng/Kg	0.368U ng/Kg
SL-114-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.414 лд/Кд	0.414U ng/Kg
SL-114-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.103 ng/Kg	0.103U ng/Kg
SL-125-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.105 ng/Kg	0.105U ng/Kg

9/27/2011 2:02:01 PM ADR version 1.4.0.111 Page 3 of 3

Field Duplicate RPD Report

Lab Reporting Batch ID: DX095

Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO					
	Concentr	Concentration (%)			
Analyte	SL-014-SA5DN-SB-4.0- 5.0	DUP-10-SA5DN-QC- 053111	Sample RPD	eQAPP RPD	Flag
MOISTURE	12.3	11.600000000	6		No Qualifiers Applied

Method:	1613B
B. H. a. Austria	00

	Concentrat	ion (ng/Kg)			
Analyte	SL-014-SA5DN-SB-4.0- 5.0	DUP-10-SA5DN-QC- 053111	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD	0.723 0.0768 0.0223	0.594000000 0.065800000 0.023000000	20 15 3	50.00 50.00 50.00	No Qualifiers Applied
1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 0,000D 0,000D	0.118 0.132 0.0832 5.58 U 0.102 0.0759 0.0975 0.106 0.0696 0.0708 0.117 5.37 0.385	0.198000000 0.035500000 5.510000000 U 0.054500000 0.022700000 0.026900000 0.049000000 0.023300000 0.019900000 0.030400000 0.064100000 2.380000000 0.214000000	51 115 200 200 127 95 66 128 111 80 58 77	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)

9/27/2011 2:00:10 PM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB10-SA5DN-SS-053111	1,2,3,4,6,7,8-HPCDD	JBQ	3.37	10.8	PQL	pg/L	
	1,2,3,4,6,7,8-HPCDF	JВ	2.34	10.8	PQL	pg/L	
	1,2,3,4,7,8,9-HPCDF	JB	0.949	10.8	PQL	pg/L	
	1,2,3,4,7,8-HXCDF	JBQ	1.14	10.8	PQL	pg/L	
	1,2,3,6,7,8-HXCDF	JB	0.974	10.8	PQL	pg/L	
	1,2,3,7,8,9-HXCDD	JBQ	0.729	10.8	PQL	pg/L	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.707	10.8	PQL	pg/L	
	2,3,4,6,7,8-HXCDF	JB	1.07	10.8	PQL	pg/L	
	2,3,4,7,8-PECDF	JB	0.704	10.8	PQL	pg/L	
	OCDD	JB	8.31	21.7	PQL	pg/L	
	OCDF	JB	3.04	21.7	PQL	pg/L	
EB11-SA5DN-SB-053111	1,2,3,4,6,7,8-HPCDD	JBQ	2.31	10.3	PQL	pg/L	
	1,2,3,4,6,7,8-HPCDF	JBQ	1.67	10.3	PQL	pg/L	
	1,2,3,4,7,8,9-HPCDF	JB	0.454	10.3	PQL	pg/L	
	1,2,3,4,7,8-HxCDD	JBQ	0.347	10.3	PQL	pg/L	
	1,2,3,4,7,8-HXCDF	JB	0.656	10.3	PQL	pg/L	
	1,2,3,6,7,8-HXCDD	JBQ	0.346	10.3	PQL	pg/L	
	1,2,3,6,7,8-HXCDF	JBQ	0.656	10.3	PQL	pg/L	
	1,2,3,7,8,9-HXCDD	JBQ	0.448	10.3	PQL	pg/L	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.833	10.3	PQL	pg/L	
	1,2,3,7,8-PECDD	JB	0.315	10.3	PQL	pg/L	
	1,2,3,7,8-PECDF	JB	0.368	10.3	PQL	pg/L	
	2,3,4,6,7,8-HXCDF	JB	0.601	10.3	PQL	pg/L	
	2,3,4,7,8-PECDF	JBQ	0.841	10.3	PQL	pg/L	
	OCDD	JB	6.43	20.7	PQL	pg/L	
	OCDF	JB	2.24	20.7	PQL	pg/L	

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-014-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	######################################	0.723 0.118 0.132 0.0832 0.102 0.0759 0.0975 0.106 0.0696 0.0708 0.0768 0.117 0.0223 5.37 0.385	5.58 5.58 5.58 5.58 5.58 5.58 5.58 5.58	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

						T	
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-014-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	2.57	5.75	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	1.80	5.75	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	2.83	5.75	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	1.88	5.75	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	1.60	5.75	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.84	5.75	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	1.73	5.75	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.86	5.75	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	2.26	5.75	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	1.82	5.75	PQL	ng/Kg	- (,
	1,2,3,7,8-PECDF	JB	1.42	5.75	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	1.45	5.75	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	1.58	5.75	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.449	1.15	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.343	1.15	PQL	ng/Kg	
	OCDD	JB	5.43	11.5	PQL	ng/Kg	
	OCDF	JB	5.90	11.5	PQL	ng/Kg	
01.004.0050N.00.00.0	ļ			-			
SL-094-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	4.64	5.42	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.376	5.42	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.469	5.42	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.661	5.42	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	2.25	5.42	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.422	5.42	PQL	ng/Kg	44 22 1 1 4 3
	1,2,3,7,8,9-HXCDD	JB	1.60	5.42	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	1.01	5.42	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	0.411	5.42	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.830	5.42	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.601	5.42	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.891	5.42	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0369	1.08	PQL	ng/Kg	
SL-095-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	0.635	5.31	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.556	5.31	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.599	5.31	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	2.15	5.31	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.463	5.31	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.64	5.31	PQL	ng/Kg	I /all datasts\
	1,2,3,7,8,9-HXCDF	JB	0.768	5.31	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.417	5.31	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.499	5.31	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.551	5.31	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.860	5.31	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0720	1.06	PQL	ng/Kg	

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-097-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	· · · · · · · · · · · · · · · · · · ·	0.753 0.782 1.05 3.77 0.538 2.20 1.12 0.398 0.862 0.597 0.882 0.0808 0.339	5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.59	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-098-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	ងទីងងងងងងង	5.40 4.03 3.71 2.00 1.75 2.45 1.48 2.59 2.09 0.266 0.527	5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.5	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-099-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	<u> </u>	2.26 3.05 2.55 1.37 1.31 2.04 1.59 1.49 1.42 0.256 0.580	5.11 5.11 5.11 5.11 5.11 5.11 5.11 5.11	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-101-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	JB JBQ JB JB JB JB JB JB JB JB JB JB JB JB JB	0.642 1.01 1.30 2.96 1.18 2.37 1.06 1.03 1.56 0.941 1.53 0.208 0.815	5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.29	PQL	ng/Kg	J (all detects)

Lab Reporting Batch ID: DX095

Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B	
Matrix:	so	

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-102-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	2.41	5.48	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	3.21	5.48	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	2.43	5.48	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF	JB JB	1.22 1.09	5.48 5.48	PQL PQL	ng/Kg ng/Kg	
	1,2,3,7,8-PECDD	JB	2.04	5.48	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.523	5.48	PQL	ng/Kg	o (all dotooto)
	2,3,4,6,7,8-HXCDF	JВ	1.37	5.48	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.991	5.48	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.209	1.10	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.373	1.10	PQL	ng/Kg	
SL-103-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	2.21	5.28	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	2.03	5.28	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	2.32	5.28	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	1.24	5.28	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB JB	4.89 1.24	5.28 5,28	PQL PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JB	1.43	5.28	PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.480	5.28	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.37	5.28	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	1.04	5.28	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.130	1.06	PQL	пg/Kg	
	2,3,7,8-TCDF	JBQ	0.464	1.06	PQL	ng/Kg	
SL-104-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	1.04	5.28	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.725	5.28	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.867	5.28	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	4.88	5.28	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB JB	0.570 2.46	5.28 5.28	PQL PQL	ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF	JB	0.839	5.28	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.429	5.28	PQL	ng/Kg	o (un detecto)
	1,2,3,7,8-PECDF	JВ	0.690	5.28	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.702	5.28	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.712	5.28	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0383	1.06	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.414	1.06	PQL	ng/Kg	-
SL-110-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	0.600	5.44	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.702	5.44	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB JB	0.643 3.22	5.44 5.44	PQL PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	JB	3.22 0.426	5.44	PQL	ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	2.14	5.44	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.14	5.44	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.560	5.44	PQL	ng/Kg	,
	1,2,3,7,8-PECDF	JB	0.355	5.44	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.606	5.44	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.812	5.44	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0819	1.09	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.264	1.09	PQL	ng/Kg	

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

Watnx: 50				ī			
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-111-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	1.02	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.929	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	1.06	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.575	5.53	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	2.86	5.53	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.25	5.53	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.443	5.53	PQL	ng/Kg	, , , , , , , , , , , , , , , , , , , ,
	1,2,3,7,8-PECDF	JB JB	0.337 0.658	5.53 5.53	PQL PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.523	5.53	PQL	ng/Kg	
	2,3,4,7,8-PECDF 2,3,7,8-TCDD	JB	0.0543	1.11	PQL	ng/Kg ng/Kg	
	1 ' ' '	JB	0.0343	1.11	PQL	ng/Kg	
24 442 2 1 2 2 2 2 2 2 2 2	2,3,7,8-TCDF			1		 	· · · · · · · · · · · · · · · · · · ·
SL-112-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB JB	0.776	5.41 5.41	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF	JB	0.867 0.853	5.41	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	4.29	5.41	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.595	5.41	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	2.30	5.41	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.922	5.41	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.523	5.41	PQL	ng/Kg	- (a
	1,2,3,7,8-PECDF	JB	0.697	5.41	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.680	5.41	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.788	5.41	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.101	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.300	1.08	PQL	ng/Kg	
SL-113-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	3.41	5.47	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JΒ	2.92	5.47	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	4.78	5.47	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	1.98	5.47	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	2.08	5.47	PQL	ng/Kg	1 /= d=t==t=\
	1,2,3,7,8-PECDD	JB JB	1.37	5.47 5.47	PQL PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JB	1.55 2.18	5.47	PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF	JB	2.30	5.47	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.213	1.09	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.558	1.09	PQL	ng/Kg	
SL-114-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	3.43	5.22	PQL	ng/Kg	
3E-114-3/3D14-00-0:0-0:3	1,2,3,4,7,8,9-HPCDF	JB	0.368	5.22	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.414	5.22	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.558	5.22	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.53	5.22	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.393	5.22	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.26	5.22	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.760	5.22	PQL	ng/Kg	o (an acteota)
	1,2,3,7,8-PECDD	JB	0.393	5.22	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.479	5.22	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.346	5.22	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.594	5.22	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ JB	0.103	1.04 1.04	PQL PQL	ng/Kg	
	2,3,7,8-TCDF	JD	0.320	1.04	FULL	ng/Kg	

Lab Reporting Batch ID: DX095 Laboratory: LL

EDD Filename: DX095_v1 eQAPP Name: CDM_SSFL_110509

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-121-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	JB JB JB JB JB JB JB JB JB	2.08 2.95 1.96 1.55 1.12 1.63 2.39 1.87 2.76 0.255 1.03	5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-125-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		1.13 1.54 1.07 0.736 3.86 1.28 0.773 0.868 0.876 0.995 0.105 0.403	5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

LDC #: 76255

VALIDATION FINDINGS WORKSHEET

Compound Quantitation and Reported CRQLs

Reviewer:_

2nd Reviewer:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Y N N/A

Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary). Y N N/A

Qualifications	J/P						>		
Associated Samples	OCDO > Cal range)							
Finding			5'	5	5	5			
Sample ID	SC-098-SA5DN-SSG,0-0,5	Sr-099-SASON-550/0-0,5	Sr-107-54501-55-016-0,5	SL-103-SASDN-SS-90-0,5	S-113-SASDV-550,00.5	SC-121-SASDW-5540-0.5			
Date									
*									

SAMPLE DELIVERY GROUP

DX096

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
1-June-2011	SL-128-SA5DN-SS-0.0-0.5	6304883	N	METHOD	1613B	HI
1-June-2011	SL-105-SA5DN-SS-0.0-0.5	6304872	N	METHOD	1613B	111
1-June-2011	SL-106-SA5DN-SS-0.0-0.5	6304873	N	METHOD	16 1 3B	111
1-June-2011	SL-107-SA5DN-SS-0.0-0.5	6304874	N	METHOD	1613B	m
1-June-2011	SL-108-SA5DN-SS-0.0-0.5	6304875	N	METHOD	1613B	111
1-June-2011	SL-108-SA5DN-SS-0.0-0.5MS	6304876	MS	METHOD	1613B	III
1-June-2011	SL-108-SA5DN-SS-0.0-0.5MSD	6304877	MSD	METHOD	1613B	III
1-June-2011	SL-109-SA5DN-SS-0.0-0.5	6304878	N	METHOD	1613B	111
1-June-2011	SL-123-SA5DN-SS-0.0-0.5	6304879	N	METHOD	1 613B	111
1-June-2011	SL-124-SA5DN-SS-0.0-0.5	6304880	N	METHOD	1 613B	111
1-June-2011	SL-100-SA5DN-SS-0.0-0.5	6304871	N	METHOD	1 613B	111
1-June-2011	SL-127-SA5DN-SS-0.0-0.5	6304882	N	METHOD	1 613B	111
1-June-2011	SL-018-SA5DN-SB-7.5-8.5	6304893	N	METHOD	1 613B	111
1-June-2011	SL-129-SA5DN-SS-0.0-0.5	6304884	N	METHOD	1613B	III
1-June-2011	SL-130-SA5DN-SS-0.0-0.5	6304885	N	METHOD	1613B	III
1-June-2011	SL-148-SA5DN-SS-0.0-0.5	6304886	N	METHOD	1613B	111
1-June-2011	DUP-11-SA5DN-QC-060111	6304887	FD	METHOD	1613B	III
1-June-2011	SL-015-SA5DN-SB-4.0-5.0	6304888	N	METHOD	1613B	III
1-June-2011	SL-015-SA5DN-SB-12.0-13.0	6304889	N	METHOD	1 613B	111
1-June-2011	SL-017-SA5DN-SB-4.0-5.0	6304890	N	METHOD	1 613B	111
1-June-2011	SL-017-SA5DN-SB-7.0-8.0	6304891	N	METHOD	1 613B	III
1-June-2011	SL-018-SA5DN-SB-4.0-5.0	6304892	N	METHOD	1613B	111
1-June-2011	SL-126-SA5DN-SS-0.0-0.5	6304881	N	METHOD	1613B	111

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: DUP-11-SA5DN-QC-060111 Collected: 6/1/2011 2:40:00 PM Analysis Type: RES Dilution: 1 Data Lab Lab Review Reason Analyte Result Qual DLType RLType Units Qual Code 0.0808 MDL 5.28 **PQL** Z, FD 1,2,3,4,7,8,9-HPCDF 1.39 JВ ng/Kg 0.0894 5.28 **PQL** J Ζ 1,2,3,4,7,8-HxCDD 0.859 JB MDL ng/Kg J 1,2,3,4,7,8-HXCDF 0.872 JB 0.0731 MDL 5.28 PQL ng/Kg Ζ JB 0.0954 MDL 5.28 **PQL** J Z 1,2,3,6,7,8-HXCDD 4.09 ng/Kg JB 0.0699 MDL 5.28 **PQL** J Z, 0.564 ng/Kg 1,2,3,6,7,8-HXCDF 2.11 0.0887 MDL 5.28 PQL. J Z 1,2,3,7,8,9-HXCDD ng/Kg 0.773 JΒ 0.0731 MDL 5.28 PQL J Z 1,2,3,7,8,9-HXCDF ng/Kg 1,2,3,7,8-PECDD 0.457 JBQ 0.0641 MDL 5.28 **PQL** ng/Kg J Z 0.0769 MDL J Z 1,2,3,7,8-PECDF 0.989 JBQ 5.28 PQL ng/Kg 0.665 JB 0.0708 MDL 5.28 **PQL** ng/Kg Z 2,3,4,6,7,8-HXCDF MDL PQL J Z 2,3,4,7,8-PECDF 0.478 JBQ 0.0711 5.28 ng/Kg 2,3,7,8-TCDD UJ 0.0744 JB 0.0323 MDL 1.06 **PQL** ng/Kg B, FD MDL PQL J Z 2,3,7,8-TCDF 0.344 JQ 0.172 1.06 ng/Kg

Sample ID: SL-015-SA5DN-SB-12.0-13.0 Collected: 6/1/2011 3:54:00 PM Analysis Type: RES Dilution: 1

Sample ID. SE-010-SASDIN-SB-12.0-13.0	Conce	ten. Oilizo	110.0-1.00	Till Analysis type. Nee				Dianon. 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.449	JВ	0.0410	MDL	5.43	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0745	JВ	0.0212	MDL	5.43	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0485	JBQ	0.0435	MDL	5.43	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0233	JBQ	0.0201	MDL	5.43	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0308	JB	0.0180	MDL	5.43	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0607	JB	0.0209	MDL	5.43	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0175	JBQ	0.0136	MDL	5.43	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0791	JBQ	0.0204	MDL	5.43	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0570	JBQ	0.0175	MDL	5.43	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDD	0.0372	JBQ	0.0250	MDL	5.43	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDF	0.0406	JBQ	0.0148	MDL	5.43	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0243	JBQ	0.0135	MDL	5.43	PQL	ng/Kg	Ų	В	
2,3,4,7,8-PECDF	0.0825	JBQ	0.0166	MDL	5.43	PQL	ng/Kg	Ų	В	
2,3,7,8-TCDD	0.0224	JBQ	0.0179	MDL	1.09	PQL	ng/Kg	U	В	
OCDD	3.71	JB	0.0525	MDL	10.9	PQL	пg/Kg	Ų	В	
OCDF	0.198	JBQ	0.0640	MDL	10.9	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX096

Laboratory: LL

Dilution: 4

EDD Filename: DX096_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-015-SA5DN-SB-4.0-5.0 Collected: 6/1/2011 3:45:00 PM Analysis Type: RES

Sample ID: SL-015-SA5DN-SB-4.0-5.0	Collec	ted: 6/1/20	11 3:45:00	PM A	nalysis Ty	/pe: RES		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5.39	JB	0.0477	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.284	JB	0.0214	MDL	5.56	PQL	ng/Kg	Ų	В
1,2,3,4,7,8,9-HPCDF	0.0700	JBQ	0.0437	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.103	JBQ	0.0366	MDL	5.56	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.182	JB	0.0282	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.297	JBQ	0.0374	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.116	JBQ	0.0218	MDL	5.56	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.340	JBQ	0.0367	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.377	JBQ	0.0292	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.179	JBQ	0.0229	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.187	JB	0.0151	MDL	5.56	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0799	JB	0.0233	MDL	5.56	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.219	JB	0.0164	MDL	5.56	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0363	JBQ	0.0159	MDL	1.11	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0689	JQ	0.0207	MDL	1.11	PQL	ng/Kg	J	Z
OCDF	0.681	JB	0.0589	MDL	11.1	PQL	ng/Kg	U	В

Sample ID: SL-017-SA5DN-SB-4.0-5.0 Collected: 6/1/2011 12:35:00 Analysis Type: RES Dilution: 1

Sample ID. OL-OT TORODIA-OD-4.0-0.0	Conec	200. VI 1720	11 12.00.0	,,	,,,,,,,,,,,	pcc		-	madon. 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.481	JBQ	0.0427	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0449	JB	0.0103	MDL	5.63	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0314	JBQ	0.0240	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0520	JBQ	0.0150	MDL	5.63	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0407	JBQ	0.0230	MDL	5.63	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0360	JBQ	0.0178	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0284	JBQ	0.0109	MDL	5.63	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0225	JB	0.0128	MDL	5.63	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0802	JBQ	0.0118	MDL	5.63	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0227	JQ	0.0201	MDL	1.13	PQL	ng/Kg	J	Z
OCDD	1.64	JB	0.0501	MDL	11.3	PQL	ng/Kg	U	В
OCDF	0.189	JBQ	0.0694	MDL	11.3	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-017-SA5DN-SB-7.0-8.0 Collected: 6/1/2011 12:39:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason DLRLUnits Analyte Result Qual Type Type Qual Code 0.569 JΒ 0.0370 MDL 5.60 **PQL** U В 1,2,3,4,6,7,8-HPCDD ng/Kg 0.109 0.0109 MDL 5.60 PQL U В 1,2,3,4,6,7,8-HPCDF JB ng/Kg U 1,2,3,4,7,8,9-HPCDF 0.0214 MDL 5.60 **PQL** 0.0967 JBQ ng/Kg В 0.0850 5.60 ng/Kg U 1,2,3,4,7,8-HxCDD JB 0.0249 MDL PQL В 0.0673 JB 0.0131 MDL 5.60 PQL U В 1,2,3,4,7,8-HXCDF ng/Kg 0.0254 MDL 5.60 PQL U 1,2,3,6,7,8-HXCDD 0.101 JB ng/Kg В υ 1,2,3,6,7,8-HXCDF 0.0802 JB 0.0113 MDL 5.60 PQL ng/Kg В 0.0242 MDL 5.60 PQL U В 1,2,3,7,8,9-HXCDD 0.165 JB ng/Kg JBQ 0.0149 MDL 5.60 PQL U В 1,2,3,7,8,9-HXCDF 0.0932 ng/Kg 1,2,3,7,8-PECDD U 0.0754 0.0164 MDL 5.60 **PQL** ng/Kg В JBQ 0.00569 MDL 5.60 **PQL** U В 1,2,3,7,8-PECDF 0.0604 ng/Kg 2,3,4,6,7,8-HXCDF 0.0806 JB 0.0121 MDL 5.60 PQL ng/Kg U В 0.00614 MDL 5.60 PQL 2,3,4,7,8-PECDF 0.0865 JB ng/Kg υ В U 2,3,7,8-TCDD 0.0333 JBQ 0.0125 MDL 1.12 PQL ng/Kg В JQ 0.00956 J Z 2,3,7,8-TCDF 0.0113 MDL 1.12 PQL ng/Kg U OCDD 1.38 JΒ 0.0306 MDL 11.2 **PQL** ng/Kg В

Sample ID: SL-018-SA5DN-SB-4.0-5.0 Collected: 6/1/2011 11:16:00 Analysis Type: RES Dilution: 1

0.0410

MDL

11.2

POL

ng/Kg

U

В

JBQ

0.302

bumpie ibi da die diedait da ind die										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.586	JB	0.0297	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.145	JBQ	0.00809	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.110	JB	0.0163	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.139	JB	0.0172	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.171	JB	0.0169	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.139	JBQ	0.0180	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.140	JB	0.0139	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.167	JB	0.0174	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.154	JB	0.0186	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.133	JBQ	0.0150	MDL	5.38	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDF	0.116	JB	0.00798	MDL	5.38	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.129	JB	0.0151	MDL	5.38	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.159	JB	0.00865	MDL	5.38	PQL	ng/Kg	U	В	
				·	/					

^{*} denotes a noл-reportable result

OCDF

9/27/2011 2:38:07 PM ADR version 1.4.0.111 Page 3 of 14

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID; SL-018-SA5DN-SB-4.0-5.0 Collected: 6/1/2011 11:16:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,7,8-TCDD	0.0282	JBQ	0.0153	MDL	1.08	PQL	ng/Kg	Ų	В	
2,3,7,8-TCDF	0.0366	JQ	0.0129	MDL	1.08	PQL	ng/Kg	J	Z	
OCDD	4.78	JB	0.0355	MDL	10.8	PQL	ng/Kg	U	В	
OCDF	0.310	JBQ	0.0314	MDL	10.8	PQL	ng/Kg	υ	В	

Sample ID: SL-018-SA5DN-SB-7.5-8.5 Collected: 6/1/2011 11:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.11	JB	0.0336	MDL	5.50	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.482	JB	0.0103	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.365	JBQ	0.0195	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.330	JBQ	0.0241	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.353	JB	0.0264	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.364	JBQ	0.0254	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.296	JBQ	0.0218	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.406	JB	0.0248	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.356	JB	0.0272	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.297	JB	0.0165	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.279	JB	0.0107	MDL	5.50	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.323	JB	0.0222	MDL	5.50	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.297	JB	0.0106	MDL	5.50	PQL	ng/Kg	Ų	В
2,3,7,8-TCDD	0.0334	JBQ	0.0135	MDL	1.10	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0433	JQ	0.0143	MDL	1.10	PQL	ng/Kg	J	z
OCDD	6.48	JB	0.0284	MDL	11.0	PQL	ng/Kg	J	Z
OCDF	1.11	JB	0.0384	MDL	11.0	PQL	ng/Kg	U	В

Sample ID: SL-100-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 3:25:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.547	JB	0.0193	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.595	JB	0.0164	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.577	JB	0.0131	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.96	JB	0.0175	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.337	JB	0.0119	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.85	JB	0.0166	MDL	5.17	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

9/27/2011 2:38:07 PM ADR version 1.4.0.111 Page 4 of 14

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-100-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 3:25:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDF	0.966	JB	0.0142	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.364	J	0.0153	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.405	JB	0.0138	MDL	5.17	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.492	JB	0.0133	MDL	5.17	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.512	JB	0.0135	MDL	5.17	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0569	J	0.00840	MDL	1.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.241	J	0.0261	MDL	1.03	PQL	ng/Kg	J	Z

Sample ID: SL-105-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 1:35:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.75	JB	0.0888	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.46	JB	0.0752	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.92	JB	0.0674	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.845	JB	0.0644	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.34	JB	0.0745	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.983	JB	0.0667	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.781	JB	0.0585	MDL	5,31	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.06	JB	0.0635	MDL	5.31	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.21	JB	0.0662	MDL	5.31	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.01	JB	0.0606	MDL	5.31	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0756	JBQ	0.0211	MDL	1.06	PQL	ng/Kg	U	В

Sample ID: SL-106-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 1:45:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.845	JB	0.0691	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.828	JBQ	0.0740	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.884	JB	0.0661	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.84	JB	0.0751	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.587	JB	0.0596	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.91	JB	0.0708	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.06	JB	0.0730	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.521	JB	0.0501	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.995	JB	0.0476	MDL	5.27	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

9/27/2011 2:38:07 PM ADR version 1.4.0.111 Page 5 of 14

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA	The state of the s	
Method:	1613B	Matrix: SO	

Sample ID: SL-106-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 1:45:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,6,7,8-HXCDF	0.677	JB	0.0636	MDL	5.27	PQL	ng/Kg	J	z
2,3,4,7,8-PECDF	0.698	JB	0.0474	MDL	5.27	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.134	JB	0.0221	MDL	1.05	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.250	J	0.0936	MDL	1.05	PQL	ng/Kg	J	Z

•						•				
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	0.836	JB	0.0559	MDL	5.16	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.902	JB	0.0565	MDL	5.16	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.807	JBQ	0.0498	MDL	5.16	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	2.52	JB	0.0592	MDL	5.16	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.649	JB	0.0444	MDL	5.16	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.79	JB	0.0561	MDL	5.16	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.854	JB	0.0498	MDL	5.16	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.612	JBQ	0.0387	MDL	5.16	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.802	JB	0.0349	MDL	5.16	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.704	JB	0.0462	MDL	5.16	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.767	JB	0.0346	MDL	5.16	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0355	JBQ	0.0159	MDL	1.03	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.237	JQ	0.0732	MDL	1.03	PQL	ng/Kg	J	Z	

Sample ID: SL-108-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 2:30:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.827	JB	0.0824	MDL	5.25	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HxCDD	0.761	JВ	0.0842	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.802	JB	0.0668	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	3.62	JB	0.0869	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.475	JB	0.0633	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.11	JB	0.0837	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.646	JB	0.0681	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.390	JB	0.0576	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.05	JB	0.0648	MDL	5.25	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.586	JВ	0.0662	MDL	5.25	PQL	ng/Kg	J	Z

Page 6 of 14

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-108-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 2:30:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,7,8-PECDF	0.722	JB	0.0634	MDL	5.25	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0444	JBQ	0.0242	MDL	1.05	PQL	ng/Kg	UJ	B, FD
2,3,7,8-TCDF	0.360	J	0.135	MDL	1.05	PQL	ng/Kg	J	Z

Sample ID: SL-109-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 3:10:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.85	JB	0.0598	MDL	5.34	PQL	ng/Kg	J	Z
,2,3,4,7,8-HxCDD	0.897	JB	0.0892	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.28	JB	0.0699	MDL	5.34	PQL	ng/Kg	j	Z
1,2,3,6,7,8-HXCDD	3.99	JB	0.0938	MDL	5.34	PQL	ng/Kg	j	Z
1,2,3,6,7,8-HXCDF	0.676	JB	0.0676	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.25	JB	0.0906	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.27	JB	0.0680	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.463	JB	0.0546	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.03	JB	0.0514	MDL	5.34	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.943	JB	0.0655	MDL	5.34	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.905	JB	0.0478	MDL	5.34	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0724	JB	0.0205	MDL	1.07	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.364	J	0.107	MDL	1.07	PQL	ng/Kg	J	Z

Sample ID: SL-123-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 10:20:00 Analysis Type: RES Dilution: 1

cumple is: of the circumstance of the	0000				, 0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.11	JB	0.0593	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.46	JB	0.0623	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.943	JB	0.0485	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	4.83	JB	0.0643	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.706	JB	0.0447	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.41	JB	0.0629	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.968	JВ	0.0509	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.990	JВ	0.0550	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.21	JB	0.0403	MDL	5.24	PQL	пд/Кд	J	Z
2,3,4,6,7,8-HXCDF	0.872	JB	0.0452	MDL	5.24	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.872	JB	0.0390	MDL	5.24	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-123-SA5DN-SS-0.0-0.5	Collec	Collected: 6/1/2011 10:20:00 Analysis Ty						pe: RES Dilut			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
2,3,7,8-TCDD	0.163	JBQ	0.0165	MDL	1.05	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.505	J	0.0865	MDL	1.05	PQL	ng/Kg	J	Z		

Sample ID: SL-124-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 10:45:00 Analysis Type: RES Dilution: 1

p			• •						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3360	EB	0.610	MDL	5.37	PQL	ng/Kg	J	*XI
1,2,3,7,8,9-HXCDF	2.85	JB	0.161	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1,61	JB	0.0694	MDL	5.37	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	4.17	JB	0.0676	MDL	5.37	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.567	JBQ	0.0375	MDL	1.07	PQL	ng/Kg	J	Z
OCDD	37100	EB	0.514	MDL	10.7	PQL	ng/Kg	J	*XI

Sample ID: SL-126-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 11:15:00 Analysis Type: RES Dilution: 1

	· · · · · · · · · · · · · · · · · · ·								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	4.76	JB	0.131	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.53	JB	0.0857	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	2.14	JB	0.0784	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.13	JB	0.0856	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.25	JB	0.108	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.61	JB	0.0702	MDL	5.34	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	3.13	JB	0.0802	MDL	5.34	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.05	JB	0.0710	MDL	5.34	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.178	JB	0.0240	MDL	1.07	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.958	J	0.144	MDL	1.07	PQL	ng/Kg	J	Z
OCDD	11200	EB	0.281	MDL	10.7	PQL	ng/Kg	J	*XI

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-127-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 11:35:00 Analysis Type: RES Dilution: 1

	• • • •									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	0.782	JB	0.0657	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	3.28	JB	0.101	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	1.09	JB	0.0561	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.611	JB	0.0551	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.444	JB	0.0601	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	1.85	JB	0.0701	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.921	JB	0.0721	MDL	4.95	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.777	JB	0.0533	MDL	4.95	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	1.01	JB	0.0678	MDL	4.95	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.152	JB	0.0232	MDL	0.991	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.651	J	0.118	MDL	0.991	PQL	ng/Kg	J	Z	

Sample ID: SL-128-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 9:20:00 AM Analysis Type: RES Dilution: 1

campic 12: 02 120 01 10211 00 010										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	2.65	JB	0.0356	MDL	5.54	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.219	JBQ	0.0419	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.226	JB	0.0520	MDL	5.54	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.475	JB	0.0401	MDL	5.54	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.945	JB	0.0542	MDL	5.54	PQL.	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.263	JB	0.0393	MDL	5.54	PQL	ng/Kg	Ų	В	
1,2,3,7,8,9-HXCDD	0.717	JB	0.0518	MDL	5.54	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.301	JB	0.0428	MDL	5.54	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.168	JBQ	0.0246	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	1.24	JB	0.0361	MDL	5.54	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.159	JB	0.0382	MDL	5.54	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.597	JB	0.0334	MDL	5.54	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0259	JBQ	0.0155	MDL	1.11	PQL	ng/Kg	υ	В	
OCDF	8.03	JB	0.0441	MDL	11.1	PQL	ng/Kg	J	Z	

Sample ID: SL-129-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 8:50:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	3.94	JB	0.106	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	2.59	JB	0.102	MDL	5.20	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method Category	SVOA	
Method:	1613B	Matrix: SO

1

Sample ID: SL-129-SA5DN-SS-0.0-0.5	Collected: 6/1/2011 8:50:00 AM	Analysis Type: RES	Dilution: 1
------------------------------------	--------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	2.42	JB	0.100	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.35	JB	0.0853	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.571	JB	0.107	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.25	JB	0.120	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.61	JB	0.0683	MDL	5.20	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.83	JB	0.0921	MDL	5.20	PQL	ng/Kg	j	Z
2,3,4,7,8-PECDF	1.23	JВ	0.0718	MDL	5.20	PQL	ng/Kg	L	Z
2,3,7,8-TCDD	0.133	JBQ	0.0321	MDL	1.04	PQL	ng/Kg	L	Z

Sample ID: SL-130-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 8:30:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5270	EB	0.850	MDL	5.13	PQL	ng/Kg	J	*XI
1,2,3,7,8,9-HXCDF	5.05	JB	0.124	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	3.23	JВ	0.0589	MDL	5.13	PQL	ng/Kg	J.	Z
2,3,4,7,8-PECDF	3.57	JB	0.0578	MDL	5.13	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.809	J	0.0921	MDL	1.03	PQL	ng/Kg	J	Z
OCDD	180000	EB	1.32	MDL	10.3	PQL	ng/Kg	J	*XI

Sample ID: SL-148-SA5DN-SS-0.0-0.5 Collected: 6/1/2011 3:50:00 PM Analysis Type: RES Dilution: 1

,p.o., z ., c = 1.11 -1.11-1.1 -1.										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	2.70	JB	0.0236	MDL	5.10	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.280	JB	0.0337	MDL	5.10	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.373	JB	0.0569	MDL	5.10	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.470	JB	0.0345	MDL	5.10	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	1.40	JВ	0.0601	MDL	5.10	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.267	JBQ	0.0321	MDL	5.10	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.42	JB	0.0587	MDL	5.10	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.936	JB	0.0388	MDL	5.10	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.305	JB	0.0344	MDL	5.10	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.447	JB	0.0277	MDL	5.10	PQL	ng/Kg	j	Z	
2,3,4,6,7,8-HXCDF	0.272	JBQ	0.0322	MDL	5.10	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.579	JB	0.0268	MDL	5.10	PQL	ng/Kg	J	Z	
2,3, 7, 8-TCDD	0.0239	JB	0.0122	MDL	1.02	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

9/27/2011 2:38:08 PM ADR version 1.4.0.111 Page 10 of 14

Lab Reporting Batch ID: DX096

Laboratory: LL

EDD Filename: DX096_v1

eQAPP Name: CDM_SSFL_110509

Method Category:			W. Oak	
Method:	1613B	Matrix:	so	

Sample ID: SL-148-SA5DN-SS-0.0-0.5	-0.5 Collected: 6/1/2011 3:50:00 PM Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.345	J	0.0557	MDL	1.02	PQL	ng/Kg	J	Z
OCDF	7.55	JB	0.0381	MDL	10.2	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX096

Laboratory: LL

EDD Filename: DX096_v1

eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI	Compound Quantitation and Reported CRQLs
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
C	Continuing Calibration Verification Percent Difference Upper Rejection
c ·	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Laboratory Triplicate Precision
Ε	Matrix Spike Precision
· · · · · · · · · · · · · · · · · · ·	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
H	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
I	Internal Standard Estimation
I	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
M	Continuing Tune
<u>M</u>	Initial Tune
<u>M</u>	Performance Evaluation Mixture
M	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Laboratory Triplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX096

EDD Filename: DX096_v1

EQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX096

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO	В			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1590B371300	6/10/2011 1:00:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF OCDD OCDF	0.182 ng/Kg 0.118 ng/Kg 0.0736 ng/Kg 0.0475 ng/Kg 0.0475 ng/Kg 0.0307 ng/Kg 0.0493 ng/Kg 0.0427 ng/Kg 0.0885 ng/Kg 0.0269 ng/Kg 0.0739 ng/Kg 0.0558 ng/Kg 0.425 ng/Kg 0.342 ng/Kg	SL-100-SA5DN-SS-0.0-0.5
BLK1650B370023	6/24/2011 12:23:00 AM	2,3,7,8-TCDF	0.0824 ng/Kg	DUP-11-SA5DN-QC-060111 SL-015-SA5DN-SB-12.0-13.0 SL-015-SA5DN-SB-4.0-5.0 SL-017-SA5DN-SB-4.0-5.0 SL-017-SA5DN-SB-7.0-8.0 SL-018-SA5DN-SB-7.0-8.0 SL-018-SA5DN-SB-7.5-8.5 SL-105-SA5DN-SS-0.0-0.5 SL-106-SA5DN-SS-0.0-0.5 SL-107-SA5DN-SS-0.0-0.5 SL-108-SA5DN-SS-0.0-0.5 SL-123-SA5DN-SS-0.0-0.5 SL-123-SA5DN-SS-0.0-0.5 SL-124-SA5DN-SS-0.0-0.5 SL-124-SA5DN-SS-0.0-0.5 SL-128-SA5DN-SS-0.0-0.5 SL-128-SA5DN-SS-0.0-0.5 SL-128-SA5DN-SS-0.0-0.5 SL-128-SA5DN-SS-0.0-0.5 SL-128-SA5DN-SS-0.0-0.5 SL-129-SA5DN-SS-0.0-0.5 SL-129-SA5DN-SS-0.0-0.5 SL-129-SA5DN-SS-0.0-0.5 SL-129-SA5DN-SS-0.0-0.5 SL-129-SA5DN-SS-0.0-0.5
BLK1650B371448	6/17/2011 2:48:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HACDD 1,2,3,4,7,8-HACDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD OCDD OCDD	0.494 ng/Kg 0.0768 ng/Kg 0.0768 ng/Kg 0.0386 ng/Kg 0.0514 ng/Kg 0.0514 ng/Kg 0.0532 ng/Kg 0.0532 ng/Kg 0.0463 ng/Kg 0.0598 ng/Kg 0.0420 ng/Kg 0.0420 ng/Kg 0.0427 ng/Kg 0.0470 ng/Kg 0.0677 ng/Kg 0.0224 ng/Kg 1.06 ng/Kg	DUP-11-SA5DN-QC-060111 SL-015-SA5DN-SB-12.0-13.0 SL-015-SA5DN-SB-4.0-5.0 SL-017-SA5DN-SB-4.0-5.0 SL-017-SA5DN-SB-7.0-8.0 SL-018-SA5DN-SB-7.0-8.0 SL-018-SA5DN-SB-0.0-0.5 SL-108-SA5DN-SS-0.0-0.5 SL-108-SA5DN-SS-0.0-0.5 SL-107-SA5DN-SS-0.0-0.5 SL-108-SA5DN-SS-0.0-0.5 SL-108-SA5DN-SS-0.0-0.5 SL-123-SA5DN-SS-0.0-0.5 SL-123-SA5DN-SS-0.0-0.5 SL-124-SA5DN-SS-0.0-0.5 SL-128-SA5DN-SS-0.0-0.5 SL-128-SA5DN-SS-0.0-0.5 SL-128-SA5DN-SS-0.0-0.5 SL-128-SA5DN-SS-0.0-0.5 SL-129-SA5DN-SS-0.0-0.5 SL-129-SA5DN-SS-0.0-0.5 SL-129-SA5DN-SS-0.0-0.5 SL-129-SA5DN-SS-0.0-0.5 SL-130-SA5DN-SS-0.0-0.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP-11-SA5DN-QC-060111(RES)	2,3,7,8-TCDD	0.0744 ng/Kg	0.0744U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,6,7,8-HPCDD	0.449 ng/Kg	0.449U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0745 ng/Kg	0.0745U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0485 ng/Kg	0.0485U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,7,8-HxCDD	0.0233 ng/Kg	0.0233U ng/Kg

9/27/2011 2:37:11 PM ADR version 1.4.0.111 Page 1 of 3

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-015-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,7,8-HXCDF	0.0308 ng/Kg	0.0308U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	1,2,3,6,7,8-HXCDD	0.0607 ng/Kg	0.0607U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	1,2,3,6,7,8-HXCDF	0.0175 ng/Kg	0.0175U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	1,2,3,7,8,9-HXCDD	0.0791 ng/Kg	0.0791U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	1,2,3,7,8,9-HXCDF	0,0570 ng/Kg	0.0570U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	1,2,3,7,8-PECDD	0.0372 ng/Kg	0.0372U ng/Kg
SL-015-SA5DN-SB-12,0-13.0(RES)	1,2,3,7,8-PECDF	0.0406 ng/Kg	0.0406U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	2,3,4,6,7,8-HXCDF	0.0243 ng/Kg	0.0243U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	2,3,4,7,8-PECDF	0.0825 ng/Kg	0.0825U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	2,3,7,8-TCDD	0.0224 ng/Kg	0.0224U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	OCDD	3.71 ng/Kg	3.71U ng/Kg
SL-015-SA5DN-SB-12.0-13.0(RES)	OCDF	0.198 ng/Kg	0.198U ng/Kg
SL-015-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.284 ng/Kg	0.284U ng/Kg
SL-015-SA5DN-\$B-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0700 ng/Kg	0.0700U ng/Kg
SL-015-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.103 ng/Kg	0.103U ng/Kg
SL-015-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.182 ng/Kg	0.182U ng/Kg
SL-015-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.116 ng/Kg	0.116U ng/Kg
SL-015-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.179 ng/Kg	0.179U ng/Kg
SL-015-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0799 ng/Kg	0.0799U ng/Kg
SL-015-SA5DN-\$B-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.219 ng/Kg	0,219U ng/Kg
SL-015-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0363 ng/Kg	0.0363U ng/Kg
SL-015-SA5DN-SB-4.0-5.0(RES)	OCDF	0.681 ng/Kg	0.681U ng/Kg
SL-017-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.481 ng/Kg	0.481U ng/Kg
SL-017-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0449 ng/Kg	0.0449U ng/Kg
SL-017-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0314 ng/Kg	0.0314U ng/Kg
SL-017-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0520 ng/Kg	0.0520U ng/Kg
SL-017-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0407 ng/Kg	0.0407U ng/Kg
SL-017-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0360 ng/Kg	0.0360U ng/Kg
SL-017-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0284 ng/Kg	0.0284U ng/Kg
SL-017-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0225 ng/Kg	0.0225U ng/Kg
SL-017-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0802 ng/Kg	0.0802U ng/Kg
SL-017-SA5DN-SB-4.0-5.0(RES)	OCDD	1.64 ng/Kg	1.64U ng/Kg
SL-017-SA5DN-SB-4.0-5.0(RES)	OCDF	0.189 ng/Kg	0.189U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDD	0.569 ng/Kg	0.569U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDF	0.109 ng/Kg	0.109U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0967 ng/Kg	0,0967U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,7,8-HxCDD	0.0850 ng/Kg	0.0850U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,7,8-HXCDF	0.0673 ng/Kg	0.0673U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	1,2,3,6,7,8-HXCDD	0.101 ng/Kg	0.101U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	1,2,3,6,7,8-HXCDF	0.0802 ng/Kg	0.0802U ng/Kg

9/27/2011 2:37:11 PM ADR version 1.4.0.111 Page 2 of 3

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-017-SA5DN-SB-7.0-8.0(RES)	1,2,3,7,8,9-HXCDD	0.165 ng/Kg	0,165U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	1,2,3,7,8,9-HXCDF	0.0932 ng/Kg	0.0932U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	1,2,3,7,8-PECDD	0.0754 ng/Kg	0.0754U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	1,2,3,7,8-PECDF	0.0604 ng/Kg	0.0604U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	2,3,4,6,7,8-HXCDF	0.0806 ng/Kg	0.0806U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	2,3,4,7,8-PECDF	0.0865 ng/Kg	0.0865U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	2,3,7,8-TCDD	0.0333 ng/Kg	0.0333U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	OCDD	1.38 ng/Kg	1.38U ng/Kg
SL-017-SA5DN-SB-7.0-8.0(RES)	OCDF	0.302 ng/Kg	0.302U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.586 ng/Kg	0.586U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.145 ng/Kg	0.145U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.110 ng/Kg	0.110U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.139 ng/Kg	0,139U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.171 ng/Kg	0.171U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.139 ng/Kg	0.139U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.140 ng/Kg	0.140U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.167 ng/Kg	0.167U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.154 ng/Kg	0.154U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.133 ng/Kg	0.133U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,116 ng/Kg	0.116U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.129 ng/Kg	0.129U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.159 ng/Kg	0.159U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0282 ng/Kg	0.0282U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	OCDD	4.78 ng/Kg	4.78U ng/Kg
SL-018-SA5DN-SB-4.0-5.0(RES)	OCDF	0.310 ng/Kg	0.310U ng/Kg
SL-018-SA5DN-SB-7.5-8.5(RES)	1,2,3,4,6,7,8-HPCDD	1.11 ng/Kg	1.11U ng/Kg
SL-018-SA5DN-SB-7.5-8.5(RES)	2,3,4,7,8-PECDF	0.297 ng/Kg	0.297U ng/Kg
SL-018-SA5DN-SB-7.5-8.5(RES)	2,3,7,8-TCDD	0.0334 ng/Kg	0.0334U ng/Kg
SL-018-SA5DN-SB-7.5-8.5(RES)	OCDF	1.11 ng/Kg	1.11U ng/Kg
SL-105-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0756 ng/Kg	0.0756U ng/Kg
SL-107-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0355 ng/Kg	0.0355U ng/Kg
SL-108-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0444 ng/Kg	0.0444U ng/Kg
SL-109-SA5DN-SS-0,0-0,5(RE\$)	2,3,7,8-TCDD	0.0724 ng/Kg	0.0724U ng/Kg
SL-128-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.219 ng/Kg	0.219U ng/Kg
SL-128-SA5DN-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0,263 ng/Kg	0.263U ng/Kg
SL-128-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.168 ng/Kg	0.168U ng/Kg
SL-128-SA5DN-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.159 ng/Kg	0.159U ng/Kg
SL-128-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0259 ng/Kg	0.0259U ng/Kg
SL-148-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.280 ng/Kg	0.280U ng/Kg
SL-148-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0239 ng/Kg	0.0239U ng/Kg

9/27/2011 2:37:11 PM ADR version 1.4.0.111 Page 3 of 3

Field Duplicate RPD Report

Lab Reporting Batch ID: DX096

Laboratory: LL

EDD Filename: DX096_v1	eQAPP Name: CDM_SSFL_110509
Method: 160.3M	

Method: 160.3M Matrix: SO					
	Concent	ration (%)			
Analyte	SL-108-SA5DN-SS-0.0- 0.5	DUP-11-SA5DN-QC- 060111	Sample RPD	eQAPP RPD	Flag
MOISTURE	5.3	5.5	4		No Qualifiers Applied

	Concentrat	tion (ng/Kg)			
Analyte	SL-108-SA5DN-SS-0.0- 0.5	DUP-11-SA5DN-QC- 060111	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD	108	123	13	50.00	
1,2,3,4,6,7,8-HPCDF	9.73	10.3	6	50.00	
,2,3,4,7,8-HxCDD	0.761	0.859	12	50.00	
,2,3,4,7,8-HXCDF	0.802	0.872	8	50.00	
,2,3,6,7,8-HXCDD	3.62	4.09	12	50.00	
,2,3,6,7,8-HXCDF	0.475	0.564	17	50.00	
,2,3,7,8,9-HXCDD	2.11	2.11	0	50.00	
,2,3,7,8,9-HXCDF	0.646	0.773	18	50.00	No Qualifiers Applie
,2,3,7,8-PECDD	0.390	0.457	16	50.00	
,2,3,7,8-PECDF	1.05	0.989	6	50.00	
,3,4,6,7,8-HXCDF	0.586	0.665	13	50.00	
,3,4,7,8-PECDF	0.722	0.478	41	50.00	
,3,7,8-TCDF	0.360	0.344	5	50.00	
CDD	1790	1950	9	50.00	
DCDF	35.0	37.0	6	50.00	
1,2,3,4,7,8,9-HPCDF	0.827	1,39	51	50.00	J(all detects)
2,3,7,8-TCDD	0.0444	0.0744	51	50.00	1

9/27/2011 2:34:08 PM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-124-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF	В	1.15	1.07	PQL	ng/Kg	
DUP-11-SA5DN-QC-060111	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD	JB JB	1.39 0.859	5.28 5.28	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.859	5.28	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	4.09	5.28	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.564	5.28	PQL	ng/Kg	
ł	1,2,3,7,8,9-HXCDD	JB	2.11	5.28	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.773	5.28	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.457	5.28	PQL	ng/Kg	, ,
	1,2,3,7,8-PECDF	JBQ	0.989	5.28	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.665	5.28	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.478	5.28	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0744	1.06	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.344	1.06	PQL	ng/Kg	
SL-015-SA5DN-SB-12.0-	1,2,3,4,6,7,8-HPCDD	JB	0.449	5.43	PQL	ng/Kg	
13.0	1,2,3,4,6,7,8-HPCDF	JB	0.0745	5.43	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0485	5.43	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0233	5.43	PQL	ng/Kg	
1	1,2,3,4,7,8-HXCDF	JB	0.0308	5.43	PQL PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	JB JBQ	0.0607 0.0175	5.43 5.43	PQL	ng/Kg ng/Kg	
	11,2,3,7,8,9-HXCDD	JBQ	0.0773	5.43	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0570	5.43	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0372	5.43	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0406	5.43	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0243	5.43	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0825	5.43	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0224	1.09	PQL	ng/Kg	
	OCDD	JB	3.71	10.9	PQL	ng/Kg	
	OCDF	JBQ	0.198	10.9	PQL	ng/Kg	
SL-015-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	5.39	5.56	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.284	5.56	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0700	5.56	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.103	5.56	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB JBQ	0.182 0.297	5.56 5.56	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	JBQ	0.297	5.56	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.110	5.56	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.377	5.56	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.179	5.56	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.187	5.56	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0799	5.56	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.219	5.56	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0363	1.11	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0689	1.11	PQL	ng/Kg	
<u>.</u>	OCDF	JB	0.681	11.1	PQL	ng/Kg	

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO Lab Reporting SampleID Analyte Limit Units Flag Qual Result Type SL-017-SA5DN-SB-4.0-5.0 PQL 1,2,3,4,6,7,8-HPCDD JBQ 0.481 5.63 ng/Kg 1,2,3,4,6,7,8-HPCDF ng/Kg 0.0449 5.63 PQL JB 1,2,3,4,7,8,9-HPCDF **JBQ** 0.0314 5.63 **PQL** ng/Kg 1,2,3,4,7,8-HXCDF **JBQ** 0.0520 5.63 PQL ng/Kg 1,2,3,7,8,9-HXCDD **JBQ** 0.0407 5.63 PQL ng/Kg 1,2,3,7,8,9-HXCDF JBQ 0.0360 5.63 PQL ng/Kg J (all detects) 1,2,3,7,8-PECDF JBQ 0.0284 5.63 PQL ng/Kg JB 0.0225 5.63 PQL ng/Kg 2,3,4,6,7,8-HXCDF **PQL** 2,3,4,7,8-PECDF **JBQ** 0.0802 5.63 ng/Kg 2.3.7.8-TCDF JQ 0.0227 1.13 PQL ng/Kg JB PQL ng/Kg OCDD 1.64 11.3 JBQ ng/Kg OCDF 0.189 11.3 **PQL** SL-017-SA5DN-SB-7.0-8.0 1,2,3,4,6,7,8-HPCDD JB 0.569 5.60 **PQL** ng/Kg JB 5.60 PQL 1,2,3,4,6,7,8-HPCDF 0.109 ng/Kg 1,2,3,4,7,8,9-HPCDF **JBQ** 0.0967 5.60 PQL ng/Kg 5.60 PQL 1,2,3,4,7,8-HxCDD JB 0.0850 ng/Kg JB 0.0673 5.60 **PQL** ng/Kg 1,2,3,4,7,8-HXCDF .IR 0.101 5.60 PQL ng/Kg 1,2,3,6,7,8-HXCDD JB 0.0802 5.60 PQL ng/Kg 1,2,3,6,7,8-HXCDF JR. 5.60 PQL 1,2,3,7,8,9-HXCDD 0.165 ng/Kg 1,2,3,7,8,9-HXCDF JBQ 0.0932 5.60 PQL ng/Kg J (all detects) PQL 1,2,3,7,8-PECDD .IB 0.0754 5.60 ng/Kg 1,2,3,7,8-PECDF JBQ 0.0604 5.60 PQL ng/Kg PQL JB 0.0806 5.60 2,3,4,6,7,8-HXCDF ng/Kg 2,3,4,7,8-PECDF JB 0.0865 5.60 POL ng/Kg JBQ 0.0333 PQL 2,3,7,8-TCDD 1.12 ng/Kg 2,3,7,8-TCDF JQ 0.0113 1.12 **PQL** ng/Kg PQL ng/Kg JB. 1.38 11.2 OCDD **OCDF JBQ** 0.302 11.2 PQL ng/Kg SL-018-SA5DN-SB-4.0-5.0 1,2,3,4,6,7,8-HPCDD JB 0.586 5.38 **PQL** ng/Kg 5.38 PQL 1,2,3,4,6,7,8-HPCDF **JBQ** 0.145 ng/Kg 1,2,3,4,7,8,9-HPCDF JB 0.110 5.38 PQL ng/Kg ng/Kg 1,2,3,4,7,8-HxCDD JB 0.139 5.38 **PQL** 1,2,3,4,7,8-HXCDF JΒ 0.171 5.38 **PQL** ng/Kg 1,2,3,6,7,8-HXCDD JBQ 0.139 5.38 **PQL** ng/Kg 1,2,3,6,7,8-HXCDF JB 0.140 5.38 **PQL** ng/Kg 1,2,3,7,8,9-HXCDD 5.38 PQL JB 0.167 ng/Kg 0.154 PQL ng/Kg J (all detects) 1,2,3,7,8,9-HXCDF JB 5.38 5.38 PQL ng/Kg 1.2.3.7.8-PECDD **JBQ** 0.133 5.38 PQL ng/Kg 1,2,3,7,8-PECDF JΒ 0.116 2,3,4,6,7,8-HXCDF JB 0.129 5.38 PQL ng/Kg JB 5.38 PQL ng/Kg 2,3,4,7,8-PECDF 0.159 2,3,7,8-TCDD **JBQ** 0.0282 1.08 **PQL** ng/Kg 1.08 JQ 0.0366 PQL ng/Kg 2,3,7,8-TCDF OCDD JB 4.78 10.8 **PQL** ng/Kg **JBQ PQL OCDF** 0.310 10.8 ng/Kg

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Matrix: SO	-	,	·				
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-018-SA5DN-SB-7.5-8.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF 0,3,7,8-TCDF 0,0DD 0,0DF	க்க்க்க்க்க்க்க்க்க்க்க்க்க்க்க் க	1.11 0.482 0.365 0.330 0.353 0.364 0.296 0.406 0.356 0.297 0.279 0.323 0.297 0.0334 0.0433 6.48 1.11	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	PQL	ng/Kg	J (all detects)
SL-100-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	日本の日本の日本の日本日本日本日本日本	0.547 0.595 0.577 2.96 0.337 1.85 0.966 0.364 0.405 0.492 0.512 0.0569 0.241	5.17 5.17 5.17 5.17 5.17 5.17 5.17 5.17	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-105-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	88888888888	1.75 1.46 1.92 0.845 3.34 0.983 0.781 1.06 1.21 1.01 0.0756	5.31 5.31 5.31 5.31 5.31 5.31 5.31 5.31	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-106-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	<u>មុទ្ធីមុមុមុមុមុមុ</u>	0.845 0.828 0.884 2.84 0.587 1.91 1.06 0.521 0.995 0.677 0.698 0.134 0.250	5.27 5.27 5.27 5.27 5.27 5.27 5.27 5.27	POL POL POL POL POL POL POL POL POL POL	ng/Kg	J (all detects)

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Matrix: SO						,	
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-107-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	0.836	5.16	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.902	5.16	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.807	5.16	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	2.52	5.16	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.649	5.16	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB JB	1.79 0.854	5.16 5.16	PQL PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JBQ	0.612	5.16	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.802	5.16	PQL	ng/Kg	
	2.3.4.6.7.8-HXCDF	JB	0.704	5.16	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.767	5.16	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0355	1.03	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.237	1.03	PQL	ng/Kg	
SL-108-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	0.827	5.25	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.761	5.25	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.802	5.25	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	3.62	5.25	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.475	5.25	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	2.11	5.25	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.646	5.25	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.390	5.25	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	1.05	5.25	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.586	5.25	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.722	5.25	PQL	ng/Kg	
	2,3,7,8-TCDD 2,3,7,8-TCDF	JBQ J	0.0444 0.360	1.05 1.05	PQL PQL	ng/Kg ng/Kg	
01 100 015011 00 00 05						1	
SL-109-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	1.85	5.34	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB JB	0.897 1.28	5.34 5.34	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JB	3.99	5.34	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.676	5.34	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	2.25	5.34	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.27	5.34	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.463	5.34	PQL	ng/Kg	, , , , , , , , , , , , , , , , , , , ,
	1,2,3,7,8-PECDF	JB	1.03	5.34	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JВ	0.943	5.34	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.905	5.34	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0724	1.07	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.364	1.07	PQL	ng/Kg	
SL-123-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	1.11	5.24	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	1.46	5.24	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.943	5.24	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	4.83	5.24	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.706	5.24	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF	JB JB	3.41 0.968	5.24 5.24	PQL PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDP 1,2,3,7,8-PECDD	JB	0.990	5.24	PQL	ng/Kg	a (an delects)
	1,2,3,7,8-PECDD	JB	1.21	5.24	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.872	5.24	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.872	5.24	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.163	1.05	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.505	1.05	PQL	ng/Kg	

Lab Reporting Batch ID: DX096 Laboratory: LL

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-124-SA5DN-SS-0.0-0.5	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	JB JB JBQ	2.85 1.61 4.17 0.567	5.37 5.37 5.37 1.07	PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-126-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	- 66666666	4.76 2.53 2.14 1.13 2.25 1.61 3.13 2.05 0.178 0.958	5.34 5.34 5.34 5.34 5.34 5.34 5.34 1.07 1.07	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-127-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	- ភាមាធាធាធាធាធាធាធាធាធាធាធាធាធាធាធាធាធាធា	0.782 3.28 1.09 0.611 0.444 1.85 0.921 0.777 1.01 0.152 0.651	4.95 4.95 4.95 4.95 4.95 4.95 4.95 4.95	PQL	ng/Kg	J (all detects)
SL-128-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	ងខ្លួងមង្គងងងង្គង់ងង	2.65 0.219 0.226 0.475 0.945 0.263 0.717 0.301 0.168 1.24 0.159 0.597 0.0259 8.03	5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54	PQL	ng/Kg	J (all detects)
SL-129-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	និងមិងមិងមិង	3.94 2.59 2.42 1.35 0.571 1.25 1.61 1.83 1.23 0.133	5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-130-SA5DN-SS-0.0-0.5	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF	JB JB JB J	5.05 3.23 3.57 0.809	5.13 5.13 5.13 1.03	PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/27/2011 2:37:53 PM ADR version 1.4.0.111 Page 5 of 6

Lab Reporting Batch ID: DX096

EDD Filename: DX096_v1 eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method: 1613B Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-148-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	2.70 0.280 0.373 0.470 1.40 0.267 1.42 0.936 0.305 0.447 0.272 0.579 0.0239 0.345 7.55	5.10 5.10 5.10 5.10 5.10 5.10 5.10 5.10	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

LDC #: (1828)

VALIDATION FINDINGS WORKSHEET

Compound Quantitation and Reported CRQLs

Page: of Beviewer:

2nd Reviewer:_____

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Y N N/A

Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary). Y N/A

Qualifications	3/6							
Associated Samples	> Cal Bange	0			7			
Finding	1,2,34,67,8-HPCD > Cal Panal	Caso	0000	42378,9400 OCM	1,2,3,4,6,7,8-HPCD			
Sample ID	SC-124-5A5DV-55-0.00.5	>	500'055-NOSHS-921-D	SC-136-SPSPAYS-0.005	7			
Date								
#						_		

LDC# 26250 F

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: of Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Was Was

/A Was the overall quality and usability of the data acceptable?

<u> </u>	#	Date	Sample ID		Finding Associated Samples	Qualifications
<u> </u>			SL-124-SAFDN-55-0.0-0,4	,	DB 5MS Colorany or	R/A
					,	
		:				
<u> </u>						
]						
	\dashv					
ا ق	Comments:	ts:				

SAMPLE DELIVERY GROUP

DX097

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
2-June-2011	SL-138-SA5DN-SS-0.0-0.5	6305936	N	METHOD	1613B	IV
2-June-2011	DUP-12-SA5DN-QC-060211	6305945	FD	METHOD	1613B	IV
2-June-2011	SL-138-SA5DN-SS-0.0-0.5MS	6305937	MS	METHOD	1613B	IV
2-June-2011	SL-138-SA5DN-SS-0.0-0.5MSD	6305938	MSD	METHOD	1613B	IV
2-June-2011	SL-131-SA5DN-SS-0.0-0.5	6305929	N	METHOD	1613B	IV
2-June-2011	SL-132-SA5DN-SS-0.0-0.5	6305930	N	METHOD	1613B	IV
2-June-2011	SL-133-SA5DN-SS-0.0-0.5	6305931	N	METHOD	1613B	IV
2-June-2011	SL-134-SA5DN-SS-0.0-0.5	6305932	N	METHOD	1613B	IV
2-June-2011	SL-135-SA5DN-SS-0.0-0.5	6305933	N	METHOD	1613B	IV
2-June-2011	EB12-SA5DN-SS-060211	6305950	EB	METHOD	1613B	IV
2-June-2011	SL-137-SA5DN-SS-0.0-0.5	6305935	N	METHOD	1613B	IV
2-June-2011	SL-151-SA5DN-SS-0.0-0.5	6305949	N	METHOD	1613B	IV
2-June-2011	SL-139-SA5DN-SS-0.0-0.5	6305939	· N	METHOD	1613B	IV
2-June-2011	SL-140-SA5DN-SS-0.0-0.5	6305940	N	METHOD	1613B	IV
2-June-2011	SL-141-SA5DN-SS-0.0-0.5	6305941	N	METHOD	1613B	IV
2-June-2011	SL-142-SA5DN-SS-0.0-0.5	6305942	N	METHOD	1613B	IV
2-June-2011	SL-143-SA5DN-SS-0.0-0.5	6305943	N	METHOD	1613B	IV
2-June-2011	SL-144-SA5DN-SS-0.0-0.5	6305944	N	METHOD	1613B	IV
2-June-2011	SL-145-SA5DN-SS-0.0-0.5	6305946	N	METHOD	1613B	IV
2-June-2011	SL-149-SA5DN-SS-0.0-0.5	6305947	N	METHOD	1613B	IV
2-June-2011	SL-150-SA5DN-SS-0.0-0.5	6305948	N	METHOD	1613B	IV
2-June-2011	SL-136-SA5DN-SS-0.0-0.5	6305934	N	METHOD	1613B	IV

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX097 Laboratory: LL EDD Filename: DX097 v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: AQ

Sample ID: EB12-SA5DN-SS-060211 Collected: 6/2/2011 12:30:00 Analysis Type: RES Dilution: 1

<i>Analyte</i>	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.81	JBQ	0.302	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,6,7,8-HPCDF	1.09	JB	0.136	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,7,8,9-HPCDF	0.694	JB	0.174	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,7,8-HxCDD	0.245	JBQ	0.209	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,7,8-HXCDF	0.417	JBQ	0.165	MDL	10.6	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDD	0.589	JBQ	0.225	MDL	10.6	PQL	pg/L	υ	В
1,2,3,6,7,8-HXCDF	0.446	JB	0.164	MDL	10.6	PQL	pg/L	υ	В
1,2,3,7,8,9-HXCDD	0.504	JBQ	0.218	MDL	10.6	PQL	pg/L	υ	В
1,2,3,7,8,9-HXCDF	0.517	JB	0.178	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8-PECDD	0.443	JBQ	0.273	MDL	10.6	PQL	pg/L	υ	В
2,3,4,6,7,8-HXCDF	0.482	JBQ	0.157	MDL	10.6	PQL	pg/L	U	В
2,3,4,7,8-PECDF	0.585	JBQ	0.148	MDL	10.6	PQL	pg/L	U	В
OCDD	10.3	JB	0.304	MDL	21.1	PQL	pg/L	U	В
OCDF	1.60	JBQ	0.432	MDL	21.1	PQL	pg/L	U	В

Method Category: SVOA Method: 1613B Matrix: so

Collected: 6/2/2011 9:45:00 AM Sample ID: DUP-12-SA5DN-QC-060211 Analysis Type: RES Dilution: 1 Data Lab Lab DL. RLReview Reason Analyte Result Qual DL Type RL Units Qual Type Code 1,2,3,4,6,7,8-HPCDF JΒ 0.0259 2.51 MDL 5.12 **PQL** J ng/Kg Z 1,2,3,4,7,8,9-HPCDF ŲJ B, FD 0.390 JB 0.0412 MDL 5.12 PQL ng/Kg 0.544 JΒ 0.0526 MDL 1,2,3,4,7,8-HxCDD 5.12 PQL ng/Kg J Z 0.0309 1,2,3,4,7,8-HXCDF 0.389 JΒ MDL 5.12 **PQL** J Z ng/Kg 1,2,3,6,7,8-HXCDD 1.19 JΒ 0.0550 MDL. 5.12 PQL ng/Kg J Z 1,2,3,6,7,8-HXCDF 0.317 JB 0.0277 MDL 5.12 PQL J Z, FD ng/Kg 1,2,3,7,8,9-HXCDD 1.12 JB 0.0506 MDL 5.12 PQL J ng/Kg Z 0.297 JB 0.0345 MDL 1,2,3,7,8,9-HXCDF 5.12 PQL UJ B, FD ng/Kg 1,2,3,7,8-PECDD 0.410 **JBQ** 0.0242 MDL 5.12 **PQL** J ng/Kg Z JB 0.0136 MDL PQL J z 1,2,3,7,8-PECDF 0.364 5.12 пд/Кд 2,3,4,6,7,8-HXCDF 0.301 JB 0.0296 MDL 5.12 PQL ng/Kg J Z, FD 2,3,4,7,8-PECDF 0.310 JBQ 0.0142 MDL 5.12 PQL J Z, FD ng/Kg 2,3,7,8-TCDD 0.0129 PQL U 0.0893 JB MDL 1.02 ng/Kg В

ADR version 1.4.0.111 9/29/2011 8:55:29 AM Page 1 of 14

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: DUP-12-SA5DN-QC-060211 Collected: 6/2/2011 9:45:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.102	JBQ	0.0260	MDL	1.02	PQL	ng/Kg	J	Z
OCDF	6.99	JB	0.0403	MDL	10.2	PQL	ng/Kg	J	Z

Sample ID: SL-131-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 11:25:00 Analysis Type: RES Dilution: 1

					,	·		-	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.60	JB	0.0533	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.61	JB	0.0663	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.38	JB	0.0579	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.743	JB	0.0521	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.60	JB	0.0647	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.440	JB	0.0518	MDL.	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.824	JB	0.0541	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.227	JBQ	0.0335	MDL	5.15	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.996	JB	0.0483	MDL	5.15	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.667	JB	0.0324	MDL	5.15	PQL	лд/Кд	J	Z
2,3,7,8-TCDD	0.0914	JBQ	0.0159	MDL	1.03	PQL	ng/Kg	U	В

Sample ID: SL-132-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 11:10:00 Analysis Type: RES Dilution: 1

•									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.00	JB	0.0743	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	4.47	JB	0.0987	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.41	JВ	0.0735	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.961	JВ	0.0618	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.832	JB	0.0681	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.13	JB	0.0814	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.530	JB	0.0291	MDL	4.96	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.39	JB	0.0602	MDL	4.96	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.946	JB	0.0294	MDL	4.96	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.263	JB	0.0240	MDL	0.992	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.351	JB	0.0607	MDL	0.992	PQL	ng/Kg	J	Z
OCDD	14200	EB	0.268	MDL	9.92	PQL	ng/Kg	J	*XI

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-133-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 10:50:00 Analysis Type: RES Dilution: 1

Campic 15: 62 100 Grid211 66 616 616	0000			•	,	,pu		_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.340	JB	0.0392	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.717	JB	0.0578	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.485	JB	0.0285	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.44	JB	0.0578	MDL,	5.13	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.190	JB	0.0256	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.74	JB	0.0553	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.258	JB	0.0297	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.413	JB	0.0295	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.250	JB	0.0183	MDL	5.13	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.274	JB	0.0267	MDL	5.13	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.189	JB	0.0187	MDL	5.13	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0387	JBQ	0.0136	MDL	1.03	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.0390	JBQ	0.0332	MDL	1.03	PQL	ng/Kg	U	В

Sample ID: SL-134-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 8:45:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.396	JB	0.0372	MDL	5.16	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.926	JBQ	0.0547	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.713	JB	0.0343	MDL	5.16	PQL	ng/Kg	j	Z
1,2,3,6,7,8-HXCDD	3.89	JB	0.0563	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.532	JB	0.0306	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.38	JB	0.0526	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.326	JB	0.0364	MDL	5.16	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.524	JBQ	0.0409	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.402	JB	0.0274	MDL	5.16	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.03	JB	0.0324	MDL	5.16	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.26	JB	0.0261	MDL	5.16	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0504	JBQ	0.0129	MDL	1.03	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0691	JB	0.0380	MDL	1.03	PQL	ng/Kg	U	В

Sample ID: SL-135-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 9:00:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.515	JB	0.0449	MDL.	5.00	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-135-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 9:00:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	0.800	JB	0.0528	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.695	JB	0.0352	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	3.20	JB	0.0539	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.292	JB	0.0302	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.12	JB	0.0502	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.301	JBQ	0.0299	MDL	5.00	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.440	JВ	0.0318	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.130	JB	0.0166	MDL	5.00	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.356	JB	0.0272	MDL	5.00	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.332	JB	0.0168	MDL	5.00	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0382	JB	0.0113	MDL	1.00	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0706	JВ	0.0290	MDL	1.00	PQL	ng/Kg	U	В

Sample ID: SL-136-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 8:25:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.99	JB	0.0313	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.312	JB	0.0455	MDL	5.02	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.491	JB	0.0661	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.564	JB	0.0370	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.87	JB	0.0694	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.261	JB	0.0343	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.38	JB	0.0649	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.407	JBQ	0.0380	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.399	JB	0.0242	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.481	JB	0.0199	MDL	5.02	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.289	JB	0.0358	MDL	5.02	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.396	JB	0.0200	MDL	5.02	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0723	JB	0.0137	MDL	1.00	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0924	JBQ	0.0296	MDL	1.00	PQL	ng/Kg	J	Z

Sample ID: SL-137-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 9:15:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.72	JB	0.0222	MDL	5.00	PQL	ng/Kg	٦	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

SO

Method Category: SVOA

Method: 1613B Matrix:

Sample ID: SL-137-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 9:15:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.265	JBQ	0.0313	MDL	5.00	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.375	JB	0.0353	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.525	JB	0.0306	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.976	JB	0.0372	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.301	JBQ	0.0279	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.904	JВ	0.0342	MDL	5.00	PQL	ng/Kg	J	Ž
1,2,3,7,8,9-HXCDF	0.351	JB	0.0330	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.331	JB	0.0231	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.586	JB	0.0197	MDL	5.00	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.279	JB	0.0284	MDL	5.00	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.422	JB	0.0194	MDL	5.00	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0966	JBQ	0.0133	MDL	1.00	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.172	JBQ	0.0327	MDL	1.00	PQL	ng/Kg	J	Z
OCDF	7.87	JB	0.0330	MDL	10.0	PQL	ng/Kg	J	Z

Sample ID: SL-138-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 9:30:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.55	JВ	0.0219	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.230	JBQ	0.0317	MDL	5.13	PQL	ng/Kg	UJ	B, FD
1,2,3,4,7,8-HxCDD	0.467	JB	0.0424	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.236	JB	0.0274	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.18	JB	0.0445	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.171	JB	0.0253	MDL	5.13	PQL	ng/Kg	J	Z, FD
1,2,3,7,8,9-HXCDD	1.16	JВ	0.0423	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.129	JB	0.0291	MDL	5.13	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8-PECDD	0.307	JB	0.0251	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.231	JB	0.0131	MDL	5.13	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.166	JBQ	0.0270	MDL	5.13	PQL	ng/Kg	J	Z, FD
2,3,4,7,8-PECDF	0.168	JB	0.0131	MDL	5.13	PQL	ng/Kg	UJ	B, FD
2,3,7,8-TCDD	0.0878	JBQ	0.0128	MDL	1.03	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0662	JBQ	0.0272	MDL	1.03	PQL	ng/Kg	υ	В
OCDD	592	В	0.0695	MDL	10.3	PQL	ng/Kg	j	Q
OCDF	7.72	JB	0.0383	MDL	10.3	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX097

Laboratory: LL

EDD Filename: DX097_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-139-SA5DN-SS-0.0-0.5	Collec	ted: 6/2/20	11 10:10:0	10 A	Analysis Type: RES				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDF	1.30	JB	0.0157	MDL	4.95	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.281	JB	0.0267	MDL	4.95	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.235	JB	0.0363	MDL,	4.95	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	0.226	JB	0.0310	MDL	4.95	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	0.762	JB	0.0378	MDL	4.95	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.181	JB	0.0270	MDL,	4.95	PQL	ng/Kg	J	Z、		
1,2,3,7,8,9-HXCDD	0.852	JB	0.0359	MDL	4.95	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.481	JB	0.0331	MDL	4.95	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.205	JB	0.0267	MDL	4.95	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.234	JB	0.00992	MDL	4.95	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.188	JBQ	0.0279	MDL	4.95	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.170	JB	0.0101	MDL	4.95	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.0289	JB	0.0127	MDL	0.990	PQL	ng/Kg	U	В		
2,3,7,8-TCDF	0.0547	JBQ	0.0190	MDL	0.990	PQL	ng/Kg	U	В		
OCDF	3.22	JB	0.0303	MDL	9.90	PQL	ng/Kg	J	Z		

Sample ID: SL-140-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 10:30:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.882	JB	0.0448	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.30	JB	0.0523	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.12	JB	0.0431	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.573	JB	0.0379	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.18	JB	0.0542	MDL	5.05	PQL	ng/Kg	J	Z
I,2,3,7,8,9-HXCDF	0.473	JB	0.0467	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.662	JB	0.0404	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	2.00	JB	0.0334	MDL	5.05	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.639	JB	0.0407	MDL	5.05	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.912	JB	0.0345	MDL	5.05	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0744	JВ	0.0126	MDL	1.01	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.390	JB	0.0790	MDL	1.01	PQL	ng/Kg	J	Z
OCDD	4330	EB	0.117	MDL	10.1	PQL	ng/Kg	J	*XI

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 9/29/2011 8:55:30 AM

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-141-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 1:15:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	4.04	JB	0.0932	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.24	JB	0.0810	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.77	JB	0.0784	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.832	JB	0.0859	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.88	JB	0.107	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	2.79	JB	0.0667	MDL	5.32	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	2.41	JB	0.0810	MDL	5.32	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.32	JB	0.0670	MDL	5.32	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.212	JB	0.0321	MDL	1.06	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.811	JВ	0.130	MDL	1.06	PQL	ng/Kg	J	Z
OCDD	4790	EB	0.156	MDL	10.6	PQL	ng/Kg	J	*XI

Sample ID: SL-142-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 2:15:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.13	JВ	0.0670	MDL	5.19	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.34	JB	0.0903	MDL	5.19	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.931	JB	0.0623	MDL	5.19	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.758	JB	0.0603	MDL	5.19	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.05	JB	0.0879	MDL	5.19	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.605	JB	0.0668	MDL	5.19	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.704	JBQ	0.0681	MDL	5.19	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.14	JB	0.0467	MDL	5.19	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.09	JB	0.0613	MDL	5.19	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.796	JB	0.0451	MDL	5.19	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0640	JBQ	0.0206	MDL	1.04	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.457	JВ	0.0889	MDL.	1.04	PQL	ng/Kg	J	Z

Sample ID: SL-143-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 1:35:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.62	JB	0.0813	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	2.11	JB	0.0947	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.32	JB	0.0690	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.923	JB	0.0661	MDL	5.24	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-143-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 1:35:00 PM Analysis Type: RES Dilution: 1

•										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8,9-HXCDD	4.78	JB	0.0971	MDL	5.24	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.937	JB	0.0777	MDL	5.24	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	1.19	JB	0.0736	MDL.	5.24	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	1.31	JB	0.0491	MDL	5.24	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.06	JB	0.0650	MDL	5.24	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.867	JB	0.0478	MDL	5.24	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.150	JB	0.0203	MDL	1.05	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.612	JВ	0.102	MDL	1.05	PQL	ng/Kg	J	Z	

Sample ID: SL-144-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 2:35:00 PM Analysis Type: RES Dilution: 1

3ample ID. 3L-144-3A3DN-33-0.0-0.5	Conec	teu. OIZIZU	11 2.33.00	FINI A	ilalysis i	pe, KES		Ditation: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	1.79	JB	0.0249	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.226	JBQ	0.0396	MDL	5.12	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.248	JB	0.0496	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.266	JB	0.0379	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	1.11	JB	0.0507	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.241	JB	0.0343	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.23	JB	0.0488	MDL.	5.12	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.895	JB	0.0395	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.278	JB	0.0314	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.388	JB	0.0200	MDL	5.12	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.199	JBQ	0.0350	MDL	5.12	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.327	JB	0.0201	MDL	5.12	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0507	JB	0.0148	MDL	1.02	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.125	JB	0.0328	MDL	1.02	PQL	ng/Kg	J	Z	
OCDF	4.73	JB	0.0425	MDL	10.2	PQL	ng/Kg	J	Z	

Sample ID: SL-145-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 2:50:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.69	JB	0.0237	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.286	JB	0.0342	MDL	5.00	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.457	JBQ	0.0508	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.296	JB	0.0346	MDL	5.00	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-145-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 2:50:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDD	1.45	JB	0.0531	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.236	JB	0.0318	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.41	JВ	0.0516	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.582	JB	0.0337	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.342	JBQ	0.0317	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.353	JBQ	0.0193	MDL	5.00	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.207	JB	0.0307	MDL	5.00	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.360	JB	0.0186	MDL	5.00	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0442	JBQ	0.0128	MDL	1.00	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.144	JB	0.0393	MDL	1.00	PQL	ng/Kg	J	Z
OCDF	8.25	JB	0.0321	MDL	10.0	PQL	ng/Kg	J	Z

Sample ID: SL-149-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 3:25:00 PM Analysis Type: RES Dilution: 1

oumpio ibi ob i io oriobii oo oio oio	000				, 0.0 . ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Direction. 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	1.72	JB	0.0181	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.182	JBQ	0.0361	MDL	5.34	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.243	JB	0.0393	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.279	JB	0.0381	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	1.09	JB	0.0405	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.223	JB	0.0314	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.40	JB	0.0401	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	1.32	JB	0.0447	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.247	JВ	0.0390	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.569	JB	0.0250	MDL	5.34	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.210	JB	0.0346	MDL	5.34	PQL	ng/Kg	J	z	
2,3,4,7,8-PECDF	0.394	JB	0.0272	MDL	5.34	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0443	JBQ	0.0151	MDL	1.07	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.179	JB	0.0483	MDL	1.07	PQL	ng/Kg	J	Z	
OCDF	4.70	JB	0.0453	MDL	10.7	PQL	ng/Kg	J	Z	

Sample ID: SL-150-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 3:05:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.61	JB	0.0210	MDL	5.35	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX097

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-150-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 3:05:00 PM Analysis Type: RES Dilution: 1

					, ,	,,				
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	0.294	JB	0.0327	MDL	5.35	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.355	JB	0.0423	MDL	5.35	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.610	JB	0.0394	MDL	5.35	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	1.49	JB	0.0443	MDL	5.35	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.384	JB	0.0349	MDL	5.35	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.54	JB	0.0429	MDL	5.35	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	1.02	JB	0.0409	MDL	5.35	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.332	JB	0.0390	MDL	5.35	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.688	JB	0.0281	MDL	5.35	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.324	JB	0.0355	MDL	5.35	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.564	JB	0.0286	MDL	5.35	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0512	JB	0.0143	MDL	1.07	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.387	JB	0.0543	MDL	1.07	PQL	ng/Kg	J	Z	
OCDF	8.38	JВ	0.0320	MDL	10.7	PQL	ng/Kg	j	Z	

Sample ID: SL-151-SA5DN-SS-0.0-0.5 Collected: 6/2/2011 1:50:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.58	JB	0.0135	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.168	JB	0.0280	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.138	JB	0.0293	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.108	JВ	0.0198	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	1.60	JВ	0.0302	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.175	JBQ	0.0166	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.15	JB	0.0288	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.664	JB	0.0221	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.194	JBQ	0.0292	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.168	JB	0.00966	MDL	5.13	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.103	JB	0.0181	MDL	5.13	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.104	JBQ	0.0105	MDL	5.13	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0237	JBQ	0.0157	MDL	1.03	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0251	JBQ	0.0199	MDL	1.03	PQL	ng/Kg	U	В
OCDF	5.43	JB	0.0334	MDL	10.3	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Laboratory: LL

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Lab Reporting Batch ID: DX097

Laboratory: LL EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI	Compound Quantitation and CRQLs
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Laboratory Triplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX097

EDD Filename: DX097_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Hename, DAOSI_		COM I Maine. ODM_OOI L
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
н	Temperature Rejection	
I	Internal Standard Estimation	
1	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
M	Continuing Tune	
M	Initial Tune	· · · · · ·
M	Performance Evaluation Mixture	
M	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Laboratory Triplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX097

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX097

Laboratory: LL

EDD Filename: DX097_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				roma kanang			
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-138-SA5DN-SS-0.0-0.5MS SL-138-SA5DN-SS-0.0-0.5MSD (SL-138-SA5DN-SS-0.0-0.5)	OCDD	24	29	40.00-135.00	•	OCDD	J (all detects) UJ (all non-detects)

9/29/2011 8:51:41 AM ADR version 1.4.0.111 Page 1 of 1

Field Duplicate RPD Report

Lab Reporting Batch ID: DX097 Laboratory: LL

eQAPP Name: CDM_SSFL_110509 EDD Filename: DX097_v1

Method: 160.3M Matrix: SO					
	Concent	ration (%)			
Analyte	SL-138-SA5DN-SS-0.0- 0.5	DUP-12-SA5DN-QC- 060211	Sample RPD	eQAPP RPD	Flag
MOISTURE	2.7	2.7	0		No Qualifiers Applied

Method:	1613B				
Matrix:	so		 •	** 125	Carrie Assi
	· · · · · · · · · · · · · · · · · · ·				

	Concentration (ng/Kg)				
Analyte	SL-138-SA5DN-SS-0.0- 0.5	DUP-12-SA5DN-QC- 060211	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDD OCDF	31.6 2.55 0.467 0.236 1.18 1.16 0.307 0.231 0.0878 0.0662 592 7.72	27.1 2.51 0.544 0.389 1.19 1.12 0.410 0.364 0.0893 0.102 512 6.99	15 2 15 49 1 4 29 45 2 43 14	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	No Qualifiers Applied
1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	0.230 0.171 0.129 0.166 0.168	0.390 0.317 0.297 0.301 0.310	52 60 79 58 59	50.00 50.00 50.00 50.00 50.00	J(all detects)

Page 1 of 1

Method Blank Outlier Report

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ								
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples				
BLK1610B372350	6/14/2011 11:50:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 0CDD 0CDD	5.46 pg/L 1.68 pg/L 1.16 pg/L 0.701 pg/L 0.730 pg/L 0.697 pg/L 0.764 pg/L 1.10 pg/L 0.850 pg/L 0.608 pg/L 0.737 pg/L 0.683 pg/L 0.940 pg/L 0.359 pg/L 13.0 pg/L	EB12-SA5DN-SS-060211				

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB12-SA5DN-SS-060211(RES)	1,2,3,4,6,7,8-HPCDD	4.81 pg/L	4.81U pg/L
EB12-SA5DN-SS-060211(RES)	1,2,3,4,6,7,8-HPCDF	1.09 pg/L	1.09U pg/L
EB12-SA5DN-SS-060211(RES)	1,2,3,4,7,8,9-HPCDF	0.694 pg/L	0.694U pg/L
EB12-SA5DN-SS-060211(RES)	1,2,3,4,7,8-HxCDD	0.245 pg/L	0.245U pg/L
EB12-SA5DN-SS-060211(RES)	1,2,3,4,7,8-HXCDF	0.417 pg/L	0.417U pg/L
EB12-SA5DN-SS-060211(RES)	1,2,3,6,7,8-HXCDD	0.589 pg/L	0.589U pg/L
EB12-SA5DN-SS-060211(RES)	1,2,3,6,7,8-HXCDF	0.446 pg/L	0.446U pg/L
EB12-SA5DN-SS-060211(RES)	1,2,3,7,8,9-HXCDD	0.504 pg/L	0.504U pg/L
EB12-SA5DN-SS-060211(RES)	1,2,3,7,8,9-HXCDF	0.517 pg/L	0.517U pg/L
EB12-SA5DN-SS-060211(RES)	1,2,3,7,8-PECDD	0.443 pg/L	0.443U pg/L
EB12-SA5DN-SS-060211(RES)	2,3,4,6,7,8-HXCDF	0.482 pg/L	0.482U pg/L
EB12-SA5DN-SS-060211(RES)	2,3,4,7,8-PECDF	0.585 pg/L	0.585U pg/L
EB12-SA5DN-SS-060211(RES)	OCDD	10.3 pg/L	10.3U pg/L
EB12-SA5DN-SS-060211(RES)	OCDF	1.60 pg/L	1.60U pg/L

9/29/2011 8:54:46 AM ADR version 1.4.0.111 Page 1 of 3

Method Blank Outlier Report

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1670B371545	6/18/2011 3:45:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 0CDD 0CDF	0.320 ng/Kg 0.0999 ng/Kg 0.0858 ng/Kg 0.0858 ng/Kg 0.0367 ng/Kg 0.0404 ng/Kg 0.0364 ng/Kg 0.0281 ng/Kg 0.0479 ng/Kg 0.0653 ng/Kg 0.0269 ng/Kg 0.0222 ng/Kg 0.0225 ng/Kg 0.0258 ng/Kg 0.0153 ng/Kg 0.0153 ng/Kg 0.0153 ng/Kg 0.0153 ng/Kg 0.0153 ng/Kg 0.0240 ng/Kg	DUP-12-SA5DN-QC-050211 SL-131-SA5DN-SS-0.0-0.5 SL-132-SA5DN-SS-0.0-0.5 SL-133-SA5DN-SS-0.0-0.5 SL-134-SA5DN-SS-0.0-0.5 SL-135-SA5DN-SS-0.0-0.5 SL-136-SA5DN-SS-0.0-0.5 SL-136-SA5DN-SS-0.0-0.5 SL-138-SA5DN-SS-0.0-0.5 SL-139-SA5DN-SS-0.0-0.5 SL-149-SA5DN-SS-0.0-0.5 SL-141-SA5DN-SS-0.0-0.5 SL-142-SA5DN-SS-0.0-0.5 SL-144-SA5DN-SS-0.0-0.5 SL-145-SA5DN-SS-0.0-0.5 SL-145-SA5DN-SS-0.0-0.5 SL-145-SA5DN-SS-0.0-0.5 SL-145-SA5DN-SS-0.0-0.5 SL-145-SA5DN-SS-0.0-0.5 SL-145-SA5DN-SS-0.0-0.5 SL-150-SA5DN-SS-0.0-0.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP-12-SA5DN-QC-060211(RES)	1,2,3,4,7,8,9-HPCDF	0.390 ng/Kg	0,390U ng/Kg
DUP-12-SA5DN-QC-060211(RES)	1,2,3,7,8,9-HXCDF	0.297 ng/Kg	0.297U ng/Kg
DUP-12-SA5DN-QC-060211(RES)	2,3,7,8-TCDD	0.0893 ng/Kg	0.0893U ng/Kg
SL-131-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0914 ng/Kg	0.0914U ng/Kg
SL-133-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.340 ng/Kg	0.340U ng/Kg
SL-133-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.258 ng/Kg	0.258U ng/Kg
SL-133-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.189 ng/Kg	0.189U ng/Kg
SL-133-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0387 ng/Kg	0.0387U ng/Kg
SL-133-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0390 ng/Kg	0.0390U ng/Kg
SL-134-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0,396 ng/Kg	0.396U ng/Kg
SL-134-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.326 ng/Kg	0.326U ng/Kg
SL-134-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0504 ng/Kg	0.0504U ng/Kg
SL-134-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0691 ng/Kg	0.0691U ng/Kg
SL-135-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0,301 ng/Kg	0.301U ng/Kg
SL-135-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0382 ng/Kg	0.0382U ng/Kg
SL-135-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0706 ng/Kg	0.0706U ng/Kg
SL-136-\$A5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.312 ng/Kg	0.312U ng/Kg
SL-136-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0723 ng/Kg	0.0723U ng/Kg
SL-137-\$A5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.265 ng/Kg	0.265U ng/Kg
SL-137-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0966 ng/Kg	0.0966U ng/Kg
SL-138-SA5DN-\$\$-0.0-0,5(RES)	1,2,3,4,7,8,9-HPCDF	0,230 ng/Kg	0.230U ng/Kg
SL-138-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.129 ng/Kg	0.129U ng/Kg
SL-138-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0,168 ng/Kg	0.168U ng/Kg
SL-138-\$A5DN-\$S-0.0-0.5(RES)	2,3,7,8-TCDD	0.0878 ng/Kg	0.0878U ng/Kg
SL-138-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0662 ng/Kg	0.0662U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/29/2011 8:54:46 AM ADR version 1.4.0.111 Page 2 of 3

Method Blank Outlier Report

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blani Sample ID	k	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-139-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.281 ng/Kg	0.281U ng/Kg
SL-139-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.170 ng/Kg	0.170U ng/Kg
SL-139-SA5DN-SS-0,0-0.5(RES)	2,3,7,8-TCDD	0.0289 ng/Kg	0.0289U ng/Kg
SL-139-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0547 ng/Kg	0.0547U ng/Kg
SL-140-SA5DN-SS-0.0-0.5(RE\$)	2,3,7,8-TCDD	0.0744 ng/Kg	0.0744U ng/Kg
SL-142-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0,0640 ng/Kg	0,0640U ng/Kg
SL-144-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.226 ng/Kg	0.226U ng/Kg
SL-144-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0507 ng/Kg	0.0507U ng/Kg
SL-145-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.286 ng/Kg	0.286U ng/Kg
SL-145-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0442 ng/Kg	0.0442U ng/Kg
SL-149-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.182 ng/Kg	0.182U ng/Kg
SL-149-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0443 ng/Kg	0.0443U ng/Kg
SL-150-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.294 ng/Kg	0.294U ng/Kg
SL-150-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0512 ng/Kg	0.0512U ng/Kg
SL-151-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.168 ng/Kg	0.168U ng/Kg
SL-151-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.138 ng/Kg	0.138U ng/Kg
SL-151-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.108 ng/Kg	0.108U ng/Kg
SL-151-SA5DN-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.103 ng/Kg	0.103U ng/Kg
SL-151-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.104 ng/Kg	0.104U ng/Kg
SL-151-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0237 ng/Kg	0.0237U ng/Kg
SL-151-SA5DN-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0251 ng/Kg	0.0251U ng/Kg

9/29/2011 8:54:46 AM ADR version 1.4.0.111 Page 3 of 3

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB12-SA5DN-SS-060211	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDD 0,3,4,7,8-PECDF 0,00DD 0,00DD	JBQ JBG JBG JBG JBG JBG JBG JBG JBG JBG JBG	4.81 1.09 0.694 0.245 0.417 0.589 0.446 0.504 0.517 0.443 0.482 0.585 10.3 1.60	10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613B Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP-12-SA5DN-QC-060211	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0,2,3,7,8-TCDF	医医胃性医胃性蛋白蛋白蛋白蛋白	2.51 0.390 0.544 0.389 1.19 0.317 1.12 0.297 0.410 0.364 0.301 0.0893 0.102 6.99	5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12	PQL	ng/Kg	J (all detects)
SL-131-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD	B B B B B B B B B B B B B B B B B B B	1.60 1.61 1.38 0.743 3.60 0.440 0.824 0.227 0.996 0.667 0.0914	5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-132-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		2.00 4.47 2.41 0.961 0.832 2.13 0.530 1.39 0.946 0.263 0.351	4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-133-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.340 0.717 0.485 2.44 0.190 1.74 0.258 0.413 0.250 0.274 0.189 0.0387 0.0390	5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13	PQL	ng/Kg	J (all detects)
SL-134-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD	கத்சைக்கைக்க	0.396 0.926 0.713 3.89 0.532 2.38 0.326 0.524 0.402 1.03 1.26 0.0504 0.0691	5.16 5.16 5.16 5.16 5.16 5.16 5.16 5.16	PQL	ng/Kg	J (all detects)
SL-135-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	ង	0.515 0.800 0.695 3.20 0.292 2.12 0.301 0.440 0.130 0.356 0.332 0.0382 0.0706	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	PQL	ng/Kg	J (all detects)

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Matrix: SO				T			
		Lab		Reporting	RL -		=4
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-136-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	3.99	5.02	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.312	5.02	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.491	5.02	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.564	5.02	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.87	5.02	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.261	5.02	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.38	5.02	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.407	5.02	PQL	ng/Kg	J (all delects)
	1,2,3,7,8-PECDD	JB	0.399	5.02	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.481	5.02	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.289	5.02	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.396	5.02	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0723	1.00	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0924	1.00	PQL	ng/Kg	
\$L-137-\$A5DN-\$\$-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	2.72	5.00	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.265	5.00	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.375	5.00	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.525	5.00	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.976	5.00	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.301	5.00	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.904	5.00	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.351	5.00	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.331	5.00	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.586	5.00	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.279	5.00	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.422	5.00	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0966	1.00	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.172	1.00	PQL	ng/Kg	
	OCDF	JB	7.87	10.0	PQL	ng/Kg	
SL-138-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	2.55	5.13	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.230	5.13	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.467	5.13	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.236	5.13	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.18	5.13	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.171	5.13	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.16	5.13	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.129	5.13	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.307	5.13	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.231	5.13	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.166	5.13	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.168	5.13	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0878	1.03	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0662	1.03	PQL	ng/Kg	
	OCDF	JB	7.72	10.3	PQL	ng/Kg	

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Matrix: SO		ı					
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-139-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	1.30	4.95	PQL	ng/Kg	-
	1,2,3,4,7,8,9-HPCDF	JB	0.281	4.95	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.235	4.95	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.226	4.95	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.762	4.95	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.181	4.95	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.852	4.95	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.481	4.95	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.205	4.95	PQL	ng/Kg	o (an acteoto)
	1,2,3,7,8-PECDF	JB	0.234	4.95	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.188	4.95	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.170	4.95	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0289	0.990	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0547	0.990	PQL		
ļ	OCDF	JBQ	3.22	9.90	PQL	ng/Kg	
01.440.04.501.00.00.0	<u> </u>					ng/Kg	
SL-140-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	0.882	5.05	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	1.30	5.05	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	1.12	5.05	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.573	5.05	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	3.18	5.05	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.473	5.05	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.662	5.05	PQL	ng/Kg	o (all detects)
i	1,2,3,7,8-PECDF	JB	2.00	5.05	PQL	ng/Kg	
İ	2,3,4,6,7,8-HXCDF	JΒ	0.639	5.05	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.912	5.05	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0744	1.01	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.390	1.01	PQL	ng/Kg	
SL-141-SA5DN-SS-0.0-0.5	1,2,3,4,7,8-HxCDD	JB	4.04	5.32	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	2.24	5.32	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	1.77	5.32	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.832	5.32	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	1.88	5.32	PQL	ng/Kg	44 11 1 1 4 3
	1,2,3,7,8-PECDF	JВ	2.79	5.32	PQL	ng/Kg	J (all detects)
	2,3,4,6,7,8-HXCDF	JB	2.41	5.32	PQL	ng/Kg	
	2,3,4,7,8-PECDF	ĴВ	1.32	5.32	PQL	ng/Kg	
	2,3,7,8-TCDD	JВ	0.212	1.06	PQL	ng/Kg	
	2,3,7,8-TCDF	JВ	0.811	1.06	PQL	ng/Kg	
SL-142-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	2.13	5.19	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	1.34	5.19	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.931	5.19	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.758	5,19	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	3.05	5.19	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.605	5.19	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.704	5.19	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	1.14	5.19	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.09	5.19	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.796	5.19	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.750	1.04	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.457	1.04	PQL	ng/Kg	
	2,0,1,0,1001		0.707	1.04	1 WL	iig/Ng	

Lab Reporting Batch ID: DX097 Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-143-SA5DN-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD 2,3,7,8-TCDD		1.62 2.11 1.32 0.923 4.78 0.937 1.19 1.31 1.06 0.867 0.150 0.612	5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.24	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-144-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 0CDF	30000000000000000000000000000000000000	1.79 0.226 0.248 0.266 1.11 0.241 1.23 0.895 0.278 0.388 0.199 0.327 0.0507 0.125 4.73	5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-145-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDF 2,3,7,8-TCDF	で の の の の の の の の の の の の の	2.69 0.286 0.457 0.296 1.45 0.236 1.41 0.582 0.342 0.353 0.207 0.360 0.0442 0.144 8.25	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX097

Laboratory: LL

EDD Filename: DX097_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-149-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	1.72	5.34	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.182	5.34	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.243	5.34	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.279	5.34	PQL	ng/Kg	
1	1,2,3,6,7,8-HXCDD	JB	1.09	5.34	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.223	5.34	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.40	5.34	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.32	5.34	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.247	5.34	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.569	5.34	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.210	5.34	PQL	ng/Kg	
1	2,3,4,7,8-PECDF	JB	0.394	5.34	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0443	1.07	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.179	1.07	PQL	ng/Kg	
01 450 01 501 00 0 0 0	OCDF	JB	4.70	10.7	PQL	ng/Kg	
SL-150-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	3.61	5.35	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.294	5.35	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.355	5.35	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.610	5.35	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB JB	1.49 0.384	5.35	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB JB		5.35	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF	JB JB	1.54 1.02	5.35 5.35	PQL PQL	ng/Kg	I (all data eta)
	1,2,3,7,8,9-1ACDF	JB	0.332	5.35	PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.532	5.35	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.324	5.35	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.564	5.35	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0512	1.07	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.387	1.07	PQL	ng/Kg	
	OCDF	JB	8.38	10.7	PQL	ng/Kg	
SL-151-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	1.58	5.13	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.168	5.13	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.138	5.13	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.108	5.13	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JВ	1.60	5.13	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.175	5.13	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	2.15	5.13	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.664	5.13	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.194	5.13	PQL	ng/Kg	•
	1,2,3,7,8-PECDF	JB	0.168	5.13	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.103	5.13	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.104	5.13	PQL.	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0237	1.03	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0251	1.03	PQL	ng/Kg	
1	OCDF	JB	5.43	10.3	PQL	ng/Kg	

Enclosure II

EPA Level IV Validation Reports

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Santa Susana Field Laboratory

Collection Date:

June 2, 2011

LDC Report Date:

September 26, 2011

Matrix:

Soil/Water

Parameters:

Dioxins/Dibenzofurans

Validation Level:

Level IV

Laboratory:

Lancaster Laboratories

Sample Delivery Group (SDG): DX097

Sample Identification

SL-131-SA5DN-SS-0.0-0.5 SL-132-SA5DN-SS-0.0-0.5 SL-133-SA5DN-SS-0.0-0.5 SL-134-SA5DN-SS-0.0-0.5 SL-135-SA5DN-SS-0.0-0.5 SL-136-SA5DN-SS-0.0-0.5 SL-137-SA5DN-SS-0.0-0.5 SL-138-SA5DN-SS-0.0-0.5 SL-139-SA5DN-SS-0.0-0.5 SL-140-SA5DN-SS-0.0-0.5 SL-141-SA5DN-SS-0.0-0.5 SL-142-SA5DN-SS-0.0-0.5 SL-143-SA5DN-SS-0.0-0.5 SL-144-SA5DN-SS-0.0-0.5 DUP-12-SA5DN-QC-060211 SL-145-SA5DN-SS-0.0-0.5 SL-149-SA5DN-SS-0.0-0.5 SL-150-SA5DN-SS-0.0-0.5 SL-151-SA5DN-SS-0.0-0.5 EB12-SA5DN-SS-060211

SL-138-SA5DN-SS-0.0-0.5MS SL-138-SA5DN-SS-0.0-0.5MSD

Introduction

This data review covers 21 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1613B for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Quality Assurance Project Plan for Santa Susana Field Laboratory (SSFL), RCRA Facility Investigation, Surficial Media Operable Unit (March 2009, Revision 4) and the USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

The chromatographic resolution between 2,3,7,8-TCDD and the peaks representing any other unlabeled TCDD isomers was resolved with a valley of less than or equal to 25%.

PFK and static resolving power were within validation criteria.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were within QC limits.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
11161005-MB	6/11/11	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0,2,3,4,7,8,9-HpCDF 0,2,3,4,7,8,9-HpCDF 0,2,3,4,7,8,9-HpCDF	0.359 pg/L 0.737 pg/L 0.940 pg/L 0.608 pg/L 0.730 pg/L 0.764 pg/L 0.683 pg/L 0.701 pg/L 0.697 pg/L 1.10 pg/L 1.68 pg/L 1.68 pg/L 1.16 pg/L 1.16 pg/L 1.16 pg/L 1.3.0 pg/L	All water samples in SDG DX097
11167001-MB	6/16/11	2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 0,2,5,4,7,8,9-HpCDF 0,2,5,4,7,8,9-HpCDF 0,2,5,4,7,8,9-HpCDF 0,2,5,4,7,8,9-HpCDF 0,2,5,4,7,8,9-HpCDF	0.0153 ng/Kg 0.0216 ng/Kg 0.0222 ng/Kg 0.0562 ng/Kg 0.0269 ng/Kg 0.0269 ng/Kg 0.0281 ng/Kg 0.0258 ng/Kg 0.0367 ng/Kg 0.0364 ng/Kg 0.0479 ng/Kg 0.0653 ng/Kg 0.0999 ng/Kg 0.320 ng/Kg 0.0858 ng/Kg 0.0858 ng/Kg 0.240 ng/Kg	All soil samples in SDG DX097

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
EB12-SA5DN-SS-060211	2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 0CDD 0CDD	0.585 pg/L 0.443 pg/L 0.446 pg/L 0.446 pg/L 0.482 pg/L 0.245 pg/L 0.589 pg/L 0.504 pg/L 0.517 pg/L 1.09 pg/L 4.81 pg/L 0.694 pg/L 10.3 pg/L 1.60 pg/L	0.585U pg/L 0.443U pg/L 0.447U pg/L 0.446U pg/L 0.482U pg/L 0.245U pg/L 0.589U pg/L 0.504U pg/L 0.517U pg/L 1.09U pg/L 4.81U pg/L 0.694U pg/L 10.3U pg/L 1.60U pg/L
SL-131-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD	0.0914 ng/Kg	0.0914U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-133-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF	0.0390 ng/Kg	0.0390U ng/Kg
	2,3,7,8-TCDD	0.0387 ng/Kg	0.0387U ng/Kg
	2,3,4,7,8-PeCDF	0.189 ng/Kg	0.189U ng/Kg
	1,2,3,7,8,9-HxCDF	0.258 ng/Kg	0.258U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.340 ng/Kg	0.340U ng/Kg
SL-134-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF	0.0691 ng/Kg	0.0691U ng/Kg
	2,3,7,8-TCDD	0.0504 ng/Kg	0.0504U ng/Kg
	1,2,3,7,8,9-HxCDF	0.326 ng/Kg	0.326U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.396 ng/Kg	0.396U ng/Kg
SL-135-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF	0.0706 ng/Kg	0.0706U ng/Kg
	2,3,7,8-TCDD	0.0382 ng/Kg	0.0382U ng/Kg
	1,2,3,7,8,9-HxCDF	0.301 ng/Kg	0.301U ng/Kg
SL-136-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD	0.0723 ng/Kg	0.0723U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.312 ng/Kg	0.312U ng/Kg
SL-137-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD	0.0966 ng/Kg	0.0966U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.265 ng/Kg	0.265U ng/Kg
SL-138-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF	0.0662 ng/Kg	0.0662U ng/Kg
	2,3,7,8-TCDD	0.0878 ng/Kg	0.0878U ng/Kg
	2,3,4,7,8-PeCDF	0.168 ng/Kg	0.168U ng/Kg
	1,2,3,7,8,9-HxCDF	0.129 ng/Kg	0.129U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.230 ng/Kg	0.230U ng/Kg
SL-139-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF	0.00547 ng/Kg	0.00547U ng/Kg
	2,3,7,8-TCDD	0.0289 ng/Kg	0.0289U ng/Kg
	2,3,4,7,8-PeCDF	0.170 ng/Kg	0.170U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.281 ng/Kg	0.281U ng/Kg
SL-140-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD	0.0744 ng/Kg	0.0744U ng/Kg
SL-142-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD	0.0640 ng/Kg	0.0640U ng/Kg
SL-144-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD	0.0507 ng/Kg	0.0507U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.226 ng/Kg	0.226U ng/Kg
DUP-12-SA5DN-QC-060211	2,3,7,8-TCDD	0.0893 ng/Kg	0.0893U ng/Kg
	2,3,4,7,8-PeCDF	0.297 ng/Kg	0.297U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.390 ng/Kg	0.390U ng/Kg
SL-145-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD	0.0422 ng/Kg	0.0422U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.286 ng/Kg	0.286U ng/Kg
SL-149-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD	0.0443 ng/Kg	0.0443U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.182 ng/Kg	0.182U ng/Kg
SL-150-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD	0.0512 ng/Kg	0.0512U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.294 ng/Kg	0.294U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-151-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF	0.0251 ng/Kg	0.0251U ng/Kg
	2,3,7,8-TCDD	0.0237 ng/Kg	0.0237U ng/Kg
	2,3,4,7,8-PeCDF	0.104 ng/Kg	0.104U ng/Kg
	1,2,3,4,7,8-HxCDF	0.108 ng/Kg	0.108U ng/Kg
	2,3,4,6,7,8-HxCDF	0.103 ng/Kg	0.103U ng/Kg
	1,2,3,4,7,8-HxCDD	0.138 ng/Kg	0.138U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.168 ng/Kg	0.168U ng/Kg

Sample EB12-SA5DN-SS-060211 was identified as an equipment blank. No polychlorinated dioxin/dibenzofuran contaminants were found with the following exceptions:

Equipment Blank ID	Sampling Date	Compound	Concentration	Associated Samples
EB12-SA5DN-SS-060211	6/2/11	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF	0.443 pg/L 0.245 pg/L 0.589 pg/L 0.504 pg/L 4.81 pg/L 10.3 pg/L 0.585 pg/L 0.417 pg/L 0.446 pg/L 0.517 pg/L 0.482 pg/L 1.09 pg/L 1.60 pg/L	All soil samples in SDG DX097

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X for other contaminants) than the concentrations found in the associated field blanks.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within the QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (%R) (Limits)	MSD (%R) (Limits)	RPD (Limits)	Flag	A or P
SL-138-SA5DN-SS-0.0-0.5MS/MSD (SL-138-SA5DN-SS-0.0-0.5)	OCDD	24 (40-135)	29 (40-135)	•	J (all detects) UJ (all non-detects)	А

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits.

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits.

X. Target Compound Identifications

All target compound identifications were within validation criteria.

XI. Compound Quantitation and RLs

All compound quantitation and RLs were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
SL-132-SA5DN-SS-0.0-0.5 SL-140-SA5DN-SS-0.0-0.5 SL-141-SA5DN-SS-0.0-0.5	OCDD	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	Р

All compounds reported below the RL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG DX097	All compounds reported below the RL.	J (all detects)	Α

XII. System Performance

The system performance was acceptable.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples SL-138-SA5DN-SS-0.0-0.5 and DUP-12-SA5DN-QC-060211 were identified as field duplicates. No polychlorinated dioxins/dibenzofurans were detected in any of the samples with the following exceptions:

	Concentra	tion (ng/Kg)			
Compound	SL-138-SA5DN-SS-0.0-0.5	DUP-12-SA5DN-QC-060211	RPD (Limits)	Flags	А от Р
2,3,7,8-TCDF	0.0662	0.102	43 (≤50)	-	-
2,3,7,8-TCDD	0.0878	0.0893	2 (≤50)	-	-
1,2,3,7,8-PeCDF	0.231	0.364	45 (≤50)	-	-
2,3,4,7,8-PeCDF	0.168	0.310	59 (≤50)	J (all detects)	Α
1,2,3,7,8-PeCDD	0.307	0.410	29 (≤50)	-	-
1,2,3,4,7,8-HxCDF	0.236	0.389	49 (≤50)	-	-
1,2,3,6,7,8-HxCDF	0.171	0.317	60 (≤50)	J (all detects)	Α
2,3,4,6,7,8-HxCDF	0.166	0.301	58 (≤50)	J (all detects)	Α
1,2,3,4,7,8-HxCDD	0.467	0.544	15 (≤50)	-	-
1,2,3,6,7,8-HxCDD	1.18	1.19	1 (≤50)	-	-
1,2,3,7,8,9-HxCDD	1.16	1.12	4 (≤50)		-
1,2,3,7,8,9-HxCDF	0.129	0.297	79 (≤50)	J (all detects)	Α
1,2,3,4,6,7,8-HpCDF	2.55	2.51	2 (≤50)	-	-
1,2,3,4,6,7,8-HpCDD	31.6	27.1	15 (≤50)	-	-
1,2,3,4,7,8,9-HpCDF	0.230	0.390	52 (≤50)	J (all detects)	Α
OCDD	592	512	14 (≤50)	-	-
OCDF	7.72	6.99	10 (≤50)	-	-

Santa Susana Field Laboratory Dioxins/Dibenzofurans - Data Qualification Summary - SDG DX097

SDG DX097	Sample SL-132-SA5DN-SS-0.0-0.5 SL-140-SA5DN-SS-0.0-0.5 SL-141-SA5DN-SS-0.0-0.5	Compound	Flag J (all detects)	A or P	Reason (Code) Compound quantitation and RLs (*XI)
DX097	SL-131-SA5DN-SS-0.0-0.5 SL-132-SA5DN-SS-0.0-0.5 SL-133-SA5DN-SS-0.0-0.5 SL-134-SA5DN-SS-0.0-0.5 SL-135-SA5DN-SS-0.0-0.5 SL-136-SA5DN-SS-0.0-0.5 SL-137-SA5DN-SS-0.0-0.5 SL-139-SA5DN-SS-0.0-0.5 SL-149-SA5DN-SS-0.0-0.5 SL-141-SA5DN-SS-0.0-0.5 SL-142-SA5DN-SS-0.0-0.5 SL-142-SA5DN-SS-0.0-0.5 SL-143-SA5DN-SS-0.0-0.5 SL-143-SA5DN-SS-0.0-0.5 SL-144-SA5DN-SS-0.0-0.5 SL-145-SA5DN-SS-0.0-0.5 SL-145-SA5DN-SS-0.0-0.5 SL-149-SA5DN-SS-0.0-0.5 SL-150-SA5DN-SS-0.0-0.5 SL-150-SA5DN-SS-0.0-0.5 SL-150-SA5DN-SS-0.0-0.5 SL-151-SA5DN-SS-0.0-0.5 SL-151-SA5DN-SS-0.0-0.5	All compounds reported below the RL.	J (all detects)	Α	Compound quantitation and RLs (Z)
DX097	SL-138-SA5DN-SS-0.0-0.5 DUP-12-SA5DN-QC-060211	2,3,4,7,8-PeCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8,9-HpCDF	J (all detects)	A	Field duplicates (RPD) (FD)

Santa Susana Field Laboratory Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG DX097

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX097	EB12-SA5DN-SS-060211	2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0,3,4,6,7,8-HpCDD 0,3,4,7,8,9-HpCDF	0.585U pg/L 0.443U pg/L 0.417U pg/L 0.446U pg/L 0.482U pg/L 0.589U pg/L 0.589U pg/L 0.504U pg/L 0.517U pg/L 1.09U pg/L 4.81U pg/L 0.694U pg/L 10.3U pg/L 1.60U pg/L	A	В
DX097	SL-131-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD	0.0914U ng/Kg	Α	В

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX097	SL-133-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF 2,3,7,8-TCDD 2,3,4,7,8-PeCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8,9-HpCDF	0.0390U ng/Kg 0.0387U ng/Kg 0.189U ng/Kg 0.258U ng/Kg 0.340U ng/Kg	A	В
DX097	SL-134-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8,9-HpCDF	0.0691U ng/Kg 0.0504U ng/Kg 0.326U ng/Kg 0.396U ng/Kg	A	В
DX097	SL-135-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8,9-HxCDF	0.0706U ng/Kg 0.0382U ng/Kg 0.301U ng/Kg	А	В
DX097	SL-136-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF	0.0723U ng/Kg 0.312U ng/Kg	А	В
DX097	SL-137-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF	0.0966U ng/Kg 0.265U ng/Kg	А	В
DX097	SL-138-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF 2,3,7,8-TCDD 2,3,4,7,8-PeCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8,9-HpCDF	0.0662U ng/Kg 0.0878U ng/Kg 0.168U ng/Kg 0.129U ng/Kg 0.230U ng/Kg	A	В
DX097	SL-139-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF 2,3,7,8-TCDD 2,3,4,7,8-PeCDF 1,2,3,4,7,8,9-HpCDF	0.00547U ng/Kg 0.0289U ng/Kg 0.170U ng/Kg 0.281U ng/Kg	A	В
DX097	SL-140-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD	0.0744U ng/Kg	Α	В
DX097	SL-142-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD	0.0640U ng/Kg	A	В
DX097	SL-144-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF	0.0507U ng/Kg 0.226U ng/Kg	А	В
DX097	DUP-12-SA5DN-QC-060211	2,3,7,8-TCDD 2,3,4,7,8-PeCDF 1,2,3,4,7,8,9-HpCDF	0.0893U ng/Kg 0.297U ng/Kg 0.390U ng/Kg	A	В
DX097	SL-145-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF	0.0422U ng/Kg 0.286U ng/Kg	А	В
DX097	SL-149-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF	0.0443U ng/Kg 0.182U ng/Kg	А	В
DX097	SL-150-SA5DN-SS-0.0-0.5	2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF	0.0512U ng/Kg 0.294U ng/Kg	А	В

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX097	SL-151-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF 2,3,7,8-TCDD 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8,9-HpCDF	0.0251U ng/Kg 0.0237U ng/Kg 0.104U ng/Kg 0.108U ng/Kg 0.103U ng/Kg 0.138U ng/Kg 0.168U ng/Kg	А	В

Santa Susana Field Laboratory Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG DX097

No Sample Data Qualified in this SDG

Labo VIET The s	#: 26250021 #: DX097 pratory: Lancaster Laborate HOD: HRGC/HRMS Diox samples listed below were ation findings worksheets.	<u>ories</u> ins/E e revi	i Dibenzofuran	L s (EPA Me	_eve	I IV I 161	13B)	DRKSHEET nreas. Validation	findin	Date: 9/26 Page:bf Reviewer: 2nd Reviewer: gs are noted in attache
	Validation	Aros		, _ :				Common	ato.	
l.	Technical holding times	ALEZ	1	٨	Sami	olina (dates:	Commer 6 2 11	iis	
11.	HRGC/HRMS Instrument pe	erform	ance check	Δ				- - 10		
III.				A	0	lo	POD £	20/35		
IV.				Α			ac 11	mit!		
V.				500						,
VI.		plicate	es	SW						
VII.				A	-1	ے	3 OP	<u>e</u>		
VIII.	· ·	and g	uality control	N			<u> </u>		-	
IX.				Δ	6	2	limi	+		· · · · · · · · · · · · · · · · · · ·
X.	Target compound identificat	ions		A		•	<u> </u>			
XI.			Ls ·	SW						
XII.				A						
XIII.				Δ						
XIV.					_		8,15			·
				3W	D.					
XV. Note: /alida	Field blanks A = Acceptable N = Not provided/applicable SW = See worksheet ted Samples:		R = Rins	o compounds sate eld blank		3 =	TB:	Duplicate = Trip blank = Equipment blank		
1 /	SL-131-SA5DN-SS-0.0-0.5	11	SL-141-SA5D	N-SS-0.0-0.	5	21	SL-138-SA5	DN-SS-0.0-0.5MS	31/	11167001
2	SL-132-SA5DN-SS-0.0-0.5	12	SL-142-SA5D					DN-SS-0.0-0.5MSD	ار' ا	11161005
3	SL-133-SA5DN-SS-0,0-0.5	13	SL-143-SA5D			23			33	
4	SL-134-SA5DN-SS-0.0-0.5	14	SL-144-SA5D	N-SS-0.0-0.	5	24			34	
<u>5</u>	SL-135-SA5DN-SS-0.0-0.5	15	DUP-12-SA5E	N-QC-0602	110	25			35	
6	SL-136-SA5DN-SS-0.0-0.5	16	SL-145-SA5D			26			36	
7	SL-137-SA5DN-SS-0.0-0.5	17	SL-149-SA5D			27			37	
8 /	SL-138-SA5DN-SS-0.0-0.5	18	SL-150-SA5D			28			38	

Notes:		

39

40

SL-151-SA5DN-SS-0.0-0.5

20 2 EB12-SA5DN-SS-060211

19

SL-139-SA5DN-SS-0.0-0.5

SL-140-SA5DN-SS-0.0-0.5

LDC#: 26x042

VALIDATION FINDINGS CHECKLIST

Page:_/_of_	2
Reviewer: FT	
2nd Reviewer: 1~	_

Method: Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	_			
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check				
Was PFK exact mass 380.9760 verified?	/			
Were the retention time windows established for all homologues?				
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers ≤ 25% ?				
Is the static resolving power at least 10,000 (10% valley definition)?				
Was the mass resolution adequately check with PFK?				
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?				
III. Initial calibration	1 A R			
Was the initial calibration performed at 5 concentration levels?				
Were all percent relative standard deviations (%RSD) ≤ 20% for unlabeled compounds and ≤ 35% for labeled compounds ?	/			
Did all calibration standards meet the Ion Abundance Ratio criteria?	/			
Was the signal to noise ratio for each target compound \geq 2.5 and for each recovery and internal standard \geq 10?				
IV. Continuing calibration		35 × 5		
Was a routine calibration performed at the beginning and end of each 12 hour period?				
Were all the concentrations for the unlabeled compounds and labeled compounds within the QC limits (Method 1613B, Table 6)?				
Did all routine calibration standards meet the Ion Abundance Ratio criteria?		_		
V. Blanks		1,1004		
Was a method blank associated with every sample in this SDG?				
Was a method blank performed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet?				
VI. Matrix spike/Matrix spikė duplicates	W.			
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VII. Laboratory control samples				
Was an LCS analyzed for this SDG?	_			
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?	/			

LDC #: 26 20 G2

VALIDATION FINDINGS CHECKLIST

Page: 2of 2
Reviewer: FT
2nd Reviewer: _____

Validation Area	Yes	No	NA	Findings/Comments
VIII. Regional Quality Assurance and Quality Control			4.734	
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				·
IX. Internal standards				
Were internal standard recoveries within the 25-150% criteria?			•	
Was the minimum S/N ratio of all internal standard peaks > 10?				
X. Target compound identification	r .			
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?	/	-		
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?				
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?				
Did compound spectra contain all characteristic ions listed in the table attached?				
Was the Ion Abundance Ratio for the two quantitation ions within criteria?				
Was the signal to noise ratio for each target compound and labeled standard <u>></u> 2.5?				
Does the maximum intensity of each specified characteristic ion coincide within \pm 2 seconds (includes labeled standards)?				
For PCDF identification, was any signal (S/N ≥ 2.5, at ± seconds RT) detected in the corresponding PCDPE channel?				
Was an acceptable lock mass recorded and monitored?				
XI. Compound quantitation/CRQLs			s Lyd	
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		-		
XII. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.		-		
XIV. Field duplicates		vojeveno) Eugenoje		
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.		,		
XV: Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.	7			

VALIDATION FINDINGS WORKSHEET

16/3.8 METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method**

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

LDC#: 26064A24 3625062/

VALIDATION FINDINGS WORKSHEET

Reviewer: 2nd Reviewer:

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". WETHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Were all samples associated with a method blank? √ N/A N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed?

Y / N/A

Associated samples: Blank analysis date: 6/14/11 Was the method blank contaminated? Blank extraction date: 6/11/11

All water

Sample Identification 0.504*U 0.585*U 0.443*U 0.417*U 0.446U 0.482*U 0.245*U 0.589*U 0.517U 0.6940 1.60*U 4.81*U 1.09U 10.3U 3.415 3.505 3.485 1.795 3.685 3.04 3.65 3.82 4.25 27.3 5.5 4.7 8.4 5.8 99 25 11161005-MB Blank ID 0.359*0.764* 0.701* 0.737* 0.940* 0.730* 0.683* 0.608* 0.697* 0.850* 1.10 1.68 5.46 1.16* 13.0 5.00 Conc. units: pg/Kg Compound ტ Σ 0

76 x2047 LDC #: 26064A21-

VALIDATION FINDINGS WORKSHEET Blanks

2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". N N/A

Were all samples associated with a method blank?

N/A

Y N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed?

*EMPC

SOIL

Blank analysis date: 6/18/11 Was the method blank contaminated? Blank extraction date: 6/16/11

Associated samples:_

₹

Conc. units: ng/Kg

Compound	Blank ID				28	Sample Identification	tion			
, C.	11167001-MB	5X.	1	2	3	7	5	9	7	8
I	0.0153*	0.0765			0.0390*U	0.0691U	0.0706U			0.0662*U
A	0.0216*	0.108	0.0914*U		0.0387*U	0.0504*U	0.0382U	0.0723U	O*9960.0	0.0878*U
	0.0222*	0.111								
7	0.0562*	0.281			0.189U					0.168U
В	0.0269*	0.1345								
Υ.	0.0404*	0.202								
7	0.0281*	0.1405								
M	0.0258*	0.129								
C	0.0367*	0.1835								
D	0.0364*	0.182								
ш	0.0479	0.2395								
Z	0.0653	0.3265			0.258U	0.326U	0.301*U			0.129U
0	0.0999	0.4995								
L	0.320	1.6								
۵	0.0858*	0.429			0.340U	0.396U		0.312U	0.265*U	0.230*U
9	1.42	7.1								
۵	0.240*	1.2								

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Was a method blank performed for each matrix and whenever a sample extraction was performed? *EMPC Pease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A" Were all samples associated with a method blank? N/A N/A N/A N/A

Was the method blank contaminated?

2nd Reviewer: Reviewer:

₹ Associated samples:

Conc. units: ng/Kg

Blank analysis date: 6/18/11

Blank extraction date: 6/16/11

0.0422*U 0.286U 옠 0.0893U 0.390U 0.297U 0.226*U 0.0507U Sample Identification 0.0640*U 0.0744U 0.0547*U 0.0289U 0.281U 0.170U 0.0765 0.1345 0.1405 0.1835 0.2395 0.3265 0.4995 0.108 0.129 0.182 0.429 0.111 0.281 0.202 1.6 1.2 7.1 섫 11167001-MB Blank ID 0.0153* 0.0216* 0.0222* 0.0562* 0.0269* 0.0404* 0.0281* 0.0258* 0.0367* 0.0364* 0.0479 0.0653 0.0999 0.0858*0.240* 0.320 1.42 Compound G 0

LDC #. 26064A24 36 X OG 2

VALIDATION FINDINGS WORKSHEET

Blanks

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Was a method blank performed for each matrix and whenever a sample extraction was performed? *EMPC Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". Were all samples associated with a method blank? Y/N N/A N/A/A/A

Was the method blank contaminated?

₹ Associated samples:

2nd Reviewer: Reviewer:

SOIL

Blank analysis date: 6/18/11

Conc. units: ng/Kg

Blank extraction date: 6/16/11

		_																	
																			÷
																			<u></u>
ation																			
Sample Identification																			
S	19	0.0251*U	0.0237*U		0.104*U		0.108U		0.103U	0.138U						0.168U			
	18		0.0512U				,									0.294U			
	17		0.0443*U								i					0.182*U			
	2X	0.0765	0.108	0.111	0.281	0.1345	0.202	0.1405	0.129	0.1835	0.182	0.2395	0.3265	0.4995	1.6	0.429	7.1	1.2	
Blank ID	11167001-MB	0.0153*	0.0216*	0.0222*	0.0562*	0.0269*	0.0404*	0.0281*	0.0258*	0.0367*	0.0364*	0.0479	0.0653	0.0999	0.320	0.0858*	1.42	0.240*	
Compound		I	A			80	~		М	c	D	E	Z	0	F	Ь	G	٥	

LDC#. <u>26256621</u> 26 x5 OG 2/

VALIDATION FINDINGS WORKSHEET Field Blanks

Reviewer: 2nd Reviewer:

METHOD: GC/MS Dioxins/Dibenzofurans (Method 1613B)

X/N N/A Were field blanks identified in this SDG? Blank units: pg/L

Associated sample units: ng/kG

Sampling date: 6/2/11

-ield blank type: (circle one) Field Blank / Rinsate / Other:

ALL SOILS >5X Sample Identification Associated Samples: 2.215 1.225 2.945 24.05 2.925 2.085 51.5 2.585 2.52 2.23 5.45 2.41 3.47 Blank ID 0.443 0.245 0.589 0.585 0.446 0.482 0.694 0.504 0.417 0.517 10.3 1.09 4.8 Compound ш O Σ 0 ω

Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

1 60

2
500
675
ß
TDC #

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

2nd Reviewer: Page: Reviewer:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water. Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

A NA

Was a MS/MSD analyzed every 20 samples of each matrix?

Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits? N/N N M/N/A

Date	OI OS/WSD ID	Compound	%	MS %R (Limits)	MSD %R (Limits)	RPD (Limits)	Associated Samples	Qualifications
	21+12	6	24	(78-114)	29 (78-144)	()	8	(b) &/ rn/r
	•		,	(Sci-0h,)	(35,04)	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
					()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		

/ p. 5052 98 # 507

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

\ \ \ 	FT	+
Page:	Reviewer:	2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A N/A

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

Qualifications 1A det Associated Samples Range Finding 7 O Date

Comments: See sample calculation verification worksheet for recalculations

LDC#: 2625062/ VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_	/of_	_/
Reviewer:	ŕ	<u>-7</u>
2nd Reviewer:		
· ·		

MÈTHOD: VOA (EPA Method 8260B)

Y N NA

Were field duplicate pairs identified in this SDG?

Were target analytes detected in the field duplicate pairs? * empc (FD)

	Concentrati			
Compound	8	15	RPD	
Н	0.0662*	0.102*	43	
А	0.0878*	0.0893	2	
1	0.231	0.364	45	
J	0.168	0.310*	59	J/A Det
В	0.307	0.410*	29	
к	0,236	0.389	49	
L	0.171	0.317	60	J/A det
М	0,166*	0.301	58	J/A det
С	0.467	0.544	15	
D	1.18	1,19	1	
E	1.16	1.12	4	
N	0.129	0.297	79	J/A det
0	2.55	2,51	2	
F	31.6	27.1	15	
Р	0.230*	0.390	52	J/A det
G	592	512	14	
Q	7.72	6.99	10	

V:\FIELD DUPLICATES\templates\26250G21.wpd

LDC# 26x08x/

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: _of /	Reviewer: FT	and Reviewer:
	-	2nd

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF = $(A_z)(C_{is})/(A_{is})(C_z)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $A_k = Area\ of\ compound, \qquad A_k = Area\ of\ associated\ internal\ standard\ C_k = Concentration\ of\ compound, \qquad C_k = Concentration\ of\ internal\ standard\ S = Standard\ deviation\ of\ the\ RRFs, \qquad X = Mean\ of\ the\ RRFs$

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
		Calibration		Average RRF	Average RRE	RRE	ц а		
#	Standard ID	Date	Compound (Reference Internal Standard)	(initial)	(initial)	(e43 std)	(CSE std)	%RSD	%RSD
<u>-</u>	11/8/9 7108 7471	(1/8/9	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	1.017	1.017	1.033	1.033	4.59	4.59
	Int: 0F1720	. •	2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	1.186	78/-1	1.186.	98/./	3.5%	5.52
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	566.0	0.995	1.001	1001	3.43	3.73
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	1.077	1.07	1.101	101.1	4.02	4.02
			OCDF (13C-OCDF)	0.945	0.945	0.974	0.974	3.54	334
7	1CAL WATER 6/3/11	11/2/19	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	8860	8.6%	0.952	0.252	4.64	3.60
	Int: DF1761		2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	141-1	1.14	671	601	4.3 4	434
\perp			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	898	888-0	0.95 1	0.25/	6.50	25.9
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	186.0	186.0	1.037	1.037	4.43	443
			OCDF ("C-OCDF)	0.885	0.81	216.0	0.917	22.6	3,
ო			2,3,7,8-TCDF (13C-2,3,7,8-TCDF)						
			2,3,7,8-TCDD ("3C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)						
			1.2.3.4.6.7.8-HpCDD (13C-1.2,4,6,7,8,-HpCDD)						
			OCDF (13C-OCDF)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

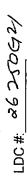
2
O
22
o.
3
#
CDC

Routine Calibration Results Verification VALIDATION FINDINGS WORKSHEET

Page: / of /	Reviewer: FT	2nd Reviewer:
		2

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:


% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_{\lambda})(C_{s})/(A_{s})(C_{\lambda})$

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, A_k = Concentration of compound, C_k = Concentration of compound, C_k Where:

 $A_{\rm k}$ = Area of associated internal standard $C_{\rm k}$ = Concentration of internal standard

					Reported	Recalculated	Reported	Recalcutated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	ď%	"Y
-	11/m/1 (10:14 Nas	1./14/11	2.3.7.8-TCDF (¹3C-2.3.7.8-TCDF)	10.0	046.6	046-6	66	66
		11/21/0	2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	0.0/	069.6	069.6	97	97
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	80.00	05%.0		106	901
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	So. CS	52.630		(0)	201
			OCDE (13C-OCDD)	001	102.58U		703	<i>५०/,</i>
2			2,3,7,8-TCDF (¹³C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD (¹3C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			Cocne (3c-ocnd)					
3			2,3,7,8-TCDF (13C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)					
		·~ <u>-</u>	1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			OCDF (13C-OCDD)	:				

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

Routine Calibration Results Verification VALIDATION FINDINGS WORKSHEET

\ ot	FT	2
Page:_	Reviewer: F	2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_{\lambda})(C_{b})/(A_{b})(C_{\lambda})$

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF $A_x = A_x$ Area of compound, $A_x = C_x = C_x$

 $A_{\mathbf{k}}$ = Area of associated internal standard $C_{\mathbf{k}}$ = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	ď% .	ζ,
_	Cey 12.55	11/81/9	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	0.01	0.6.6	06.60	66	66
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	0.0	9.76	276	86	86
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	30.0	011.15	011.15	102	701
		- · · · · · · · · · · · · · · ·	1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	50,0	008.15	51.80	hal	hol
			OCDF (13C-OCDF)	0001	104.20	104.401	104	hol
7	er 01:23	11/61/9	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	10.0	0.60.01	10.030	001	001
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	10.0	9.840	0/8.6	86	86
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	SO, C	06150	SD. 730	102	701
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	50.0	01975	019/2	60/	60/
			OCDF (13C-OCDF)	(O.C)	C82-401	101,71	_s o/	105
က	aw 10:52	11/01/2	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	10.0	076.6	9.36	. 901	na/
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	0.01	9.510	015.6	7.6	Z
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	30.00	25.8 5.25	32.85	701	101
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	0.05	52,620	29.05	/ 0/	101
			OCDF (13C-OCDF)	0.001	UB-801	103.84	/s Q/	101

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the results. recalculated

LDC# 26 X 062/

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Page: _of / 2nd Reviewer:__ Reviewer: FT

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSR - SR)/SA

SSR = Spiked sample result, SR = Sample result SA = Spike added Where:

RPD = I MSR - MSDR I * 2/(MSR + MSDR)

MSR = Matrix spike percent recovery MSDR = Matrix spike duplicate percent recovery

MS/MSD samples:

インナーア

Recalculated	RPD	בי	*******	η	7	7	<u> </u>	4
-		igg				:		
Reported	RPD	L L		ጠ	4	ત		4
Matrix Spike Duplicate	Percent Recovery	(ecovery	Recalc	82	18	68		6.8
Mafrix Soik	Percent	10010	Reported	82	28	68		68
Matrix Spike	Percent Recovery	, cooker y	Recaic	SK.	/6	/6		26
Matrix	Percent		Reported	يك	16	16		92
Sample	tration /kh	ال	MSD	0.0	90.1	8-16		92.1
Spiked Sample	Concentration		MS	17.5	93.6	73.6		94.3
Sample	Concentration (ng/kh	$\mathcal{L}_{\mathcal{M}}$ \mathcal{L}_{\dots}		0.0878	0.307	194.0		052.0
ike	Added	Ψ.	MSD	20.6	103	103		601
Sp	Add (MS	20.6	103	103		103
	Compound		The second second	2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD		1,2,3,4,7,8,9-HpCDF

Comments: Refer to Matrix Spike/Matrix Spike Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10,0% of the recalculated results.

/
7.
1.7
D
S
'n
M
7.
14
٠,
ভ
20
10
- 1
''مغت
#
()
\approx
Ľ

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: /of/	Reviewer: FT	d Reviewer:
	æ	2nd

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = 1 LCS - LCSD 1 * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: 0P12 16700

ple LCS CSD CSD CSD CSD CSD CSD CSD CSD CSD C	Percent Recovery Percent Recovery	ic Reported Recalc Reported	84 84	68 88	/6 /6	92 93	1 93 93 NA				
Spiked Sample	Concentrați	- CS	16.9	89.2	40.7	92.4	/82				
Spike	Added (ng/kg-		20,00 NA	100	(00)	100	J 00			,	
	Compound		2,3,7,8-TCDD	1,2,3,7,8-PeCDD	_1,2,3,4,7,8-HxCDD	1,2,3,4,7,8,9-HpCDF	OCDF				

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

J	Γ			<u> </u>	\neg							
	Analyte	HPCDF HPCDF HPCDF (S)	HPCDD HPCDD HPCDD (S)	HPCDD (S) NCDPE PFK	OCDF	0000 0000 0000	ocpp (s)	Ť Ť				
	Elemental Composition	C ₁₂ H ³⁵ Cl ₃ 37Cl ₂ O C ₁₂ H ³⁵ Cl ₃ 37Cl ₂ O ¹³ C ₁₂ H ³⁵ Cl ₃ O	12. 1 00. 00.00.00.00.00.00.00.00.00.00.00.00	C ₁₂ H ³ Cl ₂ Cl ₂ C C ₁ H ³ Cl ₂ Cl ₂ C C ₂ F ₁ ,	C ₁₂ 35CJ,37CIO	C ₁₂ **Cl,**7ClO ₂ C ₁₂ **Cl,**7ClO ₂ 13C,**Cl,**7ClO ₂	18C1,34C1,02 C124C1,04C1,02 C124C1,04C1,02	21 010	-			
	Ol nol	∑	: A A A A A A A A A A A A A A A A A A A	M+4 LOCK	M+2 M+4		M+4 M+4 LOCK				•	
Accessed to a	Accurate Mass	407.7818 409.7788 417.8250 419.8220	423.7767 425.7737 435.8169 437.8140	479.7165 [430.9728]	441.7428 443.7399	457,7377 459,7348 469,7780	471,7750 513,6775 [422,9278]	•		-	-	
Descriptor	invitace	4			5							
Analyte	1001	1CDF 1CDF 1CDF (8) 1CDF (8)	1CDD TCDD TCDD (8)	HXCDPE PFK	PecDF PecDF	Pecpf (S)	PecDD (S)	HpCDPE PFK	HXCDF HXCDF	HXCDF (S) HXCDD (S)	HXCDD (S)	OCDPE PFK
Elemental Composition	C LSC H	0.24.4.20.00.00.00.00.00.00.00.00.00.00.00.00.	Cr. 1, 24, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,		C12H,30C1,37C1O C12H,30C1,37C1O 13C1,H,30C1,37C1O	0.2 H, 301,000 0.2 H, 301,000 0.4 H, 301,001,00	13 C L 3 C L		C ₁₂ H ₂ wCl ₂ vClO C ₁₂ H ₂ wCl ₂ vClO C ₁₂ H ₂ wCl ₁ O	¹⁹ C ₁₂ H ₂ **Cl ₃ **ClO . C ₁₂ H ₂ **Cl ₃ **ClO . C ₁₂ H ₃ **Cl ₃ **ClO .	19C ₁₂ H ₂ 33C 37C ₂ O ₂ 13C ₁₂ H ₂ 33C 37C ₂ O ₂	C,F1,7
Ol nol	Σ	W W W + S	2 2 2 5 5 4 4 4 4 5 4 5 4 5 7 4 5 4 5 7 4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	Yoon	™ M ™ M M M M M M M M M M M M M M M M M	M+4 M+2 M+4	M + 2 4 + 4 5 + 6	LOCK	M+2 M+4		¥ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	LOCK
Accurate mass ^(b)	303,9016	305.8987 315.9419 317.9389 319.8965	321.8936 331.9368 333.9338 375,8364	[354.9792]	339,8597 341,8567 351,9000	353.8970 355.8546 357.8516	367,8949 369,8919 409,7974	[354.9792]	373,8208 375,8178 383,8639	385,8610 389,8156 391,8127	401,8559 403,8529 445,7555	[430.9728]
Descriptor	-				N -			·	Ф.	<u>- · · · · · · · · · · · · · · · · · · ·</u>		

(a) The following nuclidic masses were used:

 $H \approx 1.007825$ $C \approx 12.000000$ $^{19}C = 13.003355$ F = 18.9984

O = 15.994915 ${}^{36}CI = 34.968853$ ${}^{37}CI = 36.965903$

S = internal/recovery standard

LDC #:			_
SDG #:	M	cover	

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:	/_of	_/
Reviewer:	F	7
2nd reviewer.	-	_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Y N N/A Were all reported results recalculated and verified for all level IV samples?

Y N N/A Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_{\bullet})(I_{\bullet})(DF)$ (A,)(RRF)(V,)(%S) Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms Volume or weight of sample extract in milliliters (ml) or grams (g). Relative Response Factor (average) from the initial RRF calibration Dilution Factor. Df %S Percent solids, applicable to soil and solid matrices

Example:	
Sample I.D. # 1 ocpD:	
Conc. = (\$132421+ \$632181) (4000) (654178+595708)(1.067)(10.1) (09	62

3014

Calculated Reported Concentration Concentration # Sample ID Compound Qualification

SAMPLE DELIVERY GROUP

DX098

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
2-June-2011	SL-016-SA5DN-SB-12.0-13.0	6305970	N	METHOD	1613B	III
2-June-2011	SL-021-SA5DN-SB-4.0-5.0	6305971	N	METHOD	1613B	III
2-June-2011	SL-021-SA5DN-SB-19.5-20.5	6305972	N	METHOD	16 1 3B	Ш
2-June-2011	SL-016-SA5DN-SB-4.0-5.0	6305969	N	METHOD	1613B	Ш
3-June-2011	SL-158-SA5DN-SS-0.0-0.5	6306866	N	METHOD	1613B	Ш
3-June-2011	EB14-SA5DN-SB-060311	6306873	EB	METHOD	1613B	111
3-June-2011	EB13-SA5DN-SS-060311	6306874	ЕВ	METHOD	1613B	Ш
3-June-2011	SL-155-SA5DN-SS-0.0-0.5MS	6306862	MS	METHOD	1613B	Ш
3-June-2011	SL-155-SA5DN-SS-0.0-0.5MSD	6306863	MSD	METHOD	1613B	Ш
3-June-2011	SL-152-SA5DN-SS-0.0-0.5	6306858	N	METHOD	1613B	III
3-June-2011	SL-153-SA5DN-SS-0.0-0.5	6306859	N	METHOD	16 13 B	III
3-June-2011	SL-154-SA5DN-SS-0.0-0.5	6306860	N	METHOD	1613B	Ш
3-June-2011	SL-155-SA5DN-SS-0.0-0.5	6306861	N	METHOD	1613B	111
3-June-2011	SL-157-SA5DN-SS-0.0-0.5	6306865	N	METHOD	1613B	m
3-June-2011	SL-052-SA5DN-SB-9.0-10.0	6306880	N	METHOD	1613B	III
3-June-2011	SL-159-SA5DN-SS-0.0-0.5	6306867	N	METHOD	1613B	III
3-June-2011	SL-160-SA5DN-SS-0.0-0.5	6306868	N	METHOD	1613B	III
3-June-2011	SL-162-SA5DN-SS-0.0-0.5	6306869	N	METHOD	1613B	Ш
3-June-2011	SL-166-SA5DN-SS-0.0-0.5	6306870	N	METHOD	1613B	Ш
3-June-2011	SL-207-SA5DN-SS-0.0-0.5	6306871	N	METHOD	1613B	Ш
3-June-2011	DUP-13-SA5DN-QC-060311	6306872	N	METHOD	1613B	Ш
3-June-2011	SL-019-SA5DN-SB-4.0-5.0	6306875 ·	N	METHOD	1613B	III
3-June-2011	SL-019-SA5DN-SB-9.0-10.0	6306876	N	METHOD	1613B	Ш
3-June-2011	SL-027-SA5DN-SB-4.0-5.0	6306877	N	METHOD	1613B	III
3-June-2011	SL-027-SA5DN-SB-14.0-15.0	6306878	N	METHOD	1613B	111

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
3-June-2011	SL-052-SA5DN-SB-4.0-5.0	6306879	N	METHOD	1613B	1)[
3-June-2011	SL-156-SA5DN-SS-0.0-0.5	6306864	N	METHOD	1613B	111

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX098 Laboratory: LL
EDD Filename: PrepDX098_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: AQ

Sample ID: EB13-SA5DN-SS-060311 Collected: 6/3/2011 1:30:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.91	JBQ	0.302	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,6,7,8-HPCDF	0.801	JBQ	0.107	MDL	10.6	PQL	pg/L	υ	В
1,2,3,4,7,8,9-HPCDF	0.250	JB	0.128	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,7,8-HxCDD	0.207	JBQ	0.206	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,7,8-HXCDF	0.399	JBQ	0.184	MDL	10.6	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDD	0.471	JB	0.217	MDL	10.6	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDF	0.391	JB	0.172	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDD	0.380	JBQ	0.207	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDF	0.324	JBQ	0.184	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8-PECDF	0.312	JBQ	0.158	MDL	10.6	PQL	pg/L	U	В
2,3,4,6,7,8-HXCDF	0.344	JBQ	0.156	MDL	10.6	PQL	pg/L	U	В
2,3,4,7,8-PECDF	0.551	JBQ	0.141	MDL	10.6	PQL	pg/L	U	В
2,3,7,8-TCDD	0.320	JBQ	0.272	MDL	2.12	PQL	pg/L	U	В
OCDD	9.11	JB	0.303	MDL	21.2	PQL	pg/L	U	В
OCDF	1.90	JB	0.402	MDL	21.2	PQL	pg/L	U	В

Sample ID: EB14-SA5DN-SB-060311 Collected: 6/3/2011 12:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.48	JB	0.293	MDL	10.4	PQL	pg/L	U	В
1,2,3,4,6,7,8-HPCDF	0.902	JB	0.114	MDL	10.4	PQL	pg/L	U	В
1,2,3,4,7,8,9-HPCDF	0.283	JB	0.135	MDL	10.4	PQL	pg/L	U	В
1,2,3,4,7,8-HXCDF	0.295	JBQ	0.140	MDL	10.4	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDD	0.373	JBQ	0.195	MDL	10.4	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDF	0.396	JB	0.138	MDL	10.4	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDD	0.560	JB	0.192	MDL	10.4	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDF	0.649	JBQ	0.153	MDL	10.4	PQL	pg/L	U	В
1,2,3,7,8-PECDF	0.549	JBQ	0.153	MDL	10.4	PQL	pg/L	U	В
2,3,4,6,7,8-HXCDF	0.397	JB	0.140	MDL	10.4	PQL	pg/L	υ	В
2,3,4,7,8-PECDF	0.712	JB	0.137	MDL	10.4	PQL	pg/L	υ	В
OCDD	9.80	JB	0.276	MDL	20.8	PQL	pg/L	υ	В
OCDF	1.73	JBQ	0.408	MDL	20.8	PQL	pg/L	υ	В

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/4/2011 10:04:14 AM ADR version 1.4.0.111

Page 1 of 16

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: PrepDX098_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: DUP-13-SA5DN-QC-060311	Collec	ted: 6/3/20	11 10:55:0	00 A	nalysis T _i	/pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	2.02	JB	0.0280	MDL	5.19	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.236	JB	0.0392	MDL	5.19	PQL	ng/Kg	Ų	В	
1,2,3,4,7,8-HxCDD	0.272	JQ	0.0481	MDL	5.19	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.303	JB	0.0381	MDL	5.19	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.958	JB	0.0506	MDL	5.19	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.179	JB	0.0345	MDL	5.19	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	1.06	JB	0.0496	MDL	5.19	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	1.06	JB	0.0361	MDL	5.19	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.205	JB	0.0309	MDL	5.19	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.234	JB	0.0224	MDL	5.19	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.211	JB	0.0332	MDL	5.19	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.227	JB	0.0206	MDL	5.19	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0227	JQ	0.0172	MDL	1.04	PQL	ng/Kg	J	Z, FD	
2,3,7,8-TCDF	0.123	J	0.0382	MDL	1.04	PQL	ng/Kg	J	Z	
OCDF	6.78	JB	0.0419	MDL	10.4	PQL	ng/Kg	J	Z	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.14	JB	0.0283	MDL	5.59	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.143	JBQ	0.00995	MDL	5.59	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0704	JBQ	0.0210	MDL	5.59	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0368	JBQ	0.0165	MDL	5.59	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0865	JBQ	0.0247	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0431	JBQ	0.0167	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0533	JBQ	0.0174	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0397	JBQ	0.0163	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0500	JBQ	0.0229	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0193	JBQ	0.0138	MDL	5.59	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0742	JBQ	0.0154	MDL	5.59	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0783	JQ	0.0152	MDL	5.59	PQL	ng/Kg	J	Z
OCDD	10.9	JB	0.0286	MDL	11.2	PQL	ng/Kg	J	Z
OCDF	0.379	JBQ	0.0543	MDL	11.2	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/4/2011 10:04:15 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: PrepDX098_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-016-SA5DN-SB-4.0-5.0 Collected: 6/2/2011 10:04:00 Analysis Type: RES Dilution: 1

bampie ib. GE-010-GAGBIT-GB-410-010					, ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.16	JB	0.0343	MDL	5.90	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.410	JB	0.0189	MDL	5.90	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.148	JB	0.0193	MDL	5.90	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0522	JBQ	0.0251	MDL	5.90	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.128	JB	0.0471	MDL	5.90	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.240	JBQ	0.0274	MDL	5.90	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.119	JBQ	0.0403	MDL	5.90	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.337	JB	0.0250	MDL	5.90	PQL	ng/Kg	۲	Z
1,2,3,7,8,9-HXCDF	0.363	JB	0.0256	MDL	5.90	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0737	JВ	0.0296	MDL	5.90	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0868	JBQ	0.0162	MDL	5.90	PQL	ng/Kg	Ų	В
2,3,4,6,7,8-HXCDF	0.139	JB	0.0188	MDL	5.90	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.179	JQ	0.0172	MDL	5.90	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0206	JBQ	0.0191	MDL	1.18	PQL	ng/Kg	υ	В
OCDF	1.32	JB	0.0396	MDL	11.8	PQL	ng/Kg	υ	В

<u> </u>		<u> </u>						Data	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.313	JB	0.0273	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0493	JBQ	0.0147	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0372	JB	0.0190	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0347	JQ	0.0157	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0308	JB	0.0132	MDL	5.63	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0405	JBQ	0.0161	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0341	JB	0.0110	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0375	JB	0.0147	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0436	JBQ	0.00998	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0278	JBQ	0.0138	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0279	JB	0.00661	MDL	5.63	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0196	JBQ	0.00824	MDL	5.63	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0636	JBQ	0.00673	MDL	5.63	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0171	JQ	0.0130	MDL	1.13	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0171	JQ	0.0107	MDL	1.13	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX098

Laboratory: LL

EDD Filename: PrepDX098_v1

eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA
Method:	1613B

Matrix: SO

Sample ID: SL-019-SA5DN-SB-4.0-5.0 Collected: 6/3/2011 11:16:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDD	1.11	JB	0.0316	MDL	11.3	PQL	ng/Kg	U	В
OCDF	0.126	JB	0.0340	MDL	11.3	PQL	ng/Kg	U	В

Sample ID: SL-019-SA5DN-SB-9.0-10.0 Collected: 6/3/2011 2:50:00 PM Analysis Type: RES Dilution: 1

	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Type	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	1.30	JB	0.0565	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.116	JBQ	0.0150	MDL	5.52	PQL	n g /Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0495	JBQ	0.0209	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0523	JBQ	0.0210	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0700	JBQ	0.0135	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.103	JB	0.0216	MDL	5.52	PQL	n g /Kg	U	В
1,2,3,6,7,8-HXCDF	0.0627	JB	0.0125	MDL	5.52	PQL	n g /Kg	U	В
1,2,3,7,8,9-HXCDD	0.0784	JBQ	0.0214	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0587	JBQ	0.0145	MDL,	5.52	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0890	JBQ	0.0147	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0988	JBQ	0.00802	MDL	5.52	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0406	JB	0.0128	MDL	5.52	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0942	JB	0.00768	MDL	5.52	PQL	ng/Kg	υ	В
2,3,7,8-TCDD	0.0365	JQ	0.0126	MDL	1.10	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0264	JBQ	0.0133	MDL	1.10	PQL	ng/Kg	J	Z
OCDF	0.255	JBQ	0.0422	MDL	11.0	PQL	ng/Kg	Ų	В

Sample ID: SL-021-SA5DN-SB-19.5-20.5 Collected: 6/2/2011 2:50:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.96	JB	0.0406	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.147	JB	0.0125	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0446	JB	0.0207	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0288	JB	0.0102	MDL	5.56	PQL	ng/Kg	U	В
,2,3,6,7,8-HXCDD	0.0828	JB	0.0174	MDL	5.56	PQL	ng/Kg	U	В
,2,3,6,7,8-HXCDF	0.0166	JBQ	0.00869	MDL	5.56	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0413	JB	0.0161	MDL	5.56	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0423	JBQ	0.0117	MDL	5.56	PQL	пg/Kg	υ	В
,2,3,7,8-PECDF	0.0251	JBQ	0.00757	MDL	5.56	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

10/4/2011 10:04:15 AM ADR version 1.4.0.111 Page 4 of 16

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: PrepDX098_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA	
Method:	1613B	Matrix: SO

Sample ID: SL-021-SA5DN-SB-19.5-20.5	Collect	ted: 6/2/20	11 2:50:00	PM A	nalysis Ty	/pe: KES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
<u>-</u>					·	,	1		

0.0400 0.00746 MDL PQL 2,3,4,7,8-PECDF JBQ 5.56 ng/Kg U В U OCDF 0.357 JBQ 0.0345 MDL 11.1 **PQL** В ng/Kg

Sample ID: SL-021-SA5DN-SB-4.0-5.0 Collected: 6/2/2011 2:40:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.04	JB	0.0377	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.229	JB	0.0162	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0776	JBQ	0.0224	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.307	JBQ	0.0412	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.147	JB	0.0237	MDL	5.63	PQL	ng/Kg	U	B
1,2,3,7,8,9-HXCDD	0.187	JB	0.0228	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.214	JBQ	0.0262	MDL	5.63	PQL	лg/Kg	U	В
1,2,3,7,8-PECDD	0.0400	JBQ	0.0268	MDL	5.63	PQL	ng/Kg	Ü	В
1,2,3,7,8-PECDF	0.0510	JBQ	0.0214	MDL	5.63	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0914	JB	0.0199	MDL	5.63	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.154	JQ	0.0222	MDL	5.63	PQL	пg/Kg	J	Z
2,3,7,8-TCDD	0.0296	JBQ	0.0194	MDL	1.13	PQL	ng/Kg	U	В
OCDF	0.743	JBQ	0.0460	MDL	11.3	PQL	ng/Kg	U	В

Collected: 6/3/2011 3:00:00 PM Analysis Type: RES Sample ID: SL-027-SA5DN-SB-14.0-15.0 Dilution: 1

cample is: or or or or or or	001.00					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Billation 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.221	JBQ	0.0239	MDL	5.53	PQL	ng/Kg	υ	В	
1,2,3,4,6,7,8-HPCDF	0.0333	JB	0.0107	MDL	5.53	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HxCDD	0.0141	JQ	0.0120	MDL	5.53	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0176	JBQ	0.0133	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0180	JB	0.0113	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0319	JBQ	0.00886	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0110	JBQ	0.00709	MDL	5.53	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0306	JB	0.00709	MDL	5.53	PQL	ng/Kg	U	B	
OCDD	0.839	JB	0.0293	MDL	11.1	PQL	ng/Kg	U	В	
OCDF	0.0963	JBQ	0.0289	MDL	11.1	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: PrepDX098_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-027-SA5DN-SB-4.0-5.0 Collected: 6/3/2011 2:50:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.11	JB	0.0416	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.169	JBQ	0.0125	MDL.	5.47	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0356	JBQ	0.0188	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0265	J	0.0219	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0684	JBQ	0.0170	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.218	JB	0.0225	MDL	5.47	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0228	JBQ	0.0146	MDL	5.47	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.245	JB	0.0214	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.317	JB	0.0170	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0507	JB	0.0178	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0930	JВ	0.00964	MDL	5.47	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0310	JBQ	0.0148	MDL	5.47	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0805	JB	0.00941	MDL	5.47	PQL	ng/Kg	U	В
OCDF	0.555	JB	0.0344	MDL	10.9	PQL	ng/Kg	U	В

Sample ID: SL-052-SA5DN-SB-4.0-5.0 Collected: 6/3/2011 4:04:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.389	JBQ	0.0224	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0188	JBQ	0.00759	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0127	JBQ	0.0125	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.179	JB	0.0203	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0164	JB	0.0109	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.341	JВ	0.0203	MDL	5.38	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.352	JB	0.0128	MDL	5.38	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0415	JBQ	0.00770	MDL	5.38	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0200	JBQ	0.0112	MDL	5.38	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0303	JB	0.00759	MDL	5.38	PQL	ng/Kg	Ų	В
OCDD	1.22	JB	0.0295	MDL	10.8	PQL	ng/Kg	U	В
OCDF	0.0998	JBQ	0.0253	MDL	10.8	PQL	ng/Kg	Ü	В

Sample ID: SL-052-SA5DN-SB-9.0-10.0 Collected: 6/3/2011 4:08:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.350	JB	0.0268	MDL	5.53	PQL	ng/Kg	Ú	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: PrepDX098_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-052-SA5DN-SB-9.0-10.0 Collected: 6/3/2011 4:08:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.0238	JBQ	0.00861	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0175	JBQ	0.0121	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0129	JB	0.0103	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0102	JB	0.00884	MDL	5.53	PQL	ng/Kg	Ų	В
1,2,3,7,8,9-HXCDD	0.0370	JB	0.0140	MDL	5.53	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.00970	JBQ	0.00781	MDL	5.53	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0304	JBQ	0.00838	MDL	5.53	PQL	ng/Kg	U	В
OCDD	1.41	JB	0.0365	MDL	11.1	PQL	ng/Kg	υ	В
OCDF	0.0833	JBQ	0.0255	MDL	11.1	PQL	ng/Kg	υ	В

Sample ID: SL-152-SA5DN-SS-0.0-0.5 Collected: 6/3/2011 11:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.968	JВ	0.0194	MDL	5.35	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.148	JBQ	0.0286	MDL	5.35	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.136	J	0.0370	MDL	5.35	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.220	JB	0.0295	MDL	5.35	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.351	JBQ	0.0376	MDL	5.35	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.154	JB	0.0267	MDL	5.35	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.340	JB	0.0353	MDL	5.35	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.111	JB	0.0339	MDL	5.35	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0763	JB	0.0209	MDL	5.35	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.136	JB	0.0156	MDL	5.35	PQL	ng/Kg	J	z
2,3,4,6,7,8-HXCDF	0.160	JB	0.0277	MDL	5.35	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.188	JBQ	0.0147	MDL	5.35	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0200	JQ	0.0141	MDL	1.07	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0756	JQ	0.0247	MDL.	1.07	PQL	ng/Kg	J	Z
OCDF	2.47	JB	0.0314	MDL	10.7	PQL	ng/Kg	J	Z

 Sample ID: SL-153-SA5DN-SS-0.0-0.5
 Collected: 6/3/2011 12:10:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.756	JB	0.0227	MDL	5.32	PQL	ng/Kg	J	z
1,2,3,4,7,8,9-HPCDF	0.104	JB	0.0334	MDL	5.32	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0751	J	0.0389	MDL	5.32	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

10/4/2011 10:04:15 AM ADR version 1.4.0.111 Page 7 of 16

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: PrepDX098_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-153-SA5DN-SS-0.0-0.5 Collected: 6/3/2011 12:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	0.117	JBQ	0.0282	MDL	5.32	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.551	JВ	0.0400	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0790	JB	0.0244	MDL	5.32	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.728	JB	0.0385	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.556	JB	0.0275	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.119	JB	0.0260	MDL	5.32	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.159	JB	0.0178	MDL	5.32	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0865	JBQ	0.0266	MDL	5.32	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.114	JB	0.0174	MDL	5.32	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0465	J	0.0283	MDL	1.06	PQL	ng/Kg	J	Z
OCDF	2.24	JB	0.0333	MDL	10.6	PQL	ng/Kg	J	Z

Sample ID: SL-154-SA5DN-SS-0.0-0.5 Collected: 6/3/2011 11:20:00 Analysis Type: RES Dilution: 1

· · ·									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.86	JВ	0.0191	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.182	JB	0.0290	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.151	J	0.0368	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.220	JB	0.0313	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.867	JB	0.0381	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.144	JВ	0.0288	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	1.12	JB	0.0362	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.989	JB	0.0305	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.204	JBQ	0.0341	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.298	JB	0.0174	MDL	5.44	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.132	JB	0.0291	MDL	5.44	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.153	JB	0.0167	MDL	5.44	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0210	J	0.0151	MDL	1.09	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0525	J	0.0335	MDL	1.09	PQL	ng/Kg	J	Z
OCDF	8.05	JB	0.0252	MDL	10.9	PQL	ng/Kg	J	Z

Sample ID: SL-155-SA5DN-SS-0.0-0.5 Collected: 6/3/2011 10:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.09	JB	0.0262	MDL	5.16	PQL	ng/Kg	J	Z ·

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX098

EDD Filename: PrepDX098_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-155-SA5DN-SS-0.0-0.5 Collected: 6/3/2011 10:45:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRL Review Reason RLDLUnits Analyte Result Qual Type Type Qual Code 1,2,3,4,7,8,9-HPCDF 0.243 **JBQ** 0.0360 MDL 5.16 **PQL** ng/Kg U В 1,2,3,4,7,8-HxCDD 0.287 JQ 0.0490 J Z MDL 5.16 PQL ng/Kg PQL 1,2,3,4,7,8-HXCDF 0.294 JBQ 0.0356 MDL 5.16 J Z ng/Kg 1,2,3,6,7,8-HXCDD 1.05 JB 0.0527 MDL 5.16 PQL J Z ng/Kg JB J z 1,2,3,6,7,8-HXCDF 0.200 0.0331 MDL 5.16 **PQL** ng/Kg 1.08 JB 0.0507 MDL 5.16 **PQL** J Z 1,2,3,7,8,9-HXCDD ng/Kg PQL J Z 1,2,3,7,8,9-HXCDF 1.04 JBQ 0.0386 MDL 5.16 ng/Kg Z 1,2,3,7,8-PECDD 0.203 JBQ 0.0331 MDL 5.16 **PQL** ng/Kg J J Z 0.327 JB 0.0224 MDL 5.16 PQL 1,2,3,7,8-PECDF ng/Kg 2,3,4,6,7,8-HXCDF 0.225 JBQ 0.0331 MDL 5.16 **PQL** ng/Kg J Z MDL PQL Z 2,3,4,7,8-PECDF 0.318 JB 0.0213 5.16 J ng/Kg 2,3,7,8-TCDD 0.0404 0.0144 MDL 1.03 PQL ng/Kg J Z, FD 2,3,7,8-TCDF 0.169 J 0.0380 MDL 1.03 PQL J Z ng/Kg Z

Sample ID: SL-156-SA5DN-SS-0.0-0.5 Collected: 6/3/2011 9:45:00 AM Analysis Type: RES Dilution: 1

0.0362

MDL

10.3

PQL

ng/Kg

J

JB

6.88

	Lab	Lab		DL	5,	RL T	11-14-	Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDF	3.31	JB	0.0278	MDL.	5.54	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.409	JB	0.0397	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.387	J	0.0509	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.570	JВ	0.0447	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.36	JB	0.0527	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.410	JB	0.0408	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.44	JB	0.0498	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.49	JВ	0.0443	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.403	JBQ	0.0400	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.685	JB	0.0288	MDL	5.54	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.385	JB	0.0420	MDL	5.54	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.540	JB	0.0274	MDL	5.54	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0667	JQ	0.0188	MDL	1.11	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.283	J	0.0574	MDL	1.11	PQL	ng/Kg	J	Z

OCDF

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 10/4/2011 10:04:16 AM

Laboratory: LL

^{*} denotes a non-reportable result

Matrix:

SO

Lab Reporting Batch ID: DX098

Laboratory: LL

EDD Filename: PrepDX098_v1

eQAPP Name: CDM_SSFL_110509

Method Catego	ry: SVOA	100
Method:	1613B	

Sample ID: SL-157-SA5DN-SS-0.0-0.5	Collec	ted: 6/3/20	11 10:05:0	0 A	nalysis Ty	pe: RES		i	Dîlution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.61	JВ	0.0192	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.178	JB	0.0276	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.225	JQ	0.0435	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.400	JBQ	0.0360	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.865	JB	0.0435	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.280	JBQ	0.0328	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.03	JB	0.0418	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.21	JB	0.0357	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.342	JB	0.0320	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.478	JB	0.0248	MDL	5.40	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.270	JВ	0.0352	MDL	5.40	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.513	JB	0.0239	MDL	5.40	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0441	J	0.0164	MDL	1.08	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.290	J	0.0497	MDL	1.08	PQL	ng/Kg	J	Z
OCDF	5.00	JB	0.0315	MDL	10.8	PQL	ng/Kg	J	Z

Sample ID: SL-158-SA5DN-SS-0.0-0.5

Collected: 6/3/2011 10:25:00

Analysis Type: RES

Dilution: 1

	501/p/0 157 00 100 07 100 070 070 070 070 070 070								
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1.36	JB	0.0189	MDL	5.37	PQL	ng/Kg	j	Z	
0.122	JB	0.0281	MDL	5.37	PQL	ng/Kg	U	В	
0.155	J	0.0417	MDL	5.37	PQL	ng/Kg	J	Z	
0.297	JB	0.0362	MDL	5.37	PQL	ng/Kg	J	Z	
0.751	JB	0.0436	MDL	5.37	PQL	ng/Kg	J	Z	
0.202	JB	0.0324	MDL	5.37	PQL	ng/Kg	J	Z	
0.866	JB	0.0428	MDL	5.37	PQL	ng/Kg	J	Z	
1.07	JB	0.0355	MDL	5.37	PQL	ng/Kg	J	Z	
0.196	JB	0.0301	MDL	5.37	PQL	ng/Kg	J	Z	
0.330	JB	0.0253	MDL	5.37	PQL	ng/Kg	J	Z	
0.199	JB	0.0323	MDL	5.37	PQL	ng/Kg	J	Z	
0.388	JB	0.0243	MDL	5.37	PQL	ng/Kg	J	Z	
0.0223	J	0.0172	MDL	1.07	PQL	ng/Kg	J	Z	
0.259	J	0.0479	MDL	1.07	PQL	ng/Kg	J	Z	
4.03	JB	0.0332	MDL	10.7	PQL	ng/Kg	J	Z	
	1.36 0.122 0.155 0.297 0.751 0.202 0.866 1.07 0.196 0.330 0.199 0.388 0.0223 0.259	Result Qual 1.36 JB 0.122 JB 0.155 J 0.297 JB 0.751 JB 0.202 JB 0.866 JB 1.07 JB 0.196 JB 0.330 JB 0.199 JB 0.388 JB 0.0223 J 0.259 J	Result Qual DL 1.36 JB 0.0189 0.122 JB 0.0281 0.155 J 0.0417 0.297 JB 0.0362 0.751 JB 0.0436 0.202 JB 0.0324 0.866 JB 0.0428 1.07 JB 0.0355 0.196 JB 0.0301 0.330 JB 0.0253 0.199 JB 0.0323 0.388 JB 0.0243 0.0223 J 0.0172 0.259 J 0.0479	Result Qual DL Type 1.36 JB 0.0189 MDL 0.122 JB 0.0281 MDL 0.155 J 0.0417 MDL 0.297 JB 0.0362 MDL 0.751 JB 0.0436 MDL 0.202 JB 0.0324 MDL 0.866 JB 0.0428 MDL 1.07 JB 0.0355 MDL 0.196 JB 0.0301 MDL 0.330 JB 0.0253 MDL 0.199 JB 0.0323 MDL 0.388 JB 0.0243 MDL 0.0223 J 0.0172 MDL 0.259 J 0.0479 MDL	Result Qual DL Type RL 1,36 JB 0.0189 MDL 5.37 0.122 JB 0.0281 MDL 5.37 0.155 J 0.0417 MDL 5.37 0.297 JB 0.0362 MDL 5.37 0.751 JB 0.0436 MDL 5.37 0.202 JB 0.0324 MDL 5.37 0.866 JB 0.0428 MDL 5.37 0.196 JB 0.0355 MDL 5.37 0.196 JB 0.0301 MDL 5.37 0.196 JB 0.0253 MDL 5.37 0.199 JB 0.0323 MDL 5.37 0.199 JB 0.0243 MDL 5.37 0.388 JB 0.0243 MDL 5.37 0.0223 J 0.0172 MDL 1.07 0.259 J 0.0479 MDL 1.07<	Result Qual DL Type RL Type 1.36 JB 0.0189 MDL 5.37 PQL 0.122 JB 0.0281 MDL 5.37 PQL 0.155 J 0.0417 MDL 5.37 PQL 0.297 JB 0.0362 MDL 5.37 PQL 0.751 JB 0.0436 MDL 5.37 PQL 0.202 JB 0.0324 MDL 5.37 PQL 0.866 JB 0.0428 MDL 5.37 PQL 1.07 JB 0.0355 MDL 5.37 PQL 0.196 JB 0.0301 MDL 5.37 PQL 0.330 JB 0.0253 MDL 5.37 PQL 0.199 JB 0.0323 MDL 5.37 PQL 0.388 JB 0.0243 MDL 5.37 PQL 0.0259 J 0.0479 MDL	Result Qual DL Type RL Type Units 1.36 JB 0.0189 MDL 5.37 PQL ng/Kg 0.122 JB 0.0281 MDL 5.37 PQL ng/Kg 0.155 J 0.0417 MDL 5.37 PQL ng/Kg 0.297 JB 0.0362 MDL 5.37 PQL ng/Kg 0.751 JB 0.0436 MDL 5.37 PQL ng/Kg 0.202 JB 0.0324 MDL 5.37 PQL ng/Kg 0.866 JB 0.0428 MDL 5.37 PQL ng/Kg 1.07 JB 0.0355 MDL 5.37 PQL ng/Kg 0.196 JB 0.0301 MDL 5.37 PQL ng/Kg 0.199 JB 0.0253 MDL 5.37 PQL ng/Kg 0.199 JB 0.0323 MDL 5.37 PQL	Lab Result Lab Qual DL Type RL Type RL Type RL Type RL Units Review Qual 1.36 JB 0.0189 MDL 5.37 PQL ng/Kg J 0.122 JB 0.0281 MDL 5.37 PQL ng/Kg U 0.155 J 0.0417 MDL 5.37 PQL ng/Kg J 0.297 JB 0.0362 MDL 5.37 PQL ng/Kg J 0.751 JB 0.0436 MDL 5.37 PQL ng/Kg J 0.202 JB 0.0428 MDL 5.37 PQL ng/Kg J 0.866 JB 0.0428 MDL 5.37 PQL ng/Kg J 0.196 JB 0.0355 MDL 5.37 PQL ng/Kg J 0.330 JB 0.0253 MDL 5.37 PQL ng/Kg J 0.199 JB	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX098

Laboratory: LL

EDD Filename: PrepDX098_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-159-SA5DN-SS-0.0-0.5 Collected: 6/3/2011 9:25:00 AM Analysis Type: RES Dilution: 1

5411,p15 121 62 166 61 16211 66 616 616	inple 15. GE-100-0A0514-00-010 0.0								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.58	JB	0.0199	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.154	JBQ	0.0295	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.132	JQ	0.0379	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.475	JB	0.0423	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.958	JB	0.0398	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.235	JB	0.0383	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.13	JB	0.0384	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.35	JB	0.0413	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.183	JB	0.0392	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.925	JB	0.0384	MDL	5.53	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.189	JBQ	0.0375	MDL	5.53	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.575	JB	0.0361	MDL	5.53	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0273	JQ	0.0180	MDL	1.11	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.532	J	0.108	MDL	1.11	PQL	ng/Kg	J	Z
OCDF	4.96	JB	0.0265	MDL	11.1	PQL	ng/Kg	J	Z

Sample ID: SL-160-SA5DN-SS-0.0-0.5 Collected: 6/3/2011 3:00:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.25	JB	0.0298	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.511	JB	0.0188	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0428	JB	0.0264	MDL	5.16	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0618	JQ	0.0318	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0884	JBQ	0.0201	MDL	5.16	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.437	JB	0.0330	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0792	JB	0.0183	MDL	5.16	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.639	JB	0.0315	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.822	JB	0.0193	MDL	5.16	PQL	ng/Kg	j	Z
1,2,3,7,8-PECDD	0.0859	JBQ	0.0288	MDL	5.16	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.181	JB	0.0158	MDL	5.16	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0516	JBQ	0.0184	MDL.	5.16	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.107	JBQ	0.0154	MDL	5.16	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0193	J	0.0176	MDL	1.03	PQL	ng/Kg	J	Z
OCDF	1.75	JB	0.0234	MDL	10.3	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: PrepDX098_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Collected: 6/3/2011 2:25:00 PM Analysis Type: RES Dilution: 1 Sample ID: SL-162-SA5DN-SS-0.0-0.5 Data Review DLRLReason Lab Lab Result Qual DL Туре RL Type Units Qual Code Analyte 1,2,3,4,6,7,8-HPCDF Z 1.10 JB 0.0208 MDL 5.52 PQL ng/Kg J U В 0.103 **JBQ** 0.0231 MDL 5.52 **PQL** 1,2,3,4,7,8,9-HPCDF ng/Kg 1,2,3,4,7,8-HxCDD 0.197 J 0.0419 MDL 5.52 **PQL** ng/Kg J Z PQL J Z 1,2,3,4,7,8-HXCDF 0.348 **JBQ** 0.0353 MDL 5.52 ng/Kg z 1.01 JВ 0.0439 MDL 5.52 PQL ng/Kg J 1,2,3,6,7,8-HXCDD J Z 0.197 JB 0.0329 MDL 5.52 **PQL** ng/Kg 1,2,3,6,7,8-HXCDF JB 0.0410 MDL 5.52 PQL J Z 1,2,3,7,8,9-HXCDD 1.26 ng/Kg 0.0276 MDL. 5.52 PQL J Z 1.17 JВ ng/Kg 1,2,3,7,8,9-HXCDF JBQ 0.0404 MDL 5.52 **PQL** ng/Kg J Z 1,2,3,7,8-PECDD 0.242 J z 1,2,3,7,8-PECDF 0.238 JΒ 0.0223 MDL 5.52 **PQL** ng/Kg 0.179 **JBQ** 0.0278 MDL 5.52 **PQL** ng/Kg J Z 2,3,4,6,7,8-HXCDF 0.0211 MDL 5.52 PQL J Z 0.358 JΒ 2,3,4,7,8-PECDF ng/Kg z 0.0410 JQ 0.0157 MDL 1.10 **PQL** ng/Kg J 2,3,7,8-TCDD 1.10 0.252 J 0.0428 MDL PQL ng/Kg J Z 2,3,7,8-TCDF Ζ OCDF 2.99 JΒ 0.0243 MDL 11.0 **PQL** ng/Kg J

Sample ID: SL-166-SA5DN-SS-0.0-0.5 Collected: 6/3/2011 3:25:00 PM Analysis Type: RES Dilution: 1

Cample 15: GE-100-GROBIT-GG-010 015	0000								,
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.44	JB	0.0261	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.164	JBQ	0.0369	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.204	J	0.0493	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.611	JB	0.0405	MDL	5.43	PQL	ng/Kg	Ĵ	Z
1,2,3,6,7,8-HXCDD	0.807	JB	0.0519	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.228	JBQ	0.0373	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.558	JB	0.0477	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.296	JB	0.0408	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.163	JBQ	0.0302	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.602	JB	0.0432	MDL	5.43	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.271	JB	0.0375	MDL	5.43	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.571	JB	0.0405	MDL	5.43	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.659	J	0.109	MDL	1.09	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: PrepDX098_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-207-SA5DN-SS-0.0-0.5 Collected: 6/3/2011 8:35:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.06	JB	0.0455	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.624	JB	0.0550	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.260	J	0.0676	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.15	JB	0.0714	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.32	JB	0.121	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.35	JB	0.0682	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.33	JB	0.112	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.17	JB	0.100	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	4.47	JB	0.147	MDL	5.29	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.28	JВ	0.109	MDL	5.29	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	4.12	JB	0.137	MDL	5.29	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.371	J	0.0247	MDL	1.06	PQL	ng/Kg	J	Z
OCDF	6.73	JB	0.0502	MDL	10.6	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX098 EDD Filename: PrepDX098_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
C	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Laboratory Triplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX098 Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: PrepDX098_v1

noname, i i	CPD/COO_VI	CQAIT Maine: ODIII_COT E_
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
н	Sampling to Analysis Rejection	
н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
H	Temperature Rejection	_
1	Internal Standard Estimation	
i	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L,	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
М	Continuing Tune	
M	Initial Tune	
М	Performance Evaluation Mixture	
M	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Laboratory Triplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
transition in the second		

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX098 EDD Filename: PrepDX098_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX098

Lab Reporting Batch ID: DX098

EDD Filename: PrepDX098_v1

EQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1610B372350	6/14/2011 11:50:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HCDF 2,3,4,6,7,8-TCDD OCDD OCDD	5.46 pg/L 1.68 pg/L 1.16 pg/L 0.701 pg/L 0.730 pg/L 0.697 pg/L 0.764 pg/L 1.10 pg/L 0.850 pg/L 0.608 pg/L 0.737 pg/L 0.683 pg/L 0.940 pg/L 0.340 pg/L 0.359 pg/L 13.0 pg/L	EB13-SA5DN-SS-060311 EB14-SA5DN-SB-060311

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB13-SA5DN-SS-060311(RES)	1,2,3,4,6,7,8-HPCDD	4.91 pg/L	4.91U pg/L
EB13-SA5DN-SS-060311(RES)	1,2,3,4,6,7,8-HPCDF	0.801 pg/L	0.801U pg/L
EB13-SA5DN-SS-060311(RES)	1,2,3,4,7,8,9-HPCDF	0.250 pg/L	0.250U pg/L
EB13-SA5DN-SS-060311(RES)	1,2,3,4,7,8-HxCDD	0.207 pg/L	0.207U pg/L
EB13-SA5DN-SS-060311(RES)	1,2,3,4,7,8-HXCDF	0.399 pg/L	0.399U pg/L
EB13-SA5DN-SS-060311(RES)	1,2,3,6,7,8-HXCDD	0.471 pg/L	0.471U pg/L
EB13-SA5DN-SS-060311(RES)	1,2,3,6,7,8-HXCDF	0.391 pg/L	0.391U pg/L
EB13-SA5DN-SS-060311(RES)	1,2,3,7,8,9-HXCDD	0.380 pg/L	0.380U pg/L
EB13-SA5DN-SS-060311(RES)	1,2,3,7,8,9-HXCDF	0.324 pg/L	0.324U pg/L
EB13-SA5DN-SS-060311(RES)	1,2,3,7,8-PECDF	0.312 pg/L	0.312U pg/L
EB13-SA5DN-SS-060311(RES)	2,3,4,6,7,8-HXCDF	0.344 pg/L	0.344U pg/L
EB13-SA5DN-SS-060311(RES)	2,3,4,7,8-PECDF	0.551 pg/L	0.551U pg/L
EB13-SA5DN-SS-060311(RES)	2,3,7,8-TCDD	0.320 pg/L	0.320U pg/L
EB13-SA5DN-SS-060311(RES)	OCDD	9.11 pg/L	9.11U pg/L
EB13-SA5DN-SS-060311(RES)	OCDF	1.90 pg/L	1,90U pg/L
EB14-SA5DN-SB-060311(RES)	1,2,3,4,6,7,8-HPCDD	4.48 pg/L	4.48U pg/L
EB14-SA5DN-SB-060311(RES)	1,2,3,4,6,7,8-HPCDF	0.902 pg/L	0,902U pg/L
EB14-SA5DN-SB-060311(RES)	1,2,3,4,7,8,9-HPCDF	0.283 pg/L	0.283U pg/L
EB14-SA5DN-SB-060311(RES)	1,2,3,4,7,8-HXCDF	0.295 pg/L	0,295U pg/L
EB14-SA5DN-SB-060311(RES)	1,2,3,6,7,8-HXCDD	0.373 pg/L	0.373U pg/L
EB14-SA5DN-SB-060311(RES)	1,2,3,6,7,8-HXCDF	0.396 pg/L	0.396U pg/L
EB14-SA5DN-SB-060311(RES)	1,2,3,7,8,9-HXCDD	0.560 pg/L	0.560U pg/L
EB14-SA5DN-SB-060311(RES)	1,2,3,7,8,9-HXCDF	0.649 pg/L	0.649U pg/L
EB14-SA5DN-SB-060311(RES)	1,2,3,7,8-PECDF	0.549 pg/L	0.549U pg/L
EB14-SA5DN-SB-060311(RES)	2,3,4,6,7,8-HXCDF	0.397 pg/L	0.397U pg/L
EB14-SA5DN-SB-060311(RES)	2,3,4,7,8-PECDF	0.712 pg/L	0.712U pg/L

10/4/2011 10:04:01 AM ADR version 1.4.0.111 Page 1 of 7

Lab Reporting Batch ID: DX098

Laboratory: LL

EDD Filename: PrepDX098_v1

eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B AQ	en e			
Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB14-SA5DN-S8-060311(RES)	OCDD	9.80 pg/L	9.80U pg/L
EB14-SA5DN-SB-060311(RES)	OCDF	1.73 pg/L	1.73U pg/L

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1590B372132	6/11/2011 9:32:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 0CDD 0CDF	0.200 ng/Kg 0.156 ng/Kg 0.156 ng/Kg 0.0371 ng/Kg 0.0750 ng/Kg 0.0750 ng/Kg 0.0456 ng/Kg 0.0360 ng/Kg 0.0768 ng/Kg 0.0516 ng/Kg 0.0331 ng/Kg 0.0249 ng/Kg 0.0249 ng/Kg 0.698 ng/Kg 0.500 ng/Kg	SL-016-SA5DN-SB-12.0-13.0 SL-016-SA5DN-SB-4.0-5.0 SL-021-SA5DN-SB-4.0-5.0
BLK1680B370235	6/24/2011 2:35:00 AM	2,3,7,8-TCDF	0.101 ng/Kg	DUP-13-SA5DN-QC-060311 SL-019-SA5DN-SB-4.0-5.0 SL-021-SA5DN-SB-19.5-20.5 SL-027-SA5DN-SB-14.0-15.0 SL-027-SA5DN-SB-4.0-5.0 SL-027-SA5DN-SB-4.0-5.0 SL-052-SA5DN-SB-4.0-5.0 SL-052-SA5DN-SB-9.0-10.0 SL-152-SA5DN-SB-0.0-0.5 SL-153-SA5DN-SS-0.0-0.5 SL-154-SA5DN-SS-0.0-0.5 SL-155-SA5DN-SS-0.0-0.5 SL-155-SA5DN-SS-0.0-0.5 SL-159-SA5DN-SS-0.0-0.5 SL-160-SA5DN-SS-0.0-0.5 SL-160-SA5DN-SS-0.0-0.5 SL-160-SA5DN-SS-0.0-0.5 SL-162-SA5DN-SS-0.0-0.5 SL-162-SA5DN-SS-0.0-0.5 SL-162-SA5DN-SS-0.0-0.5

10/4/2011 10:04:01 AM ADR version 1.4.0.111 Page 2 of 7

Lab Reporting Batch ID: DX098

EDD Filename: PrepDX098_v1

EQAPP Name: CDM_SSFL_110509

Method: 1613E Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1680B371727	6/20/2011 5:27:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	0.354 ng/Kg 0.0766 ng/Kg 0.0537 ng/Kg 0.0537 ng/Kg 0.0253 ng/Kg 0.0371 ng/Kg 0.0371 ng/Kg 0.0269 ng/Kg 0.0358 ng/Kg 0.0289 ng/Kg 0.0281 ng/Kg 0.0281 ng/Kg 0.0487 ng/Kg 1.63 ng/Kg 0.178 ng/Kg	DUP-13-SA5DN-QC-060311 SL-019-SA5DN-SB-4.0-5.0 SL-021-SA5DN-SB-19.5-20.5 SL-027-SA5DN-SB-14.0-15.0 SL-027-SA5DN-SB-4.0-5.0 SL-052-SA5DN-SB-4.0-5.0 SL-052-SA5DN-SB-9.0-10.0 SL-152-SA5DN-SB-0.0-0.5 SL-153-SA5DN-SS-0.0-0.5 SL-154-SA5DN-SS-0.0-0.5 SL-156-SA5DN-SS-0.0-0.5 SL-156-SA5DN-SS-0.0-0.5 SL-158-SA5DN-SS-0.0-0.5 SL-159-SA5DN-SS-0.0-0.5 SL-160-SA5DN-SS-0.0-0.5 SL-160-SA5DN-SS-0.0-0.5 SL-160-SA5DN-SS-0.0-0.5 SL-160-SA5DN-SS-0.0-0.5 SL-160-SA5DN-SS-0.0-0.5 SL-160-SA5DN-SS-0.0-0.5 SL-160-SA5DN-SS-0.0-0.5
BLK1780B371754	6/28/2011 5:54:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDF 0CDD 0CDF	0.357 ng/Kg 0.113 ng/Kg 0.0781 ng/Kg 0.0572 ng/Kg 0.0565 ng/Kg 0.0570 ng/Kg 0.0500 ng/Kg 0.0780 ng/Kg 0.0771 ng/Kg 0.0470 ng/Kg 0.0379 ng/Kg 0.0295 ng/Kg 0.0563 ng/Kg 0.0511 ng/Kg 0.811 ng/Kg 0.234 ng/Kg	SL-019-SA5DN-SB-9.0-10.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP-13-SA5DN-QC-060311(RES)	1,2,3,4,7,8,9-HPCDF	0.236 ng/Kg	0.236U ng/Kg
DUP-13-SA5DN-QC-060311(RES)	1,2,3,6,7,8-HXCDF	0.179 ng/Kg	0.179U ng/Kg
DUP-13-SA5DN-QC-060311(RES)	2,3,4,7,8-PECDF	0.227 ng/Kg	0.227U ng/Kg
SL-016-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,6,7,8-HPCDF	0.143 ng/Kg	0.143U ng/Kg
SL-016-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0704 ng/Kg	0.0704U ng/Kg
SL-016-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,7,8-HxCDD	0.0368 ng/Kg	0,0368U ng/Kg
SL-016-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,7,8-HXCDF	0.0865 ng/Kg	0.0865U ng/Kg
SL-016-SA5DN-SB-12.0-13.0(RES)	1,2,3,6,7,8-HXCDD	0.0431 ng/Kg	0.0431U ng/Kg
SL-016-SA5DN-SB-12.0-13.0(RES)	1,2,3,6,7,8-HXCDF	0,0533 ng/Kg	0.0533U ng/Kg
SL-016-SA5DN-SB-12.0-13.0(RES)	1,2,3,7,8,9-HXCDD	0.0397 ng/Kg	0.0397U ng/Kg
SL-016-SA5DN-SB-12.0-13.0(RES)	1,2,3,7,8,9-HXCDF	0.0500 ng/Kg	0.0500U ng/Kg
SL-016-SA5DN-SB-12.0-13.0(RES)	1,2,3,7,8-PECDF	0.0193 ng/Kg	0.0193U ng/Kg
SL-016-SA5DN-SB-12.0-13.0(RES)	2,3,4,6,7,8-HXCDF	0.0742 ng/Kg	0.0742U ng/Kg
SL-016-SA5DN-SB-12.0-13.0(RES)	OCDF	0.379 ng/Kg	0.379U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/4/2011 10:04:01 AM ADR version 1.4.0.111 Page 3 of 7

Lab Reporting Batch ID: DX098

EDD Filename: PrepDX098_v1

EQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	en begreen een en een een een een een een een		Maria de la companya	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-016-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.410 ng/Kg	0.410U ng/Kg
SL-016-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.148 ng/Kg	0.148U ng/Kg
SL-016-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0522 ng/Kg	0.0522U ng/Kg
SL-016-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.128 ng/Kg	0.128U ng/Kg
SL-016-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.119 ng/Kg	0.119U ng/Kg
SL-016-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.363 ng/Kg	0.363U ng/Kg
SL-016-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0737 ng/Kg	0.0737U ng/Kg
SL-016-\$A5DN-\$B-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,0868 ng/Kg	0.0868U ng/Kg
SL-016-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.139 ng/Kg	0.139U ng/Kg
SL-016-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0206 ng/Kg	0.0206U ng/Kg
SL-016-SA5DN-SB-4.0-5.0(RES)	OCDF	1.32 ng/Kg	1.32U ng/Kg
SL-019-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.313 ng/Kg	0.313U ng/Kg
SL-019-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0493 ng/Kg	0.0493U ng/Kg
SL-019-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0372 ng/Kg	0.0372U ng/Kg
SL-019-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0308 ng/Kg	0.0308U ng/Kg
SL-019-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0,0405 ng/Kg	0.0405U ng/Kg
SL-019-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0341 ng/Kg	0.0341U ng/Kg
SL-019-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0375 ng/Kg	0.0375U ng/Kg
SL-019-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0436 ng/Kg	0.0436U ng/Kg
SL-019-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0278 ng/Kg	0.0278U ng/Kg
SL-019-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0279 пд/Кд	0.0279U ng/Kg
SL-019-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0196 ng/Kg	0.0196U ng/Kg
SL-019-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0636 ng/Kg	0.0636U ng/Kg
SL-019-\$A5DN-SB-4.0-5.0(RES)	OCDD	1.11 ng/Kg	1.11U ng/Kg
SL-019-SA5DN-SB-4.0-5.0(RES)	OCDF	0.126 ng/Kg	0,126U ng/Kg
SL-019-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	1.30 ng/Kg	1.30U ng/Kg
SL-019-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.116 ng/Kg	0.116U ng/Kg
SL-019-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0495 ng/Kg	0.0495U ng/Kg
SL-019-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0523 ng/Kg	0.0523U ng/Kg
SL-019-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0700 ng/Kg	0.0700U ng/Kg
SL-019-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.103 ng/Kg	0.103U ng/Kg
SL-019-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0627 ng/Kg	0.0627U ng/Kg
SL-019-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0784 ng/Kg	0.0784U ng/Kg
SL-019-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0587 ng/Kg	0.0587U ng/Kg
SL-019-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0890 ng/Kg	0.0890U ng/Kg
SL-019-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0988 ng/Kg	0.0988U ng/Kg
SL-019-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0406 ng/Kg	0.0406U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/4/2011 10:04:01 AM ADR version 1.4.0.111 Page 4 of 7

Lab Reporting Batch ID: DX098

Laboratory: LL

EDD Filename: PrepDX098_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	ा अवस्था <u>कार्यक्</u> रा सुर्वाष्ट्रकार ।			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-019-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0942 ng/Kg	0.0942U ng/Kg
SL-019-SA5DN-SB-9,0-10.0(RES)	OCDF	0.255 ng/Kg	0.255U ng/Kg
SL-021-SA5DN-SB-19.5-20.5(RES)	1,2,3,4,6,7,8-HPCDF	0.147 ng/Kg	0.147U ng/Kg
SL-021-SA5DN-SB-19.5-20.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0446 ng/Kg	0.0446U ng/Kg
SL-021-SA5DN-SB-19.5-20.5(RES)	1,2,3,4,7,8-HXCDF	0.0288 ng/Kg	0.0288U ng/Kg
SL-021-SA5DN-SB-19.5-20.5(RES)	1,2,3,6,7,8-HXCDD	0.0828 ng/Kg	0.0828U ng/Kg
SL-021-SA5DN-SB-19.5-20.5(RES)	1,2,3,6,7,8-HXCDF	0.0166 ng/Kg	0.0166U ng/Kg
SL-021-SA5DN-SB-19.5-20.5(RES)	1,2,3,7,8,9-HXCDD	0.0413 ng/Kg	0.0413U ng/Kg
SL-021-SA5DN-SB-19.5-20.5(RES)	1,2,3,7,8,9-HXCDF	0.0423 ng/Kg	0.0423U ng/Kg
SL-021-SA5DN-SB-19.5-20.5(RES)	1,2,3,7,8-PECDF	0.0251 ng/Kg	0.0251U ng/Kg
SL-021-SA5DN-SB-19.5-20.5(RES)	2,3,4,7,8-PECDF	0.0400 ng/Kg	0.0400U ng/Kg
SL-021-SA5DN-SB-19.5-20.5(RES)	OCDF	0.357 ng/Kg	0.357U ng/Kg
SL-021-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.229 ng/Kg	0.229U ng/Kg
SL-021-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0776 ng/Kg	0.0776U ng/Kg
SL-021-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.307 ng/Kg	0.307U ng/Kg
SL-021-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.147 ng/Kg	0.147U ng/Kg
SL-021-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.214 ng/Kg	0.214U ng/Kg
SL-021-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0400 ng/Kg	0.0400U ng/Kg
SL-021-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0510 ng/Kg	0.0510U ng/Kg
SL-021-SA5DN-SB-4.0-5.0(RES)	. 2,3,4,6,7,8-HXCDF	0.0914 ng/Kg	0.0914U ng/Kg
SL-021-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0296 ng/Kg	0.0296U ng/Kg
SL-021-SA5DN-SB-4.0-5.0(RES)	OCDF	0.743 ng/Kg	0.743U ng/Kg
SL-027-SA5DN-SB-14.0-15.0(RES)	1,2,3,4,6,7,8-HPCDD	0.221 ng/Kg	0.221U ng/Kg
SL-027-SA5DN-SB-14.0-15.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0333 ng/Kg	0.0333U ng/Kg
SL-027-SA5DN-SB-14.0-15.0(RES)	1,2,3,6,7,8-HXCDF	0.0176 ng/Kg	0.0176U ng/Kg
SL-027-SA5DN-SB-14.0-15.0(RES)	1,2,3,7,8,9-HXCDD	0.0180 ng/Kg	0.0180U ng/Kg
SL-027-SA5DN-SB-14.0-15.0(RES)	1,2,3,7,8,9-HXCDF	0.0319 ng/Kg	0.0319U ng/Kg
SL-027-SA5DN-SB-14.0-15.0(RES)	1,2,3,7,8-PECDF	0.0110 ng/Kg	0.0110U ng/Kg
SL-027-SA5DN-SB-14.0-15.0(RES)	2,3,4,7,8-PECDF	0.0306 ng/Kg	0.0306U ng/Kg
SL-027-SA5DN-SB-14.0-15.0(RES)	OCDD	0.839 ng/Kg	0.839U ng/Kg
SL-027-SA5DN-SB-14.0-15.0(RES)	OCDF	0.0963 ng/Kg	0.0963U ng/Kg
SL-027-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.169 ng/Kg	0.169U ng/Kg
SL-027-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0356 ng/Kg	0.0356U ng/Kg
SL-027-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0684 ng/Kg	0.0684U ng/Kg
SL-027-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.218 ng/Kg	0.218U ng/Kg
SL-027-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0228 ng/Kg	0.0228U ng/Kg
SL-027-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0,0507 ng/Kg	0.0507U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/4/2011 10:04:01 AM ADR version 1.4.0.111 Page 5 of 7

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: PrepDX098_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	The second secon			
Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-027-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0930 ng/Kg	0.0930U ng/Kg
SL-027-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0310 ng/Kg	0.0310U ng/Kg
SL-027-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0805 ng/Kg	0.0805U ng/Kg
SL-027-SA5DN-SB-4.0-5.0(RES)	OCDF	0.555 ng/Kg	0.555U ng/Kg
SL-052-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.389 ng/Kg	0.389U ng/Kg
SL-052-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0188 ng/Kg	0.0188U ng/Kg
SL-052-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0127 ng/Kg	0.0127U ng/Kg
SL-052-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.179 ng/Kg	0.179U ng/Kg
SL-052-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0164 ng/Kg	0.0164U ng/Kg
SL-052-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0415 ng/Kg	0.0415U ng/Kg
SL-052-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0200 ng/Kg	0.0200U ng/Kg
SL-052-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0303 ng/Kg	0.0303U ng/Kg
SL-052-SA5DN-SB-4.0-5.0(RES)	OCDD	1.22 ng/Kg	1.22U ng/Kg
SL-052-SA5DN-SB-4.0-5.0(RES)	OCDF	0.0998 ng/Kg	0.0998U ng/Kg
SL-052-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0,350 ng/Kg	0,350U ng/Kg
SL-052-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0238 ng/Kg	0.0238U ng/Kg
SL-052-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0175 ng/Kg	0.0175U ng/Kg
SL-052-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0129 ng/Kg	0.0129U ng/Kg
SL-052-SA5DN-SB-9,0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0102 ng/Kg	0.0102U ng/Kg
SL-052-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0370 ng/Kg	0.0370U ng/Kg
SL-052-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.00970 ng/Kg	0.00970U ng/Kg
SL-052-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0304 ng/Kg	0.0304U ng/Kg
SL-052-SA5DN-SB-9.0-10.0(RES)	OCDD	1.41 ng/Kg	1.41U ng/Kg
SL-052-SA5DN-SB-9.0-10.0(RES)	OCDF	0.0833 ng/Kg	0.0833U ng/Kg
SL-152-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.148 ng/Kg	0.148U ng/Kg
SL-152-SA5DN-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.154 ng/Kg	0.154U ng/Kg
SL-152-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.111 ng/Kg	0.111U ng/Kg
SL-152-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.0763 ng/Kg	0.0763U ng/Kg
SL-152-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.188 ng/Kg	0.188U ng/Kg
SL-153-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.104 ng/Kg	0,104U ng/Kg
SL-153-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.117 ng/Kg	0.117U ng/Kg
SL-153-SA5DN-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0,0790 ng/Kg	0.0790U ng/Kg
SL-153-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.119 ng/Kg	0.119U ng/Kg
SL-153-SA5DN-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.0865 ng/Kg	0.0865U ng/Kg
SL-153-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.114 ng/Kg	0.114U ng/Kg
SL-154-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.182 ng/Kg	0.182U ng/Kg
SL-154-SA5DN-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.144 ng/Kg	0.144U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/4/2011 10:04:01 AM ADR version 1.4.0.111 Page 6 of 7

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: PrepDX098_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613I Matrix: SO	3			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-154-SA5DN-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.132 ng/Kg	0.132U ng/Kg
SL-154-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.153 ng/Kg	0.153U ng/Kg
SL-155-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.243 ng/Kg	0.243U ng/Kg
SL-157-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.178 ng/Kg	0.178U ng/Kg
SL-158-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.122 ng/Kg	0.122U ng/Kg
SL-159-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.154 ng/Kg	0.154U ng/Kg
SL-160-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0428 ng/Kg	0.0428U ng/Kg
SL-160-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.0884 ng/Kg	0.0884U ng/Kg
SL-160-SA5DN-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.0792 ng/Kg	0.0792U ng/Kg
SL-160-SA5DN-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.0859 ng/Kg	0.0859U ng/Kg
SL-160-\$A5DN-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.0516 ng/Kg	0.0516U ng/Kg
SL-160-SA5DN-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.107 ng/Kg	0.107U ng/Kg
SL-162-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.103 ng/Kg	0.103U ng/Kg
SL-166-SA5DN-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.164 ng/Kg	0.164U ng/Kg

10/4/2011 10:04:01 AM ADR version 1.4.0.111 Page 7 of 7

Field Duplicate RPD Report

Lab Reporting Batch ID: DX098 EDD Filename: PrepDX098_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Méthod: 160.3M Matrix: SO					
	Concenti	Concentration (%)			
	SL-155-SA5DN-SS-0.0-	DUP-13-SA5DN-QC-	Sample	eQAPP	
Analyte	0.5	060311	RPD	RPD	Flag
MOISTURE	4.4	4.6	4		No Qualifiers Applied

<u> </u>	Concentrat	tion (ng/Kg)			Flag
Analyte	SL-155-SA5DN-SS-0.0- 0.5	DUP-13-SA5DN-QC- 060311	Sample RPD	eQAPP RPD	
1,2,3,4,6,7,8-HPCDD	14.2	15.0	5	50.00	
1,2,3,4,6,7,8-HPCDF	2.09	2.02	3	50.00	
1,2,3,4,7,8,9-HPCDF	0.243	0.236	3	50.00	
1,2,3,4,7,8-HxCDD	0.287	0.272	5	50.00	
1,2,3,4,7,8-HXCDF	0.294	0.303	3	50.00	
i,2,3,6,7,8-HXCDD	1.05	0.958	9	50.00	
,2,3,6,7,8-HXCDF	0.200	0.179	11	50.00	
,2,3,7,8,9-HXCDD	1.08	1.06	2	50.00	No Qualifiers Applie
,2,3,7,8,9-HXCDF	1.04	1.06	2	50.00	No Qualifiers Applies
,2,3,7,8-PECDD	0.203	0.205	1	50.00	
,2,3,7,8-PECDF	0.327	0.234	33	50.00	
2,3,4,6,7,8-HXCDF	0.225	0.211	6	50.00	
2,3,4,7,8-PECDF	0.318	0.227	33	50.00	
2,3,7,8-TCDF	0.169	0.123	32	50.00	
OCDD	186	190	2	50.00	
OCDF	6.88	6.78	1	50.00	
2,3,7,8-TCDD	0.0404	0.0227	56	50.00	J(all detects)

10/4/2011 9:59:16 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: DX098_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ

SampleID	Analyto	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SampleID	Analyte	Quai	Nesuit	Limit	туре	Units	ı iay
EB13-SA5DN-SS-060311	1,2,3,4,6,7,8-HPCDD	JBQ	4.91	10.6	PQL	pg/L	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.801	10.6	PQL	pg/L	
	1,2,3,4,7,8,9-HPCDF	JB	0.250	10.6	PQL	pg/L	
	1,2,3,4,7,8-HxCDD	JBQ	0.207	10.6	PQL	pg/L	
	1,2,3,4,7,8-HXCDF	JBQ	0.399	10.6	PQL	pg/L	
	1,2,3,6,7,8-HXCDD	JB	0.471	10.6	PQL	pg/L	
	1,2,3,6,7,8-HXCDF	JB -	0.391	10.6	PQL	pg/L	
	1,2,3,7,8,9-HXCDD	JBQ	0.380	10.6	PQL	pg/L	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.324	10.6	PQL	pg/L	
	1,2,3,7,8-PECDF	JBQ	0.312	10.6	PQL	pg/L	
	2,3,4,6,7,8-HXCDF	JBQ	0.344	10.6	PQL	pg/L	
	2,3,4,7,8-PECDF	JBQ	0.551	10.6	PQL	pg/L	
	2,3,7,8-TCDD	JBQ	0.320	2.12	PQL	pg/L	
	OCDD	JB	9.11	21.2	PQL	pg/L	
	OCDF	JB	1.90	21.2	PQL	pg/L	
EB14-SA5DN-SB-060311	1,2,3,4,6,7,8-HPCDD	JB	4.48	10.4	PQL	pg/L	
	1,2,3,4,6,7,8-HPCDF	JB	0.902	10.4	PQL	pg/L	i
	1,2,3,4,7,8,9-HPCDF	JB	0.283	10.4	PQL	pg/L	i
	1,2,3,4,7,8-HXCDF	JBQ	0.295	10.4	PQL	pg/L	i
	1,2,3,6,7,8-HXCDD	JBQ	0.373	10.4	PQL	pg/L	
	1,2,3,6,7,8-HXCDF	JB	0.396	10.4	PQL	pg/L	İ
	1,2,3,7,8,9-HXCDD	JB	0.560	10.4	PQL	pg/L	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.649	10.4	PQL	pg/L	
	1,2,3,7,8-PECDF	JBQ	0.549	10.4	PQL	pg/L	
	2,3,4,6,7,8-HXCDF	JB	0.397	10.4	PQL	pg/L	
	2,3,4,7,8-PECDF	JB	0.712	10.4	PQL	pg/L	
	OCDD	JB	9.80	20.8	PQL	pg/L	
	OCDF	JBQ	1.73	20.8	PQL	pg/L	

Method: 1613B Matrix: SO

	T			1		T	
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-207-SA5DN-SS-0.0-0.5	2,3,7,8-TCDF	В	2.30	1.06	PQL	ng/Kg	
DUP-13-SA5DN-QC-060311	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD		2.02 0.236 0.272 0.303 0.958 0.179 1.06 1.06 0.205 0.234 0.211 0.227 0.0227 0.123 6.78	5.19 5.19 5.19 5.19 5.19 5.19 5.19 5.19	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

9/27/2011 2:50:23 PM ADR version 1.4.0.111 Page 1 of 8

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: DX098_v1 eQAPP Name: CDM_SSFL_110509

watrix: 50							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-016-SA5DN-SB-12.0-	1,2,3,4,6,7,8-HPCDD	JB	1.14	5.59	PQL	ng/Kg	
13.0	1,2,3,4,6,7,8-HPCDF	JBQ	0.143	5.59	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ JBQ	0.0704 0.0368	5.59 5.59	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0366	5.59	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JBQ	0.0431	5.59	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0533	5.59	PQL	ng/Kg	
	11,2,3,7,8,9-HXCDD	JBQ	0.0397	5.59	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0500	5.59	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0193	5.59	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0742	5.59	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JQ	0.0783	5.59	PQL	ng/Kg	
	OCDD	JB	10.9	11.2	PQL	ng/Kg	
	OCDF	JBQ	0.379	11.2	PQL	ng/Kg	
SL-016-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	2.16	5.90	PQL	ng/Kg	
3L-010-3A3DN-3B-4.0-3.0	1,2,3,4,6,7,8-HPCDF	JB	0.410	5.90	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.148	5.90	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0522	5.90	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.128	5.90	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.240	5.90	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.119	5.90	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.337	5.90	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.363	5.90	PQL	ng/Kg	, ,
	1,2,3,7,8-PECDD	JB	0.0737	5.90	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0868	5.90	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.139	5.90	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JQ	0.179	5.90	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0206	1.18	PQL	ng/Kg	
	OCDF	JB	1.32	11.8	PQL	ng/Kg	
SL-019-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.313	5.63	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0493	5.63	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0372	5.63	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0347	5.63	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0308	5.63	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0405	5.63	PQL	ng/Kg	
1	1,2,3,6,7,8-HXCDF	JB	0.0341	5.63	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0375	5.63	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0436	5.63	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0278	5.63	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0279	5.63	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0196	5.63	PQL PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0636 0.0171	5.63 1.13	PQL		
	2,3,7,8-TCDD 2,3,7,8-TCDF	JQ JQ	0.0171	1.13	PQL	ng/Kg ng/Kg	
	2,3,7,8-1CDF OCDD	JB	1.11	11.13	PQL	ng/Kg	
1	OCDF	JB	0.126	11.3	PQL	ng/Kg	
	10001		V. 120	11.5	1 44	119/119	

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: DX098_v1 eQAPP Name: CDM_SSFL_110509

Watrix. 30	<u>"</u>					ſ	
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SampleID	Analyte	Quai					ı ray
SL-019-SA5DN-SB-9.0-10.0		かい 単独ない はん はいい はん ひん	1.30 0.116 0.0495 0.0523 0.0700 0.103 0.0627 0.0784 0.0587 0.0890 0.0988 0.0406 0.0942 0.0365 0.0264	5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-021-SA5DN-SB-19.5- 20.5	DCDF 1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-ECDF 2,3,4,7,8-PECDF OCDF	JBQ JB JB JB JBQ JBQ JBQ JBQ JBQ JBQ	0.255 2.96 0.147 0.0446 0.0288 0.0828 0.0166 0.0413 0.0423 0.0251 0.0400 0.357	11.0 5.56 5.56 5.56 5.56 5.56 5.56 5.56 5.	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-021-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	######################################	3.04 0.229 0.0776 0.307 0.147 0.187 0.214 0.0400 0.0510 0.0914 0.154 0.0296 0.743	5.63 5.63 5.63 5.63 5.63 5.63 5.63 5.63	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-027-SA5DN-SB-14.0- 15.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF OCDD OCDF	######################################	0.221 0.0333 0.0141 0.0176 0.0180 0.0319 0.0110 0.0306 0.839 0.0963	5.53 5.53 5.53 5.53 5.53 5.53 5.53 5.53	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: DX098_v1 eQAPP Name: CDM_SSFL_110509

		1 -6		5 4			
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-027-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF	க்குக்கள் இது நக்குக்கள் இது நக்க	2.11 0.169 0.0356 0.0265 0.0684 0.218 0.0228 0.245 0.317 0.0507 0.0930 0.0310 0.0805 0.555	5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-052-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	த் க க த த க க த த த த	0.389 0.0188 0.0127 0.179 0.0164 0.341 0.352 0.0415 0.0200 0.0303 1.22 0.0998	5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-052-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.350 0.0238 0.0175 0.0129 0.0102 0.0370 0.00970 0.0304 1.41 0.0833	5.53 5.53 5.53 5.53 5.53 5.53 5.53 11.1	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-152-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HCDF 2,3,4,6,7,8-HCDF 2,3,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	99799999999999999	0.968 0.148 0.136 0.220 0.351 0.154 0.340 0.111 0.0763 0.136 0.160 0.188 0.0200 0.0756 2.47	5.35 5.35 5.35 5.35 5.35 5.35 5.35 5.35	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: DX098_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO Lab Reporting RI

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-153-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JB	0.756 0.104	5.32 5.32	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.104	5.32	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.117	5.32	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.551	5.32	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0790	5.32	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.728	5.32	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.556	5.32	PQL	ng/Kg	- (
	1,2,3,7,8-PECDD 1,2,3,7,8-PECDF	JB JB	0.119 0.159	5.32 5.32	PQL PQL	ng/Kg ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.139	5.32	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.114	5.32	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.0465	1.06	PQL	ng/Kg	
	OCDF	JB	2.24	10.6	PQL	ng/Kg	
SL-154-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	1.86	5.44	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.182	5.44	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.151	5.44	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.220	5.44	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.867	5.44	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.144	5.44	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB JB	1.12 0.989	5.44 5.44	PQL PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JBQ	0.303	5.44	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.298	5.44	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.132	5.44	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.153	5.44	PQL	ng/Kg	
	2,3,7,8-TCDD	j	0.0210	1.09	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.0525	1.09	PQL	ng/Kg	
	OCDF	JB	8.05	10.9	PQL	ng/Kg	
SL-155-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	2.09	5.16	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.243	5.16	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.287	5.16	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JBQ JB	0.294 1.05	5.16 5.16	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.200	5.16	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.08	5.16	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	1.04	5.16	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.203	5.16	PQL	ng/Kg	,
	1,2,3,7,8-PECDF	JB	0.327	5.16	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.225	5.16	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.318	5.16	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0404	1.03	PQL	ng/Kg	
	2,3,7,8-TCDF OCDF	J JB	0.169 6.88	1.03 10.3	PQL PQL	ng/Kg ng/Kg	
<u> </u>	0001	00	0.00	10.0	I WL	illy/rvy	

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: DX098_v1 eQAPP Name: CDM_SSFL_110509

Watrix: SO				_			
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-156-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	3.31	5.54	PQL	ng/Kg	
SL-190-3A3DN-33-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	0.409	5.54	PQL	ng/Kg	
	1,2,3,4,7,8,9-11-CDD	J	0.409	5.54	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.570	5.54	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.36	5.54	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.410	5.54	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.44	5.54	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.49	5.54	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.403	5.54	PQL	ng/Kg	
		JB	0.403	5.54	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.385	5.54	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.540	5.54	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JQ	0.0667	1.11	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.283	1.11	PQL	ng/Kg	
	2,3,7,8-TCDF			 			
SL-157-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	1.61	5.40	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.178	5.40	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.225	5.40	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.400	5.40	PQL	ng/Kg	ı
	1,2,3,6,7,8-HXCDD	JB	0.865	5.40	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.280	5.40	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.03	5.40	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.21	5.40	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.342	5.40	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.478	5.40	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.270	5.40	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.513	5.40	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0441	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.290	1.08	PQL	ng/Kg	
	OCDF	JB	5.00	10.8	PQL	ng/Kg	
SL-158-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	1.36	5.37	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.122	5.37	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.155	5.37	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.297	5.37	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.751	5.37	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.202	5.37	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.866	5.37	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.07	5.37	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.196	5.37	PQL	ng/Kg	,
	1,2,3,7,8-PECDF	JB	0.330	5.37	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.199	5.37	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.388	5.37	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0223	1.07	POL	ng/Kg	
	2,3,7,8-TCDF	Ĵ	0.259	1.07	PQL	ng/Kg	
	OCDF	JB	4.03	10.7	PQL	ng/Kg	
			1.00	1		1	

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: DX098_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO Lab Reporting RL

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-159-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0,3,7,8-TCDD	ង -	1.58 0.154 0.132 0.475 0.958 0.235 1.13 1.35 0.183 0.925 0.189 0.575 0.0273 0.532 4.96	5.53 5.53 5.53 5.53 5.53 5.53 5.53 5.53	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-160-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD OCDF	明明の記号を記りませる。	3.25 0.511 0.0428 0.0618 0.0884 0.437 0.0792 0.639 0.822 0.0859 0.181 0.0516 0.107 0.0193 1.75	5.16 5.16 5.16 5.16 5.16 5.16 5.16 5.16	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-162-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF OCDF	BU JEBBBBBBBBC JBBBBBBBBBBBBBBBBBBBBBBBBBB	1.10 0.103 0.197 0.348 1.01 0.197 1.26 1.17 0.242 0.238 0.179 0.358 0.0410 0.252 2.99	5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX098 Laboratory: LL

EDD Filename: DX098_v1 eQAPP Name: CDM_SSFL_110509

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-166-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	3.44	5.43	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.164	5.43	PQL	ng/Kg	
+	1,2,3,4,7,8-HxCDD	J	0.204	5.43	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.611	5.43	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.807	5.43	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.228	5.43	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.558	5.43	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.296	5.43	PQL	ng/Kg	, ,
	1,2,3,7,8-PECDD	JBQ	0.163	5.43	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.602	5.43	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.271	5.43	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.571	5.43	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.659	1.09	PQL	ng/Kg	
SL-207-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	4.06	5.29	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.624	5.29	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.260	5.29	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.15	5.29	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JΒ	1.32	5.29	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.35	5.29	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.33	5.29	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	2.17	5.29	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	4.47	5.29	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.28	5.29	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	4.12	5.29	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.371	1.06	PQL	ng/Kg	
	OCDF	JB	6.73	10.6	PQL	ng/Kg	

LDC#. 76250H

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

Y N N/A Was the overall quality and usability of the data acceptable?

*	Date	Sample ID		Inding	(しい) へ	Qualifications
		2,0-0,0-75-WDSA2-5-05-25		FOJ BTOF		(3/4)
				· · ·		
Comments:	ents:					
			:			

SAMPLE DELIVERY GROUP

DX099

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
6-June-2011	SL-022-SA5DN-SB-15.0-16.0	6308049	N	METHOD	1613B	111
6-June-2011	SL-053-SA5DN-SB-4.0-5.0	6308050	N	METHOD	1613B	111
6-June-2011	SL-053-SA5DN-SB-11.5-12.5	6308051	N	METHOD	1613B	III
6-June-2011	SL-079-SA8N-SB-4.0-5.0	6308052	N	METHOD	1613B	Ш
6-June-2011	SL-079-SA8N-SB-9.0-10.0	6308053	N	METHOD	1613B	Ш
6-June-2011	SL-133-SA8N-SB-4.0-5.0	6308054	N	METHOD	1613B	III
6-June-2011	SL-022-SA5DN-SB-4.0-5.0	6308048	N	METHOD	1613B	Ш
6-June-2011	SL-133-SA8N-SB-7.0-8.0	6309783	N	METHOD	1613B	811
7-June-2011	SL-024-SA5DN-SB-19.0-20.0	6309774	И	METHOD	1613B	111
7-June-2011	SL-024-SA5DN-SB-4.0-5.0	6309771	N	METHOD	1613B	III
7-June-2011	SL-024-SA5DN-SB-4.0-5.0MSD	6309773	MSD	METHOD	1613B	111
7-June-2011	SL-026-SA5DN-SB-4.0-5.0	6309775	N	METHOD	1613B	ili
7-June-2011	SL-026-SA5DN-SB-17,0-18.0	6309776	N	METHOD	1613B	III
7-June-2011	SL-036-SA5DN-SB-4.0-5.0	6309777	N	METHOD	1613B	iii
7-June-2011	SL-036-SA5DN-SB-9.0-10.0	6309778	N	METHOD	1613B	III
7-June-2011	DUP13-SA5DN-QC-060711	6309779	FD	METHOD	1613B	III
7-June-2011	SL-071-SA8N-SB-2.0-3.0	6309780	N	METHOD	1613B	tii
7-June-2011	SL-122-SA8N-SB-2.0-3.0	6309781	N	METHOD	1613B	HI
7-June-2011	SL-140-SA8N-SB-3.0-4.0	6309782	N	METHOD	1613B	Ш
7-June-2011	SL-024-SA5DN-SB-4.0-5.0MS	6309772	MS	METHOD	1613B	111

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX099

Laboratory: LL

υ

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: DUP13-SA5DN-QC-060711	Collec	ted: 6/7/20	11 9:20:00	AM A	nalysis Ty	/pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	2.24	JB	0.0372	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.107	JB	0.0109	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0576	JB	0.0144	MDL	5.53	PQL	ng/Kg	UJ	B, FD	
1,2,3,4,7,8-HxCDD	0.0484	JQ	0.0197	MDL	5.53	PQL	ng/Kg	J	Z, FD	
1,2,3,4,7,8-HXCDF	0.0678	JB	0.0133	MDL	5.53	PQL	ng/Kg	บป	B, FD	
1,2,3,6,7,8-HXCDD	0.149	JB	0.0211	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0735	JBQ	0.0121	MDL	5.53	PQL	ng/Kg	Λη	B, FD	
1,2,3,7,8,9-HXCDD	0.229	JB	0.0196	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.265	JB	0.0130	MDL	5.53	PQL	ng/Kg	J	Z, FD	
1,2,3,7,8-PECDD	0.0690	JQ	0.0174	MDL	5.53	PQL	ng/Kg	J	Z, FD	
1,2,3,7,8-PECDF	0.120	JB	0.00904	MDL	5.53	PQL	ng/Kg	UJ	B, FD	
2,3,4,6,7,8-HXCDF	0.0427	JB	0.0121	MDL	5.53	PQL	ng/Kg	UJ	B, FD	
2,3,4,7,8-PECDF	0.0851	JBQ	0.00835	MDL	5.53	PQL	ng/Kg	UJ	B, FD	
2,3,7,8-TCDD	0.0271	JQ	0.0158	MDL	1.11	PQL	ng/Kg	J	Z, FD	
2,3,7,8-TCDF	0.0257	JQ	0.0133	MDL	1.11	PQL	ng/Kg	J	Z, FD	

Sample ID; SL-022-SA5DN-SB-15.0-16.0 Collected: 6/6/2011 11:50:00 Analysis Type: RES Dilution: 1

0.0265

MDL

11.1

PQL

ng/Kg

JΒ

0.216

Sample ID. SE-022-SASDIN-SB-15.0-10.0	Conec	teu. 010120	11 11.55.0	o Allalysis Type. INCO				Diración. 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.590	JBQ	0.0329	MDL	5.33	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.170	JB	0.0115	MDL	5.33	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.149	JBQ	0.0167	MDL	5.33	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxGDD	0.121	JQ	0.0175	MDL	5.33	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.140	JBQ	0.0148	MDL	5.33	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.113	JB	0.0187	MDL	5.33	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.120	JBQ	0.0135	MDL	5.33	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.154	JB	0.0176	MDL	5.33	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDF	0.135	JB	0.0150	MDL	5.33	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDD	0.0982	JQ	0.0177	MDL	5.33	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.103	JB	0.00812	MDL	5.33	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.131	JB	0.0147	MDL	5.33	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.137	JB	0.00747	MDL.	5.33	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0259	JQ	0.0189	MDL	1.07	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

OCDF

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 9/27/2011 2:54:10 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-022-SA5DN-SB-15.0-16.0 Collected: 6/6/2011 11:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.0265	J	0.0131	MDL	1.07	PQL	ng/Kg	J	Z
OCDD	1.99	JB	0.0287	MDL	10.7	PQL	ng/Kg	υ	В
OCDF	0.329	JB	0.0339	MDL	10.7	PQL	ng/Kg	υ	В

Sample ID: SL-022-SA5DN-SB-4.0-5.0 Collected: 6/6/2011 11:40:00 Analysis Type: RES Dilution: 1

Sample ID: SE-022-SASDIN-SD-4.0-S.V	Conec	tea. Groizo	11 11.40.0	oo Anaiysis rype. NEO				Direction: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.721	JB	0.0428	MDL.	5.60	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0762	JB	0.0128	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0596	JBQ	0.0197	MDL	5.60	PQL	ng/Kg	Ú	В	
1,2,3,4,7,8-HxCDD	0.0595	JQ	0.0213	MDL	5.60	PQL	ng/Kg	J.	Z	
1,2,3,4,7,8-HXCDF	0.0439	JB	0.0121	MDL	5.60	PQL	ng/Kg	C	В	
1,2,3,6,7,8-HXCDD	0.106	JB	0.0210	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0572	JB	0.0110	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.172	JB	0.0201	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.145	JBQ	0.0137	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0754	JQ	0.0178	MDL	5.60	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0564	JBQ	0.00731	MDL	5.60	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0427	JBQ	0.0114	MDL	5.60	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0766	JBQ	0.00696	MDL	5.60	PQL	ng/Kg	U	В	
OCDD	4.47	JB	0.0259	MDL	11.2	PQL	ng/Kg	U	В	
OCDF	0.176	JBQ	0.0372	MDL	11.2	PQL	ng/Kg	U	В	

					, ,				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.691	JB	0.0389	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.180	JBQ	0.0157	MDL	5.45	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.153	JBQ	0.0208	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.142	JQ	0.0235	MDL	5.45	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.162	JB	0.0174	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.162	JB	0.0242	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.146	JB	0.0162	MDL	5.45	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.172	JВ	0.0229	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.158	JB	0.0165	MDL	5.45	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

9/27/2011 2:54:10 PM ADR version 1.4.0.111 Page 2 of 13

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-024-SA5DN-SB-19.0-20.0 Collected: 617/2011 9:30:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDD	0.142	J	0.0191	MDL	5.45	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.164	JBQ	0.00812	MDL	5.45	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.133	JB	0.0156	MDL	5.45	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.157	JB	0.00768	MDL	5.45	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0220	J	0.0180	MDL	1.09	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0368	JQ	0.0129	MDL	1.09	PQL	ng/Kg	J	Z
OCDD	1.72	JВ	0.0316	MDL	10.9	PQL	ng/Kg	U	В
OCDF	0.421	JВ	0.0375	MDL	10.9	PQL	ng/Kg	U	В

Sample ID: SL-024-SA5DN-SB-4.0-5.0 Collected: 6/7/2011 9:10:00 AM Analysis Type: RES Dilution: 1

Sample ID. SE-SE4-SASDIN-SB-4.0-S.S	001100	ted. Office		,,,,,,		PC		Discon 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	1.69	JB	0.0270	MDL	5.63	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.0901	JB	0.00740	MDL	5.63	PQL	ng/Kg	υ	В		
1,2,3,4,7,8,9-HPCDF	0.0253	JB	0.0100	MDL	5.63	PQL	ng/Kg	UJ	B, FD		
1,2,3,4,7,8-HxCDD	0.0830	JQ	0.0156	MDL	5.63	PQL	ng/Kg	j	Z, FD		
1,2,3,4,7,8-HXCDF	0.144	JBQ	0.0121	MDL	5.63	PQL	ng/Kg	เก	B, FD		
1,2,3,6,7,8-HXCDD	0.143	JBQ	0.0164	MDL	5.63	PQL	ng/Kg	υ	В		
1,2,3,6,7,8-HXCDF	0.150	JB	0.0113	MDL	5.63	PQL	ng/Kg	J	Z, FD		
1,2,3,7,8,9-HXCDD	0.178	JBQ	0.0155	MDL	5.63	PQL	ng/Kg	υ	В		
1,2,3,7,8,9-HXCDF	0.151	JB	0.0117	MDL	5.63	PQL	ng/Kg	UJ	B, FD		
1,2,3,7,8-PECDD	0.250	J	0.0187	MDL	5.63	PQL	ng/Kg	J	Z, FD		
1,2,3,7,8-PECDF	0.337	JB	0.00843	MDL	5.63	PQL	ng/Kg	J	Z, FD		
2,3,4,6,7,8-HXCDF	0.0767	JBQ	0.0116	MDL	5.63	PQL	ng/Kg	IJ	B, FD		
2,3,4,7,8-PECDF	0.238	JB	0.00797	MDL	5.63	PQL	ng/Kg	UJ	B, FD		
2,3,7,8-TCDD	0.0887	J	0.0219	MDL	1.13	PQL	ng/Kg	J	Z, FD		
2,3,7,8-TCDF	0.0933	JQ	0.0137	MDL	1.13	PQL	ng/Kg	J	Z, FD		
OCDF	0.133	JBQ	0.0158	MDL	11.3	PQL	ng/Kg	U	В		

Sample ID: SL-026-SA5DN-SB-17.0-18.0 Collected: 6/7/2011 11:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.72	JB	0.0369	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0796	JB	0.0109	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0388	JB	0.0136	MDL	5.40	PQL	ng/Kg	Ç	В

^{*} denotes a non-reportable result

9/27/2011 2:54:10 PM ADR version 1.4.0.111 Page 3 of 13

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-026-SA5DN-SB-17.0-18.0	Collected: 6/7/2011 11:45	00 Analysis Type: RES	Dilution: 1
			Data

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	0.0139	JBQ	0.00796	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0473	JBQ	0.0166	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0568	JBQ	0.0153	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0265	JBQ	0.00796	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0180	JBQ	0.00752	MDL	5.40	PQL	ng/Kg	υ	8
2,3,4,6,7,8-HXCDF	0.0277	JBQ	0.00742	MDL	5.40	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0432	JB	0.00709	MDL	5.40	PQL	ng/Kg	υ	В
OCDF	0.327	JB	0.0301	MDL	10.8	PQL	ng/Kg	U	В

Sample ID: SL-026-SA5DN-SB-4.0-5.0 Collected: 6/7/2011 11:35:00 Analysis Type: RES Dilution: 1

Campic is, as as an animal in the										
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	5.44	JB	0.0546	MDL	5.74	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	0.462	JB	0.0263	MDL	5.74	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.0713	JB	0.0334	MDL	5.74	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0531	JQ	0.0382	MDL	5.74	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.438	JB	0.0402	MDL	5.74	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0812	JBQ	0.0248	MDL	5.74	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.538	JB	0.0371	MDL	5.74	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.693	JB	0.0271	MDL	5.74	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0763	J	0.0267	MDL	5.74	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.156	JB	0.0153	MDL	5.74	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.0604	JB	0.0256	MDL	5.74	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.194	JB	0.0150	MDL	5.74	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0247	J	0.0192	MDL	1.15	PQL	ng/Kg	J	Z	
OCDF	1.49	JB	0.0566	MDL	11.5	PQL	ng/Kg	J	Z	

Sample ID: SL-036-SA5DN-SB-4.0-5.0 Collected: 6/7/2011 2:35:00 PM Analysis Type: RES Dilution: 1

Analvte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Allalyte	Vesuit	Quai		1900		1 ypc	United	<u>Quui</u>	Ocac
1,2,3,4,6,7,8-HPCDD	2.69	JB	0.0449	MDL	5.79	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.103	JBQ	0.0118	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0307	JBQ	0.0147	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0218	JQ	0.0193	MDL	5.79	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0231	JBQ	0.0120	MDL	5.79	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-036-SA5DN-SB-4.0-5.0 Collected: 6/7/2011 2:35:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDD	0.114	JBQ	0.0199	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0167	JB	0.0112	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.138	JB	0.0181	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.109	JB	0.0126	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0336	JQ	0.0177	MDL	5.79	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0243	JBQ	0.00989	MDL	5.79	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0124	JBQ	0.0114	MDL	5.79	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0394	JB	0.00919	MDL	5.79	PQL	ng/Kg	U	В
OCDF	0.280	JВ	0.0392	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-036-SA5DN-SB-9.0-10.0 Collected: 6/7/2011 2:45:00 PM Analysis Type: RES Dilution: 1

campic ib. de des crabit de die 1010	0000		, ,				,		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.30	JB	0.0420	MDL	5.71	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.130	JBQ	0.0121	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0200	J	0.0167	MDL	5.71	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0269	JBQ	0.0103	MDL	5.71	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0788	JBQ	0.0179	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0102	JB	0.00958	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0600	JB	0.0172	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0221	JBQ	0.00970	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0243	JQ	0.0181	MDL	5.71	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0249	JBQ	0.00797	MDL	5.71	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0178	JBQ	0.00912	MDL	5.71	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0387	JBQ	0.00739	MDL	5.71	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0283	J	0.0157	MDL	1.14	PQL	ng/Kg	J	Z
OCDF	0.328	JB	0.0352	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-053-SA5DN-SB-11.5-12.5 Collected: 6/6/2011 4:00:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.492	JB	0.0275	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0476	JB	0.00759	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0238	JBQ	0.0116	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0417	JBQ	0.00759	MDL	5.42	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX099

Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix:

Sample ID: SL-053-SA5DN-SB-11.5-12.5 Collected: 6/6/2011 4:00:00 PM Analysis Type: RES Dilution: 1

SO

Sample ID. 3L-033-3A3DN-3B-11.3-12.3	Conected. Goldon 4.00.00 PM Analysis Type. NEO Dilution.									
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDD	0.0402	JBQ	0.0150	MDL	5.42	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.0284	JB	0.00670	MDL	5.42	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	0.0651	JBQ	0.0133	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0405	JB	0.00770	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0176	JQ	0.0146	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0291	JBQ	0.00625	MDL	5.42	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0233	JB	0.00658	MDL	5.42	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0665	JB	0.00603	MDL	5.42	PQL	ng/Kg	U	В	
OCDD	1.55	JB	0.0297	MDL	10.8	PQL	ng/Kg	U	В	
OCDF	0.127	JB	0.0276	MDL	10.8	PQL	ng/Kg	U	В	

Sample ID: SL-053-SA5DN-SB-4.0-5.0 Collected: 6/6/2011 3:50:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.689	JB	0.0374	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0476	JBQ	0.00937	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0232	JBQ	0.0137	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0117	JBQ	0.00867	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0738	JBQ	0.0167	MDL	5.77	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0219	JBQ	0.00796	MDL	5.77	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.104	JBQ	0.0155	MDL	5.77	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.113	JBQ	0.00913	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0170	JB	0.00773	MDL	5.77	PQL	ng/Kg	Ū	В
2,3,4,6,7,8-HXCDF	0.0129	JBQ	0.00796	MDL	5.77	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0319	JBQ	0.00761	MDL	5.77	PQL	ng/Kg	U	В
OCDD	4.65	JB	0.0278	MDL	11.5	PQL	ng/Kg	U	В
OCDF	0.127	JB	0.0326	MDL	11.5	PQL	ng/Kg	U	В

Sample ID: SL-071-SA8N-SB-2.0-3.0 Collected: 6/7/2011 9:05:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.711	JB	0.0292	MDL	5.27	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.134	JB	0.0100	MDL	5.27	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0427	JBQ	0.0135	MDL	5.27	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0738	JQ	0.0214	MDL	5.27	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/27/2011 2:54:10 PM ADR version 1.4.0.111 Page 6 of 13

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-071-SA8N-SB-2.0-3.0 Collected: 6/7/2011 9:05:00 AM Analysis Type: RES Dilution: 1

bampio 12: 02 01 1 01 1011 0= =10 010										
nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HXCDF	0.127	JB	0.0178	MDL	5.27	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDD	0.966	JВ	0.0225	MDL	5.27	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.186	JB	0.0164	MDL	5.27	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.68	JB	0.0208	MDL	5.27	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.391	JB	0.0172	MDL	5.27	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.286	J	0.0256	MDL	5.27	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.311	JВ	0.0119	MDL	5.27	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.0848	JB	0.0173	MDL	5.27	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.218	JBQ	0.0111	MDL	5.27	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0498	J	0.0157	MDL	1.05	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0758	JQ	0.0229	MDL	1.05	PQL	ng/Kg	J	Z	
OCDD	2.40	JB	0.0281	MDL	10.5	PQL	ng/Kg	U	В	
OCDF	0.192	JB	0.0248	MDL	10.5	PQL	ng/Kg	U	В	

Sample ID; SL-079-SA8N-SB-4.0-5.0 Collected: 6/6/2011 12:05:00 Analysis Type: RES Dilution: 1

ample ib. 3E-013-3A0N-0D-4.0-3.0	Conco	teu. Oloizo	11 12.00.0	Analysis Type. 1120			Dilaboli, i		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.559	JBQ	0.0292	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0435	JB	0.00987	MDL	5.69	PQL	ng/Kg	Ų	В
1,2,3,4,7,8,9-HPCDF	0.0140	JBQ	0.0139	MDL	5.69	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0155	JQ	0.0154	MDL	5.69	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0150	JBQ	0.00838	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0345	JBQ	0.0161	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0203	JBQ	0.00781	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0437	JBQ	0.0153	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0221	JBQ	0.00896	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0348	JQ	0.0148	MDL	5.69	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0211	JBQ	0.00815	MDL	5.69	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0121	JBQ	0.00804	MDL	5.69	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0498	JB	0.00758	MDL	5.69	PQL	ng/Kg	υ	В
OCDD	1.14	JB	0.0323	MDL	11.4	PQL	ng/Kg	υ	В
OCDF	0.0709	JB	0.0299	MDL	11.4	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-079-SA8N-SB-9.0-10.0 Collected: 6/6/2011 11:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL_	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.758	JBQ	0.0293	MDL	5.80	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.122	JB	0.00904	MDL	5.80	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0482	JB	0.0133	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0872	J	0.0177	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.167	JB	0.0144	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.111	JB	0.0185	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.139	JB	0.0136	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.128	JB	0.0182	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.107	JB	0.0140	MD1.	5.80	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.202	J	0.0188	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.250	JB	0.00962	MDL	5.80	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0910	JB	0.0131	MDL	5.80	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.237	JBQ	0.00927	MDL	5.80	PQL	ng/Kg	U	В
2,3, 7 ,8-TCDD	0.0437	JQ	0.0214	MDL	1.16	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0841	JQ	0.0141	MDL	1.16	PQL	ng/Kg	J	Z
OCDD	3.23	JB	0.0281	MDL	11.6	PQL	ng/Kg	U	В
OCDF	0.203	JB	0.0203	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-122-SA8N-SB-2.0-3.0 Collected: 6/7/2011 2:00:00 PM Analysis Type: RES Dilution: 1

	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	1.02	JB	0.0416	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.229	JB	0.0137	MDL	5.38	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0335	JBQ	0.0197	MDL	5.38	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0779	JQ	0.0237	MDL	5.38	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.165	JBQ	0.0168	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.128	JΒ	0.0235	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.122	JB	0.0156	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.176	JBQ	0.0223	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0967	JBQ	0.0175	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.155	JQ	0.0274	MDL	5.38	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.248	JBQ	0.0168	MDL	5.38	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0862	JBQ	0.0157	MDL	5.38	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.245	JB	0.0156	MDL	5.38	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX099

eQAPP Name: CDM_SSFL_110509

EDD Filename: DX099_v1

Method:

Method Category: SVOA SO 1613B Matrix:

Sample ID: SL-122-SA8N-SB-2.0-3.0

Collected: 6/7/2011 2:00:00 PM

Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.0932	JQ	0.0304	MDL	1.08	PQL	ng/Kg	J	Z
OCDD	7.69	JB	0.0291	MDL	10.8	PQL	ng/Kg	J	Z
OCDF	0.341	JB	0.0314	MDL	10.8	PQL	ng/Kg	U	В

Sample ID: SL-133-SA8N-SB-4.0-5.0

Collected: 6/6/2011 4:15:00 PM

Analysis Type: RES

Dilution: 1

Laboratory: LL

					,ρυ,			
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1.07	JB	0.0298	MDL	5.74	PQL	ng/Kg	U	В
0.360	JB	0.0135	MDL	5.74	PQL	ng/Kg	υ	В
0.0787	JBQ	0.0206	MDL	5.74	PQL	ng/Kg	U	В
0.164	J	0.0190	MDL	5.74	PQL	ng/Kg	J	Z
0.227	JB	0.0206	MDL	5.74	PQL	ng/Kg	J	Z
0.152	JB	0.0199	MDL	5.74	PQL	ng/Kg	U	В
0.219	JB	0.0188	MDL	5.74	PQL	ng/Kg	J	Z
0.165	JB	0.0193	MDL	5.74	PQL	ng/Kg	U	В
0.167	JB	0.0199	MDL	5.74	PQL	ng/Kg	U	В
0.280	JQ	0.0184	MDL	5.74	PQL	ng/Kg	J	Z
0.338	JB	0.0112	MDL	5.74	PQL	ng/Kg	J	Z
0.137	JBQ	0.0188	MDL	5.74	PQL	ng/Kg	J	Z
0.279	JBQ	0.0106	MDL	5.74	PQL	ng/Kg	J	Z
0.0477	J	0.0190	MDL	1.15	PQL	ng/Kg	j	Z
0.0914	J	0.0289	MDL	1.15	PQL	ng/Kg	J	Z
0.570	JB	0.0286	MDL	11.5	PQL	ng/Kg	υ	В
	Result 1.07 0.360 0.0787 0.164 0.227 0.152 0.219 0.165 0.167 0.280 0.338 0.137 0.279 0.0477 0.0914	Result Qual 1.07 JB 0.360 JB 0.0787 JBQ 0.164 J 0.227 JB 0.152 JB 0.219 JB 0.165 JB 0.167 JB 0.280 JQ 0.338 JB 0.137 JBQ 0.279 JBQ 0.0477 J 0.0914 J	Result Qual DL 1.07 JB 0.0298 0.360 JB 0.0135 0.0787 JBQ 0.0206 0.164 J 0.0190 0.227 JB 0.0206 0.152 JB 0.0199 0.219 JB 0.0188 0.165 JB 0.0193 0.167 JB 0.0199 0.280 JQ 0.0184 0.338 JB 0.0112 0.137 JBQ 0.0188 0.279 JBQ 0.0106 0.0477 J 0.0190 0.0914 J 0.0289	Result Qual DL Type 1.07 JB 0.0298 MDL 0.360 JB 0.0135 MDL 0.0787 JBQ 0.0206 MDL 0.164 J 0.0190 MDL 0.227 JB 0.0206 MDL 0.152 JB 0.0199 MDL 0.219 JB 0.0188 MDL 0.165 JB 0.0193 MDL 0.167 JB 0.0193 MDL 0.280 JQ 0.0184 MDL 0.338 JB 0.0112 MDL 0.137 JBQ 0.0188 MDL 0.279 JBQ 0.0106 MDL 0.0477 J 0.0190 MDL 0.0914 J 0.0289 MDL	Result Qual DL Type RL 1.07 JB 0.0298 MDL 5.74 0.360 JB 0.0135 MDL 5.74 0.0787 JBQ 0.0206 MDL 5.74 0.164 J 0.0190 MDL 5.74 0.227 JB 0.0206 MDL 5.74 0.152 JB 0.0199 MDL 5.74 0.219 JB 0.0188 MDL 5.74 0.165 JB 0.0193 MDL 5.74 0.167 JB 0.0193 MDL 5.74 0.280 JQ 0.0184 MDL 5.74 0.338 JB 0.0112 MDL 5.74 0.137 JBQ 0.0188 MDL 5.74 0.279 JBQ 0.0106 MDL 5.74 0.0477 J 0.0190 MDL 1.15 0.0914 J 0.0289 MDL	Result Qual DL Type RL Type 1.07 JB 0.0298 MDL 5.74 PQL 0.360 JB 0.0135 MDL 5.74 PQL 0.0787 JBQ 0.0206 MDL 5.74 PQL 0.164 J 0.0190 MDL 5.74 PQL 0.227 JB 0.0206 MDL 5.74 PQL 0.152 JB 0.0199 MDL 5.74 PQL 0.219 JB 0.0188 MDL 5.74 PQL 0.165 JB 0.0193 MDL 5.74 PQL 0.167 JB 0.0193 MDL 5.74 PQL 0.280 JQ 0.0184 MDL 5.74 PQL 0.338 JB 0.0112 MDL 5.74 PQL 0.279 JBQ 0.0188 MDL 5.74 PQL 0.0477 J 0.0190 MDL <td>Result Qual DL Type RL Type Units 1.07 JB 0.0298 MDL 5.74 PQL ng/Kg 0.360 JB 0.0135 MDL 5.74 PQL ng/Kg 0.0787 JBQ 0.0206 MDL 5.74 PQL ng/Kg 0.164 J 0.0190 MDL 5.74 PQL ng/Kg 0.227 JB 0.0206 MDL 5.74 PQL ng/Kg 0.152 JB 0.0199 MDL 5.74 PQL ng/Kg 0.219 JB 0.0188 MDL 5.74 PQL ng/Kg 0.165 JB 0.0193 MDL 5.74 PQL ng/Kg 0.167 JB 0.0193 MDL 5.74 PQL ng/Kg 0.280 JQ 0.0184 MDL 5.74 PQL ng/Kg 0.338 JB 0.0112 MDL 5.74 PQL</td> <td>Lab Result Lab Qual DL DL Type RL Type RL Type RL Type RL Units Review Qual 1.07 JB 0.0298 MDL 5.74 PQL ng/Kg U 0.360 JB 0.0135 MDL 5.74 PQL ng/Kg U 0.0787 JBQ 0.0206 MDL 5.74 PQL ng/Kg U 0.164 J 0.0190 MDL 5.74 PQL ng/Kg J 0.227 JB 0.0206 MDL 5.74 PQL ng/Kg J 0.152 JB 0.0199 MDL 5.74 PQL ng/Kg U 0.219 JB 0.0188 MDL 5.74 PQL ng/Kg U 0.165 JB 0.0193 MDL 5.74 PQL ng/Kg U 0.280 JQ 0.0184 MDL 5.74 PQL ng/Kg J 0.338 JB 0.0112 <</td>	Result Qual DL Type RL Type Units 1.07 JB 0.0298 MDL 5.74 PQL ng/Kg 0.360 JB 0.0135 MDL 5.74 PQL ng/Kg 0.0787 JBQ 0.0206 MDL 5.74 PQL ng/Kg 0.164 J 0.0190 MDL 5.74 PQL ng/Kg 0.227 JB 0.0206 MDL 5.74 PQL ng/Kg 0.152 JB 0.0199 MDL 5.74 PQL ng/Kg 0.219 JB 0.0188 MDL 5.74 PQL ng/Kg 0.165 JB 0.0193 MDL 5.74 PQL ng/Kg 0.167 JB 0.0193 MDL 5.74 PQL ng/Kg 0.280 JQ 0.0184 MDL 5.74 PQL ng/Kg 0.338 JB 0.0112 MDL 5.74 PQL	Lab Result Lab Qual DL DL Type RL Type RL Type RL Type RL Units Review Qual 1.07 JB 0.0298 MDL 5.74 PQL ng/Kg U 0.360 JB 0.0135 MDL 5.74 PQL ng/Kg U 0.0787 JBQ 0.0206 MDL 5.74 PQL ng/Kg U 0.164 J 0.0190 MDL 5.74 PQL ng/Kg J 0.227 JB 0.0206 MDL 5.74 PQL ng/Kg J 0.152 JB 0.0199 MDL 5.74 PQL ng/Kg U 0.219 JB 0.0188 MDL 5.74 PQL ng/Kg U 0.165 JB 0.0193 MDL 5.74 PQL ng/Kg U 0.280 JQ 0.0184 MDL 5.74 PQL ng/Kg J 0.338 JB 0.0112 <

Sample ID: SL-133-SA8N-SB-7.0-8.0

Collected: 6/6/2011 5:15:00 PM

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.54	JB	0.0558	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.375	JB	0.0224	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0678	JB	0.0337	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0480	JQ	0.0304	MDL	5.70	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.102	JBQ	0.0201	MDL	5.70	PQL	ng/Kg	Ų	В
1,2,3,6,7,8-HXCDD	0.0711	JBQ	0.0310	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0497	JB	0.0183	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.123	JBQ	0.0298	MDL	5.70	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-133-SA8N-SB-7.0-8.0 Collected: 6/6/2011 5:15:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDF	0.0592	JB	0.0213	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0196	JQ	0.0176	MDL	5.70	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.228	JB	0.0178	MDL	5.70	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0439	JB	0.0191	MDL	5.70	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0910	JBQ	0.0163	MDL	5.70	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.244	J	0.0747	MDL	1.14	PQL	ng/Kg	J	Z
OCDF	0.886	JB	0.0489	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-140-SA8N-SB-3.0-4.0 Collected: 6/7/2011 3:20:00 PM Analysis Type: RES Dilution: 1

Sample ID: SL-140-SA8N-SB-3.0-4.0	Collec	tea: 6/7/20	11 3:20:00	PM A	naiysis i j	/pe: KES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5.03	JB	0.0617	MDL	5.66	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.287	JBQ	0.0263	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0804	JBQ	0.0396	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.206	J	0.0657	MDL	5.66	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.150	JB	0.0238	MDL	5.66	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.318	JB	0.0691	MDL	5.66	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0935	JB	0.0216	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.372	JB	0.0656	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.217	JBQ	0.0255	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.167	J	0.0283	MDL	5.66	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.184	JB	0.0121	MDL	5.66	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0687	JB	0.0218	MDL	5.66	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.129	JB	0.0112	MDL	5.66	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0696	J	0.0167	MDL	1.13	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0629	JQ	0.0198	MDL	1.13	PQL	ng/Kg	J	Z
OCDF	0.600	JB	0.0491	MDL	11.3	PQL	ng/Kg	U	В

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX099 Laboratory: LL EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
-	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
Ē	Laboratory Duplicate Precision
É	Laboratory Triplicate Precision
É	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX099

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Field Blank Contamination FID Field Duplicate Precision FTT Field Triplicate Precision H Extraction to Analysis Estimation H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation H Temperature Rejection L Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation M Continuing Ture M Initial Ture M Performance Evaluation Mixture Q Laboratory Triplicate Precision Q Matrix Spike Lower Rejection	F	Equipment Blank Contamination
FT Field Triplicate Precision H Extraction to Analysis Estimation H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Laboratory Triplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Rejection	F	Field Blank Contamination
H Extraction to Analysis Estimation H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Rejection I Internal Standard Rejection L Laboratory Control Pracision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Upplicate Precision Q Matrix Spike Lower Rejection Matrix Spike Lower Rejection Matrix Spike Lower Rejection Matrix Spike Lower Rejection Matrix Spike Lower Rejection Matrix Spike Lower Rejection Matrix Spike Lower Rejection	FD	Field Duplicate Precision
H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Matrix Spike Lower Rejection Matrix Spike Lower Rejection Matrix Spike Lower Rejection	FT	Field Triplicate Precision
H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Triplicate Precision Q Matrix Spike Lower Rejection M Matrix Spike Lower Estimation Q Matrix Spike Lower Estimation	Н	Extraction to Analysis Estimation
H Sampling to Analysis Estimation H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Estimation Q Matrix Spike Lower Estimation	Н	Extraction to Analysis Rejection
H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection	Н	Preservation
H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Estimation H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection M Matrix Spike Lower Estimation	Н	Sampling to Analysis Estimation
H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Sampling to Analysis Rejection
H Sampling to Leaching Estimation H Temperature Estimation H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection	Н	Sampling to Extraction Estimation
H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Sampling to Extraction Rejection
H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection	Н	Sampling to Leaching Estimation
H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection	Н	Sampling to Leaching Rejection
Internal Standard Estimation Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Temperature Estimation
Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Temperature Rejection
L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	1	Internal Standard Estimation
L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	I	Internal Standard Rejection
L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	L	Laboratory Control Precision
L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	L	Laboratory Control Spike Lower Estimation
L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	L	Laboratory Control Spike Lower Rejection
M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	L	Laboratory Control Spike Upper Estimation
M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	L	Laboratory Control Spike Upper Rejection
M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	М	Continuing Tune
M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	М	Initial Tune
Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	M	Performance Evaluation Mixture
Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	М	Resolution Check Mixture
Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	Q	Laboratory Duplicate Precision
Q Matrix Spike Lower Rejection Q Matrix Spike Precision	Q	Laboratory Triplicate Precision
Q Matrix Spike Precision	a	Matrix Spike Lower Estimation
	Q	Matrix Spike Lower Rejection
Q Matrix Spike Upper Estimation	Q	Matrix Spike Precision
	Q	Matrix Spike Upper Estimation

^{*} denotes a non-reportable result

Laboratory: LL

Lab Reporting Batch ID: DX099

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

EDD Filename: DX099_v1

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX099

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 1613 <i>Matrix:</i> SO	ВВ			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1690B370524	6/22/2011 5:24:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF CODD OCDF	0.479 ng/Kg 0.0762 ng/Kg 0.0762 ng/Kg 0.0506 ng/Kg 0.0392 ng/Kg 0.0621 ng/Kg 0.0252 ng/Kg 0.0839 ng/Kg 0.0457 ng/Kg 0.0277 ng/Kg 0.0179 ng/Kg 0.0481 ng/Kg 0.246 ng/Kg	DUP13-SA5DN-QC-060711 SL-022-SA5DN-SB-15.0-16.0 SL-022-SA5DN-SB-15.0-16.0 SL-024-SA5DN-SB-19.0-20.0 SL-024-SA5DN-SB-19.0-20.0 SL-026-SA5DN-SB-17.0-18.0 SL-026-SA5DN-SB-4.0-5.0 SL-036-SA5DN-SB-9.0-10.0 SL-036-SA5DN-SB-9.0-10.0 SL-053-SA5DN-SB-4.0-5.0 SL-071-SA8N-SB-2.0-3.0 SL-079-SA8N-SB-9.0-10.0 SL-079-SA8N-SB-9.0-10.0 SL-122-SA8N-SB-9.0-10.0 SL-133-SA8N-SB-4.0-5.0 SL-133-SA8N-SB-4.0-5.0 SL-133-SA8N-SB-4.0-5.0 SL-133-SA8N-SB-4.0-5.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP13-SA5DN-QC-060711(RES)	1,2,3,4,6,7,8-HPCDD	2.24 ng/Kg	2.24U ng/Kg
DUP13-SA5DN-QC-060711(RES)	1,2,3,4,6,7,8-HPCDF	0.107 ng/Kg	0.107U ng/Kg
DUP13-SA5DN-QC-060711(RES)	1,2,3,4,7,8,9-HPCDF	0.0576 ng/Kg	0.0576U ng/Kg
DUP13-SA5DN-QC-060711(RES)	1,2,3,4,7,8-HXCDF	0.0678 ng/Kg	0.0678U ng/Kg
DUP13-SA5DN-QC-060711(RES)	1,2,3,6,7,8-HXCDD	0.149 ng/Kg	0.149U ng/Kg
DUP13-SA5DN-QC-060711(RES)	1,2,3,6,7,8-HXCDF	0,0735 ng/Kg	0.0735U ng/Kg
DUP13-SA5DN-QC-060711(RES)	1,2,3,7,8,9-HXCDD	0.229 ng/Kg	0.229U ng/Kg
DUP13-SA5DN-QC-060711(RES)	1,2,3,7,8-PECDF	0.120 ng/Kg	0.120U ng/Kg
DUP13-SA5DN-QC-060711(RES)	2,3,4,6,7,8-HXCDF	0.0427 ng/Kg	0.0427U ng/Kg
DUP13-SA5DN-QC-060711(RES)	2,3,4,7,8-PECDF	0.0851 ng/Kg	0.0851U ng/Kg
DUP13-SA5DN-QC-060711(RES)	OCDF	0.216 ng/Kg	0.216U ng/Kg
SL-022-SA5DN-\$B-15.0-16.0(RES)	1,2,3,4,6,7,8-HPCDD	0.590 ng/Kg	0.590U ng/Kg
SL-022-SA5DN-SB-15.0-16.0(RES)	1,2,3,4,6,7,8-HPCDF	0.170 ng/Kg	0.170U ng/Kg
SL-022-SA5DN-SB-15.0-16.0(RES)	1,2,3,4,7,8,9-HPCDF	0.149 ng/Kg	0.149U ng/Kg
SL-022-SA5DN-SB-15.0-16.0(RES)	1,2,3,4,7,8-HXCDF	0.140 ng/Kg	0.140U ng/Kg
SL-022-SA5DN-SB-15.0-16.0(RES)	1,2,3,6,7,8-HXCDD	0.113 ng/Kg	0.113U ng/Kg
SL-022-SA5DN-SB-15,0-16,0(RES)	1,2,3,6,7,8-HXCDF	0.120 ng/Kg	0.120U ng/Kg
SL-022-SA5DN-SB-15.0-16.0(RES)	1,2,3,7,8,9-HXCDD	0.154 ng/Kg	0.154U ng/Kg
SL-022-SA5DN-SB-15.0-16.0(RES)	1,2,3,7,8,9-HXCDF	0.135 ng/Kg	0.135U ng/Kg
SL-022-SA5DN-SB-15.0-16.0(RES)	1,2,3,7,8-PECDF	0.103 ng/Kg	0.103U ng/Kg
SL-022-SA5DN-SB-15.0-16.0(RES)	2,3,4,7,8-PECDF	0.137 ng/Kg	0.137U ng/Kg
SL-022-SA5DN-SB-15.0-16.0(RES)	OCDD	1.99 ng/Kg	1.99U ng/Kg
SL-022-SA5DN-SB-15.0-16.0(RES)	OCDF	0.329 ng/Kg	0.329U ng/Kg
SL-022-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.721 ng/Kg	0.721U ng/Kg
SL-022-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0762 ng/Kg	0.0762U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/27/2011 2:53:42 PM ADR version 1.4.0.111 Page 1 of 6

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613I Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-022-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0,0596 ng/Kg	0.0596U ng/Kg
-022-SA5DN-SB-4.0-5.0(RES) 1,2,3,4,7,8-HXCDF		0.0439 ng/Kg	0.0439U ng/Kg
SL-022-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.106 ng/Kg	0,106U ng/Kg
SL-022-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0572 ng/Kg	0.0572U ng/Kg
SL-022-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.172 ng/Kg	0.172U ng/Kg
SL-022-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.145 ng/Kg	0.145U ng/Kg
SL-022-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0564 ng/Kg	0.0564U ng/Kg
SL-022-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0427 ng/Kg	0.0427U ng/Kg
SL-022-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0766 ng/Kg	0.0766U ng/Kg
SL-022-SA5DN-SB-4.0-5.0(RES)	OCDD	4.47 ng/Kg	4.47U ng/Kg
SL-022-SA5DN-SB-4.0-5.0(RES)	OCDF	0.176 ng/Kg	0.176U ng/Kg
SL-024-SA5DN-SB-19.0-20.0(RES)	1,2,3,4,6,7,8-HPCDD	0.691 ng/Kg	0.691U ng/Kg
SL-024-SA5DN-SB-19.0-20.0(RES)	1,2,3,4,6,7,8-HPCDF	0.180 ng/Kg	0.180U ng/Kg
SL-024-SA5DN-SB-19.0-20.0(RES)	1,2,3,4,7,8,9-HPCDF	0.153 ng/Kg	0.153U ng/Kg
SL-024-SA5DN-SB-19.0-20.0(RES)	1,2,3,4,7,8-HXCDF	0.162 ng/Kg	0.162U ng/Kg
SL-024-SA5DN-SB-19.0-20.0(RES)	1,2,3,6,7,8-HXCDD	0.162 ng/Kg	0.162U ng/Kg
SL-024-SA5DN-SB-19.0-20.0(RES)	1,2,3,7,8,9-HXCDD	0.172 ng/Kg	0.172U ng/Kg
SL-024-SA5DN-SB-19.0-20.0(RES)	1,2,3,7,8,9-HXCDF	0.158 ng/Kg	0.158U ng/Kg
SL-024-SA5DN-SB-19.0-20.0(RES)	2,3,4,7,8-PECDF	0.157 ng/Kg	0.157U ng/Kg
SL-024-SA5DN-\$B-19.0-20.0(RES)	OCDD	1.72 ng/Kg	1.72U ng/Kg
SL-024-SA5DN-SB-19.0-20.0(RES)	OCDF	0.421 ng/Kg	0.421U ng/Kg
SL-024-\$A5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.69 ng/Kg	1.69U ng/Kg
SL-024-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0901 ng/Kg	0.0901U ng/Kg
SL-024-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0253 ng/Kg	0.0253U ng/Kg
SL-024-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.144 ng/Kg	0.144U ng/Kg
SL-024-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.143 ng/Kg	0.143U ng/Kg
SL-024-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.178 ng/Kg	0.178U ng/Kg
SL-024-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.151 ng/Kg	0.151U ng/Kg
SL-024-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0767 ng/Kg	0.0767U ng/Kg
SL-024-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.238 ng/Kg	0.238U ng/Kg
SL-024-SA5DN-SB-4.0-5.0(RES)	OCDF	0.133 ng/Kg	0.133U ng/Kg
SL-026-SA5DN-SB-17.0-18.0(RES)	1,2,3,4,6,7,8-HPCDD	1.72 ng/Kg	1.72U ng/Kg
SL-026-SA5DN-SB-17.0-18.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0796 ng/Kg	0.0796U ng/Kg
SL-026-SA5DN-SB-17.0-18.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0388 ng/Kg	0.0388U ng/Kg
SL-026-SA5DN-SB-17.0-18.0(RES)	1,2,3,4,7,8-HXCDF	0.0139 ng/Kg	0.0139U ng/Kg
SL-026-SA5DN-SB-17.0-18.0(RES)	1,2,3,6,7,8-HXCDD	0.0473 ng/Kg	0.0473U ng/Kg
SL-026-SA5DN-SB-17.0-18.0(RES)	1,2,3,7,8,9-HXCDD	0,0568 ng/Kg	0,0568U ng/Kg

9/27/2011 2:53:42 PM ADR version 1.4.0.111 Page 2 of 6

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	्रकार कर के भी हैं। किसी को ने से के प्रकार कर कर कर कर के स्वत्य कर कर कर के स्वत्य कर कर कर कर कर कर कर कर क स्वत्य कर कर कर के स्वत्य कर कर कर के स्वत्य कर कर कर कर कर कर कर कर कर कर कर कर कर			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-026-SA5DN-SB-17.0-18.0(RES)	1,2,3,7,8,9-HXCDF	0.0265 ng/Kg	0.0265U ng/Kg
SL-026-SA5DN-SB-17.0-18.0(RES)	1,2,3,7,8-PECDF	0.0180 ng/Kg	0.0180U ng/Kg
SL-026-SA5DN-SB-17.0-18.0(RES)	2,3,4,6,7,8-HXCDF	0.0277 ng/Kg	0.0277U ng/Kg
SL-026-SA5DN-SB-17.0-18.0(RES)	2,3,4,7,8-PECDF	0,0432 ng/Kg	0.0432U ng/Kg
SL-026-SA5DN-SB-17.0-18.0(RES)	OCDF	0.327 ng/Kg	0.327U ng/Kg
SL-026-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0713 ng/Kg	0.0713U ng/Kg
SL-026-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0812 ng/Kg	0.0812U ng/Kg
SL-026-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0,0604 ng/Kg	0.0604U ng/Kg
SL-026-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.194 ng/Kg	0.194U ng/Kg
SL-036-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.103 ng/Kg	0.103U ng/Kg
SL-036-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0307 ng/Kg	0.0307U ng/Kg
SL-036-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0231 ng/Kg	0.0231U ng/Kg
SL-036-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.114 ng/Kg	0.114U ng/Kg
SL-036-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0167 ng/Kg	0.0167U ng/Kg
SL-036-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.138 ng/Kg	0.138U ng/Kg
SL-036-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.109 ng/Kg	0,109U ng/Kg
SL-036-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0243 ng/Kg	0.0243U ng/Kg
SL-036-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0124 ng/Kg	0.0124U ng/Kg
SL-036-SA5DN-\$B-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0394 ng/Kg	0.0394U ng/Kg
SL-036-SA5DN-SB-4.0-5.0(RES)	OCDF	0.280 ng/Kg	0.280U ng/Kg
SL-036-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.130 ng/Kg	0.130U ng/Kg
SL-036-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0269 ng/Kg	0,0269U ng/Kg
SL-036-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0788 ng/Kg	0,0788U ng/Kg
SL-036-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0102 ng/Kg	0.0102U ng/Kg
SL-036-SA5DN-\$B-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0600 ng/Kg	0.0600U ng/Kg
SL-036-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0221 ng/Kg	0.0221U ng/Kg
SL-036-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0249 ng/Kg	0.0249U ng/Kg
SL-036-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0178 ng/Kg	0.0178U ng/Kg
SL-036-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0387 ng/Kg	0.0387U ng/Kg
SL-036-SA5DN-SB-9.0-10.0(RES)	OCDF	0.328 ng/Kg	0,328U ng/Kg
SL-053-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,6,7,8-HPCDD	0.492 ng/Kg	0.492U ng/Kg
SL-053-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0476 ng/Kg	0.0476U ng/Kg
SL-053-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0238 ng/Kg	0.0238U ng/Kg
SL-053-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,7,8-HXCDF	0.0417 ng/Kg	0.0417U ng/Kg
SL-053-SA5DN-SB-11,5-12.5(RES)	1,2,3,6,7,8-HXCDD	0.0402 ng/Kg	0.0402U ng/Kg
SL-053-SA5DN-SB-11.5-12.5(RES)	1,2,3,6,7,8-HXCDF	0.0284 ng/Kg	0.0284U ng/Kg
SL-053-SA5DN-SB-11.5-12.5(RES)	1,2,3,7,8,9-HXCDD	0.0651 ng/Kg	0.0651U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/27/2011 2:53:42 PM ADR version 1.4.0.111 Page 3 of 6

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	en er veren er er er er er er er er er er er er er			
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-053-SA5DN-SB-11.5-12.5(RES)	1,2,3,7,8,9-HXCDF	0.0405 ng/Kg	0.0405U ng/Kg
SL-053-SA5DN-SB-11.5-12.5(RES)	1,2,3,7,8-PECDF	0.0291 ng/Kg	0.0291U ng/Kg
SL-053-SA5DN-SB-11.5-12.5(RES)	2,3,4,6,7,8-HXCDF	0.0233 ng/Kg	0.0233U ng/Kg
SL-053-SA5DN-SB-11.5-12.5(RES)	2,3,4,7,8-PECDF	0.0665 ng/Kg	0.0665U ng/Kg
SL-053-SA5DN-SB-11.5-12.5(RES)	OCDD	1.55 ng/Kg	1.55U ng/Kg
SL-053-SA5DN-SB-11.5-12.5(RES)	OCDF	0.127 ng/Kg	0.127U ng/Kg
SL-053-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.689 ng/Kg	0,689U ng/Kg
SL-053-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0476 ng/Kg	0.0476U ng/Kg
SL-053-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0232 ng/Kg	0.0232U ng/Kg
SL-053-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0117 ng/Kg	0.0117U ng/Kg
SL-053-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0738 ng/Kg	0.0738U ng/Kg
SL-053-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0219 ng/Kg	0.0219U ng/Kg
SL-053-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.104 ng/Kg	0.104U ng/Kg
SL-053-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.113 ng/Kg	0.113U ng/Kg
SL-053-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0170 ng/Kg	0.0170U ng/Kg
SL-053-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0129 ng/Kg	0.0129U ng/Kg
SL-053-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0319 ng/Kg	0.0319U ng/Kg
SL-053-SA5DN-SB-4.0-5.0(RES)	OCDD	4.65 ng/Kg	4.65U ng/Kg
SL-053-SA5DN-SB-4.0-5.0(RES)	OCDF	0.127 ng/Kg	0.127U ng/Kg
SL-071-SA8N-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDD	0.711 ng/Kg	0.711U ng/Kg
SL-071-SA8N-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDF	0.134 ng/Kg	0.134U ng/Kg
SL-071-SA8N-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0427 ng/Kg	0.0427U ng/Kg
SL-071-SA8N-SB-2.0-3.0(RES)	1,2,3,4,7,8-HXCDF	0.127 ng/Kg	0.127U ng/Kg
SL-071-SA8N-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0,0848 ng/Kg	0.0848U ng/Kg
SL-071-SA8N-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0.218 ng/Kg	0.218U ng/Kg
SL-071-SA8N-SB-2.0-3.0(RES)	OCDD	2.40 ng/Kg	2.40U ng/Kg
SL-071-SA8N-SB-2.0-3.0(RES)	OCDF	0.192 ng/Kg	0.192U ng/Kg
SL-079-SA8N-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.559 ng/Kg	0.559U ng/Kg
SL-079-SA8N-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0435 ng/Kg	0.0435U ng/Kg
SL-079-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0140 ng/Kg	0.0140U ng/Kg
SL-079-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0150 ng/Kg	0.0150U ng/Kg
SL-079-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0345 ng/Kg	0.0345U ng/Kg
SL-079-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0203 ng/Kg	0.0203U ng/Kg
SL-079-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0437 ng/Kg	0.0437U ng/Kg
SL-079-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0221 ng/Kg	0.0221U ng/Kg
SL-079-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0211 ng/Kg	0.0211U ng/Kg
SL-079-SA8N-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0121 ng/Kg	0.0121U ng/Kg

9/27/2011 2:53:42 PM ADR version 1.4.0.111 Page 4 of 6

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

	613B O				
Method Blank Sample ID		Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-079-SA8N-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0498 ng/Kg	0.0498U ng/Kg	
SL-079-SA8N-SB-4.0-5.0(RES)	OCDD	1.14 ng/Kg	1.14U ng/Kg	
SL-079-SA8N-SB-4,0-5.0(RES)	OCDF	0.0709 ng/Kg	0.0709U ng/Kg	
SL-079-SA8N-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.758 ng/Kg	0.758U ng/Kg	
SL-079-SA8N-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.122 ng/Kg	0.122U ng/Kg	
SL-079-SA8N-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0482 ng/Kg	0.0482U ng/Kg	
SL-079-SA8N-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.167 ng/Kg	0.167U ng/Kg	
SL-079-SA8N-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.111 ng/Kg	0.111U ng/Kg	
SL-079-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.128 ng/Kg	0,128U ng/Kg	
SL-079-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.107 ng/Kg	0.107U ng/Kg	
SL-079-SA8N-SB-9,0-10.0(RES)	2,3,4,7,8-PECDF	0.237 ng/Kg	0.237U ng/Kg	
SL-079-SA8N-SB-9.0-10.0(RES)	OCDD	3.23 ng/Kg	3.23U ng/Kg	
SL-079-SA8N-SB-9.0-10.0(RES)	OCDF	0.203 ng/Kg	0.203U ng/Kg	
SL-122-SA8N-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDD	1.02 ng/Kg	1.02U ng/Kg	
SL-122-SA8N-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDF	0.229 ng/Kg	0.229U ng/Kg	
SL-122-SA8N-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0335 ng/Kg	0.0335U ng/Kg	
SL-122-SA8N-SB-2.0-3.0(RES)	1,2,3,4,7,8-HXCDF	0.165 ng/Kg	0.165U ng/Kg	
SL-122-SA8N-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDD	0.128 ng/Kg	0.128U ng/Kg	
SL-122-SA8N-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDF	0.122 ng/Kg	0.122U ng/Kg	
SL-122-SA8N-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDD	0.176 ng/Kg	0.176U ng/Kg	
SL-122-SA8N-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDF	0.0967 ng/Kg	0.0967U ng/Kg	
SL-122-SA8N-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.0862 ng/Kg	0.0862U ng/Kg	
SL-122-SA8N-SB-2.0-3.0(RES)	OCDF	0.341 ng/Kg	0.341U ng/Kg	
SL-133-SA8N-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.07 ng/Kg	1.07U ng/Kg	
SL-133-SA8N-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.360 ng/Kg	0,360U ng/Kg	
SL-133-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0787 ng/Kg	0.0787U ng/Kg	
SL-133-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.152 ng/Kg	0.152U ng/Kg	
SL-133-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.165 ng/Kg	0.165U ng/Kg	
SL-133-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.167 ng/Kg	0,167U ng/Kg	
SL-133-SA8N-SB-4.0-5.0(RES)	OCDF	0.570 ng/Kg	0.570U ng/Kg	
SL-133-SA8N-SB-7,0-8.0(RES)	1,2,3,4,6,7,8-HPCDD	1.54 ng/Kg	1.54U ng/Kg	
SL-133-SA8N-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDF	0.375 ng/Kg	0.375U ng/Kg	
SL-133-SA8N-SB-7.0-8.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0678 ng/Kg	0.0678U ng/Kg	
SL-133-SA8N-SB-7.0-8.0(RES)	1,2,3,4,7,8-HXCDF	0,102 ng/Kg	0.102U ng/Kg	
SL-133-SA8N-SB-7.0-8.0(RES)	1,2,3,6,7,8-HXCDD	0.0711 ng/Kg	0.0711U ng/Kg	
SL-133-SA8N-SB-7.0-8.0(RES)	1,2,3,6,7,8-HXCDF	0.0497 ng/Kg	0.0497U ng/Kg	
SL-133-SA8N-SB-7.0-8.0(RES)	1,2,3,7,8,9-HXCDD	0,123 ng/Kg	0.123U ng/Kg	

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-133-SA8N-SB-7,0-8,0(RES)	1,2,3,7,8,9-HXCDF	0.0592 ng/Kg	0.0592U ng/Kg
SL-133-SA8N-SB-7.0-8.0(RES)	2,3,4,6,7,8-HXCDF	0.0439 ng/Kg	0.0439U ng/Kg
SL-133-SA8N-SB-7.0-8.0(RES)	2,3,4,7,8-PECDF	0.0910 ng/Kg	0,0910U ng/Kg
SL-133-SA8N-SB-7.0-8.0(RES)	OCDF	0.886 ng/Kg	0.886U ng/Kg
SL-140-SA8N-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDF	0.287 ng/Kg	0.287U ng/Kg
SL-140-SA8N-SB-3.0-4.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0804 ng/Kg	0.0804U ng/Kg
SL-140-SA8N-SB-3.0-4.0(RES)	1,2,3,4,7,8-HXCDF	0.150 ng/Kg	0.150U ng/Kg
SL-140-SA8N-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDF	0.0935 ng/Kg	0.0935U ng/Kg
SL-140-SA8N-SB-3,0-4.0(RES)	1,2,3,7,8,9-HXCDD	0.372 ng/Kg	0.372U ng/Kg
SL-140-SA8N-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDF	0.217 ng/Kg	0.217U ng/Kg
SL-140-SA8N-SB-3,0-4,0(RES)	2,3,4,6,7,8-HXCDF	0.0687 ng/Kg	0.0687U ng/Kg
SL-140-SA8N-SB-3.0-4.0(RES)	2,3,4,7,8-PECDF	0.129 ng/Kg	0.129U ng/Kg
SL-140-SA8N-SB-3,0-4.0(RES)	OCDF	0.600 ng/Kg	0.600U ng/Kg

9/27/2011 2:53:43 PM ADR version 1.4.0.111 Page 6 of 6

Field Duplicate RPD Report

Lab Reporting Batch ID: DX099

1,2,3,6,7,8-HXCDF

1,2,3,7,8,9-HXCDF

1,2,3,7,8-PECDD

1,2,3,7,8-PECDF

2,3,4,7,8-PECDF

2,3,7,8-TCDD

2,3,7,8-TCDF

2,3,4,6,7,8-HXCDF

Laboratory: LL

J(all detects)

eQAPP Name: CDM_SSFL_110509 EDD Filename: DX099_v1

Method: 160.3M Matrix: SO				d (Mary del Second	
	Concentr	Concentration (%)			
Analyte	SL-024-SA5DN-SB-4.0- 5.0	DUP13-SA5DN-QC- 060711	Sample RPD	eQAPP RPD	Flag
MOISTURE	12.2	12.6	3		No Qualifiers Applied

				l	
Method: 1613B Matrix: SO				maria (privata)	
	Concentrat	tion (ng/Kg)			
Analyte	SL-024-SA5DN-SB-4.0- 5.0	DUP13-SA5DN-QC- 060711	Sample RPD	e eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD OCDD OCDF	1.69 0.0901 0.143 0.178 13.5 0.133	2.24 0.107 0.149 0.229 20.1 0.216	28 17 4 25 39 48	50.00 50.00 50.00 50.00 50.00 50.00	No Qualifiers Applied
1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF	0.0253 0.0830 0.144	0.0576 0.0484 0.0678	78 53 72	50.00 50.00 50.00	

0.0735

0.265

0.0690

0.120

0.0427

0.0851

0.0271

0.0257

0.150

0.151

0.250

0.337

0.0767

0.238

0.0887

0.0933

68

55

113

95

57

95

106

114

50.00

50.00

50.00

50.00

50.00 50.00

50.00

50.00

Page 1 of 1

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO					·		
		Lab		Reporting	_RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
DUP13-SA5DN-QC-060711	1,2,3,4,6,7,8-HPCDD	JB	2.24	5.53	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.107	5.53	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0576	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0484	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0678	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.149	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0735	5.53	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.229	5.53	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.265	5.53	PQL	ng/Kg	, ,
	1,2,3,7,8-PECDD	JQ	0.0690	5.53	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.120	5.53	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0427	5.53	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0851	5.53	PQL	пд/Кд пд/Кд	
	2,3,7,8-TCDD	JÖ	0.0271	1.11	PQL PQL	ng/Kg ng/Kg	
	2,3,7,8-TCDF OCDF	JQ JB	0.0257 0.216	11.1	PQL	ng/Kg	
						 	
SL-022-SA5DN-SB-15.0-	1,2,3,4,6,7,8-HPCDD	JBQ	0.590	5.33	PQL	ng/Kg	
16.0	1,2,3,4,6,7,8-HPCDF	JB	0.170	5.33	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.149	5.33	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.121	5.33	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.140	5.33	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.113	5.33	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.120	5.33	PQL PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.154	5.33	PQL	ng/Kg	l (all datasta)
	1,2,3,7,8,9-HXCDF	JB JQ	0.135 0.0982	5.33 5.33	PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0962	5.33	PQL	ng/Kg	
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JB	0.103	5.33	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.137	5.33	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.137	1.07	PQL	ng/Kg	
	2,3,7,8-TCDF	j	0.0255	1.07	PQL	ng/Kg	
	OCDD	JВ	1.99	10.7	PQL	ng/Kg	
	OCDF	JB	0.329	10.7	PQL	ng/Kg	
SL-022-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.721	5.60	PQL	ng/Kg	
OE-022-0/13DN-0B-4:0-3:0	1,2,3,4,6,7,8-HPCDF	JB	0.0762	5.60	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0596	5.60	PQL	ng/Kg	
·	1,2,3,4,7,8-HxCDD	JQ	0.0595	5.60	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0439	5.60	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.106	5.60	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JВ	0.0572	5.60	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.172	5.60	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.145	5.60	PQL	ng/Kg	,
	1,2,3,7,8-PECDD	JQ	0.0754	5.60	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0564	5.60	PQL	ng/Kg	
1	2,3,4,6,7,8-HXCDF	JBQ	0.0427	5.60	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0766	5.60	PQL	ng/Kg	
	OCDD	JB	4.47	11.2	PQL	ng/Kg	
	OCDF	JBQ	0.176	11.2	PQL	ng/Kg	

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Watrix: 50							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-024-SA5DN-SB-19.0- 20.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	明明の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	0.691 0.180 0.153 0.142 0.162 0.162 0.146 0.172 0.158 0.142 0.164 0.133 0.157 0.0220 0.0368 1.72 0.421	5.45 5.45 5.45 5.45 5.45 5.45 5.45 5.45	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-024-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF OCDF	######################################	1.69 0.0901 0.0253 0.0830 0.144 0.143 0.150 0.178 0.151 0.250 0.337 0.0767 0.238 0.0887 0.0933 0.133	5.63 5.63 5.63 5.63 5.63 5.63 5.63 5.63	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-026-SA5DN-SB-17.0- 18.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDF	JB JB G JB G JB G JB G JB G JB G JB G J	1.72 0.0796 0.0388 0.0139 0.0473 0.0568 0.0265 0.0180 0.0277 0.0432 0.327	5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

						1	
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-026-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	5.44	5.74	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JΒ	0.462	5.74	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JΒ	0.0713	5.74	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0531	5.74	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JΒ	0.438	5.74	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0812	5.74	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JВ	0.538	5.74	PQL	ng/Kg	I (all datasta)
	1,2,3,7,8,9-HXCDF	JΒ	0.693	5.74	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	J	0.0763	5.74	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.156	5.74	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0604	5.74	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.194	5.74	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0247	1.15	PQL	ng/Kg	
	OCDF	JB	1.49	11.5	PQL	ng/Kg	
SL-036-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	2.69	5.79	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.103	5.79	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0307	5.79	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0218	5.79	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0231	5.79	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.114	5.79	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0167	5.79	PQL	ng/Kg	1.7-11.4-4-4-3
	1,2,3,7,8,9-HXCDD	JB	0.138	5.79	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.109	5.79	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JQ	0.0336	5.79	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0243	5.79	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0124	5.79	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0394	5.79	PQL	ng/Kg	
	OCDF	JB	0.280	11.6	PQL	ng/Kg	
SL-036-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	3.30	5.71	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.130	5.71	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0200	5.71	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0269	5.71	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0788	5.71	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0102	5.71	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0600	5.71	PQL	ng/Kg	المال مامام مادا
	1,2,3,7,8,9-HXCDF	JBQ	0.0221	5.71	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JQ	0.0243	5.71	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0249	5.71	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0178	5.71	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0387	5.71	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0283	1.14	PQL	ng/Kg	
	OCDF	JB	0.328	11.4	PQL	ng/Kg	

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-053-SA5DN-SB-11.5- 12.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0CDD 0CDF	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	0.492 0.0476 0.0238 0.0417 0.0402 0.0284 0.0651 0.0405 0.0176 0.0291 0.0233 0.0665 1.55 0.127	5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-053-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF OCDD OCDF	######################################	0.689 0.0476 0.0232 0.0117 0.0738 0.0219 0.104 0.113 0.0170 0.0129 0.0319 4.65 0.127	5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.77	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-071-SA8N-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD OCDF	авысававы	0.711 0.134 0.0427 0.0738 0.127 0.966 0.186 1.68 0.391 0.286 0.311 0.0848 0.218 0.0498 0.0758 2.40 0.192	5.27 5.27 5.27 5.27 5.27 5.27 5.27 5.27	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

				I			
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
				1			ı ıay
SL-079-SA8N-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.559	5.69	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0435	5.69	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0140	5.69	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ JBQ	0.0155 0.0150	5.69 5.69	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JBQ	0.0150	5.69	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0203	5.69	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0437	5.69	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0221	5.69	PQL	ng/Kg	c (a aataata)
	1,2,3,7,8-PECDD	JQ	0.0348	5.69	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0211	5.69	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0121	5.69	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0498	5.69	PQL	ng/Kg	
	OCDD	JB	1.14	11.4	PQL	ng/Kg	
	OCDF	JB	0.0709	11.4	PQL	ng/Kg	
SL-079-SA8N-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.758	5.80	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.122	5.80	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JВ	0.0482	5.80	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0872	5.80	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.167	5.80	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.111	5.80	PQL	пд/Кд	
	1,2,3,6,7,8-HXCDF	JВ	0.139	5.80	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.128	5.80	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.107	5.80	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	j	0.202	5.80	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.250	5.80	PQL PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB JBQ	0.0910 0.237	5.80 5.80	PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF 2,3,7,8-TCDD	JQ	0.237	1.16	PQL	ng/Kg	
	2,3,7,8-TCDF	1g	0.0437	1.16	PQL	ng/Kg	
	OCDD	JB	3.23	11.6	PQL	ng/Kg	
	OCDF	JB	0.203	11.6	PQL	ng/Kg	
SL-122-SA8N-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDD	JB	1.02	5.38	PQL	ng/Kg	
3L-122-3A6N-3B-2.0-3.0	1,2,3,4,6,7,8-HPCDF	JB	0.229	5.38	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.223	5.38	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0779	5.38	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.165	5.38	POL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.128	5.38	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JВ	0.122	5.38	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.176	5.38	PQL	ng/Kg	1 (all datasts)
	1,2,3,7,8,9-HXCDF	JBQ	0.0967	5.38	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JQ	0.155	5.38	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.248	5.38	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0862	5.38	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.245	5.38	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0932	1.08	PQL	ng/Kg	
	OCDD	JB	7.69	10.8	PQL	ng/Kg	
	OCDF	JB	0.341	10.8	PQL	ng/Kg	

Lab Reporting Batch ID: DX099 Laboratory: LL

EDD Filename: DX099_v1 eQAPP Name: CDM_SSFL_110509

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-133-SA8N-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDF	aBBBBBBBBB-BBBB	1.07 0.360 0.0787 0.164 0.227 0.152 0.219 0.165 0.167 0.280 0.338 0.137 0.279 0.0477 0.0914 0.570	5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/K/Kg ng/K/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-133-SA8N-SB-7.0-8.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	######################################	1.54 0.375 0.0678 0.0480 0.102 0.0711 0.0497 0.123 0.0592 0.0196 0.228 0.0439 0.0910 0.244 0.886	5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.70	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-140-SA8N-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDF OCDF	IB JBQ JBQ JBB JBB JBB JBB JBB JBB JBB JB	5.03 0.287 0.0804 0.206 0.150 0.318 0.0935 0.372 0.217 0.167 0.184 0.0687 0.129 0.0696 0.0629 0.600	5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

SAMPLE DELIVERY GROUP

DX100

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
08-Jun-2011	SL-025-SA5DN-SB-4.0-5.0	6310790	N	METHOD	1613B	IV
08-Jun-2011	SL-025-SA5DN-SB-23.0-24.0	6310791	N	METHOD	1613B	IV
08-Jun-2011	SL-076-SA8N-SB-4.0-5.0	6310796	N	METHOD	1613B	IV
08-Jun-2011	SL-076-SA8N-SB-4.0-5.0MS	6310797	MS	METHOD	1613B	IV
08-Jun-2011	SL-076-SA8N-SB-4.0-5.0MSD	6310798	MSD	METHOD	1613B	IV
08-Jun-2011	DUP10-SA8N-QC-060811	6310803	FD	METHOD	1613B	IV
08-Jun-2011	SL-023-SA5DN-SB-4.0-5.0	6310788	N	METHOD	1613B	IV
08-Jun-2011	SL-023-SA5DN-SB-20.0-21.0	6310789	N	METHOD	16 1 3B	IV
08-Jun-2011	EB16-SA8N-SB-060811	6310804	ЕВ	METHOD	1613B	IV
08-Jun-2011	SL-076-SA8N-SB-7.5-8.5	6310799	N	METHOD	1613B	IV
08-Jun-2011	SL-028-SA5DN-SB-4,0-5.0	6310792	N	METHOD	1613B	IV
08-Jun-2011	SL-028-SA5DN-SB-11.5-12.5	6310793	N	METHOD	1613B	IV
08-Jun-2011	SL-106-SA8N-SB-2.5-3.5	6310800	N	METHOD	1613B	IV
08-Jun-2011	SL-109-SA8N-SB-4.0-5.0	6310801	N	METHOD	1613B	IV
08-Jun-2011	SL-051-SA5DN-SB-4.0-5.0	6310794	N	METHOD	1613B	IV
08-Jun-2011	SL-051-SA5DN-SB-14.0-15.0	6310795	N	METHOD	1613B	IV
08-Jun-2011	SL-109-SA8N-SB-9.0-10.0	6310802	N	METHOD	16 13 B	IV
09-Jun-2011	SL-039-SA5DN-SB-4.0-5.0	6312187	N	METHOD	1613B	IV
09-Jun-2011	SL-039-SA5DN-SB-11.5-12.5	6312188	N	METHOD	1613B	IV
09-Jun-2011	SL-038-SA5DN-SB-4.0-5.0	6312185	N	METHOD	1613B	IV
09-Jun-2011	SL-038-SA5DN-SB-10.5-11.5	6312186	N	METHOD	1613B	IV
09-Jun-2011	SL-037-SA5DN-SB-4.0-5.0	6312183	N	METHOD	1613B	IV
09-Jun-2011	SL-037-SA5DN-SB-11.5-12.5	6312184	N	METHOD	1613B	IV

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX100

Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: AQ

Sample ID: EB16-SA8N-SB-060811	Collected: 6/8/2011 1:45:00 PM	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	6.00	JВ	0.396	MDL	10.1	PQL	pg/L	U	В
1,2,3,4,6,7,8-HPCDF	1.22	JB	0.163	MDL	10.1	PQL	pg/L	U	В
1,2,3,4,7,8,9-HPCDF	0.343	JB	0.186	MDL	10.1	PQL	pg/L	U	В
1,2,3,4,7,8-HxCDD	0.315	JBQ	0.266	MDL	10.1	PQL	pg/L	U	В
1,2,3,4,7,8-HXCDF	0.368	JBQ	0.237	MDL	10.1	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDD	0.778	JBQ	0.279	MDL	10.1	PQL	pg/L	U	В
1,2,3,7,8-PECDD	0.532	JBQ	0.412	MDL	10.1	PQL	pg/L	U	В
1,2,3,7,8-PECDF	0.362	JBQ	0.251	MDL	10.1	PQL	pg/L	U	В
2,3,4,6,7,8-HXCDF	0.436	JBQ	0.223	MDL	10.1	PQL	pg/L	U	В
2,3,4,7,8-PECDF	0.947	JBQ	0.226	MDL	10.1	PQL	pg/L	U	B
OCDD	12.4	JBQ	0.395	MDL	20.1	PQL	pg/L	υ	В
OCDF	1.17	JBQ	0.487	MDL	20.1	PQL	pg/L	U	В

Method Category: SVOA Method: 1613B

Matrix: SO

Analysis Torres DE

Dilution:

Sample ID: DUP10-SA8N-QC-060811	Collec	ted: 6/8/20	11 10:10:0	0 A	nalysis Type: RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	1.70	JB	0.0407	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.185	JB	0.0128	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0424	JBQ	0.0182	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0227	U	0.0227	MDL	5.53	PQL	ng/Kg	ÚĴ	FD	
1,2,3,4,7,8-HXCDF	0.550	JBQ	0.0251	MDL	5.53	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.0801	JBQ	0.0235	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0,156	JB	0.0231	MDL	5.53	PQL	ng/Kg	ŊJ	B, FD	
1,2,3,7,8,9-HXCDD	0.0803	JB	0.0218	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.106	JB	0.0271	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0192	JB	0.0191	MDL	5.53	PQL	ng/Kg	υJ	B, FD	
1,2,3,7,8-PECDF	1.96	JB	0.0420	MDL	5.53	PQL	ng/Kg	J	Z, FD	
2,3,4,6,7,8-HXCDF	0.0353	JBQ	0.0249	MDL	5.53	PQL	ng/Kg	บป	B, FD	
2,3,4,7,8-PECDF	0.0394	U	0.0394	MDL	5.53	PQL	ng/Kg	UJ	FD	
2,3,7,8-TCDD	0.0158	U	0.0158	MDL	1.11	PQL	ng/Kg	ΠΊ	FD	
2,3,7,8-TCDF	0.514	JB	0.0783	MDL	1.11	PQL	ng/Kg	J	Z, FD	

^{*} denotes a non-reportable result

9/29/2011 9:05:29 AM

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

ADR version 1.4.0.111

Page 1 of 14

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVÖA Method: 1613B Matrix: SO

Sample ID: DUP10-SA8N-QC-060811 Collected: 6/8/2011 10:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Analyte	Nesan	_ Quai		, rype	1114	Type	Onnes	i Quai	code
OCDF	0.338	JB	0.0347	MDL	11.1	PQL	ng/Kg	υ	В

Sample ID: SL-023-SA5DN-SB-20.0-21.0 Collected: 6/8/2011 11:30:00 Analysis Type: RES Dilution: 1

bumple ib. of ofe ortobit ob fore file	00,,00	Objected, oroizott titootoo Anarysis t						Diation. 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.342	JB	0.0242	MDL	5.44	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0303	JBQ	0.00780	MDL	5.44	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0160	JBQ	0.0145	MDL	5.44	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0225	JB	0.00879	MDL	5.44	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0387	JB	0.0160	MDL	5.44	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0163	JBQ	0.00747	MDL	5.44	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0579	JBQ	0.0154	MDL	5.44	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0394	JBQ	0.00934	MDL	5.44	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0136	JBQ	0.00758	MDL	5.44	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0350	JBQ	0.00758	MDL	5.44	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0368	JB	0.00758	MDL	5.44	PQL	ng/Kg	υ	В	
2,3,7,8-TCDF	0.0220	JQ	0.0152	MDL	1.09	PQL	ng/Kg	J	Z	
OCDD	0.693	JB	0.0291	MDL	10.9	PQL	ng/Kg	U	В	
OCDF	0.100	JBQ	0.0342	MDL	10.9	PQL	ng/Kg	U	В	

Sample ID: SL-023-SA5DN-SB-4.0-5.0 Collected: 6/8/2011 11:15:00 Analysis Type: RES Dilution: 1

ample 10: 02-020-01-0011-00-410-010	Conco	icu. o.o.z.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	pe. ILC		Diadon.			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.02	JB	0.0333	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.100	JB	0.00896	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0197	JB	0.0158	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0242	JBQ	0.0193	MDL	5.48	PQL	ng/Kg	Ų	В
1,2,3,4,7,8-HXCDF	0.0947	JB	0.0127	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.127	JBQ	0.0196	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0294	JB	0.0108	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.176	JB	0.0183	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.228	JB	0.0146	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0528	JB	0.0145	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.132	JB	0.0107	MDL	5.48	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0385	JBQ	0.0118	MDL	5.48	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-023-SA5DN-SB-4.0-5.0 Collected: 6/8/2011 11:15:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,7,8-PECDF	0.0753	JB	0.0109	MDL	5.48	PQL	ng/Kg	U	В
OCDF	0.328	JB	0.0329	MDL	11.0	PQL	ng/Kg	Ų	В

Sample ID: SL-025-SA5DN-SB-23.0-24.0 Collected: 6/8/2011 9:40:00 AM Analysis Type: RES Dilution: 1

•								•	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.339	JB	0.0228	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0238	JBQ	0.00644	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0227	JBQ	0.0101	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0133	JBQ	0.00666	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0294	JBQ	0.0115	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.00816	JBQ	0.00577	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0351	JBQ	0.0110	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0210	JВ	0.00655	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0182	JBQ	0.0151	MDL,	5.52	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0131	JBQ	0.00677	MDL	5.52	PQL	n g /Kg	U	В
2,3,4,7,8-PECDF	0.0470	JBQ	0.00677	MDL	5.52	PQL	ng/Kg	U	В
2,3, 7 ,8-TCDD	0.0244	JB	0.0153	MDL	1.10	PQL	ng/Kg	U	В
OCDD	0.807	JB	0.0293	MDL	11.0	PQL	ng/Kg	U	В
OCDF	0.0616	JB	0.0311	MDL	11.0	PQL	ng/Kg	U	В

Sample ID: SL-025-SA5DN-SB-4.0-5.0 Collected: 6/8/2011 9:30:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.07	JB	0.0354	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.0667	JB	0.00881	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	. 0.0171	JB	0.0153	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0192	JBQ	0.0173	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.103	JB	0.0174	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0118	JBQ	0.00881	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.148	JB	0.0167	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.199	JB	0.0114	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0194	JBQ	0.0171	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0372	JBQ	0.00836	MDL	5.57	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0103	JBQ	0.00983	MDL	5.57	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

9/29/2011 9:05:30 AM ADR version 1.4.0.111 Page 3 of 14

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-025-SA5DN-SB-4.0-5.0 Collected: 6/8/2011 9:30:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,7,8-PECDF	0.0361	JBQ	0.00825	MDL	5.57	PQL	ng/Kg	U	В
OCDF	0.176	JB	0.0359	MDL	11.1	PQL	ng/Kg	U	В

Sample ID: SL-028-SA5DN-SB-11.5-12.5 Collected: 6/8/2011 2:20:00 PM Analysis Type: RES Dilution: 1

campic ib. of off or other ob The Tale	001100			Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.65	JB	0.0615	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.453	JB	0.0286	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.230	JB	0.0376	MDL	5.37	PQL	ng/Kg	Ų	В
1,2,3,4,7,8-HxCDD	0.0541	JB	0.0344	MDL	5.37	PQL	ng/Kg	IJ	В
1,2,3,4,7,8-HXCDF	0.418	JB	0.0302	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.153	JB	0.0361	MDL	5.37	PQL	ng/Kg	L	Z
1,2,3,6,7,8-HXCDF	0.117	JB	0.0271	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.187	JB	0.0346	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.211	JBQ	0.0268	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.140	JBQ	0.0181	MDL	5.37	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.129	JB	0.0247	MDL	5.37	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.03	JB	0.0180	MDL	5.37	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.120	J	0.0690	MDL	1.07	PQL	ng/Kg	J	Z
OCDF	1.34	JB	0.0522	MDL	10.7	PQL	ng/Kg	U	В

Sample ID; SL-028-SA5DN-SB-4.0-5.0 Collected: 6/8/2011 2:10:00 PM Analysis Type: RES Dilution: 1

Cample 151 GE GEG GROSH GE 410 GIG	001100	Contested. Contest 2. Total in Paralyona Type. The									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	2.80	JB	0.0678	MDL	5.81	PQL	ng/Kg	J	Z		
1,2,3,4,6,7,8-HPCDF	0.390	JB	0.0284	MDL	5.81	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.0992	JBQ	0.0484	MDL	5.81	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.0711	JBQ	0.0354	MDL	5.81	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0342	JBQ	0.0274	MDL	5.81	PQL	ng/Kg	υ	В		
1,2,3,6,7,8-HXCDD	0.212	JB	0.0370	MDL	5.81	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.0597	JBQ	0.0246	MDL	5.81	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.284	JB	0.0345	MDL	5.81	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.327	JB	0.0327	MDL	5.81	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.0653	JBQ	0.0230	MDL	5.81	PQL	пg/Kg	U	В		
1,2,3,7,8-PECDF	0.148	JBQ	0.0151	MDL	5.81	PQL	ng/Kg	J	Z		

^{*} denotes a non-reportable result

9/29/2011 9:05:30 AM ADR version 1.4.0.111 Page 4 of 14

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-028-SA5DN-SB-4.0-5.0 Collected: 6/8/2011 2:10:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,6,7,8-HXCDF	0.0600	JBQ	0.0265	MDL	5.81	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.156	JB	0.0160	MDL	5.81	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0418	J	0.0260	MDL	1.16	PQL	ng/Kg	J	Z
OCDF	1.11	JB	0.0629	MDL	11.6	PQL	na/Ka	U	В

Sample ID: SL-037-SA5DN-SB-11.5-12.5 Collected: 6/9/2011 3:30:00 PM Analysis Type: RES Dilution: 1

Campic IB: OL COI CAODII OD 11:0 12:0	00,,00	0,0,20			pc		2000000		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.379	JB	0.0287	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0437	JBQ	0.00804	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0423	JBQ	0.0159	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0355	JBQ	0.0152	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0366	JBQ	0.00961	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0448	JBQ	0.0158	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0401	JB	0.00771	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0548	JBQ	0.0147	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0510	JB	0.0112	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0480	JBQ	0.0130	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0850	JBQ	0.00682	MDL	5.50	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0319	JB	0.00905	MDL	5.50	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0796	JBQ	0.00715	MDL	5.50	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0317	JQ	0.0132	MDL	1.10	PQL	ng/Kg	J	Z
OCDD	0.856	JBQ	0.0331	MDL	11.0	PQL	ng/Kg	U	В
OCDF	0.0806	JBQ	0.0451	MDL	11.0	PQL	ng/Kg	U	В

Sample ID: SL-037-SA5DN-SB-4.0-5.0 Collected: 6/9/2011 3:20:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.63	JB	0.0449	MDL	5.97	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.320	JB	0.0174	MDL	5.97	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0577	JB	0.0334	MDL	5.97	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0470	JB	0.0297	MDL	5.97	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.147	JBQ	0.0276	MDL	5.97	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.335	JBQ	0.0318	MDL	5.97	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0921	JB	0.0230	MDL	5.97	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

9/29/2011 9:05:30 AM ADR version 1.4.0.111 Page 5 of 14

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-037-SA5DN-SB-4.0-5.0 Collected: 6/9/2011 3:20:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDD	0.419	JB	0.0302	MDL	5.97	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.571	JB	0.0319	MDL	5.97	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.101	JB	0.0235	MDL	5.97	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.338	JB	0.0245	MDL	5.97	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0651	JB	0.0244	MDL	5.97	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.131	JB	0.0262	MDL	5.97	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0502	JBQ	0.0146	MDL	1.19	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0623	J	0.0325	MDL	1.19	PQL	ng/Kg	J	Z
OCDF	0.760	JB	0.0548	MDL	11.9	PQL	ng/Kg	υ	В

Sample ID: SL-038-SA5DN-SB-10.5-11.5 Collected: 6/9/2011 2:20:00 PM Analysis Type: RES Dilution: 1

nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.85	JB	0.0301	MDL	5.45	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0806	JBQ	0.0117	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0685	JB	0.0155	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0213	JBQ	0.0118	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0359	JBQ	0.0129	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0251	JВ	0.00852	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0191	JBQ	0.0115	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0365	JB	0.00664	MDL	5.45	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0186	JBQ	0.00675	MDL	5.45	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0368	JВ	0.00708	MDL	5.45	PQL	ng/Kg	υ	В
OCDF	0.251	JBQ	0.0358	MDL	10.9	PQL	n g /Kg	U	В

Sample ID: SL-038-SA5DN-SB-4.0-5.0 Collected: 6/9/2011 2:10:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.73	JB	0.0492	MDL.	5.54	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.189	JB	0.0367	MDL	5.54	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.126	JBQ	0.0384	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.770	JBQ	0.0733	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.940	JB	0.0415	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.211	JВ	0.0740	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.801	JB	0.0381	MDL	5.54	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Collected: 6/9/2011 2:10:00 PM

Lab Reporting Batch ID: DX100

Laboratory: LL

Dilution: 1

EDD Filename: DX100_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B

atrix: SO

Sample	ID:	SL-038-SA	5DN-SB-4.0-5.0
--------	-----	-----------	----------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDF	0.683	JB	0.0350	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.190	JВ	0.0282	MDL	5.54	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.139	JB	0.0302	MDL	5.54	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.515	JB	0.0266	MDL	5.54	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0316	JB	0.0154	MDL	1.11	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.207	JQ	0.0423	MDL	1.11	PQL	ng/Kg	J	Z
OCDF	6.00	JB	0.0333	MDL	11.1	PQL	ng/Kg	J	Z

Sample ID: SL-039-SA5DN-SB-11.5-12.5

Collected: 6/9/2011 11:45:00

Analysis Type: RES

Analysis Type: RES

Dilution: 1

nalyte	Conco	tcu. Oloizo	11 11.70.0	, u	mary and 1	ρς. που	Dilaton. 1		
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.937	JB	0.0199	MDL	5.62	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0849	JBQ	0.0405	MDL	5.62	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0361	JBQ	0.0347	MDL	5.62	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0298	JB	0.0238	MDL	5.62	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.326	JB	0.0367	MDL	5.62	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0577	JB	0.0186	MDL	5.62	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.107	JB	0.0360	MDL	5.62	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0380	JBQ	0.0254	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0180	JBQ	0.00726	MDL	5.62	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0465	JBQ	0.0203	MDL	5.62	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0558	JB	0.00760	MDL	5.62	PQL	ng/Kg	U	В
OCDF	2.81	JB	0.0360	MDL	11.2	PQL	ng/Kg	J	Z

Sample ID: SL-039-SA5DN-SB-4.0-5.0

Collected: 6/9/2011 11:35:00

Analysis Type: RES

Dilution: 1

						•			•
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.13	JB	0.0717	MDL	5.77	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.03	JB	0.0995	MDL	5.77	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.819	JB	0.0935	MDL	5.77	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.716	JB	0.0776	MDL	5.77	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.54	JB	0.0964	MDL	5.77	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.576	JB	0.0624	MDL	5.77	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.617	JB	0.0355	MDL	5.77	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.159	JB	0.0294	MDL	5.77	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-039-SA5DN-SB-4.0-5.0 Collected: 6/9/2011 11:35:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,6,7,8-HXCDF	0.412	JB	0.0482	MDL	5.77	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.657	JB	0.0303	MDL	5.77	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0267	JBQ	0.0119	MDL	1.15	PQL	ng/Kg	U	В
OCDD	6890	EB	0.175	MDL	11.5	PQL	ng/Kg	J	*XI

Sample ID: SL-051-SA5DN-SB-14.0-15.0 Collected: 6/8/2011 3:35:00 PM Analysis Type: RES Dilution: 1

Campic is, or our ortobit os 1410 1010	00.100	Concetted. Giologica Fin. Analysis Type: 1125							Ditation: (
nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,4,6,7,8-HPCDD	0.380	JB	0.0320	MDL	5.48	PQL	ng/Kg	U	В			
1,2,3,4,6,7,8-HPCDF	0.0430	JBQ	0.00913	MDL	5.48	PQL	ng/Kg	Ü	В			
1,2,3,4,7,8,9-HPCDF	0.0474	JB	0.0164	MDL	5.48	PQL	ng/Kg	U	В			
1,2,3,4,7,8-HxCDD	0.0345	JBQ	0.0184	MDL	5.48	PQL	ng/Kg	U	В			
1,2,3,4,7,8-HXCDF	0.0609	JBQ	0.0131	MDL	5.48	PQL	ng/Kg	U	В			
1,2,3,6,7,8-HXCDD	0.0671	JB	0.0189	MDL	5.48	PQL	ng/Kg	U	В			
1,2,3,6,7,8-HXCDF	0.0670	JB	0.0110	MDL.	5.48	PQL	ng/Kg	U	В			
1,2,3,7,8,9-HXCDD	0.0768	JB	0.0182	MDL.	5.48	PQL	ng/Kg	U	В			
1,2,3,7,8,9-HXCDF	0.0562	JBQ	0.0148	MDL	5.48	PQL	ng/Kg	U	В			
1,2,3,7,8-PECDD	0.0837	JB	0.0162	MDL	5.48	PQL	ng/Kg	U	В			
1,2,3,7,8-PECDF	0.105	JB	0.00822	MDL	5.48	PQL	ng/Kg	U	В			
2,3,4,6,7,8-HXCDF	0.0433	JB	0.0124	MDL	5.48	PQL	ng/Kg	Ų	В			
2,3,4,7,8-PECDF	0.103	JB	0.00845	MDL	5.48	PQL	ng/Kg	U	В			
2,3,7,8-TCDD	0.0349	JBQ	0.0151	MDL	1.10	PQL	ng/Kg	U	В			
2,3,7,8-TCDF	0.0307	JQ	0.0137	MDL	1.10	PQL	ng/Kg	J	Z			
OCDD	0.937	JB	0.0439	MDL	11.0	PQL	ng/Kg	U	В			
OCDF	0.133	JB	0.0424	MDL	11.0	PQL	ng/Kg	U	В			

Sample ID: SL-051-SA5DN-SB-4.0-5.0 Collected: 6/8/2011 3:25:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.701	JBQ	0.0507	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0664	JBQ	0.0128	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0267	JBQ	0.0221	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0455	JBQ	0.0221	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0508	JBQ	0.0145	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.103	JB	0.0221	MDL	5.65	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

9/29/2011 9:05:30 AM ADR version 1.4.0.111 Page 8 of 14

Lab Reporting Batch ID: DX100

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

EDD Filename: DX100_v1

Method:

OCDF

Method Category: SVOA

1613B

SO Matrix:

Sample ID: SL-051-SA5DN-SB-4.0-5.0	Collec	ted: 6/8/20	11 3:25:00	PM A	nalysis T	ype: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDF	0.0517	JB	0.0126	MDL	5.65	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.130	JB	0.0211	MDL	5.65	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.173	JBQ	0.0176	MDL	5.65	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0777	JB	0.0163	MDL	5.65	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0958	JB	0.00839	MDL	5.65	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0912	JBQ	0.00873	MDL	5.65	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0220	JB	0.0149	MDL	1.13	PQL	ng/Kg	U	В	
2,3, 7 ,8-TCDF	0.0204	J	0.0146	MDL	1.13	PQL	ng/Kg	J	Z	
OCDD	4.11	JB	0.0350	MDL	11.3	PQL	ng/Kg	U	В	
		+					1			

Sample ID: SL-076-SA8N-SB-4.0-5.0 Collected: 6/8/2011 10:05:00 Analysis Type: RES Dilution: 1

0.0541

MDL

11.3

PQL

ng/Kg

Ų

В

JΒ

0.105

	, , , ,									
nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	1.44	JB	0.0386	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.180	JBQ	0.0141	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0419	JBQ	0.0172	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0482	JBQ	0.0195	MDL	5.54	PQL	ng/Kg	UJ	B, FD	
1,2,3,4,7,8-HXCDF	0.593	JB	0.0272	MDL	5.54	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.106	JB	0.0194	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0805	JBQ	0.0238	MDL	5.54	PQL	ng/Kg	J	Z, FD	
1,2,3,7,8,9-HXCDD	0.129	JB	0.0186	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.104	JBQ	0.0210	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0871	JBQ	0.0191	MDL	5.54	PQL	ng/Kg	J	Z, FD	
1,2,3,7,8-PECDF	0.167	JBQ	0.0218	MDL	5.54	PQL	ng/Kg	J	Z, FD	
2,3,4,6,7,8-HXCDF	0.0621	JBQ	0.0176	MDL	5.54	PQL	ng/Kg	UJ	B, FD	
2,3,4,7,8-PECDF	0.369	JB	0.0212	MDL	5.54	PQL	ng/Kg	J	Z, FD	
2,3,7,8-TCDD	0.0291	JBQ	0.0140	MDL	1.11	PQL	ng/Kg	UJ	B, FD	
2,3,7,8-TCDF	0.118	J	0.0499	MDL	1.11	PQL	ng/Kg	J	Z, FD	
OCDF	0.264	JBQ	0.0414	MDL	11.1	PQL	ng/Kg	U	В	

Sample ID: SL-076-SA8N-SB-7.5-8.5 Collected: 6/8/2011 2:00:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.474	JB	0.0382	MDL	5.64	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

ADR version 1.4.0.111 9/29/2011 9:05:30 AM

Page 9 of 14

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-076-SA8N-SB-7.5-8.5 Collected: 6/8/2011 2:00:00 PM Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason DLAnalyte Result Qual Type RL Units Qual Code Type 1,2,3,4,6,7,8-HPCDF 0.0539 JB 0.0114 MDL 5.64 PQL ng/Kg U В 1,2,3,4,7,8,9-HPCDF 0.0259 JB 0.0174 MDL 5.64 **PQL** ng/Kg U В 1,2,3,4,7,8-HXCDF 0.0307 JBQ 0.00944 MDL 5.64 PQL υ ng/Kg В υ 1,2,3,6,7,8-HXCDD 0.0336 JB 0.0185 MDL 5.64 **PQL** ng/Kg В U 1,2,3,6,7,8-HXCDF 0.0262 JBQ 0.00875 MDL 5.64 PQL В ng/Kg PQL U 1,2,3,7,8,9-HXCDD 0.0362 **JBQ** 0.0171 MDL 5.64 ng/Kg ₿ 1,2,3,7,8,9-HXCDF 0.0447 JB 0.0108 MDL 5.64 PQL U ng/Kg В 1,2,3,7,8-PECDD JBQ 0.0397 0.0147 MDL 5.64 PQL ng/Kg U В JBQ U 1,2,3,7,8-PECDF 0.115 0.00978 MDL 5.64 **PQL** ng/Kg В MDL 2,3,4,6,7,8-HXCDF 0.0131 **JBQ** 0.00886 5.64 **PQL** ng/Kg U В 0.0522 2,3,4,7,8-PECDF JBQ 0.00921 MDL 5.64 **PQL** ng/Kg U В Z 2,3,7,8-TCDD 0.0146 MDL 1.13 **PQL** 0.0139 ng/Kg OCDD 1.64 JB 0.0409 U MDL 11.3 PQL ng/Kg В

Sample ID: SL-106-SA8N-SB-2.5-3.5 Collected: 6/8/2011 3:20:00 PM Analysis Type: RES Dilution: 1

0.0394

MDL

11.3

PQL

ng/Kg

JBQ

0.132

U

В

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.555	JB	0.0391	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0405	JB	0.0106	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0200	JBQ	0.0164	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0196	JBQ	0.00958	MDL	5.74	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0222	JB	0.00878	MDL	5.74	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0492	JB	0.0159	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0140	JBQ	0.00982	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0136	JBQ	0.00774	MDL	5.74	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.0193	JBQ	0.00935	MDL	5.74	PQL	n g /Kg	υ	В
2,3,4,7,8-PECDF	0.0495	JBQ	0.00762	MDL	5.74	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0172	JQ	0.0144	MDL	1.15	PQL	ng/Kg	J	Z
OCDD	1.32	JBQ	0.0367	MDL	11.5	PQL	ng/Kg	U	В
OCDF	0.140	JB	0.0411	MDL	11.5	PQL	ng/Kg	U	В

OCDF

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-109-SA8N-SB-4.0-5.0 Collected: 6/8/2011 3:20:00 PM Analysis Type: RES Dilution: 1

,		- I I I I I I I I I I I I I I I I I I I								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.346	JB	0.0227	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0326	JBQ	0.00734	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0271	JBQ	0.0133	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0193	JB	0.0114	MDL	5.71	PQL	ng/Kg	Ų	В	
1,2,3,4,7,8-HXCDF	0.0262	JBQ	0.00906	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0263	JBQ	0.0119	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0144	JBQ	0.00757	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0412	JB	0.0114	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0172	JB	0.00894	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0127	JB	0.00654	MDL	5.71	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0340	JB	0.00700	MDL	5.71	PQL	ng/Kg	υ	В	
OCDD	1.09	JB	0.0286	MDL	11.4	PQL	ng/Kg	U	В	
OCDF	0.0772	JB	0.0321	MDL	11.4	PQL	ng/Kg	U	В	

Sample ID: SL-109-SA8N-SB-9.0-10.0 Collected: 6/8/2011 3:55:00 PM Analysis Type: RES Dilution: 1

	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	0.467	JB	0.0282	MDL	5.73	PQL	ng/Kg	C	В
1,2,3,4,6,7,8-HPCDF	0.0327	JBQ	0.00867	MDL	5.73	PQL	ng/Kg	C	В
1,2,3,4,7,8,9-HPCDF	0.0233	JB	0.0129	MDL	5.73	PQL	ng/Kg	C	В
1,2,3,6,7,8-HXCDD	0.0225	JBQ	0.0140	MDL	5.73	PQL	ng/Kg	C	В
1,2,3,7,8,9-HXCDD	0.0326	JBQ	0.0134	MDL	5.73	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0169	JBQ	0.00821	MDL	5.73	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0144	JBQ	0.0136	MDL	5.73	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0141	JBQ	0.00636	MDL	5.73	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.00726	JB	0.00705	MDL	5.73	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0430	JBQ	0.00601	MDL	5.73	PQL	ng/Kg	Ü	В
2,3,7,8-TCDF	0.0123	JB	0.0116	MDL	1.15	PQL	ng/Kg	Ú	В
OCDD	1.14	JB	0.0287	MDL	11.5	PQL	ng/Kg	υ	В
OCDF	0.0856	JBQ	0.0353	MDL	11.5	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX100

EDD Filename: DX100_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509 Reason Code Legend

Reason Code	Description
A CLEAR COMES A COMMANDE CONTROL OF CLEAR	Duplicate Sample Count = 0
•	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI	Compound Quantitation and CRQLs
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
C	Initial Calibration Verification Percent Difference Upper Rejection
Ē	Laboratory Control Precision
Ē	Laboratory Duplicate Precision
E	Laboratory Triplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX100

EDD Filename: DX100_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	"
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	".
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
I	Internal Standard Estimation	
I	Internal Standard Rejection	
L	Laboratory Control Precision	
Ĺ	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
М	Continuing Tune	
M	Initial Tune	
M	Performance Evaluation Mixture	
М	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	,
Q	Laboratory Triplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX100

Laboratory: LL EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX100

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ								
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples				
BLK1610B372350	6/14/2011 11:50:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	5.46 pg/L 1.68 pg/L 1.16 pg/L 0.701 pg/L 0.730 pg/L 0.697 pg/L 0.764 pg/L 1.10 pg/L 0.650 pg/L 0.650 pg/L 0.683 pg/L 0.683 pg/L 0.509 pg/L 1.10 pg/L 0.509 pg/L 0.509 pg/L 0.509 pg/L 0.509 pg/L 0.509 pg/L 0.509 pg/L	EB16-SA8N-SB-060811				

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB16-SA8N-SB-060811(RES)	1,2,3,4,6,7,8-HPCDD	6.00 pg/L	6.00U pg/L
EB16-SA8N-SB-060811(RES)	1,2,3,4,6,7,8-HPCDF	1.22 pg/L	1.22U pg/L
EB16-SA8N-SB-060811(RES)	1,2,3,4,7,8,9-HPCDF	0.343 pg/L	0.343U pg/L
EB16-SA8N-SB-060811(RES)	1,2,3,4,7,8-HxCDD	0,315 pg/L	0.315U pg/L
EB16-SA8N-SB-060811(RES)	1,2,3,4,7,8-HXCDF	0.368 pg/L	0.368U pg/L
EB16-SA8N-SB-060811(RES)	1,2,3,7,8,9-HXCDD	0.778 pg/L	0.778U pg/L
EB16-SA8N-SB-060811(RES)	1,2,3,7,8-PECDD	0.532 pg/L	0.532U pg/L
EB16-SA8N-SB-060811(RES)	1,2,3,7,8-PECDF	0,362 pg/L	0.362U pg/L
EB16-SA8N-SB-060811(RES)	2,3,4,6,7,8-HXCDF	0.436 pg/L	0.436U pg/L
EB16-SA8N-SB-060811(RES)	2,3,4,7,8-PECDF	0.947 pg/L	0.947U pg/L
EB16-SA8N-SB-060811(RES)	OCDD	12.4 pg/L	12.4U pg/L
EB16-SA8N-SB-060811(RES)	OCDF	1.17 pg/L	1.17U pg/L

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1730B372038	6/24/2011 8:38:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 0CDD 0CDD	0.396 ng/Kg 0.0675 ng/Kg 0.0675 ng/Kg 0.0845 ng/Kg 0.0157 ng/Kg 0.0434 ng/Kg 0.0303 ng/Kg 0.0150 ng/Kg 0.0403 ng/Kg 0.0235 ng/Kg 0.0235 ng/Kg 0.0270 ng/Kg 0.0249 ng/Kg 0.0249 ng/Kg 0.0451 ng/Kg 0.0163 ng/Kg 0.0163 ng/Kg 0.888 ng/Kg 0.888 ng/Kg	SL-023-SA5DN-SB-20.0-21.0 SL-023-SA5DN-SB-4.0-5.0 SL-025-SA5DN-SB-4.0-5.0 SL-025-SA5DN-SB-4.0-5.0 SL-025-SA5DN-SB-1.5-12.5 SL-028-SA5DN-SB-4.0-5.0 SL-037-SA5DN-SB-4.0-5.0 SL-037-SA5DN-SB-4.0-5.0 SL-038-SA5DN-SB-10.5-11.5 SL-038-SA5DN-SB-4.0-5.0 SL-039-SA5DN-SB-4.0-5.0 SL-051-SA5DN-SB-14.0-15.0 SL-051-SA5DN-SB-4.0-5.0 SL-051-SA5DN-SB-4.0-5.0 SL-076-SA6N-SB-4.0-5.0 SL-109-SA8N-SB-4.0-5.0
BLK1780B371754	6/28/2011 5:54:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF CODD OCDF	0.357 ng/Kg 0.113 ng/Kg 0.0781 ng/Kg 0.0572 ng/Kg 0.0485 ng/Kg 0.0570 ng/Kg 0.0500 ng/Kg 0.0780 ng/Kg 0.0771 ng/Kg 0.0470 ng/Kg 0.0379 ng/Kg 0.0295 ng/Kg 0.0563 ng/Kg 0.05118 ng/Kg 0.811 ng/Kg 0.234 ng/Kg	DUP10-SA8N-QC-060811 SL-076-SA8N-SB-7.5-8.5 SL-106-SA8N-SB-2.5-3.5 SL-109-SA8N-SB-9.0-10.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP10-SA8N-QC-060811(RES)	1,2,3,4,6,7,8-HPCDD	1.70 ng/Kg	1.70U ng/Kg
DUP10-SA8N-QC-060811(RES)	1,2,3,4,6,7,8-HPCDF	0.185 ng/Kg	0.185U ng/Kg
DUP10-SA8N-QC-060811(RES)	1,2,3,4,7,8,9-HPCDF	0.0424 ng/Kg	0.0424U ng/Kg
DUP10-SA8N-QC-060811(RES)	1,2,3,6,7,8-HXCDD	0.0801 ng/Kg	0.0801U ng/Kg
DUP10-SA8N-QC-060811(RES)	1,2,3,6,7,8-HXCDF	0.156 ng/Kg	0.156U ng/Kg
DUP10-SA8N-QC-060811(RES)	1,2,3,7,8,9-HXCDD	0.0803 ng/Kg	0.0803U ng/Kg
DUP10-SA8N-QC-060811(RES)	1,2,3,7,8,9-HXCDF	0.106 ng/Kg	0.106U ng/Kg
DUP10-SA8N-QC-060811(RES)	1,2,3,7,8-PECDD	0.0192 ng/Kg	0.0192U ng/Kg
DUP10-SA8N-QC-060811(RES)	2,3,4,6,7,8-HXCDF	0,0353 ng/Kg	0.0353U ng/Kg
DUP10-SA8N-QC-060811(RES)	OCDF	0.338 ng/Kg	0.338U ng/Kg
SL-023-SA5DN-SB-20.0-21.0(RES)	1,2,3,4,6,7,8-HPCDD	0.342 ng/Kg	0.342U ng/Kg
SL-023-SA5DN-SB-20.0-21.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0303 ng/Kg	0.0303U ng/Kg
SL-023-SA5DN-SB-20.0-21.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0160 ng/Kg	0.0160U ng/Kg
SL-023-SA5DN-SB-20.0-21.0(RES)	1,2,3,4,7,8-HXCDF	0.0225 ng/Kg	0.0225U ng/Kg
SL-023-SA5DN-SB-20.0-21.0(RES)	1,2,3,6,7,8-HXCDD	0.0387 ng/Kg	0.0387U ng/Kg
SL-023-SA5DN-SB-20.0-21.0(RES)	1,2,3,6,7,8-HXCDF	0.0163 ng/Kg	0.0163U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX100

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	and the state of t			
Method Blar Sample ID	ık	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-023-SA5DN-SB-20.0-21.0(RES)	1,2,3,7,8,9-HXCDD	0.0579 ng/Kg	0.0579U ng/Kg
SL-023-SA5DN-SB-20.0-21.0(RES)	1,2,3,7,8,9-HXCDF	0.0394 ng/Kg	0.0394U ng/Kg
SL-023-SA5DN-SB-20.0-21.0(RES)	1,2,3,7,8-PECDF	0.0136 ng/Kg	0.0136U ng/Kg
SL-023-SA5DN-SB-20.0-21.0(RES)	2,3,4,6,7,8-HXCDF	0.0350 ng/Kg	0.0350U ng/Kg
SL-023-SA5DN-SB-20.0-21.0(RES)	2,3,4,7,8-PECDF	0.0368 ng/Kg	0.0368U ng/Kg
\$L-023-\$A5DN-\$B-20.0-21.0(RE\$)	OCDD	0.693 ng/Kg	0.693U ng/Kg
SL-023-SA5DN-SB-20.0-21.0(RES)	OCDF	0,100 ng/Kg	0.100U ng/Kg
SL-023-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.100 ng/Kg	0.100U ng/Kg
SL-023-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0197 ng/Kg	0.0197U ng/Kg
SL-023-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0242 ng/Kg	0.0242U ng/Kg
SL-023-\$A5DN-\$B-4.0-5.0(RE\$)	1,2,3,4,7,8-HXCDF	0.0947 ng/Kg	0.0947U ng/Kg
SL-023-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.127 ng/Kg	0.127U ng/Kg
SL-023-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0294 ng/Kg	0.0294U ng/Kg
SL-023-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.176 ng/Kg	0.176U ng/Kg
SL-023-SA5DN-SB-4.0-5.0(RE\$)	1,2,3,7,8-PECDD	0.0528 ng/Kg	0.0528U ng/Kg
SL-023-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.132 ng/Kg	0.132U ng/Kg
SL-023-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0385 ng/Kg	0.0385U ng/Kg
SL-023-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0753 ng/Kg	0.0753U ng/Kg
SL-023-SA5DN-SB-4.0-5.0(RES)	OCDF	0.328 ng/Kg	0.328U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	1,2,3,4,6,7,8-HPCDD	0.339 ng/Kg	0.339U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0238 ng/Kg	0.0238U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0227 ng/Kg	0.0227U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	1,2,3,4,7,8-HXCDF	0.0133 ng/Kg	0.0133U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	1,2,3,6,7,8-HXCDD	0.0294 ng/Kg	0.0294U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	1,2,3,6,7,8-HXCDF	0.00816 ng/Kg	0.00816U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	1,2,3,7,8,9-HXCDD	0.0351 ng/Kg	0.0351U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	1,2,3,7,8,9-HXCDF	0.0210 ng/Kg	0.0210U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	1,2,3,7,8-PECDD	0.0182 ng/Kg	0.0182U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	1,2,3,7,8-PECDF	0.0131 ng/Kg	0.0131U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	2,3,4,7,8-PECDF	0.0470 ng/Kg	0.0470U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	2,3,7,8-TCDD	0.0244 ng/Kg	0.0244U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	OCDD	0.807 ng/Kg	0.807U ng/Kg
SL-025-SA5DN-SB-23.0-24.0(RES)	OCDF	0.0616 ng/Kg	0.0616U ng/Kg
SL-025-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0667 ng/Kg	0.0667U ng/Kg
SL-025-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0171 ng/Kg	0.0171U ng/Kg
SL-025-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0192 ng/Kg	0.0192U ng/Kg
SL-025-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.103 ng/Kg	0.103U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/29/2011 9:05:00 AM ADR version 1.4.0.111

Laboratory: LL

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method: 16 Matrix: SC	And the second s			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-025-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0118 ng/Kg	0.0118U ng/Kg
SL-025-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.148 ng/Kg	0.148U ng/Kg
SL-025-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0194 ng/Kg	0.0194U ng/Kg
SL-025-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,0372 ng/Kg	0.0372U ng/Kg
SL-025-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0103 ng/Kg	0.0103U ng/Kg
SL-025-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0361 ng/Kg	0.0361U ng/Kg
SL-025-SA5DN-SB-4.0-5.0(RES)	OCDF	0.176 ng/Kg	0.176U ng/Kg
SL-028-SA5DN-SB-11,5-12.5(RES)	1,2,3,4,7,8,9-HPCDF	0.230 ng/Kg	0.230U ng/Kg
SL-028-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,7,8-HxCDD	0.0541 ng/Kg	0.0541U ng/Kg
SL-028-SA5DN-SB-11.5-12.5(RES)	1,2,3,7,8,9-HXCDD	0.187 ng/Kg	0.187U ng/Kg
SL-028-SA5DN-SB-11.5-12.5(RES)	OCDF	1.34 ng/Kg	1.34U ng/Kg
SL-028-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0,0992 ng/Kg	0.0992U ng/Kg
SL-028-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0711 ng/Kg	0.0711U ng/Kg
SL-028-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0342 ng/Kg	0.0342U ng/Kg
SL-028-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0597 ng/Kg	0.0597U ng/Kg
SL-028-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0,0653 ng/Kg	0.0653U ng/Kg
SL-028-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0600 ng/Kg	0.0600U ng/Kg
SL-028-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.156 ng/Kg	0.156U ng/Kg
SL-028-SA5DN-SB-4.0-5.0(RES)	OCDF	1.11 ng/Kg	1.11U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,6,7,8-HPCDD	0,379 ng/Kg	0.379U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0437 ng/Kg	0.0437U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0423 ng/Kg	0.0423U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,7,8-HxCDD	0.0355 ng/Kg	0.0355U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,7,8-HXCDF	0.0366 ng/Kg	0.0366U ng/Kg
SL-037-SA5DN-SB-11,5-12,5(RES)	1,2,3,6,7,8-HXCDD	0.0448 ng/Kg	0.0448U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	1,2,3,6,7,8-HXCDF	0.0401 ng/Kg	0.0401U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	1,2,3,7,8,9-HXCDD	0.0548 ng/Kg	0.0548U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	1,2,3,7,8,9-HXCDF	0.0510 ng/Kg	0.0510U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	1,2,3,7,8-PECDD	0,0480 ng/Kg	0.0480U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	1,2,3,7,8-PECDF	0.0850 ng/Kg	0.0850U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	2,3,4,6,7,8-HXCDF	0.0319 ng/Kg	0.0319U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	2,3,4,7,8-PECDF	0.0796 ng/Kg	0.0796U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	OCDD	0.856 ng/Kg	0.856U ng/Kg
SL-037-SA5DN-SB-11.5-12.5(RES)	OCDF	0.0806 ng/Kg	0.0806U ng/Kg
SL-037-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.320 ng/Kg	0.320U ng/Kg
SL-037-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0577 ng/Kg	0.0577U ng/Kg
SL-037-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0470 ng/Kg	0.0470U ng/Kg

9/29/2011 9:05:01 AM ADR version 1.4.0.111 Page 4 of 8

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	and the second s			
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-037-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.147 ng/Kg	0.147U ng/Kg	
SL-037-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0651 ng/Kg	0.0651U ng/Kg	
SL-037-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.131 ng/Kg	0.131U ng/Kg	
SL-037-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0502 ng/Kg	0.0502U ng/Kg	
SL-037-SA5DN-SB-4.0-5.0(RES)	OCDF	0.760 ng/Kg	0.760U ng/Kg	
SL-038-SA5DN-SB-10.5-11.5(RES)	1,2,3,4,6,7,8-HPCDD	1.85 ng/Kg	1.85U ng/Kg	
SL-038-SA5DN-SB-10.5-11.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0806 ng/Kg	0.0806U ng/Kg	
SL-038-SA5DN-SB-10.5-11.5(RES)	1,2,3,6,7,8-HXCDD	0.0685 ng/Kg	0.0685U ng/Kg	
SL-038-SA5DN-SB-10,5-11,5(RES)	1,2,3,6,7,8-HXCDF	0.0213 ng/Kg	0.0213U ng/Kg	
SL-038-SA5DN-SB-10.5-11.5(RES)	1,2,3,7,8,9-HXCDD	0.0359 ng/Kg	0.0359U ng/Kg	
SL-038-SA5DN-SB-10.5-11.5(RES)	1,2,3,7,8,9-HXCDF	0.0251 ng/Kg	0.0251U ng/Kg	
SL-038-SA5DN-SB-10.5-11.5(RES)	1,2,3,7,8-PECDD	0,0191 ng/Kg	0.0191U ng/Kg	
SL-038-\$A5DN-\$B-10.5-11.5(RE\$)	1,2,3,7,8-PECDF	0.0365 ng/Kg	0.0365U ng/Kg	
SL-038-SA5DN-SB-10.5-11.5(RES)	2,3,4,6,7,8-HXCDF	0.0186 ng/Kg	0.0186U ng/Kg	
SL-038-SA5DN-SB-10.5-11.5(RES)	2,3,4,7,8-PECDF	0.0368 ng/Kg	0,0368U ng/Kg	
SL-038-SA5DN-SB-10.5-11.5(RES)	OCDF	0.251 ng/Kg	0.251U ng/Kg	
SL-038-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.189 ng/Kg	0.189U ng/Kg	
SL-038-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0316 ng/Kg	0.0316U ng/Kg	
SL-039-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0849 ng/Kg	0.0849U ng/Kg	
SL-039-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,7,8-HxCDD	0.0361 ng/Kg	0.0361U ng/Kg	
SL-039-SA5DN-SB-11,5-12,5(RES)	1,2,3,4,7,8-HXCDF	0.0298 ng/Kg	0.0298U ng/Kg	
SL-039-SA5DN-SB-11.5-12.5(RES)	1,2,3,6,7,8-HXCDF	0.0577 ng/Kg	0.0577U ng/Kg	
SL-039-SA5DN-SB-11.5-12.5(RES)	1,2,3,7,8,9-HXCDD	0.107 ng/Kg	0.107U ng/Kg	
SL-039-SA5DN-SB-11.5-12.5(RES)	1,2,3,7,8,9-HXCDF	0.0380 ng/Kg	0.0380U ng/Kg	
SL-039-\$A5DN-\$B-11,5-12.5(RES)	1,2,3,7,8-PECDF	0.0180 ng/Kg	0.0180U ng/Kg	
SL-039-SA5DN-SB-11.5-12.5(RES)	2,3,4,6,7,8-HXCDF	0.0465 ng/Kg	0.0465U ng/Kg	
SL-039-SA5DN-SB-11.5-12.5(RES)	2,3,4,7,8-PECDF	0.0558 ng/Kg	0.0558U ng/Kg	
SL-039-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0267 ng/Kg	0.0267U ng/Kg	
SL-051-SA5DN-SB-14.0-15.0(RES)	1,2,3,4,6,7,8-HPCDD	0,380 ng/Kg	0.380U ng/Kg	
SL-051-SA5DN-SB-14.0-15.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0430 ng/Kg	0.0430U ng/Kg	
SL-051-SA5DN-SB-14,0-15.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0474 ng/Kg	0.0474U ng/Kg	
SL-051-SA5DN-SB-14.0-15.0(RES)	1,2,3,4,7,8-HxCDD	0.0345 ng/Kg	0.0345U ng/Kg	
SL-051-SA5DN-SB-14.0-15.0(RES)	1,2,3,4,7,8-HXCDF	0.0609 ng/Kg	0.0609U ng/Kg	
SL-051-SA5DN-SB-14,0-15.0(RES)	1,2,3,6,7,8-HXCDD	0.0671 ng/Kg	0.0671U ng/Kg	
SL-051-SA5DN-SB-14.0-15.0(RES)	1,2,3,6,7,8-HXCDF	0.0670 ng/Kg	0.0670U ng/Kg	
SL-051-SA5DN-SB-14.0-15.0(RES)	1,2,3,7,8,9-HXCDD	0.0768 ng/Kg	0.0768U ng/Kg	
SL-051-SA5DN-SB-14.0-15.0(RES)	1,2,3,7,8,9-HXCDF	0.0562 ng/Kg	0.0562U ng/Kg	

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/29/2011 9:05:01 AM ADR version 1.4.0.111 Page 5 of 8

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	And the second s			
Method Blan Sample ID	k	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-051-SA5DN-SB-14.0-15.0(RES)	1,2,3,7,8-PECDD	0.0837 ng/Kg	0.0837U ng/Kg
SL-051-SA5DN-SB-14.0-15.0(RES)	1,2,3,7,8-PECDF	0.105 ng/Kg	0.105U ng/Kg
SL-051-SA5DN-SB-14.0-15.0(RES)	2,3,4,6,7,8-HXCDF	0.0433 ng/Kg	0.0433U ng/Kg
SL-051-SA5DN-SB-14.0-15.0(RES)	2,3,4,7,8-PECDF	0.103 ng/Kg	0.103U ng/Kg
SL-051-SA5DN-SB-14.0-15.0(RES)	2,3,7,8-TCDD	0.0349 ng/Kg	0.0349U ng/Kg
SL-051-SA5DN-SB-14.0-15.0(RES)	OCDD	0.937 ng/Kg	0.937U ng/Kg
SL-051-SA5DN-SB-14.0-15.0(RES)	OCDF	0.133 ng/Kg	0.133U ng/Kg
SL-051-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.701 ng/Kg	0.701U ng/Kg
SL-051-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0664 ng/Kg	0.0664U ng/Kg
SL-051-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0267 ng/Kg	0,0267U ng/Kg
SL-051-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0455 ng/Kg	0.0455U ng/Kg
SL-051-\$A5DN-\$B-4,0-5,0(RE\$)	1,2,3,4,7,8-HXCDF	0.0508 ng/Kg	0.0508U ng/Kg
SL-051-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.103 ng/Kg	0.103U ng/Kg
SL-051-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0517 ng/Kg	0.0517U ng/Kg
SL-051-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.130 ng/Kg	0.130U ng/Kg
SL-051-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0777 ng/Kg	0.0777U ng/Kg
SL-051-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,0958 ng/Kg	0.0958U ng/Kg
SL-051-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0912 ng/Kg	0.0912U ng/Kg
SL-051-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0220 ng/Kg	0.0220U ng/Kg
SL-051-SA5DN-SB-4.0-5.0(RES)	OCDD	4.11 ng/Kg	4.11U ng/Kg
SL-051-SA5DN-SB-4.0-5.0(RES)	OCDF	0.105 ng/Kg	0.105U ng/Kg
SL-076-SA8N-SB-4,0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.44 ng/Kg	1.44U ng/Kg
SL-076-SA8N-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.180 ng/Kg	0.180U ng/Kg
SL-076-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0419 ng/Kg	0.0419U ng/Kg
SL-076-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0482 ng/Kg	0.0482U ng/Kg
SL-076-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.106 ng/Kg	0.106U ng/Kg
SL-076-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.129 ng/Kg	0.129U ng/Kg
SL-076-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.104 ng/Kg	0.104U ng/Kg
SL-076-SA8N-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0621 ng/Kg	0.0621U ng/Kg
SL-076-SA8N-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0291 ng/Kg	0.0291U ng/Kg
SL-076-SA8N-SB-4.0-5.0(RES)	OCDF	0.264 ng/Kg	0.264U ng/Kg
SL-076-SA8N-SB-7.5-8.5(RES)	1,2,3,4,6,7,8-HPCDD	0.474 ng/Kg	0.474U ng/Kg
SL-076-SA8N-SB-7.5-8.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0539 ng/Kg	0.0539U ng/Kg
SL-076-SA8N-SB-7.5-8.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0259 ng/Kg	0.0259U ng/Kg
SL-076-SA8N-SB-7.5-8.5(RES)	1,2,3,4,7,8-HXCDF	0.0307 ng/Kg	0.0307U ng/Kg
SL-076-SA8N-SB-7.5-8.5(RES)	1,2,3,6,7,8-HXCDD	0.0336 ng/Kg	0.0336U ng/Kg
SL-076-SA8N-SB-7.5-8.5(RES)	1,2,3,6,7,8-HXCDF	0.0262 ng/Kg	0.0262U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/29/2011 9:05:01 AM ADR version 1.4.0.111 Page 6 of 8

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	કરાયા વધારાકારના પ્રાથમિક કરવા છે. જો			
Method Blan Sample ID	k	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-076-SA8N-SB-7.5-8.5(RES)	1,2,3,7,8,9-HXCDD	0.0362 ng/Kg	0.0362U ng/Kg
SL-076-\$A8N-\$B-7,5-8,5(RE\$)	1,2,3,7,8,9-HXCDF	0.0447 ng/Kg	0.0447U ng/Kg
SL-076-SA8N-SB-7.5-8.5(RES)	1,2,3,7,8-PECDD	0.0397 ng/Kg	0.0397U ng/Kg
SL-076-SA8N-SB-7.5-8.5(RES)	1,2,3,7,8-PECDF	0.115 ng/Kg	0.115U ng/Kg
SL-076-SA8N-SB-7.5-8.5(RES)	2,3,4,6,7,8-HXCDF	0.0131 ng/Kg	0.0131U ng/Kg
SL-076-\$A8N-\$B-7.5-8.5(RES)	2,3,4,7,8-PECDF	0.0522 ng/Kg	0.0522U ng/Kg
SL-076-SA8N-SB-7.5-8.5(RES)	OCDD	1.64 ng/Kg	1.64U ng/Kg
SL-076-SA8N-SB-7.5-8.5(RES)	OCDF	0.132 ng/Kg	0.132U ng/Kg
SL-106-SA8N-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	0.555 ng/Kg	0.555U ng/Kg
SL-106-SA8N-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0,0405 ng/Kg	0.0405U ng/Kg
SL-106-SA8N-SB-2.5-3.5(RES)	1,2,3,4,7,8-HxCDD	0.0200 ng/Kg	0.0200U ng/Kg
SL-106-SA8N-SB-2.5-3.5(RES)	1,2,3,4,7,8-HXCDF	0.0196 ng/Kg	0.0196U ng/Kg
SL-106-SA8N-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.0222 ng/Kg	0.0222U ng/Kg
SL-106-SA8N-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDD	0.0492 ng/Kg	0.0492U ng/Kg
SL-106-SA8N-SB-2.5-3,5(RES)	1,2,3,7,8,9-HXCDF	0,0140 ng/Kg	0.0140U ng/Kg
SL-106-SA8N-SB-2.5-3.5(RES)	1,2,3,7,8-PECDF	0.0136 ng/Kg	0.0136U ng/Kg
SL-106-SA8N-SB-2.5-3.5(RES)	2,3,4,6,7,8-HXCDF	0.0193 ng/Kg	0.0193U ng/Kg
SL-106-SA8N-SB-2.5-3.5(RES)	2,3,4,7,8-PECDF	0.0495 ng/Kg	0.0495U ng/Kg
SL-106-SA8N-SB-2.5-3.5(RES)	OCDD	1.32 ng/Kg	1.32U ng/Kg
SL-106-SA8N-SB-2.5-3.5(RES)	OCDF	0.140 ng/Kg	0.140U ng/Kg
SL-109-SA8N-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.346 ng/Kg	0.346U ng/Kg
SL-109-SA8N-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0,0326 ng/Kg	0.0326U ng/Kg
SL-109-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0271 ng/Kg	0.0271U ng/Kg
SL-109-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0193 ng/Kg	0.0193U ng/Kg
SL-109-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0,0262 ng/Kg	0.0262U ng/Kg
SL-109-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0263 ng/Kg	0.0263U ng/Kg
SL-109-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0144 ng/Kg	0.0144U ng/Kg
SL-109-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0412 ng/Kg	0.0412U ng/Kg
SL-109-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0,0172 ng/Kg	0.0172U ng/Kg
SL-109-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0127 ng/Kg	0.0127U ng/Kg
SL-109-SA8N-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0340 ng/Kg	0.0340U ng/Kg
SL-109-SA8N-SB-4.0-5.0(RES)	OCDD	1.09 ng/Kg	1.09U ng/Kg
SL-109-SA8N-SB-4.0-5.0(RES)	OCDF	0.0772 ng/Kg	0.0772U ng/Kg
SL-109-SA8N-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.467 ng/Kg	0,467U ng/Kg
SL-109-SA8N-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0327 ng/Kg	0.0327U ng/Kg
SL-109-SA8N-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0233 ng/Kg	0.0233U ng/Kg
SL-109-SA8N-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0225 ng/Kg	0,0225U ng/Kg

9/29/2011 9:05:01 AM ADR version 1.4.0.111 Page 7 of 8

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613E Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
SL-109-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0326 ng/Kg	0.0326U ng/Kg
SL-109-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0169 ng/Kg	0.0169U ng/Kg
SL-109-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0144 ng/Kg	0.0144U ng/Kg
SL-109-SA8N-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0141 ng/Kg	0.0141U ng/Kg
SL-109-SA8N-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.00726 ng/Kg	0.00726U ng/Kg
SL-109-SA8N-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0430 ng/Kg	0.0430U ng/Kg
SL-109-SA8N-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0123 ng/Kg	0.0123U ng/Kg
SL-109-SA8N-SB-9.0-10.0(RES)	OCDD	1.14 ng/Kg	1.14U ng/Kg
SL-109-SA8N-SB-9,0-10.0(RES)	OCDF	0,0856 ng/Kg	0.0856U ng/Kg

9/29/2011 9:05:01 AM ADR version 1.4.0.111 Page 8 of 8

Field Duplicate RPD Report

Lab Reporting Batch ID: DX100

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

EDD Filename: DX100_v1 Method: 160.3M

Method: Matrix:						
		Concentr	ation (%)			
	Analyte	SL-076-SA8N-SB-4.0- 5.0	DUP10-SA8N-QC- 060811	Sample RPD	eQAPP RPD	Flag
MOISTURE		11.4	11.6	2		No Qualifiers Applied

Method:	1613B
Matrix:	SO

	Concentrat	ion (ng/Kg)			
Analyte	SL-076-SA8N-SB-4.0- 5.0	DUP10-SA8N-QC- 060811	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF OCDD OCDF	1.44 0.180 0.0419 0.593 0.106 0.129 0.104 12.7 0.264	1.70 0.185 0.0424 0.550 0.0801 0.0803 0.106 16.0 0.338	17 3 1 8 28 47 2 23 25	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	No Qualifiers Applied
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	0.0482 0.0805 0.0871 0.167 0.0621 0.369 0.0291 0.118	5.53 U 0.156 0.0192 1.96 0.0353 5.53 U 1.11 U 0.514	200 64 128 169 55 200 200 125	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)

9/29/2011 9:04:36 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B
Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB16-SA8N-SB-060811	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF	18 18 0 18 0 18 0 18 0 18 0 18 0 18 0 1	6.00 1.22 0.343 0.315 0.368 0.778 0.532 0.362 0.436 0.947	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)
	OCDD OCDF	JBQ JBQ	12.4 1.17	20.1	PQL PQL	pg/L pg/L pg/L	

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP10-SA8N-QC-060811	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDF	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	1.70 0.185 0.0424 0.550 0.0801 0.156 0.0803 0.106 0.0192 1.96 0.0353 0.514 0.338	5.53 5.53 5.53 5.53 5.53 5.53 5.53 5.53	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-023-SA5DN-SB-20.0- 21.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDF CODD OCDF	路もとまるなどのはまるまま	0.342 0.0303 0.0160 0.0225 0.0387 0.0163 0.0579 0.0394 0.0136 0.0350 0.0368 0.0220 0.693 0.100	5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

9/29/2011 9:05:14 AM ADR version 1.4.0.111 Page 1 of 7

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

	· · · · · · · · · · · · · · · · · · ·			, 			
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-023-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	2.02	5.48	PQL	ng/Kg	
3E-023-3A3D11-3D-4.0-3.0	1,2,3,4,6,7,8-HPCDF	JB	0.100	5.48	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0197	5.48	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0137	5.48	PQL	ng/Kg	
Ť	1,2,3,4,7,8-HXCDF	JB	0.0242	5.48	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0347	5.48	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0294	5.48	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0234	5.48	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.178	5.48	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	0.228	5.48	PQL		
	1,2,3,7,8-PECDD	JB	0.0328	5.48	PQL	ng/Kg ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.132	5.48	PQL	ng/Kg	
	1	JBQ	0.0363		PQL		
ļ	2,3,4,7,8-PECDF OCDF	JB JB		5.48		ng/Kg	
0			0.328	11.0	PQL	ng/Kg	
SL-025-SA5DN-SB-23.0-	1,2,3,4,6,7,8-HPCDD	JB	0.339	5.52	PQL	ng/Kg	
24.0	1,2,3,4,6,7,8-HPCDF	JBQ	0.0238	5.52	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0227	5.52	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0133	5.52	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0294	5.52	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.00816	5.52	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0351	5.52	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.0210	5.52	PQL	ng/Kg	a (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0182	5.52	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0131	5.52	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0470	5.52	PQL	ng/Kg	
	2,3,7,8-TCDD	JВ	0.0244	1.10	PQL	ng/Kg	
	OCDD	JB	0.807	11.0	PQL	ng/Kg	
	OCDF	JB	0.0616	11.0	PQL	ng/Kg	
SL-025-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	2.07	5.57	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0667	5.57	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0171	5.57	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0192	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.103	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0118	5.57	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.148	5.57	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.199	5.57	PQL	ng/Kg	,
	1,2,3,7,8-PECDD	JBQ	0.0194	5.57	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0372	5.57	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0103	5.57	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0361	5.57	PQL	ng/Kg	
	OCDF	JB	0.176	11.1	PQL	ng/Kg	

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Watrix: 50							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-028-SA5DN-SB-11.5- 12.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	現場 明明 明明 明明 明明 明明 明明 明明 明明 明明 明明 明明 明明 明明	4.65 0.453 0.230 0.0541 0.418 0.153 0.117 0.187 0.211 0.140 0.129 1.03 0.120 1.34	5.37 5.37 5.37 5.37 5.37 5.37 5.37 5.37	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-028-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	######################################	2.80 0.390 0.0992 0.0711 0.0342 0.212 0.0597 0.284 0.327 0.0653 0.148 0.0600 0.156 0.0418 1.11	5.81 5.81 5.81 5.81 5.81 5.81 5.81 5.81	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-037-SA5DN-SB-11.5- 12.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	88888888888888888888888888888888888888	0.379 0.0437 0.0423 0.0355 0.0366 0.0448 0.0401 0.0548 0.0510 0.0480 0.0319 0.0796 0.0317 0.856 0.0806	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-037-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	ងួមធម្មធម្មធម្មធម្មធម្ម	3.63 0.320 0.0577 0.0470 0.147 0.335 0.0921 0.419 0.571 0.101 0.338 0.0651 0.131	5.97 5.97 5.97 5.97 5.97 5.97 5.97 5.97	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-038-SA5DN-SB-10.5- 11.5	2,3,7,8-TCDF OCDF 1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDF	2	0.0623 0.760 1.85 0.0806 0.0685 0.0213 0.0359 0.0251 0.0191 0.0365 0.0186 0.0368 0.251	1.19 11.9 5.45 5.45 5.45 5.45 5.45 5.45 5.45 5.	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-038-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	JB JBQ JBQ JBB JB JB JB JB JB JB JB JB JB JB JB JB	1.73 0.189 0.126 0.770 0.940 0.211 0.801 0.683 0.190 0.139 0.515 0.0316 0.207 6.00	5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-039-SA5DN-SB-11.5- 12.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF	JB JBQ JBQ JB JB JB JBQ JBQ JBQ JBQ JB	0.937 0.0849 0.0361 0.0298 0.326 0.0577 0.107 0.0380 0.0180 0.0465 0.0558 2.81	5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX100

Laboratory: LL

EDD Filename: DX100_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO								
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag	
SL-039-SA5DN-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	Baaaaaaa Baaaaaaa Baaaaaa	1.13 1.03 0.819 0.716 2.54 0.576 0.617 0.159 0.412 0.657 0.0267	5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.77	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)	
SL-051-SA5DN-SB-14.0- 15.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD OCDD	田田 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化	0.380 0.0430 0.0474 0.0345 0.0609 0.0671 0.0670 0.0768 0.0562 0.0837 0.105 0.0433 0.103 0.0349 0.0307 0.937 0.133	5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.48	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)	
SL-051-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDD	1990年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	0.701 0.0664 0.0267 0.0455 0.0508 0.103 0.0517 0.130 0.173 0.0777 0.0958 0.0912 0.0220 0.0220 4.11	5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)	

OCDF

0.105

11.3

PQL

ng/Kg ng/Kg

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Watrix: 50							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
			Result	<u> </u>			riay
SL-076-SA8N-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	1.44	5.54	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.180	5.54	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0419	5.54	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0482	5.54	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.593	5.54	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.106	5.54	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0805	5.54	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.129	5.54	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.104	5.54	PQL	ng/Kg	o (an acteors)
	1,2,3,7,8-PECDD	JBQ	0.0871	5.54	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.167	5.54	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0621	5.54	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.369	5.54	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0291	1.11	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.118	1.11	PQL	ng/Kg	
	OCDF	JBQ	0.264	11.1	PQL	ng/Kg	
SL-076-SA8N-SB-7.5-8.5	1,2,3,4,6,7,8-HPCDD	JB	0.474	5,64	PQL	ng/Kg	
i	1,2,3,4,6,7,8-HPCDF	JB	0.0539	5.64	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0259	5.64	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0307	5.64	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0336	5.64	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0262	5.64	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0362	5.64	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.0447	5.64	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0397	5.64	PQL	ng/Kg	,,
	1,2,3,7,8-PECDF	JBQ	0.115	5.64	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0131	5.64	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0522	5.64	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0146	1.13	PQL	ng/Kg	
	OCDD	JB	1.64	11.3	PQL	ng/Kg	
	OCDF	JBQ	0.132	11.3	PQL	ng/Kg	
SL-106-SA8N-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD	JB	0.555	5.74	PQL	ng/Kg	· · · ·
OL-100-0/1014-0D-2:0-0:0	1,2,3,4,6,7,8-HPCDF	JB	0.0405	5.74	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0200	5.74	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0200	5.74	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0130	5.74	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0492	5.74	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0432	5.74	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.0136	5.74	PQL	ng/Kg	o (an detects)
	2,3,4,6,7,8-HXCDF	JBQ	0.0133	5.74	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0195	5.74	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0433	1.15	PQL	ng/Kg	
	OCDD	JBQ	1.32	11.5	PQL	ng/Kg	
	OCDF	JB	0.140	11.5	PQL	ng/Kg	
		50	0.140	11.0	I WL	ng/rvg	

Lab Reporting Batch ID: DX100 Laboratory: LL

EDD Filename: DX100_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B	skipelings in the state of the		A STATE OF THE STA		A A MARIA	and the second	
Matrix:	so							
			 ·······			 		

matrix. 30							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-109-SA8N-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-ECDF 2,3,4,7,8-PECDF 0,0,0,0	JBQ JBQ JBQ JBQ JBQ JBQ JB JB JB JB JB JB	0.346 0.0326 0.0271 0.0193 0.0262 0.0263 0.0144 0.0412 0.0172 0.0127 0.0340 1.09 0.0772	5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.71	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-109-SA8N-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	場	0.467 0.0327 0.0233 0.0225 0.0326 0.0169 0.0144 0.0141 0.00726 0.0430 0.0123 1.14 0.0856	5.73 5.73 5.73 5.73 5.73 5.73 5.73 5.73	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Enclosure II

EPA Level IV Validation Reports

Laboratory Data Consultants, Inc. **Data Validation Report**

SL-039-SA5DN-SB-11.5-12.5

Project/Site Name: Santa Susana Field Laboratory

Collection Date: June 8, 2011

LDC Report Date: September 26, 2011

Matrix: Soil/Water

Parameters: Dioxins/Dibenzofurans

Validation Level: Level IV

Laboratory: Lancaster Laboratories

Sample Delivery Group (SDG): DX100

Sample Identification

SL-023-SA5DN-SB-4.0-5.0 SL-023-SA5DN-SB-20.0-21.0 SL-076-SA8N-SB-4.0-5.0MS SL-076-SA8N-SB-4.0-5.0MSD SL-025-SA5DN-SB-4.0-5.0 SL-025-SA5DN-SB-23.0-24.0 SL-028-SA5DN-SB-4.0-5.0 SL-028-SA5DN-SB-11.5-12.5 SL-051-SA5DN-SB-4.0-5.0 SL-051-SA5DN-SB-14.0-15.0 SL-076-SA8N-SB-4.0-5.0 SL-076-SA8N-SB-7.5-8.5 SL-106-SA8N-SB-2.5-3.5 SL-109-SA8N-SB-4.0-5.0 SL-109-SA8N-SB-9.0-10.0 DUP10-SA8N-QC-060811 EB16-SA8N-SB-060811 SL-037-SA5DN-SB-4.0-5.0 SL-037-SA5DN-SB-11.5-12.5 SL-038-SA5DN-SB-4.0-5.0

SL-038-SA5DN-SB-10.5-11.5 SL-039-SA5DN-SB-4.0-5.0

Introduction

This data review covers 22 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1613B for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Quality Assurance Project Plan for Santa Susana Field Laboratory (SSFL), RCRA Facility Investigation, Surficial Media Operable Unit (March 2009, Revision 4) and the USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

The chromatographic resolution between 2,3,7,8-TCDD and the peaks representing any other unlabeled TCDD isomers was resolved with a valley of less than or equal to 25%.

PFK and static resolving power were within validation criteria.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were within QC limits.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
11161005-MB	6/11/11	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDD 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0CDD 0CDF	0.359 pg/L 0.737 pg/L 0.940 pg/L 0.608 pg/L 0.730 pg/L 0.764 pg/L 0.683 pg/L 0.701 pg/L 0.697 pg/L 1.10 pg/L 1.68 pg/L 1.68 pg/L 1.16 pg/L 1.10 pg/L 5.46 pg/L 1.10 pg/L	All water samples in SDG DX100
11173002-MB	6/22/11	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0CDD 0CDF	0.0163 ng/Kg 0.0266 ng/Kg 0.0451 ng/Kg 0.0170 ng/Kg 0.0170 ng/Kg 0.0150 ng/Kg 0.0249 ng/Kg 0.0157 ng/Kg 0.0303 ng/Kg 0.0403 ng/Kg 0.0235 ng/Kg 0.0675 ng/Kg 0.396 ng/Kg 0.0845 ng/Kg 0.888 ng/Kg 0.324 ng/Kg	SL-023-SA5DN-SB-4.0-5.0 SL-023-SA5DN-SB-20.0-21.0 SL-025-SA5DN-SB-4.0-5.0 SL-025-SA5DN-SB-4.0-5.0 SL-028-SA5DN-SB-1.5-12.5 SL-051-SA5DN-SB-4.0-5.0 SL-051-SA5DN-SB-14.0-15.0 SL-051-SA5DN-SB-14.0-15.0 SL-076-SA8N-SB-4.0-5.0 SL-109-SA8N-SB-4.0-5.0 SL-037-SA5DN-SB-4.0-5.0 SL-037-SA5DN-SB-11.5-12.5 SL-038-SA5DN-SB-10.5-11.5 SL-039-SA5DN-SB-10.5-11.5 SL-039-SA5DN-SB-10.5-10.5
11178001-MB	6/27/11	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0CDD 0CDF	0.0118 ng/Kg 0.0379 ng/Kg 0.0563 ng/Kg 0.0470 ng/Kg 0.0465 ng/Kg 0.0500 ng/Kg 0.0295 ng/Kg 0.0572 ng/Kg 0.0570 ng/Kg 0.0780 ng/Kg 0.0771 ng/Kg 0.113 ng/Kg 0.357 ng/Kg 0.0781 ng/Kg 0.811 ng/Kg	SL-076-SA8N-SB-7.5-8.5 SL-106-SA8N-SB-2.5-3.5 SL-109-SA8N-SB-9.0-10.0 DUP10-SA8N-QC-060811

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
EB16-SA8N-SB-060811	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0CDD OCDF	0.362 pg/L 0.947 pg/L 0.532 pg/L 0.368 pg/L 0.436 pg/L 0.315 pg/L 0.778 pg/L 1.22 pg/L 6.00 pg/L 0.343 pg/L 12.4 pg/L 1.17 pg/L	0.362U pg/L 0.947U pg/L 0.532U pg/L 0.368U pg/L 0.436U pg/L 0.315U pg/L 0.778U pg/L 1.22U pg/L 6.00U pg/L 0.343U pg/L 12.4U pg/L 1.17U pg/L
SL-023-SA5DN-SB-4.0-5.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	0.132 ng/Kg 0.0753 ng/Kg 0.0528 ng/Kg 0.0947 ng/Kg 0.0294 ng/Kg 0.0385 ng/Kg 0.0242 ng/Kg 0.127 ng/Kg 0.176 ng/Kg 0.100 ng/Kg 0.0197 ng/Kg 0.328 ng/Kg	0.132U ng/Kg 0.0753U ng/Kg 0.0528U ng/Kg 0.0947U ng/Kg 0.0294U ng/Kg 0.0385U ng/Kg 0.0242U ng/Kg 0.127U ng/Kg 0.176U ng/Kg 0.100U ng/Kg 0.100U ng/Kg 0.0197U ng/Kg 0.328U ng/Kg
SL-023-SA5DN-SB-20.0-21.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0,2,3,4,6,7,8-HpCDD 0,2,3,4,7,8,9-HpCDF 0,2,3,4,6,7,8,9-HpCDF 0,2,3,4,6,7,8,9-HpCDF 0,2,3,4,6,7,8,9-HpCDF 0,2,3,4,6,7,8,9-HpCDF 0,2,3,4,6,7,8,9-HpCDF 0,2,3,4,6,7,8,9-HpCDF 0,2,3,4,6,7,8,9-HpCDF	0.0136 ng/Kg 0.0368 ng/Kg 0.0225 ng/Kg 0.0163 ng/Kg 0.0350 ng/Kg 0.0387 ng/Kg 0.0579 ng/Kg 0.0394 ng/Kg 0.0303 ng/Kg 0.342 ng/Kg 0.0160 ng/Kg 0.693 ng/Kg 0.693 ng/Kg	0.0136U ng/Kg 0.0368U ng/Kg 0.0225U ng/Kg 0.0163U ng/Kg 0.0350U ng/Kg 0.0387U ng/Kg 0.0579U ng/Kg 0.0394U ng/Kg 0.0303U ng/Kg 0.342U ng/Kg 0.342U ng/Kg 0.0160U ng/Kg 0.693U ng/Kg
SL-025-SA5DN-SB-4.0-5.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.0372 ng/Kg 0.0361 ng/Kg 0.0194 ng/Kg 0.0118 ng/Kg 0.0113 ng/Kg 0.0192 ng/Kg 0.103 ng/Kg 0.148 ng/Kg 0.148 ng/Kg 0.0667 ng/Kg 0.0171 ng/Kg	0.0372U ng/Kg 0.0361U ng/Kg 0.0194U ng/Kg 0.0118U ng/Kg 0.0103U ng/Kg 0.0192U ng/Kg 0.103U ng/Kg 0.148U ng/Kg 0.0667U ng/Kg 0.0171U ng/Kg 0.176U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-025-SA5DN-SB-23.0-24.0	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 0,2,3,4,7,8,9-HpCDD 0,2,3,4,7,8,9-HpCDF	0.0244 ng/Kg 0.0131 ng/Kg 0.0470 ng/Kg 0.0470 ng/Kg 0.0182 ng/Kg 0.0133 ng/Kg 0.00816 ng/Kg 0.0294 ng/Kg 0.0351 ng/Kg 0.0210 ng/Kg 0.0238 ng/Kg 0.339 ng/Kg 0.0227 ng/Kg 0.807 ng/Kg 0.807 ng/Kg	0.0244U ng/Kg 0.0131U ng/Kg 0.0470U ng/Kg 0.0182U ng/Kg 0.0133U ng/Kg 0.00816U ng/Kg 0.0294U ng/Kg 0.0351U ng/Kg 0.0210U ng/Kg 0.0238U ng/Kg 0.339U ng/Kg 0.0227U ng/Kg 0.0227U ng/Kg 0.0207U ng/Kg
SL-028-SA5DN-SB-4.0-5.0	2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HyCDD OCDF	0.156 ng/Kg 0.0653 ng/Kg 0.0342 ng/Kg 0.0597 ng/Kg 0.0600 ng/Kg 0.0711 ng/Kg 0.0992 ng/Kg 1.11 ng/Kg	0.156U ng/Kg 0.0653U ng/Kg 0.0342U ng/Kg 0.0597U ng/Kg 0.0600U ng/Kg 0.0711U ng/Kg 0.0992U ng/Kg 1.11U ng/Kg
SL-028-SA5DN-SB-11.5-12.5	1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8,9-HpCDF OCDF	0.0541 ng/Kg 0.187 ng/Kg 0.230 ng/Kg 1.34 ng/Kg	0.0541U ng/Kg 0.187U ng/Kg 0.230U ng/Kg 1.34U ng/Kg
SL-051-SA5DN-SB-4.0-5.0	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD	0.0220 ng/Kg 0.0958 ng/Kg 0.0912 ng/Kg 0.0777 ng/Kg 0.0508 ng/Kg 0.0517 ng/Kg 0.0455 ng/Kg 0.103 ng/Kg 0.130 ng/Kg 0.1664 ng/Kg 0.701 ng/Kg 0.0267 ng/Kg 4.11 ng/Kg 0.105 ng/Kg	0.0220U ng/Kg 0.0958U ng/Kg 0.0912U ng/Kg 0.0777U ng/Kg 0.0508U ng/Kg 0.0517U ng/Kg 0.0455U ng/Kg 0.130U ng/Kg 0.130U ng/Kg 0.701U ng/Kg 0.701U ng/Kg 0.701U ng/Kg 0.701U ng/Kg 0.105U ng/Kg
SL-051-SA5DN-SB-14.0-15.0	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0CDD 0CDF	0.0349 ng/Kg 0.105 ng/Kg 0.103 ng/Kg 0.0837 ng/Kg 0.0609 ng/Kg 0.0670 ng/Kg 0.0433 ng/Kg 0.0345 ng/Kg 0.0671 ng/Kg 0.0768 ng/Kg 0.0562 ng/Kg 0.0430 ng/Kg 0.380 ng/Kg 0.0474 ng/Kg 0.937 ng/Kg 0.937 ng/Kg	0.0349U ng/Kg 0.105U ng/Kg 0.105U ng/Kg 0.103U ng/Kg 0.0837U ng/Kg 0.0670U ng/Kg 0.0433U ng/Kg 0.0345U ng/Kg 0.0671U ng/Kg 0.0768U ng/Kg 0.0562U ng/Kg 0.0430U ng/Kg 0.380U ng/Kg 0.0474U ng/Kg 0.0937U ng/Kg 0.133U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-076-SA8N-SB-4.0-5.0	2,3,7,8-TCDD 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF	0.0291 ng/Kg 0.0621 ng/Kg 0.0482 ng/Kg 0.106 ng/Kg 0.129 ng/Kg 0.104 ng/Kg 0.180 ng/Kg 1.44 ng/Kg 0.0419 ng/Kg	0.0291U ng/Kg 0.0621U ng/Kg 0.0482U ng/Kg 0.106U ng/Kg 0.129U ng/Kg 0.104U ng/Kg 0.180U ng/Kg 1.44U ng/Kg 0.0419U ng/Kg 0.264U ng/Kg
SL-109-SA8N-SB-4.0-5.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF 0CDD 0CDD 0CDF	0.0127 ng/Kg 0.0340 ng/Kg 0.0262 ng/Kg 0.0144 ng/Kg 0.0193 ng/Kg 0.0263 ng/Kg 0.0412 ng/Kg 0.0172 ng/Kg 0.0326 ng/Kg 0.346 ng/Kg 0.0271 ng/Kg 1.09 ng/Kg 0.0772 ng/Kg	0.0127U ng/Kg 0.0340U ng/Kg 0.0262U ng/Kg 0.0144U ng/Kg 0.0193U ng/Kg 0.0263U ng/Kg 0.0412U ng/Kg 0.0412U ng/Kg 0.0326U ng/Kg 0.346U ng/Kg 0.0271U ng/Kg 1.09U ng/Kg
SL-037-SA5DN-SB-4.0-5.0	2,3,7,8-TCDD 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	0.0502 ng/Kg 0.131 ng/Kg 0.147 ng/Kg 0.0651 ng/Kg 0.0470 ng/Kg 0.320 ng/Kg 0.0577 ng/Kg 0.760 ng/Kg	0.0502U ng/Kg 0.131U ng/Kg 0.147U ng/Kg 0.0651U ng/Kg 0.0470U ng/Kg 0.320U ng/Kg 0.0577U ng/Kg 0.760U ng/Kg
SL-037-SA5DN-SB-11.5-12.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0CDF	0.0850 ng/Kg 0.0796 ng/Kg 0.0796 ng/Kg 0.0480 ng/Kg 0.0366 ng/Kg 0.0401 ng/Kg 0.0355 ng/Kg 0.0448 ng/Kg 0.0548 ng/Kg 0.0510 ng/Kg 0.0437 ng/Kg 0.379 ng/Kg 0.0423 ng/Kg 0.0856 ng/Kg 0.0806 ng/Kg	0.0850U ng/Kg 0.0796U ng/Kg 0.0480U ng/Kg 0.0366U ng/Kg 0.0401U ng/Kg 0.0319U ng/Kg 0.0355U ng/Kg 0.0448U ng/Kg 0.0548U ng/Kg 0.0510U ng/Kg 0.0437U ng/Kg 0.379U ng/Kg 0.0423U ng/Kg 0.0856U ng/Kg
SL-038-SA5DN-SB-4.0-5.0	2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF	0.0316 ng/Kg 0.189 ng/Kg	0.0316U ng/Kg 0.189U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-038-SA5DN-SB-10.5-11.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF	0.0365 ng/Kg 0.0368 ng/Kg 0.0191 ng/Kg 0.0191 ng/Kg 0.0213 ng/Kg 0.0186 ng/Kg 0.0685 ng/Kg 0.0359 ng/Kg 0.0251 ng/Kg 0.0806 ng/Kg 1.85 ng/Kg 0.251 ng/Kg	0.0365U ng/Kg 0.0368U ng/Kg 0.0191U ng/Kg 0.0213U ng/Kg 0.0186U ng/Kg 0.0685U ng/Kg 0.0359U ng/Kg 0.0251U ng/Kg 1.85U ng/Kg 0.251U ng/Kg
SL-039-SA5DN-SB-4.0-5.0	2,3,7,8-TCDD	0.0267 ng/Kg	0. 0267 U ng/Kg
SL-039-SA5DN-SB-11.5-12.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HpCDF	0.0180 ng/Kg 0.0558 ng/Kg 0.0298 ng/Kg 0.0577 ng/Kg 0.0465 ng/Kg 0.0361 ng/Kg 0.107 ng/Kg 0.0380 ng/Kg 0.0849 ng/Kg	0.0180U ng/Kg 0.0558U ng/Kg 0.0298U ng/Kg 0.0577U ng/Kg 0.0465U ng/Kg 0.0361U ng/Kg 0.107U ng/Kg 0.0380U ng/Kg 0.0849U ng/Kg
SL-076-SA8N-SB-7.5-8.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 0CDD 0CDF	0.115 ng/Kg 0.0522 ng/Kg 0.0397 ng/Kg 0.0307 ng/Kg 0.0262 ng/Kg 0.0131 ng/Kg 0.0336 ng/Kg 0.0362 ng/Kg 0.0447 ng/Kg 0.0539 ng/Kg 0.474 ng/Kg 0.0259 ng/Kg 1.64 ng/Kg 0.132 ng/Kg	0.115U ng/Kg 0.0522U ng/Kg 0.0397U ng/Kg 0.0307U ng/Kg 0.0262U ng/Kg 0.0131U ng/Kg 0.0336U ng/Kg 0.0362U ng/Kg 0.0447U ng/Kg 0.0539U ng/Kg 0.474U ng/Kg 0.0259U ng/Kg 1.64U ng/Kg 0.132U ng/Kg
SL-106-SA8N-SB-2.5-3.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0CDD 0CDD	0.0136 ng/Kg 0.0495 ng/Kg 0.0196 ng/Kg 0.0222 ng/Kg 0.0193 ng/Kg 0.0200 ng/Kg 0.0492 ng/Kg 0.0140 ng/Kg 0.0405 ng/Kg 0.555 ng/Kg 1.32 ng/Kg 0.140 ng/Kg	0.0136U ng/Kg 0.0495U ng/Kg 0.0196U ng/Kg 0.0196U ng/Kg 0.0193U ng/Kg 0.0200U ng/Kg 0.0492U ng/Kg 0.0140U ng/Kg 0.0405U ng/Kg 0.555U ng/Kg 1.32U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-109-SA8N-SB-9.0-10.0	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD OCDD	0.0123 ng/Kg 0.0141 ng/Kg 0.0430 ng/Kg 0.0144 ng/Kg 0.00726 ng/Kg 0.0225 ng/Kg 0.0326 ng/Kg 0.0169 ng/Kg 0.0327 ng/Kg 0.467 ng/Kg 0.0233 ng/Kg 1.14 ng/Kg 0.0856 ng/Kg	0.0123U ng/Kg 0.0141U ng/Kg 0.0430U ng/Kg 0.0144U ng/Kg 0.00726U ng/Kg 0.0225U ng/Kg 0.0326U ng/Kg 0.0169U ng/Kg 0.467U ng/Kg 0.0233U ng/Kg 1.14U ng/Kg 0.0856U ng/Kg
DUP10-SA8N-QC-060811	1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF OCDF	0.0192 ng/Kg 0.156 ng/Kg 0.0353 ng/Kg 0.0801 ng/Kg 0.0803 ng/Kg 0.106 ng/Kg 0.185 ng/Kg 1.70 ng/Kg 0.0424 ng/Kg 0.338 ng/Kg	0.0192U ng/Kg 0.156U ng/Kg 0.0353U ng/Kg 0.0801U ng/Kg 0.0803U ng/Kg 0.106U ng/Kg 0.185U ng/Kg 1.70U ng/Kg 0.0424U ng/Kg 0.338U ng/Kg

Sample EB16-SA8N-SB-060811 was identified as an equipment blank. No polychlorinated dioxin/dibenzofuran contaminants were found with the following exceptions:

Equipment Blank ID	Sampling Date	Compound	Concentration	Associated Samples
EB16-SA8N-SB-060811	6/8/11	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0CDD 0CDF	0.362 pg/L 0.947 pg/L 0.532 pg/L 0.368 pg/L 0.436 pg/L 0.315 pg/L 0.778 pg/L 1.22 pg/L 6.00 pg/L 0.343 pg/L 12.4 pg/L 1.17 pg/L	All soil samples in SDG DX100

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X for other contaminants) than the concentrations found in the associated field blanks.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within the QC limits.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits.

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits.

X. Target Compound Identifications

All target compound identifications were within validation criteria.

XI. Compound Quantitation and RLs

All compound quantitation and RLs were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
SL-039-SA5DN-SB-4.0-5.0	OCDD	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects)	Р

All compounds reported below the RL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG DX100	All compounds reported below the RL.	J (all detects)	Α

XII. System Performance

The system performance was acceptable.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples SL-076-SA8N-SB-4.0-5.0 and DUP10-SA8N-QC-060811 were identified as field duplicates. No polychlorinated dioxins/dibenzofurans were detected in any of the samples with the following exceptions:

	Concentra	tion (ng/Kg)			
Compound	SL-076-SA8N-SB-4.0-5.0	DUP10-SA8N-QC-060811	RPD (Limits)	Flags	A or P
2,3,7,8-TCDF	0.118	0.514	125 (≤50)	J (all detects)	Α
2,3,7,8-TCDD	0.0291	0.0158U	200 (≤50)	J (all detects) UJ (all non-detects)	Α
1,2,3,7,8-PeCDF	0.167	1.96	169 (≤50)	J (all detects)	Α
2,3,4,7,8-PeCDF	0.369	0.0394U	200 (≤50)	J (all detects) UJ (all non-detects)	Α
1,2,3,7,8-PeCDD	0.0871	0.0192	128 (≤50)	J (all detects)	Α
1,2,3,4,7,8-HxCDF	0.593	0.550	8 (≤50)	-	-
1,2,3,6,7,8-HxCDF	0.0805	0.156	64 (≤50)	J (all detects)	Α
2,3,4,6,7,8-HxCDF	0.0621	0.0353	55 (≤50)	J (all detects)	Α
1,2,3,4,7,8-HxCDD	0.0482	0.0227U	200 (≤50)	J (all detects) UJ (all non-detects)	Α
1,2,3,6,7,8-HxCDD	0.106	0.0801	28 (≤50)	-	-
1,2,3,7,8,9-HxCDD	0.129	0.0803	47 (≤50)	-	-
1,2,3,7,8,9-HxCDF	0.104	0.106	2 (≤50)	-	-
1,2,3,4,6,7,8-HpCDF	0.180	0.185	3 (≤50)	-	-
1,2,3,4,6,7,8-HpCDD	1.44	1.70	17 (≤50)	-	-
1,2,3,4,7,8,9-HpCDF	0.0419	0.0424	1 (≤50)	-	-
OCDD	12.7	16.0	23 (≤50)	-	_
OCDF	0.264	0.338	25 (≤50)	-	-

Santa Susana Field Laboratory Dioxins/Dibenzofurans - Data Qualification Summary - SDG DX100

SDG	Sample	Compound	Flag	A or P	Reason (Code)
DX100	SL-039-SA5DN-SB-4.0-5.0	OCDD	J (all detects)	Р	Compound quantitation and RLs (*XI)
DX100	SL-023-SA5DN-SB-4.0-5.0 SL-023-SA5DN-SB-20.0-21.0 SL-025-SA5DN-SB-4.0-5.0 SL-025-SA5DN-SB-23.0-24.0 SL-028-SA5DN-SB-4.0-5.0 SL-028-SA5DN-SB-11.5-12.5 SL-051-SA5DN-SB-4.0-5.0 SL-051-SA5DN-SB-14.0-15.0 SL-076-SA8N-SB-4.0-5.0 SL-076-SA8N-SB-2.5-3.5 SL-109-SA8N-SB-4.0-5.0 SL-109-SA8N-SB-9.0-10.0 DUP10-SA8N-SB-9.0-10.0 DUP10-SA8N-SB-0-10.0 SL-037-SA5DN-SB-4.0-5.0 SL-038-SA5DN-SB-11.5-12.5 SL-038-SA5DN-SB-10.5-11.5 SL-039-SA5DN-SB-10.5-11.5	All compounds reported below the RL.	J (all detects)	А	Compound quantitation and RLs (Z)
DX100	SL-076-SA8N-SB-4.0-5.0 DUP10-SA8N-QC-060811	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	J (all detects) J (all detects) J (all detects) J (all detects) J (all detects)	А	Field duplicates (RPD) (FD)
DX100	SL-076-SA8N-SB-4.0-5.0 DUP10-SA8N-QC-060811	2,3,7,8-TCDD 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDD	J (all detects) UJ (all non-detects)	А	Field duplicates (RPD) (FD)

Santa Susana Field Laboratory Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG DX100

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX100	EB16-SA8N-SB-060811	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDD 1,2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 0CDF	0.362U pg/L 0.947U pg/L 0.532U pg/L 0.368U pg/L 0.436U pg/L 0.315U pg/L 0.778U pg/L 1.22U pg/L 6.00U pg/L 0.343U pg/L 12.4U pg/L 1.17U pg/L	A	В

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX100	SL-023-SA5DN-SB-4.0-5.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0CDF	0.132U ng/Kg 0.0753U ng/Kg 0.0528U ng/Kg 0.0947U ng/Kg 0.0294U ng/Kg 0.0385U ng/Kg 0.0242U ng/Kg 0.127U ng/Kg 0.176U ng/Kg 0.176U ng/Kg 0.100U ng/Kg 0.0197U ng/Kg	А	В
DX100	SL-023-SA5DN-SB-20.0-21.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0CDD OCDF	0.0136U ng/Kg 0.0368U ng/Kg 0.0225U ng/Kg 0.0163U ng/Kg 0.0350U ng/Kg 0.0387U ng/Kg 0.0579U ng/Kg 0.0394U ng/Kg 0.0303U ng/Kg 0.342U ng/Kg 0.0160U ng/Kg 0.693U ng/Kg	A	В
DX100	SL-025-SA5DN-SB-4.0-5.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	0.0372U ng/Kg 0.0361U ng/Kg 0.0194U ng/Kg 0.0118U ng/Kg 0.0103U ng/Kg 0.0192U ng/Kg 0.103U ng/Kg 0.148U ng/Kg 0.0667U ng/Kg 0.0171U ng/Kg	A	В
DX100	SL-025-SA5DN-SB-23.0-24.0	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF 0CDD 0CDF	0.0244U ng/Kg 0.0131U ng/Kg 0.0470U ng/Kg 0.0182U ng/Kg 0.0133U ng/Kg 0.00816U ng/Kg 0.0294U ng/Kg 0.0351U ng/Kg 0.0210U ng/Kg 0.0238U ng/Kg 0.0339U ng/Kg 0.0227U ng/Kg 0.807U ng/Kg 0.0616U ng/Kg	А	В
DX100	SL-028-SA5DN-SB-4.0-5.0	2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8,9-HpCDF OCDF	0.156U ng/Kg 0.0653U ng/Kg 0.0342U ng/Kg 0.0597U ng/Kg 0.0600U ng/Kg 0.0711U ng/Kg 0.0992U ng/Kg 1.11U ng/Kg	А	В

			Modified Final	··	
SDG	Sample	Compound	Concentration	A or P	Code
DX100	SL-028-SA5DN-SB-11.5-12.5	1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8,9-HpCDF OCDF	0.0541U ng/Kg 0.187U ng/Kg 0.230U ng/Kg 1.34U ng/Kg	A	В
DX100	SL-051-SA5DN-SB-4.0-5.0	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDD OCDF	0.0220U ng/Kg 0.0958U ng/Kg 0.0912U ng/Kg 0.0777U ng/Kg 0.0508U ng/Kg 0.0517U ng/Kg 0.0455U ng/Kg 0.103U ng/Kg 0.130U ng/Kg 0.701U ng/Kg 0.0267U ng/Kg 4.11U ng/Kg 0.105U ng/Kg	Α .	8
DX100	SL-051-SA5DN-SB-14.0-15.0	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDD OCDF	0.0349U ng/Kg 0.105U ng/Kg 0.103U ng/Kg 0.0837U ng/Kg 0.0609U ng/Kg 0.0670U ng/Kg 0.0433U ng/Kg 0.0345U ng/Kg 0.0768U ng/Kg 0.0562U ng/Kg 0.0430U ng/Kg 0.380U ng/Kg 0.380U ng/Kg 0.0474U ng/Kg 0.937U ng/Kg 0.133U ng/Kg	A	В
DX100	SL-076-SA8N-SB-4.0-5.0	2,3,7,8-TCDD 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF OCDF	0.0291U ng/Kg 0.0621U ng/Kg 0.0482U ng/Kg 0.106U ng/Kg 0.129U ng/Kg 0.104U ng/Kg 0.180U ng/Kg 1.44U ng/Kg 0.0419U ng/Kg 0.264U ng/Kg	А	В
DX100	SL-109-SA8N-SB-4.0-5.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF OCDD OCDF	0.0127U ng/Kg 0.0340U ng/Kg 0.0262U ng/Kg 0.0144U ng/Kg 0.0193U ng/Kg 0.0263U ng/Kg 0.0412U ng/Kg 0.0172U ng/Kg 0.0326U ng/Kg 0.346U ng/Kg 0.0271U ng/Kg 1.09U ng/Kg 0.0772U ng/Kg	А	В

			Modified Final		
SDG	Sample	Compound	Concentration	A or P	Code
DX100	SL-037-SA5DN-SB-4.0-5.0	2,3,7,8-TCDD 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	0.0502U ng/Kg 0.131U ng/Kg 0.147U ng/Kg 0.0651U ng/Kg 0.0470U ng/Kg 0.320U ng/Kg 0.0577U ng/Kg 0.760U ng/Kg	A	В
DX100	SL-037-SA5DN-SB-11.5-12.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 0CDD 0CDF	0.0850U ng/Kg 0.0796U ng/Kg 0.0480U ng/Kg 0.0366U ng/Kg 0.0401U ng/Kg 0.0319U ng/Kg 0.0355U ng/Kg 0.0448U ng/Kg 0.0548U ng/Kg 0.0510U ng/Kg 0.0437U ng/Kg 0.379U ng/Kg 0.0423U ng/Kg 0.856U ng/Kg 0.0806U ng/Kg	А	В
DX100	SL-038-SA5DN-SB-4.0-5.0	2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF	0.0316U ng/Kg 0.189U ng/Kg	Α	В
DX100	SL-038-SA5DN-SB-10.5-11.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF	0.0365U ng/Kg 0.0368U ng/Kg 0.0191U ng/Kg 0.0213U ng/Kg 0.0186U ng/Kg 0.0685U ng/Kg 0.0359U ng/Kg 0.0251U ng/Kg 0.0806U ng/Kg 1.85U ng/Kg 0.251U ng/Kg	Α	В
DX100	SL-039-SA5DN-SB-4.0-5.0	2,3,7,8-TCDD	0.0267U ng/Kg	А	В
DX100	SL-039-SA5DN-SB-11.5-12.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8,9-HpCDF	0.0180U ng/Kg 0.0558U ng/Kg 0.0298U ng/Kg 0.0577U ng/Kg 0.0465U ng/Kg 0.0361U ng/Kg 0.107U ng/Kg 0.0380U ng/Kg 0.0849U ng/Kg	А	В

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX100	SL-076-SA8N-SB-7.5-8.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0,2,3,4,7,8,9-HpCDF 0CDD 0CDF	0.115U ng/Kg 0.0522U ng/Kg 0.0397U ng/Kg 0.0307U ng/Kg 0.0362U ng/Kg 0.0131U ng/Kg 0.0336U ng/Kg 0.0362U ng/Kg 0.0447U ng/Kg 0.0447U ng/Kg 0.0539U ng/Kg 0.0259U ng/Kg 1.64U ng/Kg	А	В
DX100	SL-106-SA8N-SB-2.5-3.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDD OCDD	0.0136U ng/Kg 0.0495U ng/Kg 0.0196U ng/Kg 0.0222U ng/Kg 0.0193U ng/Kg 0.0200U ng/Kg 0.0492U ng/Kg 0.0492U ng/Kg 0.0405U ng/Kg 0.555U ng/Kg 1.32U ng/Kg 0.140U ng/Kg	A	В
DX100	SL-109-SA8N-SB-9.0-10.0	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDD OCDF	0.0123U ng/Kg 0.0141U ng/Kg 0.0430U ng/Kg 0.0430U ng/Kg 0.0144U ng/Kg 0.00726U ng/Kg 0.0225U ng/Kg 0.0326U ng/Kg 0.0169U ng/Kg 0.0327U ng/Kg 0.467U ng/Kg 0.0233U ng/Kg 1.14U ng/Kg 0.0856U ng/Kg	А	В
DX100	DUP10-SA8N-QC-060811	1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF OCDF	0.0192U ng/Kg 0.156U ng/Kg 0.0353U ng/Kg 0.0801U ng/Kg 0.0803U ng/Kg 0.106U ng/Kg 0.185U ng/Kg 1.70U ng/Kg 0.0424U ng/Kg 0.338U ng/Kg	А	В

Santa Susana Field Laboratory Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG DX100

No Sample Data Qualified in this SDG

Validation Area	Labo MET	#: 26250S21 ** #: DX100 ratory: Lancaster Laboratori HOD: HRGC/HRMS Dioxins samples listed below were reation findings worksheets.	s/Dibenzofuran	Lo s (EPA Me	evel IV	/ 313B)			ïndin	Date:	ched
I. Technical holding times Δ Sampling dates: 6 8 1) II. HRGC/HRMS Instrument performance check Δ Φ P3 D ≤ 20/3 5 IV. Routine calibration/ICV* Λ & C /i m i f V. Blanks SW VI. Matrix spike/Matrix spike duplicates Δ VII. Laboratory control samples A VIII. Regional quality assurance and quality control N IX. Internal standards A X. Target compound identifications Δ XI. Compound quantitation and CRQLs				<u> </u>				-			
III. HRGC/HRMS Instrument performance check ∆	<u> </u>	l. Validation At	rea	A		• • • • • • • • • • • • • • • • • • • •	1 .	1	ts	<u></u>	
III. Initial calibration A % PSD ≠ 20/35 IV. Routine calibration/ICV V. Blanks VI. Matrix spike/Matrix spike duplicates VII. Laboratory control samples A VC> VIII. Regional quality assurance and quality control IX. Internal standards X. Target compound identifications XI. Compound quantitation and CRQLs	1.	Technical holding times		1	Sampling	dates:	6/8/	1)			
IV. Routine calibration/ICV* \(\text{\mathcal{L}} \) \(\t	11.	HRGC/HRMS Instrument perfo	ormance check	<u> </u>	-/		, ,	/			
V. Blanks SW VI. Matrix spike/Matrix spike duplicates Δ VII. Laboratory control samples A VIII. Regional quality assurance and quality control N IX. Internal standards A X. Target compound identifications Δ XI. Compound quantitation and CRQLs	111.	Initial calibration			N/0	PSL	/-	35			
VI. Matrix spike/Matrix spike duplicates Δ VII. Laboratory control samples A VIII. Regional quality assurance and quality control N IX. Internal standards A X. Target compound identifications Δ XI. Compound quantitation and CRQLs	IV.	Routine calibration/ICV	——————————————————————————————————————			& C	limit				
VII. Laboratory control samples A VCS VIII. Regional quality assurance and quality control N IX. Internal standards A X. Target compound identifications Δ XI. Compound quantitation and CRQLs	V.	Blanks		SW							
VIII. Regional quality assurance and quality control IX. Internal standards X. Target compound identifications Δ XI. Compound quantitation and CRQLs	VI.	Matrix spike/Matrix spike duplic	cates	1							_
IX. Internal standards X. Target compound identifications Δ XI. Compound quantitation and CRQLs	VII.	Laboratory control samples		A	W	>					
X. Target compound identifications A XI. Compound quantitation and CRQLs	VIII.	. Regional quality assurance and	d quality control	N		· · · · · · · · · · · · · · · · · · ·					
XI. Compound quantitation and CRQLs	IX.	Internal standards		A							
	<u>x.</u>	Target compound identification	is	Δ							
XII. System performance	XI.	Compound quantitation and CF	RQLs	رسی							
	XII.	System performance		A							
XIII. Overall assessment of data	XIII.			Δ					•		
	-		,	, 1	0.	- a	الدر				\dashv
	<u> </u>	·			<u> </u>	 	(7				
XV. Field blanks SW EB = 15	XV.	Field blanks		<u> </u>	EP	- 15					
Note: A = Acceptable	Note:	N = Not provided/applicable	R = Rins	sate	detected		TB = Trip blan	ık			
Validated Samples: Soll 4 walk	Validat	ted Samples: SOIL 4 walk	(
1 SL-023-SA5DN-SB-4.0-5.0 11 Z SL-106-SA8N-SB-2.5-3.5 21 SL-039-SA5DN-SB-11.5-12.5 31 1 117 3002	1 1	SL-023-SA5DN-SB-4.0-5.0 1	1 2 SL-106-SA8N	I-SB-2.5-3.5	21	SL-039	-SA5DN-SB-11	1.5-12.5	/ 31	11173002	
2 SL-023-SA5DN-SB-30.0-21.0 12 SL-109-SA8N-SB-4.0-5.0 22 SL-076-SA8N-SB-4.0-5.0MS 322 11/7800	2 !		2 SL-109-SA8N	I-SB-4.0-5.0	22	SL-076	-SA8N-SB-4.0-	-5.0MS	322		
3 SL-025-SA5DN-SB-4.0-5.0 13 SL-109-SA8N-SB-9.0-10.0 23 SL-076-SA8N-SB-4.0-5.0MSD 33 1116100 5	1		3 2 SL-109-SA8N	I-SB-9.0-10.0		ī					
4 SL-025-SA5DN-SB-23.0-24.0 14 DUP10-SA8N-QC-060811 7 24 34		1,									
5 1 SL-028-SA5DN-SB-4.0-5.0 15 3 EB16-SA8N-SB-060811 W 25 35			1		• .						
6 SL-028-SA5DN-SB-11.5-12.5 16 SL-037-SA5DN-SB-4.0-5.0 26 36	\Box		ī			<u> </u>					\parallel
7 SL-051-SA5DN-SB-4.0-5.0 17 SL-037-SA5DN-SB-11.5-12.5 27 37	1		1								\dashv
8 SL-051-SA5DN-SB-14.0-15.0 18 SL-038-SA5DN-SB-4.0-5.0 28 38	1		1			1					$-\parallel$
9 1 SL-076-SA8N-SB-4.0-5.0) 19 SL-038-SA5DN-SB-10.5-11.5 29 39		^	1			1					$-\parallel$
10 7 SL-076-SA8N-SB-7.5-8.5 20 SL-039-SA5DN-SB-4.0-5.0 30 40		,									\dashv

Notes:			 			
				 	-	

LDC#: 2675052 /

VALIDATION FINDINGS CHECKLIST

Page: <u></u> of_	2
Reviewer: FT	
2nd Reviewer: 1	_

Method: Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times		ti ing. Paga		
All technical holding times were met.	/			
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check				
Was PFK exact mass 380.9760 verified?				
Were the retention time windows established for all homologues?				
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers ≤ 25% ?				
Is the static resolving power at least 10,000 (10% valley definition)?				
Was the mass resolution adequately check with PFK?				
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?		eriniwih yeye		The state of the s
III. Initial calibration				
Was the initial calibration performed at 5 concentration levels?	/			
Were all percent relative standard deviations (%RSD) ≤ 20% for unlabeled compounds and ≤ 35% for labeled compounds?	/			
Did all calibration standards meet the Ion Abundance Ratio criteria?				
Was the signal to noise ratio for each target compound ≥ 2.5 and for each recovery and internal standard ≥ 10?	/			
IV. Continuing calibration		Was.		
Was a routine calibration performed at the beginning and end of each 12 hour period?	/			
Were all the concentrations for the unlabeled compounds and labeled compounds within the QC limits (Method 1613B, Table 6)?	/			
Did all routine calibration standards meet the Ion Abundance Ratio criteria?				
V. Blanks		Harry.		
Was a method blank associated with every sample in this SDG?				
Was a method blank performed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet?				
VI, Mätrix spike/Matrix spike duplicates	- \$40,0			
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		-		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				·
VII. Laboratory control samples				
Was an LCS analyzed for this SDG?	_			
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

LDC#: 262052

VALIDATION FINDINGS CHECKLIST

Page: 2of	2
Reviewer: FT	
2nd Reviewer:	

Validation Area	Yes	No	NA	Findings/Comments
VIII. Regional Quality Assurance and Quality Control			A 3556	
Were performance evaluation (PE) samples performed?				
Were the performance evaluation (PE) samples within the acceptance limits?				
IX. Internal standards		456 F		
Were internal standard recoveries within the 25-150% criteria?	/			
Was the minimum S/N ratio of all internal standard peaks > 10?				
X. Target compound identification			• 🛠	
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?	/			
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?	/			
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?	/			
Did compound spectra contain all characteristic ions listed in the table attached?				
Was the Ion Abundance Ratio for the two quantitation ions within criteria?	/			
Was the signal to noise ratio for each target compound and labeled standard > 2.5?		-		
Does the maximum intensity of each specified characteristic ion coincide within ± 2 seconds (includes labeled standards)?	/			
For PCDF identification, was any signal (S/N ≥ 2.5, at ± seconds RT) detected in the corresponding PCDPE channel?	_			
Was an acceptable lock mass recorded and monitored?				
XI. Compound quantitation/CRQLs			×	
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	_			
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.		٠,		
XV: Field blanks		1 (1) 1 (1)		
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

]			
A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

LDC #: 26250S21

VALIDATION FINDINGS WORKSHEET Blanks

Reviewer:_ 2nd Reviewer:_

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Y N/A Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed?

Y N N/A Was a method blank performed for each Y N N/A Was the method blank contaminated?

Blank analysis date: 6/14/11 Bfank extraction date: 6/11/11

Associated samples: All water

*EMPC

Sample Identification 0.947*U 0.436*U 0.315*U 0.362*U 0.532*U 0.368*U 0.778*U 0.343U 12.4*U 1.17*U 1.22U 6.00U 15 1.795 3.685 3.415 3.505 3.485 3.04 3.65 3.82 4.25 27.3 5.8 4.7 5.5 8.4 š 65 25 11161005-MB Blank ID 0.359*0.701* 0.737* 0.940* 0.730* 0.764* 0.683*0.850*0.608* 0.697* 1.10 1.68 5.46 1.16* 13.0 5.00 Compound Conc. units: pg/L Σ 0 O Ω \Box

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 26250S21

VALIDATION FINDINGS WORKSHEET Blanks

Reviewer:

2nd Reviewer:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Hease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? Y N N Y N N/A N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed?

Was the method blank contaminated?

Blank analysis date: 6/24/11

*EMPC

1-9, 12, 16-21 Associated samples:

Conc. units: ng/Kg

Blank extraction date: 6/22/11

Compound	Blank ID				Sa	Sample Identification	tion			
	11173002-MB	XS		2	6	4	5	9	7	8
Ą	0.0163*	0.0815				0.0244U			0.0220U	0.0349*U
I	0.0266*	0.133	0.132U	0.0136*U	0.0372*U	0.0131*U			0.0958U	0.105U
ſ	0.0451	0.2255	0.0753U	0.0368U	0.0361*U	0.0470*U	0.156U		0.0912*U	0.103U
В	0.0170	0.085	0.0528U		0.0194*U	0.0182*U	0.0653*U		0.0777U	0.0837U
*	0.0434*	0.217	0.0947U	0.0225U		0.0133*U	0.0342*∪		0.0508*U	0.0609*U
1	0.0150*	0.075	0.0294U	0.0163*U	0.0118*U	0.00816*U	0.0597*U		0.0517U	0.0670U
W	0.0249*	0.1245	0.0385*U	0.0350*U	0.0103*U		0.0600*∪			0.0433U
O	0.0157	0.0785	0.0242*U		0.0192*U		0.0711*U	0.0541U	0.0455*U	0.0345*U
D	0.0303	0.1515	0.127*U	0.0387U	0.103U	0.0294*U			0.103U	0.0671U
Ш	0.0403*	0.2015	0.176U	0.0579*U	0.148U	0.0351*U		0.187U	0.1300	0.0768U
z	0.0235*	0.1175		0.0394*U		0.0210U				0.0562*U
0	0.0675	0.3375	0.1000	0.0303*U	0.0667U	0.0238*U			0.0664*U	0.0430*U
L	0.396	1.98		0.342U		0.339U			0.701*U	0.380U
۵۰	0.0845*	0.4225	0.0197U	0.0160*U	0.0171U	0.0227*U	0.0992*U	0.230U	0.0267*U	0.0474U
9	0.888	4.44		0.693U		0.807U			4.110	0.937U
Ö	0.324	1.62	0.328U	0.100*U	0.176U	0.0616U	1.110	1.34U	0.105U	0.133U
									:	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: 26250S21

VALIDATION FINDINGS WORKSHEET

Blanks

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a method blank performed for each matrix and whenever a sample extraction was performed? Were all samples associated with a method blank? Y N N/A

Y M N/A

Was the method blank contaminated?

1-9, 12, 16-21

Blank analysis date: 6/24/11 Blank extraction date: 6/22/11

Associated samples:__

*EMPC

Conc. units: ng/Kg

Compound	Blank ID					Sample Identification	tion			
	11173002-MB	2X	6	12	16	17	18	19	20	21
Ą	0.0163*	0.0815	0.0291*U		0.0502*U		0.0316U		0.0267*U	
	0.0266*	0.133		0.0127U		0.0850*U		0.0365U		0.0180*U
	0.0451	0.2255		0.0340U	0.131U	0.0796*U		0.0368U		0.0558U
В	0.0170	0.085				0.0480*U		0.0191*U		
¥	0.0434*	0.217		0.0262*U	0.147*U	0.0366*U				0.0298U
المد	0.0150*	0.075		0.0144*U		0.0401U		0.0213*U		0.0577U
M	0.0249*	0.1245	0.0621*∪		0.0651U	0.0319U		0.0186*U		0.0465*U
O	0.0157	0.0785	0.0482*U	0.0193U	0.0470U	0.0355*U				0.0361*U
D	0.0303	0.1515	0.106U	0.0263*U		0.0448*U		0.0685U		
Ш	0.0403*	0.2015	0.129U	0.0412U		0.0548*U		0.0359*U		0.107U
Z	0.0235*	0.1175	0.104*U	0.0172U		0.0510U		0.0251U		0.0380*U
0	0.0675	0.3375	0.180*U	0.0326*U	0.320U	0.0437*U		0.0806*U		
L	0.396	1.98	1.44U	0.346U		0.379U		1.85U		
Δ.	0.0845*	0.4225	0.0419*U	0.0271*U	0.0577U	0.0423*U	0.189U			0.0849*U
G	0.888	4.44		1.09U		0.856*U				
Ö	0.324	1.62	0.264U	0.0772U	0.760U	0.0806*U		0.251*U		

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

$\overline{}$
α
ഗ
Ö
S
S
ထ
S
#
ပ္
Д

VALIDATION FINDINGS WORKSHEET Blanks

2nd Reviewer:_ Reviewer:

Ø

lease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Was a method blank performed for each matrix and whenever a sample extraction was performed? Were all samples associated with a method blank? Y N N/A

Was the method blank contaminated? Blank extraction date: 6/27/11 Y N N/A Y/N N/A

Blank analysis date: 6/28/11

Associated samples: 10,11,13,14

*EMPC

Conc. units: ng/Kg

Compound	Blank ID				Sa	Sample Identification	ion		ï
	11178001-MB	5х	10	11	13	14			
Ŧ	0.0118*	0.059			0.0123U	D.5440-			
1	0.0379	0.1895	0.115U	0.0136*U	0.0141*U	7,000			
	0.0563*	0.2815	0.0522U	0.0495*U	0.0430*U				
В	0.0470	0.235	0.0397U		0.0144*U	0.0192U			
¥	0.0465*	0.2325	0.0307U	0.0196*U		השפים		-	
7	0.0500	0.25	0.0262U	0.0222U		0.156U			
M	0.0295	0.1475	0.0131U	0.0193*U	0.00726U	0.0353*U		1	
S	0.0572*	0.286		0.0200*U					
D	0.0570	0.285	0.0336U		0.0225*U	0.0801*U			
ш	0.0780*	0.39	0.0362U	0.0492U	0.0326*U	0.0803U			
Z	0.0771*	0.3855	0.0447U	0.0140*U	0.0169*U	0.106U			
0	0.113	0.565	0.0539U	0.0405U	0.0327*U	0.185U			
Ł	0.357	1.785	0.474U	0.555U	0.467U	1.70U			
Р	0.0781	0.3905	0.0259U	,	0.0233U	0.0424*U			
9	0.811	4.055	1.64U	1.32*U	1.14U	16.0U			
Ö	0.234	1.17	0.132U	0.140U	0.0856*∪	0.338U			

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

$\overline{}$
\sim
ഗ
Öl
Ŝ
S
9
$^{\circ}$
#
S
\Box

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: /of
Reviewer: 2nd Reviewer:

METHOD: GC/MS Dioxins/Dibenzofurans (Method 1613B)

YN N/A Were field blanks identified in this SDG?
Blank units: pg/L Associated sample units: ng/kG

Sampling date: 6/8/11

Field blank type: (circle one) Field Blank / Rinsate / Other: EB

×2X ALL SOILS Associated Samples:

OIES 135																			
ALL GOILS	ation																		
Associated Gallipies.	Sample Identification																		
Associated C	S																		
וופוי. בח										:									
/ INIIsate / O		2X																	
ן ופוע טומווא	Blank ID	Ш			0.362*	0.947*	0.532*	0.368*	 0.436*	0.315*		0.778*		1.22	6.00	0.343	12.4*	1,17*	
rield blain type: (Globe Olle) I leid blain / I lilisate / Ollei.	Compound		H	A		ſ	В	У	W	5	a	Ш	Z	0	±.	d.	9	Ö	

Samples with compound concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U". CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:

/eS0897

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

Page: / of/ Reviewer: FT 2nd Reviewer: (

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

Qualifications	1/Pett * XI									
	1/1								-	
Associated Samples	20									
Finding	exd cal Jange	D								
compol Sampie ID	Þ									
# Date								,		

Comments: See sample calculation verification worksheet for recalculations

LDC#: 2625052/ VALIDATION FINDINGS WORKSHEET Field Duplicates

<u>/</u> of
77)
1//

METHOD: VOA (EPA Method 8260B)

Were field duplicate pairs identified in this SDG?

Were target analytes detected in the field duplicate pairs? * empc (FD)

	Concentrat	tion (ng/kG)	49	$\overline{\Diamond}$
Compound	9	14	RPD	<u></u>
н	0.118	0.514	125	J/Ade
А	0.0291*	0,0158 U	200	1/LU/L
ı	0.167*	1.96	169	J/Ada
J	0.369	0.0394U	200	1/UJ/
В	0.0871*	0.0192	128	1/Ad
κ	0.593	0.550*	8	
L	0.0805*	0.156	64	1/Ada
м	0.0621*	0.0353*	55	J/A da
С	0.0482*	0.0227U	200	1/W/L
D	0,106	0.0801*	28	
E	0.129	0.0803	47	
N	0.104*	0.106	2	
0	0.180*	0.185	3	
F	1.44	1.70	17	
Р	0.0419*	0.0424*	1	
G	12.7	16.0	23	
Q	0.264*	0,338	25	

V:\FIELD DUPLICATES\templates\26250S21.wpd

Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Reviewer:_FT Page: 2nd Reviewer:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following

 $A_x = Area \ of \ compound, \qquad \qquad A_{is} = Area \ of \ associated \ internal \ standard \ C_x = Concentration \ of \ compound, \qquad C_x = Concentration \ of \ internal \ standard \ S = Standard \ deviation \ of \ the \ RRFs, \qquad X = Mean \ of \ the \ RRFs$

 $\label{eq:RRF} $$RF = (A_J)(C_g)/(A_{lg})(C_v)$$ average $RFF = sum of the RRFs/number of standards $$RSD = 100 ^ (S/X)$$

Recalculated	9	76KSU	65%	5.56	3.73	4.02	354	, , , r	757	6.0	4.63	13/4	7				
Reported	000	CICYIO/	4.54	3.5%	3.43	4.02	3.54	, k	7.36	6.50	4.43	5 u	,, ,,				=
Recalculated	RRF	(m) (C)	1.033	98/./	/00/	101.1	126-0	0.252	60.1	0.25/	1.037	0.917					
Reported	RRF		1.55.5	1.186.	1.001	1.101	0.974	0.952	671	0.95 /	1.037	116.0					
Recalculated	Average RRF (initial)	7,0,1	1.0.1	1.186	0.995	1.07	0.745	8.6.8	131.1	888-0	186.0	0.881					
Reported	Average RRF (initial)	1017		1.186	0.995	1.077	0.945	8660	1-141	0.898	0.981	0-885					
	Compound (Reference Internal Standard)	2378_TCDE (13C_2378_TCDE)	(JOOL-6, 1, 6, 2, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	OCDF (13C-OCDF)	2,37,8-TCDF (13C-2,3,7,8-TCDF)	2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	OCDF (¹¹C-OCDF)	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	
	Calibration Date	6/3/1)			- 1			11/2/9 2									
	Standard ID	11/8/9 7108 7601	104. 001720	111. UT 1 180				1CAL WATER 6/3/11	Int: DF17611								
	#							7					e				

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated

Routine Calibration Results Verification VALIDATION FINDINGS WORKSHEET

1

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = (A,)(Cs,)/(As)(Cx,)

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, A_x = Concentration of compound, C_x = Where:

 $A_{\rm ls}$ = Area of associated internal standard $C_{\rm ls}$ = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
##	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	d %	Ж
-	12:51 NOT	11/4 e/9	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	0.0/	9.830	0886	36	8
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	10.0	9.510	015-6	-16	36
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	O:as	C576%	49.630	66	66
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	50.0	090.05	090:05	001	(0)
			OCDF (¹3C-OCDF)	1000	102.280	102.280	701	101
2	sev 04:24	1/1/2/9	2,3,7,8-TCDF (1 ³ C-2,3,7,8-TCDF)	0.01	9.920	9.920	66	66
		•	2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	0.01	app.p	Ohh.b	44	46
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	50.0	ase .as	52.32	101	101
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	52.0	50.900	50.900	701	701
			OCDF (13C-OCDF)	(vv). U	103.4	103.4	801	801
က	act 14:47 6/12/11	11/21/9	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	0.01	9.760	9.760	26	26
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	10. O	9.260	9.20	88	843
			1,2,3,6,7,8-HxCDD (¹³ C-1,2,3,6,7,8-HxCDD)	S2. O	49.420	arth.	66	66
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	0 25	as1.64	as 2:65	001	(n)
			OCDF (13C-OCDF)	100.0	102.26	100.20	701	-601

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the results. recalculated

_	
Q)	
V	
Z	
76	
#	•
ĕ	

VALIDATION FINDINGS WORKSHEET Routine Calibration Results Verification

of	Ŀ	(
Page:	Reviewer:	2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_{\lambda})(C_{k})/(A_{k})(C_{\lambda})$

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF

A_x = Area of compound, C_x = Concentration of compound,

 $A_{\rm s}$ = Area of associated internal standard $C_{\rm s}$ = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
4	2	Calibration		Average RRF	RRF	RRF	4	, T
	Standard ID	Date	Compound (Reference Internal Standard)	(IIIIIIII)	(20)	(22)	7ºK	A. (
-	Cey 21:00	/:////>	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	10.0	9.9%	9.940	99	97
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	10.0	9-690	29.6	97	6
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	SO. O	5-3.830	50.830	901	901
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	<i>s</i> 0.0	52.630	53.62	50/	501
			CODE (13C-OCDD)	100.0	104.580	102.52	€0/	/03
2			2,3,7,8-TCDF (¹3C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			OCDE (3C-OCDD)					
3			2,3,7,8-TCDF (13C-2,3,7,8-TCDF)					
		· · · · · · · · · · · · · · · · · · ·	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)				:	
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			OCDF (13C-OCDD)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC # 26×50 S 9/

Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

To!	.	3
Page:	Reviewer: FT	2nd Reviewer

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSR - SR)/SA

SSR = Spiked sample result, SR = Sample result SA = Spike added Where:

MSR = Matrix spike percent recovery MSDR = Matrix spike duplicate percent recovery

MS/MSD samples:

RPD = 1 MSR - MSDR I * 2/(MSR + MSDR)

ሌ) փ なな

				_	Ī	Г			T	<u> </u>	1	1	T
Recalcutated	RPD		8	7	7	\	7						
Reported	RPD		7	7	7	\	٩						
Matrix Spike Duplicate	Recovery	Recalc	82	SES.	2/8	20	16						
Matrix Spik	Percent Recovery	Reported	82	ZZ	87	90	16						
Matrix Spike	Percent Recovery	Recalc	p8	63	16	16	76						
Matrix	Percent	Reported	7.8	89	16	16	76						
Sample	tration	, O MSD	18.6	44.1	28.1	101	400						
Spiked Sample	Concentration	MS	0.61	101	103	/03	88						
Sample	Concentration (ng. / kt.	0	0.039/	0.087/	0.0482	6.0419	0.264						
ike	Added	MSD	22,5	113	113	113	Sur					•	
ďs	Ad O) MS	22.5	113	113	113	225						
	Compound		2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8,9-HpCDF	OCDF						

Comments: Refer to Matrix Spike/Matrix Spike Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

1	
25	
2	
10	
7	
#	
Ö	

Laboratory Control Sample Results Verification VALIDATION FINDINGS WORKSHEET

/ot/	FŢ	<u>(</u>
Page	Reviewer:	2nd Reviewer

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCSD = Laboratory control sample duplicate percent recovery

LCS ID: 0-PR 173002

I CSD I CSD	overy	Renorted Recalc Renorted					42					
I CS	Percent Recovery	Reported Recalc		68 68	06 06	92 94	26 26					
Sample	Concentration	CSD	44			/	1					
Spiked	Conce	O	8.9/	89.3	70.2	91.7	<i>J8/</i>	: - -				
pìke	Added 1/8	U U	NA	1	/	/	1					
Ś	Ä)	1 CS	20.0	100	100	001.	2002					
	Compound		2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8,9-HpCDF	ÓCDF				•	

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

Accurate mass ^(s)	Ol nol	Elemental Composition	Analyte	Descriptor	Accurate Mass ^(s)	lon ID	Elemental Composition	Analuta
	M M+2 M M+2 M M+2 M M+2 M M+2 M M+2 M M+2 M M+2 M M+2 M M+2 M+2	C ₁₂ H ₃ *Cl ₁ O C ₁₂ H ₃ *Cl ₃ O S ₁₂ H ₃ *Cl ₃ O S ₁₂ H ₃ *Cl ₃ O C ₁₂ H ₃ *Cl ₃ O C ₁₂ H ₃ *Cl ₃ O C ₁₂ H ₃ *Cl ₃ O C ₁₂ H ₃ *Cl ₃ O	TCDF TCDF (8) TCDF (8) TCDD TCDD (8) TCDD (8) TCDD (8)	4	407.7818 409.7788 417.8250 419.8220 423.7767 425.7737 435.8169 437.8140 479.7165 [430.9728]	M+2 M+2 M+2 M+2 M+4 M+4 M+4	C ₁₂ H ³⁶ Cl ₃ 7ClO C ₁₂ H ³⁶ Cl ₃ 7Cl ₂ O 13C ₁₂ H ³⁶ Cl ₃ O 13C ₁₂ H ³⁶ Cl ₃ O 13C ₁₂ H ³⁶ Cl ₃ 7ClO C ₁₂ H ³⁶ Cl ₃ 7ClO ₂ 13C ₁₂ H ³⁶ Cl ₃ 7ClO ₂ 13C ₁₂ H ³⁶ Cl ₃ 7ClO ₂ 13C ₁₂ H ³⁶ Cl ₃ 7Cl ₂ O C ₁₂ H ³⁶ Cl ₃ 7Cl ₂ O C ₁₂ H ³⁶ Cl ₃ 7Cl ₂ O	HPCDF HPCDF HPCDF HPCDD HPCDD HPCDD HPCDD (S) HPCDD (S)
	M+2 M+4 M+4 M+4 M+4 M+2 M+2 M+2 M+2	C ₁₂ H ₃ 2C ₁ 37C ₁ C C ₁₂ H ₃ 2C ₁ 37C ₁ C T ₁₂ H ₃ 2C ₁ 37C ₁ C T ₁₂ H ₃ 2C ₁ 37C ₁ C C ₁₂ H ₃ 2C ₁ 37C ₁ C ₂ C C ₁₂ H ₃ 2C ₁ 37C ₁ C ₂ C T ₁₂ C ₁ 2H ₃ 2C ₁ 37C ₁ C ₂ C T ₁₂ C ₁ 2H ₃ 2C ₁ 37C ₁ C ₂ C C ₁₂ H ₃ 2C ₁ 37C ₁ C ₂ C C ₁₂ H ₃ 2C ₁ 37C ₁ C ₂ C C ₁₂ H ₃ 2C ₁ 37C ₁ C	Pecdr Pecdr Pecdr (S) Pecdd Pecdd Pecdd Pecdd (S) Pecdd (S) Pecdd (S)	ω	441,7428 443,7399 457,7377 459,7348 469,7780 471,7750 513,6775	M+4 M+4 M+4 M+4 M+4 CCK	C ₁ ²⁶ Cl, ³⁷ ClO C ₁ ²⁶ Cl, ³⁷ Cl ₂ O C ₁₂ ²⁶ Cl, ³⁷ Cl ₂ O C ₁₂ ²⁶ Cl, ³⁷ Cl ₂ O 19C ₁₂ ²⁶ Cl, ³⁷ Cl ₂ O 19C ₁₂ ²⁶ Cl, ³⁷ Cl ₂ O C ₁₂ ²⁶ Cl, ³⁷ Cl ₂ O C ₁₆ ¹⁷	ocder ocder ocder ocder ocder (s) ocder PFK
	M+4 M+2 M+2 M+4 M+4 M+4 LOCK	C ₁₂ H ₂ ²⁰ Clo C ₁₂ H ₂ ²⁰ Clo	HXCDF HXCDF (3) HXCDF (3) HXCDD HXCDD HXCDD (5) HXCDD (5) CCDPE				-	

The following nuclidic masses were used; **®**

H = 1.007825 C = 12.000000 ¹³C = 13.003355 F = 18.9984

O = 15.994915 $^{3}CI = 34.968853$ $^{3}CI = 36.965903$

S = internal/recovery standard

LDC #:_ 26 250 S2 /

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

<u>_</u> of_	
FT	
1	
	of

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

/Y	N	N/A
$ \mathbf{Y} $	N	N/A
7		

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = (A,)(I,)(DF) (A_{is})(RRF)(V_o)(%S)

Area of the characteristic ion (EICP) for the compound to be measured

Area of the characteristic ion (EICP) for the specific internal standard

Amount of internal standard added in nanograms (ng)

V. Volume or weight of sample extract in milliliters (ml) or

RRF Relative Response Factor (average) from the initial calibration

Df Dilution Factor.

%S Percent solids, applicable to soil and solid matrices Example:

Sample I.D. _#/

Conc. = (538 +537 (1000)()
723775+65635 0.945)(10.3)(0.882

0.329

#	Sample ID	Compound	Reported Concentration ()	Calculated Concentration ()	Qualification
	· · · · · · · · · · · · · · · · · · ·				
ļ					
<u> </u>			<u> </u>		
					·
			-		
		·			

LDC	#:	 	
SDG	#•		

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification (additional page)

Page:	of
Reviewer:	

SAMPLE DELIVERY GROUP

DX101

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
09-Jun-2011	SL-050-SA5DN-SB-4.0-5.0	6312191	N	METHOD	1613B	III
09-Jun-2011	SL-050-SA5DN-SB-11.2-12.5	6312192	N	METHOD	1613B	Ш
09-Jun-2011	SL-040-SA5DN-SB-4.0-5.0	6312189	N	METHOD	1613B	III
09-Jun-2011	SL-040-SA5DN-SB-10.5-11.5	6312190	N	METHOD	1613B	111
09 - Jun-2011	SL-116-SA8N-SB-4.0-5.0	6312193	N	METHOD	1613B	111
10 - Jun-2011	SL-041-SA5DN-SB-9.0-10.0	6313378	N	METHOD	1613B	111
10-Jun-2011	SL-041-SA5DN-SB-4.0-5.0	6313377	N	METHOD	1613B	Ш
10 - Jun-2011	SL-045-SA5DN-SB-9.0-10.0	6313380	N	METHOD	1613B	III
10-Jun-2011	SL-045-SA5DN-SB-4.0-5.0	6313379	N	METHOD	1613B	Ш
10-Jun-2011	SL-111-SA8N-SB-3.0-4.0	6313385	N	METHOD	1613B	III
10-Jun-2011	SL-049-SA5DN-SB-4.0-5.0	6313383	N	METHOD	1613B	III
10-Jun-2011	SL-049-SA5DN-SB-15.5-16.5	6313384	N	METHOD	1613B	Ш
10-Jun-2011	SL-048-SA5DN-SB-4.0-5.0	6313381	N	METHOD	1613B	Ш
10-Jun-2011	SL-048-SA5DN-SB-11.5-12.5	6313382	N	METHOD	1613B	Ш
13-Jun-2011	SL-046-SA5DN-SB-4.0-5.0	6314493	N	METHOD	1613B	Ш
13-Jun-2011	SL-046-SA5DN-SB-9.0-10.0	6314494	N	METHOD	1613B	111
13-Jun-2011	SL-042-SA5DN-SB-4.0-5.0	6314489	N	METHOD	1613B	Ш
13-Jun-2011	SL-042-SA5DN-SB-9.0-10.0	6314490	N	METHOD	1613B	Ш
13-Jun-2011	SL-043-SA5DN-SB-4.0-5.0	6314491	N	METHOD	1613B	Ш
13-Jun-2011	SL-043-SA5DN-SB-9.0-10.0	6314492	N	METHOD	1613B	III

Attachment II

Overall Data Qualification Summary

Data Qualifier Summary

Lab Reporting Batch ID: DX101 Laboratory: LL
EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Collected: 6/9/2011 10:39:00 Analysis Type: RES Sample ID: SL-040-SA5DN-SB-10.5-11.5 Dilution: 1 Data Lab DL RLReview Reason Lah Analyte Result Qual DLТуре RL Type Units Qual Code 1,2,3,4,6,7,8-HPCDF 0.424 JB 0.0148 MDL. 5.23 PQL ng/Kg U 0.0853 JΒ 0.0252 MDL 5.23 PQL ng/Kg U В 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 0.0286 J 0.0277 MDL 5.23 **PQL** ng/Kg J Ζ JB 0.0171 MDL 5.23 PQL Ų В 1,2,3,4,7,8-HXCDF 0.0433 ng/Kg U 1,2,3,6,7,8-HXCDD 0.227 JΒ 0.0270 MDL 5.23 **PQL** ng/Kg В U JB 0.0147 MDL. 5.23 **PQL** В 1,2,3,6,7,8-HXCDF 0.0171 ng/Kg 1,2,3,7,8,9-HXCDD **JBQ** U 0.123 0.0280 MDL 5.23 **PQL** ng/Kg В 0.0760 JBQ 0.0207 MDL 5.23 PQL U В ng/Kg 1,2,3,7,8,9-HXCDF U 1,2,3,7,8-PECDD 0.0327 JΒ 0.0236 MDL 5.23 PQL ng/Kg В U В 0.0459 JB 0.0164 MDL 5.23 PQL ng/Kg 2,3,4,6,7,8-HXCDF U 2,3,4,7,8-PECDF 0.0287 JB 0.0130 MDL. 5.23 **PQL** ng/Kg В

Sample ID: SL-040-SA5DN-SB-4.0-5.0 Collected: 6/9/2011 10:20:00 Analysis Type: RES Dilution: 1

0.0247

0.0394

MDL.

MDL

1.05

10.5

PQL

PQL

ng/Kg

ng/Kg

JBQ

JB

0.0273

1.12

Cumpic is: CE C40 Citiosit CE no cit										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	1.77	JB	0.0233	MDL	5.79	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.246	JB	0.0338	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.191	J	0.0437	MDL	5.79	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.459	JВ	0.0368	MDL	5.79	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	1.35	JB	0.0428	MDL	5.79	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.228	JB	0.0332	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.759	JB	0.0414	MDL	5.79	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.601	JB	0.0423	MDL	5.79	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.127	JBQ	0.0306	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.834	JB	0.0343	MDL	5.79	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.191	JB	0.0345	MDL	5.79	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.691	JB	0.0343	MDL	5.79	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0599	JBQ	0.0293	MDL	1.16	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.325	J	0.0742	MDL	1.16	PQL	ng/Kg	J	Z	
OCDF	5.20	JB	0.0405	MDL	11.6	PQL	ng/Kg	J	Z	
······································										

2,3,7,8-TCDD

OCDF

Page 1 of 14

U

U

В

В

^{*} denotes a non-reportable result

Data Qualifier Summary

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA
Method: 1613B Matrix: SO

Sample ID: SL-041-SA5DN-SB-4.0-5.0	Collec	Collected: 6/10/2011 11:00:00 Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	0.988	JВ	0.0175	MDL	5.93	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.129	JBQ	0.0294	MDL	5.93	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.173	J	0.0358	MDL	5.93	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.257	JB	0.0298	MDL	5.93	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDD	0.686	JB	0.0360	MDL	5.93	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.168	JB	0.0259	MDL	5.93	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	0.778	JB	0.0369	MDL	5.93	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.801	JB	0.0373	MDL	5.93	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.185	JB	0.0340	MDL	5.93	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDF	0.570	JB	0.0309	MDL	5.93	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.174	JB	0.0288	MDL	5.93	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.572	JB	0.0315	MDL	5.93	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.113	JQ	0.0604	MDL	1.19	PQL	ng/Kg	J	Z	
OCDF	2.66	JB	0.0453	MDL	11.9	PQL	ng/Kg	J	Z	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.915	JB	0.0177	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.165	JB	0.0314	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.228	J	0.0327	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.283	JB	0.0250	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.564	JB	0.0338	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.264	JB	0.0221	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.324	JB	0.0333	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.267	JB	0.0303	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.393	JB	0.0298	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.462	JB	0.0186	MDL	5.48	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.228	JB	0.0242	MDL	5.48	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.412	JB	0.0179	MDL	5.48	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0998	JBQ	0.0271	MDL	1.10	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.154	J	0.0364	MDL	1.10	PQL	ng/Kg	J	Z
OCDF	2.13	JB	0.0358	MDL	11.0	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX101 Laboratory: LL eQAPP Name: CDM_SSFL_110509 EDD Filename: DX101_v1

SVOA Method Category: Method: 1613B SO Matrix:

Sample ID: SL-042-SA5DN-SB-4.0-5.0	Collec	ted: 6/13/2	011 11:00	:00 A	nalysis Ty	pe: RES		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.44	JB	0.0258	MDL	5.77	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.282	JВ	0.0550	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.276	J	0.0594	MDL	5.77	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.229	JB	0.0337	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	1.28	JB	0.0590	MDL	5.77	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.207	JB	0.0262	MDL	5.77	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.562	JB	0.0573	MDL	5.77	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.243	JВ	0.0441	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.249	JB	0.0302	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.386	JB	0.0177	MDL	5.77	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.236	JВ	0.0314	MDL	5.77	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.363	JB	0.0193	MDL	5.77	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0594	JBQ	0.0265	MDL	1.15	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0863	J	0.0450	MDL.	1.15	PQL	ng/Kg	J	Z
OCDF	7.22	JB	0.0535	MDL	11.5	PQL	ng/Kg	J	z

Sample ID: SL-042-SA5DN-SB-9.0-10.0 Collected: 6/13/2011 11:10:00 Dilution: 1 Analysis Type: RES

Sample ID: SE-042-3A3DI4-3B-3.0-10.0	Conec	teu, or lorz	011 11.10.	.00	narysis ij	-	Diadon. ;		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.03	JB	0.0293	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.173	JBQ	0.0536	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.221	J	0.0503	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.314	JB	0.0386	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.633	JB	0.0501	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.258	JBQ	0.0323	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.349	JB	0.0488	MDL	5.46	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.258	JBQ	0.0488	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.310	JB	0.0351	MDL	5.46	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.418	JB	0.0248	MDL	5.46	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.222	JBQ	0.0355	MDL	5.46	PQL	ng/Kg	Ų	В
2,3,4,7,8-PECDF	0.432	JB	0.0252	MDL	5.46	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0660	JB	0.0327	MDL	1.09	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.143	J	0.0670	MDL	1.09	PQL	ng/Kg	J	Z
OCDF	2.93	JB	0.0523	MDL	10.9	PQL	ng/Kg	J	Z

Page 3 of 14

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX101 Laboratory: LL EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-043-SA5DN-SB-4.0-5.0	Collec	ted: 6/13/2	011 11:55	:00 A	nalysis Ty	pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	1.44	JB	0.0266	MDL	5.67	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.177	JBQ	0.0519	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.104	J	0.0424	MDL	5.67	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.159	JBQ	0.0296	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.663	JB	0.0443	MDL	5.67	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.144	JB	0.0251	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.319	JB	0.0428	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.242	JB	0.0310	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.151	JB	0.0257	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.171	JB	0.0142	MDL	5.67	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.141	JB	0.0268	MDL	5.67	PQL	ng/Kg	Ų	В	
2,3,4,7,8-PECDF	0.224	JBQ	0.0148	MDL	5.67	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0359	JBQ	0.0230	MDL	1.13	PQL	ng/Kg	υ	В	
OCDF	3.86	JB	0.0424	MDL	11.3	PQL	ng/Kg	J	Z	

Sample ID: SL-043-SA5DN-SB-9.0-10.0 Collected: 6/13/2011 12:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.473	JB	0.0312	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.104	JB	0.00769	MDL	5.58	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0447	JBQ	0.0200	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0328	JBQ	0.0131	MDL	5.58	PQL	ng/Kg	Ü	В
1,2,3,6,7,8-HXCDF	0.0135	JBQ	0.00964	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0240	JBQ	0.0191	MDL	5.58	PQL	ng/Kg	Ü	В
1,2,3,7,8,9-HXCDF	0.0198	JBQ	0.0154	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0227	JBQ	0.0125	MDL	5.58	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0558	JB	0.0118	MDL	5.58	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0749	JBQ	0.0132	MDL,	5.58	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0305	JBQ	0.0269	MDL	1.12	PQL	ng/Kg	U	В
OCDD	2.53	JB	0.0276	MDL.	11.2	PQL	ng/Kg	U	В
OCDF	0.192	JB	0.0553	MDL	11.2	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX101 Laboratory: LL
EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-045-SA5DN-SB-4.0-5.0 Collected: 6/10/2011 11:50:00 Analysis Type: RES Dilution: 1

Sample in: SE-045-SASDN-SD-4.0-5.0	Conec	Conected. 6/10/2011 11:30:00 Analysis Type. NES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.737	JB	0.0325	MDL	5.83	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.273	JB	0.0105	MDL	5.83	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.125	JB	0.0197	MDL	5.83	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.324	J	0.0277	MDL	5.83	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.421	JB	0.0222	MDL	5.83	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.329	JB	0.0274	MDL	5.83	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.384	JB	0.0174	MDL	5.83	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.329	JBQ	0.0255	MDL	5.83	PQL	ng/Kg	C	В
1,2,3,7,8,9-HXCDF	0.343	JBQ	0.0261	MDL	5.83	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.535	JB	0.0268	MDL	5.83	PQL	ng/Kg	٦	Z
1,2,3,7,8-PECDF	0.504	JB	0.0156	MDL	5.83	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.313	JB	0.0211	MDL	5.83	PQL	ng/Kg	C	В
2,3,4,7,8-PECDF	0.541	JB	0.0165	MDL	5.83	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0874	JBQ	0.0288	MDL	1.17	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0636	JQ	0.0303	MDL	1.17	PQL	ng/Kg	J	Ζ
OCDD	2.98	JB	0.0260	MDL	11.7	PQL	ng/Kg	U	₿
OCDF	0.321	JBQ	0.0362	MDL	11.7	PQL	ng/Kg	U	В

Sample ID: SL-045-SA5DN-SB-9.0-10.0 Collected: 6/10/2011 11:40:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.854	JB	0.0365	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.206	JB	0.0112	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.139	JBQ	0.0213	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.100	JQ	0.0250	MDL	5.70	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.133	JBQ	0.0184	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.117	JB	0.0245	MDL	5.70	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.124	JB	0.0140	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.124	JBQ	0.0237	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0953	JBQ	0.0224	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.105	JB	0.0257	MDL	5.70	PQL	ng/Kg	Ü	В
1,2,3,7,8-PECDF	0.172	JBQ	0.0128	MDL	5.70	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.147	JB	0.0166	MDL	5.70	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.177	JB	0.0135	MDL	5.70	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX101 Laboratory: LL EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

1:40:00 Analysis Type:	RES	Dilution: 1
	1:40:00 Analysis Type:	1:40:00 Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDD	0.0458	JBQ	0.0319	MDL	1.14	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0627	J	0.0267	MDL	1.14	PQL	ng/Kg	J	Z
OCDD	5.29	JB	0.0249	MDL	11.4	PQL	ng/Kg	J	Z
OCDF	0.410	JBQ	0.0435	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-046-SA5DN-SB-4.0-5.0 Collected: 6/13/2011 9:50:00 Analysis Type: RES Dilution: 1

bampic ib. On 646 Critically Co 416 Crit	404									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.851	JB	0.0351	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.166	JВ	0.00832	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.122	JBQ	0.0187	MDL	5.60	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HxCDD	0.0323	J	0.0214	MDL	5.60	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0469	JB	0.0132	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0826	JB	0.0218	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0268	JBQ	0.0101	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0898	JBQ	0.0217	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.106	JBQ	0.0146	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0323	JB	0.00913	MDL	5.60	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0743	JBQ	0.0121	MDL	5.60	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0749	JBQ	0.00994	MDL	5.60	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0242	JBQ	0.0225	MDL	1.12	PQL	ng/Kg	U	В	
OCDD	7.30	JB	0.0286	MDL	11.2	PQL	ng/Kg	J	Z	
OCDF	0.421	JB	0.0454	MDL	11.2	PQL	ng/Kg	υ	В	

Sample ID: SL-046-SA5DN-SB-9.0-10.0 Collected: 6/13/2011 10:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.659	JBQ	0.0370	MDL	5.53	PQL	ng/Kg	Ų	В
1,2,3,4,6,7,8-HPCDF	0.147	JBQ	0.00847	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0833	JB	0.0195	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0231	JQ	0.0217	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0331	JBQ	0.0128	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0554	JBQ	0.0211	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0296	JBQ	0.0101	MDL	5.53	PQL	ng/Kg	Ų	В
1,2,3,7,8,9-HXCDD	0.0486	JB	0.0201	MDL	5.53	PQL	ng/Kg	Ų	В

^{*} denotes a non-reportable result

9/27/2011 3:06:32 PM ADR version 1.4.0.111 Page 6 of 14

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA		eletike vi
Method:	1613B	Matrix: SO	

Sample ID: SL-046-SA5DN-SB-9.0-10.0 Collected: 6/13/2011 10:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDF	0.0126	JBQ	0.0116	MDL	5.53	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0523	JBQ	0.0106	MDL	5.53	PQL	ng/Kg	Ų	В
2,3,4,7,8-PECDF	0.0831	JB	0.0115	MDL	5.53	PQL	ng/Kg	υ	В
OCDD	4.70	JB	0.0302	MDL	11,1	PQL	ng/Kg	U	В
OCDF	0.260	JB	0.0528	MDL.	11.1	PQL	ng/Kg	U	В

Sample ID: SL-048-SA5DN-SB-11.5-12.5 Collected: 6/10/2011 3:20:00 Analysis Type: RES Dilution: 1

3ample ID. 3C-040-3A3DN-3B-11.3-12.3	Conec	Conected. Or forzoff C.zo.oc					Allalysis Type, ILLO				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.473	JBQ	0.0287	MDL	5.56	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.0899	JB	0.00887	MDL	5.56	PQL	ng/Kg	U	В		
1,2,3,4,7,8,9-HPCDF	0.0393	JBQ	0.0174	MDL	5.56	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.0208	JQ	0.0189	MDL	5.56	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	0.0294	JB	0.0125	MDL	5.56	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.0428	JB	0.0191	MDL	5.56	PQL	ng/Kg	υ	В		
1,2,3,6,7,8-HXCDF	0.0186	JBQ	0.0102	MDL	5.56	PQL	ng/Kg	υ	В		
1,2,3,7,8,9-HXCDD	0.0575	JBQ	0.0185	MDL	5.56	PQL	ng/Kg	υ	В		
1,2,3,7,8,9-HXCDF	0.0499	JBQ	0.0131	MDL	5.56	PQL	ng/Kg	Ų	В		
1,2,3,7,8-PECDD	0.0423	JB	0.0268	MDL	5.56	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.0553	JB	0.0117	MDL	5.56	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0480	JB	0.0122	MDL	5.56	PQL	ng/Kg	Ų	В		
OCDD	0.894	JBQ	0.0245	MDL	11.1	PQL	ng/Kg	U	В		
OCDF	0.200	JB	0.0380	MDL	11.1	PQL	ng/Kg	U	В		

Sample ID: SL-048-SA5DN-SB-4.0-5.0 Collected: 6/10/2011 3:10:00 Analysis Type: RES Dilution: 1

vap. v . z . v . z									
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.19	JB	0.0321	MDL	5.81	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.250	JB	0.0105	MDL	5.81	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0985	JBQ	0.0207	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0421	J	0.0241	MDL	5.81	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0760	JB	0.0213	MDL	5.81	PQL	пд/Кд	U	В
1,2,3,6,7,8-HXCDD	0.187	JBQ	0.0235	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0792	JB	0.0171	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.284	JB	0.0244	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.284	JB	0.0244	MDL	5.81	PQL	ng/Kg	U	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA		
Method:	1613B	Matrix:	so

Sample ID: SL-048-SA5DN-SB-4.0-5.0 Collected: 6/10/2011 3:10:00 Analysis Type: RES Dilution: 1 Data RLReview Reason Lab Lab DLDLType RL Units Qual Code Analyte Result Qual Type 0.0262 MDL PQL U В 1,2,3,7,8,9-HXCDF 0.390 JBQ 5.81 ng/Kg 1,2,3,7,8-PECDD 0.0583 JBQ 0.0267 MDL 5.81 PQL ng/Kg U В PQL U В 1,2,3,7,8-PECDF 0.0841 **JBQ** 0.0139 MDL 5.81 ng/Kg U В 0.0983 JB 0.0189 MDL 5.81 PQL ng/Kg 2,3,4,6,7,8-HXCDF Ų JBQ 0.0142 MDL 5.81 PQL В 2,3,4,7,8-PECDF 0.0964 ng/Kg Z OCDD 7.46 JB 0.0269 MDL 11.6 **PQL** ng/Kg 0.522 JВ 0.0430 MDL 11.6 PQL U В ng/Kg

Sample ID: 5L-049-5A5DN-5B-15.5-16.5 Collected: 6L0/2011 2.20.00 Allalysis Type: NES Dilati	Sample ID: SL-049-SA5DN-SB-15.5-16.5	Collected: 6/10/2011 2:20:00	Analysis Type: RES	Dilution: 1
---	--------------------------------------	------------------------------	--------------------	-------------

Sample ID: 5L-049-5A5DN-5B-15.5-16.5	Conec	Collected: 6/10/2011 2.20.00 Allalysis Type. NES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.926	JB	0.0318	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.158	JB	0.00946	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0619	JB	0.0194	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0260	J	0.0190	MDL	5.66	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0413	JB	0.0149	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0529	JBQ	0.0192	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0362	JBQ	0.0117	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0524	JBQ	0.0188	MDL	5.66	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0419	JBQ	0.0166	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0197	JBQ	0.0109	MDL	5.66	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.0588	JB	0.0136	MDL	5.66	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0889	JB	0.0119	MDL	5.66	PQL	ng/Kg	υ	В
2,3,7,8-TCDD	0.0296	JBQ	0.0265	MDL	1.13	PQL	ng/Kg	U	В
OCDD	8.45	JB	0.0283	MDL	11.3	PQL	ng/Kg	J	Z
OCDF	0.310	JB	0.0383	MDL	11.3	PQL	ng/Kg	U	В

Collected: 6/10/2011 2:10:00 Analysis Type: RES Dilution: 1 Sample ID: SL-049-SA5DN-SB-4.0-5.0

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.674	JB	0.0374	MDL	5.89	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.133	JB	0.0105	MDL	5.89	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0464	JB	0.0236	MDL	5.89	PQL	ng/Kg	Ų	В
1,2,3,4,7,8-HxCDD	0.0376	JQ	0.0245	MDL	5.89	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0481	JBQ	0.0179	MDL	5.89	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

OCDF

ADR version 1.4.0.111 9/27/2011 3:06:32 PM Page 8 of 14

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA	
Method:	1613B	Matrix: SO

Sample ID: SL-049-SA5DN-SB-4.0-5.0	Collec	Collected: 6/10/2011 2:10:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDD	0.228	JB	0.0250	MDL	5.89	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0368	JBQ	0.0135	MDL	5.89	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	0.418	JB	0.0248	MDL	5.89	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.517	JB	0.0233	MDL	5.89	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0736	JB	0.0134	MDL	5.89	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0594	JBQ	0.0171	MDL	5.89	PQL	ng/Kg	Ü	В	
2,3,4,7,8-PECDF	0.0580	JB	0.0146	MDL	5.89	PQL	ng/Kg	U	В	
OCDD	3.21	JB	0.0251	MDL	11.8	PQL	ng/Kg	Ų	В	
OCDF	0.212	JBQ	0.0459	MDL	11.8	PQL	ng/Kg	U	В	

Sample ID: SL-050-SA5DN-SB-11.2-12.5 Collected: 6/9/2011 9:30:00 AM Analysis Type: RES Dilution: 1

Campic ID. CE CCC CHODIT CD THE TEIC		Ontottal over the order of the state of the							
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.626	JB	0.0322	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0890	JB	0.00780	MDL	5.55	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0270	JBQ	0.0136	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0254	JQ	0.0193	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0194	JB	0.0120	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0501	JBQ	0.0194	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0182	JBQ	0.0102	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0401	JBQ	0.0188	MDL	5.55	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.0193	JBQ	0.0109	MDL	5.55	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.0476	JBQ	0.0111	MDL	5.55	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0408	JBQ	0.0115	MDL	5.55	PQL	ng/Kg	υ	В
OCDD	3.92	JB	0.0216	MDL	11.1	PQL	ng/Kg	υ	В
OCDF	0.171	JB	0.0321	MDL	11.1	PQL	ng/Kg	U	В

Sample ID: SL-050-SA5DN-SB-4.0-5.0 Collected: 6/9/2011 9:25:00 AM Analysis Type: RES Dilution: 1

					,			_		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.786	JB	0.0417	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.122	JB	0.00983	MDL	5.66	PQL	ng/Kg	Ų	В	
1,2,3,4,7,8,9-HPCDF	0.0627	JBQ	0.0179	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0409	J	0.0234	MDL	5.66	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0310	JB	0.0178	MDL	5.66	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX101 Laboratory: LL
EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-050-SA5DN-SB-4.0-5.0 Collected: 6/9/2011 9:25:00 AM Analysis Type: RES Dilution: 1

Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.160	JB	0.0237	MDL	5.66	PQL	ng/Kg	U	В
0.0286	JBQ	0.0147	MDL	5.66	PQL	ng/Kg	U	В
0.312	JB	0.0238	MDL	5.66	PQL	ng/Kg	U	В
0.333	JB	0.0198	MDL	5.66	PQL	ng/Kg	υ	В
0.0453	JBQ	0.0272	MDL	5.66	PQL	ng/Kg	υ	В
0.0988	JBQ	0.0143	MDL	5.66	PQL	ng/Kg	υ	В
0.0535	JBQ	0.0167	MDL	5.66	PQL	ng/Kg	υ	В
0.0612	JBQ	0.0149	MDL	5.66	PQL	ng/Kg	U	В
5.42	JB	0.0285	MDL	11.3	PQL	ng/Kg	J	Z
0.270	JB	0.0467	MDL	11.3	PQL	ng/Kg	U	В
	Result 0.160 0.0286 0.312 0.333 0.0453 0.0988 0.0535 0.0612 5.42	Result Qual 0.160 JB 0.0286 JBQ 0.312 JB 0.333 JB 0.0453 JBQ 0.0988 JBQ 0.0612 JBQ 5.42 JB	Result Qual DL 0.160 JB 0.0237 0.0286 JBQ 0.0147 0.312 JB 0.0238 0.333 JB 0.0198 0.0453 JBQ 0.0272 0.0988 JBQ 0.0143 0.0535 JBQ 0.0167 0.0612 JBQ 0.0149 5.42 JB 0.0285	Result Qual DL Type 0.160 JB 0.0237 MDL 0.0286 JBQ 0.0147 MDL 0.312 JB 0.0238 MDL 0.333 JB 0.0198 MDL 0.0453 JBQ 0.0272 MDL 0.0988 JBQ 0.0143 MDL 0.0535 JBQ 0.0167 MDL 0.0612 JBQ 0.0149 MDL 5.42 JB 0.0285 MDL	Result Qual DL Type RL 0.160 JB 0.0237 MDL 5.66 0.0286 JBQ 0.0147 MDL 5.66 0.312 JB 0.0238 MDL 5.66 0.333 JB 0.0198 MDL 5.66 0.0453 JBQ 0.0272 MDL 5.66 0.0988 JBQ 0.0143 MDL 5.66 0.0535 JBQ 0.0167 MDL 5.66 0.0612 JBQ 0.0149 MDL 5.66 5.42 JB 0.0285 MDL 11.3	Result Qual DL Type RL Type 0.160 JB 0.0237 MDL 5.66 PQL 0.0286 JBQ 0.0147 MDL 5.66 PQL 0.312 JB 0.0238 MDL 5.66 PQL 0.333 JB 0.0198 MDL 5.66 PQL 0.0453 JBQ 0.0272 MDL 5.66 PQL 0.0988 JBQ 0.0143 MDL 5.66 PQL 0.0535 JBQ 0.0167 MDL 5.66 PQL 0.0612 JBQ 0.0149 MDL 5.66 PQL 5.42 JB 0.0285 MDL 11.3 PQL	Result Qual DL Type RL Type Units 0.160 JB 0.0237 MDL 5.66 PQL ng/Kg 0.0286 JBQ 0.0147 MDL 5.66 PQL ng/Kg 0.312 JB 0.0238 MDL 5.66 PQL ng/Kg 0.333 JB 0.0198 MDL 5.66 PQL ng/Kg 0.0453 JBQ 0.0272 MDL 5.66 PQL ng/Kg 0.0988 JBQ 0.0143 MDL 5.66 PQL ng/Kg 0.0535 JBQ 0.0167 MDL 5.66 PQL ng/Kg 0.0612 JBQ 0.0149 MDL 5.66 PQL ng/Kg 5.42 JB 0.0285 MDL 11.3 PQL ng/Kg	Lab Result Lab Qual DL DL Type RL Type RL Type Review Qual 0.160 JB 0.0237 MDL 5.66 PQL ng/Kg U 0.0286 JBQ 0.0147 MDL 5.66 PQL ng/Kg U 0.312 JB 0.0238 MDL 5.66 PQL ng/Kg U 0.333 JB 0.0198 MDL 5.66 PQL ng/Kg U 0.0453 JBQ 0.0272 MDL 5.66 PQL ng/Kg U 0.0988 JBQ 0.0143 MDL 5.66 PQL ng/Kg U 0.0535 JBQ 0.0167 MDL 5.66 PQL ng/Kg U 0.0612 JBQ 0.0149 MDL 5.66 PQL ng/Kg U 5.42 JB 0.0285 MDL 11.3 PQL ng/Kg J

Sample ID: SL-111-SA8N-SB-3.0-4.0 Collected: 6/10/2011 12:40:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.860	JB	0.0352	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.162	JBQ	0.00975	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0325	JB	0.0195	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0523	JQ	0.0238	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.110	JB	0.0182	MDL	5.29	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.214	JB	0.0240	MDL	5.29	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0883	JB	0.0141	MDL	5.29	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.315	JB	0.0243	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.217	JBQ	0.0216	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.139	JBQ	0.0254	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.121	JB	0.0124	MDL	5.29	PQL	ng/Kg	Ú	В
2,3,4,6,7,8-HXCDF	0.0818	JB	0.0171	MDL	5.29	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.150	JBQ	0.0130	MDL	5.29	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0454	JQ	0.0230	MDL	1.06	PQL	ng/Kg	J	Z
OCDD	5.17	JB	0.0241	MDL	10.6	PQL	ng/Kg	J	Z
OCDF	0.241	JBQ	0.0391	MDL	10.6	PQL	ng/Kg	U	В

Sample ID: SL-116-SA8N-SB-4.0-5.0 Collected: 6/9/2011 12:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.49	JB	0.0421	MDL	5.77	PQL	ng/Kg	J	Z

Page 10 of 14

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-116-SA8N-SB-4.0-5.0 Collected: 6/9/2011 12:25:00 Analysis Type: RES Dilution: 1 Data Lab DL RLReview Reason Lab Result Qual DLType RLUnits Qual Code Analyte Type 0.245 JΒ 0.0133 MDL 5.77 **PQL** ng/Kg U В 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 0.0415 JBQ 0.0255 MDL 5.77 PQL ng/Kg Ų В 0.0311 J 0.0247 MDL PQL J Z 1,2,3,4,7,8-HxCDD 5.77 ng/Kg U В 1,2,3,4,7,8-HXCDF 0.120 JB 0.0218 MDL 5.77 **PQL** ng/Kg U **JBQ** 0.0247 MDL 5.77 PQL. ng/Kg ₿ 1,2,3,6,7,8-HXCDD 0.124 1,2,3,6,7,8-HXCDF 0.0500 JB 0.0173 MDL 5.77 PQL ng/Kg U В 0.155 JB 0.0258 MDL 5.77 POL U В ng/Kg 1,2,3,7,8,9-HXCDD PQL U 1,2,3,7,8,9-HXCDF 0.146 **JBQ** 0.0265 MDL 5.77 ng/Kg В U В 1,2,3,7,8-PECDF 0.148 JBQ 0.0208 MDL 5.77 PQL ng/Kg JBQ PQL U В 2,3,4,6,7,8-HXCDF 0.102 0.0196 MDL 5.77 ng/Kg 0.133 JB 0.0216 MDL 5.77 PQL ng/Kg U В 2,3,4,7,8-PECDF Z J MDL 1.15 PQL 2,3,7,8-TCDF 0.0658 0.0490 ng/Kg JB MDL 11.5 **PQL** U ₿ OCDF 0.475 0.0444 ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX101 EDD Filename: DX101_v1

Laboratory: LL eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Laboratory Triplicate Precision
Ē	Matrix Spike Precision
	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX101

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Filename: DX101_v1		eQAPP Name: CDM_S
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
н	Sampling to Analysis Estimation	
н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
<u> </u>	Internal Standard Estimation	
I	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
Ļ	Laboratory Control Spike Upper Rejection	
М	Continuing Tune	, 18 - 1 - 100 1 - 13 - 10 - 10 - 10 - 10 -
M	Initial Tune	
M	Performance Evaluation Mixture	
M	Resolution Check Mixture	<u> </u>
Q	Laboratory Duplicate Precision	
Q	Laboratory Triplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	-
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX101

Laboratory: LL

EDD Filename: DX101_v1

eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX101

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO	B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1890B371410	7/10/2011 2:10:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,6,7,8-TCDD OCDD OCDD	0.430 ng/Kg 0.145 ng/Kg 0.0985 ng/Kg 0.0625 ng/Kg 0.0652 ng/Kg 0.0652 ng/Kg 0.0628 ng/Kg 0.0708 ng/Kg 0.0946 ng/Kg 0.0813 ng/Kg 0.0942 ng/Kg 0.0912 ng/Kg 0.0794 ng/Kg 0.0794 ng/Kg 0.0484 ng/Kg 0.0484 ng/Kg 0.0388 ng/Kg	SL-040-SA5DN-SB-10.5-11.5 SL-040-SA5DN-SB-4.0-5.0 SL-041-SA5DN-SB-4.0-5.0 SL-041-SA5DN-SB-9.0-10.0 SL-042-SA5DN-SB-9.0-10.0 SL-042-SA5DN-SB-9.0-10.0 SL-043-SA5DN-SB-9.0-10.0 SL-043-SA5DN-SB-9.0-10.0 SL-045-SA5DN-SB-9.0-10.0 SL-045-SA5DN-SB-9.0-10.0 SL-046-SA5DN-SB-9.0-10.0 SL-046-SA5DN-SB-9.0-10.0 SL-048-SA5DN-SB-4.0-5.0 SL-048-SA5DN-SB-4.0-5.0 SL-049-SA5DN-SB-11.5-16.5 SL-049-SA5DN-SB-4.0-5.0 SL-050-SA5DN-SB-4.0-5.0 SL-050-SA5DN-SB-4.0-5.0 SL-111-SA8N-SB-3.0-4.0 SL-116-SA8N-SB-3.0-4.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte _.	Reported Result	Modified Final Result
SL-040-SA5DN-SB-10.5-11.5(RES)	1,2,3,4,6,7,8-HPCDF	0.424 ng/Kg	0.424U ng/Kg
SL-040-SA5DN-SB-10,5-11,5(RES)	1,2,3,4,7,8,9-HPCDF	0.0853 лд/Кд	0.0853U ng/Kg
SL-040-SA5DN-SB-10.5-11.5(RES)	1,2,3,4,7,8-HXCDF	0.0433 ng/Kg	0.0433U ng/Kg
SL-040-SA5DN-SB-10.5-11.5(RES)	1,2,3,6,7,8-HXCDD	0.227 ng/Kg	0.227U ng/Kg
SL-040-SA5DN-SB-10.5-11.5(RES)	1,2,3,6,7,8-HXCDF	0.0171 ng/Kg	0,0171U ng/Kg
SL-040-SA5DN-SB-10.5-11.5(RES)	1,2,3,7,8,9-HXCDD	0.123 ng/Kg	0.123U ng/Kg
SL-040-SA5DN-SB-10.5-11.5(RES)	1,2,3,7,8,9-HXCDF	0.0760 ng/Kg	0.0760U ng/Kg
SL-040-SA5DN-SB-10.5-11.5(RES)	1,2,3,7,8-PECDD	0.0327 ng/Kg	0.0327U ng/Kg
SL-040-SA5DN-SB-10.5-11.5(RES)	2,3,4,6,7,8-HXCDF	0.0459 ng/Kg	0.0459U ng/Kg
SL-040-SA5DN-SB-10.5-11.5(RES)	2,3,4,7,8-PECDF	0.0287 ng/Kg	0.0287U ng/Kg
SL-040-SA5DN-SB-10,5-11.5(RES)	2,3,7,8-TCDD	0.0273 ng/Kg	0.0273U ng/Kg
SL-040-SA5DN-SB-10.5-11.5(RES)	OCDF	1.12 ng/Kg	1.12U ng/Kg
SL-040-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.246 ng/Kg	0.246U ng/Kg
SL-040-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.228 ng/Kg	0.228U ng/Kg
SL-040-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.127 ng/Kg	0.127U ng/Kg
SL-040-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.191 ng/Kg	0.191U ng/Kg
SL-040-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0,0599 ng/Kg	0.0599U ng/Kg
SL-041-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.129 ng/Kg	0.129U ng/Kg
SL-041-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.257 ng/Kg	0.257U ng/Kg
SL-041-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.168 ng/Kg	0.168U ng/Kg
SL-041-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.185 ng/Kg	0.185U ng/Kg
SL-041-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.174 ng/Kg	0.174U ng/Kg
SL-041-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.165 ng/Kg	0.165U ng/Kg
SL-041-\$A5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.283 ng/Kg	0.283U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	gamenta nasabasan sa manasan di kacamatak		Historia e e e e e e e e e e e e e e e e e e e	
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-041-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.264 ng/Kg	0.264U ng/Kg
SL-041-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.324 ng/Kg	0.324U ng/Kg
SL-041-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.267 ng/Kg	0.267U ng/Kg
SL-041-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.393 ng/Kg	0.393U ng/Kg
SL-041-\$A5DN-\$B-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.228 ng/Kg	0.228U ng/Kg
SL-041-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0998 ng/Kg	0.0998U ng/Kg
SL-042-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.282 ng/Kg	0.282U ng/Kg
SL-042-\$A5DN-\$B-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0,229 ng/Kg	0,229U ng/Kg
SL-042-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.207 ng/Kg	0.207U ng/Kg
SL-042-\$A5DN-\$B-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0,243 ng/Kg	0.243U ng/Kg
SL-042-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.249 ng/Kg	0.249U ng/Kg
SL-042-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.236 ng/Kg	0.236U ng/Kg
SL-042-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.363 ng/Kg	0.363U ng/Kg
SL-042-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0594 ng/Kg	0.0594U ng/Kg
SL-042-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.173 ng/Kg	0.173U ng/Kg
SL-042-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.258 ng/Kg	0.258U ng/Kg
SL-042-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.349 ng/Kg	0.349U ng/Kg
SL-042-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0,258 ng/Kg	0.258U ng/Kg
SL-042-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.310 ng/Kg	0.310U ng/Kg
SL-042-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.222 ng/Kg	0.222U ng/Kg
SL-042-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0660 ng/Kg	0.0660U ng/Kg
SL-043-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0,177 ng/Kg	0.177U ng/Kg
SL-043-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.159 ng/Kg	0.159U ng/Kg
SL-043-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.144 ng/Kg	0.144U ng/Kg
SL-043-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.319 ng/Kg	0.319U ng/Kg
SL-043-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.242 ng/Kg	0.242U ng/Kg
SL-043-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.151 ng/Kg	0.151U ng/Kg
SL-043-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.171 ng/Kg	0.171U ng/Kg
SL-043-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.141 ng/Kg	0.141U ng/Kg
SL-043-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.224 ng/Kg	0.224U ng/Kg
SL-043-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0359 ng/Kg	0.0359U ng/Kg
SL-043-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.473 ng/Kg	0.473U ng/Kg
SL-043-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.104 ng/Kg	0.104U ng/Kg
SL-043-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0447 ng/Kg	0,0447U ng/Kg
SL-043-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0328 ng/Kg	0.0328U ng/Kg
SL-043-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0135 ng/Kg	0.0135U ng/Kg
SL-043-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0240 ng/Kg	0.0240U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/27/2011 3:06:04 PM ADR version 1.4.0.111 Page 2 of 7

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

	1613B SO	ing the second s			
Method Blank Sample ID		Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-043-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0198 ng/Kg	0.0198U ng/Kg
SL-043-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0227 ng/Kg	0.0227U ng/Kg
SL-043-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0558 ng/Kg	0.0558U ng/Kg
SL-043-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0749 ng/Kg	0.0749U ng/Kg
SL-043-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0305 ng/Kg	0.0305U ng/Kg
SL-043-SA5DN-SB-9.0-10.0(RES)	OCDD	2.53 ng/Kg	2.53U ng/Kg
SL-043-SA5DN-SB-9.0-10.0(RES)	OCDF	0.192 ng/Kg	0.192U ng/Kg
SL-045-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	• 0.737 ng/Kg	0.737U ng/Kg
SL-045-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.273 ng/Kg	0.273U ng/Kg
SL-045-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.125 ng/Kg	0.125U ng/Kg
SL-045-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.329 ng/Kg	0.329U ng/Kg
SL-045-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0,343 ng/Kg	0,343U ng/Kg
SL-045-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.313 ng/Kg	0.313U ng/Kg
SL-045-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0874 ng/Kg	0.0874U ng/Kg
SL-045-SA5DN-SB-4.0-5.0(RES)	OCDD	2.98 ng/Kg	2.98U ng/Kg
SL-045-SA5DN-SB-4.0-5.0(RES)	OCDF	0,321 ng/Kg	0,321U ng/Kg
SL-045-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.854 ng/Kg	0.854U ng/Kg
SL-045-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0,206 ng/Kg	0.206U ng/Kg
SL-045-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.139 ng/Kg	0.139U ng/Kg
SL-045-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.133 ng/Kg	0.133U ng/Kg
SL-045-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.117 ng/Kg	0.117U ng/Kg
SL-045-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.124 ng/Kg	0.124U ng/Kg
SL-045-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.124 ng/Kg	0.124U ng/Kg
SL-045-SA5DN-SB-9,0-10.0(RES)	1,2,3,7,8,9-HXCDF	0,0953 ng/Kg	0.0953U ng/Kg
SL-045-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.105 ng/Kg	0.105U ng/Kg
SL-045-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.172 ng/Kg	0.172U ng/Kg
SL-045-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.147 ng/Kg	0.147U ng/Kg
SL-045-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0,177 ng/Kg	0.177U ng/Kg
SL-045-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0458 ng/Kg	0.0458U ng/Kg
SL-045-SA5DN-SB-9.0-10.0(RES)	OCDF	0.410 ng/Kg	0.410U ng/Kg
SL-046-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.851 ng/Kg	0.851U ng/Kg
SL-046-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.166 ng/Kg	0.166U ng/Kg
SL-046-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.122 ng/Kg	0.122U ng/Kg
SL-046-\$A5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0469 ng/Kg	0.0469U ng/Kg
SL-046-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0,0826 ng/Kg	0.0826U ng/Kg
SL-046-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0268 ng/Kg	0.0268U ng/Kg
SL-046-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0898 ng/Kg	0.0898U ng/Kg

9/27/2011 3:06:05 PM ADR version 1.4.0.111 Page 3 of 7

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method: 161 Matrix: SO	BB			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-046-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.106 ng/Kg	0.106U ng/Kg
SL-046-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0323 ng/Kg	0.0323U ng/Kg
SL-046-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0743 ng/Kg	0.0743U ng/Kg
SL-046-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0749 ng/Kg	0.0749U ng/Kg
SL-046-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0242 ng/Kg	0,0242U ng/Kg
SL-046-SA5DN-SB-4.0-5.0(RES)	OCDF	0.421 ng/Kg	0.421U ng/Kg
SL-046-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.659 ng/Kg	0.659U ng/Kg
SL-046-SA5DN-SB-9,0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.147 ng/Kg	0.147U ng/Kg
SL-046-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0833 ng/Kg	0.0833U ng/Kg
SL-046-SA5DN-SB-9,0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0331 ng/Kg	0.0331U ng/Kg
SL-046-SA5DN-SB-9,0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0554 ng/Kg	0,0554U ng/Kg
SL-046-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0296 ng/Kg	0.0296U ng/Kg
SL-046-SA5DN-SB-9,0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0486 ng/Kg	0,0486U ng/Kg
SL-046-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0126 ng/Kg	0.0126U ng/Kg
SL-046-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0523 ng/Kg	0.0523U ng/Kg
SL-046-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0831 ng/Kg	0.0831U ng/Kg
SL-046-SA5DN-SB-9,0-10.0(RES)	OCDD	4.70 ng/Kg	4.70U ng/Kg
SL-046-SA5DN-SB-9.0-10.0(RES)	OCDF	0.260 ng/Kg	0.260U ng/Kg
SL-048-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,6,7,8-HPCDD	0.473 ng/Kg	0,473U ng/Kg
SL-048-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0899 ng/Kg	0.0899U ng/Kg
SL-048-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,7,8,9-HPCDF	0,0393 ng/Kg	0.0393U ng/Kg
SL-048-SA5DN-SB-11.5-12.5(RES)	1,2,3,4,7,8-HXCDF	0.0294 ng/Kg	0.0294U ng/Kg
SL-048-SA5DN-SB-11.5-12.5(RES)	1,2,3,6,7,8-HXCDD	0.0428 ng/Kg	0,0428U ng/Kg
SL-048-SA5DN-SB-11.5-12.5(RES)	1,2,3,6,7,8-HXCDF	0.0186 ng/Kg	0.0186U ng/Kg
SL-048-SA5DN-SB-11.5-12.5(RES)	1,2,3,7,8,9-HXCDD	0.0575 ng/Kg	0.0575U ng/Kg
SL-048-SA5DN-SB-11.5-12.5(RES)	1,2,3,7,8,9-HXCDF	0.0499 ng/Kg	0.0499U ng/Kg
SL-048-SA5DN-SB-11.5-12.5(RES)	1,2,3,7,8-PECDD	0.0423 ng/Kg	0.0423U ng/Kg
SL-048-SA5DN-SB-11.5-12.5(RES)	2,3,4,6,7,8-HXCDF	0.0553 ng/Kg	0.0553U ng/Kg
SL-048-SA5DN-SB-11.5-12.5(RES)	2,3,4,7,8-PECDF	0.0480 ng/Kg	0.0480U ng/Kg
SL-048-SA5DN-SB-11.5-12.5(RES)	OCDD	0.894 ng/Kg	0.894U ng/Kg
SL-048-SA5DN-SB-11,5-12.5(RES)	OCDF	0.200 ng/Kg	0.200U ng/Kg
SL-048-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.19 ng/Kg	1.19U ng/Kg
SL-048-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.250 ng/Kg	0.250U ng/Kg
SL-048-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0985 ng/Kg	0.0985U ng/Kg
SL-048-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0760 ng/Kg	0.0760U ng/Kg
SL-048-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.187 ng/Kg	0.187U ng/Kg
SL-048-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0792 ng/Kg	0.0792U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/27/2011 3:06:05 PM ADR version 1.4.0.111 Page 4 of 7

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	নাই নিৰ্বাহিনীৰ বৃহত্তি পৰা সংগ্ৰহণ কৰিব কৰিব কৰিব কৰিব কৰিব কৰিব কৰিব কৰিব			
Method Blan Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-048-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.284 ng/Kg	0.284U ng/Kg
SL-048-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.390 ng/Kg	0.390U ng/Kg
SL-048-\$A5DN-\$B-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0583 ng/Kg	0.0583U ng/Kg
SL-048-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0841 ng/Kg	0.0841U ng/Kg
SL-048-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0983 ng/Kg	0.0983U ng/Kg
SL-048-\$A5DN-\$B-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0964 ng/Kg	0.0964U ng/Kg
SL-048-SA5DN-SB-4.0-5.0(RES)	OCDF	0.522 ng/Kg	0.522U ng/Kg
SL-049-SA5DN-SB-15.5-16.5(RES)	1,2,3,4,6,7,8-HPCDD	0.926 ng/Kg	0.926U ng/Kg
SL-049-SA5DN-SB-15.5-16.5(RES)	1,2,3,4,6,7,8-HPCDF	0.158 ng/Kg	0.158U ng/Kg
SL-049-\$A5DN-\$B-15.5-16.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0619 ng/Kg	0.0619U ng/Kg
SL-049-SA5DN-SB-15.5-16.5(RES)	1,2,3,4,7,8-HXCDF	0.0413 ng/Kg	0.0413U ng/Kg
SL-049-SA5DN-SB-15,5-16.5(RES)	1,2,3,6,7,8-HXCDD	0.0529 ng/Kg	0.0529U ng/Kg
SL-049-SA5DN-SB-15.5-16.5(RES)	1,2,3,6,7,8-HXCDF	0.0362 ng/Kg	0.0362U ng/Kg
SL-049-SA5DN-SB-15.5-16.5(RES)	1,2,3,7,8,9-HXCDD	0.0524 ng/Kg	0.0524U ng/Kg
SL-049-SA5DN-SB-15.5-16.5(RES)	1,2,3,7,8,9-HXCDF	0.0419 ng/Kg	0.0419U ng/Kg
SL-049-SA5DN-SB-15.5-16.5(RES)	1,2,3,7,8-PECDF	0.0197 ng/Kg	0.0197U ng/Kg
SL-049-SA5DN-SB-15.5-16.5(RES)	2,3,4,6,7,8-HXCDF	0.0588 ng/Kg	0,0588U ng/Kg
SL-049-SA5DN-SB-15.5-16.5(RES)	2,3,4,7,8-PECDF	0.0889 ng/Kg	0.0889U ng/Kg
SL-049-SA5DN-SB-15,5-16.5(RES)	2,3,7,8-TCDD	0.0296 ng/Kg	0.0296U ng/Kg
SL-049-SA5DN-SB-15.5-16.5(RES)	OCDF	0.310 ng/Kg	0.310U ng/Kg
SL-049-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.674 ng/Kg	0.674U ng/Kg
SL-049-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.133 ng/Kg	0.133U ng/Kg
SL-049-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0464 ng/Kg	0.0464U ng/Kg
SL-049-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0481 ng/Kg	0.0481U ng/Kg
SL-049-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.228 ng/Kg	0.228U ng/Kg
SL-049-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0368 ng/Kg	0.0368U ng/Kg
SL-049-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0736 ng/Kg	0.0736U ng/Kg
SL-049-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0594 ng/Kg	0.0594U ng/Kg
SL-049-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0580 ng/Kg	0,0580U ng/Kg
SL-049-SA5DN-SB-4.0-5.0(RES)	OCDD	3.21 ng/Kg	3.21U ng/Kg
SL-049-SA5DN-SB-4.0-5.0(RES)	OCDF	0.212 ng/Kg	0.212U ng/Kg
SL-050-SA5DN-SB-11.2-12.5(RES)	1,2,3,4,6,7,8-HPCDD	0.626 ng/Kg	0.626U ng/Kg
SL-050-SA5DN-SB-11.2-12.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0890 ng/Kg	0.0890U ng/Kg
SL-050-SA5DN-SB-11.2-12.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0270 ng/Kg	0.0270U ng/Kg
SL-050-SA5DN-SB-11.2-12.5(RES)	1,2,3,4,7,8-HXCDF	0.0194 ng/Kg	0.0194U ng/Kg
SL-050-SA5DN-SB-11.2-12.5(RES)	1,2,3,6,7,8-HXCDD	0.0501 ng/Kg	0.0501U ng/Kg
SL-050-SA5DN-SB-11.2-12.5(RES)	1,2,3,6,7,8-HXCDF	0.0182 ng/Kg	0.0182U ng/Kg

9/27/2011 3:06:05 PM ADR version 1.4.0.111 Page 5 of 7

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method: 161 Matrix: SO	3 B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-050-SA5DN-SB-11.2-12.5(RES)	1,2,3,7,8,9-HXCDD	0.0401 ng/Kg	0.0401U ng/Kg
SL-050-SA5DN-SB-11.2-12.5(RES)	1,2,3,7,8-PECDF	0.0193 ng/Kg	0.0193U ng/Kg
SL-050-SA5DN-SB-11.2-12.5(RES)	2,3,4,6,7,8-HXCDF	0.0476 ng/Kg	0.0476U ng/Kg
SL-050-SA5DN-SB-11.2-12.5(RES)	2,3,4,7,8-PECDF	0.0408 ng/Kg	0.0408U ng/Kg
SL-050-SA5DN-SB-11.2-12.5(RES)	OCDD	3.92 ng/Kg	3.92U ng/Kg
SL-050-SA5DN-SB-11.2-12.5(RES)	OCDF	0.171 ng/Kg	0.171U ng/Kg
SL-050-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.786 ng/Kg	0.786U ng/Kg
SL-050-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.122 ng/Kg	0.122U ng/Kg
SL-050-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0627 ng/Kg	0.0627U ng/Kg
SL-050-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0310 ng/Kg	0.0310U ng/Kg
SL-050-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.160 ng/Kg	0.160U ng/Kg
SL-050-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0,0286 ng/Kg	0.0286U ng/Kg
SL-050-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.312 ng/Kg	0.312U ng/Kg
SL-050-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.333 ng/Kg	0.333U ng/Kg
SL-050-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0453 ng/Kg	0.0453U ng/Kg
SL-050-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0988 ng/Kg	0.0988U ng/Kg
SL-050-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0535 ng/Kg	0.0535U ng/Kg
SL-050-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0612 ng/Kg	0.0612U ng/Kg
SL-050-SA5DN-SB-4.0-5.0(RES)	OCDF	0.270 ng/Kg	0.270U ng/Kg
SL-111-SA8N-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDD	0.860 ng/Kg	0.860U ng/Kg
SL-111-SA8N-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDF	0.162 ng/Kg	0.162U ng/Kg
SL-111-SA8N-SB-3.0-4.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0325 ng/Kg	0.0325U ng/Kg
SL-111-SA8N-SB-3.0-4.0(RES)	1,2,3,4,7,8-HXCDF	0.110 ng/Kg	0.110U ng/Kg
SL-111-SA8N-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDD	0.214 ng/Kg	0.214U ng/Kg
SL-111-SA8N-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDF	0.0883 ng/Kg	0.0883U ng/Kg
SL-111-SA8N-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDD	0.315 ng/Kg	0.315U ng/Kg
SL-111-SA8N-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDF	0.217 ng/Kg	0.217U ng/Kg
SL-111-SA8N-SB-3.0-4.0(RES)	1,2,3,7,8-PECDD	0.139 ng/Kg	0.139U ng/Kg
SL-111-SA8N-SB-3.0-4.0(RES)	1,2,3,7,8-PECDF	0.121 ng/Kg	0.121U ng/Kg
SL-111-SA8N-SB-3.0-4.0(RES)	2,3,4,6,7,8-HXCDF	0.0818 ng/Kg	0.0818U ng/Kg
SL-111-SA8N-SB-3.0-4.0(RES)	2,3,4,7,8-PECDF	0.150 ng/Kg	0.150U ng/Kg
SL-111-SA8N-SB-3.0-4.0(RES)	OCDF	0.241 ng/Kg	0.241U ng/Kg
SL-116-SA8N-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.245 ng/Kg	0.245U ng/Kg
SL-116-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0415 ng/Kg	0.0415U ng/Kg
SL-116-SA8N-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.120 ng/Kg	0.120U ng/Kg
SL-116-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0,124 ng/Kg	0.124U ng/Kg
SL-116-SA8N-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0500 ng/Kg	0.0500U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/27/2011 3:06:05 PM ADR version 1.4.0.111 Page 6 of 7

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO	В			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-116-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.155 ng/Kg	0.155U ng/Kg
SL-116-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.146 ng/Kg	0.146U ng/Kg
SL-116-SA8N-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,148 ng/Kg	0.148U ng/Kg
SL-116-SA8N-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.102 ng/Kg	0.102U ng/Kg
SL-116-SA8N-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,133 ng/Kg	0.133U ng/Kg
SL-116-SA8N-SB-4.0-5.0(RES)	OCDF	0.475 ng/Kg	0.475U ng/Kg

ADR version 1.4.0.111 Page 7 of 7 9/27/2011 3:06:05 PM

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Watrix: 50							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
	<u> </u>	JB	0.424	E 22	PQL	ng/Kg	
SL-040-SA5DN-SB-10.5-	1,2,3,4,6,7,8-HPCDF			5.23	PQL	ng/Kg	
11.5	1,2,3,4,7,8,9-HPCDF	JB J	0.0853 0.0286	5.23 5.23	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0266	5.23	PQL	ng/Kg	
1	1,2,3,4,7,8-HXCDF	JB	0.0433	5.23	PQL	ng/Kg	
1	1,2,3,6,7,8-HXCDD	JB	0.227	5.23	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.123	5.23	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JBQ	0.123	5.23	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0760	5.23	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	0.0327	5.23	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0439	5.23	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0287	1.05	PQL	ng/Kg	
	2,3,7,8-TCDD OCDF	JBQ	1.12	10.5	PQL	ng/Kg	
				 			
SL-040-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	1,77	5.79	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.246	5.79	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.191	5.79	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.459	5.79	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.35	5.79	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.228	5.79	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.759	5.79	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.601	5.79	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.127	5.79	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.834	5.79	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.191	5.79	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.691	5.79	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0599	1.16	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.325	1.16	PQL	ng/Kg	
	OCDF	JB	5.20	11.6	PQL	ng/Kg	
SL-041-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	0.988	5.93	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.129	5.93	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.173	5.93	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.257	5.93	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.686	5.93	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.168	5.93	PQL	ng/Kg	
,	1,2,3,7,8,9-HXCDD	JB	0.778	5.93	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.801	5.93	PQL	ng/Kg	5 (un doicoid)
	1,2,3,7,8-PECDD	JB	0.185	5.93	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.570	5.93	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.174	5.93	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.572	5.93	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.113	1.19	PQL	ng/Kg	
	OCDF	JB	2.66	11.9	PQL	ng/Kg	

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Matrix: 50						1	···
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-041-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF	JB	0.915	5.48	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.165	5.48	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.228	5.48	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.283	5.48	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.564	5.48	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.264	5.48	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.324	5.48	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.267	5.48	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.393	5.48	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.462	5.48	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.228	5.48	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.412	5.48	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0998	1.10	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.154	1.10	PQL	ng/Kg	
	OCDF	JB	2.13	11.0	PQL	ng/Kg	•
SL-042-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	2.44	5.77	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.282	5.77	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.276	5.77	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.229	5.77	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.28	5.77	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.207	5.77	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.562	5.77	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.243	5.77	PQL	ng/Kg	J (all detects)
İ	1,2,3,7,8-PECDD	JB	0.249	5.77	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.386	5.77	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.236	5.77	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.363	5.77	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0594	1.15	PQL	ng/Kg	
	2,3,7,8-TCDF	j	0.0863	1.15	PQL	ng/Kg	
	OCDF	JB	7.22	11.5	PQL	ng/Kg	
SL-042-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF	JB	1.03	5.46	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.173	5.46	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.221	5.46	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.314	5.46	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.633	5.46	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.258	5.46	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.349	5.46	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.258	5.46	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.310	5.46	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.418	5.46	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.222	5.46	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.432	5.46	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0660	1.09	PQL	пg/Kg	
	2,3,7,8-TCDF	J	0.143	1.09	PQL	ng/Kg	
	OCDF	JB	2.93	10.9	PQL	ng/Kg	

Lab Reporting Batch ID: DX101 Laboratory: LL

eQAPP Name: CDM SSFL 110509 EDD Filename: DX101_v1

Method: 1613B Matrix: SO Reporting Lab RLQual Result Limit Units Flag SampleID Analyte Type SL-043-SA5DN-SB-4.0-5.0 5.67 PQL 1,2,3,4,6,7,8-HPCDF 1.44 ng/Kg **JBQ** 0.177 5.67 PQL ng/Kg 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 0.104 5.67 PQL ng/Kg 1,2,3,4,7,8-HXCDF **JBQ** 0.159 5.67 **PQL** ng/Kg 1,2,3,6,7,8-HXCDD JB 0.663 5.67 **PQL** ng/Kg ng/Kg JB 0.144 5.67 PQL 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD JB 0.319 5.67 PQL ng/Kg J (all detects) JB 0.242 5.67 PQL ng/Kg 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD JB 0.151 5.67 **PQL** ng/Kg ng/Kg 1,2,3,7,8-PECDF JB 5.67 **PQL** 0.1712,3,4,6,7,8-HXCDF JΒ 0.141 5.67 **PQL** ng/Kg PQL 2,3,4,7,8-PECDF **JBQ** 0.224 5.67 ng/Kg **PQL** 2,3,7,8-TCDD JBQ 0.0359 1.13 ng/Kg OCDF JB 3.86 11.3 **PQL** ng/Kg SL-043-SA5DN-SB-9.0-10.0 1,2,3,4,6,7,8-HPCDD JB 0.473 5.58 **PQL** ng/Kg PQL 5.58 JB. 0.104 ng/Kg 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF JBQ 0.0447 5.58 **PQL** ng/Kg PQL 5.58 **JBQ** 0.0328 ng/Kg 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF **JBQ** 0.0135 5.58 PQL ng/Kg 5.58 PQL 1,2,3,7,8,9-HXCDD **JBQ** 0.0240 ng/Kg **JBQ** 0.0198 5.58 **PQL** ng/Kg J (all detects) 1,2,3,7,8,9-HXCDF 5.58 PQL ng/Kg **JBQ** 0.0227 1,2,3,7,8-PECDF JB 0.0558 5.58 PQL ng/Kg 2.3.4.6.7.8-HXCDF PQL **JBQ** 5.58 ng/Kg 0.0749 2,3,4,7,8-PECDF JBQ 0.0305 1.12 **PQL** ng/Kg 2,3,7,8-TCDD JB PQL ng/Kg locdd 2.53 11.2 ng/Kg JΒ 0.192 11.2 **PQL** OCDF 5.83 JB 0.737 PQL ng/Kg SL-045-SA5DN-SB-4.0-5.0 1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF JΒ 0.273 5.83 **PQL** ng/Kg 1,2,3,4,7,8,9-HPCDF JB 0.125 5.83 PQL ng/Kg 0.324 5.83 PQL ng/Kg 1,2,3,4,7,8-HxCDD **PQL** 1,2,3,4,7,8-HXCDF JΒ 0.421 5.83 ng/Kg 1,2,3,6,7,8-HXCDD JB 0.329 5.83 **PQL** ng/Kg 1,2,3,6,7,8-HXCDF JB. 0.384 5.83 PQL ng/Kg **JBQ** 0.329 5.83 **PQL** ng/Kg 1,2,3,7,8,9-HXCDD PQL J (all detects) 1,2,3,7,8,9-HXCDF **JBQ** 0.343 5.83 ng/Kg 1,2,3,7,8-PECDD JB 0.535 5.83 **PQL** ng/Kg PQL 1,2,3,7,8-PECDF JΒ 0.504 5.83 ng/Kg 5.83 **PQL** 2,3,4,6,7,8-HXCDF JB 0.313 ng/Kg PQL 2,3,4,7,8-PECDF JB. 0.541 5.83 ng/Kg 0.0874 PQL ng/Kg

2.3.7.8-TCDD

2,3,7,8-TCDF

OCDD

OCDF

JBQ

JQ

JB

JBQ

0.0636

2.98

0.321

1.17

1.17

11.7

11.7

PQL

PQL

PQL

ng/Kg

ng/Kg

ng/Kg

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-045-SA5DN-SB-9.0-10.0	1 2 3 4 6 7 8-HPCDD	JB	0.854	5.70	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.206	5.70	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.139	5.70	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.100	5.70	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.133	5.70	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.117	5.70	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JВ	0.124	5.70	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.124	5.70	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0953	5.70	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.105	5.70	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.172	5.70	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.147	5.70	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JВ	0.177	5.70	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0458	1.14	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.0627	1.14	PQL	ng/Kg	
	OCDD	JΒ	5.29	11.4	PQL	ng/Kg	
	OCDF	JBQ	0.410	11.4	PQL	ng/Kg	
01 010 045511 05 1050							
SL-046-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.851	5.60	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.166	5.60	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.122	5.60	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0323	5.60	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0469	5.60	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0826	5.60	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0268	5.60	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0898	5.60	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.106	5.60	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0323	5.60	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0743	5.60	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0749	5.60	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0242	1.12	PQL	ng/Kg	
	OCDD	JB	7.30	11.2	PQL	ng/Kg	
	OCDF	JB	0.421	11.2	PQL	ng/Kg	
SL-046-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.659	5.53	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.147	5.53	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0833	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0231	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0331	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0554	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0296	5.53	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JB	0.0486	5.53	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0126	5.53	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0523	5.53	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0831	5.53	PQL	ng/Kg	
	OCDD	JB	4.70	11.1	PQL	ng/Kg	
	OCDF	JB	0.260	11.1	PQL	ng/Kg	

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

watrix: 50	1			· · · · · · · · · · · · · · · · · · ·		1	
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-048-SA5DN-SB-11.5-	1,2,3,4,6,7,8-HPCDD	JBQ	0.473	5.56	PQL	ng/Kg	
12.5	1,2,3,4,6,7,8-HPCDF	JB	0.0899	5.56	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0393	5.56	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0208	5.56	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0294	5.56	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0428	5.56	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0186	5.56	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JBQ	0.0575	5.56	PQL	ng/Kg	o (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0499	5.56	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	0.0423	5.56	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0553	5.56	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0480	5.56	PQL	ng/Kg	
	OCDD	JBQ	0.894	11.1	PQL	ng/Kg	
	OCDF	JB	0.200	11.1	PQL	ng/Kg	
SL-048-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	1.19	5.81	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.250	5.81	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0985	5.81	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0421	5.81	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0760	5.81	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.187	5.81	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0792	5.81	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.284	5.81	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.390	5.81	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0583	5.81	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0841	5.81	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0983	5.81	PQL	ng/Kg	1
	2,3,4,7,8-PECDF	JBQ	0.0964	5.81	PQL	ng/Kg	
	OCDD	JB	7.46	11.6	PQL	ng/Kg	
	OCDF	JB	0.522	11.6	PQL	ng/Kg	-
SL-049-SA5DN-SB-15.5-	1,2,3,4,6,7,8-HPCDD	JB	0.926	5.66	PQL	ng/Kg	
16.5	1,2,3,4,6,7,8-HPCDF	JB	0.158	5.66	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0619	5.66	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0260	5.66	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0413	5.66	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0529	5.66	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0362	5.66	PQL	ng/Kg	[/= - -4-4-
	1,2,3,7,8,9-HXCDD	JBQ	0.0524	5.66	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0419	5.66	PQL PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ JB	0.0197 0.0588	5.66 5.66	PQL	ng/Kg ng/Kg	
	2,3,4,6,7,8-HXCDF	JB JB	0.0366	5.66	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0009	1.13	PQL	ng/Kg	
	2,3,7,8-TCDD OCDD	JBQ	0.0296 8.45	11.13	PQL	ng/Kg	
	OCDF	JB	0.310	11.3	PQL	ng/Kg	
	OCDF	JD	0.510	11.0	F V4L	Hightig	

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Wautx. 30							
		Lab		Reporting	RL		ŧ
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-049-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.674	5.89	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.133	5.89	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0464	5.89	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0376	5.89	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0481	5.89	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.228	5.89	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0368	5.89	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JB	0.418	5.89	PQL	ng/Kg	J (all delects)
	1,2,3,7,8,9-HXCDF	JB	0.517	5.89	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0736	5.89	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0594	5.89	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0580	5.89	PQL	ng/Kg	
	OCDD	JB	3.21	11.8	PQL	ng/Kg	
	OCDF	JBQ	0.212	11.8	PQL	ng/Kg	
SL-050-SA5DN-SB-11.2-	1,2,3,4,6,7,8-HPCDD	JB	0.626	5.55	PQL	ng/Kg	
12.5	1,2,3,4,6,7,8-HPCDF	JB	0.0890	5.55	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0270	5.55	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0254	5.55	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0194	5.55	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0501	5.55	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0182	5.55	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JBQ	0.0401	5.55	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0193	5.55	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0476	5.55	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0408	5.55	PQL	ng/Kg	
	OCDD	JB	3.92	11.1	PQL	ng/Kg	
	OCDF	JB	0.171	11.1	PQL	ng/Kg	
SL-050-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.786	5.66	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.122	5.66	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0627	5.66	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0409	5.66	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0310	5.66	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.160	5.66	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0286	5.66	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.312	5.66	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.333	5.66	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0453	5.66	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0988	5.66	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0535	5.66	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0612	5.66	PQL	ng/Kg	
	OCDD	JB	5.42	11.3	PQL	ng/Kg	
	OCDF	JB	0.270	11.3	PQL	ng/Kg	

Lab Reporting Batch ID: DX101 Laboratory: LL

EDD Filename: DX101_v1 eQAPP Name: CDM_SSFL_110509

Watrix: SU							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-111-SA8N-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDD	JB	0.860	5.29	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.162	5.29	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0325	5.29	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0523	5.29	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.110	5.29	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.214	5.29	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JВ	0.0883	5.29	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.315	5.29	PQL	ng/Kg	J (all detects)
ļ	1,2,3,7,8,9-HXCDF	JBQ	0.217	5.29	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.139	5.29	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.121	5.29	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0818	5.29	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.150	5.29	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0454	1.06	PQL	ng/Kg	
	OCDD	JB	5.17	10.6	PQL	ng/Kg	
	OCDF	JBQ	0.241	10.6	PQL	ng/Kg	
SL-116-SA8N-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	2.49	5.77	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.245	5.77	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0415	5.77	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0311	5.77	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.120	5.77	PQL	ng/Kg	
;	1,2,3,6,7,8-HXCDD	JBQ	0.124	5.77	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0500	5.77	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JB	0.155	5.77	PQL	ng/Kg	o (an detecto)
	1,2,3,7,8,9-HXCDF	JBQ	0.146	5.77	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.148	5.77	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.102	5.77	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.133	5.77	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.0658	1.15	PQL	ng/Kg	
	OCDF	JB	0.475	11.5	PQL	ng/Kg	

SAMPLE DELIVERY GROUP

DX102

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
13-June-2011	SL-047-SA5DN-SB-10.0-11.0	6314509	N	METHOD	1613B	111
13-June-2011	SL-054-SA5DN-SB-4.0-5.0	6314510	N	METHOD	1613B	111
13-June-2011	SL-054-SA5DN-SB-9.0-10.0	6314511	N	METHOD	1613B	tii
13-June-2011	SL-202-SA5DN-SB-4.0-5.0	6314512	N	METHOD	1613B	III
13-June-2011	SL-202-SA5DN-SB-9.0-10.0	6314513	N	METHOD	1613B	Ш
13-June-2011	SL-047-SA5DN-SB-4.0-5.0	6314508	N	METHOD	16 13 B	III
14-June-2011	SL-033-SA5DN-SB-11.0-12.0	631565 1	N	METHOD	1613B	Ш
14-June-2011	SL-032-SA5DN-SB-4.0-5.0	6315646	N	METHOD	1613B	III
14-June-2011	SL-032-SA5DN-SB-10.0-11.0	6315647	N	METHOD	1613B	III
14-June-2011	SL-033-SA5DN-SB-4.0-5.0	6315648	N	METHOD	1613B	Ш
14-June-2011	SL-033-SA5DN-SB-4.0-5.0MSD	6315650	MSD	METHOD	1613B	Ш
14-June-2011	SL-035-SA5DN-SB-4.0-5.0	6315652	N	METHOD	1613B	Ш
14-June-2011	SL-035-SA5DN-SB-9.5-10.5	6315653	N	METHOD	1613B	Ш
14-June-2011	SL-044-SA5DN-SB-4.0-5.0	6315654	N	METHOD	1613B	III
14-June-2011	SL-044-SA5DN-SB-12.0-13.0	6315655	N	METHOD	1613B	Ш
14-June-2011	DUP14-SA5DN-QC-061411	6315656	FD	METHOD	1613B	Ш
14-June-2011	EB17-SA5DN-SB-061411	6315657	EB	METHOD	1613B	Ш
14-June-2011	SL-033-SA5DN-SB-4.0-5.0MS	6315649	MS	METHOD	1613B	Ш
16-June-2011	SL-058-SA5DN-SB-9.0-10.0	6318865	N	METHOD	1613B	III
16-June-2011	SL-057-SA5DN-SB-4.0-5.0	6318862	N	METHOD	1613B	III
16-June-2011	SL-057-SA5DN-SB-9.0-10.0	6318863	N	METHOD	1613B	III
16-June-2011	SL-058-SA5DN-SB-4.0-5.0	6318864	N	METHOD	1 613B	Ш

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: AQ

Sample ID: EB17-SA5DN-SB-061411 Collected: 6/14/2011 1:30:00 Analysis Type: RES Dilution: 1 Data Lab DL RLReview Reason Lab Analyte Result Qual DL Туре RL Type Units Qual Code 1,2,3,4,6,7,8-HPCDD 6.79 JB 0.361 MDL 10.3 **PQL** U pg/L 13.5 В 0.191 MDL 10.3 **PQL** pg/L U В 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1.28 JBQ 0.228 MDL 10.3 **PQL** pg/L υ В JBQ MDL 10.3 PQL U В 1,2,3,4,7,8-HxCDD 0.293 0.186 pg/L U В 1,2,3,4,7,8-HXCDF 2.43 JBQ 0.313 MDL 10.3 **PQL** pg/L υ 0.775 JBQ 0.196 MDL 10.3 PQL В 1,2,3,6,7,8-HXCDD pg/L **PQL** U В 1,2,3,6,7,8-HXCDF 1.74 JB 0.298 MDL 10.3 pg/L 0.464 JBQ 0.185 MDL 10.3 PQL U В 1,2,3,7,8,9-HXCDD pg/L U 1,2,3,7,8,9-HXCDF 1.18 JВ 0.292 MDL 10.3 PQL pg/L В U В 1,2,3,7,8-PECDF 0.376 JB 0.104 MDL 10.3 PQL pg/L U 2,3,4,6,7,8-HXCDF 3.47 JB 0.299 MDL. 10.3 **PQL** pg/L В U 2,3,4,7,8-PECDF 1.37 JBQ 0.0944 MDL 10.3 PQL pg/L В J Z JQ MDL 2.05 **PQL** 2,3,7,8-TCDF 0.212 0.136 pg/L JB pg/L Ų OCDD 13.1 0.361 MDL 20.5 PQL В

Method Category: SVOA Method: 1613B Matrix: SO

0.489

MDL

20.5

PQL

pg/L

JВ

6.35

Sample ID: DUP14-SA5DN-QC-061411	Collec	Collected: 6/14/2011 10:45:00 Analysis Type:							Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	6.19	В	0.0374	MDL	5.72	PQL	ng/Kg	J	FD
1,2,3,4,6,7,8-HPCDF	1.34	JB	0.0180	MDL	5.72	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8,9-HPCDF	0.139	JBQ	0.0217	MDL	5.72	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.150	JB	0.0322	MDL	5.72	PQL	ng/Kg	บม	B, FD
1,2,3,4,7,8-HXCDF	0.402	JB	0.0292	MDL	5.72	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDD	0.449	JB	0.0325	MDL	5.72	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDF	0.304	JB	0.0275	MDL	5.72	PQL	ng/Kg	J	Z, FD
1,2,3,7,8,9-HXCDD	0.410	JB	0.0317	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.394	JBQ	0.0295	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.278	JBQ	0.0317	MDL	5.72	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDF	0.789	JB	0.0314	MDL	5.72	PQL	ng/Kg	J	Z, FD
2,3,4,6,7,8-HXCDF	0.342	JB	0.0281	MDL	5.72	PQL	ng/Kg	J	Z, FD

^{*} denotes a non-reportable result

OCDF

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 9/27/2011 3:14:00 PM ADR version 1.4.0.111

₿

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: DUP14-SA5DN-QC-061411 Collected: 6/14/2011 10:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,7,8-PECDF	0.716	JB	0.0285	MDL	5.72	PQL	ng/Kg	J	Z, FD
2,3,7,8-TCDD	0.0727	JBQ	0.0228	MDL	1,14	PQL	ng/Kg	UJ	B, FD
2,3,7,8-TCDF	0.198	JВ	0.0525	MDL	1.14	PQL	ng/Kg	J	Z, FD
OCDD	54.0	В	0.0396	MDL	11.4	PQL	ng/Kg	J	FD
OCDF	1.57	JB	0.0247	MDL	11.4	PQL	ng/Kg	UJ	B, FD

Sample ID: SL-032-SA5DN-SB-10.0-11.0 Collected: 6/14/2011 12:25:00 Analysis Type: RES Dilution: 1

Sample ID: SL-032-SASDN-SB-10.0-11.0	Collec	tea: 6/14/2	011 12:25	OU A	narysis rj	pe: KEO		Dilation: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.495	JB	0.0424	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.118	JBQ	0.0180	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0966	JBQ	0.0296	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0507	JBQ	0.0376	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0643	JBQ	0.0198	MDL	5.42	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.117	JBQ	0.0370	MDL	5.42	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0700	JBQ	0.0169	MDL	5.42	PQL	ng/Kg	Ų	В
1,2,3,7,8,9-HXCDD	0.124	JB	0.0346	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.104	JBQ	0.0224	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0772	JBQ	0.0279	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0847	JB	0.0115	MDL	5.42	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0776	JBQ	0.0187	MDL	5.42	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.132	JB	0.0112	MDL	5.42	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0699	JBQ	0.0239	MDL	1.08	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0269	JBQ	0.0210	MDL	1.08	PQL	ng/Kg	U	В
OCDD	0.938	JB	0.0371	MDL	10.8	PQL	ng/Kg	U	В
OCDF	0.273	JB	0.0374	MDL	10.8	PQL	ng/Kg	υ	В

Sample ID: SL-032-SA5DN-SB-4.0-5.0 Collected: 6/14/2011 12:20:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.500	JB	0.0245	MDL	5.51	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.106	JB	0.00787	MDL	5.51	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0694	JB	0.0123	MDL	5.51	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.135	JBQ	0.0206	MDL	5.51	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.137	JB	0.0108	MDL	5.51	PQL	ng/Kg	Ų	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX102

eQAPP Name: CDM SSFL 110509 EDD Filename: DX102 v1

Method Category: SVOA Matrix: SO Method: 1613B

Collected: 6/14/2011 12:20:00 Analysis Type: RES Dilution: 1 Sample ID: SL-032-SA5DN-SB-4.0-5.0 Data Lab Lab DLRL Review Reason Units Qual Result Qual DL RL Code Analyte Type Type 0.123 MDL 5.51 PQL U 1,2,3,6,7,8-HXCDD JB 0.0211 ng/Kg **PQL** U В 1,2,3,6,7,8-HXCDF 0.163 JВ 0.00958 MDL 5.51 ng/Kg 1,2,3,7,8,9-HXCDD 0.137 JBQ 0.0209 MDL 5.51 **PQL** ng/Kg U В MDL 5.51 PQL U В 1,2,3,7,8,9-HXCDF 0.112 **JBQ** 0.0128 ng/Kg 0.244 JB 0.0244 MDL 5.51 **PQL** U В 1,2,3,7,8-PECDD ng/Kg 0.244 JB 0.0107 MDL 5.51 PQL J Z 1,2,3,7,8-PECDF ng/Kg 2,3,4,6,7,8-HXCDF 0.0947 JB 0.0103 MDL 5.51 PQL ng/Kg U В MDL U В 2,3,4,7,8-PECDF 0.250 JBQ 0.0104 5.51 **PQL** ng/Kg U 0.0541 JBQ 0.0218 MDL 1.10 PQL ng/Kg В 2,3,7,8-TCDD JBQ 0.0228 MDL 1.10 PQL U В 2,3,7,8-TCDF 0.0930 ng/Kg U OCDD 1.52 JB 0.0219 MDL 11.0 **PQL** ng/Kg JBQ 11.0 **PQL** U В

Collected: 6/14/2011 11:50:00 Analysis Type: RES Dilution: 1 Sample ID: SL-033-SA5DN-SB-11.0-12.0

0.0238

MDL

ng/Kg

0.161

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.871	JB	0.0277	MDL	5.55	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.248	JBQ	0.00939	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.260	JBQ	0.0191	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.136	JBQ	0.0197	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.165	JB	0.0163	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.204	JBQ	0.0203	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.129	JB	0.0120	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.182	JBQ	0.0199	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.245	JBQ	0.0162	MDL	5.55	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.115	JB	0.0204	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.102	JBQ	0.0101	MDL	5.55	PQL	ng/Kg	Ų	В
2,3,4,6,7,8-HXCDF	0.138	JB	0.0136	MDL	5.55	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.142	JBQ	0.00972	MDL	5.55	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0318	JBQ	0.0178	MDL	1.11	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0313	JBQ	0.0193	MDL	1.11	PQL	ng/Kg	Ų	В
OCDD	3.84	JB	0.0220	MDL	11.1	PQL	ng/Kg	U	В
OCDF	0.875	JB	0.0255	MDL	11.1	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

OCDF

Laboratory: LL

Lab Reporting Batch ID: DX102 Laboratory: LL
EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-033-SA5DN-SB-4,0-5.0 Collected: 6/14/2011 10:35:00 Analysis Type: RES Dilution: 1

Sample ID: 5L-033-5A5DN-56-4.0-5.0	Collec	Collected: 6/14/2011 10:35:00 Arralysis 1						Dittation: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.80	JB	0.0434	MDL.	5.62	PQL	ng/Kg	ı	Z, FD
1,2,3,4,6,7,8-HPCDF	0.170	JB	0.0163	MDL	5.62	PQL	ng/Kg	UJ	B, FD
1,2,3,4,7,8,9-HPCDF	0.0887	JB	0.0271	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0715	JBQ	0.0334	MDL	5.62	PQL	ng/Kg	UJ	B, FD
1,2,3,4,7,8-HXCDF	0.0202	U	0.0202	MDL	5.62	PQL	ng/Kg	υJ	FD
1,2,3,6,7,8-HXCDD	0.264	JB	0.0341	MDL	5.62	PQL	ng/Kg	UJ	B, FD
1,2,3,6,7,8-HXCDF	0.0548	JBQ	0.0172	MDL	5.62	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8,9-HXCDD	0.300	JB	0.0324	MDL	5.62	PQL	ng/Kg	U	B
1,2,3,7,8,9-HXCDF	0.259	JBQ	0.0216	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0241	υ	0.0241	MDL	5.62	PQL	ng/Kg	UJ	FD
1,2,3,7,8-PECDF	0.0797	JBQ	0.0127	MDL	5.62	PQL	ng/Kg	บป	B, FD
2,3,4,6,7,8-HXCDF	0.0447	JBQ	0.0177	MDL	5.62	PQL	ng/Kg	UJ	B, FD
2,3,4,7,8-PECDF	0.121	JB	0.0120	MDL	5.62	PQL	ng/Kg	UJ	B, FD
2,3,7,8-TCDD	0.0244	JBQ	0.0190	MDL	1.12	PQL	ng/Kg	UJ	B, FD
2,3,7,8-TCDF	0.0326	JBQ	0.0185	MDL	1.12	PQL	ng/Kg	UJ	B, FD
OCDD	14.7	В	0.0343	MDL	11.2	PQL	ng/Kg	J	Q, FD
OCDF	0.446	JB	0.0334	MDL	11.2	PQL	ng/Kg	UJ	B, FD

Sample ID: SL-035-SA5DN-SB-4.0-5.0 Collected: 6/14/2011 8:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.433	JBQ	0.0245	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0852	JB	0.00902	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0479	JBQ	0.0136	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0444	JBQ	0.0169	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0296	JBQ	0.0129	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0413	JBQ	0.0164	MDL	5.72	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0457	JBQ	0.0110	MDL	5.72	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0587	JBQ	0.0160	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0714	JBQ	0.0118	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0133	JB	0.00925	MDL	5.72	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0334	JBQ	0.00948	MDL	5.72	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0631	JBQ	0.00890	MDL	5.72	PQL	ng/Kg	U	В
OCDD	1.91	JB	0.0232	MDL	11.4	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA		-4			a drawa	le district in	
Method:	1613B	Matrix:		so	1			1 214

Sample ID: SL-035-SA5DN-SB-4.0-5.0 Collected: 6/14/2011 8:55:00 Analysis Type: RES Dilution: 1 Data DL RLReview Reason Lab Lab Analyte Result Qual DL Туре RLType Units Qual Code OCDF 0.243 0.0311 MDL 11.4 PQL U JB ng/Kg

Sample ID: SL-035-SA5DN-SB-9.5-10.5 Collected: 6/14/2011 9:05:00 Analysis Type: RES Dilution: 1 Data Review Lab Lab DL RLReason DL RL Units Qual Result Qual Code Analyte Туре Type U 1,2,3,4,6,7,8-HPCDD 0.581 JB 0.0245 MDL 5.53 PQL ng/Kg В U 1,2,3,4,6,7,8-HPCDF 0.584 JB 0.00862 MDL 5.53 PQL ng/Kg В 0.0895 JB 0.0167 MDL, 5.53 PQL ng/Kg U В 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 0.0313 **JBQ** 0.0187 MDL 5.53 PQL ng/Kg U В U 0.108 JB 0.0177 MDL 5.53 PQL В 1,2,3,4,7,8-HXCDF ng/Kg 1,2,3,6,7,8-HXCDD 0.0605 JBQ 0.0185 MDL 5.53 **PQL** ng/Kg Ų В 0.0805 JB 0.0156 MDL 5.53 **PQL** ng/Kg U В 1,2,3,6,7,8-HXCDF U В 1,2,3,7,8,9-HXCDD 0.0778 JB 0.0184 MDL 5.53 **PQL** ng/Kg ng/Kg U 1,2,3,7,8,9-HXCDF 0.0740 JB 0.0181 MDL 5.53 PQL В **PQL** υ 1,2,3,7,8-PECDD 0.0241 JBQ 0.0209 MDL 5.53 ng/Kg В 0.00985 U 1,2,3,7,8-PECDF 0.0423 JBQ MDL 5.53 PQL ng/Kg В Ų 2,3,4,6,7,8-HXCDF 0.172 JB 0.0174 MDL 5.53 PQL ng/Kg В **PQL** Ų В 2,3,4,7,8-PECDF 0.0868 JBQ 0.00974 MDL 5.53 ng/Kg PQL **JBQ** 0.0166 MDL 1.11 U В 2,3,7,8-TCDD 0.0188 ng/Kg 0.0180 JBQ 0.0169 MDL 1.11 **PQL** U В 2,3,7,8-TCDF ng/Kg JΒ PQL U В 1.18 0.0193 MDL 11.1 OCDD ng/Kg OCDF 0.489 JBQ 0.0277 MDL 11.1 **PQL** ng/Kg U В

Sample ID: SL-044-SA5DN-SB-12.0-13.0 Collected: 6/14/2011 3:05:00 Analysis Type: RES Dilution: 1

Sample ID. SE-044-SASDIN-SD-12.0-13.0	Conec	teu. Ui ITIA	.011 0.00.0	, A	nanyono n	pe. ILLO		•	<i></i>
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.02	JB	0.0250	MDL,	5.52	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.600	JB	0.0104	MDL	5.52	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0976	JBQ	0.0215	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.109	JBQ	0.0232	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.232	JBQ	0.0218	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.138	JBQ	0.0229	MDL	5.52	PQL	ng/Kg	Ų	В
1,2,3,6,7,8-HXCDF	0.192	JB	0.0182	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.157	JBQ	0.0227	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.113	JBQ	0.0255	MDL	5.52	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX102

OCDF

Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-044-SA5DN-SB-12.0-13.0 Collected: 6/14/2011 3:05:00 Analysis Type: RES Dilution: 1 Data Review Reason Lab Lab DLDLRLUnits Qual Code Analyte Result Qual Type Type PQL U В 0.166 JBQ 0.0262 MDL 5.52 ng/Kg 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 0.316 JВ 0.0140 MDL 5.52 PQL ng/Kg J Z PQL U 0.229 JΒ 0.0197 MDL 5.52 ng/Kg В 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF Ų В 0.242 JBQ 0.0142 MDL 5.52 PQL ng/Kg Ų MDL В 2,3,7,8-TCDD 0.0564 JBQ 0.0235 1.10 PQL ng/Kg U 2,3,7,8-TCDF 0.0421 **JBQ** 0.0290 MDL 1.10 **PQL** ng/Kg В MDL 11.0 PQL U JΒ 0.0264 ng/Kg В OCDD 3.77

Sample ID: SL-044-SA5DN-SB-4.0-5.0 Collected: 6/14/2011 2:55:00 Analysis Type: RES Dilution: 1

0.0297

MDL

11.0

PQL

ng/Kg

U

JBQ

0.552

Sample in: SE-044-SASDN-SB-4.0-5.0	Conec	teu. 0/14/2	.011 2.33.0	.00 Analysis Type. 1020				Dilution. 1		
nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	1.60	JB	0.0253	MDL	5.69	PQL	ng/Kg	υ	В	
1,2,3,4,6,7,8-HPCDF	0.611	JB	0.00976	MDL	5.69	PQL	ng/Kg	υ	В	
1,2,3,4,7,8,9-HPCDF	0.0999	JBQ	0.0167	MDL	5.69	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HxCDD	0.0454	JBQ	0.0222	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.132	JBQ	0.0228	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.240	JB	0.0226	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.131	JBQ	0.0209	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.283	JBQ	0.0221	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.382	JB	0.0241	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0619	JBQ	0.0253	MDL	5.69	PQL	ng/Kg	Ų	В	
1,2,3,7,8-PECDF	0.268	JBQ	0.0168	MDL	5.69	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.174	JB	0.0216	MDL	5.69	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.185	JBQ	0.0164	MDL	5.69	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0327	JBQ	0.0272	MDL	1.14	PQL	ng/Kg	U	В	
OCDD	11.2	JB	0.0227	MDL	11.4	PQL	ng/Kg	J	Z	
OCDF	0.657	JВ	0.0231	MDL	11.4	PQL	ng/Kg	U	В	

Sample ID: SL-047-SA5DN-SB-10.0-11.0 Collected: 6/13/2011 9:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.18	JB	0.0229	MDL	5.27	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.125	JBQ	0.00879	MDL	5.27	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0460	JBQ	0.0135	MDL	5.27	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

9/27/2011 3:14:01 PM ADR version 1.4.0.111 Page 6 of 15

Lab Reporting Batch ID: DX102 Laboratory: LL eQAPP Name: CDM_SSFL_110509 EDD Filename: DX102_v1

Method Category: SVOA Method: Matrix: SO 1613B

Sample ID: SL-047-SA5DN-SB-10.0-11.0	Collected: 6/13/2011 9:10:00	Analysis Type: RES	Dilution: 1

Sample ID: SL-047-SA5DN-SB-10.0-11.0	Collec	ted: 6/13/2	2011 9:10:0	0 A	Analysis Type: RES				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8-HxCDD	0.0324	JBQ	0.0193	MDL	5.27	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0313	JBQ	0.00943	MDL	5.27	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.0732	JBQ	0.0191	MDL	5.27	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDF	0.0290	JBQ	0.00847	MDL	5.27	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.0783	JB	0.0182	MDL	5.27	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.0544	JB	0.0104	MDL	5.27	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0203	JBQ	0.0177	MDL	5.27	PQL	ng/Kg	υ	В		
2,3,4,6,7,8-HXCDF	0.0368	JBQ	0.00857	MDL	5.27	PQL	ng/Kg	υ	В		
2,3,4,7,8-PECDF	0.0497	JBQ	0.00868	MDL	5.27	PQL	ng/Kg	υ	В		
OCDF	0.435	JB	0.0228	MDL	10.5	PQL	ng/Kg	υ	В		

Collected: 6/13/2011 9:00:00 Analysis Type: RES Dilution: 1 Sample ID: SL-047-SA5DN-SB-4.0-5.0

nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.02	JB	0.0269	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.192	JBQ	0.0123	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0595	JBQ	0.0178	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0676	JB	0.0269	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0497	JBQ	0.0126	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.145	JB	0.0272	MDL	5.61	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0433	JB	0.0112	MDL	5.61	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.166	JBQ	0.0258	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0918	JB	0.0139	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0379	JBQ	0.00841	MDL	5.61	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0429	JBQ	0.0118	MDL	5.61	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0540	JBQ	0.00830	MDL	5.61	PQL	ng/Kg	U	В
OCDF	0.448	JB	0.0253	MDL	11.2	PQL	ng/Kg	U	В

Analysis Type: RES Dilution: 1 Sample ID: SL-054-SA5DN-SB-4.0-5.0 Collected: 6/13/2011 3:10:00

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.20	JB	0.0252	MDL	6.05	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.215	JB	0.00873	MDL	6.05	PQL	ng/Kg	Ų	В
1,2,3,4,7,8,9-HPCDF	0.0645	JBQ	0.0149	MDL	6.05	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0281	JB	0.0222	MDL	6.05	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-054-SA5DN-SB-4.0-5.0 Collected: 6/13/2011 3:10:00 Analysis Type: RES Dilution: 1

						•				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HXCDF	0.0525	JB	0.0105	MDL	6.05	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.144	JВ	0.0223	MDL	6.05	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0370	JB	0.00921	MDL	6.05	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.161	JB	0.0216	MDL	6.05	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.115	JB	0.0126	MDL	6.05	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0470	JBQ	0.0205	MDL	6.05	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDF	0.0341	JBQ	0.00945	MDL	6.05	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0426	JB	0.00994	MDL	6.05	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0695	JB	0.00945	MDL	6.05	PQL	ng/Kg	U	В	
OCDE	0.754	JB	0.0227	MDL	12.1	PQL	ng/Kg	U	В	

Sample ID: SL-054-SA5DN-SB-9.0-10.0 Collected: 6/13/2011 3:15:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.905	JB	0.0244	MDL	5.91	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0713	JBQ	0.00860	MDL	5.91	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0297	JBQ	0.0130	MDL	5.91	PQL	ng/Kg	Ų	В
1,2,3,4,7,8-HxCDD	0.0246	JВ	0.0180	MDL	5.91	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0414	JBQ	0.00920	MDL	5.91	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0419	JBQ	0.0178	MDL	5.91	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0214	JB	0.00836	MDL	5.91	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0676	JBQ	0.0178	MDL	5.91	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0373	JBQ	0.0102	MDL	5.91	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0347	JB	0.0116	MDL	5.91	PQL	ng/Kg	Ų	В
2,3,4,6,7,8-HXCDF	0.0232	JBQ	0.00836	MDL	5.91	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0425	JBQ	0.0105	MDL	5.91	PQL	ng/Kg	U	В
OCDD	7.71	JB	0.0182	MDL	11.8	PQL	ng/Kg	J	Z
OCDF	0.210	JB	0.0201	MDL	11.8	PQL	ng/Kg	U	В

Sample ID: SL-057-SA5DN-SB-4.0-5.0 Collected: 6/16/2011 9:35:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.766	JB	0.0575	MDL	5.74	PQL	ng/Kg	Ų	В
1,2,3,4,6,7,8-HPCDF	0.569	JB	0.0209	MDL	5.74	PQL	ng/Kg	Ų	В
1,2,3,4,7,8,9-HPCDF	0.203	JB	0.0449	MDL	5.74	PQL	ng/Kg	Ü	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-057-SA5DN-SB-4.0-5.0 Collected: 6/16/2011 9:35:00 Analysis Type: RES Dilution: 1 Data DLReview Lab Lab RLReason Analyte DLRL Units Qual Code Result Qual Туре Type 0.108 JBQ 0.0391 MDL 5.74 PQL ng/Kg U В 1,2,3,4,7,8-HxCDD JBO 0.0305 MDL 5.74 POL U В 0.188 ng/Kg 1,2,3,4,7,8-HXCDF U 1,2,3,6,7,8-HXCDD 0.0983 JBQ 0.0389 MDL 5.74 **PQL** ng/Kg В 0.146 JB 0.0249 MDL 5.74 POL ng/Kg U В 1,2,3,6,7,8-HXCDF Ų 0.159 JBQ 0.0388 MDL 5.74 PQL ng/Kg В 1.2.3.7.8.9-HXCDD Ų 0.186 JB 0.0361 MDL 5.74 PQL ng/Kg В 1,2,3,7,8,9-HXCDF U 1,2,3,7,8-PECDD 0.121 JBQ 0.0296 MDL 5.74 **PQL** ng/Kg В U В JB 0.0141 MDL 5.74 **PQL** ng/Kg 1,2,3,7,8-PECDF 0.120 u PQL В 0.190 **JBQ** 0.0268 MDL 5.74 ng/Kg 2,3,4,6,7,8-HXCDF U В 0.152 JBQ 0.0150 MDL 5.74 PQL ng/Kg 2,3,4,7,8-PECDF U В **PQL** ng/Kg 2.3.7.8-TCDD 0.0276 JBQ 0.0254 MDL 1.15 0.0446 JBQ 0.0231 MDL 1.15 PQL ng/Kg U В 2,3,7,8-TCDF MDL 11.5 POL ng/Kg U R OCDD 1.66 JΒ 0.0458

0.753

JΒ

0.0596

MDL

11.5

Sample ID: SL-057-SA5DN-SB-9.0-10.0 Collected: 6/16/2011 9:40:00 Analysis Type: RES Dilution: 1 Data Review Reason Lab וח RI Lab Result Qual DLType RL*Type* Units Qual Code Analyte В 0.729 JB 0.0414 MDL 5.66 PQL ng/Kg 1,2,3,4,6,7,8-HPCDD U 0.0137 MDL 5.66 **PQL** ng/Kg В 1,2,3,4,6,7,8-HPCDF 0.542 JB MDL 5.66 PQL U В 1,2,3,4,7,8,9-HPCDF 0.121 JBQ 0.0260 ng/Kg MDL 5.66 PQL IJ 1,2,3,4,7,8-HxCDD 0.0607 **JBQ** 0.0332 ng/Kg В υ JΒ 0.0245 MDL 5.66 PQL ng/Kg В 1,2,3,4,7,8-HXCDF 0.119 POI. U В 0.0539 **JBQ** 0.0341 MIDI 5.66 ng/Kg 1,2,3,6,7,8-HXCDD U JBQ 0.0220 MDL 5.66 **PQL** В 0.116 ng/Kg 1,2,3,6,7,8-HXCDF JB 0.0329 MDL 5.66 POL ng/Kg U В 0.131 1,2,3,7,8,9-HXCDD 0.0896 JBQ 0.0260 MDL 5.66 **PQL** ng/Kg U В 1,2,3,7,8,9-HXCDF MDL **PQL** U В 0.0606 JBQ 0.0271 5.66 ng/Kg 1,2,3,7,8-PECDD 0.0633 JBQ 0.0128 MDL 5.66 **PQL** ng/Kg U В 1,2,3,7,8-PECDF 0.194 0.0248 MDL 5.66 PQL ng/Kg Ų В JBQ 2,3,4,6,7,8-HXCDF **PQL** U 2,3,4,7,8-PECDF 0.116 **JBQ** 0.0132 MDL 5.66 ng/Kg В U OCDD 1.87 JB 0.0283 MDL 11.3 **PQL** ng/Kg В MDL U В 0.467 JB 0.0388 11.3 PQL ng/Kg OCDF

OCDF

υ

ng/Kg

В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-058-SA5DN-SB-4.0-5.0 Collected: 6/16/2011 10:40:00 Analysis Type: RES Dilution: 1

04111pio 121 02 000 0110211 02 110 010					,,	4			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.740	JB	0.0391	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.553	JB	0.0129	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.126	JBQ	0.0282	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.170	JB	0.0256	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0969	JBQ	0.0270	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0969	JB	0.0214	MDL	5.72	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0869	JB	0.0266	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0509	JBQ	0.0145	MDL	5.72	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.204	JB	0.0236	MDL	5.72	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.137	JBQ	0.0156	MDL	5.72	PQL	ng/Kg	U	В
OCDD	2.25	JB	0.0263	MDL	11.4	PQL	ng/Kg	U	В
OCDF	0.566	JB	0.0441	MDL	11.4	PQL	ng/Kg	υ	В

Sample ID: SL-058-SA5DN-SB-9.0-10.0 Collected: 6/16/2011 10:45:00 Analysis Type: RES Dilution: 1

	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	0.874	JВ	0.0388	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.591	JB	0.0120	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0952	JB	0.0217	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0274	JBQ	0.0259	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.146	JB	0.0219	MDL	5.72	PQL	ng/Kg	Ų	В
1,2,3,6,7,8-HXCDD	0.0788	JBQ	0.0255	MDL	5.72	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	. 0.108	JВ	0.0192	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0853	JBQ	0.0243	MDL	5.72	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0769	JBQ	0.0258	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0314	JBQ	0.0272	MDL	5.72	PQL	ng/Kg	Ų	В
1,2,3,7,8-PECDF	0.0629	JBQ	0.0148	MDL	5.72	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.176	JBQ	0.0203	MDL	5.72	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.103	JB	0.0145	MDL	5.72	PQL	ng/Kg	U	В
OCDD	6.53	JB	0.0328	MDL	11.4	PQL	ng/Kg	J	Z
OCDF	0.522	JB	0.0402	MDL	11.4	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX102 Laboratory: LL

eQAPP Name: CDM SSFL 110509 EDD Filename: DX102_v1

Method Category: SVOA Method: 1613B Matrix: so

Analysis Type: RES Collected: 6/13/2011 2:20:00 Dilution: 1 Sample ID: SL-202-SA5DN-SB-4.0-5.0 Data DL RL Review Reason Lab Lab Qual DLТуре RLUnits Qual Code Analyte Result Type 1,2,3,4,6,7,8-HPCDD 0.903 JB 0.0310 MDL. 5.99 PQL ng/Kg U В 1,2,3,4,6,7,8-HPCDF 0.0802 JВ 0.00941 MDL 5.99 PQL ng/Kg U В U 0.0269 JBQ 0.0115 MDL 5.99 PQL ng/Kg ₿ U 0.0576 JBQ 0.0197 MDL PQL ₿ 5.99 ng/Kg 0.0101 MDL PQL U В 0.0228 JBQ 5.99 ng/Kg PQL U В

1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 0.0199 ng/Kg 0.104 **JBQ** MDL 5.99 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 0.0802 JBQ 0.0124 MDL 5.99 PQL ng/Kg U В PQL U 0.0280 JBQ 0.0133 MDL 5.99 ng/Kg В 1,2,3,7,8-PECDF 0.0265 JBQ 0.0104 MDL 5.99 PQL U В 2,3,4,6,7,8-HXCDF ng/Kg J z OCDD 8.40 JΒ 0.0258 MDL 12.0 PQL ng/Kg OCDF 0.191 JBQ 0.0285 MDL 12.0 ng/Kg U

Collected: 6/13/2011 2:25:00 Analysis Type: RES Dilution: 1 Sample ID: SL-202-SA5DN-SB-9.0-10.0

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.755	JB	0.0240	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.136	JB	0.00823	MDL	5.77	PQL	ng/Kg	С	В
1,2,3,4,7,8,9-HPCDF	0.0805	JB	0.0130	MDL	5.77	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.127	JBQ	0.0210	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.174	JB	0.0142	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.129	JBQ	0.0203	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.155	JВ	0.0123	MDL	5.77	PQL	ng/Kg	Ų	В
1,2,3,7,8,9-HXCDD	0.156	JBQ	0.0199	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.119	JB	0.0155	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.225	JB	0.0227	MDL	5.77	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.244	JB	0.0109	MDL	5.77	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.115	JB	0.0127	MDL	5.77	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.229	JBQ	0.0106	MDL	5.77	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0626	JBQ	0.0213	MDL	1.15	PQL	ng/Kg	Ų	В
2,3,7,8-TCDF	0.0527	JB	0.0195	MDL	1.15	PQL	ng/Kg	Ų	В
OCDD	5.76	JB	0.0199	MDL	11.5	PQL	ng/Kg	J	Z
OCDF	0.251	JB	0.0237	MDL	11.5	PQL	ng/Kg	Ų	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX102

EDD Filename: DX102_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Lab Reporting Batch ID: DX102 Laboratory: LL EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description					
en en en en en en en en en en en en en e	Duplicate Sample Count = 0					
-	Duplicate Sample Count > 1					
	Illogical Fraction					
	Laboratory Control Sample Count = 0					
	Laboratory Control Sample Count > 1					
	Matrix Spike Sample Count = 0					
	Matrix Spike Sample Count > 1					
	Method Blank Sample Count = 0					
	Method Blank Sample Count > 1					
	Percent Moisture					
*#	Professional Judgment					
A	ICP Serial Dilution					
В	Calibration Blank Contamination					
В	Method Blank Contamination					
С	Continuing Calibration Verification Correlation Coefficient					
С	Continuing Calibration Verification Percent Difference Lower Estimation					
С	Continuing Calibration Verification Percent Difference Lower Rejection					
С	Continuing Calibration Verification Percent Difference Upper Estimation					
С	Continuing Calibration Verification Percent Difference Upper Rejection					
С	Initial Calibration Correlation Coefficient					
С	Initial Calibration Percent Relative Standard Deviation					
С	Initial Calibration Verification Correlation Coefficient					
С	Initial Calibration Verification Percent Difference Lower Estimation					
С	Initial Calibration Verification Percent Difference Lower Rejection					
С	Initial Calibration Verification Percent Difference Upper Estimation					
С	Initial Calibration Verification Percent Difference Upper Rejection					
E	Laboratory Control Precision					
Ę	Laboratory Duplicate Precision					
E	Laboratory Triplicate Precision					
E	Matrix Spike Precision					

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX102 Laboratory: LL EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Field Blank Contamination FID Field Duplicate Precision FT Field Triplicate Precision FT Field Triplicate Precision FT Field Triplicate Precision H Extraction to Analysis Estimation H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Estimation H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Matrix Spike Lower Estimation Q Matrix Spike Lower Estimation	F	Equipment Blank Contamination
FT Field Triplicate Precision H Extraction to Analysis Estimation H Preservation H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection	F	Field Blank Contamination
H Extraction to Analysis Estimation H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Estimation H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Diplicate Precision Q Matrix Spike Lower Rejection M Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	FD	Field Duplicate Precision
H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Extraction Rejection H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Residention H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Tpilicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	FT	Field Triplicate Precision
H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection C Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Tiplicate Precision Q Laboratory Tiplicate Precision Q Matrix Spike Lower Estimation	Н	Extraction to Analysis Estimation
H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection	н	Extraction to Analysis Rejection
H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Preservation
H Sampling to Extraction Estimation H Sampling to Leaching Estimation H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Sampling to Analysis Estimation
H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Sampling to Analysis Rejection
H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection	Н	Sampling to Extraction Estimation
H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Sampling to Extraction Rejection
H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Sampling to Leaching Estimation
H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Sampling to Leaching Rejection
Internal Standard Estimation Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Temperature Estimation
Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Temperature Rejection
L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection	1	Internal Standard Estimation
L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	1	Internal Standard Rejection
L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	L	Laboratory Control Precision
L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision		Laboratory Control Spike Lower Estimation
L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	L	Laboratory Control Spike Lower Rejection
M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	Ĺ	Laboratory Control Spike Upper Estimation
M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	Ĺ	Laboratory Control Spike Upper Rejection
M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	M	Continuing Tune
M Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	М	Initial Tune
Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	M	Performance Evaluation Mixture
Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	М	Resolution Check Mixture
Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	Q	Laboratory Duplicate Precision
Q Matrix Spike Lower Rejection Q Matrix Spike Precision	Q	Laboratory Triplicate Precision
Q Matrix Spike Precision	Q	Matrix Spike Lower Estimation
	Q	Matrix Spike Lower Rejection
Q Matrix Spike Upper Estimation	Q	Matrix Spike Precision
	Q	Matrix Spike Upper Estimation

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX102

EDD Filename: DX102_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Ž	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX102

Lab Reporting Batch ID: DX102

Laboratory: LL

EDD Filename: DX102_v1

eQAPP Name: CDM_SSFL_110509

Matrix: AQ							
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples			
BLK1790B371907	6/30/2011 7:07:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD OCDD OCDD	7.89 pg/L 12.2 pg/L 1.72 pg/L 0.478 pg/L 0.478 pg/L 0.892 pg/L 1.55 pg/L 1.55 pg/L 1.02 pg/L 0.462 pg/L 0.412 pg/L 2.76 pg/L 1.37 pg/L 0.204 pg/L 15.9 pg/L 6.55 pg/L	EB17-SA5DN-SB-061411			

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB17-SA5DN-SB-061411(RES)	1,2,3,4,6,7,8-HPCDD	6.79 pg/L	6.79U pg/L
EB17-SA5DN-SB-061411(RES)	1,2,3,4,6,7,8-HPCDF	13.5 pg/L	13.5U pg/L
EB17-SA5DN-SB-061411(RES)	1,2,3,4,7,8,9-HPCDF	1.28 pg/L	1.28U pg/L
EB17-SA5DN-SB-061411(RES)	1,2,3,4,7,8-HxCDD	0.293 pg/L	0.293U pg/L
EB17-SA5DN-SB-061411(RES)	1,2,3,4,7,8-HXCDF	2.43 pg/L	2.43U pg/L
EB17-SA5DN-SB-061411(RES)	1,2,3,6,7,8-HXCDD	0.775 pg/L	0.775U pg/L
EB17-SA5DN-SB-061411(RES)	1,2,3,6,7,8-HXCDF	1.74 pg/L	1.74U pg/L
EB17-SA5DN-SB-061411(RES)	1,2,3,7,8,9-HXCDD	0.464 pg/L	0.464U pg/L
EB17-SA5DN-SB-061411(RES)	1,2,3,7,8,9-HXCDF	1.18 pg/L	1.18U pg/L
EB17-SA5DN-SB-061411(RES)	1,2,3,7,8-PECDF	0.376 pg/L	0.376U pg/L
EB17-SA5DN-SB-061411(RES)	2,3,4,6,7,8-HXCDF	3.47 pg/L	3.47U pg/L
EB17-SA5DN-SB-061411(RES)	2,3,4,7,8-PECDF	1.37 pg/L	1.37U pg/L
EB17-SA5DN-SB-061411(RES)	OCDD	13.1 pg/L	13.1U pg/L
EB17-SA5DN-SB-061411(RES)	OCDF	6.35 pg/L	6.35U pg/L

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Ànalyte	Result	Associated Samples
BLK1780B371816	6/28/2011 6:16:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0,7,8-TCDD 0,0,0,0	0.456 ng/Kg 0.123 ng/Kg 0.123 ng/Kg 0.132 ng/Kg 0.0637 ng/Kg 0.0727 ng/Kg 0.0721 ng/Kg 0.0592 ng/Kg 0.107 ng/Kg 0.0592 ng/Kg 0.107 ng/Kg 0.0980 ng/Kg 0.0516 ng/Kg 0.0427 ng/Kg 0.0541 ng/Kg 0.0735 ng/Kg 0.0358 ng/Kg 0.0243 ng/Kg 0.0243 ng/Kg	DUP14-SA5DN-QC-061411 SL-032-SA5DN-SB-10.0-11.0 SL-032-SA5DN-SB-4.0-5.0 SL-033-SA5DN-SB-4.0-5.0 SL-033-SA5DN-SB-4.0-5.0 SL-035-SA5DN-SB-4.0-5.0 SL-035-SA5DN-SB-4.0-5.0 SL-044-SA5DN-SB-4.0-5.0 SL-044-SA5DN-SB-4.0-5.0 SL-047-SA5DN-SB-4.0-5.0 SL-057-SA5DN-SB-4.0-5.0 SL-057-SA5DN-SB-4.0-5.0 SL-057-SA5DN-SB-4.0-5.0 SL-057-SA5DN-SB-9.0-10.0 SL-058-SA5DN-SB-9.0-10.0 SL-058-SA5DN-SB-9.0-10.0 SL-058-SA5DN-SB-4.0-5.0 SL-058-SA5DN-SB-9.0-10.0 SL-058-SA5DN-SB-4.0-5.0 SL-058-SA5DN-SB-4.0-5.0 SL-058-SA5DN-SB-4.0-5.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
DUP14-SA5DN-QC-061411(RES)	1,2,3,4,7,8,9-HPCDF	0.139 ng/Kg	0.139U ng/Kg	
DUP14-SA5DN-QC-061411(RES)	1,2,3,4,7,8-HxCDD	0.150 ng/Kg	0.150U ng/Kg	
DUP14-SA5DN-QC-061411(RES)	1,2,3,7,8,9-HXCDD	0.410 ng/Kg	0.410U ng/Kg	
DUP14-SA5DN-QC-061411(RES)	1,2,3,7,8,9-HXCDF	0.394 ng/Kg	0.394U ng/Kg	
DUP14-SA5DN-QC-061411(RES)	2,3,7,8-TCDD	0.0727 ng/Kg	0.0727U ng/Kg	
DUP14-SA5DN-QC-061411(RES)	OCDF	1.57 ng/Kg	1.57U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	1,2,3,4,6,7,8-HPCDD	0.495 ng/Kg	0.495U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	1,2,3,4,6,7,8-HPCDF	0.118 ng/Kg	0.118U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0966 ng/Kg	0.0966U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	1,2,3,4,7,8-HxCDD	0.0507 ng/Kg	0.0507U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	1,2,3,4,7,8-HXCDF	0.0643 ng/Kg	0.0643U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	1,2,3,6,7,8-HXCDD	0.117 ng/Kg	0.117U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	1,2,3,6,7,8-HXCDF	0.0700 ng/Kg	0.0700U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	1,2,3,7,8,9-HXCDD	0.124 ng/Kg	0.124U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	1,2,3,7,8,9-HXCDF	0.104 ng/Kg	0.104U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	1,2,3,7,8-PECDD	0.0772 ng/Kg	0.0772U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	1,2,3,7,8-PECDF	0.0847 ng/Kg	0.0847U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	2,3,4,6,7,8-HXCDF	0.0776 ng/Kg	0.0776U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	2,3,4,7,8-PECDF	0.132 ng/Kg	0.132U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	2,3,7,8-TCDD	0.0699 ng/Kg	0.0699U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	2,3,7,8-TCDF	0.0269 ng/Kg	0.0269U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	OCDD	0.938 ng/Kg	0.938U ng/Kg	
SL-032-SA5DN-SB-10.0-11.0(RES)	OCDF	0.273 ng/Kg 0.273U ng/		
SL-032-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,500 ng/Kg	0.500U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.106 ng/Kg	0.106U ng/Kg	

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method: 161 Matrix: SO	13B)	and the second s			
Method Blank Sample ID		Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-032-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0694 ng/Kg	0.0694U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.135 ng/Kg	0.135U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.137 ng/Kg	0.137U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.123 ng/Kg	0.123U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.163 ng/Kg	0.163U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.137 ng/Kg	0.137U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.112 ng/Kg	0.112U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.244 ng/Kg	0.244U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0947 ng/Kg	0,0947U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.250 ng/Kg	0.250U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0541 ng/Kg	0.0541U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0930 ng/Kg	0.0930U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	OCDD	1.52 ng/Kg	1.52U ng/Kg	
SL-032-SA5DN-SB-4.0-5.0(RES)	OCDF	0.161 ng/Kg	0.161U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	1,2,3,4,6,7,8-HPCDD	0.871 ng/Kg	0.871U ng/Kg	
SL-033-\$A5DN-SB-11.0-12.0(RES)	1,2,3,4,6,7,8-HPCDF	0.248 ng/Kg	0.248U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	1,2,3,4,7,8,9-HPCDF	0.260 ng/Kg	0.260U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	1,2,3,4,7,8-HxCDD	0.136 ng/Kg	0.136U ng/Kg	
SL-033-SA5DN-\$B-11.0-12.0(RES)	1,2,3,4,7,8-HXCDF	0.165 ng/Kg	0.165U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	1,2,3,6,7,8-HXCDD	0.204 ng/Kg	0.204U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	1,2,3,6,7,8-HXCDF	0.129 ng/Kg	0.129U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	1,2,3,7,8,9-HXCDD	0.182 ng/Kg	0,182U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	1,2,3,7,8,9-HXCDF	0.245 ng/Kg	0.245U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	1,2,3,7,8-PECDD	0.115 ng/Kg	0.115U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	1,2,3,7,8-PECDF	0.102 ng/Kg	0.102U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	2,3,4,6,7,8-HXCDF	0.138 ng/Kg	0.138U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	2,3,4,7,8-PECDF	0.142 ng/Kg	0.142U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	2,3,7,8-TCDD	0.0318 ng/Kg	0.0318U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	2,3,7,8-TCDF	0.0313 ng/Kg	0.0313U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	OCDD	3.84 ng/Kg	3.84U ng/Kg	
SL-033-SA5DN-SB-11.0-12.0(RES)	OCDF	0.875 ng/Kg	0.875U ng/Kg	
SL-033-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.170 ng/Kg	0.170U ng/Kg	
SL-033-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0887 ng/Kg	0.0887U ng/Kg	
SL-033-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0715 ng/Kg	0.0715U ng/Kg	
SL-033-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.264 ng/Kg 0.264U ng		
SL-033-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0548 ng/Kg 0.0548U n		
SL-033-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.300 ng/Kg	0.300U ng/Kg	

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blar Sample ID	ık	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-033-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.259 ng/Kg	0.259U ng/Kg
SL-033-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0797 ng/Kg	0.0797U ng/Kg
SL-033-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0447 ng/Kg	0.0447U ng/Kg
SL-033-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.121 ng/Kg	0.121U ng/Kg
SL-033-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0244 ng/Kg	0.0244U ng/Kg
SL-033-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0326 ng/Kg	0.0326U ng/Kg
SL-033-SA5DN-SB-4.0-5.0(RES)	OCDF	0.446 ng/Kg	0.446U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.433 ng/Kg	0.433U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0852 ng/Kg	0.0852U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0479 ng/Kg	0.0479U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0444 ng/Kg	0.0444U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0296 ng/Kg	0.0296U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0413 ng/Kg	0.0413U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0457 ng/Kg	0.0457U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0587 ng/Kg	0.0587U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0714 ng/Kg	0.0714U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0133 ng/Kg	0,0133U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0334 ng/Kg	0.0334U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0631 ng/Kg	0.0631U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	OCDD	1.91 ng/Kg	1.91U ng/Kg
SL-035-SA5DN-SB-4.0-5.0(RES)	OCDF	0.243 ng/Kg	0,243U ng/Kg
SL-035-SA5DN-SB-9.5-10.5(RES)	1,2,3,4,6,7,8-HPCDD	0.581 ng/Kg	0.581U ng/Kg
SL-035-SA5DN-\$B-9.5-10.5(RES)	1,2,3,4,6,7,8-HPCDF	0.584 ng/Kg	0,584U ng/Kg
SL-035-SA5DN-SB-9.5-10.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0895 ng/Kg	0.0895U ng/Kg
SL-035-SA5DN-SB-9.5-10.5(RES)	1,2,3,4,7,8-HxCDD	0.0313 ng/Kg	0.0313U ng/Kg
SL-035-SA5DN-SB-9,5-10.5(RES)	1,2,3,4,7,8-HXCDF	0.108 ng/Kg	0.108U ng/Kg
SL-035-SA5DN-SB-9.5-10.5(RES)	1,2,3,6,7,8-HXCDD	0.0605 ng/Kg	0.0605U ng/Kg
SL-035-SA5DN-SB-9.5-10.5(RES)	1,2,3,6,7,8-HXCDF	0.0805 ng/Kg	0.0805U ng/Kg
SL-035-SA5DN-SB-9.5-10.5(RES)	1,2,3,7,8,9-HXCDD	0.0778 ng/Kg	0.0778U ng/Kg
SL-035-SA5DN-SB-9.5-10.5(RES)	1,2,3,7,8,9-HXCDF	0.0740 ng/Kg	0.0740U ng/Kg
SL-035-SA5DN-SB-9.5-10.5(RES)	1,2,3,7,8-PECDD	0.0241 ng/Kg	0.0241U ng/Kg
SL-035-SA5DN-SB-9.5-10.5(RES)	1,2,3,7,8-PECDF	0.0423 ng/Kg	0.0423U ng/Kg
SL-035-SA5DN-SB-9.5-10.5(RES)	2,3,4,6,7,8-HXCDF	0.172 ng/Kg	0.172U ng/Kg
SL-035-SA5DN-SB-9.5-10.5(RES)	2,3,4,7,8-PECDF	0.0868 ng/Kg	0.0868U ng/Kg
SL-035-SA5DN-SB-9.5-10.5(RES)	2,3,7,8-TCDD	0.0188 ng/Kg	0.0188U ng/Kg
SL-035-SA5DN-SB-9.5-10.5(RES)	2,3,7,8-TCDF	0.0180 ng/Kg	0.0180U ng/Kg
SL-035-\$A5DN-SB-9.5-10.5(RES)	OCDD	1.18 ng/Kg	1.18U ng/Kg

9/27/2011 3:13:31 PM ADR version 1.4.0.111 Page 4 of 9

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	A CONTRACT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF		iere più sieno de la mesta de la companya de la companya de la companya de la companya de la companya de la co	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-035-SA5DN-SB-9.5-10.5(RES)	OCDF	0.489 ng/Kg	0.489U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,6,7,8-HPCDD	1.02 ng/Kg	1.02U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,6,7,8-HPCDF	0.600 ng/Kg	0,600U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,7,8,9-HPCDF	0,0976 ng/Kg	0.0976U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,7,8-HxCDD	0.109 ng/Kg	0.109U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	1,2,3,4,7,8-HXCDF	0.232 ng/Kg	0.232U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	1,2,3,6,7,8-HXCDD	0.138 ng/Kg	0,138U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	1,2,3,6,7,8-HXCDF	0.192 ng/Kg	0.192U ng/Kg
SL-044-SA5DN-SB-12,0-13.0(RES)	1,2,3,7,8,9-HXCDD	0.157 ng/Kg	0.157U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	1,2,3,7,8,9-HXCDF	0.113 ng/Kg	0.113U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	1,2,3,7,8-PECDD	0.166 ng/Kg	0.166U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	2,3,4,6,7,8-HXCDF	0.229 ng/Kg	0.229U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	2,3,4,7,8-PECDF	0.242 ng/Kg	0.242U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	2,3,7,8-TCDD	0.0564 ng/Kg	0.0564U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	2,3,7,8-TCDF	0.0421 ng/Kg	0.0421U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	OCDD	3.77 ng/Kg	3.77U ng/Kg
SL-044-SA5DN-SB-12.0-13.0(RES)	OCDF	0.552 ng/Kg	0,552U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.60 ng/Kg	1.60U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.611 ng/Kg	0,611U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0999 ng/Kg	0.0999U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0454 ng/Kg	0.0454U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.132 ng/Kg	0.132U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.240 пд/Кд	0,240U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.131 ng/Kg	0.131U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.283 ng/Kg	0.283U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.382 ng/Kg	0.382U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0619 ng/Kg	0.0619U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.174 ng/Kg	0.174U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.185 ng/Kg	0.185U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0327 ng/Kg	0.0327U ng/Kg
SL-044-SA5DN-SB-4.0-5.0(RES)	OCDF	0.657 ng/Kg	0.657U ng/Kg
SL-047-SA5DN-SB-10.0-11.0(RES)	1,2,3,4,6,7,8-HPCDD	1.18 ng/Kg	1.18U ng/Kg
SL-047-SA5DN-SB-10.0-11.0(RES)	1,2,3,4,6,7,8-HPCDF	0.125 ng/Kg	0.125U ng/Kg
SL-047-SA5DN-SB-10.0-11.0(RES)	1,2,3,4,7,8,9-HPCDF	0,0460 ng/Kg	0.0460U ng/Kg
SL-047-SA5DN-SB-10.0-11.0(RES)	1,2,3,4,7,8-HxCDD	0.0324 ng/Kg	0.0324U ng/Kg
SL-047-SA5DN-SB-10.0-11.0(RES)	1,2,3,4,7,8-HXCDF	0.0313 ng/Kg	0.0313U ng/Kg
SL-047-SA5DN-SB-10.0-11.0(RES)	1,2,3,6,7,8-HXCDD	0.0732 ng/Kg	0.0732U ng/Kg

9/27/2011 3:13:31 PM ADR version 1.4.0.111 Page 5 of 9

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	The state of the s		THE STREET STREET, STR		
Method Bla Sample ID	nk	Analysis Date	Analyte		Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-047-SA5DN-SB-10.0-11.0(RES)	1,2,3,6,7,8-HXCDF	0.0290 ng/Kg	0.0290U ng/Kg	
SL-047-SA5DN-SB-10.0-11.0(RES)	1,2,3,7,8,9-HXCDD	0.0783 ng/Kg	0.0783U ng/Kg	
SL-047-SA5DN-SB-10.0-11.0(RES)	1,2,3,7,8,9-HXCDF	0,0544 ng/Kg	0.0544U ng/Kg	
SL-047-SA5DN-SB-10.0-11.0(RES)	1,2,3,7,8-PECDD	0.0203 ng/Kg	0,0203U ng/Kg	
SL-047-SA5DN-SB-10.0-11.0(RES)	2,3,4,6,7,8-HXCDF	0.0368 ng/Kg	0.0368U ng/Kg	
SL-047-SA5DN-SB-10.0-11.0(RES)	2,3,4,7,8-PECDF	0.0497 ng/Kg	0.0497U ng/Kg	
SL-047-SA5DN-SB-10.0-11.0(RES)	OCDF	0.435 ng/Kg	0.435U ng/Kg	
SL-047-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	2.02 ng/Kg	2,02U ng/Kg	
SL-047-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.192 ng/Kg	0.192U ng/Kg	
SL-047-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0595 ng/Kg	0.0595U ng/Kg	
SL-047-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0676 ng/Kg	0.0676U ng/Kg	
SL-047-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0497 ng/Kg	0.0497U ng/Kg	
SL-047-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.145 ng/Kg	0.145U ng/Kg	
SL-047-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0433 ng/Kg	0.0433U ng/Kg	
SL-047-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.166 ng/Kg	0.166U ng/Kg	
SL-047-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0918 ng/Kg	0,0918U ng/Kg	
SL-047-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,0379 ng/Kg	0.0379U ng/Kg	
SL-047-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0429 ng/Kg	0,0429U ng/Kg	
SL-047-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0540 ng/Kg	0.0540U ng/Kg	
SL-047-SA5DN-SB-4.0-5.0(RES)	OCDF	0.448 ng/Kg	0,448U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	2.20 ng/Kg	2.20U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.215 ng/Kg	0.215U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0645 ng/Kg	0.0645U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0281 ng/Kg	0,0281U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0525 ng/Kg	0.0525U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.144 ng/Kg	0.144U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0370 ng/Kg	0.0370U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.161 ng/Kg	0,161U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.115 ng/Kg	0.115U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0470 ng/Kg	0.0470U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0341 ng/Kg	0.0341U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0,0426 ng/Kg	0.0426U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0695 ng/Kg	0,0695U ng/Kg	
SL-054-SA5DN-SB-4.0-5.0(RES)	OCDF	0.754 ng/Kg	0.754U ng/Kg	
SL-054-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.905 ng/Kg	0.905U ng/Kg	
SL-054-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0713 ng/Kg	0.0713U ng/Kg	
SL-054-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0297 ng/Kg	0.0297U ng/Kg	

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	and the second s			
Method Blai Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-054-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0246 ng/Kg	0.0246U ng/Kg	
SL-054-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0414 ng/Kg	0.0414U ng/Kg	
SL-054-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0419 ng/Kg	0.0419U ng/Kg	
SL-054-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0214 ng/Kg	0.0214U ng/Kg	
SL-054-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0676 ng/Kg	0.0676U ng/Kg	
SL-054-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0373 ng/Kg	0.0373U ng/Kg	
SL-054-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0347 ng/Kg	0.0347U ng/Kg	
SL-054-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0,0232 ng/Kg	0.0232U ng/Kg	
SL-054-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0425 ng/Kg	0.0425U ng/Kg	
SL-054-SA5DN-SB-9.0-10.0(RES)	OCDF	0.210 ng/Kg	0.210U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.766 ng/Kg	0.766U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.569 ng/Kg	0.569U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.203 ng/Kg	0.203U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.108 ng/Kg	0.108U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.188 ng/Kg	0.188U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0983 ng/Kg	0.0983U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.146 ng/Kg	0.146U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0,159 ng/Kg	0.159U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.186 ng/Kg	0.186U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.121 ng/Kg	0.121U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.120 ng/Kg	0.120U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.190 ng/Kg	0.190U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.152 ng/Kg	0.152U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0276 ng/Kg	0.0276U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0446 ng/Kg	0.0446U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	OCDD	1,66 ng/Kg	1.66U ng/Kg	
SL-057-SA5DN-SB-4.0-5.0(RES)	OCDF	0.753 ng/Kg	0.753U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.729 ng/Kg	0.729U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.542 ng/Kg	0.542U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.121 ng/Kg	0.121U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0607 ng/Kg	0.0607U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.119 ng/Kg	0.119U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0539 ng/Kg	0.0539U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.116 ng/Kg	0.116U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.131 ng/Kg	0.131U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0896 ng/Kg	0.0896U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0606 ng/Kg	0.0606U ng/Kg	

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-057-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0633 ng/Kg	0.0633U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.194 ng/Kg	0.194U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.116 ng/Kg	0.116U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	OCDD	1.87 ng/Kg	1.87U ng/Kg	
SL-057-SA5DN-SB-9.0-10.0(RES)	OCDF	0.467 ng/Kg	0.467U ng/Kg	
SL-058-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.740 ng/Kg	0.740U ng/Kg	
SL-058-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.553 ng/Kg	0.553U ng/Kg	
SL-058-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.126 ng/Kg	0,126U ng/Kg	
SL-058-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.170 ng/Kg	0.170U ng/Kg	
SL-058-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0969 ng/Kg	0,0969U ng/Kg	
SL-058-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0969 ng/Kg	0.0969U ng/Kg	
SL-058-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0869 ng/Kg	0.0869U ng/Kg	
SL-058-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0509 ng/Kg	0.0509U ng/Kg	
SL-058-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.204 ng/Kg	0.204U ng/Kg	
SL-058-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.137 ng/Kg	0.137U ng/Kg	
SL-058-SA5DN-SB-4.0-5.0(RES)	OCDD	2.25 ng/Kg	2.25U ng/Kg	
SL-058-SA5DN-SB-4.0-5.0(RES)	OCDF	0.566 ng/Kg	0.566U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.874 ng/Kg	0.874U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0,591 ng/Kg	0.591U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0952 ng/Kg	0.0952U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0274 ng/Kg	0.0274U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.146 ng/Kg	0.146U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0788 ng/Kg	0.0788U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.108 ng/Kg	0.108U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0853 ng/Kg	0.0853U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0769 ng/Kg	0.0769U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0314 ng/Kg	0.0314U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0629 ng/Kg	0.0629U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0,176 ng/Kg	0.176U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.103 пд/Кд	0.103U ng/Kg	
SL-058-SA5DN-SB-9.0-10.0(RES)	OCDF	0.522 ng/Kg	0.522U ng/Kg	
SL-202-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.903 ng/Kg	0.903U ng/Kg	
SL-202-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0802 ng/Kg	0.0802U ng/Kg	
SL-202-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0269 ng/Kg	0.0269U ng/Kg	
SL-202-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0576 ng/Kg	0.0576U ng/Kg	
SL-202-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0228 ng/Kg	0.0228U ng/Kg	
SL-202-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.104 ng/Kg	0.104U ng/Kg	

9/27/2011 3:13:31 PM ADR version 1.4.0.111 Page 8 of 9

Laboratory: LL Lab Reporting Batch ID: DX102

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 10 <i>Matrix:</i> S	no an in significant of the second			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-202-\$A5DN-\$B-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0802 ng/Kg	0.0802U ng/Kg	
SL-202-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0280 ng/Kg	0.0280U ng/Kg	
SL-202-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0265 ng/Kg	0.0265U ng/Kg	
SL-202-SA5DN-SB-4.0-5.0(RES)	OCDF	0.191 ng/Kg	0.191U ng/Kg	
SL-202-\$A5DN-\$B-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.755 ng/Kg	0.755U ng/Kg	
SL-202-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.136 ng/Kg	0.136U ng/Kg	
SL-202-\$A5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0805 ng/Kg	0.0805U ng/Kg	
SL-202-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.127 ng/Kg	0.127U ng/Kg	
SL-202-\$A5DN-\$B-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.174 ng/Kg	0.174U ng/Kg	
SL-202-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.129 ng/Kg	0.129U ng/Kg	
SL-202-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.155 ng/Kg	0.155U ng/Kg	
SL-202-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.156 ng/Kg	0.156U ng/Kg	
SL-202-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.119 ng/Kg	0.119U ng/Kg	
SL-202-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.225 ng/Kg	0,225U ng/Kg	
SL-202-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.115 ng/Kg	0.115U ng/Kg	
SL-202-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.229 ng/Kg	0.229U ng/Kg	
SL-202-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0,0626 ng/Kg	0.0626U ng/Kg	
SL-202-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0527 ng/Kg	0.0527U ng/Kg	
SL-202-SA5DN-SB-9.0-10.0(RES)	OCDF	0.251 ng/Kg	0.251U ng/Kg	

Page 9 of 9

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX102

Laboratory: LL

EDD Filename: DX102_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-033-SA5DN-SB-4.0- 5.0MSD (SL-033-SA5DN-SB-4.0-5.0)	OCDD	-	-	40.00-135.00	30 (20.00)	OCDD	J (all detects)

9/27/2011 3:10:47 PM ADR version 1.4.0.111 Page 1 of 1

Field Duplicate RPD Report

Lab Reporting Batch ID: DX102

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

EDD Filename: DX102	
Method: 160.3M	We've

Matrix:	so				an order of the second	
		Concentr	ration (%)			
	Analyte	SL-033-SA5DN-SB-4.0- 5.0	DUP14-SA5DN-QC- 061411	Sample RPD	eQAPP RPD	Flag
MOISTURE		14.0	14.1	1		No Qualifiers Applied

Method: 1613B Matrix: SO

	Concentrat	ion (ng/Kg)			
Analyte	SL-033-SA5DN-SB-4.0- 5.0	DUP14-SA5DN-QC- 061411	Sample RPD	eQAPP RPD	Flag
1,2,3,4,7,8,9-HPCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF	0.0887 0.300 0.259	0.139 0.410 0.394	44 31 41	50.00 50.00 50.00	No Qualifiers Applied
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD OCDD OCDF	2.80 0.170 0.0715 5.62 U 0.264 0.0548 5.62 U 0.0797 0.0447 0.121 0.0244 0.0326 14.7 0.446	6.19 1.34 0.150 0.402 0.449 0.304 0.278 0.789 0.342 0.716 0.0727 0.198 54.0 1.57	75 155 71 200 52 139 200 163 154 142 99 143 114	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)

9/27/2011 3:13:01 PM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Ш	e	ho	a:	Ĺ	61	3	Ξ

Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB17-SA5DN-SB-061411	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF	JB JBQ JBQ JBQ JB JBQ JB JB JB	6.79 1.28 0.293 2.43 0.775 1.74 0.464 1.18 0.376 3.47 1.37 0.212	10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)
	OCDD OCDF	JB JB	13.1 6.35	20.5 20.5	PQL PQL	pg/L pg/L	

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SamplelD				<u> </u>			, ray
DUP14-SA5DN-QC-061411	1,2,3,4,6,7,8-HPCDF	JB	1.34	5.72	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.139	5.72	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.150	5.72	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.402	5.72	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.449	5.72	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.304	5.72	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.410	5.72	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.394	5.72	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.278	5.72	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.789	5.72	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.342	5.72	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.716	5.72	PQL	ng/Kg	
	2.3.7.8-TCDD	JBQ	0.0727	1.14	PQL	ng/Kg	
	2,3,7,8-TCDF	JВ	0.198	1.14	PQL	ng/Kg	
	OCDF	JB	1.57	11.4	PQL	ng/Kg	
SL-032-SA5DN-SB-10.0-	1,2,3,4,6,7,8-HPCDD	JB	0.495	5.42	PQL	ng/Kg	
11.0	1,2,3,4,6,7,8-HPCDF	JBQ	0.118	5.42	PQL	ng/Kg	
,	1,2,3,4,7,8,9-HPCDF	JBQ	0.0966	5.42	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0507	5.42	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0643	5.42	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.117	5.42	PQL	ng/Kg	
	1.2.3.6.7.8-HXCDF	JBQ	0.0700	5.42	POL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.124	5.42	POL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.104	5.42	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0772	5.42	POL	ng/Kg	
	1.2.3.7.8-PECDF	JB	0.0847	5.42	POL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0776	5.42	PQL	ng/Kg	
	2.3.4.7.8-PECDF	JB	0.132	5.42	POL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0699	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0269	1.08	PQL	ng/Kg	
	OCDD	JB	0.938	10.8	PQL	ng/Kg	
	OCDF	JB	0.273	10.8	PQL	ng/Kg	

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Watrix: 50							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-032-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 0,3,7,8-TCDD	8 年 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.500 0.106 0.0694 0.135 0.137 0.123 0.163 0.137 0.112 0.244 0.244 0.0947 0.250 0.0541 0.0930 1.52 0.161	5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.51	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-033-SA5DN-SB-11.0- 12.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDD OCDF	**************************************	0.871 0.248 0.260 0.136 0.165 0.204 0.129 0.182 0.245 0.115 0.102 0.138 0.142 0.0318 0.0313 3.84 0.875	5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.5	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-033-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0,3,7,8-TCDF	JB JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JB	2.80 0.170 0.0887 0.0715 0.264 0.0548 0.300 0.259 0.0797 0.0447 0.121 0.0244 0.0326 0.446	5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX102

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX102_v1

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-035-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF OCDD OCDF	JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	0.433 0.0852 0.0479 0.0444 0.0296 0.0413 0.0457 0.0587 0.0714 0.0133 0.0334 0.0631 1.91 0.243	5.72 5.72 5.72 5.72 5.72 5.72 5.72 5.72	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-035-SA5DN-SB-9.5-10.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD OCDF	JB JB JB JB JB JB JB JB JB JB JB JB JB J	0.581 0.584 0.0895 0.0313 0.108 0.0605 0.0805 0.0778 0.0740 0.0241 0.0423 0.172 0.0868 0.0188 0.0180 1.18 0.489	5.53 5.53 5.53 5.53 5.53 5.53 5.53 5.53	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-044-SA5DN-SB-12.0- 13.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDD OCDF	JB JB QQ JB QQ JB JB QQ JB JB QQ JB JB JB QQ JB JB JB JB QQ JB JB JB JB QQ JB JB JB QQ JB JB JB QQ JB JB Q	1.02 0.600 0.0976 0.109 0.232 0.138 0.192 0.157 0.113 0.166 0.316 0.229 0.242 0.0564 0.0421 3.77 0.552	5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX102 Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO Lab Reporting RL

1				,			
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
	1,2,3,4,6,7,8-HPCDD	JB	1.60	5.69	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.611	5.69	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0999	5.69	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0454	5.69	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.132	5.69	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.240	5.69	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.131	5.69	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.283	5.69	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.382	5.69	PQL	ng/Kg	a (an actecta)
	1,2,3,7,8-PECDD	JBQ	0.0619	5.69	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.268	5.69	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.174	5.69	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.185	5.69	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0327	1.14	PQL	ng/Kg	
	OCDD	JB	11.2	11.4	PQL	ng/Kg	
	OCDF	JB	0.657	11.4	PQL	ng/Kg	
SL-047-SA5DN-SB-10.0-	1,2,3,4,6,7,8-HPCDD	JВ	1.18	5.27	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.125	5.27	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0460	5.27	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0324	5.27	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0313	5.27	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0732	5.27	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0290	5.27	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JB	0.0783	5.27	PQL	ng/Kg	, ,
	1,2,3,7,8,9-HXCDF	JB	0.0544	5.27	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0203	5.27	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0368	5.27	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0497	5.27	PQL	ng/Kg	
	OCDF	JB	0.435	10.5	PQL	ng/Kg	
SL-047-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	2.02	5.61	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.192	5.61	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0595	5.61	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0676	5.61	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0497	5.61	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.145	5.61	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JВ	0.0433	5.61	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JBQ	0.166	5.61	PQL	ng/Kg	, , ,
	1,2,3,7,8,9-HXCDF	JB	0.0918	5.61	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0379	5.61	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0429	5.61	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0540	5.61	PQL	ng/Kg	
	OCDF	JB	0.448	11.2	PQL	ng/Kg	

Lab Reporting Batch ID: DX102

Laboratory: LL

EDD Filename: DX102_v1

eQAPP Name: CDM_SSFL_110509

M	eti	ho	d:	161	13	:

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-054-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	2.20	6.05	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.215	6.05	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0645	6.05	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0281	6.05	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0525	6.05	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.144	6.05	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0370	6.05	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JB	0.161	6.05	PQL	ng/Kg	a (an acteors)
•	1,2,3,7,8,9-HXCDF	JB	0.115	6.05	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0470	6.05	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0341	6.05	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0426	6.05	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0695	6.05	PQL	ng/Kg	
	OCDF	JB	0.754	12.1	PQL	ng/Kg	
SL-054-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.905	5.91	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0713	5.91	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0297	5.91	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0246	5.91	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0414	5.91	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0419	5.91	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0214	5.91	PQL	ng/Kg	l /all datasta\
	1,2,3,7,8,9-HXCDD	JBQ	0.0676	5.91	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0373	5.91	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0347	5.91	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0232	5.91	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0425	5.91	PQL	ng/Kg	
·	OCDD	JB	7.71	11.8	PQL	ng/Kg	
	OCDF	JB	0.210	11.8	PQL	ng/Kg	
SL-057-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.766	5.74	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.569	5.74	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.203	5.74	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.108	5.74	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.188	5.74	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0983	5.74	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.146	5.74	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.159	5.74	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.186	5.74	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.121	5.74	POL	ng/Kg	, ,
	1,2,3,7,8-PECDF	JВ	0.120	5.74	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.190	5.74	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.152	5.74	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0276	1.15	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0446	1.15	PQL	ng/Kg	
	OCDD	JB	1.66	11.5	PQL	ng/Kg	
	OCDF	l JB l	0.753	11.5	PQL	ng/Kg	

Lab Reporting Batch ID: DX102

EDD Filename: DX102_v1 eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method: 1613B Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-057-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	明 明 明 明 明 明 明 明 明 明 明 明 明 明	0.729 0.542 0.121 0.0607 0.119 0.0539 0.116 0.131 0.0896 0.0606 0.0633 0.194 0.116 1.87 0.467	5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-058-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	######################################	0.740 0.553 0.126 0.170 0.0969 0.0969 0.0869 0.0509 0.204 0.137 2.25 0.566	5.72 5.72 5.72 5.72 5.72 5.72 5.72 5.72	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-058-SA5DN-SB-9.0-10.0			0.874 0.591 0.0952 0.0274 0.146 0.0788 0.108 0.0853 0.0769 0.0314 0.0629 0.176 0.103 6.53 0.522	5.72 5.72 5.72 5.72 5.72 5.72 5.72 5.72	Pal Pal Pal Pal Pal Pal Pal Pal Pal Pal	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-202-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	0.903 0.0802 0.0269 0.0576 0.0228 0.104 0.0802 0.0280 0.0265 8.40 0.191	5.99 5.99 5.99 5.99 5.99 5.99 5.99 12.0	POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX102

Laboratory: LL

EDD Filename: DX102_v1 eQAPP Name: CE

eQAPP Name: CDM_SSFL_110509

Method:	1613B	Control of the second s			e version sin	
Matrix:	so					

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-202-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-TCDF 0CDD 0CDF	明明 明明 明明 明明 明明 明明 明明 明明 明明 明明 明明 明明 明明	0.755 0.136 0.0805 0.127 0.174 0.129 0.155 0.156 0.119 0.225 0.244 0.115 0.229 0.0626 0.0527 5.76 0.251	5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.77	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

SAMPLE DELIVERY GROUP

DX103

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
15-June-2011	DUP15-SA5DN-QC-061511	6317002	FD	METHOD	1613B	III
15-June-2011	SL-029-SA5DN-SB-4.0-5.0	6316992	N	METHOD	1613B	Ш
15-June-2011	SL-030-SA5DN-SB-4.0-5.0	6316993	N	METHOD	1613B	Ш
15-June-2011	SL-030-SA5DN-SB-4.0-5.0MS	6316994	MS	METHOD	1613B	m
15-June-2011	SL-030-SA5DN-SB-4.0-5.0MSD	6316995	MSD	METHOD	1613B	tii
15-June-2011	SL-031-SA5DN-SB-4.0-5.0	6316996	N	METHOD	1613B	III
15-June-2011	SL-034-SA5DN-SB-4.0-5.0	6316997	N	METHOD	1613B	tii
15-June-2011	SL-055-SA5DN-SB-4.0-5.0	6316998	N	METHOD	1613B	tii
15-June-2011	SL-055-SA5DN-SB-9.0-10.0	6316999	N	METHOD	1613B	III
15-June-2011	SL-020-SA5DN-SB-3.5-4.5	6316991	N	METHOD	1613B	III
15-June-2011	SL-056-SA5DN-SB-9.0-10.0	6317001	N	METHOD	1613B	tii
15-June-2011	EB18-SA5DN-SB-061511	6317003	EB	METHOD	1613B	111
15-June-2011	SL-056-SA5DN-SB-4.0-5.0	6317000	N	METHOD	1613B	111
16-June-2011	SL-059-SA5DN-SB-4.0-5.0	6318890	N	METHOD	1613B	III
16-June-2011	SL-059-SA5DN-SB-9.0-10.0	6318891	N	METHOD	1613B	111
16-June-2011	SL-061-SA5DN-SB-4.0-5.0	6318892	N	METHOD	1613B	1111
16-June-2011	SL-061-SA5DN-SB-9.0-10.0	6318893	N	METHOD	1613B	111
16-June-2011	SL-062-SA5DN-SB-4.0-5.0	6318894	N	METHOD	1613B	111
17-June-2011	SL-051-SA8N-SB-7.5-8.5	6320629	N	METHOD	1613B	111
20-June-2011	SL-117-SA5DN-SB-4.0-5.0	6322255	N	METHOD	1613B	111
20-June-2011	SL-093-SA5DN-SB-4.0-5.0	6322253	N	METHOD	1613B	Ш
20-June-2011	SL-093-SA5DN-SB-9.0-10.0	6322254	N	METHOD	1613B	Ш

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: AQ

Sample ID: EB18-SA5DN-SB-061511	Collected: 6/15/2011 1:45:00	Analysis Type: RES	Dilution: 1
		indiference of the contract of	

• • • • • • • • • • • • • • • • • • • •	0000					, many old , ypar					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	5.01	JBQ	0.329	MDL	10.1	PQL	pg/L	U	В		
1,2,3,4,6,7,8-HPCDF	2.86	JB	0.132	MDL	10.1	PQL	pg/L	U	В		
1,2,3,4,7,8,9-HPCDF	0.752	JBQ	0.165	MDL	10.1	PQL	pg/L	U	В		
1,2,3,4,7,8-HxCDD	0.227	JBQ	0.215	MDL	10.1	PQL	pg/L	U	В		
1,2,3,4,7,8-HXCDF	0.633	JB	0.162	MDL	10.1	PQL	pg/L	U	В		
1,2,3,6,7,8-HXCDD	0.620	JB	0.222	MDL	10.1	PQL	pg/L	U	В		
1,2,3,6,7,8-HXCDF	0.424	JBQ	0.154	MDL	10.1	PQL	pg/L	U	В		
1,2,3,7,8,9-HXCDD	0.691	JB	0.209	MDL	10.1	PQL	pg/L	U	В		
1,2,3,7,8,9-HXCDF	0.655	JBQ	0.171	MDL	10.1	PQL	pg/L	U	В		
1,2,3,7,8-PECDD	0.392	JBQ	0.258	MDL	10.1	PQL	pg/L	U	В		
1,2,3,7,8-PECDF	0.242	JBQ	0.155	MDL	10.1	PQL	pg/L	U	В		
2,3,4,6,7,8-HXCDF	1.13	JBQ	0.150	MDL	10.1	PQL	pg/L	U	В		
2,3,4,7,8-PECDF	0.820	JBQ	0.146	MDL	10.1	PQL	pg/L	U	В		
2,3,7,8-TCDF	0.436	JQ	0.243	MDL	2.02	PQL	pg/L	J	Z		
OCDD	8.00	JB	0.291	MDL	20.2	PQL	pg/L	U	В		
OCDF	1.94	JBQ	0.374	MDL	20.2	PQL	pg/L	U	В		

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: DUP15-SA5DN-QC-061511	Collec	Collected: 6/15/2011 10:05:00 Analysis Type: RES							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.514	JB	0.0547	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.180	JB	0.0152	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0942	JBQ	0.0394	MDL	5.52	PQL	ng/Kg	UJ	B, FD	
1,2,3,4,7,8-HxCDD	0.0336	U	0.0336	MDL	5.52	PQL	ng/Kg	UJ	FD	
1,2,3,4,7,8-HXCDF	0.0724	JBQ	0.0247	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0436	JB	0.0323	MDL	5.52	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.0645	JBQ	0.0195	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0481	JBQ	0.0322	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.111	j	0.0268	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0248	JBQ	0.0190	MDL	5.52	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.103	JB	0.0205	MDL	5.52	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

9/28/2011 8:59:29 AM ADR version 1.4.0.111 Page 1 of 14

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA			
Method:	1613B	Matrix:	so	

Sample ID: DUP15-SA5DN-QC-061511 Collected: 6/15/2011 10:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,7,8-PECDF	0.0732	JB	0.0206	MDL	5.52	PQL	ng/Kg	υ	В
OCDD	1.13	JB	0.0510	MDL	11.0	PQL	ng/Kg	υ	В
OCDF	0.632	JBQ	0.0966	MDL	11.0	PQL	ng/Kg	UJ	B, FD

Sample ID: SL-020-SA5DN-SB-3.5-4.5 Collected: 6/15/2011 10:45:00 Analysis Type: RES Dilution: 1

Sample ID: SE-020-SASDIN-SD-3.3-4.3	Conec	tea. or forz	Conected: 6/16/2011 10:45.00 Analysis Ty						Dilution.	
nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.525	JB	0.0399	MDL	5.47	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.183	JBQ	0.0132	MDL	5.47	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0437	JB	0.0246	MDL	5.47	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0443	JQ	0.0272	MDL	5.47	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0822	JBQ	0.0164	MDL	5.47	PQL	ng/Kg	Ų	В	
1,2,3,6,7,8-HXCDD	0.0430	JBQ	0.0276	MDL	5.47	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0299	JBQ	0.0138	MDL	5.47	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0659	JBQ	0.0271	MDL	5.47	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0617	JQ	0.0189	MDL	5.47	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0555	JBQ	0.0270	MDL	5.47	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0370	JBQ	0.0132	MDL	5.47	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0761	JBQ	0.0148	MDL	5.47	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0766	JB	0.0138	MDL	5.47	PQL	ng/Kg	υ	В	
2,3,7,8-TCDD	0.0328	JQ	0.0276	MDL	1.09	PQL	ng/Kg	J	Z	
OCDD	2.12	JB	0.0297	MDL	10.9	PQL	ng/Kg	υ	В	
OCDF	0.253	JBQ	0.0403	MDL	10.9	PQL	ng/Kg	υ	В	

Sample ID; SL-029-SA5DN-SB-4.0-5.0 Collected: 6/15/2011 9:00:00 Analysis Type; RES Dilution: 1

campie in all of our contract of the our										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.488	JBQ	0.0302	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.159	JB	0.00929	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0584	JBQ	0.0187	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0292	J	0.0219	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0532	JBQ	0.0138	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0406	JBQ	0.0212	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0359	JBQ	0.0114	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0466	JBQ	0.0220	MDL	5.42	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-029-SA5DN-SB-4.0-5.0 Collected: 6/15/2011 9:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDF	0.0440	JQ	0.0180	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0181	JBQ	0.0108	MDL	5.42	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0735	JBQ	0.0134	MDL	5.42	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0727	JBQ	0.0112	MDL	5.42	PQL	ng/Kg	υ	В
OCDD	1.43	JB	0.0277	MDL	10.8	PQL	ng/Kg	υ	В
OCDF	0.253	JBQ	0.0356	MDL	10.8	PQL	ng/Kg	U	В

Sample ID: SL-030-SA5DN-SB-4.0-5.0 Collected: 6/15/2011 9:55:00 Analysis Type: RES Dilution: 1

Sample ib. Sc-990-Shobit-Sb-4.0-0.0	Conec	teu, 0/10/2	-011 0.00.0	· 7	nuiyara i j	peo	Direction.		
nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.388	JB	0.0315	MDL	5.65	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.195	JBQ	0.00989	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0475	JBQ	0.0239	MDL	5.65	PQL	ng/Kg	υJ	B, FD
1,2,3,4,7,8-HxCDD	0.0294	JQ	0.0209	MDL	5.65	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	0.0498	JBQ	0.0170	MDL	5.65	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0271	JBQ	0.0205	MDL	5.65	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0468	JBQ	0.0133	MDL	5.65	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0422	JBQ	0.0203	MDL	5.65	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0888	J	0.0207	MDL	5.65	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0186	JBQ	0.0121	MDL	5.65	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.132	JB	0.0141	MDL	5.65	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0653	JB	0.0133	MDL	5.65	PQL	ng/Kg	U	В
OCDD	0.985	JB	0.0262	MDL	11.3	PQL	ng/Kg	U	В
OCDF	0.255	JBQ	0.0447	MDL	11.3	PQL	ng/Kg	ŊJ	B, FD

Sample ID: SL-031-SA5DN-SB-4.0-5.0 Collected: 6/15/2011 11:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.547	JB	0.0267	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.284	JB	0.0139	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.134	JB	0.0204	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0876	JQ	0.0200	MDL	5.65	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.148	JB	0.0298	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.113	JBQ	0.0201	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.148	JB	0.0214	MDL	5.65	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA	The statement	
Method:	1613B	Matrix:	so

0.536

Sample ID: SL-031-SA5DN-SB-4.0-5.0 Collected: 6/15/2011 11:25:00 Analysis Type: RES Dilution: 1 Data DLRLReview Lab Lab Reason Analyte Result Qual DLType RLUnits Qual Code Type 1,2,3,7,8,9-HXCDD 0.149 JΒ 0.0194 MDL 5.65 PQL ng/Kg U В 1,2,3,7,8,9-HXCDF 0.130 JQ 0.0195 MDL 5.65 PQL ng/Kg J Ζ JBQ 0.0265 MDL 5.65 PQL U 1,2,3,7,8-PECDD 0.106 ng/Kg В U 1,2,3,7,8-PECDF 0.0591 JΒ 0.0112 MDL 5.65 **PQL** ng/Kg В 2,3,4,6,7,8-HXCDF U 0.166 JB 0.0139 MDL 5.65 PQL В ng/Kg Ų 2,3,4,7,8-PECDF 0.159 JB 0.0126 MDL 5.65 **PQL** ng/Kg В OCDD 2.80 JВ 0.0205 MDL PQL U В 11.3 ng/Kg

Sample ID: SL-034-SA5DN-SB-4.0-5.0 Collected: 6/15/2011 12:25:00 Analysis Type: RES Dilution: 1

0.0351

MDL

11.3

PQL

ng/Kg

U

JΒ

Delitiple ID. OL-OUT-ORDUN-OL-4.0-0.0	Conce	ted, or lorg	011 12.20.	· .	iiuiyaia ij	pc. INCO		Dilaton. (
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.468	JB	0.0310	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.243	JB	0.00875	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0713	JBQ	0.0192	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0324	JQ	0.0215	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0690	JBQ	0.0165	MDL	5.52	PQL	ng/Kg	Ų	В	
1,2,3,6,7,8-HXCDD	0.0442	JB	0.0219	MDL	5.52	PQL.	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0489	JBQ	0.0140	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0781	JB	0.0209	MDL	5.52	PQL	ng/Kg	C	В	
1,2,3,7,8,9-HXCDF	0.0472	JQ	0.0181	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0311	JBQ	0.0239	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0455	JBQ	0.0124	MDL	5.52	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.133	JBQ	0.0145	MDL	5.52	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0751	JB	0.0130	MDL	5.52	PQL	ng/Kg	U	В	
OCDD	1.21	JBQ	0.0267	MDL	11.0	PQL	ng/Kg	U	В	
OCDF	0.311	JBQ	0.0430	MDL	11.0	PQL	ng/Kg	U	В	

Sample ID: SL-051-SA8N-SB-7.5-8.5 Collected: 6/17/2011 9:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.15	JB	0.0220	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.404	JB	0.0416	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.170	JQ	0.0378	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.770	JB	0.0411	MDL	5.32	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

OCDF

9/28/2011 8:59:29 AM ADR version 1.4.0.111 Page 4 of 14

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-051-SA8N-SB-7.5-8.5 Collected: 6/17/2011 9:50:00 Analysis Type: RES Dilution: 1

campic is: all our criticis	00,,00						ranalyono rypor razo		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDD	1.14	JB	0.0391	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.441	JB	0.0326	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.812	JB	0.0378	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.718	JQ	0.0460	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.317	JB	0.0465	MDL	5.32	PQL	ng/Kg	j	Z
1,2,3,7,8-PECDF	0.610	JB	0.0404	MDL	5.32	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.436	JB	0.0348	MDL	5.32	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.950	JB	0.0411	MDL	5.32	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0618	J	0.0279	MDL	1.06	PQL	ng/Kg	J	Z
OCDF	8.55	JB	0.0550	MDL	10.6	PQL	ng/Kg	J	Z

Sample ID: SL-055-SA5DN-SB-4.0-5.0 Collected: 6/15/2011 2:30:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.662	JB	0.0321	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.186	JB	0.00797	MDL	5.82	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0692	JBQ	0.0189	MDL	5.82	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0682	J	0.0220	MDL	5.82	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.145	JB	0.0188	MDL	5.82	PQL	ng/Kg	C	В
1,2,3,6,7,8-HXCDD	0.0871	JBQ	0.0227	MDL	5.82	PQL	ng/Kg	. C	В
1,2,3,6,7,8-HXCDF	0.110	JB	0.0143	MDL	5.82	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.121	JB	0.0223	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.120	J	0.0205	MDL	5.82	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.150	JB	0.0274	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.137	JB	0.0132	MDL	5.82	PQL	ng/Kg	٦	Z
2,3,4,6,7,8-HXCDF	0.146	JB	0.0166	MDL	5.82	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.167	JBQ	0.0143	MDL	5.82	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0518	JQ	0.0250	MDL	1.16	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0407	JQ	0.0234	MDL	1.16	PQL	ng/Kg	J	Z
OCDD	4.66	JB	0.0268	MDL	11.6	PQL	ng/Kg	J	Z
OCDF	0.300	JB	0.0443	MDL	11.6	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-055-SA5DN-SB-9.0-10.0 Collected: 6/15/2011 2:35:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL Review Reason Result DLRL Units Analyte Qual Type Type Qual Code 1.32 0.0698 MDL **PQL** U 1,2,3,4,6,7,8-HPCDD JВ 5.57 ng/Kg 1,2,3,4,6,7,8-HPCDF 0.371 J₿ 0.0280 MDL 5.57 **PQL** ng/Kg Ų В 0.145 JB 0.0466 MDL PQL U 1,2,3,4,7,8,9-HPCDF 5.57 ng/Kg В 0.165 JQ 0.0537 MDL 5.57 PQL J 1,2,3,4,7,8-HxCDD ng/Kg Z U 1,2,3,4,7,8-HXCDF 0.261 JB 0.0337 MDL 5.57 **PQL** ng/Kg В 1,2,3,6,7,8-HXCDD 0.252 JB 0.0534 MDL 5.57 PQL U В ng/Kg 0.0295 MDL 0.208 JΒ 5.57 PQL Ų В 1,2,3,6,7,8-HXCDF ng/Kg 1,2,3,7,8,9-HXCDD 0.244 JBQ 0.0559 MDL 5.57 PQL. ng/Kg υ ₿ 1,2,3,7,8,9-HXCDF 0.173 J 0.0391 MDL 5.57 **PQL** J Z πg/Kg JΒ 1,2,3,7,8-PECDD 0.330 0.0407 MDL 5.57 **PQL** ng/Kg J Ζ JΒ 0.0174 J 1,2,3,7,8-PECDF 0.335 MDL 5.57 PQL ng/Kg Z υ 0.208 JBQ 0.0321 MDL 5.57 **PQL** ng/Kg В 2,3,4,6,7,8-HXCDF PQL 2,3,4,7,8-PECDF 0.294 JBQ 0.0172 MDL 5.57 ng/Kg υ В 0.0994 JQ 0.0281 MDL 1.11 **PQL** ng/Kg Ζ 2,3,7,8-TCDD 0.0549 JQ 0.0265 MDL 1.11 PQL J Ζ 2,3,7,8-TCDF ng/Kg OCDF 0.495 JB 0.0577 MDL 11.1 **PQL** ng/Kg υ

Sample ID: SL-056-SA5DN-SB-4.0-5.0 Collected: 6/15/2011 3:20:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.614	JB	0.0449	MDL	5.82	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.275	JB	0.0147	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.137	JB	0.0322	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.157	JQ	0.0342	MDL	5.82	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.224	JBQ	0.0219	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.189	JB	0.0341	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.170	JB	0.0170	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.204	JB	0.0330	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.193	JQ	0.0251	MDL	5.82	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.373	JB	0.0343	MDL	5.82	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.340	JB	0.0134	MDL	5.82	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.222	JBQ	0.0194	MDL	5.82	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.311	JB	0.0135	MDL	5.82	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0908	J	0.0257	MDL	1.16	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Page 6 of 14

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method Category:			
Method:	1613B	Matrix: SO	

Sample ID: SL-056-SA5DN-SB-4.0-5.0 Collected: 6/15/2011 3:20:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDD	1.51	JB	0.0284	MDL	11.6	PQL	ng/Kg	υ	В
OCDF	0.391	JB	0.0443	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-056-SA5DN-SB-9.0-10.0 Collected: 6/15/2011 3:25:00 Analysis Type: RES Dilution: 1

Sample ID: SL-056-SA5DN-SB-9.0-10.0	Collec	ted: 6/15/2	011 3:25:0	10 A	nalysis Ty	/pe: RES		1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.673	JB	0.0412	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.211	JBQ	0.0128	MDL	5.66	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.113	JB	0.0336	MDL	5.66	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.102	JQ	0.0283	MDL	5.66	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.138	JBQ	0.0246	MDL.	5.66	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.140	JBQ	0.0285	MDL	5.66	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.103	JB	0.0186	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.131	JB	0.0277	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.124	J	0.0271	MDL	5.66	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.186	JBQ	0.0287	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.234	JB	0.0125	MDL	5.66	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.190	JB	0.0195	MDL	5.66	PQL	ng/Kg	Ų	В
2,3,4,7,8-PECDF	0.202	JB	0.0145	MDL	5.66	PQL	ng/Kg	Ų	В
2,3,7,8-TCDD	0.0380	JQ	0.0233	MDL	1.13	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0625	JQ	0.0240	MDL	1.13	PQL	ng/Kg	J	Z
OCDD	2.15	JB	0.0320	MDL	11.3	PQL	ng/Kg	U	В
OCDF	0.424	JBQ	0.0632	MDL	11.3	PQL	ng/Kg	U	В

Sample ID: SL-059-SA5DN-SB-4.0-5.0 Collected: 6/16/2011 8:45:00 Analysis Type: RES Dilution: 1

bumpic ib. on our enterings in our						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.541	JBQ	0.0351	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.159	JBQ	0.00889	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0436	JBQ	0.0292	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0575	JB	0.0186	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0800	JBQ	0.0210	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0357	JBQ	0.0132	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.114	JBQ	0.0201	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.162	JQ	0.0245	MDL	5.58	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B	IV.	latrix:	SO

Sample ID: SL-059-SA5DN-SB-4.0-5.0 Collected: 6/16/2011 8:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDF	0.0687	JBQ	0.0130	MDL	5.58	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0998	JB	0.0150	MDL	5.58	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0683	JBQ	0.0147	MDL	5.58	PQL	ng/Kg	U	В
OCDD	1.73	JB	0.0263	MDL	11.2	PQL	ng/Kg	U	В
OCDF	0.415	JBQ	0.0739	MDL	11.2	PQL	ng/Kg	Ų	В

Sample ID: SL-059-SA5DN-SB-9.0-10.0 Collected: 6/16/2011 8:50:00 Analysis Type: RES Dilution: 1

Sample in St. 033-3A3DN-3D-3.0-10.0	Conec	ieu. Oi luiz	0.30.0	v 7	nanyana ny	pe, neo			211000011. I
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.453	JB	0.0364	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.185	JBQ	0.00945	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0509	JBQ	0.0314	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0298	JQ	0.0268	MDL	5.68	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.0608	JBQ	0.0275	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0376	JBQ	0.0148	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0445	JBQ	0.0251	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0569	JQ	0.0257	MDL	5.68	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0239	JB	0.0126	MDL	5.68	PQL	пg/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0977	JBQ	0.0158	MDL	5.68	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0822	JB	0.0161	MDL	5.68	PQL	ng/Kg	υ	В
OCDD	1.65	JBQ	0.0305	MDL	11.4	PQL	ng/Kg	U	В
OCDF	0.514	JB	0.0803	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-061-SA5DN-SB-4.0-5.0 Collected: 6/16/2011 2:20:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.489	JВ	0.0348	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.143	JB	0.00911	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0820	JBQ	0.0261	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0351	JBQ	0.0174	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.154	JBQ	0.0225	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0487	JB	0.0134	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.223	JBQ	0.0218	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.388	JQ	0.0209	MDL	5.72	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0556	JB	0.0326	MDL	5.72	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

9/28/2011 8:59:30 AM ADR version 1.4.0.111 Page 8 of 14

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method Category	<i>y:</i> SVOA	
Method:	1613B	Matrix: SO

Sample ID: SL-061-SA5DN-SB-4.0-5.0 Collected: 6/16/2011 2:20:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Analyte Result Qual DL Туре RL Units Qual Code Type 1,2,3,7,8-PECDF 0.0760 MDL JBQ 0.0127 5.72 **PQL** ng/Kg Ų В 2,3,4,6,7,8-HXCDF 0.102 JBQ 0.0154 MDL 5.72 PQL ng/Kg Ų В 2,3,4,7,8-PECDF 0.0592 0.0143 MDL υ JB 5.72 PQL ng/Kg В J Z 2,3,7,8-TCDF 0.0295 JQ 0.0242 MDL 1.14 **PQL** ng/Kg OCDD 1.03 JB 0.0262 MDL 11.4 PQL U В ng/Kg

JBQ

0.0579

MDL

PQL

ng/Kg

11.4

U

В

0.332

Sample ID: SL-061-SA5DN-SB-9.0-10.0	Collec	ted: 6/16/2	011 2:25:0	00 A	nalysis Ty	/pe: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.478	JB	0.0340	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.208	JB	0.0126	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0444	JBQ	0.0219	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0538	J	0.0253	MDL	5.65	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0897	JBQ	0.0190	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0654	JBQ	0.0254	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0882	JBQ	0.0150	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.109	JBQ	0.0258	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0810	J	0.0180	MDL	5.65	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.121	JB	0.0293	MDL	5.65	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.109	JBQ	0.0132	MDL	5.65	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.140	JBQ	0.0145	MDL	5.65	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.129	JBQ	0.0138	MDL	5.65	PQL	ng/Kg	U	В
OCDD	1.02	JB	0.0281	MDL	11.3	PQL	ng/Kg	υ	В
OCDF	0.272	JB	0.0404	MDL	11.3	PQL	ng/Kg	υ	В

	Sample ID: SL-062-SA5DN-SB-4.0-5.0	Collect	ted: 6/16/2	00 A	nalysis T	ype: RES	;	1	Dilution: 1
Lab Lab DL RL Review Re-			Lab		DI.	1	Unita		Reason Code

Analyte	Lab Result	Lan Quai	DL	Type	RL	Type	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	1.24	JB	0.0392	MDL	5.87	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.278	JB	0.0144	MDL	5.87	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0848	JВ	0.0223	MDL	5.87	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0906	J	0.0315	MDL	5.87	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0986	JBQ	0.0223	MDL	5.87	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.175	JB	0.0310	MDL	5.87	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

OCDF

9/28/2011 8:59:30 AM ADR version 1.4.0.111 Page 9 of 14

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-062-SA5DN-SB-4.0-5.0 Collected: 6/16/2011 2:35:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDF	0.109	JBQ	0.0186	MDL	5.87	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.164	JBQ	0.0299	MDL	5.87	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.176	JQ	0.0194	MDL	5.87	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.167	JBQ	0.0309	MDL	5.87	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.162	JB	0.0144	MDL	5.87	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.134	JB	0.0160	MDL	5.87	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.178	JBQ	0.0153	MDL	5.87	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0749	ηQ	0.0296	MDL	1.17	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0274	JQ	0.0258	MDL	1.17	PQL	ng/Kg	J	Z
OCDF	0.461	JBQ	0.0488	MDL	11.7	PQL	ng/Kg	Ų	В

Sample ID: SL-093-SA5DN-SB-4.0-5.0 Collected: 6/20/2011 12:25:00 Analysis Type: RES Dilution: 1

Sample ib. SE-999-SHODIN-OB-4:0-9:0	Oblica	tcu, orzorz	011 12.20	.00 ^	narysis i	pc. ILL			Dianon. I
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.762	JB	0.0781	MDL	5.88	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.246	JB	0.0249	MDL	5.88	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.239	JBQ	0.0864	MDL	5.88	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.141	JQ	0.0583	MDL	5.88	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.162	JB	0.0432	MDL	5.88	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.210	JB	0.0560	MDL	5.88	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.122	JBQ	0.0313	MDL	5.88	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.242	JBQ	0.0541	MDL	5.88	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.269	JQ	0.0609	MDL	5.88	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.161	JBQ	0.0481	MDL	5.88	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.173	JBQ	0.0185	MDL	5.88	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.203	JBQ	0.0347	MDL	5.88	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.153	JBQ	0.0204	MDL	5.88	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0488	JQ	0.0341	MDL	1.18	PQL	ng/Kg	J	Z
OCDD	3.91	JB	0.0546	MDL	11.8	PQL	ng/Kg	U	В
OCDF	0.859	JB	0.121	MDL	11.8	PQL	ng/Kg	U	В

Sample ID: SL-093-SA5DN-SB-9.0-10.0 Collected: 6/20/2011 12:30:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.554	JBQ	0.0504	MDL	5.52	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

9/28/2011 8:59:30 AM ADR version 1.4.0.111 Page 10 of 14

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-093-SA5DN-SB-9.0-10.0 Collected: 6/20/2011 12:30:00 Analysis Type: RES Dilution: 1

3811pic 15: 02-000-0A0511 05-0.0-10.0	Conco	too. Olfolf		.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,ρυ	Dilution.			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	0.204	JBQ	0.0169	MDL	5.52	PQL	ng/Kg	υ	В	
1,2,3,4,7,8,9-HPCDF	0.166	JBQ	0.0625	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0708	JBQ	0.0263	MDL	5.52	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDD	0.0721	JBQ	0.0359	MDL	5.52	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.0589	JBQ	0.0180	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0990	JBQ	0.0356	MDL	5.52	PQL	ng/Kg	U	8	
1,2,3,7,8,9-HXCDF	0.132	J	0.0403	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0277	JBQ	0.0123	MDL	5.52	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.112	JBQ	0.0218	MDL.	5.52	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0916	JBQ	0.0147	MDL	5.52	PQL	ng/Kg	U	В	
OCDD	1.95	JB	0.0410	MDL	11.0	PQL	ng/Kg	U	В	
OCDF	0.471	JB	0.0995	MDL	11.0	PQL	ng/Kg	U	В	

Sample ID: SL-117-SA5DN-SB-4.0-5.0 Collected: 6/20/2011 2:20:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.889	JB	0.0448	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.186	JB	0.0144	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.104	JBQ	0.0360	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0487	JQ	0.0283	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0507	JBQ	0.0249	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0945	JB	0.0282	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0422	JBQ	0.0187	MDL	5.47	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.102	JBQ	0.0276	MDL	5.47	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.172	JQ	0.0251	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0416	JBQ	0.0117	MDL	5.47	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.143	JBQ	0.0180	MDL	5.47	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0885	JBQ	0.0132	MDL	5.47	PQL	ng/Kg	U	В
OCDD	7.88	JB	0.0337	MDL	10.9	PQL	ng/Kg	J	Z
OCDF	0.476	JB	0.0649	MDL	10.9	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX103

Laboratory: LL EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
-	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
c .	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Laboratory Triplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
н	Temperature Rejection
1	Internal Standard Estimation
I	Internal Standard Rejection
L	Laboratory Control Precision
Ĺ	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
M	Initial Tune
M	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Laboratory Triplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX103

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

EDD Filename: DX103_v1		eQAPP Name: CDM_SSFL_
Q	Matrix Spike Upper Rejection	
R	Continuing Calibration Verification Percent Recovery Lower Estimation	_
R	Continuing Calibration Verification Percent Recovery Lower Rejection	
R	Continuing Calibration Verification Percent Recovery Upper Estimation	
R	Continuing Calibration Verification Percent Recovery Upper Rejection	
R	Continuing Calibration Verification Relative Response Factor	,
R	Initial Calibration Relative Response Factor	
R	Initial Calibration Verification Percent Recovery Lower Estimation	
R	Initial Calibration Verification Percent Recovery Lower Rejection	
R	Initial Calibration Verification Percent Recovery Upper Estimation	
R	Initial Calibration Verification Percent Recovery Upper Rejection	
R	Initial Calibration Verification Relative Response Factor	
S	Surrogate/Tracer Recovery Lower Estimation	
S	Surrogate/Tracer Recovery Lower Rejection	
S	Surrogate/Tracer Recovery Upper Estimation	
S	Surrogate/Tracer Recovery Upper Rejection	
T	Trip Blank Contamination	
Z	Reporting Limit	
Z	Reporting Limit > Project Maximum Contamination Limit	
Z	Reporting Limit Trace Value	

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX103

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ								
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples				
BLK1860B370312	7/8/2011 3:12:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	5.77 pg/L 3.35 pg/L 1.08 pg/L 0.514 pg/L 0.682 pg/L 0.924 pg/L 0.769 pg/L 0.771 pg/L 1.09 pg/L 0.288 pg/L 0.586 pg/L 1.21 pg/L 1.01 pg/L 0.502 pg/L 11.0 pg/L 3.55 pg/L	EB18-SA5DN-SB-061511				

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB18-SA5DN-SB-061511(RES)	1,2,3,4,6,7,8-HPCDD	5.01 pg/L	5.01U pg/L
EB18-SA5DN-SB-061511(RES)	1,2,3,4,6,7,8-HPCDF	2.86 pg/L	2.86U pg/L
EB18-SA5DN-SB-061511(RES)	1,2,3,4,7,8,9-HPCDF	0.752 pg/L	0.752U pg/L
EB18-SA5DN-SB-061511(RES)	1,2,3,4,7,8-HxCDD	0.227 pg/L	0.227U pg/L
EB18-SA5DN-SB-061511(RES)	1,2,3,4,7,8-HXCDF	0.633 pg/L	0.633U pg/L
EB18-SA5DN-SB-061511(RES)	1,2,3,6,7,8-HXCDD	0.620 pg/L	0,620U pg/L
EB18-SA5DN-SB-061511(RES)	1,2,3,6,7,8-HXCDF	0.424 pg/L	0.424U pg/L
EB18-SA5DN-SB-061511(RES)	1,2,3,7,8,9-HXCDD	0.691 pg/L	0.691U pg/L
EB18-SA5DN-SB-061511(RES)	1,2,3,7,8,9-HXCDF	0.655 pg/L	0.655U pg/L
EB18-SA5DN-SB-061511(RES)	1,2,3,7,8-PECDD	0.392 pg/L	0.392U pg/L
EB18-SA5DN-SB-061511(RES)	1,2,3,7,8-PECDF	0.242 pg/L	0.242U pg/L
EB18-SA5DN-SB-061511(RES)	2,3,4,6,7,8-HXCDF	1.13 pg/L	1.13U pg/L
EB18-SA5DN-SB-061511(RES)	2,3,4,7,8-PECDF	0.820 pg/L	0.820U pg/L
EB18-SA5DN-SB-061511(RES)	OCDD	8.00 pg/L	8.00U pg/L
EB18-SA5DN-SB-061511(RES)	OCDF	1.94 pg/L	1.94U pg/L

9/28/2011 8:58:37 AM ADR version 1.4.0.111 Page 1 of 7

Lab Reporting Batch ID: DX103 Laboratory: LL EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO								
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples				
BLK1810B371937	7/1/2011 7:37:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 0,0,0,0	0.484 ng/Kg 0.258 ng/Kg 0.0706 ng/Kg 0.0787 ng/Kg 0.0594 ng/Kg 0.0542 ng/Kg 0.0586 ng/Kg 0.0530 ng/Kg 0.0247 ng/Kg 0.140 ng/Kg 0.0736 ng/Kg 0.797 ng/Kg	DUP15-SA5DN-QC-061511 SL-020-SA5DN-SB-3.5-4.5 SL-029-SA5DN-SB-4.0-5.0 SL-030-SA5DN-SB-4.0-5.0 SL-031-SA5DN-SB-4.0-5.0 SL-031-SA5DN-SB-4.0-5.0 SL-034-SA5DN-SB-4.0-5.0 SL-051-SA8N-SB-7.5-8.5 SL-055-SA5DN-SB-4.0-5.0 SL-056-SA5DN-SB-4.0-5.0 SL-056-SA5DN-SB-9.0-10.0 SL-056-SA5DN-SB-9.0-10.0 SL-059-SA5DN-SB-4.0-5.0 SL-059-SA5DN-SB-4.0-5.0 SL-061-SA5DN-SB-4.0-5.0 SL-062-SA5DN-SB-4.0-5.0 SL-062-SA5DN-SB-4.0-5.0 SL-093-SA5DN-SB-4.0-5.0 SL-093-SA5DN-SB-4.0-5.0 SL-093-SA5DN-SB-9.0-10.0 SL-117-SA5DN-SB-9.0-10.0				

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP15-SA5DN-QC-061511(RES)	1,2,3,4,6,7,8-HPCDD	0.514 ng/Kg	0.514U ng/Kg
DUP15-SA5DN-QC-061511(RES)	1,2,3,4,6,7,8-HPCDF	0.180 ng/Kg	0.180U ng/Kg
DUP15-SA5DN-QC-061511(RES)	1,2,3,4,7,8,9-HPCDF	0.0942 ng/Kg	0.0942U ng/Kg
DUP15-SA5DN-QC-061511(RES)	1,2,3,4,7,8-HXCDF	0.0724 ng/Kg	0.0724U ng/Kg
DUP15-SA5DN-QC-061511(RES)	1,2,3,6,7,8-HXCDD	0,0436 ng/Kg	0.0436U ng/Kg
DUP15-SA5DN-QC-061511(RES)	1,2,3,6,7,8-HXCDF	0.0645 ng/Kg	0.0645U ng/Kg
DUP15-SA5DN-QC-061511(RES)	1,2,3,7,8,9-HXCDD	0,0481 ng/Kg	0.0481U ng/Kg
DUP15-SA5DN-QC-061511(RES)	1,2,3,7,8-PECDF	0.0248 ng/Kg	0.0248U ng/Kg
DUP15-SA5DN-QC-061511(RES)	2,3,4,6,7,8-HXCDF	0.103 ng/Kg	0.103U ng/Kg
DUP15-SA5DN-QC-061511(RES)	2,3,4,7,8-PECDF	0.0732 ng/Kg	0.0732U ng/Kg
DUP15-SA5DN-QC-061511(RES)	OCDD	1.13 ng/Kg	1.13U ng/Kg
DUP15-SA5DN-QC-061511(RES)	OCDF	0.632 ng/Kg	0.632U ng/Kg
SL-020-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDD	0.525 ng/Kg	0.525U ng/Kg
SL-020-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDF	0.183 ng/Kg	0.183U ng/Kg
SL-020-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0437 ng/Kg	0.0437U ng/Kg
SL-020-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,7,8-HXCDF	0.0822 ng/Kg	0.0822U ng/Kg
SL-020-SA5DN-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDD	0.0430 ng/Kg	0.0430U ng/Kg
SL-020-SA5DN-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDF	0,0299 ng/Kg	0.0299U ng/Kg
SL-020-SA5DN-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDD	0.0659 ng/Kg	0.0659U ng/Kg
SL-020-SA5DN-SB-3.5-4.5(RES)	1,2,3,7,8-PECDD	0.0555 ng/Kg	0.0555U ng/Kg
SL-020-SA5DN-SB-3.5-4.5(RES)	1,2,3,7,8-PECDF	0.0370 ng/Kg	0.0370U ng/Kg
SL-020-SA5DN-SB-3.5-4.5(RES)	2,3,4,6,7,8-HXCDF	0.0761 ng/Kg	0.0761U ng/Kg
SL-020-SA5DN-SB-3.5-4.5(RES)	2,3,4,7,8-PECDF	0.0766 ng/Kg	0.0766U ng/Kg
SL-020-SA5DN-SB-3.5-4.5(RES)	OCDD	2.12 ng/Kg	2.12U ng/Kg
SL-020-SA5DN-SB-3.5-4.5(RES)	OCDF	0.253 ng/Kg	0.253U ng/Kg
SL-029-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.488 ng/Kg	0.488U ng/Kg
SL-029-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.159 ng/Kg	0.159U ng/Kg

9/28/2011 8:58:37 AM ADR version 1.4.0.111 Page 2 of 7

Lab Reporting Batch ID: DX103 Laboratory: LL
EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Bla Sample ID		Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-029-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0584 ng/Kg	0.0584U ng/Kg	
SL-029-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0532 ng/Kg	0.0532U ng/Kg	
SL-029-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0406 ng/Kg	0.0406U ng/Kg	
SL-029-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0359 ng/Kg	0.0359U ng/Kg	
SL-029-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0466 ng/Kg	0.0466U ng/Kg	
	1,2,3,7,8-PECDF	0.0181 ng/Kg	0.0181U ng/Kg	
SL-029-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0735 ng/Kg	0.0735U ng/Kg	
SL-029-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0727 ng/Kg	0.0727U ng/Kg	
SL-029-SA5DN-SB-4.0-5.0(RES)	OCDD	1.43 ng/Kg	1.43U ng/Kg	
SL-029-SA5DN-SB-4.0-5.0(RES)	OCDF	0,253 ng/Kg	0.253U ng/Kg	
SL-029-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.388 ng/Kg	0.388U ng/Kg	
SL-030-SA5DN-SB-4.0-5.0(RES)		0.195 ng/Kg	0.195U ng/Kg	
SL-030-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	0.0475 ng/Kg	0.0475U ng/Kg	
SL-030-SA5DN-SB-4.0-5.0(RES)		0.0498 ng/Kg	0.0498U ng/Kg	
SL-030-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0271 ng/Kg	0.0271U ng/Kg	
SL-030-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0468 ng/Kg	0.0468U ng/Kg	
SL-030-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0422 ng/Kg	0.0422U ng/Kg	
SL-030-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD		0.0186U ng/Kg	
SL-030-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0186 ng/Kg		
SL-030-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.132 ng/Kg	0.132U ng/Kg	
SL-030-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0653 ng/Kg	0.0653U ng/Kg	
SL-030-SA5DN-SB-4.0-5.0(RES)	OCDD	0.985 ng/Kg	0.985U ng/Kg	
SL-030-SA5DN-SB-4.0-5.0(RES)	OCDF	0.255 ng/Kg	0.255U ng/Kg	
SL-031-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.547 ng/Kg	0.547U ng/Kg	
SL-031-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.284 ng/Kg	0.284U ng/Kg	
SL-031-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.134 ng/Kg	0.134U ng/Kg	
SL-031-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.148 ng/Kg	0.148U ng/Kg	
SL-031-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.113 ng/Kg	0.113U ng/Kg	
SL-031-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0,148 ng/Kg	0.148U ng/Kg	
SL-031-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.149 ng/Kg	0.149U ng/Kg	
SL-031-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.106 ng/Kg	0.106U ng/Kg	
SL-031-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0591 ng/Kg	0,0591U ng/Kg	
SL-031-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.166 ng/Kg	0.166U ng/Kg	
SL-031-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.159 ng/Kg	0.159U ng/Kg	
SL-031-SA5DN-SB-4.0-5.0(RES)	OCDD	2.80 ng/Kg	2.80U ng/Kg	
SL-031-SA5DN-SB-4.0-5.0(RES)	OCDF	0.536 ng/Kg	0.536U ng/Kg	
SL-034-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.468 ng/Kg	0.468U ng/Kg	
SL-034-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.243 ng/Kg	0.243U ng/Kg	
SL-034-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0713 ng/Kg	0,0713U ng/Kg	
SL-034-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0690 ng/Kg	0.0690U ng/Kg	
SL-034-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0442 ng/Kg	0.0442U ng/Kg	

9/28/2011 8:58:37 AM ADR version 1.4.0.111 Page 3 of 7

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-034-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0489 ng/Kg	0.0489U ng/Kg
SL-034-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0781 ng/Kg	0.0781U ng/Kg
SL-034-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0311 ng/Kg	0.0311U ng/Kg
SL-034-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0455 ng/Kg	0.0455U ng/Kg
SL-034-\$A5DN-\$B-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.133 ng/Kg	0.133U ng/Kg
SL-034-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0751 ng/Kg	0.0751U ng/Kg
SL-034-SA5DN-SB-4.0-5.0(RES)	OCDD	1.21 ng/Kg	1.21U ng/Kg
SL-034-SA5DN-SB-4.0-5.0(RES)	OCDF	0.311 ng/Kg	0.311U ng/Kg
SL-051-SA8N-SB-7.5-8.5(RES)	2,3,4,6,7,8-HXCDF	0.436 ng/Kg	0.436U ng/Kg
SL-055-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.662 ng/Kg	0.662U ng/Kg
SL-055-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.186 ng/Kg	0.186U ng/Kg
SL-055-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0692 ng/Kg	0.0692U ng/Kg
SL-055-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.145 ng/Kg	0.145U ng/Kg
SL-055-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0871 ng/Kg	0.0871U ng/Kg
SL-055-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.110 ng/Kg	0.110U ng/Kg
SL-055-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.121 ng/Kg	0.121U ng/Kg
SL-055-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.150 ng/Kg	0.150U ng/Kg
SL-055-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.146 ng/Kg	0.146U ng/Kg
SL-055-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.167 ng/Kg	0.167U ng/Kg
SL-055-SA5DN-SB-4.0-5.0(RES)	OCDF	0.300 ng/Kg	0.300U ng/Kg
SL-055-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	1,32 ng/Kg	1,32U ng/Kg
SL-055-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.371 ng/Kg	0.371U ng/Kg
SL-055-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.145 ng/Kg	0.145U ng/Kg
SL-055-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.261 ng/Kg	0.261U ng/Kg
SL-055-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.252 ng/Kg	0.252U ng/Kg
SL-055-\$A5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.208 ng/Kg	0.208U ng/Kg
SL-055-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0,244 ng/Kg	0.244U ng/Kg
SL-055-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.208 ng/Kg	0.208U ng/Kg
SL-055-SA5DN-SB-9,0-10.0(RES)	2,3,4,7,8-PECDF	0.294 ng/Kg	0.294U ng/Kg
SL-055-SA5DN-SB-9.0-10.0(RES)	OCDF	0.495 ng/Kg	0.495U ng/Kg
SL-056-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.614 ng/Kg	0.614U ng/Kg
SL-056-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.275 ng/Kg	0.275U ng/Kg
SL-056-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.137 ng/Kg	0.137U ng/Kg
SL-056-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.224 ng/Kg	0.224U ng/Kg
SL-056-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.189 ng/Kg	0.189U ng/Kg
SL-056-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.170 ng/Kg	0,170U ng/Kg
SL-056-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0,204 ng/Kg	0.204U ng/Kg
SL-056-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.222 ng/Kg	0.222U ng/Kg
SL-056-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.311 ng/Kg	0.311U ng/Kg
SL-056-SA5DN-SB-4.0-5.0(RES)	OCDD	1.51 ng/Kg	1.51U ng/Kg

9/28/2011 8:58:37 AM ADR version 1.4.0.111 Page 4 of 7

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blan					Associated
Sample ID		Analysis Date	Analyte	Result	Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-056-SA5DN-SB-4.0-5.0(RES)	OCDF	0.391 ng/Kg	0.391U ng/Kg	
SL-056-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.673 ng/Kg	0.673U ng/Kg	
SL-056-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.211 ng/Kg	0.211U ng/Kg	
SL-056-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.113 ng/Kg	0.113U ng/Kg	
SL-056-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.138 ng/Kg	0.138U ng/Kg	
SL-056-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.140 ng/Kg	0.140U ng/Kg	
SL-056-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.103 ng/Kg	0.103U ng/Kg	
SL-056-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.131 ng/Kg	0.131U ng/Kg	
SL-056-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.186 ng/Kg	0.186U ng/Kg	
SL-056-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.190 ng/Kg	0.190U ng/Kg	
SL-056-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.202 ng/Kg	0.202U ng/Kg	
SL-056-SA5DN-SB-9.0-10.0(RES)	OCDD	2.15 ng/Kg	2.15U ng/Kg	
SL-056-SA5DN-SB-9.0-10.0(RES)	OCDF	0.424 ng/Kg	0.424U ng/Kg	
SL-059-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.541 ng/Kg	0.541U ng/Kg	
SL-059-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.159 ng/Kg	0.159U ng/Kg	
SL-059-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0436 ng/Kg	0.0436U ng/Kg	
SL-059-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0575 ng/Kg	0.0575U ng/Kg	
SL-059-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0,0800 ng/Kg	0.0800U ng/Kg	
SL-059-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0357 ng/Kg	0.0357U ng/Kg	
SL-059-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.114 ng/Kg	0.114U ng/Kg	
SL-059-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0687 ng/Kg	0.0687U ng/Kg	
SL-059-SA5DN-\$B-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0998 ng/Kg	0,0998U ng/Kg	
SL-059-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0683 ng/Kg	0.0683U ng/Kg	
SL-059-SA5DN-SB-4.0-5.0(RES)	OCDD	1.73 ng/Kg	1,73U ng/Kg	
SL-059-SA5DN-SB-4.0-5.0(RES)	OCDF	0.415 ng/Kg	0.415U ng/Kg	
SL-059-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.453 ng/Kg	0.453U ng/Kg	
SL-059-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.185 ng/Kg	0.185U ng/Kg	
SL-059-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0509 ng/Kg	0.0509U ng/Kg	
SL-059-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0608 ng/Kg	0.0608U ng/Kg	
SL-059-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0376 ng/Kg	0.0376U ng/Kg	
SL-059-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0445 ng/Kg	0.0445U ng/Kg	
SL-059-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0239 ng/Kg	0.0239U ng/Kg	
SL-059-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0977 ng/Kg	0.0977U ng/Kg	
SL-059-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0822 ng/Kg	0.0822U ng/Kg	
SL-059-SA5DN-SB-9.0-10.0(RES)	OCDD	1.65 ng/Kg	1.65U ng/Kg	
SL-059-SA5DN-SB-9.0-10.0(RES)	OCDF	0.514 ng/Kg	0.514U ng/Kg	
SL-061-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.489 ng/Kg	0.489U ng/Kg	
SL-061-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	. 0.143 ng/Kg	0.143U ng/Kg	
SL-061-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0820 ng/Kg	0.0820U ng/Kg	
SL-061-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0351 ng/Kg	0.0351U ng/Kg	

9/28/2011 8:58:37 AM ADR version 1.4.0.111 Page 5 of 7

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	્યા નાર્યા વસ્તુ કર્યા કુલા કુલા કુલા કુલા કુલા કુલા કુલા કુલ			
Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-061-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.154 ng/Kg	0.154U ng/Kg
SL-061-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0487 ng/Kg	0.0487U ng/Kg
SL-061-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.223 ng/Kg	0.223U ng/Kg
SL-061-SA5DN-SB-4.0-5,0(RES)	1,2,3,7,8-PECDD	0.0556 ng/Kg	0.0556U ng/Kg
SL-061-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0760 ng/Kg	0,0760U ng/Kg
SL-061-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.102 ng/Kg	0.102U ng/Kg
SL-061-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0592 ng/Kg	0.0592U ng/Kg
SL-061-SA5DN-SB-4.0-5.0(RES)	OCDD	1.03 ng/Kg	1.03U ng/Kg
SL-061-SA5DN-SB-4.0-5.0(RES)	OCDF	0.332 ng/Kg	0.332U ng/Kg
SL-061-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.478 ng/Kg	0.478U ng/Kg
SL-061-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.208 ng/Kg	0.208U ng/Kg
SL-061-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0444 ng/Kg	0.0444U ng/Kg
SL-061-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0897 ng/Kg	0.0897U ng/Kg
SL-061-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0654 ng/Kg	0.0654U ng/Kg
SL-061-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0,0882 ng/Kg	0.0882U ng/Kg
SL-061-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.109 ng/Kg	0.109U ng/Kg
SL-061-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.121 ng/Kg	0.121U ng/Kg
SL-061-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.109 ng/Kg	0.109U ng/Kg
SL-061-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.140 ng/Kg	0.140U ng/Kg
SL-061-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.129 ng/Kg	0.129U ng/Kg
SL-061-SA5DN-SB-9.0-10.0(RES)	OCDD	1.02 ng/Kg	1.02U ng/Kg
SL-061-SA5DN-SB-9.0-10.0(RES)	OCDF	0.272 ng/Kg	0.272U ng/Kg
SL-062-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.24 ng/Kg	1.24U ng/Kg
SL-062-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.278 ng/Kg	0.278U ng/Kg
SL-062-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0848 ng/Kg	0.0848U ng/Kg
SL-062-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0986 ng/Kg	0.0986U ng/Kg
SL-062-\$A5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.175 ng/Kg	0.175U ng/Kg
SL-062-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.109 ng/Kg	0.109U ng/Kg
SL-062-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.164 ng/Kg	0.164U ng/Kg
SL-062-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0,167 ng/Kg	0.167U ng/Kg
SL-062-SA5DN-SB-4,0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.134 ng/Kg	0.134U ng/Kg
SL-062-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,178 ng/Kg	0.178U ng/Kg
SL-062-SA5DN-SB-4.0-5.0(RES)	OCDF	0.461 ng/Kg	0.461U ng/Kg
SL-093-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.762 ng/Kg	0.762U ng/Kg
SL-093-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.246 ng/Kg	0.246U ng/Kg
SL-093-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0,239 ng/Kg	0.239U ng/Kg
SL-093-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.162 ng/Kg	0.162U ng/Kg
SL-093-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.210 ng/Kg	0.210U ng/Kg
SL-093-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.122 ng/Kg	0.122U ng/Kg
SL-093-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.242 ng/Kg	0.242U ng/Kg

9/28/2011 8:58:37 AM ADR version 1.4.0.111 Page 6 of 7

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	and the second s			
Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-093-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.161 ng/Kg	0,161U ng/Kg	
SL-093-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.203 ng/Kg	0.203U ng/Kg	
SL-093-\$A5DN-\$B-4.0-5.0(RE\$)	2,3,4,7,8-PECDF	0.153 ng/Kg	0.153U ng/Kg	
SL-093-SA5DN-SB-4.0-5.0(RES)	OCDD	3.91 ng/Kg	3.91U ng/Kg	
SL-093-SA5DN-SB-4.0-5.0(RES)	OCDF	0.859 ng/Kg	0.859U ng/Kg	
SL-093-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0,554 ng/Kg	0,554U ng/Kg	
SL-093-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.204 ng/Kg	0.204U ng/Kg	
SL-093-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.166 ng/Kg	0.166U ng/Kg	
SL-093-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0708 ng/Kg	0.0708U ng/Kg	
SL-093-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0721 ng/Kg	0.0721U ng/Kg	
SL-093-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0589 ng/Kg	0.0589U ng/Kg	
SL-093-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0990 ng/Kg	0.0990U ng/Kg	
SL-093-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0277 ng/Kg	0.0277U ng/Kg	
SL-093-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.112 ng/Kg	0.112U ng/Kg	
SL-093-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0916 ng/Kg	0.0916U ng/Kg	
SL-093-SA5DN-SB-9.0-10.0(RES)	OCDD	1.95 ng/Kg	1.95U ng/Kg	
SL-093-SA5DN-SB-9.0-10.0(RES)	OCDF	0.471 ng/Kg	0.471U ng/Kg	
SL-117-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.889 ng/Kg	0.889U ng/Kg	
SL-117-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.186 ng/Kg	0.186U ng/Kg	
SL-117-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0,104 ng/Kg	0.104U ng/Kg	
SL-117-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0507 ng/Kg	0.0507U ng/Kg	
SL-117-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0945 ng/Kg	0,0945U ng/Kg	
SL-117-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0422 ng/Kg	0.0422U ng/Kg	
SL-117-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.102 ng/Kg	0.102U ng/Kg	
SL-117-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0416 ng/Kg	0.0416U ng/Kg	
SL-117-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.143 ng/Kg	0.143U ng/Kg	
SL-117-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0885 ng/Kg	0.0885U ng/Kg	
SL-117-SA5DN-SB-4.0-5.0(RES)	OCDF	0.476 ng/Kg	0.476U ng/Kg	

9/28/2011 8:58:38 AM ADR version 1.4.0.111 Page 7 of 7

Field Duplicate RPD Report

Lab Reporting Batch ID: DX103

Laboratory: LL

EDD Filename: DX103_v1			eQAPP	Name: C	DM_SSFL_110509
Method: 160.3M Matrix: SO					
	Concentr	ration (%)			
Analyte	SL-030-SA5DN-SB-4.0- 5.0	DUP15-SA5DN-QC- 061511	Sample RPD	eQAPP RPD	Flag
MOISTURE	13.0	12.1	7		No Qualifiers Applied

	Concentrati	ion (ng/Kg)				
Analyte	SL-030-SA5DN-SB-4.0- 5.0			eQAPP RPD	Flag	
1,2,3,4,6,7,8-HPCDD	0.388	0.514	28	50.00		
1,2,3,4,6,7,8-HPCDF	0.195	0.180	8	50.00		
1,2,3,4,7,8-HXCDF	0.0498	0.0724	37	50.00		
1,2,3,6,7,8-HXCDD	0.0271	0.0436	47	50.00		
1,2,3,6,7,8-HXCDF	0.0468	0.0645	32	50.00		
1,2,3,7,8,9-HXCDD	0.0422	0.0481	13	50.00	No Qualifiers Applied	
1,2,3,7,8,9-HXCDF	0.0888	0.111	22	50.00		
1,2,3,7,8-PECDF	0.0186	0.0248	29	50.00		
2,3,4,6,7,8-HXCDF	0.132	0.103	25	50.00		
2,3,4,7,8-PECDF	0.0653	0.0732	11	50.00		
OCDD	0.985	1.13	14	50.00		
1,2,3,4,7,8,9-HPCDF	0.0475	0.0942	66	50.00	I/all datasta	
1,2,3,4,7,8-HxCDD	0.0294	5.52 U	200	50.00	J(all detects)	
OCDF	0.255	0.632	85	50.00	UJ(all non-detects)	

9/28/2011 8:58:11 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB18-SA5DN-SB-061511	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDF OCDD OCDF	BG B B B B B B B B B B B B B	5.01 2.86 0.752 0.227 0.633 0.620 0.424 0.691 0.655 0.392 0.242 1.13 0.820 0.436 8.00 1.94	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP15-SA5DN-QC-061511	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0CDD 0CDF	明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明	0.514 0.180 0.0942 0.0724 0.0436 0.0645 0.0481 0.111 0.0248 0.103 0.0732 1.13 0.632	5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-020-SA5DN-SB-3.5-4.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	# # # # # # # # # # # # # # # # # # #	0.525 0.183 0.0437 0.0443 0.0822 0.0430 0.0299 0.0659 0.0617 0.0555 0.0370 0.0761 0.0766 0.0328 2.12 0.253	5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO		,					
		Lab		Reporting	RL	0	
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-029-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.488	5.42	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JВ	0.159	5.42	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0584	5.42	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF	J JBQ	0.0292 0.0532	5.42	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0532	5.42 5.42	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0400	5.42	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0466	5.42	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JQ	0.0440	5.42	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0181	5.42	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0735	5.42	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0727	5.42	PQL	ng/Kg	
	OCDD	JB	1.43	10.8	PQL	ng/Kg	
	OCDF	JBQ	0.253	10.8	PQL	ng/Kg	
SL-030-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.388	5.65	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.195	5.65	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD	JBQ JQ	0.0475 0.0294	5.65 5.65	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0294	5.65	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0271	5.65	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0468	5.65	PQL	ng/Kg	1.7-11.4-44-3
	1,2,3,7,8,9-HXCDD	JBQ	0.0422	5.65	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	J	0.0888	5.65	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0186	5.65	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.132	5.65	PQL	ng/Kg	
	2,3,4,7,8-PECDF OCDD	JB JB	0.0653 0.985	5.65 11.3	PQL PQL	ng/Kg ng/Kg	
	OCDF	JBQ	0.365	11.3	PQL	ng/Kg	
SL-031-SA5DN-SB-4,0-5.0				<u> </u>	PQL		
SL-031-SA3DN-SB-4,0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF	JB JB	0.547 0.284	5.65 5.65	PQL	ng/Kg ng/Kg	÷
	1,2,3,4,7,8,9-HPCDF	JB	0.234	5.65	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0876	5.65	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.148	5.65	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.113	5.65	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.148	5.65	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.149	5.65	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JQ	0.130	5.65	PQL	ng/Kg	
	1,2,3,7,8-PECDD 1,2,3,7,8-PECDF	JBQ JB	0.106 0.0591	5.65 5.65	PQL PQL	ng/Kg	
	1,2,3,7,6-PECDF 2,3,4,6,7,8-HXCDF	JB JB	0.0591	5.65	PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF	JB	0.159	5.65	PQL	ng/Kg	
	OCDD	JB	2.80	11.3	PQL	ng/Kg	
	OCDF	JB	0.536	11.3	PQL	ng/Kg	

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Watrix: 50							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-034-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.468	5.52	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.243	5.52	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0713	5.52	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0324	5.52	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0690	5.52	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0442	5.52	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0489	5.52	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0781	5.52	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JQ	0.0472	5.52	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0311	5.52	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0455	5.52	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.133	5.52	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0751	5.52	PQL	ng/Kg	
	OCDD	JBQ	1.21	11.0	PQL	ng/Kg	
	OCDF	JBQ	0.311	11.0	PQL	ng/Kg	
SL-051-SA8N-SB-7.5-8.5	1,2,3,4,6,7,8-HPCDF	JB	4.15	5.32	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.404	5.32	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.170	5.32	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.770	5.32	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.14	5.32	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.441	5.32	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.812	5.32	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JQ	0.718	5.32	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.317	5.32	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.610	5.32	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.436	5.32	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.950	5.32	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0618	1.06	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.463	1.06	PQL	ng/Kg	
	OCDF	JB	8.55	10.6	PQL	ng/Kg	
SL-055-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.662	5.82	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.186	5.82	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0692	5.82	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0682	5.82	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.145	5.82	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0871	5.82	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.110	5.82	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.121	5.82	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	J	0.120	5.82	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.150	5.82	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.137	5.82	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.146	5.82	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.167	5.82	PQL	ng/Kg	
-	2,3,7,8-TCDD	JQ	0.0518	1.16	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0407	1.16	PQL	ng/Kg	
	OCDD	JB	4.66	11.6	PQL	ng/Kg	
	OCDF	JB	0.300	11.6	PQL	ng/Kg	

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

	······································						
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-055-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD	JB JB JB JQ	1.32 0.371 0.145 0.165	5.57 5.57 5.57 5.57 5.57	PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		0.261 0.252 0.208 0.244 0.173 0.330 0.335 0.208 0.294 0.0994 0.0549	5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-056-SA5DN-SB-4.0-5.0	OCDF 1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD	ម - ងម្លឹងងសិងងង់ ង	0.495 0.614 0.275 0.137 0.157 0.224 0.189 0.170 0.204 0.193 0.373 0.340 0.222 0.311 0.0908 1.51	11.1 5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82 1.16 11.6	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-056-SA5DN-SB-9.0-10.0	OCDF 1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD COCDD OCDF	ម	0.391 0.673 0.211 0.113 0.102 0.138 0.140 0.103 0.131 0.124 0.186 0.234 0.190 0.202 0.0380 0.0625 2.15 0.424	11.6 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66 1.13 11.3	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Watrix: SU							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-059-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.541	5.58	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.159	5.58	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0436	5.58	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0575	5.58	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0800	5.58	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0357	5.58	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.114	5.58	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JQ	0.162	5.58	PQL	ng/Kg	,
	1,2,3,7,8-PECDF	JBQ	0.0687	5.58	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0998	5.58	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0683	5.58	PQL	ng/Kg	
	OCDD	JB	1.73	11.2	PQL	ng/Kg	
	OCDF	JBQ	0.415	11.2	PQL	ng/Kg	
SL-059-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.453	5.68	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.185	5.68	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0509	5.68	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0298	5.68	POL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0608	5.68	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0376	5.68	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0376	5.68	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JQ	0.0569	5.68	PQL	ng/Kg	o (an detecto)
	1,2,3,7,8-PECDF	JB	0.0239	5.68	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0233	5.68	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0822	5.68	PQL	ng/Kg	
	OCDD	JBQ	1.65	11.4	PQL	ng/Kg	
	OCDF	JB	0.514	11.4	PQL	ng/Kg	
01.004.045001.00.40.50				 			
SL-061-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.489	5.72	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.143	5.72	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0820	5.72	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0351	5.72	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.154	5.72	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0487	5.72	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.223	5.72	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JQ	0.388	5.72	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0556	5.72	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0760	5.72	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.102	5.72	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0592	5.72	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0295	1.14	PQL	ng/Kg	
	OCDD	JB	1.03	11.4	PQL	ng/Kg	
	OCDF	JBQ	0.332	11.4	PQL	ng/Kg	

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-061-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	0.478 0.208 0.0444 0.0538 0.0897 0.0654 0.0882 0.109 0.0810 0.121 0.109 0.140 0.129 1.02 0.272	5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-062-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0,2,3,7,8-TCDF 0CDF	ង្វី៦៦ង្គឹងង្គី៦ង្គឹងងិកមាត	1.24 0.278 0.0848 0.0906 0.0986 0.175 0.109 0.164 0.176 0.167 0.162 0.134 0.178 0.0749 0.0274 0.461	5.87 5.87 5.87 5.87 5.87 5.87 5.87 5.87	PGL PGL PGL PGL PGL PGL PGL PGL PGL PGL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-093-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	ままない はんしゅう はんしゅう はんしゅう いんしょう いんしょう いんしょう いんしょう いんしょう いんしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう	0.762 0.246 0.239 0.141 0.162 0.210 0.122 0.242 0.269 0.161 0.173 0.203 0.153 0.0488 3.91 0.859	5.88 5.88 5.88 5.88 5.88 5.88 5.88 5.88	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX103 Laboratory: LL

EDD Filename: DX103_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO		·			Angles of States	and the Marie	
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-093-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF		0.554 0.204 0.166 0.0708 0.0721 0.0589 0.0990 0.132 0.0277 0.112 0.0916 1.95 0.471	5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-117-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 0,3,4,6,7,8-PECDF 0,3,4,7,8-PECDF 0,0DD 0CDF	######################################	0.889 0.186 0.104 0.0487 0.0507 0.0945 0.0422 0.102 0.172 0.0416 0.143 0.0885 7.88 0.476	5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

70<u>5597</u>.#5017

VALIDATION FINDINGS WORKSHEET Overall Assessment of Data

Page: of Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

-All available information pertaining to the data were reviewed using professional judgement to compliment the determination of the overall quality of the data.

(Y)N N/A Was the overall quality and usability of the data acceptable?

1	Date	SL-051 -SASN-SB-7,8-25	Finding Finding 7.8-700F	7,8-TCOF	Column Associated Samples, SP233	Qualifications (3/ F)	
	_ _			,			
	\perp						
	\parallel						
	┼		in the state of th				
	-						
Comments:							

SAMPLE DELIVERY GROUP

DX104

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
20-June-2011	SL-119-SA5DN-SB-4.0-5.0	6322257	N	METHOD	1613B	111
20-June-2011	SL-118-SA5DN-SB-4.0-5.0	6322256	N	METHOD	1613B	111
21-June-2011	SL-125-SA5DN-SB-4.0-5.0	6323498	N	METHOD	1613B	111
21-June-2011	SL-097-SA5DN-SB-4.0-5.0	6323489	N	METHOD	1613B	111
21-June-2011	SL-097-SA5DN-SB-8.5-9.5	6323490	N	METHOD	1613B	111
21-June-2011	SL-098-SA5DN-SB-4.0-5.0	6323491	N	METHOD	1613B	Ш
21-June-2011	SL-098-SA5DN-SB-7.0-8.0	6323492	N	METHOD	1613B	III
21-June-2011	SL-099-SA5DN-SB-4.0-5.0	6323493	N	METHOD	1613B	III
21-June-2011	SL-113-SA5DN-SB-4.0-5.0	6323494	N	METHOD	1613B	Ш
21-June-2011	SL-120-SA5DN-SB-4.0-5.0	6323495	N	METHOD	1613B	Ш
21-June-2011	SL-121-SA5DN-SB-8.0-9.0	6323497	N	METHOD	1613B	III
21-June-2011	SL-125-SA5DN-SB-9.0-10.0	6323499	N	METHOD	1613B	Ш
21-June-2011	SL-121-SA5DN-SB-4.0-5.0	6323496	N	METHOD	1613B	Ш
22-June-2011	SL-114-SA5DN-SB-4.0-5.0	6325717	N	METHOD	1613B	111
22-June-2011	SL-094-SA5DN-SB-4.0-5.0	6325709	N	METHOD	1613B	III
22-June-2011	SL-094-SA5DN-SB-9.0-10.0	6325710	N	METHOD	1613B	III
22-June-2011	SL-095-SA5DN-SB-4.0-5.0	6325711	N	METHOD	1613B	111
22-June-2011	SL-095-SA5DN-SB-9.0-10.0	6325712	N	METHOD	1613B	111
22-June-2011	SL-111-SA5DN-SB-4.0-5.0	6325713	N	METHOD	1613B	Ш
22-June-2011	SL-112-SA5DN-SB-4.0-5.0	6325714	N	METHOD	1613B	III
22-June-2011	SL-112-SA5DN-SB-4.0-5.0MS	6325715	MS	METHOD	1613B	111
22-June-2011	SL-112-SA5DN-SB-4.0-5.0MSD	6325716	MSD	METHOD	1613B	111

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.724	JB	0.0201	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.234	JB	0.00729	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0657	JBQ	0.0148	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0530	JB	0.0141	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0918	JB	0.0134	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0613	JBQ	0.0142	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0736	JВ	0.0112	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0786	JB	0.0134	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.117	J	0.0153	MDL	5.79	PQL	ng/Kg	J	Ž
1,2,3,7,8-PECDD	0.0717	JBQ	0.0113	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0941	JB	0.00683	MDL	5.79	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.120	JB	0.0128	MDL,	5.79	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0999	JB	0.00706	MDL	5.79	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0324	JBQ	0.0118	MDL	1.16	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0173	JBQ	0.0112	MDL	1.16	PQL	ng/Kg	U	В
OCDD	2.46	JB	0.0157	MDL	11.6	PQL	ng/Kg	U	В
OCDF	0.275	JB	0.0213	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-094-SA5DN-SB-9.0-10.0 Collected: 6/22/2011 9:35:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.563	JB	0.0198	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.244	JB	0.00799	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0665	JBQ	0.0157	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0544	JB	0.0135	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.118	JBQ	0.0132	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0894	JBQ	0.0142	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0934	JB	0.0108	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0828	JB	0.0138	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.111	JQ	0.0152	MDL	5.75	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.120	JBQ	0.0120	MDL	5.75	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.140	JB	0.00671	MDL	5.75	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.130	JB	0.0120	MDL	5.75	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.154	JB	0.00706	MDL	5.75	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-094-SA5DN-SB-9.0-10.0 Collected: 6/22/2011 9:35:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDD	0.0244	JBQ	0.0120	MDL	1.15	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0304	JB	0.0108	MDL	1.15	PQL	ng/Kg	U	В
OCDD	2.05	JB	0.0127	MDL	11.5	PQL	ng/Kg	U	В
OCDF .	0.284	JB	0.0216	MDL	11.5	PQL	ng/Kg	U	В

Sample ID: SL-095-SA5DN-SB-4.0-5.0 Collected: 6/22/2011 10:10:00 Analysis Type: RES Dilution: 1

unalyte	Conec	teu. Gizziz	pe, itto	Dittion. 1					
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.38	JB	0.0336	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.356	JB	0.0141	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.144	JB	0.0245	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0475	JB	0.0217	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.108	JB	0.0178	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.168	JB	0.0223	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0850	JB	0.0158	MDL	5.58	PQL	ng/Kg	U	B
1,2,3,7,8,9-HXCDD	0.227	JB	0.0213	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.363	J	0.0230	MDL	5.58	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0708	JВ	0.0115	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.140	JB	0.00666	MDL	5.58	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.124	JB	0.0173	MDL	5.58	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.138	JBQ	0.00677	MDL	5.58	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0405	JB	0.0102	MDL	1.12	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0344	JBQ	0.0124	MDL	1.12	PQL	ng/Kg	U	В
OCDF	0.680	JB	0.0239	MDL	11.2	PQL	ng/Kg	U	В

Sample ID: SL-095-SA5DN-SB-9.0-10.0 Collected: 6/22/2011 10:15:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.892	JB	0.0269	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.228	JB	0.00915	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0811	JBQ	0.0210	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0232	JB	0.0144	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0576	JB	0.0123	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0546	JBQ	0.0148	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0404	JВ	0.00971	MDL	5.45	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

9/28/2011 9:07:05 AM ADR version 1.4.0.111 Page 2 of 15

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-095-SA5DN-SB-9.0-10.0 Collected: 6/22/2011 10:15:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Analyte Result Qual DL Туре RLUnits Qual Code Type 0.0578 1,2,3,7,8,9-HXCDD JBQ 0.0142 MDL 5.45 PQL ng/Kg U В 1,2,3,7,8,9-HXCDF 0.0983 JQ 0.0143 MDL 5.45 **PQL** ng/Kg J Ζ 1,2,3,7,8-PECDD 0.0475 0.0115 MDL U JB 5.45 PQL ng/Kg В 1,2,3,7,8-PECDF 0.00525 U 0.0555 JB MDL 5.45 **PQL** В ng/Kg 0.0874 0.0115 MDL 5.45 **PQL** U 2,3,4,6,7,8-HXCDF ng/Kg В 2,3,4,7,8-PECDF 0.0916 JΒ 0.00580 MDL PQL U 5.45 ng/Kg В 2,3,7,8-TCDD 0.0260 JBQ 0.0110 MDL 1.09 PQL ng/Kg Ų В PQL 2,3,7,8-TCDF 0.0255 **JBQ** 0.0107 MDL 1.09 ng/Kg Ų OCDD 7.45 JΒ 0.0176 MDL 10.9 **PQL** J Z ng/Kg

Sample ID: SL-097-SA5DN-SB-4.0-5.0 Collected: 6/21/2011 11:55:00 Analysis Type: RES Dilution: 1

0.0324

MDL

10.9

PQL

ng/Kg

U

В

JBQ

0.411

campions, or con cincent or no on	Suitable 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1								Dianoni (
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.955	JВ	0.0251	MDL	5.86	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.267	JB	0.00961	MDL	5.86	PQL	ng/Kg	υ	В		
1,2,3,4,7,8,9-HPCDF	0.0549	JB	0.0145	MDL	5.86	PQL	ng/Kg	υ	. В		
1,2,3,4,7,8-HxCDD	0.0163	JBQ	0.0118	MDL	5.86	PQL	ng/Kg	υ	В		
1,2,3,4,7,8-HXCDF	0.0592	JBQ	0.00985	MDL	5.86	PQL	ng/Kg	υ	В		
1,2,3,6,7,8-HXCDD	0.0570	JBQ	0.0123	MDL	5.86	PQL	ng/Kg	υ	8		
1,2,3,6,7,8-HXCDF	0.0526	JBQ	0.00868	MDL	5.86	PQL	ng/Kg	υ	В		
1,2,3,7,8,9-HXCDD	0.0602	JВ	0.0116	MDL	5.86	PQL	ng/Kg	υ	В		
1,2,3,7,8,9-HXCDF	0.0635	J	0.0106	MDL,	5.86	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.0171	JB	0.00973	MDL	5.86	PQL	ng/Kg	υ	В		
1,2,3,7,8-PECDF	0.0231	JBQ	0.00563	MDL	5.86	PQL	ng/Kg	υ	В		
2,3,4,6,7,8-HXCDF	0.0799	JBQ	0.00961	MDL	5.86	PQL	ng/Kg	υ	В		
2,3,4,7,8-PECDF	0.0812	JB	0.00528	MDL	5.86	PQL	ng/Kg	υ	В		
OCDD	9.03	JB	0.0206	MDL	11.7	PQL	ng/Kg	J	Z		
OCDF	0.330	JB	0.0204	MDL	11.7	PQL	ng/Kg	U	В		

Sample ID: SL-097-SA5DN-SB-8.5-9.5 Collected: 6/21/2011 12:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.452	JB	0.0190	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.135	JB	0.00819	MDL	5.61	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

OCDF

9/28/2011 9:07:05 AM ADR version 1.4.0.111 Page 3 of 15

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-097-SA5DN-SB-8.5-9.5 Collected: 6/21/2011 12:05:00 Analysis Type: RES Dilution: 1

ample ib. Of our ortobit ob old old	00//00				,,,,,,,,,,	,pce	Diation, 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	0.0397	JBQ	0.0145	MDL	5.61	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0151	JBQ	0.0109	MDL	5.61	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0326	JBQ	0.00864	MDL	5.61	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0310	JBQ	0.0116	MDL	5.61	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.0182	JВ	0.00741	MDL	5.61	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0327	JB	0.0113	MDL	5.61	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.0552	JBQ	0.00797	MDL	5.61	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0465	JB	0.00550	MDL	5.61	PQL	ng/Kg	υ	В	
2,3,7,8-TCDD	0.0139	JBQ	0.0113	MDL	1.12	PQL	ng/Kg	υ	В	
2,3,7,8-TCDF	0.0107	JBQ	0.00943	MDL	1.12	PQL	ng/Kg	υ	В	
OCDD	1.20	JB	0.0176	MDL	11.2	PQL	ng/Kg	υ	В	
OCDF	0.174	JB	0.0195	MDL	11.2	PQL	ng/Kg	υ	В	

Sample ID: SL-098-SA5DN-SB-4.0-5.0 Collected: 6/21/2011 11:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.13	JB	0.0195	MDL	5.84	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.244	JB	0.0243	MDL	5.84	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.258	JB	0.0375	MDL	5.84	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.574	JB	0.0319	MDL	5.84	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.921	JB	0.0386	MDL	5.84	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.218	JB	0.0297	MDL	5.84	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.680	JВ	0.0375	MDL	5.84	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.283	J	0.0318	MDL	5.84	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.168	JBQ	0.0172	MDL	5.84	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.374	JB	0.0320	MDL	5.84	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.251	JB	0.0306	MDL	5.84	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.628	JB	0.0296	MDL	5.84	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0432	JBQ	0.0106	MDL	1.17	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.303	JB	0.0523	MDL	1.17	PQL	ng/Kg	J	Z
OCDF	11.1	JB	0.0201	MDL	11.7	PQL	ng/Kg	j	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

SO

Matrix:

Method Category: SVOA

Method: 1613B

Sample ID: SL-098-SA5DN-SB-7.0-8.0 Collected: 6/21/2011 11:15:00 Analysis Type: RES Dilution: 1

						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			enanom i
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.60	JB	0.0321	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.347	JB	0.0132	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.145	JB	0.0193	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.101	JB	0.0206	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.158	JB	0.0174	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.148	JB	0.0208	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.136	JBQ	0.0149	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.153	JBQ	0.0205	MDL	5.70	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.189	J	0.0192	MDL	5.70	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.167	JBQ	0.0117	MDL	5.70	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.188	JB	0.00667	MDL	5.70	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.168	JB	0.0151	MDL	5.70	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.200	JB	0.00656	MDL	5.70	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0819	JBQ	0.0109	MDL	1.14	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0491	JBQ	0.00890	MDL	1.14	PQL	ng/Kg	U	В
OCDF	0.785	JB	0.0235	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-099-SA5DN-SB-4.0-5.0 Collected: 6/21/2011 2:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.32	JB	0.0330	MDL	5.61	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.552	JВ	0.0154	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.178	JВ	0.0269	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.157	JB	0.0227	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.222	JB	0.0214	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.233	JB	0.0240	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.202	JBQ	0.0187	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.208	JB	0.0222	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.250	J	0.0242	MDL	5.61	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.253	JBQ	0.0139	MDL	5.61	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.266	JB	0.00800	MDL	5.61	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.214	JB	0.0206	MDL	5.61	PQL	ng/Kg	Ü	В
2,3,4,7,8-PECDF	0.273	JB	0.00822	MDL	5.61	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0848	JB	0.0120	MDL	1.12	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Page 5 of 15

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA		
Method:	1613B	Matrix: SO	1 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Sample ID: SL-099-SA5DN-SB-4.0-5.0	Collec	Collected: 6/21/2011 2:25:00					Analysis Type: RES			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
OCDF	1.42	JB	0.0284	MDL	11.2	PQL	ng/Kg	J	Z	٦

Sample ID: SL-111-SA5DN-SB-4.0-5.0 Dilution: 1 Collected: 6/22/2011 3:20:00 Analysis Type: RES Data Lab Reason Lab DLRL Review Analyte Result Qual DL Туре RLType Units Qual Code 1,2,3,4,6,7,8-HPCDD 0.872 0.0287 MDL 5.68 PQL U ng/Kg 1,2,3,4,6,7,8-HPCDF 0.220 JB 0.00831 MDL 5.68 PQL U ng/Kg В 1,2,3,4,7,8,9-HPCDF 0.0592 JB 0.0189 MDL 5.68 PQL ng/Kg U В 1,2,3,4,7,8-HXCDF 0.0491 JBQ 0.0124 MDL 5.68 PQL U В ng/Kg U 1,2,3,6,7,8-HXCDD 0.0442 JBQ 0.0141 MDL 5.68 PQL ng/Kg В 0.0347 1,2,3,6,7,8-HXCDF JB 0.0100 MDL 5.68 PQL U ng/Kg В 1,2,3,7,8,9-HXCDD 0.0704 JВ 0.0129 MDL. 5.68 PQL U ng/Kg 1,2,3,7,8,9-HXCDF 0.105 J 0.0146 MDL 5.68 **PQL** ng/Kg J Z 1,2,3,7,8-PECDF 0.0301 JB 0.00569 MDL 5.68 PQL ng/Kg Ų В 0.0906 0.0117 PQL 2,3,4,6,7,8-HXCDF JBQ MDL 5.68 ng/Kg υ В 2,3,4,7,8-PECDF 0.0635 **JBQ** 0.00569 MDL 5.68 PQL ng/Kg U 2,3,7,8-TCDD U 0.0138 JΒ 0.0110 MDL 1.14 PQL ng/Kg В OCDD 8.66 JΒ 0.0199 MDL 11.4 **PQL** J Ζ ng/Kg OCDF 0.456 0.0292 11.4 PQL U JΒ MDL ng/Kg В

Sample ID: SL-112-SA5DN-SB-4.0-5.0 Collected: 6/22/2011 11:45:00 Analysis Type: RES Dilution: 1

		,							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.755	JB	0.0291	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.240	JBQ	0.00912	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0564	JBQ	0.0207	MDL	5.80	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0167	JBQ	0.0144	MDL	5.80	PQL	ng/Kg	ΟĴ	B, FD
1,2,3,4,7,8-HXCDF	0.0575	JB	0.0145	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0630	JBQ	0.0152	MDL	5.80	PQL	ng/Kg	υJ	B, FD
1,2,3,6,7,8-HXCDF	0.0492	JB	0.0116	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.111	JB	0.0144	MDL	5.80	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8,9-HXCDF	0.209	JQ	0.0171	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0183	JBQ	0.0127	MDL	5.80	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8-PECDF	0.0408	JBQ	0.00667	MDL	5.80	PQL	ng/Kg	ΩĴ	B, FD
2,3,4,6,7,8-HXCDF	0.108	JB	0.0135	MDL	5.80	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

9/28/2011 9:07:05 AM ADR version 1.4.0.111 Page 6 of 15

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-112-SA5DN-SB-4.0-5.0 Collected: 6/22/2011 11:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,7,8-PECDF	0.0690	JB	0.00725	MDL	5.80	PQL	ng/Kg	U	В
OCDD	5.04	JB	0.0214	MDL	11.6	PQL	ng/Kg	J	Z
OCDF	0.320	JB	0.0305	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-113-SA5DN-SB-4.0-5.0 Collected: 6/21/2011 3:15:00 Analysis Type: RES Dilution: 1

nalyte	Collec	ted: 6/21/2	011 3:15:0	0 A	nalysis Ty	/pe: RES		Dilution: 1	
	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.885	JB	0.0217	MDL	5.88	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.282	JВ	0.00989	MDL	5.88	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0943	JB	0.0166	MDL	5.88	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0489	JB	0.0135	MDL	5.88	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.108	JB	0.0133	MDL	5.88	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0631	JВ	0.0143	MDL	5.88	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.102	JB	0.0116	MDL	5.88	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0849	JB	0.0133	MDL	5.88	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.122	J	0.0147	MDL	5.88	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.109	JB	0.0122	MDL	5.88	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.149	JВ	0.00727	MDL	5.88	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.150	JB	0.0125	MDL	5.88	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.156	JВ	0.00715	MDL	5.88	PQL	n g/ Kg	U	В
2,3,7,8-TCDD	0.0531	JBQ	0.0106	MDL	1.18	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0577	JBQ	0.0101	MDL	1.18	PQL	ng/Kg	U	В
OCDD	3.60	JB	0.0180	MDL	11.8	PQL	ng/Kg	υ	В
OCDF	0.338	JBQ	0.0203	MDL	11.8	PQL	ng/Kg	υ	В

Sample ID: SL-114-SA5DN-SB-4.0-5.0 Collected: 6/22/2011 2:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.675	JB	0.0196	MDL	5.43	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.192	JBQ	0.00732	MDL	5.43	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.143	JBQ	0.0176	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0699	JBQ	0.0148	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.112	JB	0.0168	MDL	5.43	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.128	JBQ	0.0150	MDL	5.43	PQL	n g/ Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0961	JBQ	0.0134	MDL	5.43	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-114-SA5DN-SB-4.0-5.0 Collected: 6/22/2011 2:25:00 Analysis Type: RES Dilution: 1

inalyte					,								
	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code				
1,2,3,7,8,9-HXCDD	0.234	JB	0.0141	MDL	5.43	PQL	ng/Kg	U	В				
1,2,3,7,8,9-HXCDF	0.420	J	0.0206	MDL	5.43	PQL	ng/Kg	J	Z				
1,2,3,7,8-PECDD	0.0576	JBQ	0.0126	MDL	5.43	PQL	ng/Kg	U	В				
1,2,3,7,8-PECDF	0.133	JB	0.00687	MDL	5.43	PQL	ng/Kg	υ	В				
2,3,4,6,7,8-HXCDF	0.144	JB	0.0154	MDL	5.43	PQL	ng/Kg	U	В				
2,3,4,7,8-PECDF	0.124	JBQ	0.00709	MDL	5.43	PQL	ng/Kg	U	В				
2,3,7,8-TCDD	0.0185	JBQ	0.0115	MDL	1.09	PQL	ng/Kg	υ	В				
2,3,7,8-TCDF	0.0379	JBQ	0.0116	MDL	1.09	PQL	ng/Kg	U	В				
OCDD	2.74	JB	0.0166	MDL	10.9	PQL	ng/Kg	U	В				
OCDF	0.476	JBQ	0.0288	MDL	10.9	PQL	ng/Kg	U	В				

Sample ID: SL-118-SA5DN-SB-4.0-5.0 Collected: 6/20/2011 3:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.832	JB	0.0334	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.185	JB	0.0132	MDL	5.49	PQL	ng/Kg	U	8
1,2,3,4,7,8,9-HPCDF	0.0449	JBQ	0.0213	MDL	5.49	PQL	ng/Kg	Ų	В
1,2,3,4,7,8-HxCDD	0.0172	JBQ	0.0161	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0507	JB	0.0111	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0388	JBQ	0.0169	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0415	JB	0.00976	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0823	JB	0.0162	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0560	JQ	0.0109	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0164	JB	0.0125	MDL	5.49	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.0290	JBQ	0.00643	MDL	5.49	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.0658	JBQ	0.00998	MDL	5.49	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0668	JBQ	0.00643	MDL	5.49	PQL	ng/Kg	U	В
OCDD	5.11	JB	0.0282	MDL	11.0	PQL	ng/Kg	J	Z
OCDF	0.275	JB	0.0373	MDL	11.0	PQL	ng/Kg	U	В

Sample ID: SL-119-SA5DN-SB-4.0-5.0 Collected: 6/20/2011 3:40:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.30	JB	0.0297	MDL	5.70	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.307	JB	0.0120	MDL	5.70	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-119-SA5DN-SB-4.0-5.0 Collected: 6/20/2011 3:40:00 Analysis Type: RES Dilution: 1

					,				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.0594	JB	0.0183	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0282	JB	0.0140	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0514	JB	0.0118	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0806	JB	0.0148	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0485	JB	0.0107	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.102	JB	0.0139	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0745	JQ	0.0126	MDL	5.70	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0155	JBQ	0.0106	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0131	JB	0.00608	MDL	5.70	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0774	JB	0.0115	MDL	5.70	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0651	JB	0.00608	MDL	5.70	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0115	JB	0.0112	MDL	1.14	PQL	ng/Kg	U	В
OCDF	0.542	JB	0.0292	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-120-SA5DN-SB-4.0-5.0 Collected: 6/21/2011 8:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.73	JB	0.0251	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.289	JB	0.0100	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0660	JBQ	0.0198	MDL	5.62	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0244	JBQ	0.0145	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0599	JBQ	0.0121	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0816	JBQ	0.0150	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0328	JB	0.00958	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0933	JBQ	0.0149	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0940	J	0.0130	MDL	5.62	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0392	JBQ	0.0120	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0556	JB	0.00665	MDL	5.62	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0864	JBQ	0.0104	MDL	5.62	PQL	ng/Kg	Ú	В
2,3,4,7,8-PECDF	0.103	JB	0.00710	MDL	5.62	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0226	JB	0.0120	MDL	1.12	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0254	JB	0.0124	MDL	1.12	PQL	ng/Kg	U	В
OCDF	0.589	JB	0.0236	MDL	11.2	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Page 9 of 15

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-121-SA5DN-SB-4.0-5.0 Collected: 6/21/2011 9:30:00 Analysis Type: RES Dilution: 1 Data Lab DL Lab RL Review Reason Result Qual DLRLUnits Qual Analyte Type Type Code 1,2,3,4,6,7,8-HPCDD 1.33 JB 0.0220 MDL 5.53 PQL ng/Kg U В 1,2,3,4,6,7,8-HPCDF 0.259 JΒ 0.0109 MDL 5.53 **PQL** ng/Kg U В U 1,2,3,4,7,8,9-HPCDF 0.0453 JΒ 0.0184 MDL 5.53 PQL ng/Kg В U 1,2,3,4,7,8-HxCDD 0.0189 JBQ 0.0144 5.53 **PQL** MDL ng/Kg В U 1,2,3,4,7,8-HXCDF 0.0377 JB 0.0140 MDL 5.53 PQL ng/Kg В JB 0.0151 U 1,2,3,6,7,8-HXCDD 0.103 MDL 5.53 **PQL** В ng/Kg 1,2,3,6,7,8-HXCDF 0.0337 JBQ 0.0126 MDL 5.53 PQL ng/Kg U В 1,2,3,7,8,9-HXCDD 0.140 JB 0.0147 MDL 5.53 **PQL** ng/Kg U В Į 0.0148 MDL 5.53 **PQL** J Z 1,2,3,7,8,9-HXCDF 0.184 ng/Kg 1,2,3,7,8-PECDD 0.0280 **JBQ** 0.0128 MDL 5.53 PQL U В ng/Kg 1.2.3.7.8-PECDF 0.0533 JB 0.00656 MDL 5.53 PQL U В ng/Kg U 2,3,4,6,7,8-HXCDF 0.0882 JВ 0.0133 MDL 5.53 PQL В ng/Kg 2,3,4,7,8-PECDF 0.0593 JBQ 0.00644 MDL 5.53 PQL U В ng/Kg 2,3,7,8-TCDD 0.0244 JBQ 0.0123 MDL 1.11 PQL U В ng/Kg U В 2,3,7,8-TCDF 0.0143 JBQ 0.0109 MDL 1.11 PQL ng/Kg U OCDF 0.478 JB 0.0221 MDL 11.1 **PQL** ng/Kg В

Sample ID: SL-121-SA5DN-SB-8.0-9.0 Collected: 6/21/2011 9:40:00 Analysis Type: RES Dilution: 1

Cample ID. CE-IEI-CAUDIT-OD-0.0-0.0	Conco	ico. Viziiz	011 0.40.0		nuryono i j	, pc=0		Diation. ;		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	2.49	JB	0.0227	MDL	5.27	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	0.384	JB	0.00914	MDL	5.27	PQL	ng/Kg	υ	В	
1,2,3,4,7,8,9-HPCDF	0.0713	JBQ	0.0172	MDL	5.27	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HxCDD	0.0255	JBQ	0.0148	MDL	5.27	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0570	JBQ	0.0130	MDL	5.27	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0898	JBQ	0.0152	MDL	5.27	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0386	JBQ	0.0107	MDL	5.27	PQL	ng/Kg	Ų	В	
1,2,3,7,8,9-HXCDD	0.0685	JB	0.0141	MDL	5.27	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0493	J	0.0154	MDL	5.27	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0248	JBQ	0.00956	MDL	5.27	PQL	ng/Kg	Ü	В	
1,2,3,7,8-PECDF	0.0468	JBQ	0.00627	MDL	5.27	PQL	ng/Kg	Ü	В	
2,3,4,6,7,8-HXCDF	0.0859	JB	0.0123	MDL	5.27	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0826	JB	0.00659	MDL	5.27	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0211	JB	0.0103	MDL	1.05	PQL	ng/Kg	U	В	
	•	•					•			

^{*} denotes a non-reportable result

9/28/2011 9:07:05 AM ADR version 1.4.0.111 Page 10 of 15

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-121-SA5DN-SB-8.0-9.0 Collected: 6/21/2011 9:40:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.0146	JBQ	0.0135	MDL	1.05	PQL	ng/Kg	Ū	В
OCDF	0.899	JB	0.0185	MDL	10.5	PQL	ng/Kg	U	В

Sample ID: SL-125-SA5DN-SB-4.0-5.0 Collected: 6/21/2011 10:15:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.49	JB	0.0218	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.602	JB	0.0104	MDL	5.48	PQL	ng/Kg	Ü	В
1,2,3,4,7,8,9-HPCDF	0.0811	JBQ	0.0213	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0255	JB	0.0124	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0783	JВ	0.0168	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0850	JBQ	0.0127	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0490	JB	0.0136	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0606	JB	0.0124	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0720	JQ	0.0187	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0149	JBQ	0.00905	MDL	5.48	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.135	JB	0.0148	MDL	5.48	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0690	JBQ	0.00607	MDL	5.48	PQL	ng/Kg	U	В
OCDF	1.86	JB	0.0206	MDL	11.0	PQL	ng/Kg	J	Z

Sample ID: SL-125-SA5DN-SB-9.0-10.0 Collected: 6/21/2011 10:25:00 Analysis Type: RES Dilution: 1

nalyte	Conec	teu. OIL III	.011 10.20	.00 /1	naiyara i j	pe. neo	Pilution, 1			
	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.550	JB	0.0167	MDL	5.19	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.245	JB	0.00650	MDL	5.19	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0548	JBQ	0.0116	MDL	5.19	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.00861	JBQ	0.00842	MDL	5.19	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0485	JBQ	0.00917	MDL	5.19	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0288	JBQ	0.00885	MDL	5.19	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0429	JB	0.00768	MDL	5.19	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0350	JB	0.00810	MDL	5.19	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDF	0.0511	JQ	0.0102	MDL	5.19	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0186	JBQ	0.00896	MDL	5.19	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0179	JB	0.00469	MDL	5.19	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.0977	JBQ	0.00885	MDL	5.19	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

9/28/2011 9:07:06 AM ADR version 1.4.0.111 Page 11 of 15

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-125-SA5DN-SB-9.0-10.0 Collected: 6/21/2011 10:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,7,8-PECDF	0.0682	JBQ	0.00458	MDL	5.19	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0158	JB	0.00842	MDL	1.04	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0111	JBQ	0.00800	MDL	1.04	PQL	ng/Kg	U	В
OCDD	2.97	JB	0.0131	MDL	10.4	PQL	ng/Kg	U	В
OCDF	0.264	JB	0.0147	MDL	10.4	PQL	ng/Kg	Ü	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX104 Laboratory: LL EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
2000 0 AVIZ VENOVI V	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
Е	Laboratory Duplicate Precision
Е	Laboratory Triplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н .	Temperature Estimation
Н	Temperature Rejection
ı	Internal Standard Estimation
Į.	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation .
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
M	Continuing Tune
М	Initial Tune
М	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Laboratory Triplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
F	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX104

EDD Filename: DX104_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
Ş	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX104

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO	B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1860B371611	7/7/2011 4:11:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	0.466 ng/Kg 0.243 ng/Kg 0.148 ng/Kg 0.0657 ng/Kg 0.0870 ng/Kg 0.0933 ng/Kg 0.0562 ng/Kg 0.0562 ng/Kg 0.104 ng/Kg 0.0431 ng/Kg 0.0402 ng/Kg 0.104 ng/Kg 0.104 ng/Kg 0.1095 ng/Kg 0.0195 ng/Kg 0.0192 ng/Kg 0.902 ng/Kg 0.280 ng/Kg	SL-094-SA5DN-SB-4.0-5.0 SL-094-SA5DN-SB-9.0-10.0 SL-095-SA5DN-SB-9.0-10.0 SL-095-SA5DN-SB-9.0-10.0 SL-097-SA5DN-SB-4.0-5.0 SL-097-SA5DN-SB-8.5-9.5 SL-098-SA5DN-SB-4.0-5.0 SL-098-SA5DN-SB-4.0-5.0 SL-099-SA5DN-SB-4.0-5.0 SL-112-SA5DN-SB-4.0-5.0 SL-112-SA5DN-SB-4.0-5.0 SL-114-SA5DN-SB-4.0-5.0 SL-114-SA5DN-SB-4.0-5.0 SL-114-SA5DN-SB-4.0-5.0 SL-112-SA5DN-SB-4.0-5.0 SL-112-SA5DN-SB-4.0-5.0 SL-121-SA5DN-SB-4.0-5.0 SL-121-SA5DN-SB-4.0-5.0 SL-121-SA5DN-SB-4.0-5.0 SL-121-SA5DN-SB-4.0-5.0 SL-121-SA5DN-SB-4.0-5.0 SL-121-SA5DN-SB-4.0-5.0 SL-121-SA5DN-SB-4.0-5.0 SL-125-SA5DN-SB-4.0-5.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-094-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.724 ng/Kg	0.724U ng/Kg
SL-094-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.234 ng/Kg	0.234U ng/Kg
SL-094-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0657 ng/Kg	0.0657U ng/Kg
SL-094-\$A5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0530 ng/Kg	0.0530U ng/Kg
SL-094-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0,0918 ng/Kg	0.0918U ng/Kg
SL-094-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0613 ng/Kg	0.0613U ng/Kg
SL-094-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0736 ng/Kg	0.0736U ng/Kg
SL-094-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0786 ng/Kg	0.0786U ng/Kg
SL-094-\$A5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0717 ng/Kg	0.0717U ng/Kg
SL-094-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0941 ng/Kg	0.0941U ng/Kg
SL-094-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.120 ng/Kg	0.120U ng/Kg
SL-094-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0999 ng/Kg	0.0999U ng/Kg
SL-094-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0324 ng/Kg	0.0324U ng/Kg
SL-094-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0173 ng/Kg	0.0173U ng/Kg
SL-094-SA5DN-SB-4.0-5.0(RES)	OCDD	2.46 ng/Kg	2.46U ng/Kg
SL-094-SA5DN-SB-4.0-5.0(RES)	OCDF	0.275 ng/Kg	0.275U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.563 ng/Kg	0.563U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.244 ng/Kg	0.244U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0665 ng/Kg	0.0665U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0544 ng/Kg	0.0544U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.118 ng/Kg	0.118U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0894 ng/Kg	0.0894U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0934 ng/Kg	0.0934U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0828 ng/Kg	0.0828U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 9:06:36 AM ADR version 1.4.0.111 Page 1 of 8

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-094-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.120 ng/Kg	0.120U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.140 ng/Kg	0.140U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.130 ng/Kg	0.130U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.154 ng/Kg	0.154U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0244 ng/Kg	0.0244U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0304 ng/Kg	0.0304U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	OCDD	2.05 ng/Kg	2.05U ng/Kg
SL-094-SA5DN-SB-9.0-10.0(RES)	OCDF	0.284 ng/Kg	0.284U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.38 ng/Kg	1.38U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.356 ng/Kg	0.356U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.144 ng/Kg	0.144U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0475 ng/Kg	0.0475U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.108 ng/Kg	0.108U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.168 ng/Kg	0.168U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0850 ng/Kg	0.0850U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.227 ng/Kg	0.227U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0,0708 ng/Kg	0.0708U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.140 ng/Kg	0.140U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.124 ng/Kg	0.124U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.138 ng/Kg	0.138U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0,0405 ng/Kg	0.0405U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0344 ng/Kg	0.0344U ng/Kg
SL-095-SA5DN-SB-4.0-5.0(RES)	OCDF	0.680 ng/Kg	0.680U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.892 ng/Kg	0.892U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.228 ng/Kg	0.228U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0811 ng/Kg	0.0811U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0232 ng/Kg	0.0232U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0576 ng/Kg	0.0576U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0546 ng/Kg	0.0546U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0404 ng/Kg	0.0404U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0578 ng/Kg	0.0578U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0475 ng/Kg	0.0475U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0555 ng/Kg	0.0555U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0874 ng/Kg	0.0874U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0916 ng/Kg	0.0916U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0,0260 ng/Kg	0.0260U ng/Kg
SL-095-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0255 ng/Kg	0.0255U ng/Kg

9/28/2011 9:06:36 AM ADR version 1.4.0.111 Page 2 of 8

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blan Sample ID	k	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-095-SA5DN-SB-9.0-10.0(RES)	OCDF	0.411 ng/Kg	0.411U ng/Kg
SL-097-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.955 ng/Kg	0.955U ng/Kg
SL-097-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.267 ng/Kg	0.267U ng/Kg
SL-097-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0549 ng/Kg	0.0549U ng/Kg
SL-097-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0163 ng/Kg	0.0163U ng/Kg
SL-097-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0592 ng/Kg	0.0592U ng/Kg
SL-097-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0570 ng/Kg	0,0570U ng/Kg
SL-097-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0526 ng/Kg	0.0526U ng/Kg
SL-097-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0602 ng/Kg	0.0602U ng/Kg
SL-097-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0171 ng/Kg	0.0171U ng/Kg
SL-097-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0231 ng/Kg	0,0231U ng/Kg
SL-097-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0799 ng/Kg	0.0799U ng/Kg
SL-097-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0812 ng/Kg	0.0812U ng/Kg
SL-097-SA5DN-SB-4.0-5.0(RES)	OCDF	0,330 ng/Kg	0.330U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	1,2,3,4,6,7,8-HPCDD	0.452 ng/Kg	0.452U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	1,2,3,4,6,7,8-HPCDF	0.135 ng/Kg	0.135U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0397 ng/Kg	0.0397U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	1,2,3,4,7,8-HxCDD	0.0151 ng/Kg	0.0151U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	1,2,3,4,7,8-HXCDF	0.0326 ng/Kg	0.0326U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	1,2,3,6,7,8-HXCDD	0.0310 ng/Kg	0.0310U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	1,2,3,6,7,8-HXCDF	0.0182 ng/Kg	0.0182U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	1,2,3,7,8,9-HXCDD	0.0327 ng/Kg	0.0327U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	2,3,4,6,7,8-HXCDF	0.0552 ng/Kg	0.0552U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	2,3,4,7,8-PECDF	0.0465 ng/Kg	0.0465U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	2,3,7,8-TCDD	0.0139 ng/Kg	0.0139U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	2,3,7,8-TCDF	0.0107 ng/Kg	0.0107U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	OCDD	1.20 ng/Kg	1.20U ng/Kg
SL-097-SA5DN-SB-8.5-9.5(RES)	OCDF	0.174 ng/Kg	0.174U ng/Kg
SL-098-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.244 ng/Kg	0.244U ng/Kg
SL-098-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.258 ng/Kg	0.258U ng/Kg
SL-098-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.218 ng/Kg	0.218U ng/Kg
SL-098-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.168 ng/Kg	0.168U ng/Kg
SL-098-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.251 ng/Kg	0.251U ng/Kg
SL-098-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0432 ng/Kg	0.0432U ng/Kg
SL-098-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDD	1.60 ng/Kg	1.60U ng/Kg
SL-098-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDF	0.347 ng/Kg	0.347U ng/Kg
SL-098-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,7,8,9-HPCDF	0.145 ng/Kg	0.145U ng/Kg

9/28/2011 9:06:36 AM ADR version 1.4.0.111 Page 3 of 8

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	and the second s			
Method Blan Sample ID	k	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-098-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,7,8-HxCDD	0.101 ng/Kg	0.101U ng/Kg
SL-098-\$A5DN-\$B-7.0-8.0(RE\$)	1,2,3,4,7,8-HXCDF	0,158 ng/Kg	0.158U ng/Kg
SL-098-SA5DN-SB-7.0-8.0(RES)	1,2,3,6,7,8-HXCDD	0.148 ng/Kg	0.148U ng/Kg
SL-098-SA5DN-\$B-7.0-8.0(RES)	1,2,3,6,7,8-HXCDF	0.136 ng/Kg	0,136U ng/Kg
SL-098-SA5DN-SB-7.0-8.0(RES)	1,2,3,7,8,9-HXCDD	0.153 ng/Kg	0.153U ng/Kg
SL-098-SA5DN-SB-7.0-8.0(RES)	1,2,3,7,8-PECDD	0.167 ng/Kg	0.167Ų ng/Kg
SL-098-SA5DN-SB-7.0-8.0(RES)	1,2,3,7,8-PECDF	0.188 ng/Kg	0.188U ng/Kg
SL-098-\$A5DN-\$B-7.0-8.0(RES)	2,3,4,6,7,8-HXCDF	0.168 ng/Kg	0.168U ng/Kg
SL-098-SA5DN-SB-7.0-8.0(RES)	2,3,4,7,8-PECDF	0.200 ng/Kg	0.200U ng/Kg
SL-098-SA5DN-SB-7.0-8.0(RES)	2,3,7,8-TCDD	0.0819 ng/Kg	0.0819U ng/Kg
SL-098-SA5DN-SB-7.0-8.0(RES)	2,3,7,8-TCDF	0.0491 ng/Kg	0.0491U ng/Kg
SL-098-SA5DN-SB-7.0-8.0(RES)	OCDF	0.785 ng/Kg	0.785U ng/Kg
SL-099-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.552 ng/Kg	0.552U ng/Kg
SL-099-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.178 ng/Kg	0.178U ng/Kg
SL-099-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.157 ng/Kg	0.157U ng/Kg
SL-099-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.222 ng/Kg	0.222U ng/Kg
SL-099-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.233 ng/Kg	0.233U ng/Kg
SL-099-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.202 ng/Kg	0.202U ng/Kg
SL-099-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.208 ng/Kg	0.208U ng/Kg
SL-099-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.214 ng/Kg	0.214U ng/Kg
SL-099-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.273 ng/Kg	0.273U ng/Kg
SL-099-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0848 ng/Kg	0.0848U ng/Kg
SL-111-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.872 ng/Kg	0.872U ng/Kg
SL-111-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.220 ng/Kg	0.220U ng/Kg
SL-111-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0592 ng/Kg	0.0592U ng/Kg
SL-111-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0491 ng/Kg	0.0491U ng/Kg
SL-111-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0442 ng/Kg	0.0442U ng/Kg
SL-111-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0347 ng/Kg	0.0347U ng/Kg
SL-111-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0704 ng/Kg	0.0704U ng/Kg
SL-111-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,0301 ng/Kg	0.0301U ng/Kg
SL-111-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0906 ng/Kg	0.0906U ng/Kg
SL-111-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0635 ng/Kg	0,0635U ng/Kg
SL-111-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0138 ng/Kg	0.0138U ng/Kg
SL-111-SA5DN-SB-4.0-5.0(RES)	OCDF	0.456 ng/Kg	0.456U ng/Kg
SL-112-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.755 ng/Kg	0.755U ng/Kg
SL-112-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.240 ng/Kg	0.240U ng/Kg
SL-112-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0564 ng/Kg	0.0564U ng/Kg

9/28/2011 9:06:36 AM ADR version 1.4.0.111 Page 4 of 8

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	e i Serie di Marieri di La La La La La La La La La La La La La			
Method Blan Sample ID	k	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-112-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0167 ng/Kg	0.0167U ng/Kg
SL-112-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0575 ng/Kg	0.0575U ng/Kg
SL-112-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0630 ng/Kg	0.0630U ng/Kg
SL-112-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0492 ng/Kg	0.0492U ng/Kg
SL-112-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.111 ng/Kg	0.111U ng/Kg
SL-112-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0183 ng/Kg	0.0183U ng/Kg
SL-112-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0408 ng/Kg	0.0408U ng/Kg
SL-112-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.108 ng/Kg	0.108U ng/Kg
SL-112-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0690 ng/Kg	0.0690U ng/Kg
SL-112-SA5DN-SB-4.0-5.0(RES)	OCDF	0.320 ng/Kg	0.320U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.885 ng/Kg	0.885U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.282 ng/Kg	0.282U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0943 ng/Kg	0.0943U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0,0489 ng/Kg	0.0489U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.108 ng/Kg	0.108U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0631 ng/Kg	0.0631U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.102 ng/Kg	0.102U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0849 ng/Kg	0.0849U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.109 ng/Kg	0.109U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.149 ng/Kg	0.149U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.150 ng/Kg	0.150U ng/Kg
SL-113-SA5DN-SB-4,0-5.0(RES)	2,3,4,7,8-PECDF	0.156 ng/Kg	0,156U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0531 ng/Kg	0.0531U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0577 ng/Kg	0.0577U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	OCDD	3.60 ng/Kg	3.60U ng/Kg
SL-113-SA5DN-SB-4.0-5.0(RES)	OCDF	0.338 ng/Kg	0.338U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.675 ng/Kg	0.675U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.192 ng/Kg	0.192U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.143 ng/Kg	0.143U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0699 ng/Kg	0.0699U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.112 ng/Kg	0.112U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.128 ng/Kg	0.128U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0961 ng/Kg	0.0961U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.234 ng/Kg	0.234U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0576 ng/Kg	0.0576U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,133 ng/Kg	0,133U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.144 ng/Kg	0.144U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-114-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.124 ng/Kg	0,124U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0185 ng/Kg	0.0185U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0379 ng/Kg	0.0379U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	OCDD	2.74 ng/Kg	2.74U ng/Kg
SL-114-SA5DN-SB-4.0-5.0(RES)	OCDF	0.476 ng/Kg	0.476U ng/Kg
SL-118-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.832 ng/Kg	0.832U ng/Kg
SL-118-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.185 ng/Kg	0.185U ng/Kg
SL-118-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0449 ng/Kg	0.0449U ng/Kg
SL-118-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0172 ng/Kg	0.0172U ng/Kg
SL-118-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0507 ng/Kg	0.0507U ng/Kg
SL-118-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0388 ng/Kg	0.0388U ng/Kg
SL-118-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0415 ng/Kg	0.0415U ng/Kg
SL-118-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0823 ng/Kg	0.0823U ng/Kg
SL-118-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0164 ng/Kg	0.0164U ng/Kg
SL-118-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,0290 ng/Kg	0.0290U ng/Kg
SL-118-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0658 ng/Kg	0.0658U ng/Kg
SL-118-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0668 ng/Kg	0.0668U ng/Kg
SL-118-SA5DN-SB-4.0-5.0(RES)	OCDF	0.275 ng/Kg	0.275U ng/Kg
SL-119-SA5DN-SB-4.0-5:0(RES)	1,2,3,4,6,7,8-HPCDD	2.30 ng/Kg	2.30U ng/Kg
SL-119-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.307 ng/Kg	0.307U ng/Kg
SL-119-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0594 ng/Kg	0.0594U ng/Kg
SL-119-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0282 ng/Kg	0.0282U ng/Kg
SL-119-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0514 ng/Kg	0.0514U ng/Kg
SL-119-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0806 ng/Kg	0.0806U ng/Kg
SL-119-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0485 ng/Kg	0.0485U ng/Kg
SL-119-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.102 ng/Kg	0.102U ng/Kg
SL-119-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0155 ng/Kg	0.0155U ng/Kg
SL-119-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0131 ng/Kg	0.0131U ng/Kg
SL-119-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0774 ng/Kg	0.0774U ng/Kg
SL-119-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0651 ng/Kg	0.0651U ng/Kg
SL-119-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0115 ng/Kg	0.0115U ng/Kg
SL-119-SA5DN-SB-4.0-5.0(RES)	OCDF	0.542 ng/Kg	0.542U ng/Kg
SL-120-SA5DN-SB-4.0-5.0(RE\$)	1,2,3,4,6,7,8-HPCDD	1.73 ng/Kg	1.73U ng/Kg
SL-120-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.289 ng/Kg	0.289U ng/Kg
SL-120-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0660 ng/Kg	0,0660U ng/Kg
SL-120-SA5DN-SB-4,0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0244 ng/Kg	0.0244U ng/Kg
SL-120-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0599 ng/Kg	0.0599U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 9:06:36 AM ADR version 1.4.0.111 Page 6 of 8

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	and the first of the second of			
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-120-SA5DN-SB-4.0-5.0(RE\$)	1,2,3,6,7,8-HXCDD	0.0816 ng/Kg	0.0816U ng/Kg
SL-120-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0328 ng/Kg	0.0328U ng/Kg
SL-120-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0933 ng/Kg	0.0933U ng/Kg
SL-120-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0392 ng/Kg	0.0392U ng/Kg
SL-120-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0556 ng/Kg	0.0556U ng/Kg
SL-120-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0,0864 ng/Kg	0.0864U ng/Kg
SL-120-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.103 ng/Kg	0.103U ng/Kg
SL-120-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0,0226 ng/Kg	0.0226U ng/Kg
SL-120-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0254 ng/Kg	0.0254U ng/Kg
SL-120-\$A5DN-\$B-4.0-5.0(RES)	OCDF	0.589 ng/Kg	0.589U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.33 ng/Kg	1.33U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.259 ng/Kg	0.259U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0453 ng/Kg	0.0453U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0,0189 ng/Kg	0.0189U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0377 ng/Kg	0.0377U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.103 ng/Kg	0.103U ng/Kg
SL-121-\$A5DN-\$B-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0337 ng/Kg	0.0337U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.140 ng/Kg	0.140U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0280 ng/Kg	0.0280U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0533 ng/Kg	0.0533U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0882 ng/Kg	0.0882U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0593 ng/Kg	0.0593U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0244 ng/Kg	0.0244U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0,0143 ng/Kg	0.0143U ng/Kg
SL-121-SA5DN-SB-4.0-5.0(RES)	OCDF	0.478 ng/Kg	0.478U ng/Kg
SL-121-SA5DN-SB-8.0-9.0(RES)	1,2,3,4,6,7,8-HPCDF	0.384 ng/Kg	0.384U ng/Kg
SL-121-SA5DN-SB-8.0-9.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0713 ng/Kg	0.0713U ng/Kg
SL-121-SA5DN-SB-8.0-9.0(RES)	1,2,3,4,7,8-HxCDD	0.0255 ng/Kg	0.0255U ng/Kg
SL-121-SA5DN-\$B-8.0-9.0(RES)	1,2,3,4,7,8-HXCDF	0.0570 ng/Kg	0.0570U ng/Kg
SL-121-SA5DN-SB-8.0-9.0(RES)	1,2,3,6,7,8-HXCDD	0.0898 ng/Kg	0.0898U ng/Kg
SL-121-SA5DN-SB-8.0-9.0(RES)	1,2,3,6,7,8-HXCDF	0.0386 ng/Kg	0.0386U ng/Kg
SL-121-SA5DN-SB-8.0-9.0(RES)	1,2,3,7,8,9-HXCDD	0.0685 ng/Kg	0.0685U ng/Kg
SL-121-\$A5DN-SB-8.0-9.0(RES)	1,2,3,7,8-PECDD	0.0248 ng/Kg	0.0248U ng/Kg
SL-121-SA5DN-SB-8.0-9.0(RES)	1,2,3,7,8-PECDF	0.0468 ng/Kg	0.0468U ng/Kg
SL-121-SA5DN-SB-8.0-9.0(RES)	2,3,4,6,7,8-HXCDF	0.0859 ng/Kg	0.0859U ng/Kg
SL-121-SA5DN-SB-8.0-9.0(RES)	2,3,4,7,8-PECDF	0.0826 ng/Kg	0.0826U ng/Kg
SL-121-SA5DN-SB-8.0-9.0(RES)	2,3,7,8-TCDD	0.0211 ng/Kg	0.0211U ng/Kg

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	a established and a second rest			
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-121-SA5DN-SB-8.0-9.0(RES)	2,3,7,8-TCDF	0.0146 ng/Kg	0.0146U ng/Kg
SL-121-SA5DN-SB-8.0-9.0(RES)	OCDF	0.899 ng/Kg	0.899U ng/Kg
SL-125-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.602 ng/Kg	0.602U ng/Kg
SL-125-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0811 ng/Kg	0.0811U ng/Kg
SL-125-SA5DN-\$B-4.0-5.0(RE\$)	1,2,3,4,7,8-HxCDD	0.0255 ng/Kg	0.0255U ng/Kg
SL-125-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0783 ng/Kg	0.0783U ng/Kg
SL-125-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0850 ng/Kg	0.0850U ng/Kg
SL-125-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0490 ng/Kg	0.0490U ng/Kg
SL-125-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0606 ng/Kg	0,0606U ng/Kg
SL-125-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0149 ng/Kg	0.0149U ng/Kg
SL-125-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0,135 ng/Kg	0.135U ng/Kg
SL-125-\$A5DN-\$B-4,0-5,0(RES)	2,3,4,7,8-PECDF	0.0690 ng/Kg	0.0690U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0,550 ng/Kg	0.550U ng/Kg
SL-125-SA5DN-\$B-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.245 ng/Kg	0.245U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0548 ng/Kg	0.0548U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.00861 ng/Kg	0.00861U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0485 ng/Kg	0.0485U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0288 ng/Kg	0.0288U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0429 ng/Kg	0.0429U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0350 ng/Kg	0.0350U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0186 ng/Kg	0.0186U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0179 ng/Kg	0.0179U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0977 ng/Kg	0.0977U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0682 ng/Kg	0.0682U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0158 ng/Kg	0.0158U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0111 ng/Kg	0.0111U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	OCDD	2.97 ng/Kg	2.97U ng/Kg
SL-125-SA5DN-SB-9.0-10.0(RES)	OCDF	0.264 ng/Kg	0.264U ng/Kg

9/28/2011 9:06:36 AM ADR version 1.4.0.111 Page 8 of 8

Field Duplicate RPD Report

Lab Reporting Batch ID: DX104

Laboratory: LL

EDD Filename: DX104_v1	eQAPP Name: CDM_SSFL_11050				
Method: 160.3M Matrix: SO					
	Concenti	ration (%)			
Analyte	SL-112-SA5DN-SB-4.0- 5.0	DUP16-SA5DN-QC- 062211	Sample RPD	eQAPP RPD	Flag
MOISTURE	14.5	12.800000000	12		No Qualifiers Applied

Method: 1613B Matrix: SO							
	Concentrat	Concentration (ng/Kg)					
Analyte	SL-112-SA5DN-SB-4.0- 5.0	DUP16-SA5DN-QC- 062211	Sample RPD	eQAPP RPD	Flag		
1,2,3,4,6,7,8-HPCDD	0.755	1.09000000	36	50.00			
1,2,3,4,6,7,8-HPCDF	0.240	0.168000000	35	50.00			
1,2,3,4,7,8,9-HPCDF	0.0564	0.064200000	13	50.00			
1,2,3,4,7,8-HXCDF	0.0575	0.042900000	29	50.00			
1,2,3,6,7,8-HXCDF	0.0492	0.052900000	7	50.00	No Ovelities Assissed		
1,2,3,7,8,9-HXCDF	0.209	0.318000000	41	50.00	No Qualifiers Applied		
2,3,4,6,7,8-HXCDF	0.108	0.082000000	27	50.00			
2,3,4,7,8-PECDF	0.0690	0.074400000	8	50.00			
OCDD	5.04	8.040000000	46	50.00			
OCDF	0.320	0.415000000	26	50.00			
1,2,3,4,7,8-HxCDD	0.0167	0.030700000	59	50.00			
1,2,3,6,7,8-HXCDD	0.0630	0.173000000	93	50.00	I/all data stal		
1,2,3,7,8,9-HXCDD	0.111	0.281000000	87	50.00	J(all detects)		
1,2,3,7,8-PECDD	0.0183	0.034600000	62	50.00			
1,2,3,7,8-PECDF	0.0408	0.073900000	58	50.00			

Page 1 of 1

Lab Reporting Batch ID: DX104

Laboratory: LL

EDD Filename: DX104_v1

eQAPP Name: CDM_SSFL_110509

Method:	1613B
88-4-5	00

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-094-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD OCDD		0.724 0.234 0.0657 0.0530 0.0918 0.0613 0.0736 0.0786 0.117 0.0717 0.0941 0.120 0.0999 0.0324 0.0173 2.46 0.275	5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-094-SA5DN-SB-9.0-10.0		១ ១១៩១៩៩១៩៩៩៩១៩១៩១	0.563 0.244 0.0665 0.0544 0.118 0.0894 0.0934 0.0828 0.111 0.120 0.140 0.130 0.154 0.0244 0.0304 2.05 0.284	5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-095-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDF	ង់ខ្លួងមិងង-ងងងង់ងង	1.38 0.356 0.144 0.0475 0.108 0.168 0.0850 0.227 0.363 0.0708 0.140 0.124 0.138 0.0405 0.0344 0.680	5.58 5.58 5.58 5.58 5.58 5.58 5.58 5.58	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-095-SA5DN-SB-9.0-10.0	· · · · · · · · · · · · · · · · · · ·	JB	0.892	5.45	PQL	ng/Kg	
3L-095-3A3DN-3B-9.0-10.0	1,2,3,4,6,7,8-HPCDF	JB	0.092	5.45	PQL	ng/Kg	
	11,2,3,4,6,7,8-HPCDF	JBQ	0.226	5.45	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0232	5.45	PQL		
	1,2,3,4,7,8-HXCDF	JB	0.0232	5.45	PQL	ng/Kg ng/Kg	
		JBQ	0.0576	5.45	PQL		
į	1,2,3,6,7,8-HXCDD	JB	0.0346		PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF			5.45		ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0578	5.45	PQL	ng/Kg	I (all data sta)
	1,2,3,7,8,9-HXCDF	JQ	0.0983	5.45	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0475	5.45	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0555	5.45	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0874	5.45	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0916	5.45	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0260	1.09	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0255	1.09	PQL	ng/Kg	
	OCDD	JB	7.45	10.9	PQL	ng/Kg	
	OCDF	JBQ	0.411	10.9	PQL	ng/Kg	
SL-097-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.955	5.86	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.267	5.86	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0549	5.86	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ :	0.0163	5.86	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0592	5.86	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0570	5.86	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0526	5.86	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0602	5.86	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	J	0.0635	5.86	PQL	ng/Kg	,
	1,2,3,7,8-PECDD	JB	0.0171	5.86	PQL	ng/Kg	
İ	1,2,3,7,8-PECDF	JBQ	0.0231	5.86	PQL	ng/Kg	
ì	2,3,4,6,7,8-HXCDF	JBQ	0.0799	5.86	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0812	5.86	PQL	ng/Kg	
	OCDD	JВ	9.03	11.7	PQL	ng/Kg	
	OCDF	JB	0.330	11.7	PQL	ng/Kg	
SL-097-SA5DN-SB-8,5-9,5	1,2,3,4,6,7,8-HPCDD	JB	0.452	5.61	PQL	ng/Kg	
36-037-373014-30-0.3-9.3	1,2,3,4,6,7,8-HPCDF	JB	0.432	5.61	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.133	5.61	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0357	5.61	PQL	ng/Kg	
	1,2,3,4,7,6-HXCDF	JBQ	0.0131	5.61	PQL	ng/Kg	
		JBQ	0.0320	5.61	PQL	ng/Kg	i
	1,2,3,6,7,8-HXCDD	JB	0.0310	5.61	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB JB	0.0182	5.61	PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JBQ	0.0527	5.61	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ		1	PQL		
	2,3,4,7,8-PECDF		0.0465	5.61		ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0139	1.12	PQL PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0107		PQL	ng/Kg	,
	OCDD	JB	1.20	11.2		ng/Kg	
	OCDF	JB	0.174	11.2	PQL	ng/Kg	

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Walitx. SU				,			
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
	<u> </u>			l	· · · · · · · · · · · · · · · · · · ·		
SL-098-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	3.13	5.84	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.244	5.84	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF	JB JB	0.258 0.574	5.84 5.84	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDD	JB JB	0.974	5.84	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.921	5.84	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.680	5.84	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	J	0.283	5.84	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.168	5.84	PQL	ng/Kg	o (an acteurs)
	1,2,3,7,8-PECDF	JB	0.374	5.84	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.251	5.84	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.628	5.84	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0432	1.17	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.303	1.17	PQL	ng/Kg	
	OCDF	JB	11.1	11.7	PQL	ng/Kg	
SL-098-SA5DN-SB-7.0-8.0	1,2,3,4,6,7,8-HPCDD	JB	1.60	5.70	PQL	ng/Kg	
02 000 07 007 00 7 10 0.0	1,2,3,4,6,7,8-HPCDF	JB	0.347	5.70	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.145	5.70	PQL	ng/Kg	
1	1,2,3,4,7,8-HxCDD	JB	0.101	5.70	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JВ	0.158	5.70	PQL	ng/Kg	
İ	1,2,3,6,7,8-HXCDD	JB	0.148	5.70	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.136	5.70	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.153	5.70	PQL	ng/Kg	I /all data ata)
	1,2,3,7,8,9-HXCDF	J	0.189	5.70	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.167	5.70	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.188	5.70	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.168	5.70	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.200	5.70	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0819	1.14	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0491	1.14	PQL	ng/Kg	
	OCDF	JB	0.785	11.4	PQL	ng/Kg	
SL-099-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	3.32	5.61	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JВ	0.552	5.61	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.178	5.61	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.157	5.61	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.222	5.61	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.233	5.61	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.202	5.61	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.208	5.61	PQL	ng/Kg	J (all detects)
[1,2,3,7,8,9-HXCDF	J	0.250	5.61	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.253	5.61	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.266	5.61	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.214	5.61	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.273	5.61	PQL	ng/Kg	
	2,3,7,8-TCDD OCDF	JB JB	0.0848 1.42	1.12 11.2	PQL P QL	ng/Kg	
	OCDF	JD	1.42	11.4	FUL	ng/Kg	

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Watrix. 50							-
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-111-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.872	5.68	PQL	ng/Kg	- · · · · · · · · · · · · · · · · · · ·
	1,2,3,4,6,7,8-HPCDF	JB	0.220	5.68	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0592	5.68	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0491	5.68	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0442	5.68	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0347	5.68	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0704	5.68	PQL	ng/Kg	1 (-11 -1 - 1 - 1 - 1
	1,2,3,7,8,9-HXCDF	J	0.105	5.68	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.0301	5.68	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0906	5.68	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0635	5.68	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0138	1.14	PQL	ng/Kg	
	OCDD	JB	8.66	11.4	PQL	ng/Kg	
	OCDF	JB	0.456	11.4	PQL	ng/Kg	
SL-112-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JВ	0.755	5.80	PQL	ng/Kg	<u> </u>
	1,2,3,4,6,7,8-HPCDF	JBQ	0.240	5.80	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0564	5.80	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0167	5.80	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0575	5.80	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0630	5.80	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0492	5.80	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.111	5.80	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JQ	0.209	5.80	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0183	5.80	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0408	5.80	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.108	5.80	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0690	5.80	PQL	ng/Kg	
	OCDD	JΒ	5.04	11.6	PQL	ng/Kg	
	OCDF	JB	0.320	11.6	PQL	ng/Kg	
SL-113-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.885	5.88	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JΒ	0.282	5.88	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JΒ	0.0943	5.88	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0489	5.88	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.108	5.88	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0631	5.88	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.102	5.88	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0849	5.88	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	J	0.122	5.88	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.109	5.88	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.149	5.88	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.150	5.88	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.156	5.88	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0531	1.18	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0577	1.18	PQL	ng/Kg	
	OCDD	JB	3.60	11.8	PQL	ng/Kg	
	OCDF	JBQ	0.338	11.8	PQL	ng/Kg	

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-114-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD OCDD	28年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	0.675 0.192 0.143 0.0699 0.112 0.128 0.0961 0.234 0.420 0.0576 0.133 0.144 0.124 0.0185 0.0379 2.74 0.476	5.43 5.43 5.43 5.43 5.43 5.43 5.43 5.43	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-118-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 0CDD OCDF	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	0.832 0.185 0.0449 0.0172 0.0507 0.0388 0.0415 0.0823 0.0560 0.0164 0.0290 0.0658 0.0668 5.11 0.275	5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-119-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.30 0.307 0.0594 0.0282 0.0514 0.0806 0.0485 0.102 0.0745 0.0155 0.0131 0.0774 0.0651 0.0115 0.542	5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.70	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-120-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0,3,7,8-TCDF	######################################	1.73 0.289 0.0660 0.0244 0.0599 0.0816 0.0328 0.0933 0.0940 0.0392 0.0556 0.0864 0.103 0.0226 0.0254 0.589	5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-121-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	ងទីទីទីងមន្លឹកមន្លឹងមិធិមិធិ	1.33 0.259 0.0453 0.0189 0.0377 0.103 0.0337 0.140 0.184 0.0280 0.0533 0.0882 0.0593 0.0244 0.0143 0.478	5.53 5.53 5.53 5.53 5.53 5.53 5.53 5.53	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-121-SA5DN-SB-8.0-9.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDF	ងខ្លួងងារប្រទាំង	2.49 0.384 0.0713 0.0255 0.0570 0.0898 0.0386 0.0685 0.0493 0.0248 0.0468 0.0859 0.0826 0.0211 0.0146 0.899	5.27 5.27 5.27 5.27 5.27 5.27 5.27 5.27	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX104 Laboratory: LL

EDD Filename: DX104_v1 eQAPP Name: CDM_SSFL_110509

		Lab		Donortina	RL		
SampleID	Analyte	Qual	Result	Reporting Limit	Type	Units	Flag
SL-125-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	2.49	5.48	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.602	5.48	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0811	5.48	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0255	5.48	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0783	5.48	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0850	5.48	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0490	5.48	PQL	ng/Kg	J (all detects)
•	1,2,3,7,8,9-HXCDD ⁻	JB	0.0606	5.48	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JQ	0.0720	5.48	PQL	ng/Kg	i
	1,2,3,7,8-PECDD	JBQ	0.0149	5.48	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.135	5.48	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0690	5.48	PQL	ng/Kg	
	OCDF	JB	1.86	11.0	PQL	ng/Kg	
SL-125-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.550	5.19	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.245	5.19	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0548	5.19	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.00861	5.19	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0485	5.19	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0288	5.19	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0429	5.19	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0350	5.19	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JQ	0.0511	5.19	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0186	5.19	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0179	5.19	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0977	5.19	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0682	5.19	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0158	1.04	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0111	1.04	PQL	ng/Kg	
	OCDD	JB	2.97	10.4	PQL	ng/Kg	
	OCDF	JB	0.264	10.4	PQL	ng/Kg	

SAMPLE DELIVERY GROUP

DX105

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
22-June-2011	DUP16-SA5DN-QC-062211	6325719	FD	METHOD	1613B	III
22-June-2011	EB19-SA5DN-SB-062211	6325720	EB	METHOD	1613B	m
22-June-2011	SL-115-SA5DN-SB-4.0-5.0	6325718	N	METHOD	16 1 3B	111
23-June-2011	SL-109-SA5DN-SB-3.5-4.5	6327429	N	METHOD	1613B	1111
23-June-2011	SL-100-SA5DN-SB-3.0-4.0	6327421	N	METHOD	1613B	111
23-June-2011	SL-101-SA5DN-SB-2.5-3.5	6327422	N	METHOD	1613B	111
23-June-2011	SL-102-SA5DN-SB-4.0-5.0	6327423	N	METHOD	1613B	111
23-June-2011	SL-104-SA5DN-SB-4.0-5.0	6327424	N	METHOD	1613B	111
23-June-2011	SL-105-SA5DN-SB-4.0-5.0	6327425	N	METHOD	1613B	111
23-June-2011	SL-106-SA5DN-SB-4.0-5.0	6327426	N	METHOD	1613B	111
23-June-2011	SL-107-SA5DN-SB-3.5-4.5	6327428	N	METHOD	1613B	111
23-June-2011	SL-110-SA5DN-SB-4.0-5.0	6327430	N	METHOD	1613B	411
23-June-2011	SL-106-SA5DN-SB-9.0-10.0	6327427	N	METHOD	1613B	III
24-June-2011	DUP17-SA5DN-QC-062411	6328487	FD	METHOD	1613B	Ш
24-June-2011	SL-091-SA5DN-SB-4.0-5.0	6328479	N	METHOD	1613B	111
24-June-2011	SL-092-SA5DN-SB-4.0-5.0	6328480	N	METHOD	1613B	111
24-June-2011	SL-092-SA5DN-SB-4.0-5.0MS	6328481	MS	METHOD	1613B	Ш
24-June-2011	SL-092-SA5DN-SB-4.0-5.0MSD	6328482	MSD	METHOD	1613B	111
24-June-2011	SL-092-SA5DN-SB-7.0-8.0	6328483	N	METHOD	1613B	III
24-June-2011	SL-122-SA5DN-SB-4.0-5.0	6328484	N	METHOD	16 1 3B	III
24-June-2011	SL-103-SA5DN-SB-4.0-5.0	6328485	N	METHOD	1613B	. III
24-June-2011	SL-103-SA5DN-SB-7.0-8.0	6328486	N	METHOD	1613B	Ш

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: AQ

Sample ID: EB19-SA5DN-SB-062211 Collected: 6/22/2011 1:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	6.72	JB	0.331	MDL	10.2	PQL	pg/L	υ	В
1,2,3,4,6,7,8-HPCDF	11.3	В	0.201	MDL	10.2	PQL	pg/L	U	В
1,2,3,4,7,8,9-HPCDF	1.03	JB	0.232	MDL	10.2	PQL	pg/L	U	В
1,2,3,4,7,8-HxCDD	0.337	JB	0.162	MDL	10.2	PQL	pg/L	U	В
1,2,3,4,7,8-HXCDF	1.72	JB	0.244	MDL	10.2	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDD	0.474	JB	0.164	MDL	10.2	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDF	1.47	JB	0.238	MDL	10.2	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDD	0.585	JB	0.157	MDL	10.2	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDF	0.652	JBQ	0.271	MDL	10.2	PQL	pg/L	υ	В
1,2,3,7,8-PECDF	0.301	JB	0.103	MDL	10.2	PQL	pg/L	U	В
2,3,4,6,7,8-HXCDF	3.02	JB	0.230	MDL	10.2	PQL	pg/L	υ	В
2,3,4,7,8-PECDF	1.29	JBQ	0.0964	MDL	10.2	PQL	pg/L	U	В
OCDD	11.5	JB	0.355	MDL	20.4	PQL	pg/L	U	В
OCDF	5.99	JB	0.392	MDL	20.4	PQL	pg/L	U	В

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: DUP16-SA5DN-QC-062211	Collec	ted: 6/22/2	011 11:55:	:00 A	nalysis Ty	/pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	1.09	JB	0.0326	MDL	5.70	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.168	JB	0.00780	MDL	5.70	PQL	ng/Kg	Ų	В	
1,2,3,4,7,8,9-HPCDF	0.0642	JB	0.0175	MDL	5.70	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0307	JBQ	0.0219	MDL	5.70	PQL	ng/Kg	υJ	B, FD	
1,2,3,4,7,8-HXCDF	0.0429	JBQ	0.0150	MDL	5.70	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.173	JB	0.0218	MDL	5.70	PQL	ng/Kg	υJ	B, FD	
1,2,3,6,7,8-HXCDF	0.0529	JB	0.0122	MDL	5.70	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.281	JBQ	0.0216	MDL	5.70	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8,9-HXCDF	0.318	JB	0.0203	MDL	5.70	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0346	JBQ	0.0269	MDL	5.70	PQL	ng/Kg	υJ	B, FD	
1,2,3,7,8-PECDF	0.0739	JB	0.0130	MDL	5.70	PQL	ng/Kg	UJ	B, FD	
2,3,4,6,7,8-HXCDF	0.0820	JBQ	0.0143	MDL	5.70	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0744	JBQ	0.0138	MDL	5.70	PQL	ng/Kg	υ	В	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 9/28/2011 9:23:02 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA			
Method:	1613B	Matrix:	so	

Sample ID: DUP16-SA5DN-QC-062211	Collec	Collected: 6/22/2011 11:55:00					Analysis Type: RES			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
OCDD	8.04	JB	0.0194	MDL	11.4	PQL	ng/Kg	J	Z	
OCDE	0.415	JBO	0.0392	MDI	11 4	POL	na/Ka	1.1	B	

Sample ID: DUP17-SA5DN-QC-062411	Collect	ted: 6/24/2	011 10:25	:00 A	nalysis Ty	/pe: RES		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.06	JB	0.0303	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.166	JB	0.00836	MDL	5.81	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0570	JBQ	0.0184	MDL	5.81	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0376	JBQ	0.0193	MDL	5.81	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0362	JBQ	0.0146	MDL	5.81	PQL	ng/Kg	IJ	B, FD
1,2,3,6,7,8-HXCDD	0.109	JBQ	0.0196	MDL	5.81	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0405	JBQ	0.0125	MDL	5.81	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8,9-HXCDD	0.145	JBQ	0.0201	MDL	5.81	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.186	JB	0.0173	MDL	5.81	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0379	JBQ	0.0197	MDL	5.81	PQL	ng/Kg	ΟŊ	B, FD
1,2,3,7,8-PECDF	0.0422	JB	0.0110	MDL	5.81	PQL	ng/Kg	UJ	B, FD
2,3,4,6,7,8-HXCDF	0.0529	JBQ	0.0143	MDL	5.81	PQL	ng/Kg	UJ	B, FD
2,3,4,7,8-PECDF	0.0694	JBQ	0.0115	MDL	5.81	PQL	ng/Kg	υJ	B, FD
2,3,7,8-TCDD	0.0269	JQ	0.0239	MDL	1.16	PQL	ng/Kg	J	Z
OCDD	13.6	В	0.0314	MDL	11.6	PQL	ng/Kg	J	FD
OCDF	0.364	JB	0.0366	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-091-SA5DN-SB-4.0-5.0	Collected: 6/24/2011 12:35:00	Analysis Type: REA	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.587	JC	0.147	MDL	1.19	PQL	ng/Kg	J	Z

Sample ID: SL-091-SA5DN-SB-4.0-5.0 Collected: 6/24/2011 12:35:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.21	JB	0.0219	MDL	5.95	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	3.05	JB	0.0451	MDL	5.95	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.133	JB	0.0529	MDL	5.95	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.583	JB	0.0544	MDL	5.95	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

9/28/2011 9:23:02 AM ADR version 1.4.0.111 Page 2 of 14

Lab Reporting Batch ID: DX105

Laboratory: LL

EDD Filename: DX105_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-091-SA5DN-SB-4.0-5.0

Collected:	6/24/2011	12:35:00
------------	-----------	----------

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDD	0.410	JBQ	0.0535	MDL	5.95	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	4.51	JB	0.127	MDL	5.95	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.487	JBQ	0.125	MDL	5.95	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	3.75	JB	0.104	MDL	5.95	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0937	JQ	0.0623	MDL	1.19	PQL	ng/Kg	U	Z
OCDF	4.90	JB	0.0411	MDL	11.9	PQL	ng/Kg	J	Z

Sample ID: SL-092-SA5DN-SB-4.0-5.0

Collected: 6/24/2011 10:18:00

Analysis Type: RES

Dilution: 1

campio isi ca cal citasii ca iio aic		onestee. ciziizati tattata / ma.yota / yp						Dilation. (
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.836	JB	0.0262	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.235	JBQ	0.00908	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0884	JBQ	0.0264	MDL	5.54	PQL	ng/Kg	Ü	В	
1,2,3,4,7,8-HxCDD	0.0539	JBQ	0.0198	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0955	JB	0.0189	MDL	5.54	PQL	ng/Kg	UJ	B, FD	
1,2,3,6,7,8-HXCDD	0.108	JB	0.0195	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0757	JB	0.0134	MDL	5.54	PQL	n g /Kg	UJ	B, FD	
1,2,3,7,8,9-HXCDD	0.147	JBQ	0.0202	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.178	JB	0.0253	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0984	JBQ	0.0233	MDL	5.54	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8-PECDF	0.114	JBQ	0.0144	MDL	5.54	PQL	ng/Kg	UJ	B, FD	
2,3,4,6,7,8-HXCDF	0.0924	JB	0.0170	MDL	5.54	PQL	ng/Kg	UJ	B, FD	
2,3,4,7,8-PECDF	0.123	JBQ	0.0160	MDL	5.54	PQL	ng/Kg	υJ	B, FD	
2,3,7,8-TCDD	0.0268	JQ	0.0253	MDL	1.11	PQL	ng/Kg	J	Z	
OCDD	4.99	JB	0.0217	MDL	11.1	PQL	ng/Kg	UJ	B, FD	
OCDF	0.583	JВ	0.0530	MDL	11.1	PQL	ng/Kg	U	В	

Sample ID: SL-092-SA5DN-SB-7.0-8.0

Collected: 6/24/2011 10:10:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.78	JB	0.0284	MDL	5.81	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.434	JB	0.00964	MDL	5.81	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.285	JB	0.0223	MDL	5.81	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0,203	JB	0.0259	MDL	5.81	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.260	JBQ	0.0204	MDL	5.81	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-092-SA5DN-SB-7.0-8.0 Collected: 6/24/2011 10:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDD	0.321	JB	0.0259	MDL	5.81	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.202	JB	0.0166	MDL	5.81	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.346	JBQ	0.0260	MDL	5.81	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.296	JBQ	0.0283	MDL	5.81	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.257	JBQ	0.0280	MDL	5.81	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.217	JB	0.0137	MDL	5.81	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.293	JB	0.0196	MDL	5.81	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.288	JB	0.0146	MDL	5.81	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0734	JQ	0.0275	MDL	1.16	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0373	JQ	0.0264	MDL	1.16	PQL	ng/Kg	J	Z	
OCDF	1.01	JB	0.0405	MDL	11.6	PQL	ng/Kg	U	В	

Sample ID: SL-100-SA5DN-SB-3.0-4.0 Collected: 6/23/2011 8:30:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.87	JB	0.0361	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.552	JB	0.0112	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0984	JBQ	0.0231	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0483	JBQ	0.0272	MDL	5.63	PQL	ng/Kg	Ų	В
1,2,3,4,7,8-HXCDF	0.0688	JB	0.0190	MDL,	5.63	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.201	JBQ	0.0265	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0628	JB	0.0156	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.177	JB	0.0270	MDL	5.63	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.121	JB	0.0200	MDL	5.63	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0342	JBQ	0.0245	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0470	JB	0.0138	MDL	5.63	PQL	ng/Kg	Ų	В
2,3,4,6,7,8-HXCDF	0.102	JBQ	0.0164	MDL	5.63	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.105	JBQ	0.0147	MDL	5.63	PQL	ng/Kg	U	В
OCDF	1.54	JB	0.0416	MDL	11.3	PQL	ng/Kg	U	В

Sample ID: SL-101-SA5DN-SB-2.5-3.5 Collected: 6/23/2011 9:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.594	JBQ	0.0292	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.100	JB	0.00866	MDL	5.18	PQL	ng/Kg	Ų	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

SO

Method Category: SVOA

Method: 1613B Matrix:

Sample ID: SL-101-SA5DN-SB-2.5-3.5 Collected: 6/23/2011 9:05:00 Analysis Type: RES Dilution: 1

•											
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8,9-HPCDF	0.0467	JBQ	0.0157	MDL	5.18	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0367	JBQ	0.0169	MDL	5.18	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.0604	JBQ	0.0185	MDL	5.18	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDF	0.0238	JB	0.0133	MDL	5.18	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.0572	JBQ	0.0178	MDL	5.18	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.0914	JBQ	0.0160	MDL	5.18	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.0164	JBQ	0.0111	MDL	5.18	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.0620	JB	0.0117	MDL	5.18	PQL	ng/Kg	Ų	В		
2,3,4,7,8-PECDF	0.0544	JBQ	0.0118	MDL	5.18	PQL	ng/Kg	U	В		
OCDD	4.06	JB	0.0183	MDL	10.4	PQL	ng/Kg	U	В		
OCDF	0.265	JBQ	0.0359	MDL	10.4	PQL	ng/Kg	U	В		

Sample ID: SL-102-SA5DN-SB-4.0-5.0 Collected: 6/23/2011 2:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.70	JB	0.0155	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.107	JВ	0.0278	MDL	5.23	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0884	JB	0.0284	MDL	5.23	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.110	JBQ	0.0281	MDL	5.23	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.446	JВ	0.0292	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0852	JB	0.0210	MDL	5.23	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.237	JB	0.0279	MDL	5.23	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.138	JB	0.0219	MDL	5.23	PQL	ng/Kg	Ų	В
1,2,3,7,8-PECDD	0.0449	JBQ	0.0240	MDL	5.23	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0285	JBQ	0.0123	MDL	5.23	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.101	JB	0.0160	MDL	5.23	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0685	JВ	0.0139	MDL	5.23	PQL	ng/Kg	υ	В
OCDF	5.67	JB	0.0428	MDL	10.5	PQL	ng/Kg	J	Z

Sample ID: SL-103-SA5DN-SB-4.0-5.0 Collected: 6/24/2011 9:15:00 Analysis Type: RES Dilution: 1

		· · · · · · · · · · · · · · · · · · ·									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8,9-HPCDF	0.412	JB	0.0520	MDL	5.32	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.386	JB	0.0450	MDL	5.32	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	0.456	JBQ	0.0270	MDL	5.32	PQL	ng/Kg	J	Z		

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-103-SA5DN-SB-4.0-5.0 Collected: 6/24/2011 9:15:00 Analysis Type: RES Dilution: 1

Amalista	Lab	Lab	D.	DL	DI.	RL Turns	l in ita	Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,6,7,8-HXCDD	2.00	JB	0.0453	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.272	JB	0.0215	MDL	5.32	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	1.04	JB	0.0433	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.282	JBQ	0.0340	MDL	5.32	PQL	ng/Kg	Ų	В
1,2,3,7,8-PECDD	0.222	JBQ	0.0357	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.426	JB	0.0201	MDL	5.32	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.360	JB	0.0257	MDL	5.32	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.254	JB	0.0227	MDL	5.32	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0481	JQ	0.0291	MDL	1.06	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.111	J	0.0411	MDL	1.06	PQL	ng/Kg	J	Z

Sample ID: SL-103-SA5DN-SB-7.0-8.0 Collected: 6/24/2011 9:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.692	JB	0.0646	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.314	JBQ	0.0350	MDL	5.78	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.865	JBQ	0.0330	MDL.	5.78	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	4.24	JB	0.0368	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.441	JB	0.0234	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.36	JB	0.0378	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.315	JBQ	0.0523	MDL	5.78	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.121	JBQ	0.0286	MDL	5.78	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.103	JB	0.0134	MDL	5.78	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.962	JB	0.0297	MDL	5.78	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.204	JB	0.0159	MDL.	5.78	PQL	ng/Kg	υ	В
2,3,7,8-TCDD	0.0486	JQ	0.0291	MDL	1.16	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0369	J	0.0301	MDL	1.16	PQL	ng/Kg	J	Z

Sample ID: SL-104-SA5DN-SB-4.0-5.0 Collected: 6/23/2011 2:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.537	JB	0.0275	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.139	JBQ	0.00786	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0654	JB	0.0145	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.137	JB	0.0205	MDL	5.49	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-104-SA5DN-SB-4.0-5.0 Collected: 6/23/2011 2:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	0.150	JBQ	0.0157	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.128	JBQ	0.0204	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.151	JBQ	0.0135	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.130	JBQ	0.0212	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.141	JBQ	0.0172	MDL,	5.49	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.200	JB	0.0237	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.259	JBQ	0.0126	MDL	5.49	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.115	JB	0.0139	MDL	5.49	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.248	JBQ	0.0121	MDL	5.49	PQL	ng/Kg	υ	В
2,3,7,8-TCDD	0.0663	JQ	0.0255	MDL	1.10	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0572	JQ	0.0232	MDL	1.10	PQL	ng/Kg	J	Z
OCDD	3.86	JB	0.0209	MDL	11.0	PQL	ng/Kg	U	В
OCDF	0.201	JBQ	0.0308	MDL	11.0	PQL	ng/Kg	U	В

Sample ID: SL-105-SA5DN-SB-4.0-5.0 Collected: 6/23/2011 3:30:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.414	JB	0.0433	MDL	5.33	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.567	JB	0.0515	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.664	JB	0.0330	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.71	JB	0.0520	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.461	JB	0.0290	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.60	JB	0.0484	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.862	JB	0.0300	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.551	JB	0.0423	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.560	JВ	0.0236	MDL	5.33	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.413	JB	0.0252	MDL	5.33	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.551	JBQ	0.0239	MDL	5.33	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.112	J	0.0302	MDL	1.07	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.254	J	0.0456	MDL	1.07	PQL	ng/Kg	J	Z

Sample ID: SL-106-SA5DN-SB-4.0-5.0 Collected: 6/23/2011 11:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.21	JВ	0.0247	MDL	5.53	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-106-SA5DN-SB-4.0-5.0 Collected: 6/23/2011 11:50:00 Analysis Type: RES Dilution: 1

•												
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,4,6,7,8-HPCDF	0.630	JB	0.00999	MDL	5.53	PQL	ng/Kg	U	В			
1,2,3,4,7,8,9-HPCDF	0.0673	JB	0.0177	MDL	5.53	PQL	ng/Kg	U	В			
1,2,3,4,7,8-HxCDD	0.0437	JBQ	0.0210	MDL	5.53	PQL	ng/Kg	U	В			
1,2,3,4,7,8-HXCDF	0.0878	JB	0.0162	MDL	5.53	PQL	ng/Kg	U	В			
1,2,3,6,7,8-HXCDD	0.435	JB	0.0222	MDL	5.53	PQL	ng/Kg	J	Z			
1,2,3,6,7,8-HXCDF	0.0950	JB	0.0144	MDL	5.53	PQL	ng/Kg	υ	В			
1,2,3,7,8,9-HXCDD	0.624	JB	0.0218	MDL	5.53	PQL	ng/Kg	J	Z			
1,2,3,7,8,9-HXCDF	0.676	JB	0.0191	MDL	5.53	PQL	ng/Kg	j	Z			
1,2,3,7,8-PECDD	0.165	JB	0.0295	MDL	5.53	PQL	ng/Kg	J	Z			
1,2,3,7,8-PECDF	0.248	JB	0.0121	MDL	5.53	PQL	ng/Kg	U	В			
2,3,4,6,7,8-HXCDF	0.110	JВ	0.0154	MDL	5.53	PQL	ng/Kg	U	В			
2,3,4,7,8-PECDF	0.163	JB	0.0130	MDL	5.53	PQL	ng/Kg	U	В			
2,3,7,8-TCDD	0.0517	JQ	0.0235	MDL	1.11	PQL	ng/Kg	J	Z			
2,3,7,8-TCDF	0.0466	J	0.0231	MDL	1.11	PQL	ng/Kg	J	Z			
OCDF	1.54	JB	0.0287	MDL	11.1	PQL	ng/Kg	U	В			

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.548	JВ	0.0258	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.119	JB	0.00805	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.140	JB	0.0205	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0470	JBQ	0.0189	MDL	5.49	PQL	ng/Kg	Ų	В
1,2,3,4,7,8-HXCDF	0.0324	JBQ	0.0154	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0543	JBQ	0.0191	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0610	JBQ	0.0112	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0713	JB	0.0191	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.126	JBQ	0.0178	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0503	JBQ	0.0240	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0692	JBQ	0.0104	MDL	5.49	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0856	JBQ	0.0135	MDL	5.49	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.111	JBQ	0.0119	MDL	5.49	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0339	JQ	0.0248	MDL	1.10	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0438	JQ	0.0235	MDL	1.10	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Page 8 of 14

Lab Reporting Batch ID: DX105

Laboratory: LL

EDD Filename: DX105_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-106-SA5DN-SB-9.0-10.0 Collected: 6/23/2011 11:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDD	2.78	JB	0.0223	MDL	11.0	PQL	ng/Kg	U	В
OCDF	0.405	JB	0.0478	MDL	11.0	PQL	ng/Kg	U	В

Sample ID: SL-107-SA5DN-SB-3.5-4.5 Collected: 6/23/2011 11:15:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.773	JB	0.0232	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.204	JB	0.00669	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.180	JBQ	0.0183	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0547	JBQ	0.0181	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0876	JB	0.0137	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0853	JBQ	0.0181	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0667	JBQ	0.0101	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.108	J₿	0.0173	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.190	JВ	0.0178	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0632	JBQ	0.0169	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0775	JBQ	0.00976	MDL	5.43	PQL	ng/Kg	Ü	В
2,3,4,6,7,8-HXCDF	0.109	JBQ	0.0116	MDL	5.43	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0976	JBQ	0.0109	MDL	5.43	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0461	JQ	0.0225	MDL	1.09	PQL	ng/Kg	J	Z
OCDD	5.43	JB	0.0185	MDL	10.9	PQL	ng/Kg	J	Z
OCDF	0.649	JBQ	0.0420	MDL	10.9	PQL	ng/Kg	U	В

Sample ID: SL-109-SA5DN-SB-3.5-4.5 Collected: 6/23/2011 10:10:00 Analysis Type: RES Dilution: 1

oumpio 12, 02 100 0110=11 0= 111									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.756	JB	0.0243	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.134	JB	0.00578	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0490	JBQ	0.0176	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0229	JB	0.0183	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0358	JB	0.0128	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0440	JBQ	0.0187	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0197	JBQ	0.00945	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0495	JBQ	0.0185	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0541	JB	0.0182	MDL	5.10	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

9/28/2011 9:23:03 AM ADR version 1.4.0.111 Page 9 of 14

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVÖA Method: 1613B Matrix: SO

Sample ID: SL-109-SA5DN-SB-3.5-4.5 Collected: 6/23/2011 10:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDF	0.0277	JBQ	0.0103	MDL	5.10	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0699	JB	0.0117	MDL	5.10	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0526	JBQ	0.0111	MDL	5.10	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0332	JQ	0.0230	MDL	1.02	PQL	ng/Kg	J	Z
OCDD	6.83	JB	0.0197	MDL	10.2	PQL	ng/Kg	J	Z
OCDF	0.351	JB	0.0407	MDL	10.2	PQL	ng/Kg	U	В

Sample ID: SL-110-SA5DN-SB-4.0-5.0 Collected: 6/23/2011 9:40:00 Analysis Type: RES Dilution: 1

Sample ID. SE-110-SASDIN-SB-4.0-3.0	Conec	Collected. 0/23/2011 9.40.00 Allalysis Type. NES							Dilation.		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	3.41	JB	0.0322	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,4,6,7,8-HPCDF	0.434	JB	0.00896	MDL	5.42	PQL	ng/Kg	Ų	В		
1,2,3,4,7,8,9-HPCDF	0.0908	JB	0.0260	MDL	5.42	PQL	ng/Kg	Ų	В		
1,2,3,4,7,8-HxCDD	0.0274	JBQ	0.0209	MDL	5.42	PQL	ng/Kg	υ	В		
1,2,3,4,7,8-HXCDF	0.0707	JBQ	0.0154	MDL	5.42	PQL	ng/Kg	υ	В		
1,2,3,6,7,8-HXCDD	0.161	JB	0.0216	MDL	5.42	PQL	ng/Kg	υ	В		
1,2,3,6,7,8-HXCDF	0.0488	JB	0.0113	MDL	5.42	PQL	ng/Kg	υ	В		
1,2,3,7,8,9-HXCDD	0.120	JBQ	0.0209	MDL	5.42	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.0529	JB	0.0227	MDL	5.42	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0457	JBQ	0.0210	MDL	5.42	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.0436	JBQ	0.0104	MDL	5.42	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.0970	JBQ	0.0140	MDL	5.42	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0858	JBQ	0.0118	MDL	5.42	PQL	ng/Kg	U	В		
OCDF	1.23	JB	0.0450	MDL	10.8	PQL	ng/Kg	U	В		

Sample ID: SL-115-SA5DN-SB-4.0-5.0 Collected: 6/22/2011 10:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.763	JB	0.0314	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.151	JB	0.00905	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0702	JBQ	0.0172	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0414	JBQ	0.0225	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0468	JB	0.0166	MDL	5.62	PQI.	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0789	JB	0.0222	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0575	JBQ	0.0139	MDL	5.62	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX105

Laboratory: LL

EDD Filename: DX105_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: \$1.-115.\$45DN.\$8.4 0.5 0 Collected: 6/22/2011 10:55:00 Analysis Type: RES

Sample ID: SL-115-SA5DN-SB-4.0-5.0	Collec	ted: 6/22/2	011 10:55	:00 A	nalysis T	ype: RES		I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDD	0.144	JBQ	0.0220	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.194	JBQ	0.0215	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0574	JBQ	0.0293	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0752	JB	0.0145	MDL	5.62	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0830	JBQ	0.0162	MDL	5.62	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0652	JB	0.0142	MDL	5.62	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0520	JQ	0.0354	MDL	1.12	PQL	ng/Kg	J	Z
OCDD	2.18	JB	0.0220	MDL	11.2	PQL	ng/Kg	Ú	В
OCDF	0.229	JB	0.0388	MDL	11.2	PQL	ng/Kg	U	В

Sample ID: SL-122-SA5DN-SB-4.0-5.0 Collected: 6/24/2011 11:40:00 Analysis Type: RES Dilution: 1

Sample ID. SE-122-SASUN'SB-4.0-5.0	Conec	leu. 0/24/2	.011 11.40.	.00 A	naiysis ij	pe. KLO		•	Dilution, (
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.575	JBQ	0.0269	MDL	5.61	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.149	JBQ	0.00722	MDL	5.61	PQL	пд/Кд	U	В	
1,2,3,4,7,8,9-HPCDF	0.0582	JBQ	0.0215	MDL	5.61	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0562	JBQ	0.0219	MDL	5.61	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.110	JB	0.0148	MDL	5.61	PQL	ng/Kg	ť	В	
1,2,3,6,7,8-HXCDD	0.0980	JB	0.0223	MDL	5.61	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0641	JB	0.0108	MDL	5.61	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.184	JBQ	0.0221	MDL	5.61	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDF	0.221	JB	0.0218	MDL	5.61	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0703	JB	0.0211	MDL	5.61	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.116	JBQ	0.0113	MDL	5.61	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.130	JB	0.0139	MDL	5.61	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.124	JB	0.0127	MDL	5.61	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0484	J	0.0276	MDL	1.12	PQL	ng/Kg	J	Z	
OCDD	2.46	JB	0.0220	MDL	11.2	PQL	ng/Kg	υ	В	
OCDF	0.406	JBQ	0.0445	MDL	11.2	PQL	ng/Kg	υ	В	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX105

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX105_v1

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
Ε	Laboratory Triplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX105 Laboratory: LL
EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Equipment Blank Contamination F Field Blank Contamination FD Field Duplicate Precision FT Field Triplicate Precision Н Extraction to Analysis Estimation Н Extraction to Analysis Rejection н Preservation Н Sampling to Analysis Estimation Н Sampling to Analysis Rejection Н Sampling to Extraction Estimation Н Sampling to Extraction Rejection Sampling to Leaching Estimation н Н Sampling to Leaching Rejection Н Temperature Estimation Н Temperature Rejection Internal Standard Estimation Internal Standard Rejection Laboratory Control Precision Laboratory Control Spike Lower Estimation Laboratory Control Spike Lower Rejection Laboratory Control Spike Upper Estimation Laboratory Control Spike Upper Rejection М Continuing Tune Initial Tune М М Performance Evaluation Mixture М Resolution Check Mixture Q Laboratory Duplicate Precision Q Laboratory Triplicate Precision Q Matrix Spike Lower Estimation

Q

Q

Q

Matrix Spike Lower Rejection

Matrix Spike Upper Estimation

Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX105

EDD Filename: DX105_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX105

Lab Reporting Batch ID: DX105

EDD Filename: DX105_v1

EQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1790B371907	6/30/2011 7:07:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HCDD 0CDD 0CDD	7.89 pg/L 12.2 pg/L 1.72 pg/L 0.478 pg/L 0.678 pg/L 0.892 pg/L 1.55 pg/L 1.55 pg/L 1.02 pg/L 0.462 pg/L 0.412 pg/L 2.76 pg/L 1.37 pg/L 0.20 pg/L 1.55 pg/L 6.55 pg/L	EB19-SA5DN-SB-062211

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB19-SA5DN-SB-062211(RES)	1,2,3,4,6,7,8-HPCDD	6.72 pg/L	6.72U pg/L
EB19-SA5DN-SB-062211(RES)	1,2,3,4,6,7,8-HPCDF	11.3 pg/L	11.3U pg/L
EB19-SA5DN-SB-062211(RES)	1,2,3,4,7,8,9-HPCDF	1.03 pg/L	1.03U pg/L
EB19-SA5DN-SB-062211(RES)	1,2,3,4,7,8-HxCDD	0.337 pg/L	0,337U pg/L
EB19-SA5DN-SB-062211(RES)	1,2,3,4,7,8-HXCDF	1.72 pg/L	1.72U pg/L
EB19-SA5DN-SB-062211(RES)	1,2,3,6,7,8-HXCDD	0.474 pg/L	0,474U pg/L
EB19-SA5DN-SB-062211(RES)	1,2,3,6,7,8-HXCDF	1.47 pg/L	1.47U pg/L
EB19-SA5DN-SB-062211(RES)	1,2,3,7,8,9-HXCDD	0.585 pg/L	0.585U pg/L
EB19-SA5DN-SB-062211(RES)	1,2,3,7,8,9-HXCDF	0.652 pg/L	0.652U pg/L
EB19-SA5DN-SB-062211(RES)	1,2,3,7,8-PECDF	0.301 pg/L	0.301U pg/L
EB19-SA5DN-SB-062211(RES)	2,3,4,6,7,8-HXCDF	3.02 pg/L	3.02U pg/L
EB19-SA5DN-SB-062211(RES)	2,3,4,7,8-PECDF	1.29 pg/L	1.29U pg/L
EB19-\$A5DN-\$B-062211(RES)	OCDD	11.5 pg/L	11.5U pg/L
EB19-SA5DN-SB-062211(RES)	OCDF	5,99 pg/L	5.99U pg/L

9/28/2011 9:22:16 AM ADR version 1.4.0.111 Page 1 of 7

Field Duplicate RPD Report

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO			THE RESERVE THE	A to me	
	Concenti	ration (%)			
Analyte	SL-112-SA5DN-SB-4.0- 5.0	DUP16-SA5DN-QC- 062211	Sample RPD	eQAPP RPD	Flag
MOISTURE	14.500000000	12.8	12		No Qualifiers Applied
	Concenti	ration (%)			
Analyte	SL-092-SA5DN-SB-4.0- 5.0	DUP17-SA5DN-QC- 062411	Sample RPD	eQAPP RPD	Flag
MOISTURE	13.0	15.1	15		No Qualifiers Applied

Method: 1613B Matrix: SO	Some the second				
	Concentrat	ion (ng/Kg)			
Analyte Analyte	SL-112-SA5DN-SB-4.0- 5.0	DUP16-SA5DN-QC- 062211	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD	0.755000000	1.09	36	50.00	
1,2,3,4,6,7,8-HPCDF	0.24000000	0.168	35	50.00	
1,2,3,4,7,8,9-HPCDF	0.056400000	0.0642	13	50.00	
1,2,3,4,7,8-HxCDD	0.016700000	0.0307	59	50.00	
1,2,3,4,7,8-HXCDF	0.057500000	0.0429	29	50.00	
1,2,3,6,7,8-HXCDD	0.063000000	0.173	93	50.00	
1,2,3,6,7,8-HXCDF	0.049200000	0.0529	7	50.00	
1,2,3,7,8,9-HXCDD	0.111000000	0.281	87	50.00	No Qualifiers Applied
1,2,3,7,8,9-HXCDF	0.209000000	0.318	41	50.00	Except
1,2,3,7,8-PECDD	0.018300000	0.0346	62	50.00	1,2,3,4,7,8-HxCDD,
1,2,3,7,8-PECDF	0.040800000	0.0739	58	50.00	1,2,3,6,7,8-HXCDD,
2,3,4,6,7,8-HXCDF	0.108000000	0.0820	27	50.00	1,2,3,7,8,9-HXCDD,
2,3,4,7,8-PECDF	0.069000000	0.0744	8	50.00	1,2,3,7,8-PECDD,
OCDD	5.04000000	8.04	46	50.00	1,2,3,7,8-PECDF
OCDF	0.32000000	0.415	26	50.00	J(all detects)

	Concentrat	tion (ng/Kg)			
Analyte	SL-092-SA5DN-SB-4.0- 5.0	DUP17-SA5DN-QC- 062411	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,7,8-TCDD OCDF	0.836 0.235 0.0884 0.0539 0.108 0.147 0.178 0.0268 0.583	1.06 0.166 0.0570 0.0376 0.109 0.145 0.186 0.0269 0.364	24 34 43 36 1 1 4 0	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	No Qualifiers Applied
1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD	0.0955 0.0757 0.0984 0.114 0.0924 0.123 4.99	0.0362 0.0405 0.0379 0.0422 0.0529 0.0694 13.6	90 61 89 92 54 56 93	50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects)

ADR version 1.4.0.111 9/28/2011 9:14:20 AM Page 1 of 1

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO	В			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1880B371851	7/8/2011 6:51:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF CCDD OCDF	0.482 ng/Kg 0.183 ng/Kg 0.182 ng/Kg 0.0727 ng/Kg 0.0817 ng/Kg 0.0718 ng/Kg 0.0708 ng/Kg 0.0839 ng/Kg 0.117 ng/Kg 0.0255 ng/Kg 0.0513 ng/Kg 0.0951 ng/Kg 0.113 ng/Kg 0.113 ng/Kg 0.13 ng/Kg	DUP16-SA5DN-QC-062211 DUP17-SA5DN-QC-062411 SL-091-SA5DN-SB-4.0-5.0 SL-092-SA5DN-SB-4.0-5.0 SL-092-SA5DN-SB-3.0-4.0 SL-100-SA5DN-SB-3.0-4.0 SL-101-SA5DN-SB-2.5-3.5 SL-102-SA5DN-SB-4.0-5.0 SL-103-SA5DN-SB-4.0-5.0 SL-103-SA5DN-SB-4.0-5.0 SL-104-SA5DN-SB-4.0-5.0 SL-105-SA5DN-SB-4.0-5.0 SL-106-SA5DN-SB-4.0-5.0 SL-106-SA5DN-SB-3.5-4.5 SL-109-SA5DN-SB-3.5-4.5 SL-110-SA5DN-SB-3.5-4.5 SL-110-SA5DN-SB-3.0-6.0 SL-115-SA5DN-SB-4.0-5.0 SL-115-SA5DN-SB-4.0-5.0 SL-115-SA5DN-SB-4.0-5.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP16-SA5DN-QC-062211(RES)	1,2,3,4,6,7,8-HPCDD	1.09 ng/Kg	1.09U ng/Kg
DUP16-SA5DN-QC-062211(RES)	1,2,3,4,6,7,8-HPCDF	0.168 ng/Kg	0.168U ng/Kg
DUP16-SA5DN-QC-062211(RES)	1,2,3,4,7,8,9-HPCDF	0.0642 ng/Kg	0.0642U ng/Kg
DUP16-SA5DN-QC-062211(RES)	1,2,3,4,7,8-HxCDD	0.0307 ng/Kg	0.0307U ng/Kg
DUP16-SA5DN-QC-062211(RES)	1,2,3,4,7,8-HXCDF	0.0429 ng/Kg	0.0429U ng/Kg
DUP16-SA5DN-QC-062211(RES)	1,2,3,6,7,8-HXCDD	0.173 ng/Kg	0.173U ng/Kg
DUP16-SA5DN-QC-062211(RES)	1,2,3,6,7,8-HXCDF	0.0529 ng/Kg	0.0529U ng/Kg
DUP16-SA5DN-QC-062211(RES)	1,2,3,7,8,9-HXCDD	0.281 ng/Kg	0.281U ng/Kg
DUP16-SA5DN-QC-062211(RES)	1,2,3,7,8,9-HXCDF	0.318 ng/Kg	0.318U ng/Kg
DUP16-SA5DN-QC-062211(RES)	1,2,3,7,8-PECDD	0.0346 ng/Kg	0.0346U ng/Kg
DUP16-SA5DN-QC-062211(RES)	1,2,3,7,8-PECDF	0.0739 ng/Kg	0.0739U ng/Kg
DUP16-SA5DN-QC-062211(RES)	2,3,4,6,7,8-HXCDF	0.0820 ng/Kg	0.0820U ng/Kg
DUP16-SA5DN-QC-062211(RES)	2,3,4,7,8-PECDF	0.0744 ng/Kg	0.0744U ng/Kg
DUP16-SA5DN-QC-062211(RES)	OCDF	0.415 ng/Kg	0.415U ng/Kg
DUP17-SA5DN-QC-062411(RES)	1,2,3,4,6,7,8-HPCDD	1.06 ng/Kg	1.06U ng/Kg
DUP17-SA5DN-QC-062411(RES)	1,2,3,4,6,7,8-HPCDF	0.166 ng/Kg	0.166U ng/Kg
DUP17-SA5DN-QC-062411(RES)	1,2,3,4,7,8,9-HPCDF	0.0570 ng/Kg	0.0570U ng/Kg
DUP17-SA5DN-QC-062411(RES)	1,2,3,4,7,8-HxCDD	0.0376 ng/Kg	0.0376U ng/Kg
DUP17-SA5DN-QC-062411(RES)	1,2,3,4,7,8-HXCDF	0.0362 ng/Kg	0.0362U ng/Kg
DUP17-SA5DN-QC-062411(RES)	1,2,3,6,7,8-HXCDD	0.109 ng/Kg	0.109U ng/Kg
DUP17-SA5DN-QC-062411(RES)	1,2,3,6,7,8-HXCDF	0.0405 ng/Kg	0.0405U ng/Kg
DUP17-SA5DN-QC-062411(RES)	1,2,3,7,8,9-HXCDD	0.145 ng/Kg	0.145U ng/Kg
DUP17-SA5DN-QC-062411(RES)	1,2,3,7,8,9-HXCDF	0.186 ng/Kg	0.186U ng/Kg
DUP17-SA5DN-QC-062411(RES)	1,2,3,7,8-PECDD	0.0379 ng/Kg	0.0379U ng/Kg
DUP17-SA5DN-QC-062411(RES)	1,2,3,7,8-PECDF	0.0422 ng/Kg	0.0422U ng/Kg
DUP17-SA5DN-QC-062411(RES)	2,3,4,6,7,8-HXCDF	0.0529 ng/Kg	0.0529U ng/Kg
DUP17-SA5DN-QC-062411(RES)	2,3,4,7,8-PECDF	0.0694 ng/Kg	0,0694U ng/Kg

9/28/2011 9:22:16 AM ADR version 1.4.0.111 Page 2 of 7

Lab Reporting Batch ID: DX105

Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	i pir ini managar <u>as marijes vereze</u> ara			
Method Blan Sample ID	k	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP17-SA5DN-QC-062411(RES)	OCDF	0.364 ng/Kg	0.364U ng/Kg
SL-091-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.133 ng/Kg	0.133U ng/Kg
SL-091-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.410 ng/Kg	0.410U ng/Kg
SL-092-\$A5DN-SB-4.0-5.0(RE\$)	1,2,3,4,6,7,8-HPCDD	0.836 ng/Kg	0.836U ng/Kg
SL-092-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.235 ng/Kg	0.235U ng/Kg
SL-092-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0884 ng/Kg	0.0884U ng/Kg
SL-092-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0539 ng/Kg	0.0539U ng/Kg
SL-092-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0955 ng/Kg	0.0955U ng/Kg
SL-092-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.108 ng/Kg	0,108U ng/Kg
SL-092-SA5DN-SB-4,0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0757 ng/Kg	0.0757U ng/Kg
SL-092-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.147 ng/Kg	0,147U ng/Kg
SL-092-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.178 ng/Kg	0.178U ng/Kg
SL-092-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0984 ng/Kg	0.0984U ng/Kg
SL-092-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.114 ng/Kg	0.114U ng/Kg
SL-092-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0924 ng/Kg	0.0924U ng/Kg
SL-092-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.123 ng/Kg	0.123U ng/Kg
SL-092-SA5DN-SB-4.0-5.0(RES)	OCDD	4.99 ng/Kg	4.99U ng/Kg
SL-092-SA5DN-SB-4.0-5.0(RES)	OCDF	0.583 ng/Kg	0.583U ng/Kg
SL-092-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDD	1.78 ng/Kg	1.78U ng/Kg
SL-092-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDF	0.434 ng/Kg	0.434U ng/Kg
SL-092-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,7,8,9-HPCDF	0.285 ng/Kg	0.285U ng/Kg
SL-092-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,7,8-HxCDD	0,203 ng/Kg	0.203U ng/Kg
SL-092-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,7,8-HXCDF	0,260 ng/Kg	0.260U ng/Kg
SL-092-SA5DN-SB-7.0-8.0(RES)	1,2,3,6,7,8-HXCDD	0.321 ng/Kg	0.321U ng/Kg
SL-092-SA5DN-SB-7.0-8.0(RES)	1,2,3,6,7,8-HXCDF	0.202 ng/Kg	0.202U ng/Kg
SL-092-SA5DN-SB-7.0-8.0(RES)	1,2,3,7,8,9-HXCDD	0,346 ng/Kg	0.346U ng/Kg
SL-092-SA5DN-SB-7.0-8.0(RES)	1,2,3,7,8,9-HXCDF	0.296 ng/Kg	0.296U ng/Kg
SL-092-SA5DN-SB-7.0-8.0(RES)	1,2,3,7,8-PECDF	0.217 ng/Kg	0.217U ng/Kg
SL-092-SA5DN-SB-7.0-8.0(RES)	2,3,4,6,7,8-HXCDF	0.293 ng/Kg	0.293U ng/Kg
SL-092-SA5DN-SB-7.0-8.0(RES)	2,3,4,7,8-PECDF	0.288 ng/Kg	0.288U ng/Kg
SL-092-SA5DN-SB-7.0-8.0(RES)	OCDF	1.01 ng/Kg	1.01U ng/Kg
SL-100-SA5DN-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDF	0.552 ng/Kg	0.552U ng/Kg
SL-100-SA5DN-SB-3.0-4.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0984 ng/Kg	0.0984U ng/Kg
SL-100-SA5DN-SB-3.0-4.0(RES)	1,2,3,4,7,8-HxCDD	0.0483 ng/Kg	0.0483U ng/Kg
SL-100-SA5DN-SB-3.0-4.0(RES)	1,2,3,4,7,8-HXCDF	0.0688 ng/Kg	0.0688U ng/Kg
SL-100-SA5DN-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDD	0.201 ng/Kg	0.201U ng/Kg
SL-100-SA5DN-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDF	0.0628 ng/Kg	0.0628U ng/Kg
SL-100-SA5DN-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDD	0.177 ng/Kg	0.177U ng/Kg
SL-100-SA5DN-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDF	0.121 ng/Kg	0.121U ng/Kg
SL-100-SA5DN-SB-3.0-4.0(RES)	1,2,3,7,8-PECDD	0.0342 ng/Kg	0.0342U ng/Kg

9/28/2011 9:22:16 AM ADR version 1.4.0.111 Page 3 of 7

Lab Reporting Batch ID: DX105

Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method: 16 Matrix: S	613B O				
Method Blank Sample ID		Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-100-SA5DN-SB-3.0-4.0(RES)	1,2,3,7,8-PECDF	0,0470 ng/Kg	0.0470U ng/Kg
SL-100-SA5DN-SB-3.0-4.0(RES)	2,3,4,6,7,8-HXCDF	0.102 ng/Kg	0.102U ng/Kg
SL-100-SA5DN-SB-3.0-4.0(RES)	2,3,4,7,8-PECDF	0.105 ng/Kg	0.105U ng/Kg
SL-100-SA5DN-SB-3,0-4,0(RES)	OCDF	1.54 ng/Kg	1.54U ng/Kg
SL-101-SA5DN-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	0.594 ng/Kg	0.594U ng/Kg
SL-101-SA5DN-SB-2.5-3,5(RES)	1,2,3,4,6,7,8-HPCDF	0.100 ng/Kg	0.100U ng/Kg
SL-101-SA5DN-SB-2.5-3.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0467 ng/Kg	0.0467U ng/Kg
SL-101-SA5DN-SB-2.5-3.5(RES)	1,2,3,4,7,8-HXCDF	0.0367 ng/Kg	0.0367U ng/Kg
SL-101-SA5DN-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDD	0.0604 ng/Kg	0.0604U ng/Kg
SL-101-SA5DN-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.0238 ng/Kg	0.0238U ng/Kg
SL-101-SA5DN-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDD	0.0572 ng/Kg	0.0572U ng/Kg
SL-101-SA5DN-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDF	0.0914 ng/Kg	0.0914U ng/Kg
SL-101-\$A5DN-\$B-2.5-3,5(RE\$)	1,2,3,7,8-PECDF	0.0164 ng/Kg	0.0164U ng/Kg
SL-101-SA5DN-SB-2.5-3.5(RES)	2,3,4,6,7,8-HXCDF	0.0620 ng/Kg	0.0620U ng/Kg
SL-101-SA5DN-SB-2.5-3.5(RES)	2,3,4,7,8-PECDF	0.0544 ng/Kg	0.0544U ng/Kg
SL-101-SA5DN-SB-2.5-3.5(RES)	OCDD	4.06 ng/Kg	4.06U ng/Kg
SL-101-SA5DN-SB-2,5-3,5(RES)	OCDF	0.265 ng/Kg	0.265U ng/Kg
SL-102-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.107 ng/Kg	0.107U ng/Kg
SL-102-\$A5DN-\$B-4.0-5.0(RE\$)	1,2,3,4,7,8-HxCDD	0.0884 ng/Kg	0.0884U ng/Kg
SL-102-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.110 ng/Kg	0.110U ng/Kg
SL-102-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0852 ng/Kg	0.0852U ng/Kg
SL-102-SA5DN-SB-4,0-5,0(RES)	1,2,3,7,8,9-HXCDD	0,237 ng/Kg	0.237U ng/Kg
SL-102-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.138 ng/Kg	0.138U ng/Kg
SL-102-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0449 ng/Kg	0.0449U ng/Kg
SL-102-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0285 ng/Kg	0.0285U ng/Kg
SL-102-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.101 ng/Kg	0.101U ng/Kg
SL-102-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0685 ng/Kg	0.0685U ng/Kg
SL-103-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.412 ng/Kg	0.412U ng/Kg
SL-103-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.272 ng/Kg	0.272U ng/Kg
SL-103-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.282 ng/Kg	0.282U ng/Kg
SL-103-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.360 ng/Kg	0.360U ng/Kg
SL-103-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.254 ng/Kg	0.254U ng/Kg
SL-103-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,7,8-HxCDD	0.314 ng/Kg	0.314U ng/Kg
SL-103-SA5DN-SB-7.0-8.0(RES)	1,2,3,7,8,9-HXCDF	0.315 ng/Kg	0.315U ng/Kg
SL-103-SA5DN-SB-7.0-8.0(RES)	1,2,3,7,8-PECDD	0.121 ng/Kg	0.121U ng/Kg
SL-103-SA5DN-SB-7.0-8.0(RES)	1,2,3,7,8-PECDF	0.103 ng/Kg	0.103U ng/Kg
SL-103-SA5DN-SB-7.0-8.0(RES)	2,3,4,7,8-PECDF	0.204 ng/Kg	0.204U ng/Kg
SL-104-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.537 ng/Kg	0,537U ng/Kg
SL-104-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.139 ng/Kg	0.139U ng/Kg
SL-104-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0654 ng/Kg	0.0654U ng/Kg

9/28/2011 9:22:17 AM ADR version 1.4.0.111 Page 4 of 7

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-104-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.137 ng/Kg	0.137U ng/Kg
SL-104-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.150 ng/Kg	0.150U ng/Kg
SL-104-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.128 ng/Kg	0.128U ng/Kg
SL-104-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.151 ng/Kg	0.151U ng/Kg
SL-104-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.130 ng/Kg	0.130U ng/Kg
SL-104-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.141 ng/Kg	0.141U ng/Kg
SL-104-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.115 ng/Kg	0.115U ng/Kg
SL-104-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.248 ng/Kg	0.248U ng/Kg
SL-104-SA5DN-SB-4.0-5.0(RES)	OCDD	3.86 ng/Kg	3.86U ng/Kg
SL-104-SA5DN-SB-4.0-5.0(RES)	OCDF	0.201 ng/Kg	0.201U ng/Kg
SL-105-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.414 ng/Kg	0,414U ng/Kg
SL-105-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.413 ng/Kg	0.413U ng/Kg
SL-105-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.551 ng/Kg	0.551U ng/Kg
SL-106-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	2.21 ng/Kg	2.21U ng/Kg
SL-106-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.630 ng/Kg	0.630U ng/Kg
SL-106-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0673 ng/Kg	0.0673U ng/Kg
SL-106-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0437 ng/Kg	0.0437U ng/Kg
SL-106-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0878 ng/Kg	0,0878U ng/Kg
SL-106-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0950 ng/Kg	0.0950U ng/Kg
SL-106-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.248 ng/Kg	0,248U ng/Kg
SL-106-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.110 ng/Kg	0.110U ng/Kg
SL-106-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.163 ng/Kg	0,163U ng/Kg
SL-106-\$A5DN-SB-4.0-5.0(RES)	OCDF	1.54 ng/Kg	1.54U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.548 ng/Kg	0,548U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.119 ng/Kg	0.119U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.140 лд/Кд	0.140U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0470 ng/Kg	0.0470U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0324 ng/Kg	0.0324U ng/Kg
SL-106-\$A5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0543 ng/Kg	0.0543U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0610 ng/Kg	0.0610U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0713 ng/Kg	0.0713U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.126 ng/Kg	0.126U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0503 ng/Kg	0.0503U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0,0692 ng/Kg	0.0692U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0856 ng/Kg	0.0856U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.111 ng/Kg	0.111U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	OCDD	2.78 ng/Kg	2,78U ng/Kg
SL-106-SA5DN-SB-9.0-10.0(RES)	OCDF	0,405 ng/Kg	0.405U ng/Kg
SL-107-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDD	0.773 ng/Kg	0.773U ng/Kg
SL-107-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDF	0.204 ng/Kg	0,204U ng/Kg

9/28/2011 9:22:17 AM ADR version 1.4.0.111 Page 5 of 7

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

		Reported	Modified
Sample ID	Analyte	Result	Final Result
SL-107-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,7,8,9-HPCDF	0.180 ng/Kg	0.180U ng/Kg
SL-107-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,7,8-HxCDD	0.0547 ng/Kg	0.0547U ng/Kg
SL-107-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,7,8-HXCDF	0.0876 ng/Kg	0.0876U ng/Kg
SL-107-SA5DN-SB-3.5-4,5(RES)	1,2,3,6,7,8-HXCDD	0.0853 ng/Kg	0.0853U ng/Kg
SL-107-SA5DN-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDF	0.0667 ng/Kg	0.0667U ng/Kg
SL-107-SA5DN-SB-3,5-4,5(RES)	1,2,3,7,8,9-HXCDD	0.108 ng/Kg	0.108U ng/Kg
SL-107-SA5DN-SB-3,5-4.5(RES)	1,2,3,7,8,9-HXCDF	0.190 ng/Kg	0.190U ng/Kg
SL-107-SA5DN-SB-3.5-4.5(RES)	1,2,3,7,8-PECDD	0.0632 ng/Kg	0.0632U ng/Kg
SL-107-SA5DN-SB-3.5-4.5(RES)	1,2,3,7,8-PECDF	0.0775 ng/Kg	0.0775U ng/Kg
SL-107-SA5DN-SB-3,5-4,5(RES)	2,3,4,6,7,8-HXCDF	0.109 ng/Kg	0.109U ng/Kg
SL-107-SA5DN-SB-3.5-4.5(RES)	2,3,4,7,8-PECDF	0.0976 ng/Kg	0.0976U ng/Kg
SL-107-SA5DN-SB-3.5-4.5(RES)	OCDF	0.649 ng/Kg	0.649U ng/Kg
SL-109-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDD	0.756 ng/Kg	0.756U ng/Kg
SL-109-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDF	0.134 ng/Kg	0.134U ng/Kg
SL-109-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0490 ng/Kg	0.0490U ng/Kg
SL-109-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,7,8-HxCDD	0.0229 ng/Kg	0.0229U ng/Kg
SL-109-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,7,8-HXCDF	0.0358 ng/Kg	0.0358U ng/Kg
SL-109-SA5DN-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDD	0.0440 ng/Kg	0.0440U ng/Kg
SL-109-SA5DN-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDF	0.0197 ng/Kg	0.0197U ng/Kg
SL-109-SA5DN-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDD	0.0495 ng/Kg	0.0495U ng/Kg
SL-109-SA5DN-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDF	0.0541 ng/Kg	0.0541U ng/Kg
SL-109-SA5DN-SB-3.5-4.5(RES)	1,2,3,7,8-PECDF	0.0277 ng/Kg	0.0277U ng/Kg
SL-109-SA5DN-SB-3.5-4.5(RES)	2,3,4,6,7,8-HXCDF	0.0699 ng/Kg	0.0699U ng/Kg
SL-109-SA5DN-SB-3.5-4.5(RES)	2,3,4,7,8-PECDF	0.0526 ng/Kg	0.0526U ng/Kg
SL-109-SA5DN-SB-3.5-4.5(RES)	OCDF	0.351 ng/Kg	0.351U ng/Kg
SL-110-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.434 ng/Kg	0.434U ng/Kg
SL-110-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0908 ng/Kg	0.0908U ng/Kg
SL-110-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0274 ng/Kg	0.0274U ng/Kg
SL-110-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0707 ng/Kg	0.0707U ng/Kg
SL-110-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.161 ng/Kg	0.161U ng/Kg
SL-110-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0488 ng/Kg	0.0488U ng/Kg
SL-110-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.120 ng/Kg	0.120U ng/Kg
SL-110-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0529 ng/Kg	0.0529U ng/Kg
SL-110-SA5DN-SB-4.0-5.0(RE\$)	1,2,3,7,8-PECDD	0.0457 ng/Kg	0.0457U ng/Kg
SL-110-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0436 ng/Kg	0.0436U ng/Kg
SL-110-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0970 ng/Kg	0.0970U ng/Kg
SL-110-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0858 ng/Kg	0.0858U ng/Kg
SL-110-SA5DN-SB-4.0-5.0(RES)	OCDF	1.23 ng/Kg	1.23U ng/Kg
SL-115-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.763 ng/Kg	0.763U ng/Kg
SL-115-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.151 ng/Kg	0.151U ng/Kg

9/28/2011 9:22:17 AM ADR version 1.4.0.111 Page 6 of 7

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	en en en en en en en en en en en en en e			
Method Blar Sample ID	ık	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-115-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0702 ng/Kg	0.0702U ng/Kg
SL-115-\$A5DN-SB-4,0-5,0(RE\$)	1,2,3,4,7,8-HxCDD	0.0414 ng/Kg	0.0414U ng/Kg
SL-115-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0468 ng/Kg	0.0468U ng/Kg
SL-115-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0789 ng/Kg	0.0789U ng/Kg
SL-115-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0575 ng/Kg	0.0575U ng/Kg
SL-115-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.144 ng/Kg	0.144U ng/Kg
SL-115-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.194 ng/Kg	0.194U ng/Kg
SL-115-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0574 ng/Kg	0.0574U ng/Kg
SL-115-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0752 ng/Kg	0.0752U ng/Kg
SL-115-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0830 ng/Kg	0.0830U ng/Kg
SL-115-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0652 ng/Kg	0.0652U ng/Kg
SL-115-SA5DN-SB-4.0-5.0(RES)	OCDD	2.18 ng/Kg	2.18U ng/Kg
SL-115-SA5DN-SB-4.0-5.0(RES)	OCDF	0.229 ng/Kg	0.229U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.575 ng/Kg	0.575U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.149 ng/Kg	0.149U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0582 ng/Kg	0.0582U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0,0562 ng/Kg	0.0562U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.110 ng/Kg	0.110U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0980 ng/Kg	0.0980U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0641 ng/Kg	0.0641U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.184 ng/Kg	0.184U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.221 ng/Kg	0.221U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0703 ng/Kg	0.0703U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RE\$)	1,2,3,7,8-PECDF	0.116 ng/Kg	0.116U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.130 ng/Kg	0.130U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.124 ng/Kg	0.124U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	OCDD	2.46 ng/Kg	2.46U ng/Kg
SL-122-SA5DN-SB-4.0-5.0(RES)	OCDF	0.406 ng/Kg	0.406U ng/Kg

9/28/2011 9:22:17 AM ADR version 1.4.0.111 Page 7 of 7

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

metriou.			The state of the state of	entra de la companya de la companya de la companya de la companya de la companya de la companya de la companya	and a state of a second		are the same		
Matrix:	AQ				 	 		_	įs.

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF CCDD OCDF	B	6.72 1.03 0.337 1.72 0.474 1.47 0.585 0.652 0.301 3.02 1.29 11.5 5.99	10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP16-SA5DN-QC-062211	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF		1.09 0.168 0.0642 0.0307 0.0429 0.173 0.0529 0.281 0.318 0.0346 0.0739 0.0820 0.0744 8.04	5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.70	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
DUP17-SA5DN-QC-062411	OCDF 1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	B	0.415 1.06 0.166 0.0570 0.0376 0.0362 0.109 0.0405 0.145 0.186 0.0379 0.0422 0.0529 0.0694 0.0269 0.364	11.4 5.81 5.81 5.81 5.81 5.81 5.81 5.81 5.81	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

9/28/2011 9:22:43 AM ADR version 1.4.0.111 Page 1 of 7

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B		A F SE				in Princip	
Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-091-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD	JB JB JB JC JC JB	4.21 3.05 0.133 0.583 0.410 4.51 0.487 3.75 0.0937 0.587 4.90	5.95 5.95 5.95 5.95 5.95 5.95 5.95 1.19 1.19	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-092-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBB JBQ JBB JBQ JBB JBQ JBB JBQ JBB	0.836 0.235 0.0884 0.0539 0.0955 0.108 0.0757 0.147 0.178 0.0984 0.114 0.0924 0.123 0.0268 4.99 0.583	5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-092-SA5DN-SB-7.0-8.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JB JB JB JBQ JBQ	1.78 0.434 0.285 0.203 0.260 0.321	5.81 5.81 5.81 5.81 5.81 5.81	PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	

JΒ

JBQ

JBQ

JBQ

JB

JΒ

JΒ

JQ

JQ

JB

0.202

0.346

0.296

0.257

0.217

0.293

0.288

0.0734

0.0373

1.01

5.81

5.81

5.81

5.81

5.81

5.81

5.81

1.16

1.16

11.6

PQL

PQL

PQL

PQL

PQL

PQL

PQL

PQL

POL

PQL

ng/Kg

ng/Kg

ng/Kg

ng/Kg

ng/Kg

ng/Kg

ng/Kg

ng/Kg

ng/Kg

ng/Kg

J (all detects)

1,2,3,6,7,8-HXCDF

1,2,3,7,8,9-HXCDD

1,2,3,7,8,9-HXCDF

1,2,3,7,8-PECDD

1,2,3,7,8-PECDF

2,3,4,7,8-PECDF

2,3,7,8-TCDD

2,3,7,8-TCDF OCDF

2,3,4,6,7,8-HXCDF

Lab Reporting Batch ID: DX105

Laboratory: LL

EDD Filename: DX105_v1

eQAPP Name: CDM_SSFL_110509

Method:	1613B	and the second	A CONTRACTOR		day and a	and the second	24		
Matrix:	so								
		1		-	1		 T	1	

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-100-SA5DN-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF	ងខ្លួងទង្គងធ្វង្គង្គង	4.87 0.552 0.0984 0.0483 0.0688 0.201 0.0628 0.177 0.121 0.0342 0.0470 0.102 0.105 1.54	5.63 5.63 5.63 5.63 5.63 5.63 5.63 5.63	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-101-SA5DN-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF CCDD OCDF	S S S S S S S S S S S S S S S S S S S	0.594 0.100 0.0467 0.0367 0.0604 0.0238 0.0572 0.0914 0.0164 0.0620 0.0544 4.06 0.265	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-102-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0CDF	ងមាងង្គីងមាមមាង	1.70 0.107 0.0884 0.110 0.446 0.0852 0.237 0.138 0.0449 0.0285 0.101 0.0685 5.67	5.23 5.23 5.23 5.23 5.23 5.23 5.23 5.23	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-103-SA5DN-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	- 5 ង ង ង ង ង ង ង ង ង ង	0.412 0.386 0.456 2.00 0.272 1.04 0.282 0.222 0.426 0.360 0.254 0.0481 0.111	5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO Lab Reporting RLSampleID Analyte Qual Result Limit Units Flag Type SL-103-SA5DN-SB-7.0-8.0 PQL 1,2,3,4,7,8,9-HPCDF JB 0.692 5.78 ng/Kg 1,2,3,4,7,8-HxCDD **JBQ** 0.314 5.78 PQL ng/Kg PQL 0.865 5.78 ng/Kg 1,2,3,4,7,8-HXCDF **JBQ** 4.24 5.78 **PQL** 1,2,3,6,7,8-HXCDD JB ng/Kg 1,2,3,6,7,8-HXCDF JB 0.441 5.78 PQL ng/Kg 5.78 1,2,3,7,8,9-HXCDD JB 1.36 **PQL** ng/Kg **JBQ** 0.315 5.78 **PQL** J (all detects) 1,2,3,7,8,9-HXCDF ng/Kg 1,2,3,7,8-PECDD **JBQ** 0.121 5.78 **PQL** ng/Kg **PQL** 1,2,3,7,8-PECDF JB 0.103 5.78 ng/Kg JΒ 5.78 2,3,4,6,7,8-HXCDF 0.962 **PQL** ng/Kg 2,3,4,7,8-PECDF JΒ 0.204 PQL ng/Kg 5.78 0.0486 **PQL** ng/Kg 2.3.7.8-TCDD JQ 1.16 2,3,7,8-TCDF 0.0369 **PQL** ng/Kg J 1.16 SL-104-SA5DN-SB-4.0-5.0 1.2.3.4.6.7.8-HPCDD JB 0.537 5.49 PQL ng/Kg 1,2,3,4,6,7,8-HPCDF **JBQ** 0.139 5.49 **PQL** ng/Kg 1,2,3,4,7,8,9-HPCDF JB 0.0654 5.49 POL ng/Kg 1,2,3,4,7,8-HxCDD JB 0.137 5.49 PQL ng/Kg **JBQ** 5.49 PQL 1,2,3,4,7,8-HXCDF 0.150ng/Kg 1,2,3,6,7,8-HXCDD JBQ 0.128 5.49 **PQL** ng/Kg 1,2,3,6,7,8-HXCDF **JBQ** 5.49 **PQL** 0.151 ng/Kg 1,2,3,7,8,9-HXCDD JBQ 0.130 5.49 **PQL** ng/Kg 1,2,3,7,8,9-HXCDF JBQ 0.141 5.49 PQL. ng/Kg J (all detects) 1,2,3,7,8-PECDD JΒ 0.200 5.49 PQL ng/Kg 1,2,3,7,8-PECDF JBQ 0.259 5.49 PQL ng/Kg 2,3,4,6,7,8-HXCDF JB 0.115 5.49 **PQL** ng/Kg 2,3,4,7,8-PECDF **JBQ** 0.248 5.49 **PQL** ng/Kg 2,3,7,8-TCDD JQ 0.0663 1.10 **PQL** ng/Kg 2,3,7,8-TCDF JQ 0.0572 1.10 **PQL** ng/Kg OCDD JB 3.86 11.0 PQL ng/Kg OCDF **JBQ** 0.201 11.0 **PQL** ng/Kg SL-105-SA5DN-SB-4.0-5.0 JB 0.414 5.33 **PQL** 1,2,3,4,7,8,9-HPCDF ng/Kg PQL JB 0.567 5.33 1,2,3,4,7,8-HxCDD ng/Kg 1,2,3,4,7,8-HXCDF JB 0.664 5.33 **PQL** ng/Kg JB **PQL** 1,2,3,6,7,8-HXCDD 2.71 5.33 ng/Kg 1,2,3,6,7,8-HXCDF JΒ 0.461 5.33 PQL ng/Kg PQL JB 5.33 1,2,3,7,8,9-HXCDD 1.60 ng/Kg 1,2,3,7,8,9-HXCDF JB 0.862 5.33 **PQL** ng/Kg J (all detects) 1,2,3,7,8-PECDD .IP **PQL** 0.551 5.33 ng/Kg 1,2,3,7,8-PECDF JΒ 0.560 5.33 PQL ng/Kg PQL JB 0.413 5.33 ng/Kg 2.3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF **JBQ** 0.551 5.33 PQL ng/Kg

1.07

1.07

0.112

0.254

J

PQL

PQL

ng/Kg

ng/Kg

2,3,7,8-TCDD

2,3,7,8-TCDF

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

IVIAUIX. SU				, -			
,		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-106-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	2.21	5.53	PQL	ng/Kg	
OE-100-0/(3D11-0D-4:0-3:0	1,2,3,4,6,7,8-HPCDF	JB	0.630	5.53	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.050	5.53	PQL	ng/Kg	
		JBQ	0.0673	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD						
	1,2,3,4,7,8-HXCDF	JB	0.0878	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.435	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0950	5.53	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.624	5.53	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.676	5.53	PQL	ng/Kg	0 (0 0010010)
	1,2,3,7,8-PECDD	JB	0.165	5.53	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.248	5.53	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.110	5.53	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.163	5.53	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0517	1.11	PQL	ng/Kg	
	2,3,7,8-TCDF	j	0.0466	1.11	PQL	ng/Kg	
	OCDF	JB	1.54	11.1	PQL	ng/Kg	
SL-106-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.548	5.49	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.119	5.49	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JВ	0.140	5.49	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0470	5.49	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0324	5.49	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0543	5.49	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0610	5.49	PQL	ng/Kg	
·	1,2,3,7,8,9-HXCDD	JB	0.0713	5.49	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.126	5.49	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0503	5.49	PQL	ng/Kg	o (all detects)
	1	JBQ	0.0503	5.49	PQL	ng/Kg	
	1,2,3,7,8-PECDF			1		ng/kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0856	5.49	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.111	5.49	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0339	1.10	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0438	1.10	PQL	ng/Kg	•
	OCDD	JB	2.78	11.0	PQL	ng/Kg	
	OCDF	JB	0.405	11.0	PQL	ng/Kg	
SL-107-SA5DN-SB-3.5-4.5	1,2,3,4,6,7,8-HPCDD	JB	0.773	5.43	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.204	5.43	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.180	5.43	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0547	5.43	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0876	5.43	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0853	5.43	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0667	5.43	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.108	5.43	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.190	5.43	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0632	5.43	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0032	5.43	PQL	ng/Kg	
	1 * * * * *	JBQ	0.0773	5.43	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.103	5.43	PQL	ng/Kg	
	2,3,4,7,8-PECDF			1	PQL		
	2,3,7,8-TCDD	JQ	0.0461	1.09	-	ng/Kg	
	OCDD	JB	5.43	10.9	PQL	ng/Kg	
	OCDF	JBQ	0.649	10.9	PQL	ng/Kg	

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleiD	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-109-SA5DN-SB-3.5-4.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	IB IB IB IB IB IB IB IB IB IB IB IB IB I	0.756 0.134 0.0490 0.0229 0.0358 0.0440 0.0197 0.0495 0.0541 0.0277 0.0699 0.0526 0.0332 6.83 0.351	5.10 5.10 5.10 5.10 5.10 5.10 5.10 5.10	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-110-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF OCDF	JB JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	3.41 0.434 0.0908 0.0274 0.0707 0.161 0.0488 0.120 0.0529 0.0457 0.0436 0.0970 0.0858 1.23	5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-115-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD OCDD OCDD	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	0.763 0.151 0.0702 0.0414 0.0468 0.0789 0.0575 0.144 0.194 0.0574 0.0752 0.0830 0.0652 0.0520 2.18 0.229	5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX105 Laboratory: LL

EDD Filename: DX105_v1 eQAPP Name: CDM_SSFL_110509

SL-122-SA5DN-SB-4.0-5.0	Method: 1613B					k waiti ku u	diam'r.	dell'ontrovied zoni.
SampleID Analyte Qual Result Limit Type Units Flag SL-122-SA5DN-SB-4.0-5.0 1,2,3,4,6,7,8-HPCDD JBQ 0.575 5.61 PQL ng/Kg 1,2,3,4,6,7,8-HPCDF JBQ 0.149 5.61 PQL ng/Kg 1,2,3,4,7,8-HPCDF JBQ 0.0582 5.61 PQL ng/Kg 1,2,3,4,7,8-HXCDD JBQ 0.0562 5.61 PQL ng/Kg 1,2,3,6,7,8-HXCDF JB 0.110 5.61 PQL ng/Kg 1,2,3,6,7,8-HXCDF JB 0.0980 5.61 PQL ng/Kg 1,2,3,6,7,8-HXCDF JB 0.0641 5.61 PQL ng/Kg	Matrix: SO							
1,2,3,4,6,7,8-HPCDF JBQ 0.149 5.61 PQL ng/Kg 1,2,3,4,7,8,9-HPCDF JBQ 0.0582 5.61 PQL ng/Kg 1,2,3,4,7,8-HxCDD JBQ 0.0562 5.61 PQL ng/Kg 1,2,3,4,7,8-HXCDF JB 0.110 5.61 PQL ng/Kg 1,2,3,6,7,8-HXCDD JB 0.0980 5.61 PQL ng/Kg 1,2,3,6,7,8-HXCDF JB 0.0641 5.61 PQL ng/Kg	SampleID	Analyte		Result			Units	Flag
1,2,3,7,8,9-HXCDD	SL-122-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF	4 银银铁银银银银银银银银银	0.149 0.0582 0.0562 0.110 0.0980 0.0641 0.184 0.221 0.0703 0.116 0.130 0.124 0.0484	5.61 5.61 5.61 5.61 5.61 5.61 5.61 5.61	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

SAMPLE DELIVERY GROUP

DX106

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
27-June-2011	SL-077-SA5DN-SB-9.0-10.0	6329382	N	METHOD	1613B	III
27-June-2011	SL-078-SA5DN-SB-4.0-5.0	6329383	N	METHOD	1 613B	111
27-June-2011	SL-078-SA5DN-SB-9.0-10.0	6329384	N	METHOD	1613B	Ш
27-June-2011	SL-085-SA5DN-SB-2.5-3.5	6329385	N	METHOD	1613B	tii
27-June-2011	SL-123-SA5DN-SB-2.5-3.5	6329386	N	METHOD	1613B	111
27-June-2011	SL-077-SA5DN-SB-4.0-5.0	6329381	N	METHOD	1613B	111
28-June-2011	SL-141-SA5DN-SB-4.0-5.0	6331392	N	METHOD	1613B	111
28-June-2011	SL-116-SA5DN-SB-2.0-3.0	6331387	N	METHOD	1613B	III
28-June-2011	SL-116-SA5DN-SB-2.0-3.0MS	6331388	MS	METHOD	1613B	III
28-June-2011	SL-116-SA5DN-SB-2.0-3.0MSD	6331389	MSD	METHOD	1613B	111
28-June-2011	SL-132-SA5DN-SB-4.0-5.0	6331391	N	METHOD	1613B	III
28-June-2011	SL-143-SA5DN-SB-4.0-5.0	6331393	N	METHOD	1613B	Ш
28-June-2011	DUP18-SA5DN-QC-062811	6331394	FD	METHOD	1613B	Ш
28-June-2011	SL-131-SA5DN-SB-3.5-4.5	6331390	N	METHOD	1613B	III
29-June-2011	EB20-SA5DN-SB-062911	6332126	EB	METHOD	1613B	III
29-June-2011	SL-128-SA5DN-SB-4.0-5.0	6332119	N	METHOD	1613B	111
29-June-2011	SL-129-SA5DN-SB-2,5-3.5	6332120	N	METHOD	1613B	111
29-June-2011	SL-152-SA5DN-SB-2.5-3.5	6332121	N	METHOD	1613B	111
29-June-2011	SL-154-SA5DN-SB-4.0-5.0	6332122	N	METHOD	1613B	111
29-June-2011	SL-154-SA5DN-SB-9.0-10.0	6332123	N	METHOD	1613B	111
29-June-2011	SL-165-SA5DN-SB-4.0-5.0	6332124	N	METHOD	1613B	111
29-June-2011	SL-165-SA5DN-SB-9.0-10.0	6332125	N	METHOD	1613B	III

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: AQ

Sample ID: EB20-SA5DN-SB-062911 Collected: 6/29/2011 11:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5.13	JB	0.366	MDL	10.2	PQL	pg/L	U	В
1,2,3,4,6,7,8-HPCDF	2.59	JB	0.139	MDL	10.2	PQL	pg/L	U	В
1,2,3,4,7,8,9-HPCDF	0.596	JBQ	0.174	MDL,	10.2	PQL	pg/L	U	В
1,2,3,4,7,8-HXCDF	0.420	JB	0.178	MDL	10.2	PQL	pg/L	υ	В
1,2,3,6,7,8-HXCDD	0.495	JB	0.221	MDL	10.2	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDF	0.492	JBQ	0.165	MDL	10.2	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDD	0.247	JB	0.214	MDL	10.2	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDF	0.506	JB	0.187	MDL	10.2	PQL	pg/L	U	В
1,2,3,7,8-PECDF	0.292	JBQ	0.136	MDL	10.2	PQL	pg/L	U	В
2,3,4,6,7,8-HXCDF	0.708	JB	0.160	MDL	10.2	PQL	pg/L	U	В
2,3,4,7,8-PECDF	0.743	JBQ	0.124	MDL	10.2	PQL	pg/L	U	В
OCDD	10.0	JB	0.292	MDL	20.4	PQL	pg/L	U	В
OCDF	2.18	JBQ	0.383	MDL	20.4	PQL	pg/L	U	В

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: DUP18-SA5DN-QC-062811 Collected: 6/28/2011 9:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.462	JBQ	0.0341	MDL	5.35	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0615	JBQ	0.00674	MDL	5.35	PQL	ng/Kg	เก	B, FD
1,2,3,4,7,8,9-HPCDF	0.0611	JBQ	0.0161	MDL	5.35	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0337	JQ	0.0223	MDL	5.35	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	0.0240	JBQ	0.0145	MDL	5.35	PQL	ng/Kg	υJ	B, FD
1,2,3,6,7,8-HXCDD	0.0752	JBQ	0.0224	MDL	5.35	PQL	ng/Kg	ΩJ	B, FD
1,2,3,6,7,8-HXCDF	0.0285	JBQ	0.0117	MDL	5.35	PQL	ng/Kg	υJ	B, FD
1,2,3,7,8,9-HXCDD	0.102	JB	0.0229	MDL	5.35	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.106	JBQ	0.0193	MDL	5.35	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0338	JB	0.0238	MDL	5.35	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8-PECDF	0.0348	JBQ	0.0113	MDL	5.35	PQL	ng/Kg	UJ	B, FD
2,3,4,6,7,8-HXCDF	0.0400	JB	0.0140	MDL	5.35	PQL	ng/Kg	UJ	B, FD
2,3,4,7,8-PECDF	0.0394	JB	0.0122	MDL	5.35	PQL	ng/Kg	ບນ	B, FD
2,3,7,8-TCDD	0.0280	U	0.0280	MDL	1.07	PQL	ng/Kg	ΟΊ	FD

^{*} denotes a non-reportable result

9/28/2011 9:36:41 AM ADR version 1.4.0.111 Page 1 of 14

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: DUP18-SA5DN-QC-062811 Collected: 6/28/2011 9:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.0233	U	0.0233	MDL	1.07	PQL	ng/Kg	ΩĴ	FD
OCDD	1.71	JB	0.0229	MDL	10.7	PQL	ng/Kg	U	В
OCDF	0.184	JB	0.0451	MDL	10.7	PQL	ng/Kg	U	В

Sample ID: SL-077-SA5DN-SB-4.0-5.0 Collected: 6/27/2011 10:35:00 Analysis Type: RES Dilution: 1

				or manyone type:				2 174(1011, 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	1.34	JB	0.0505	MDL	5.86	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.315	JB	0.0170	MDL	5.86	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0567	JBQ	0.0283	MDL	5.86	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0755	JB	0.0197	MDL	5.86	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.103	JBQ	0.0271	MDL	5.86	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0681	JBQ	0.0169	MDL	5.86	PQL	ng/Kg	Ų	В	
1,2,3,7,8,9-HXCDD	0.0958	JB	0.0260	MDL	5.86	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.133	JB	0.0240	MDL	5.86	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0683	JBQ	0.0192	MDL	5.86	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0756	JBQ	0.0185	MDL	5.86	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0784	JBQ	0.0182	MDL	5.86	PQL	ng/Kg	υ	В	
2,3,7,8-TCDD	0.0530	J	0.0425	MDL	1.17	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0385	J	0.0330	MDL	1.17	PQL	ng/Kg	J	Z	
OCDF	0.576	JВ	0.0500	MDL	11.7	PQL	ng/Kg	U	В	

Sample ID: SL-077-SA5DN-SB-9.0-10.0 Collected: 6/27/2011 10:40:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL,	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.993	JB	0.0278	MDL	5.97	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.224	JB	0.0100	MDL	5.97	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0211	JBQ	0.0159	MDL	5.97	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0377	JB	0.0134	MDL	5.97	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0727	JBQ	0.0195	MDL	5.97	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0394	JB	0.0117	MDL	5.97	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0695	JB	0.0195	MDL	5.97	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0610	JBQ	0.0161	MDL	5.97	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0353	JBQ	0.0233	MDL	5.97	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0232	JBQ	0.0118	MDL	5.97	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX106

Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVÖÄ Method: 1613B

Matrix: SO

Sample ID: SL-077-SA5DN-SB-9.0-10.0	Collected: 6/27/2011 10:40:00	Analysis Type: RES	Dilution: 1
-------------------------------------	-------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,6,7,8-HXCDF	0.0857	JB	0.0130	MDL	5.97	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0556	JBQ	0.0120	MDL	5.97	PQL	ng/Kg	U	В
OCDD	10.7	JВ	0.0209	MDL	11.9	PQL	ng/Kg	J	Z
OCDF	0.307	JB	0.0297	MDL	11.9	PQL	ng/Kg	υ	В

Sample ID: SL-078-SA5DN-SB-4.0-5.0 Collected: 6/27/2011 9:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.651	JB	0.0257	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.191	JBQ	0.00929	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0340	JBQ	0.0151	MDL	5.74	PQL	пд/Кд	U	В
1,2,3,4,7,8-HXCDF	0.0288	JBQ	0.0134	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0259	JBQ	0.0110	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0719	JBQ	0.0160	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0605	JBQ	0.0138	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0194	JBQ	0.00883	MDL	5.74	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0602	JBQ	0.00999	MDL	5.74	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0371	JBQ	0.00906	MDL	5.74	PQL	ng/Kg	U	В
OCDD	9.18	JB	0.0224	MDL	11.5	PQL	ng/Kg	J	Z
OCDF	0.325	JB	0.0302	MDL	11.5	PQL	ng/Kg	U	В

Sample ID: SL-078-SA5DN-SB-9.0-10.0 Collected: 6/27/2011 9:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.17	JB	0.0258	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	1.15	JB	0.00978	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.175	JB	0.0163	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.0378	J	0.0170	MDL,	5.54	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0570	JB	0.0155	MDL	5.54	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.107	JB	0.0170	MDL	5.54	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0399	JBQ	0.0137	MDL	5.54	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0791	JВ	0.0170	MDL	5.54	PQL	ng/Kg	Ų	В
1,2,3,7,8,9-HXCDF	0.0406	JBQ	0.0155	MDL	5.54	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0284	JBQ	0.0148	MDL	5.54	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0254	JBQ	0.00875	MDL	5.54	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX106

Laboratory: LL

EDD Filename: DX106_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-078-SA5DN-SB-9.0-10.0 Collected: 6/27/2011 9:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,6,7,8-HXCDF	0.0729	JB	0.0144	MDL	5.54	PQL	ng/Kg	Ų	В
2,3,4,7,8-PECDF	0.0403	JBQ	0.00852	MDL	5.54	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0182	JQ	0.0159	MDL	1.11	PQL	ng/Kg	J	Z
OCDF	6.95	JB	0.0273	MDL	11.1	PQL	ng/Kg	J	Z

Sample ID: SL-085-SA5DN-SB-2.5-3.5 Collected: 6/27/2011 9:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.17	JB	0.0171	MDL	5.71	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.132	JB	0.00594	MDL	5.71	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0368	JBQ	0.0117	MDL	5.71	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0217	JQ	0.0147	MDL	5.71	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0361	JB	0.00851	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0807	JB	0.0146	MDL	5.71	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0176	JBQ	0.00676	MDL	5.71	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0891	JB	0.0143	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0859	JB	0.0114	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0409	JBQ	0.0127	MDL	5.71	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.0230	JBQ	0.00641	MDL	5.71	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.0459	JBQ	0.00793	MDL	5.71	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0539	JB	0.00664	MDL	5.71	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.0128	JQ	0.0119	MDL.	1.14	PQL	ng/Kg	J	Z
OCDD	10.7	JB	0.0162	MDL	11.4	PQL	ng/Kg	J	Z
OCDF	0.257	JB	0.0191	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-116-SA5DN-SB-2.0-3.0 Collected: 6/28/2011 9:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.446	JB	0.0249	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.161	JB	0.00646	MDL	5.34	PQL	ng/Kg	บม	B, FD
1,2,3,4,7,8,9-HPCDF	0.0876	JB	0.0147	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0924	J	0.0188	MDL	5.34	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	0.151	JB	0.0147	MDL	5.34	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDD	0.180	JВ	0.0191	MDL	5.34	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDF	0.163	JB	0.0117	MDL	5.34	PQL	ng/Kg	J	Z, FD

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX106

Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B

Matrix: SO

anx. 30

 Sample ID: SL-116-SA5DN-SB-2.0-3.0
 Collected: 6/28/2011 9:50:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDD	0.143	JB	0.0185	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.142	JB	0.0177	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.173	JBQ	0.0193	MDL	5.34	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDF	0.208	JB	0.0105	MDL	5.34	PQL	ng/Kg	J	Z, FD
2,3,4,6,7,8-HXCDF	0.155	JB	0.0139	MDL	5.34	PQL	ng/Kg	UJ	B, FD
2,3,4,7,8-PECDF	0.208	JB	0.0115	MDL	5.34	PQL	ng/Kg	υĴ	B, FD
2,3,7,8-TCDD	0.0496	J	0.0220	MDL	1.07	PQL	ng/Kg	J	Z, FD
2,3,7,8-TCDF	0.0575	JQ	0.0163	MDL	1.07	PQL	ng/Kg	j	Z, FD
OCDD	1.36	JB	0.0198	MDL	10.7	PQL	ng/Kg	U	В
OCDF	0.177	JB	0.0404	MDL	10.7	PQL	ng/Kg	U	В

Sample ID: SL-123-SA5DN-SB-2.5-3.5 Collected: 6/27/2011 2:35:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.915	JB	0.0164	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.165	JB	0.00545	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0721	JB	0.0109	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0892	J	0.0141	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.105	JBQ	0.0103	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.131	JB	0.0137	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0927	JB	0.00802	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.121	JВ	0.0128	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.115	JBQ	0.0118	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.106	JBQ	0.0127	MDL,	5.34	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.124	JB	0.00578	MDL	5.34	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.104	JB	0.00845	MDL	5.34	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.156	JB	0.00610	MDL	5.34	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0449	J	0.0127	MDL	1.07	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0423	J	0.0109	MDL	1.07	PQL	ng/Kg	J	Z
OCDD	8.05	JB	0.0132	MDL	10.7	PQL	пд/Кд	J	Z
OCDF	0.294	JB	0.0178	MDL	10.7	PQL	ng/Kg	U	В

Page 5 of 14

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX106

Laboratory: LL

EDD Filename: DX106_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-128-SA5DN-SB-4.0-5.0	Collec	ted: 6/29/2	011 11:55:	00 A	nalysis T	pe: RES		i i	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.628	JB	0.0326	MDL	5.72	PQL	ng/Kg	υ	В	
1,2,3,4,6,7,8-HPCDF	0.0656	JB	0.00695	MDL	5.72	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0461	JВ	0.0206	MDL	5.72	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0292	JBQ	0.0155	MDL	5.72	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0565	JBQ	0.0209	MDL	5.72	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0247	JB	0.0116	MDL	5.72	PQL	n g /Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0767	JBQ	0.0188	MDL	5.72	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0169	JBQ	0.0114	MDL	5.72	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.0555	JВ	0.0145	MDL	5.72	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0578	JB	0.0121	MDL	5.72	PQL	ng/Kg	υ	В	
OCDD	2.32	JB	0.0272	MDL	11.4	PQL	ng/Kg	U	В	
OCDF	0.183	JB	0.0599	MDL	11.4	PQL	ng/Kg	U	В	

Sample ID: SL-129-SA5DN-SB-2.5-3.5

Collected: 6/29/2011 10:50:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.17	JB	0.0137	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.235	JB	0.0304	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.150	J	0.0397	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.160	JBQ	0.0289	MDL	5.12	PQL	пд/Кд	J	Z
1,2,3,6,7,8-HXCDD	0.560	JB	0.0391	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.154	JВ	0.0244	MDL	5.12	PQL	ng/Kg	J	Ž
1,2,3,7,8,9-HXCDD	0.394	JBQ	0.0401	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.111	JB	0.0383	MDL	5.12	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0956	JB	0.0365	MDL	5.12	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.190	JB	0.0189	MDL	5.12	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.167	JB	0.0270	MDL	5.12	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.124	JB	0.0186	MDL	5.12	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0376	JQ	0.0334	MDL	1.02	PQL	ng/Kg	L	Z
2,3,7,8-TCDF	0.0619	JQ	0.0436	MDL	1.02	PQL	ng/Kg	J	z
OCDF	2.64	JB	0.0461	MDL	10.2	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-131-SA5DN-SB-3.5-4.5 Collected: 6/28/2011 12:15:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.957	JB	0.0213	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.185	JB	0.00654	MDL	5.58	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0738	JBQ	0.0124	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.101	J	0.0177	MDL	5.58	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.142	JB	0.0134	MDL	5.58	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.125	JB	0.0180	MDL	5.58	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.129	JB	0.0112	MDL.	5.58	PQL	ng/Kg	U	8
1,2,3,7,8,9-HXCDD	0.175	JB	0.0177	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.117	JB	0.0176	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.221	JB	0.0188	MDL	5.58	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.243	JB	0.00891	MDL,	5.58	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.125	JB	0.0133	MDL	5.58	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.229	JB	0.00891	MDL	5.58	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0711	JQ	0.0212	MDL	1.12	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0674	JQ	0.0177	MDL	1.12	PQL	ng/Kg	J	Z
OCDD	9.10	JВ	0.0197	MDL	11.2	PQL	ng/Kg	J	Z
OCDF	0.296	JB	0.0223	MDL	11.2	PQL	ng/Kg	U	В

Sample ID: SL-132-SA5DN-SB-4.0-5.0 Collected: 6/28/2011 2:09:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.21	JB	0.0417	MDL	5.52	PQL	ng/Kg	Ų	В
1,2,3,4,6,7,8-HPCDF	0.169	JB	0.0137	MDL	5.52	PQL	ng/Kg	Ų	В
1,2,3,4,7,8,9-HPCDF	0.0487	JBQ	0.0269	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.108	J	0.0246	MDL	5.52	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0838	JBQ	0.0191	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0925	JB	0.0244	MDL	5.52	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0707	JB	0.0152	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.106	JB	0.0250	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0958	JB	0.0238	MDL	5.52	PQL	ng/Kg	Ų	В
1,2,3,7,8-PECDD	0.133	JBQ	0.0290	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.123	JB	0.0144	MDL	5.52	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0899	JBQ	0.0175	MDL	5.52	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.150	JBQ	0.0145	MDL	5.52	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

9/28/2011 9:36:41 AM ADR version 1.4.0.111 Page 7 of 14

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-132-SA5DN-SB-4.0-5.0 Collected: 6/28/2011 2:09:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDD	0.0636	JQ	0.0342	MDL	1.10	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0371	JQ	0.0275	MDL	1.10	PQL	ng/Kg	J	Z
OCDF	0.453	JB	0.0462	MDL	11.0	PQL	ng/Kg	U	В

Sample ID: SL-141-SA5DN-SB-4.0-5.0 Collected: 6/28/2011 2:48:00 Analysis Type: RES Dilution: 1

	0000	July 17 Part 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	1.41	JB	0.0596	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.514	JQ	0.0634	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.480	JB	0.0406	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	2.40	JB	0.0661	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.453	JB	0.0325	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.23	JB	0.0652	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.181	JB	0.0577	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.260	JB	0.0516	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.511	JB	0.0284	MDL	5.38	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.676	JB	0.0393	MDL	5.38	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.220	JB	0.0311	MDL	5.38	PQL	ng/Kg	Ų	В	
2,3, 7 ,8-TCDD	0.0490	JQ	0.0334	MDL	1.08	PQL	n g /Kg	J	Z	
2,3,7,8-TCDF	0.241	J	0.0692	MDL	1.08	PQL	ng/Kg	J	Z	

Dilution: 1 Sample ID: SL-143-SA5DN-SB-4.0-5.0 Collected: 6/28/2011 3:19:00 Analysis Type: RES

Campic ib. C2 110 Citobit Cb 110 Cit	0000	Thinky on the second of the se						Diadion. ,		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.609	JB	0.0456	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0953	JB	0.00923	MDL	5.66	PQL	n g /Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0341	JBQ	0.0244	MDL	5.66	PQL	n g /Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0267	JB	0.0161	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0663	JBQ	0.0278	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0200	JBQ	0.0123	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0897	JBQ	0.0278	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0469	JBQ	0.0220	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0727	JBQ	0.0278	MDL	5.66	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0602	JBQ	0.0146	MDL	5.66	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0603	JB	0.0142	MDL	5.66	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

9/28/2011 9:36:41 AM Page 8 of 14

Lab Reporting Batch ID: DX106

Laboratory: LL

EDD Filename: DX106_v1

eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA	d
Mathad:	1613R	

Sample ID: SL-143-SA5DN-SB-4.0-5.0 Collected: 6/28/2011 3:19:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDD	2.42	JB	0.0296	MDL	11.3	PQL	ng/Kg	U	В
OCDF	0.154	JB	0.0722	MDL	11.3	PQL	ng/Kg	U	В

Matrix:

SO

Sample ID: SL-152-SA5DN-SB-2.5-3.5 Collected: 6/29/2011 9:25:00 Analysis Type: RES Dilution: 1

•									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.662	JB	0.244	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.146	JBQ	0.0496	MDL	5.28	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.140	JB	0.0914	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.275	JBQ	0.151	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.186	JB	0.0693	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.291	JB	0.160	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.245	JBQ	0.202	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.177	JBQ	0.0864	MDL	5.28	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.206	JBQ	0.0880	MDL	5.28	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.270	JBQ	0.0914	MDL	5.28	PQL	ng/Kg	υ	В
OCDD	1.04	JBQ	0.144	MDL	10.6	PQL	ng/Kg	U	В

Sample ID: SL-154-SA5DN-SB-4.0-5.0 Collected: 6/29/2011 7:45:00 Analysis Type: RES Dilution: 1

	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	0.504	JB	0.0331	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.121	JB	0.00810	MDL	5.45	PQL	ng/Kg	Ų	В
1,2,3,4,7,8,9-HPCDF	0.0586	JBQ	0.0229	MDL	5.45	PQL	ng/Kg	Ų	В
1,2,3,4,7,8-HxCDD	0.0935	JQ	0.0241	MDL	5.45	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0927	JB	0.0186	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.109	JBQ	0.0234	MDL	5.45	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.112	JB	0.0145	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.133	JBQ	0.0239	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.138	JB	0.0273	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.122	JB	0.0251	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.180	JВ	0.0131	MDL	5.45	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.111	JBQ	0.0172	MDL	5.45	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.176	JB	0.0148	MDL	5.45	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0636	J	0.0299	MDL	1.09	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 9:36:41 AM ADR version 1.4.0.111 Page 9 of 14

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA		
Method:	1613B	Matrix:	so

Dilipio in de la la la la la la la la la la la la la	Sample ID: SL-154-SA5DN-SB-4.0-5.0	Collected: 6/29/2011 7:45:00	Analysis Type: RES	Dilution: 1
--	------------------------------------	------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.0308	J	0.0270	MDL	1.09	PQL	ng/Kg	J	Z
OCDD	1.88	JB	0.0223	MDL	10.9	PQL	ng/Kg	U	В
OCDF	0.334	JBQ	0.0597	MDL,	10.9	PQL	ng/Kg	U	В

Sample ID: SL-154-SA5DN-SB-9.0-10.0 Collected: 6/29/2011 7:50:00 Analysis Type: RES Dilution: 1

Sample ID. SE-134-SASDIN-SU-3.0-10.0	Conec	teu. Gizoiz	0111.00.0	·	narysis ij	pe. KLO			Dilation.
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.519	JBQ	0.0348	MDL	5.64	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0940	JB	0.00805	MDL	5.64	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0212	JBQ	0.0207	MDL	5.64	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0564	J	0.0218	MDL	5.64	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0699	JB	0.0160	MDL	5.64	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0826	JBQ	0.0223	MDL	5.64	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0728	JBQ	0.0128	MDL	5.64	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0792	JB	0.0219	MDL	5.64	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0867	JB	0.0231	MDL	5.64	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.119	JBQ	0.0267	MDL	5.64	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.136	JB	0.0124	MDL	5.64	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0716	JBQ	0.0159	MDL	5.64	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.128	JB	0.0134	MDL	5.64	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0563	J	0.0319	MDL	1.13	PQL	ng/Kg	J	Z
OCDD	1.04	JB	0.0236	MDL	11.3	PQL	ng/Kg	U	В
OCDF	0.170	JBQ	0.0523	MDL	11.3	PQL	ng/Kg	U	В

Sample ID: SL-165-SA5DN-SB-4.0-5.0 Collected: 6/29/2011 2:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.918	JB	0.0375	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.156	JB	0.00824	MDL	5.47	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0308	JBQ	0.0190	MDL	5.47	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0388	JQ	0.0212	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0521	JВ	0.0148	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0269	JBQ	0.0212	MDL	5.47	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0282	JBQ	0.0119	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0526	JBQ	0.0217	MDL	5.47	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-165-SA5DN-SB-4.0-5.0 Collected: 6/29/2011 2:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDF	0.0206	JB	0.0204	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0146	JB	0.0120	MDL	5.47	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0657	JBQ	0.0137	MDL	5.47	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0435	JB	0.0128	MDL	5.47	PQL	ng/Kg	υ	В
OCDD	3.79	JB	0.0227	MDL	10.9	PQL	ng/Kg	j	Z
OCDF	0.355	JBQ	0.0475	MDL	10.9	PQL	ng/Kg	υ	В

Sample ID: SL-165-SA5DN-SB-9.0-10.0 Collected: 6/29/2011 2:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.343	JB	0.0511	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.171	J	0.0465	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.341	JB	0.0358	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.850	JВ	0.0483	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.276	JB	0.0369	MDL,	5.30	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.431	JB	0.0486	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.115	JBQ	0.0446	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.191	JBQ	0.0400	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.359	JBQ	0.0430	MDL	5.30	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.386	JB	0.0363	MDL	5.30	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.548	JB	0.0403	MDL	5.30	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0546	JQ	0.0429	MDL	1.06	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX106 EDD Filename: DX106_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E E	Laboratory Control Precision
E	Laboratory Duplicate Precision
Ē	Laboratory Triplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX106

EDD Filename: DX106_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Fileliallie. DX 100_VI		EQAPP Name, CDM_55FL_
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
H	Extraction to Analysis Estimation	············
Н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
н	Sampling to Leaching Estimation	
н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
1	Internal Standard Estimation	
ı	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
M	Continuing Tune	
M	Initial Tune	
M	Performance Evaluation Mixture	
М	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Laboratory Triplicate Precision	
Q	Matrix Spike Lower Estimation	- · · · · · · · · · · · · · · · · · · ·
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX106

EDD Filename: DX106_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX106

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ								
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples				
BLK1860B370312	7/8/2011 3:12:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 0CDD 0CDD	5.77 pg/L 3.35 pg/L 1.08 pg/L 0.514 pg/L 0.682 pg/L 0.924 pg/L 0.769 pg/L 0.771 pg/L 1.09 pg/L 0.288 pg/L 0.586 pg/L 1.21 pg/L 1.01 pg/L 1.01 pg/L 1.01 pg/L 3.552 pg/L 11.00 pg/L 3.555 pg/L	EB20-SA5DN-SB-062911				

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB20-SA5DN-SB-062911(RES)	1,2,3,4,6,7,8-HPCDD	5.13 pg/L	5.13U pg/L
EB20-SA5DN-SB-062911(RES)	1,2,3,4,6,7,8-HPCDF	2.59 pg/L	2.59U pg/L
EB20-SA5DN-SB-062911(RES)	1,2,3,4,7,8,9-HPCDF	0.596 pg/L	0.596U pg/L
EB20-SA5DN-SB-062911(RES)	1,2,3,4,7,8-HXCDF	0.420 pg/L	0.420U pg/L
EB20-SA5DN-SB-062911(RES)	1,2,3,6,7,8-HXCDD	0.495 pg/L	0.495U pg/L
EB20-SA5DN-SB-062911(RES)	1,2,3,6,7,8-HXCDF	0.492 pg/L	0.492U pg/L
EB20-SA5DN-SB-062911(RES)	1,2,3,7,8,9-HXCDD	0.247 pg/L	0.247U pg/L
EB20-\$A5DN-SB-062911(RES)	1,2,3,7,8,9-HXCDF	0.506 pg/L	0.506U pg/L
EB20-SA5DN-SB-062911(RES)	1,2,3,7,8-PECDF	0.292 pg/L	0.292U pg/L
EB20-SA5DN-SB-062911(RES)	2,3,4,6,7,8-HXCDF	0.708 pg/L	0.708U pg/L
EB20-SA5DN-SB-062911(RES)	2,3,4,7,8-PECDF	0.743 pg/L	0.743U pg/L
EB20-SA5DN-SB-062911(RES)	OCDD	10.0 pg/L	10.0U pg/L
EB20-SA5DN-SB-062911(RES)	OCDF	2.18 pg/L	2.18U pg/L

9/28/2011 9:35:15 AM ADR version 1.4.0.111 Page 1 of 7

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO	B						
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples			
BLK1920B371327	7/13/2011 1:27:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF CODD CCDF	0.357 ng/Kg 0.108 ng/Kg 0.0302 ng/Kg 0.0231 ng/Kg 0.0231 ng/Kg 0.0165 ng/Kg 0.0279 ng/Kg 0.0415 ng/Kg 0.0363 ng/Kg 0.0276 ng/Kg 0.0203 ng/Kg 0.0203 ng/Kg 0.0544 ng/Kg 0.0549 ng/Kg 0.715 ng/Kg 0.189 ng/Kg	DUP18-SA5DN-QC-062811 SL-077-SA5DN-SB-4.0-5.0 SL-077-SA5DN-SB-9.0-10.0 SL-078-SA5DN-SB-9.0-10.0 SL-078-SA5DN-SB-9.0-10.0 SL-085-SA5DN-SB-2.5-3.5 SL-116-SA5DN-SB-2.5-3.5 SL-128-SA5DN-SB-2.5-3.5 SL-128-SA5DN-SB-2.5-3.5 SL-129-SA5DN-SB-2.5-3.5 SL-131-SA5DN-SB-4.0-5.0 SL-131-SA5DN-SB-4.0-5.0 SL-141-SA5DN-SB-4.0-5.0 SL-143-SA5DN-SB-4.0-5.0 SL-152-SA5DN-SB-2.5-3.5 SL-154-SA5DN-SB-2.5-3.5 SL-154-SA5DN-SB-9.0-10.0 SL-165-SA5DN-SB-9.0-10.0			

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
DUP18-SA5DN-QC-062811(RES)	1,2,3,4,6,7,8-HPCDD	0.462 ng/Kg	0.462U ng/Kg	
DUP18-SA5DN-QC-062811(RES)	1,2,3,4,6,7,8-HPCDF	0.0615 ng/Kg	0.0615U ng/Kg	
DUP18-SA5DN-QC-062811(RES)	1,2,3,4,7,8,9-HPCDF	0.0611 ng/Kg	0.0611U ng/Kg	
DUP18-SA5DN-QC-062811(RES)	1,2,3,4,7,8-HXCDF	0,0240 ng/Kg	0.0240U ng/Kg	
DUP18-SA5DN-QC-062811(RES)	1,2,3,6,7,8-HXCDD	0.0752 ng/Kg	0.0752U ng/Kg	
DUP18-SA5DN-QC-062811(RES)	1,2,3,6,7,8-HXCDF	0,0285 ng/Kg	0,0285U ng/Kg	
DUP18-SA5DN-QC-062811(RES)	1,2,3,7,8,9-HXCDD	0.102 ng/Kg	0.102U ng/Kg	
DUP18-SA5DN-QC-062811(RES)	1,2,3,7,8,9-HXCDF	0.106 ng/Kg	0.106U ng/Kg	
DUP18-SA5DN-QC-062811(RES)	1,2,3,7,8-PECDD	0.0338 ng/Kg	0.0338U ng/Kg	
DUP18-SA5DN-QC-062811(RES)	1,2,3,7,8-PECDF	0.0348 ng/Kg	0.0348U ng/Kg	
DUP18-SA5DN-QC-062811(RES)	2,3,4,6,7,8-HXCDF	0.0400 ng/Kg	0.0400U ng/Kg	
DUP18-SA5DN-QC-062811(RES)	2,3,4,7,8-PECDF	0.0394 ng/Kg	0.0394U ng/Kg	
DUP18-SA5DN-QC-062811(RES)	OCDD	1.71 ng/Kg	1.71U ng/Kg	
DUP18-SA5DN-QC-062811(RES)	OCDF	0.184 ng/Kg	0.184U ng/Kg	
SL-077-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.34 ng/Kg	1.34U ng/Kg	
SL-077-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.315 ng/Kg	0.315U ng/Kg	
SL-077-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0567 ng/Kg	0.0567U ng/Kg	
SL-077-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0755 ng/Kg	0.0755U ng/Kg	
SL-077-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0681 ng/Kg	0.0681U ng/Kg	
SL-077-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0958 ng/Kg	. 0.0958U ng/Kg	
SL-077-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.133 ng/Kg	0.133U ng/Kg	
SL-077-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0683 ng/Kg	0.0683U ng/Kg	
SL-077-SA5DN-SB-4.0-5.0(RES)	SA5DN-SB-4.0-5.0(RES) 2,3,4,6,7,8-HXCDF		0.0756U ng/Kg	
SL-077-SA5DN-SB-4.0-5.0(RES)	77-SA5DN-SB-4.0-5.0(RES) 2,3,4,7,8-PECDF		0.0784U ng/Kg	
SL-077-SA5DN-SB-4.0-5.0(RES)	OCDF	0,576 ng/Kg	0.576U ng/Kg	

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	and the second of the second o	Company of the second s		
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-077-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.993 ng/Kg		
SL-077-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.224 ng/Kg	0.224U ng/Kg	
SL-077-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0211 ng/Kg	0.0211U ng/Kg	
SL-077-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0377 ng/Kg	0.0377U ng/Kg	
SL-077-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0727 ng/Kg	0.0727U ng/Kg	
SL-077-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0394 ng/Kg	0.0394U ng/Kg	
SL-077-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0695 ng/Kg	0.0695U ng/Kg	
SL-077-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0610 ng/Kg	0.0610U ng/Kg	
SL-077-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0353 ng/Kg	0.0353U ng/Kg	
SL-077-SA5DN-SB-9,0-10.0(RES)	1,2,3,7,8-PECDF	0.0232 ng/Kg	0.0232U ng/Kg	
SL-077-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0857 ng/Kg	0.0857U ng/Kg	
SL-077-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0556 ng/Kg	0.0556U ng/Kg	
SL-077-SA5DN-SB-9.0-10.0(RES)	OCDF	0.307 ng/Kg	0.307U ng/Kg	
SL-078-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.651 ng/Kg	0.651U ng/Kg	
SL-078-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.191 ng/Kg	0.191U ng/Kg	
SL-078-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0340 ng/Kg	0.0340U ng/Kg	
SL-078-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0288 ng/Kg	0.0288U ng/Kg	
SL-078-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0259 ng/Kg	0.0259U ng/Kg	
SL-078-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0719 ng/Kg	0.0719U ng/Kg	
SL-078-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0605 ng/Kg	0.0605U ng/Kg	
SL-078-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0194 ng/Kg	0.0194U ng/Kg	
SL-078-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0602 ng/Kg	0.0602U ng/Kg	
SL-078-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0371 ng/Kg	0.0371U ng/Kg	
SL-078-SA5DN-SB-4.0-5.0(RES)	OCDF	0.325 ng/Kg	0.325U ng/Kg	
SL-078-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0570 ng/Kg	0.0570U ng/Kg	
SL-078-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0399 ng/Kg	0.0399U ng/Kg	
SL-078-SA5DN-SB-9,0-10.0(RES)	1,2,3,7,8,9-HXCDD	0,0791 ng/Kg	0.0791U ng/Kg	
SL-078-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0406 ng/Kg	0.0406U ng/Kg	
SL-078-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0284 ng/Kg	0.0284U ng/Kg	
SL-078-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0254 ng/Kg	0.0254U ng/Kg	
SL-078-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0729 ng/Kg	0.0729U ng/Kg	
SL-078-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0403 ng/Kg	0.0403U ng/Kg	
SL-085-SA5DN-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	1.17 ng/Kg	1.17U ng/Kg	
SL-085-SA5DN-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0.132 ng/Kg	0.132U ng/Kg	
SL-085-SA5DN-SB-2.5-3.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0368 ng/Kg	0.0368U пд/Кд	
SL-085-SA5DN-SB-2.5-3.5(RES)	1,2,3,4,7,8-HXCDF	0.0361 ng/Kg	0.0361U ng/Kg	
SL-085-SA5DN-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDD	0.0807 ng/Kg	0.0807U ng/Kg	

9/28/2011 9:35:15 AM ADR version 1.4.0.111 Page 3 of 7

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	Care to the state of the state			
Method Blani Sample ID	k	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-085-SA5DN-\$B-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.0176 ng/Kg	0.0176U ng/Kg	
SL-085-SA5DN-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDD	0.0891 ng/Kg	0.0891U ng/Kg	
SL-085-SA5DN-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDF	0.0859 ng/Kg	0.0859U ng/Kg	
SL-085-SA5DN-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.0409 ng/Kg	0.0409U ng/Kg	
SL-085-SA5DN-SB-2.5-3.5(RES)	1,2,3,7,8-PECDF	0.0230 ng/Kg	0.0230U ng/Kg	
SL-085-SA5DN-SB-2.5-3.5(RES)	2,3,4,6,7,8-HXCDF	0.0459 ng/Kg	0.0459U ng/Kg	
SL-085-SA5DN-SB-2.5-3.5(RES)	2,3,4,7,8-PECDF	0.0539 ng/Kg	0.0539U ng/Kg	
SL-085-SA5DN-SB-2.5-3.5(RES)	OCDF	0.257 ng/Kg	0.257U ng/Kg	
SL-116-SA5DN-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDD	0.446 ng/Kg	0.446U ng/Kg	
SL-116-SA5DN-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDF	0.161 ng/Kg	0.161U ng/Kg	
SL-116-SA5DN-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0876 ng/Kg	0.0876U ng/Kg	
SL-116-SA5DN-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDD	0.143 ng/Kg	0.143U ng/Kg	
SL-116-SA5DN-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDF	0.142 ng/Kg	0.142U ng/Kg	
SL-116-SA5DN-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.155 ng/Kg	0.155U ng/Kg	
SL-116-SA5DN-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0.208 ng/Kg	0.208U ng/Kg	
SL-116-SA5DN-SB-2.0-3.0(RES)	OCDD	1.36 ng/Kg	1.36U ng/Kg	
SL-116-SA5DN-SB-2.0-3.0(RES)	OCDF	0.177 ng/Kg	0.177U ng/Kg	
SL-123-SA5DN-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	0.915 ng/Kg	0.915U ng/Kg	
SL-123-SA5DN-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0.165 ng/Kg	0.165U ng/Kg	
SL-123-SA5DN-SB-2.5-3.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0721 ng/Kg	0.0721U ng/Kg	
SL-123-SA5DN-SB-2.5-3.5(RES)	1,2,3,4,7,8-HXCDF	0.105 ng/Kg	0.105U ng/Kg	
SL-123-SA5DN-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.0927 ng/Kg	0.0927U ng/Kg	
SL-123-SA5DN-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDD	0,121 ng/Kg	0.121U ng/Kg	
SL-123-SA5DN-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDF	0.115 ng/Kg	0.115U ng/Kg	
SL-123-SA5DN-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.106 ng/Kg	0.106U ng/Kg	
SL-123-SA5DN-SB-2.5-3.5(RES)	2,3,4,6,7,8-HXCDF	0.104 ng/Kg	0.104U ng/Kg	
SL-123-SA5DN-SB-2.5-3.5(RES)	2,3,4,7,8-PECDF	0.156 ng/Kg	0.156U ng/Kg	
SL-123-SA5DN-SB-2.5-3.5(RES)	OCDF	0.294 ng/Kg	0.294U ng/Kg	
SL-128-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.628 ng/Kg	0.628U ng/Kg	
SL-128-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0656 ng/Kg	0.0656U ng/Kg	
SL-128-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0461 ng/Kg	0.0461U ng/Kg	
SL-128-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0292 ng/Kg	0.0292U ng/Kg	
SL-128-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0565 ng/Kg	0.0565U ng/Kg	
SL-128-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0247 ng/Kg	0.0247U ng/Kg	
SL-128-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0767 ng/Kg	0.0767U ng/Kg	
SL-128-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0169 ng/Kg	0.0169U ng/Kg	
SL-128-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0555 ng/Kg	0.0555U ng/Kg	

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 9:35:15 AM ADR version 1.4.0.111 Page 4 of 7

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	artina da artina da artina da artina da artina da artina da artina da artina da artina da artina da artina da a			
Method Blar Sample ID	ık	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-128-\$A5DN-\$B-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0578 ng/Kg	0.0578U ng/Kg	
SL-128-SA5DN-SB-4.0-5.0(RES)	OCDD	2.32 ng/Kg	2,32U ng/Kg	
SL-128-SA5DN-SB-4.0-5.0(RES)	OCDF	0.183 ng/Kg	0.183U ng/Kg	
SL-129-SA5DN-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDF	0,111 ng/Kg	0.111U ng/Kg	
SL-129-SA5DN-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.0956 ng/Kg	0.0956U ng/Kg	
SL-129-SA5DN-SB-2.5-3.5(RES)	2,3,4,6,7,8-HXCDF	0.167 ng/Kg	0.167U ng/Kg	
SL-129-SA5DN-SB-2.5-3.5(RES)	2,3,4,7,8-PECDF	0.124 ng/Kg	0.124U ng/Kg	
SL-131-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDD	0.957 ng/Kg	0.957U ng/Kg	
SL-131-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDF	0.185 ng/Kg	0.185U ng/Kg	
SL-131-SA5DN-SB-3.5-4.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0738 ng/Kg	0.0738U ng/Kg	
SL-131-SA5DN-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDF	0.129 ng/Kg	0.129U ng/Kg	
SL-131-\$A5DN-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDD	0.175 ng/Kg	0.175U ng/Kg	
SL-131-SA5DN-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDF	0.117 ng/Kg	0.117U ng/Kg	
SL-131-SA5DN-SB-3.5-4.5(RES)	2,3,4,6,7,8-HXCDF	0.125 ng/Kg	0.125U ng/Kg	
\$L-131-SA5DN-SB-3.5-4.5(RES)	2,3,4,7,8-PECDF	0.229 ng/Kg	0.229U ng/Kg	
SL-131-SA5DN-SB-3.5-4.5(RES)	OCDF	0,296 ng/Kg	0.296U ng/Kg	
SL-132-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.21 ng/Kg	1.21U ng/Kg	
SL-132-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.169 ng/Kg	0.169U ng/Kg	
SL-132-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0487 ng/Kg	0.0487U ng/Kg	
SL-132-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0838 ng/Kg	0.0838U ng/Kg	
SL-132-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0707 ng/Kg	0.0707U ng/Kg	
SL-132-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.106 ng/Kg	0.106U ng/Kg	
SL-132-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0958 ng/Kg	0.0958U ng/Kg	
SL-132-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.133 ng/Kg	0.133U ng/Kg	
SL-132-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0,0899 ng/Kg	0,0899U ng/Kg	
SL-132-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.150 ng/Kg	0.150U ng/Kg	
SL-132-SA5DN-SB-4.0-5.0(RES)	OCDF	0,453 ng/Kg	0.453U ng/Kg	
SL-141-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.181 ng/Kg	0.181U ng/Kg	
SL-141-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.220 ng/Kg	0.220U ng/Kg	
SL-143-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.609 ng/Kg	0.609U ng/Kg	
SL-143-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0953 ng/Kg	0.0953U ng/Kg	
SL-143-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0341 ng/Kg	0.0341U ng/Kg	
SL-143-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0267 ng/Kg	0.0267U ng/Kg	
SL-143-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0663 ng/Kg	0.0663U ng/Kg	
SL-143-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0200 ng/Kg	0.0200U ng/Kg	
SL-143-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0897 ng/Kg	0.0897U ng/Kg	
SL-143-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0469 ng/Kg	0.0469U ng/Kg	

9/28/2011 9:35:15 AM ADR version 1.4.0.111 Page 5 of 7

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-143-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0727 ng/Kg	0.0727U ng/Kg
SL-143-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0602 ng/Kg	0.0602U ng/Kg
SL-143-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0603 ng/Kg	0.0603U ng/Kg
SL-143-SA5DN-SB-4.0-5.0(RES)	OCDD	2.42 ng/Kg	2.42U ng/Kg
SL-143-SA5DN-SB-4,0-5.0(RES)	OCDF	0.154 ng/Kg	0.154U ng/Kg
SL-152-SA5DN-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	0.662 ng/Kg	0.662U ng/Kg
SL-152-SA5DN-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0.146 ng/Kg	0.146U ng/Kg
SL-152-SA5DN-SB-2.5-3.5(RES)	2,3,4,6,7,8-HXCDF	0.206 ng/Kg	0.206U ng/Kg
SL-152-SA5DN-SB-2.5-3.5(RES)	2,3,4,7,8-PECDF	0.270 ng/Kg	0.270U ng/Kg
SL-152-SA5DN-SB-2.5-3.5(RES)	OCDD	1.04 ng/Kg	1.04U ng/Kg
SL-154-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.504 ng/Kg	0.504U ng/Kg
SL-154-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.121 ng/Kg	0.121U ng/Kg
SL-154-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0586 ng/Kg	0.0586U ng/Kg
SL-154-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0927 ng/Kg	0.0927U ng/Kg
SL-154-\$A5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.112 ng/Kg	0.112U ng/Kg
SL-154-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.133 ng/Kg	0.133U ng/Kg
SL-154-\$A5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.138 ng/Kg	0.138U ng/Kg
SL-154-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.122 ng/Kg	0.122U ng/Kg
SL-154-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0,111 ng/Kg	0.111U ng/Kg
SL-154-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.176 ng/Kg	0.176U ng/Kg
SL-154-SA5DN-SB-4.0-5.0(RES)	OCDD	1.88 ng/Kg	1.88U ng/Kg
SL-154-SA5DN-SB-4,0-5.0(RES)	OCDF	0.334 ng/Kg	0.334U ng/Kg
SL-154-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.519 ng/Kg	0.519U ng/Kg
SL-154-SA5DN-SB-9,0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0940 ng/Kg	0.0940U ng/Kg
SL-154-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0212 ng/Kg	0.0212U ng/Kg
SL-154-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0699 ng/Kg	0.0699U ng/Kg
SL-154-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0728 ng/Kg	0.0728U ng/Kg
SL-154-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0792 ng/Kg	0.0792U ng/Kg
SL-154-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0867 ng/Kg	0.0867U ng/Kg
SL-154-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.119 ng/Kg	0.119U ng/Kg
SL-154-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0716 ng/Kg	0.0716U ng/Kg
SL-154-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.128 ng/Kg	0.128U ng/Kg
SL-154-SA5DN-SB-9.0-10.0(RES)	OCDD	1.04 ng/Kg	1.04U ng/Kg
SL-154-SA5DN-SB-9.0-10.0(RES)	OCDF	0.170 ng/Kg	0.170U ng/Kg
SL-165-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.918 ng/Kg	0.918U ng/Kg
SL-165-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.156 ng/Kg	0.156U ng/Kg
SL-165-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0308 ng/Kg	0.0308U ng/Kg

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-165-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0521 ng/Kg	0.0521U ng/Kg
SL-165-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0269 ng/Kg	0.0269U ng/Kg
SL-165-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0282 ng/Kg	0.0282U ng/Kg
SL-165-\$A5DN-\$B-4.0-5,0(RE\$)	1,2,3,7,8,9-HXCDD	0.0526 ng/Kg	0.0526U ng/Kg
SL-165-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0206 ng/Kg	0.0206U ng/Kg
SL-165-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0146 ng/Kg	0.0146U ng/Kg
SL-165-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0657 ng/Kg	0.0657U ng/Kg
SL-165-SA5DN-\$B-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0435 ng/Kg	0.0435U ng/Kg
SL-165-SA5DN-SB-4.0-5.0(RES)	OCDF	0.355 ng/Kg	0.355U ng/Kg
SL-165-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.115 ng/Kg	0.115U ng/Kg

9/28/2011 9:35:15 AM ADR version 1.4.0.111 Page 7 of 7

Field Duplicate RPD Report

Lab Reporting Batch ID: DX106

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

EDD				
APRIL 2018 6132	A	Maria Livery	12.00	 -

wethou:	i qu.əivi
Matrix:	SO

Watrix: SU	Concentr	ation (%)			
Analyte	SL-116-SA5DN-SB-2.0- 3.0	DUP18-SA5DN-QC- 062811	Sample RPD	eQAPP RPD	Flag
MOISTURE	7.1	8.0	12		No Qualifiers Applied

Method: 1613B

	Concentrat	Concentration (ng/Kg)			
Analyte	SL-116-SA5DN-SB-2.0- 3.0	DUP18-SA5DN-QC- 062811	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF OCDD OCDF	0.446 0.0876 0.143 0.142 1.36 0.177	0.462 0.0611 0.102 0.106 1.71 0.184	4 36 33 29 23 4	50.00 50.00 50.00 50.00 50.00 50.00	No Qualifiers Applied
1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	0.161 0.0924 0.151 0.180 0.163 0.173 0.208 0.155 0.208 0.0496 0.0575	0.0615 0.0337 0.0240 0.0752 0.0285 0.0338 0.0348 0.0400 0.0394 1.07 U	89 93 145 82 140 135 143 118 136 200 200	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)

9/28/2011 9:34:49 AM Page 1 of 1

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method:	161	3E

AQ

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB20-SA5DN-SB-062911	1,2,3,4,6,7,8-HPCDD	JB	5.13	10.2	PQL	pg/L	
	1,2,3,4,6,7,8-HPCDF	JB	2.59	10.2	PQL	pg/L	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.596	10.2	PQL	pg/L	
	1,2,3,4,7,8-HXCDF	JB	0.420	10.2	PQL	pg/L	
	1,2,3,6,7,8-HXCDD	JB	0.495	10.2	PQL	pg/L	
	1,2,3,6,7,8-HXCDF	JBQ	0.492	10.2	PQL	pg/L	
	1,2,3,7,8,9-HXCDD	JB	0.247	10.2	PQL	pg/L	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.506	10.2	PQL	pg/L	
	1,2,3,7,8-PECDF	JBQ	0.292	10.2	PQL	pg/L	
	2,3,4,6,7,8-HXCDF	JB	0.708	10.2	PQL	pg/L	
	2,3,4,7,8-PECDF	JBQ	0.743	10.2	PQL	pg/L	
	OCDD	JB	10.0	20.4	PQL	pg/L	
	OCDE	JBO	2 18	20.4	POL.	pg/l	

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP18-SA5DN-QC-062811	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF	ងេងមង្គងង្គងង្គងង្គង	0.462 0.0615 0.0611 0.0337 0.0240 0.0752 0.0285 0.102 0.106 0.0338 0.0348 0.0348 0.0394 1.71 0.184	5.35 5.35 5.35 5.35 5.35 5.35 5.35 5.35	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-077-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	ы - 2000- -	1.34 0.315 0.0567 0.0755 0.103 0.0681 0.0958 0.133 0.0683 0.0756 0.0756 0.0784 0.0530 0.0385 0.576	5.86 5.86 5.86 5.86 5.86 5.86 5.86 5.86	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

9/28/2011 9:36:27 AM ADR version 1.4.0.111 Page 1 of 7

Lab Reporting Batch ID: DX106

Laboratory: LL

EDD Filename: DX106_v1

eQAPP Name: CDM_SSFL_110509

Method:	1613E
Matrix:	so

Watrix. 30				T			
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-077-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JВ	0.993	5.97	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.224	5.97	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0211	5.97	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0377	5.97	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0727	5.97	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0394	5.97	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0695	5.97	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0610	5.97	PQL	ng/Kg	t (an actocity
	1,2,3,7,8-PECDD	JBQ	0.0353	5.97	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0232	5.97	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0857	5.97	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0556	5.97	PQL	ng/Kg	
	OCDD	JB	10.7	11.9	PQL	ng/Kg	
	OCDF	JB	0.307	11.9	PQL	ng/Kg	
SL-078-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB ·	0.651	5.74	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.191	5.74	PQL	ng/Kg	i
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0340	5.74	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0288	5.74	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0259	5.74	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0719	5.74	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0605	5.74	PQL	ng/Kg	o (an actoria)
	1,2,3,7,8-PECDF	JBQ	0.0194	5.74	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0602	5.74	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0371	5.74	PQL	ng/Kg	
	OCDD	JB	9.18	11.5	PQL	ng/Kg	
	OCDF	JB	0.325	11.5	PQL	ng/Kg	
SL-078-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	4.17	5.54	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	1.15	5.54	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.175	5.54	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0378	5.54	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0570	5.54	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.107	5.54	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0399	5.54	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0791	5.54	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0406	5.54	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0284	5.54	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0254	5.54	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0729	5.54	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0403	5.54	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0182	1.11	PQL	ng/Kg	
<u> </u>	OCDF	JB	6.95	11.1	PQL	ng/Kg	

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-085-SA5DN-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	田田の田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	1.17 0.132 0.0368 0.0217 0.0361 0.0807 0.0176 0.0891 0.0859 0.0409 0.0230 0.0459 0.0539 0.0128 10.7 0.257	5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.71	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-116-SA5DN-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	あるとくももなるのであるとののの	0.446 0.161 0.0876 0.0924 0.151 0.180 0.163 0.143 0.142 0.173 0.208 0.155 0.208 0.0496 0.0575 1.36 0.177	5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-123-SA5DN-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,7,8-PECDF 2,3,7,8-TCDF 0,3,7,8-TCDF 0,0DD 0,0DF	おおくくまななななななないのである	0.915 0.165 0.0721 0.0892 0.105 0.131 0.0927 0.121 0.115 0.106 0.124 0.104 0.156 0.0449 0.0443 8.05 0.294	5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B		merica est					
Matrix: SO							ing in a far asset
	·	Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-128-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.628	5.72	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0656	5.72	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0461	5.72	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0292	5.72	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0565	5.72	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0247	5.72	PQL	ng/Kg	L (all data ata)
	1,2,3,7,8,9-HXCDF	JBQ	0.0767	5.72	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.0169	5.72	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0555	5.72	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0578	5.72	PQL	ng/Kg	
	OCDD	JB	2.32	11.4	PQL	ng/Kg	
	OCDF	JB	0.183	11.4	PQL	ng/Kg	
L-129-SA5DN-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDF	JB	1.17	5.12	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.235	5.12	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.150	5.12	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.160	5.12	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.560	5.12	PQL	ng/Kg	
	(1,2,3,6,7,8-HXCDF	JB	0.154	5.12	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.394	5.12	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.111	5.12	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0956	5.12	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.190	5.12	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.167	5.12	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.124	5.12	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0376	1.02	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0619	1.02	PQL	ng/Kg	
	OCDF	JB	2.64	10.2	PQL	ng/Kg	
L-131-SA5DN-SB-3.5-4.5	1,2,3,4,6,7,8-HPCDD	JB	0.957	5.58	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.185	5.58	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0738	5.58	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.101	5.58	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JΒ	0.142	5.58	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.125	5.58	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.129	5.58	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.175	5.58	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.117	5.58	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.221	5.58	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.243	5.58	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.125	5.58	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.229	5.58	PQL	ng/Kg	
	2,3,7,8-TCDD	1Ğ	0.0711	1.12	PQL	ng/Kg	
	2,3,7,8-TCDF	ηĞ	0.0674	1.12	PQL	ng/Kg	
	OCDD	JB	9.10	11.2	PQL	ng/Kg	
	OCDF	JB	0.296	11.2	PQL	ng/Kg	

Lab Reporting Batch ID: DX106

Laboratory: LL

EDD Filename: DX106_v1

eQAPP Name: CDM_SSFL_110509

PQL

PQL

PQL

PQL

PQL

ng/Kg

ng/Kg

ng/Kg

ng/Kg

ng/Kg

5.28

5.28

5.28

5.28

10.6

Method: 1613B Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-132-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	いないないのである。	1.21 0.169 0.0487 0.108 0.0838 0.0925 0.0707 0.106 0.0958 0.133 0.123 0.0899 0.150 0.0636	5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.52	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
	2,3,7,8-TCDF OCDF	JQ JB	0.0371 0.453	1.10 11.0	PQL PQL	ng/Kg ng/Kg	
SL-141-SA5DN-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF	#3#########	1.41 0.514 0.480 2.40 0.453 1.23 0.181 0.260 0.511 0.676 0.220 0.0490 0.241	5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-143-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	<u> </u>	0.609 0.0953 0.0341 0.0267 0.0663 0.0200 0.0897 0.0469 0.0727 0.0602 0.0603 2.42 0.154	5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-152-SA5DN-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD	B C B C B B C B B C B C B C B C B C B C	0.662 0.146 0.140 0.275 0.186 0.291	5.28 5.28 5.28 5.28 5.28 5.28 5.28	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1,2,3,7,8-PECDD

1,2,3,7,8-PECDF

2,3,4,7,8-PECDF OCDD

2,3,4,6,7,8-HXCDF

JBQ

JBQ

JBQ

JBQ

JBQ

0.245

0.177

0.206

0.270

1.04

Lab Reporting Batch ID: DX106 Laboratory: LL

EDD Filename: DX106_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

watnx: 50	· · · · · · · · · · · · · · · · · · ·	ı				1	
		Lab		Reporting	RL.		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-154-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.504	5.45	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.121	5.45	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0586	5.45	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0935	5.45	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0927	5.45	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.109	5.45	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.112	5.45	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.133	5.45	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.138	5.45	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.122	5.45	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.180	5.45	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.111	5.45	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.176	5.45	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0636	1.09	PQL	ng/Kg	
	2,3,7,8-TCDF OCDD	J	0.0308	1.09	PQL	ng/Kg	
	OCDF	JB JBQ	1.88 0.334	10.9 10.9	PQL PQL	ng/Kg	
				-		ng/Kg	——————————————————————————————————————
SL-154-SA5DN-SB-9.0-10.0	1,=,=, 1,= 1,1= 1 ===	JBQ	0.519	5.64	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0940	5.64	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0212	5.64	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0564	5.64	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0699	5.64	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0826	5.64	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0728	5.64	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB JB	0.0792	5.64	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JBQ	0.0867 0.119	5.64 5.64	PQL PQL	ng/Kg	·
	11,2,3,7,8-PECDD	JBQ JB	0.119	5.64	PQL	ng/Kg ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.130	5.64	PQL	ng/Kg ng/Kg	
1	2,3,4,7,8-PECDF	JB	0.0710	5.64	PQL	ng/Kg ng/Kg	
	2,3,7,8-TCDD	J	0.0563	1.13	PQL	ng/Kg	
	locdd	JB	1.04	11.3	PQL	пд/Кд	
	OCDF	JBQ	0.170	11.3	PQL	ng/Kg	
SL-165-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.918	5.47	PQL	ng/Kg	
52-100-0A3D14-0B-4.0-0.0	1,2,3,4,6,7,8-HPCDF	JB	0.516	5.47	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0308	5.47	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0388	5.47	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0521	5.47	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0269	5.47	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0282	5.47	PQL	ng/Kg	1204
	1,2,3,7,8,9-HXCDD	JBQ	0.0526	5.47	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.0206	5.47	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0146	5.47	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0657	5.47	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0435	5.47	PQL	ng/Kg	
	OCDD	JB	3.79	10.9	PQL	ng/Kg	
	OCDF	JBQ	0.355	10.9	PQL	ng/Kg	

Lab Reporting Batch ID: DX106

Laboratory: LL

EDD Filename: DX106_v1

eQAPP Name: CDM_SSFL_110509

Matrix: SO									
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag		
SL-165-SA5DN-SB-9.0-10.0	1,2,3,4,7,8,9-HPCDF	JB	0.343	5.30	PQL	ng/Kg			
	1,2,3,4,7,8-HxCDD	J	0.171	5.30	PQL	ng/Kg			
	1,2,3,4,7,8-HXCDF	JB	0.341	5.30	PQL	ng/Kg			
	1,2,3,6,7,8-HXCDD	JB	0.850	5.30	PQL	ng/Kg			
	1,2,3,6,7,8-HXCDF	JB	0.276	5.30	PQL	ng/Kg			
	1,2,3,7,8,9-HXCDD	JB	0.431	5.30	PQL	ng/Kg	I (all datasta		
	1,2,3,7,8,9-HXCDF	JBQ	0.115	5.30	PQL	ng/Kg	J (all detects		
	1,2,3,7,8-PECDD	JBQ	0.191	5.30	PQL	ng/Kg			
	1,2,3,7,8-PECDF	JBQ	0.359	5.30	PQL	ng/Kg			
	2,3,4,6,7,8-HXCDF	JB	0.386	5.30	PQL	ng/Kg			
	2,3,4,7,8-PECDF	JB	0.548	5.30	PQL	ng/Kg			
	2,3,7,8-TCDD	JQ	0.0546	1.06	PQL	ng/Kg			

SAMPLE DELIVERY GROUP

DX107

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

 Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
 30-Jun-2011	SL-181-SA5DN-SB-4.0-5.0	6333642	N	METHOD	1613B	III
30-Jun-2011	SL-181-SA5DN-SB-9.0-10.0	6333643	N	METHOD	1613B	Ш
30-Jun-2011	SL-182-SA5DN-SB-4.0-5.0	6333644	N	METHOD	1613B	111
30-Jun-2011	SL-182-SA5DN-SB-9.0-10.0	6333645	N	METHOD	1613B	Щ
30-Jun-2011	SL-184-SA5DN-SB-4.0-5.0	6333646	N	METHOD	1613B	111
30-Jun-2011	SL-184-SA5DN-SB-9.0-10.0	6333647	N	METHOD	16 1 3B	101
30-Jun-2011	SL-197-SA5DN-SB-4.0-5.0	6333652	N	METHOD	1613B	111
30-Jun-2011	SL-197-SA5DN-SB-9.0-10.0	6333653	N	METHOD	1613B	Ш
30-Jun-2011	SL-196-SA5DN-SB-4.0-5.0	6333650	N	METHOD	1613B	111
30-Jun-2011	SL-196-SA5DN-SB-9.0-10.0	6333651	N	METHOD	1613B	III
30-Jun-2011	SL-203-SA5DN-SB-4.0-5.0	6333654	N	METHOD	1613B	Ш
30-Jun-2011	SL-203-SA5DN-SB-9.0-10.0	6333655	N	METHOD	1613B	Ш
30-Jun-2011	SL-187-SA5DN-SB-4.0-5.0	6333648	N	METHOD	1613B	HI
30-Jun-2011	SL-187-SA5DN-SB-9.0-10.0	6333649	N	METHOD	1613B	111
05-Jul-2011	SL-186-SA5DN-SB-4.0-5.0	6335841	N	METHOD	1613B	III
05-Jul-2011	SL-194-SA5DN-SB-4.0-5.0	6335843	N	METHOD	1613B	ijij
05-Jul-2011	SL-194-SA5DN-SB-9.0-10.0	6335844	N	METHOD	1613B	111
05-Jul-2011	SL-195-SA5DN-SB-4.0-5.0	6335845	N	METHOD	1613B	111
05-Jul-2011	SL-195-SA5DN-SB-9.0-10.0	6335846	N	METHOD	1613B	111
05-Jul-2011	SL-192-SA5DN-SB-4.0-5.0	6335842	N	METHOD	1613B	III

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX107 Laboratory: LL EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA SO Method: 1613B Matrix:

Collected: 6/30/2011 7:30:00 Dilution: 1 Sample ID: SL-181-SA5DN-SB-4.0-5.0 Analysis Type: RES Data DLLab Lab RLReview Reason Analyte Result Qual DL Туре RL Units Qual Code Type 1,2,3,4,6,7,8-HPCDD 1.16 J₿ 0.0362 MDL, 5.55 U В PQL ng/Kg 0.362 JΒ 0.0113 MDL 5.55 PQL U В 1,2,3,4,6,7,8-HPCDF ng/Kg 1,2,3,4,7,8,9-HPCDF 0.0814 **JBQ** 0.0177 MDL 5.55 **PQL** ng/Kg U В 0.0201 MDL PQL В 1,2,3,4,7,8-HXCDF 0.112 **JBQ** 5.55 ng/Kg U Ų 1,2,3,6,7,8-HXCDD 0.0647 JΒ 0.0201 MDL 5.55 PQL ng/Kg ₿ U JB MDL **PQL** В 1,2,3,6,7,8-HXCDF 0.0702 0.0182 5.55 ng/Kg В 1,2,3,7,8,9-HXCDD 0.0777 JB 0.0201 MDL 5.55 **PQL** ng/Kg U 0.0583 JBQ 0.0220 MDL 5.55 PQL U В 1,2,3,7,8,9-HXCDF ng/Kg Z 1,2,3,7,8-PECDD 0.0721 JQ 0.0283 MDL 5.55 PQL ng/Kg J 1,2,3,7,8-PECDF 0.0962 JBQ 0.0153 MDL 5.55 **PQL** ng/Kg U В 2,3,4,6,7,8-HXCDF 0.120 **JBQ** 0.0191 MDL 5.55 **PQL** ng/Kg U ₿ 0.108 JВ 0.0151 MDL 5.55 PQL U В 2,3,4,7,8-PECDF ng/Kg 2,3,7,8-TCDD 1.11 **PQL** U В 0.0441 JBQ 0.0312 MDL ng/Kg z

Sample ID: SL-181-SA5DN-SB-9.0-10.0 Collected: 6/30/2011 7:35:00 Analysis Type: RES Dilution: 1

0.0283

0.0333

MDL

MDL

1.11

11.1

PQL

PQL

ng/Kg

ng/Kg

J U

В

J

JB

0.0425

0.395

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.21	JB	0.0481	MDL	5.96	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.314	JBQ	0.0131	MDL	5.96	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0460	JBQ	0.0216	MDL,	5.96	PQL	ng/Kg	Ü	В
1,2,3,4,7,8-HXCDF	0.0719	JBQ	0.0195	MDL	5.96	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0462	JBQ	0.0234	MDL	5.96	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0596	JB	0.0169	MDL	5.96	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0773	JBQ	0.0239	MDL	5.96	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0459	JQ	0.0332	MDL	5.96	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0461	JBQ	0.0178	MDL	5.96	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.111	JBQ	0.0195	MDL.	5.96	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.114	JBQ	0.0165	MDL	5.96	PQL	ng/Kg	υ	В
OCDD	11.3	JB	0.0307	MDL	11.9	PQL	ng/Kg	J	z
OCDF	0.357	JBQ	0.0461	MDL	11.9	PQL	ng/Kg	· U	В

2,3,7,8-TCDF

OCDF

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVÖÅ Method: 1613B Matrix: SO

Sample ID: SL-182-SA5DN-SB-4.0-5.0 Collected: 6/30/2011 8:10:00 Analysis Type: RES Dilution: 1

Compic 12. C2 102 0. 102 11 02 110 010		• • • • • • • • • • • • • • • • • • • •	initing one ryper						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.711	JB	0.0411	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.219	JB	0.0101	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0682	JBQ	0.0205	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0884	JB	0.0200	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.109	JB	0.0290	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0539	JBQ	0.0168	MDL	5.62	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.251	JBQ	0.0288	MDL	5.62	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.423	JB	0.0260	MDL	5.62	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.106	JBQ	0.0157	MDL	5.62	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0938	JB	0.0186	MDL	5.62	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0557	JBQ	0.0161	MDL	5.62	PQL	ng/Kg	U	В
OCDD	3.06	JB	0.0245	MDL	11.2	PQL	ng/Kg	U	В
OCDF	0.319	JB	0.0501	MDL	11.2	PQL	ng/Kg	U	В

Sample ID: SL-182-SA5DN-SB-9.0-10.0 Collected: 6/30/2011 8:15:00 Analysis Type: RES Dilution: 1

* · · •									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.548	JB	0.0307	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.228	JB	0.0142	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0422	JBQ	0.0241	MDL	5.68	PQL	ng/Kg	Ų	В
1,2,3,4,7,8-HXCDF	0.0688	JB	0.0142	MDL	5.68	PQL	ng/Kg	Ų	В
1,2,3,6,7,8-HXCDD	0.0287	JBQ	0.0185	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0350	JBQ	0.0122	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0600	JBQ	0.0186	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0511	JBQ	0.0178	MDL	5.68	PQL	ng/Kg	Ü	В
1,2,3,7,8-PECDD	0.0258	JQ	0.0209	MDL	5.68	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0195	JBQ	0.0121	MDL	5.68	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0819	JB	0.0137	MDL	5.68	PQL	ng/Kg	Ų	В
2,3,4,7,8-PECDF	0.103	JBQ	0.0111	MDL	5.68	PQL	ng/Kg	U	В
OCDD	2.54	JB	0.0212	MDL	11.4	PQL	ng/Kg	U	В
OCDF	0.281	JBQ	0.0332	MDL	11.4	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-184-SA5DN-SB-4.0-5.0 Collected: 6/30/2011 8:50:00 Analysis Type: RES Dilution: 1

	*****				1				2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	4.24	JB	0.0403	MDL	5.54	PQL	ng/Kg	J	Z		
1,2,3,4,6,7,8-HPCDF	0.764	JB	0.0136	MDL	5.54	PQL	ng/Kg	U	В		
1,2,3,4,7,8,9-HPCDF	0.108	JB	0.0245	MDL	5.54	PQL	ng/Kg	Ų	В		
1,2,3,4,7,8-HxCDD	0.0582	JB	0.0400	MDL	5.54	PQL	ng/Kg	Ų	В		
1,2,3,4,7,8-HXCDF	0.297	JB	0.0352	MDL	5.54	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.297	JB	0.0396	MDL	5.54	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.191	JBQ	0.0299	MDL	5.54	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.324	JB	0.0395	MDL	5.54	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.232	JBQ	0.0381	MDL	5.54	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.105	JQ	0.0364	MDL	5.54	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.204	JBQ	0.0269	MDL	5.54	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.294	JB	0.0333	MDL	5.54	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.666	JB	0.0281	MDL	5.54	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.188	J	0.0503	MDL	1.11	PQL	ng/Kg	J	Z		
OCDF	1.28	JB	0.0473	MDL	11.1	PQL	ng/Kg	U	В		

Sample ID: SL-184-SA5DN-SB-9.0-10.0 Collected: 6/30/2011 9:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.580	JB	0.0314	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.183	JВ	0.00771	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0462	JBQ	0.0150	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0419	JB	0.0117	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0295	JBQ	0.0189	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0448	JB	0.0103	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0425	JB	0.0183	MDL	5.75	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0140	JBQ	0.0129	MDL	5.75	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0389	J	0.0222	MDL	5.75	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0254	JBQ	0.0113	MDL	5.75	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0779	JBQ	0.0113	MDL	5.75	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0665	JB	0.0113	MDL	5.75	PQL	ng/Kg	U	В
OCDD	1.88	JB	0.0243	MDL	11.5	PQL	ng/Kg	Ü	В
OCDF	0.174	JB	0.0340	MDL	11.5	PQL	ng/Kg	Ü	В

^{*} denotes a non-reportable result

Page 3 of 14

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-186-SA5DN-SB-4.0-5.0 Collected: 7/5/2011 7:50:00 AM Analysis Type: RES Dilution: 1

Sample ID. GE-100-SASDIN-GD-4.0-0.0	Conec	tea. 110120	117.00.00	, UIII — U	iii Allalysis Type. 1120				Dilution, I		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.579	JВ	0.0237	MDL	5.80	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.0807	JBQ	0.00654	MDL	5.80	PQL	ng/Kg	U	В		
1,2,3,4,7,8,9-HPCDF	0.0597	JB	0.0155	MDL	5.80	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.0361	JB	0.0145	MDL	5.80	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0319	JBQ	0.0119	MDL	5.80	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.114	JBQ	0.0151	MDL	5.80	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDF	0.0359	JBQ	0.00981	MDL	5.80	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.224	JB	0.0145	MDL	5.80	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.324	JB	0.0143	MDL	5.80	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0499	JBQ	0.0155	MDL	5.80	PQL	ng/Kg	Ų	В		
1,2,3,7,8-PECDF	0.0929	JB	0.00806	MDL	5.80	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.0405	JBQ	0.0112	MDL	5.80	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0693	JB	0.00853	MDL	5.80	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.0195	JBQ	0.0145	MDL	1.16	PQL	ng/Kg	U	В		
2,3,7,8-TCDF	0.0147	JQ	0.0127	MDL	1.16	PQL	ng/Kg	J	Z		
OCDD	2.10	JB	0.0369	MDL	11.6	PQL	ng/Kg	Ü	В		
OCDF	0.194	JBQ	0.0284	MDL	11.6	PQL	ng/Kg	U	В		

Sample ID: SL-187-SA5DN-SB-4.0-5.0 Collected: 6/30/2011 2:35:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.67	JB	0.0313	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.212	JBQ	0.0144	MDL	5.59	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0444	JBQ	0.0227	MDL	5.59	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.129	JBQ	0.0292	MDL	5.59	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.123	JBQ	0.0179	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.195	JB	0.0288	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0982	JB	0.0156	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.353	JB	0.0288	MDL	5.59	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.478	JB	0.0203	MDL	5.59	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.119	J	0.0251	MDL	5.59	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.207	JB	0.0135	MDL	5.59	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0872	JBQ	0.0164	MDL	5.59	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.162	JBQ	0.0127	MDL	5.59	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

9/28/2011 9:41:12 AM ADR version 1.4.0.111 Page 4 of 14

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-187-SA5DN-SB-4.0-5.0 Collected: 6/30/2011 2:35:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.0310	JQ	0.0293	MDL	1.12	PQL	ng/Kg	J	Z
OCDF	0.382	JB	0.0347	MDL	11.2	PQL	ng/Kg	U	В

Sample ID: SL-187-SA5DN-SB-9.0-10.0 Collected: 6/30/2011 2:40:00 Analysis Type: RES Dilution: 1

ample ID. GL-161-GASDN-3B-3.0-10.0	Conec	ten. distriz	011 2.40.0	No Allalysis Type. ICLS				Diagon. 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.718	JВ	0.0356	MDL	5.71	PQL	ng/Kg	υ	В	
1,2,3,4,6,7,8-HPCDF	0.299	JB	0.0113	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.102	JBQ	0.0182	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.133	JB	0.0251	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.208	JB	0.0201	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.154	JBQ	0.0260	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.212	JВ	0.0183	MDL	5.71	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	0.160	JBQ	0.0250	MDL	5.71	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDF	0.174	JB	0.0238	MDL	5.71	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDD	0.253	J	0.0306	MDL	5.71	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.288	JB	0.0154	MDL	5.71	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.174	JВ	0.0181	MDL	5.71	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.290	JB	0.0146	MDL	5.71	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0600	JBQ	0.0274	MDL	1.14	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0882	J	0.0252	MDL	1.14	PQL	ng/Kg	J	Z	
OCDD	2.72	JB	0.0266	MDL	11.4	PQL	ng/Kg	U	В	
OCDF	0.337	JBQ	0.0403	MDL	11.4	PQL	ng/Kg	U	В	

Sample ID: SL-192-SA5DN-SB-4.0-5.0 Collected: 7/5/2011 12:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.746	JB	0.0282	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0810	JBQ	0.00803	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0429	JBQ	0.0171	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0154	JB	0.0130	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0184	JBQ	0.0104	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0648	JB	0.0134	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0285	JBQ	0.00838	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0909	JBQ	0.0129	MDL	5.79	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

9/28/2011 9:41:12 AM ADR version 1.4.0.111 Page 5 of 14

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-192-SA5DN-SB-4.0-5.0 Collected: 7/5/2011 12:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,7,8,9-HXCDF	0.160	JBQ	0.0118	MDL,	5.79	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0176	JB	0.0133	MDL	5.79	PQL	ng/Kg	Ų	В		
1,2,3,7,8-PECDF	0.0148	JBQ	0.00792	MDL	5.79	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	. 0.0307	JBQ	0.00966	MDL	5.79	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0573	JBQ	0.00815	MDL	5.79	PQL	ng/Kg	U	В		
2,3,7,8-TCDF	0.0208	JQ	0.0123	MDL	1.16	PQL	ng/Kg	J	Z		
OCDD	3.95	JB	0.0228	MDL	11.6	PQL	ng/Kg	U	В		
OCDF	0.161	JBQ	0.0268	MDL	11.6	PQL	ng/Kg	Ų	В		

Sample ID: SL-194-SA5DN-SB-4.0-5.0 Collected: 7/5/2011 9:15:00 AM Analysis Type: RES Dilution: 1

Sample ID. SE-134-SASDIN-SD-4.0-5.0	Conec	leu. 110120		Ditation, 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.77	JB	0.0394	MDL	5.66	PQL	ng/Kg	U	В
1;2,3,4,6,7,8-HPCDF	0.345	JB	0.0107	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0432	JBQ	0.0208	MDL,	5.66	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0742	JB	0.0245	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0898	JB	0.0159	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.157	JB	0.0250	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0746	JBQ	0.0130	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.245	JBQ	0.0249	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.312	JB	0.0194	MDL	5.66	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.143	JQ	0.0269	MDL	5.66	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.169	JB	0.0112	MDL	5.66	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0838	JBQ	0.0143	MDL	5.66	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.146	JB	0.0122	MDL	5.66	PQL	ng/Kg	υ	В
2,3,7,8-TCDD	0.0385	JBQ	0.0295	MDL	1.13	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.0540	J	0.0243	MDL	1.13	PQL	ng/Kg	J	Z
OCDF	1.23	JB	0.0461	MDL	11.3	PQL	ng/Kg	U	В

Sample ID: SL-194-SA5DN-SB-9.0-10.0 Collected: 7/5/2011 9:20:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.17	JB	0.0332	MDL	5.84	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.196	JB	0.00779	MDL	5.84	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0505	JBQ	0.0200	MDL	5.84	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

9/28/2011 9:41:12 AM ADR version 1.4.0.111 Page 6 of 14

Lab Reporting Batch ID: DX107

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

EDD Filename: DX107_v1

Method:

Method Category: SVOA 1613B Matrix: SO

Sample ID: SL-194-SA5DN-SB-9.0-10.0 Dilution: 1 Collected: 7/5/2011 9:20:00 AM Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,4,7,8-HXCDF	0.0384	JB	0.0100	MDL	5.84	PQL	ng/Kg	U	В			
1,2,3,6,7,8-HXCDD	0.0664	JB	0.0153	MDL	5.84	PQL	ng/Kg	U	В			
1,2,3,6,7,8-HXCDF	0.0234	JB	0.00815	MDL	5.84	PQL	ng/Kg	U	В			
1,2,3,7,8,9-HXCDD	0.0485	JB	0.0144	MDL	5.84	PQL	ng/Kg	U	В			
1,2,3,7,8,9-HXCDF	0.0568	JBQ	0.0129	MDL	5.84	PQL	ng/Kg	U	В			
1,2,3,7,8-PECDD	0.0206	JBQ	0.0145	MDL	5.84	PQL	ng/Kg	U	В			
1,2,3,7,8-PECDF	0.0164	JB	0.00767	MDL	5.84	PQL	ng/Kg	U	В			
2,3,4,6,7,8-HXCDF	0.0336	JBQ	0.00933	MDL	5.84	PQL	ng/Kg	U	В			
2,3,4,7,8-PECDF	0.0541	JBQ	0.00791	MDL	5.84	PQL	ng/Kg	U	В			
2,3,7,8-TCDD	0.0274	JBQ	0.0152	MDL	1.17	PQL	ng/Kg	U	В			
OCDD	7.18	JB	0.0217	MDL	11.7	PQL	ng/Kg	J	Z			
OCDF	0.520	JB	0.0338	MDL	11.7	PQL	ng/Kg	U	В			

Collected: 7/5/2011 10:35:00 Analysis Type: RES Dilution: 1 Sample ID: SL-195-SA5DN-SB-4.0-5.0

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.519	JB	0.0194	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0763	JВ	0.00632	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0269	JB	0.0156	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0265	JBQ	0.0139	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0185	JBQ	0.0104	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.129	JBQ	0.0143	MDL	5.67	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0245	JB	0.00842	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.145	JBQ	0.0144	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.295	JВ	0.0130	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0597	JBQ	0.00702	MDL	5.67	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0207	JBQ	0.00947	MDL	5.67	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0373	JBQ	0.00749	MDL	5.67	PQL	ng/Kg	υ	В
OCDD	3.18	JB	0.0240	MDL.	11.3	PQL	ng/Kg	U	В
OCDF	0.130	JВ	0.0310	MDL	11.3	PQL	ng/Kg	U	В

Collected: 7/5/2011 10:40:00 Analysis Type: RES Sample ID: SL-195-SA5DN-SB-9.0-10.0 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.65	JB	0.0323	MDL	5.79	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

ADR version 1.4.0.111 9/28/2011 9:41:12 AM Page 7 of 14

Lab Reporting Batch ID: DX107

Laboratory: LL

EDD Filename: DX107_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B

Matrix: SO

Sample ID: SL-195-SA5DN-SB-9.0-10.0 Collected: 7/5/2011 10:40:00 Analysis Type: RES Dilution: 1

· · · · · · · · · · · · · · · · · · ·					,	, ,			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.261	JB	0.0146	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0332	JBQ	0.0158	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0986	JBQ	0.0230	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0381	JB	0.0140	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0652	JBQ	0.0194	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0375	JВ	0.0136	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0262	JQ	0.0227	MDL	5.79	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0261	JBQ	0.0113	MDL	5.79	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.0594	JB	0.0107	MDL	5.79	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0512	JBQ	0.0115	MDL	5.79	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0297	JBQ	0.0244	MDL	1.16	PQL	ng/Kg	V	В
OCDF	0.490	JB	0.0386	MDL	11.6	PQL	ng/Kg	υ	В

Sample ID: SL-196-SA5DN-SB-4.0-5.0

Collected: 6/30/2011 11:45:00

Analysis Type: RES

Dilution: 1

Page 8 of 14

Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1.01	JBQ	0.0337	MDL	5.62	PQL	ng/Kg	U	В
0.254	JB	0.0147	MDL,	5.62	PQL	ng/Kg	U	В
0.0572	JB	0.0251	MDL	5.62	PQL	ng/Kg	U	В
0.0791	JBQ	0.0296	MDL	5.62	PQL	ng/Kg	U	В
0.130	JB	0.0209	MDL	5.62	PQL	ng/Kg	U	В
0.199	JB	0.0301	MDL	5.62	PQL	ng/Kg	U	В
0.120	JBQ	0.0184	MDL	5.62	PQL	ng/Kg	U	В
0.340	JB	0.0280	MDL	5.62	PQL	ng/Kg	J	Z
0.413	JB	0.0238	MDL	5.62	PQL	пд/Кд	J	Z
0.138	J	0.0290	MDL	5.62	PQL	ng/Kg	J	Z
0.183	JB	0.0135	MDL.	5.62	PQL	ng/Kg	J	Z
0.137	JB	0.0190	MDL	5.62	PQL	ng/Kg	U	В
0.173	JB	0.0135	MDL	5.62	PQL	ng/Kg	υ	В
0.0428	JBQ	0.0274	MDL	1.12	PQL	ng/Kg	υ	В
0.0345	J	0.0298	MDL	1.12	PQL	ng/Kg	J	Z
4.41	JB	0.0225	MDL	11.2	PQL	ng/Kg	υ	В
0.328	JBQ	0.0377	MDL	11.2	PQL	ng/Kg	U	В
	Result 1.01 0.254 0.0572 0.0791 0.130 0.199 0.120 0.340 0.413 0.138 0.137 0.173 0.0428 0.0345 4.41	Result Qual 1.01 JBQ 0.254 JB 0.0572 JB 0.0791 JBQ 0.130 JB 0.199 JB 0.120 JBQ 0.340 JB 0.413 JB 0.138 J 0.183 JB 0.137 JB 0.173 JB 0.0428 JBQ 0.0345 J 4.41 JB	Result Qual DL 1.01 JBQ 0.0337 0.254 JB 0.0147 0.0572 JB 0.0251 0.0791 JBQ 0.0296 0.130 JB 0.0209 0.199 JB 0.0301 0.120 JBQ 0.0184 0.340 JB 0.0280 0.413 JB 0.0238 0.138 J 0.0290 0.183 JB 0.0135 0.137 JB 0.0190 0.173 JB 0.0135 0.0428 JBQ 0.0274 0.0345 J 0.0298 4.41 JB 0.0225	Result Qual DL Type 1.01 JBQ 0.0337 MDL 0.254 JB 0.0147 MDL 0.0572 JB 0.0251 MDL 0.0791 JBQ 0.0296 MDL 0.130 JB 0.0209 MDL 0.199 JB 0.0301 MDL 0.120 JBQ 0.0184 MDL 0.340 JB 0.0280 MDL 0.413 JB 0.0238 MDL 0.138 J 0.0290 MDL 0.183 JB 0.0135 MDL 0.137 JB 0.0135 MDL 0.0428 JBQ 0.0274 MDL 0.0345 J 0.0298 MDL 4.41 JB 0.0225 MDL	Result Qual DL Type RL 1.01 JBQ 0.0337 MDL 5.62 0.254 JB 0.0147 MDL 5.62 0.0572 JB 0.0251 MDL 5.62 0.0791 JBQ 0.0296 MDL 5.62 0.130 JB 0.0209 MDL 5.62 0.199 JB 0.0301 MDL 5.62 0.120 JBQ 0.0184 MDL 5.62 0.340 JB 0.0280 MDL 5.62 0.413 JB 0.0238 MDL 5.62 0.138 J 0.0290 MDL 5.62 0.183 JB 0.0135 MDL 5.62 0.137 JB 0.0135 MDL 5.62 0.173 JB 0.0135 MDL 5.62 0.0428 JBQ 0.0274 MDL 1.12 0.0345 J 0.0298 MDL <	Result Qual DL Type RL Type 1.01 JBQ 0.0337 MDL 5.62 PQL 0.254 JB 0.0147 MDL 5.62 PQL 0.0572 JB 0.0251 MDL 5.62 PQL 0.0791 JBQ 0.0296 MDL 5.62 PQL 0.130 JB 0.0209 MDL 5.62 PQL 0.199 JB 0.0301 MDL 5.62 PQL 0.120 JBQ 0.0184 MDL 5.62 PQL 0.340 JB 0.0280 MDL 5.62 PQL 0.413 JB 0.0280 MDL 5.62 PQL 0.138 J 0.0290 MDL 5.62 PQL 0.133 JB 0.0135 MDL 5.62 PQL 0.137 JB 0.0135 MDL 5.62 PQL 0.0428 JBQ 0.0274 MD	Result Qual DL Type RL Type Units 1.01 JBQ 0.0337 MDL 5.62 PQL ng/Kg 0.254 JB 0.0147 MDL 5.62 PQL ng/Kg 0.0572 JB 0.0251 MDL 5.62 PQL ng/Kg 0.0791 JBQ 0.0296 MDL 5.62 PQL ng/Kg 0.130 JB 0.0209 MDL 5.62 PQL ng/Kg 0.199 JB 0.0301 MDL 5.62 PQL ng/Kg 0.120 JBQ 0.0184 MDL 5.62 PQL ng/Kg 0.340 JB 0.0280 MDL 5.62 PQL ng/Kg 0.413 JB 0.0238 MDL 5.62 PQL ng/Kg 0.138 J 0.0290 MDL 5.62 PQL ng/Kg 0.137 JB 0.0135 MDL 5.62 PQL	Lab Result Lab Qual DL Type RL Type RL Type RL Type Review Qual 1.01 JBQ 0.0337 MDL 5.62 PQL ng/Kg U 0.254 JB 0.0147 MDL 5.62 PQL ng/Kg U 0.0572 JB 0.0251 MDL 5.62 PQL ng/Kg U 0.0791 JBQ 0.0296 MDL 5.62 PQL ng/Kg U 0.130 JB 0.0296 MDL 5.62 PQL ng/Kg U 0.199 JB 0.0301 MDL 5.62 PQL ng/Kg U 0.120 JBQ 0.0184 MDL 5.62 PQL ng/Kg U 0.340 JB 0.0280 MDL 5.62 PQL ng/Kg J 0.413 JB 0.0280 MDL 5.62 PQL ng/Kg J 0.183 JB 0.0135 MDL 5

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-196-SA5DN-SB-9.0-10.0 Collected: 6/30/2011 11:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.548	JB	0.0333	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.224	JB	0.0116	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0643	JBQ	0.0187	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0382	JB	0.0234	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0845	JBQ	0.0150	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0685	JBQ	0.0232	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0408	JB	0.0134	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0925	JB	0.0216	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0738	JBQ	0.0176	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0441	J	0.0265	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0494	JBQ	0.0120	MDL	5.57	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0874	JBQ	0.0141	MDL	5.57	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0779	JBQ	0.0121	MDL	5.57	PQL	ng/Kg	U	В
OCDD	2.55	JB	0.0247	MDL	11.1	PQL	ng/Kg	U	В
OCDF	0.335	JBQ	0.0325	MDL	11.1	PQL	ng/Kg	U	В

Sample ID: SL-197-SA5DN-SB-4.0-5.0 Collected: 6/30/2011 11:00:00 Analysis Type: RES Dilution: 1

Sample ID. SE-101-SAUDIT-OD-4.0-0.0	Conec	Conected. Granzott Thousand Analysis Type. Neo								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.761	JB	0.0366	MDL	5.62	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.259	JBQ	0.0109	MDL	5.62	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0237	JBQ	0.0192	MDL.	5.62	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0292	JBQ	0.0271	MDL	5.62	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0667	JВ	0.0201	MDL	5.62	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.141	JB	0.0265	MDL	5.62	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0343	JB	0.0173	MDL	5.62	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.301	JB	0.0262	MDL	5.62	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.276	JBQ	0.0227	MDL	5.62	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0414	JQ	0.0327	MDL	5.62	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0778	JB	0.0145	MDL	5.62	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0970	JB	0.0175	MDL	5.62	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0758	JB	0.0140	MDL	5.62	PQL	ng/Kg	U	В	
OCDD	3.10	JB	0.0296	MDL	11.2	PQL	ng/Kg	U	В	
OCDF	0.289	JB	0.0426	MDL	11.2	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-197-SA5DN-SB-9.0-10.0 Collected: 6/30/2011 11:10:00 Analysis Type: RES Dilution: 1

•									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.634	JB	0.0331	MDL	5.78	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.149	JB	0.0102	MDL	5.78	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0234	JB	0.0161	MDL.	5.78	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0318	JBQ	0.0187	MDL	5.78	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0253	JBQ	0.0196	MDL	5.78	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0273	JB	0.0167	MDL	5.78	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0496	JBQ	0.0188	MDL	5.78	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0569	JBQ	0.0171	MDL	5.78	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0547	JBQ	0.0130	MDL	5.78	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0819	JB	0.0134	MDL	5.78	PQL	ng/Kg	U	В
OCDD	2.94	JB	0.0247	MDL	11.6	PQL	ng/Kg	υ	В
OCDF	0.183	JB	0.0371	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-203-SA5DN-SB-4.0-5.0 Collected: 6/30/2011 1:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.764	JB	0.0328	MDL	5.74	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.140	JBQ	0.00739	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0246	JBQ	0.0125	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0292	JB	0.0265	MDL	5.74	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.173	JB	0.0265	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0304	JB	0.0136	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.307	JB	0.0240	MDL	5.74	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.414	JВ	0.0179	MDL	5.74	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0498	JQ	0.0260	MDL	5.74	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0954	JB	0.0113	MDL	5.74	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0510	JBQ	0.0147	MDL	5.74	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0774	JBQ	0.0123	MDL	5.74	PQL	ng/Kg	U	В
OCDD	3.73	JB	0.0239	MDL	11.5	PQL	ng/Kg	U	В
OCDF	0.251	JBQ	0.0348	MDL	11.5	PQL	ng/Kg	U	В

Sample ID: SL-203-SA5DN-SB-9.0-10.0 Collected: 6/30/2011 2:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.604	JB	0.0320	MDL	5.75	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-203-SA5DN-SB-9.0-10.0	Collec	Collected: 6/30/2011 2:00:00					Analysis Type: RES				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDF	0.127	JBQ	0.00902	MDL	5.75	PQL	ng/Kg	U	В		
1,2,3,4,7,8,9-HPCDF	0.0314	JB	0.0157	MDL	5.75	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0428	JB	0.0173	MDL	5.75	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.0594	JB	0.0192	MDL	5.75	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDF	0.0169	JB	0.0138	. MDL	5.75	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.0362	JB	0.0188	MDL	5.75	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.0284	JBQ	0.0156	MDL	5.75	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0295	J	0.0258	MDL	5.75	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.0265	JBQ	0.0126	MDL	5.75	PQL	ng/Kg	υ°	В		
2,3,4,6,7,8-HXCDF	0.0476	JB	0.0116	MDL	5.75	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0440	JB	0.0136	MDL	5.75	PQL	ng/Kg	U	В		
OCDD	2.34	JB	0.0280	MDL	11.5	PQL	ng/Kg	U	В		
OCDF	0.188	JB	0.0392	MDL	11.5	PQL	ng/Kg	U	В		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX107

Laboratory: LL EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
c	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Laboratory Triplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX107 Laboratory: LL
EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Fliename: DX1	.07_V1	eQAPP Name: CDIVI_55FL_
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
1	Internal Standard Estimation	
Ī	Internal Standard Rejection	
L	Laboratory Control Precision	
Ĺ	Laboratory Control Spike Lower Estimation	
Ļ	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
M	Continuing Tune	
М	Initial Tune	
М	Performance Evaluation Mixture	
M	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Laboratory Triplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX107

Lab Reporting Batch ID: DX107 Laboratory: LL EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2000B371504	7/22/2011 3:04:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD OCDD OCDD	0.435 ng/Kg 0.186 ng/Kg 0.0707 ng/Kg 0.0348 ng/Kg 0.0560 ng/Kg 0.0452 ng/Kg 0.0447 ng/Kg 0.0497 ng/Kg 0.0517 ng/Kg 0.0351 ng/Kg 0.111 ng/Kg 0.0888 ng/Kg 0.0409 ng/Kg 0.915 ng/Kg 0.300 ng/Kg	SL-181-SA5DN-SB-4.0-5.0 SL-181-SA5DN-SB-9.0-10.0 SL-182-SA5DN-SB-9.0-10.0 SL-182-SA5DN-SB-9.0-10.0 SL-184-SA5DN-SB-9.0-10.0 SL-184-SA5DN-SB-9.0-10.0 SL-187-SA5DN-SB-9.0-10.0 SL-197-SA5DN-SB-9.0-10.0 SL-194-SA5DN-SB-9.0-10.0 SL-196-SA5DN-SB-9.0-10.0 SL-196-SA5DN-SB-9.0-10.0 SL-197-SA5DN-SB-9.0-10.0 SL-197-SA5DN-SB-9.0-10.0 SL-197-SA5DN-SB-9.0-10.0 SL-203-SA5DN-SB-4.0-5.0 SL-203-SA5DN-SB-4.0-5.0 SL-203-SA5DN-SB-4.0-5.0
BLK2070B370640	7/29/2011 6:40:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 2,3,7,8,9-HXCDF 2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-PECDF	0.349 ng/Kg 0.0945 ng/Kg 0.0650 ng/Kg 0.0167 ng/Kg 0.0418 ng/Kg 0.0256 ng/Kg 0.0189 ng/Kg 0.0406 ng/Kg 0.0653 ng/Kg 0.0265 ng/Kg 0.0236 ng/Kg 0.0463 ng/Kg 0.0579 ng/Kg 0.0791 ng/Kg 0.791 ng/Kg	SL-186-SA5DN-SB-4.0-5.0 SL-192-SA5DN-SB-4.0-5.0 SL-194-SA5DN-SB-9.0-10.0 SL-195-SA5DN-SB-4.0-5.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-181-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1,16 ng/Kg	1.16U ng/Kg
SL-181-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.362 ng/Kg	0.362U ng/Kg
SL-181-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0814 ng/Kg	0.0814U ng/Kg
SL-181-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.112 ng/Kg	0.112U ng/Kg
SL-181-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0647 ng/Kg	0.0647U ng/Kg
SL-181-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0702 ng/Kg	0.0702U ng/Kg
SL-181-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0777 ng/Kg	0.0777U ng/Kg
SL-181-\$A5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0583 ng/Kg	0.0583U ng/Kg
SL-181-SA5DN-\$B-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0962 ng/Kg	0.0962U ng/Kg
SL-181-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.120 ng/Kg	0,120U ng/Kg
SL-181-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.108 ng/Kg	0.108U ng/Kg
SL-181-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0,0441 ng/Kg	0.0441U ng/Kg
SL-181-SA5DN-SB-4.0-5.0(RES)	OCDF	0.395 ng/Kg	0.395U ng/Kg
SL-181-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	1.21 ng/Kg	1.21U ng/Kg
SL-181-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.314 ng/Kg	0.314U ng/Kg
SL-181-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0460 ng/Kg	0.0460U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 9:40:44 AM ADR version 1.4.0.111 Page 1 of 8

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	and the second second second second second second second second second second second second second second seco			
Method Blar Sample ID	ık	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-181-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0719 ng/Kg	0.0719U ng/Kg
SL-181-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0462 ng/Kg	0.0462U ng/Kg
SL-181-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0596 ng/Kg	0.0596U ng/Kg
SL-181-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0773 ng/Kg	0.0773U ng/Kg
SL-181-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0461 ng/Kg	0.0461U ng/Kg
SL-181-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.111 ng/Kg	0.111U ng/Kg
SL-181-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.114 ng/Kg	0.114U ng/Kg
SL-181-SA5DN-SB-9.0-10.0(RES)	OCDF	0.357 ng/Kg	0.357U ng/Kg
SL-182-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.711 ng/Kg	0.711U ng/Kg
SL-182-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.219 ng/Kg	0.219U ng/Kg
SL-182-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0682 ng/Kg	0.0682U ng/Kg
SL-182-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0884 ng/Kg	0.0884U ng/Kg
SL-182-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.109 ng/Kg	0.109U ng/Kg
SL-182-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0539 ng/Kg	0.0539U ng/Kg
SL-182-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.106 ng/Kg	0,106U ng/Kg
SL-182-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0938 ng/Kg	0.0938U ng/Kg
SL-182-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0557 ng/Kg	0.0557U ng/Kg
SL-182-SA5DN-SB-4.0-5.0(RES)	OCDD	3,06 ng/Kg	3,06U ng/Kg
SL-182-SA5DN-SB-4.0-5.0(RES)	OCDF	0,319 ng/Kg	0.319U ng/Kg
SL-182-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.548 ng/Kg	0.548U ng/Kg
SL-182-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.228 ng/Kg	0.228U ng/Kg
SL-182-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0422 ng/Kg	0,0422U ng/Kg
SL-182-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0688 ng/Kg	0.0688U ng/Kg
SL-182-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0287 ng/Kg	0,0287U ng/Kg
SL-182-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0350 ng/Kg	0.0350U ng/Kg
SL-182-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0600 ng/Kg	0.0600U ng/Kg
SL-182-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0511 ng/Kg	0.0511U ng/Kg
SL-182-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0,0195 ng/Kg	0,0195U ng/Kg
SL-182-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0819 ng/Kg	0.0819U ng/Kg
SL-182-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.103 ng/Kg	0.103U ng/Kg
SL-182-SA5DN-SB-9.0-10.0(RES)	OCDD	2.54 ng/Kg	2.54U ng/Kg
SL-182-SA5DN-SB-9.0-10.0(RES)	OCDF	0.281 ng/Kg	0.281U ng/Kg
SL-184-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.764 ng/Kg	0.764U ng/Kg
SL-184-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.108 ng/Kg	0,108U ng/Kg
SL-184-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0582 ng/Kg	0.0582U ng/Kg
SL-184-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.297 ng/Kg	0.297U ng/Kg
SL-184-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.191 ng/Kg	0.191U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 9:40:44 AM ADR version 1.4.0.111 Page 2 of 8

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	and the second s			
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-184-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.232 ng/Kg	0.232U ng/Kg
SL-184-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.294 ng/Kg	0.294U ng/Kg
SL-184-SA5DN-SB-4.0-5.0(RES)	OCDF	1.28 ng/Kg	1.28U ng/Kg
SL-184-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.580 ng/Kg	0.580U ng/Kg
SL-184-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.183 ng/Kg	0.183U ng/Kg
SL-184-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0462 ng/Kg	0.0462U ng/Kg
SL-184-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0419 ng/Kg	0.0419U ng/Kg
SL-184-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0,0295 ng/Kg	0.0295U ng/Kg
SL-184-SA5DN-SB-9,0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0448 ng/Kg	0.0448U ng/Kg
SL-184-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0425 ng/Kg	0.0425U ng/Kg
SL-184-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0140 ng/Kg	0.0140U ng/Kg
SL-184-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0254 ng/Kg	0.0254U ng/Kg
SL-184-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0779 ng/Kg	0.0779U ng/Kg
SL-184-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0665 ng/Kg	0.0665U ng/Kg
SL-184-SA5DN-SB-9.0-10.0(RES)	OCDD	1.88 ng/Kg	1,88U ng/Kg
SL-184-SA5DN-SB-9.0-10.0(RES)	OCDF	0.174 ng/Kg	. 0.174U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.579 ng/Kg	0.579U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0807 ng/Kg	0.0807 U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0597 ng/Kg	0.0597U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0361 ng/Kg	0.0361U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0319 ng/Kg	0.0319U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.114 ng/Kg	0,114U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0359 ng/Kg	0.0359U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.324 ng/Kg	0.324U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0499 ng/Kg	0.0499U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0929 ng/Kg	0.0929U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0405 ng/Kg	0.0405U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0693 ng/Kg	0.0693U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0195 ng/Kg	0.0195U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	OCDD	2.10 ng/Kg	2.10U ng/Kg
SL-186-SA5DN-SB-4.0-5.0(RES)	OCDF	0.194 ng/Kg	0.194U ng/Kg
SL-187-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.67 ng/Kg	1.67U ng/Kg
SL-187-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.212 ng/Kg	0.212U ng/Kg
SL-187-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0444 ng/Kg	0.0444U ng/Kg
SL-187-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.129 ng/Kg	0.129U ng/Kg
SL-187-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.123 ng/Kg	0.123U ng/Kg
SL-187-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.195 ng/Kg	0,195U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 9:40:44 AM

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

	1613B SO				
Method Blank Sample ID	•	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-187-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0982 ng/Kg	0.0982U ng/Kg
SL-187-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0872 ng/Kg	0.0872U ng/Kg
SL-187-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.162 ng/Kg	0.162U ng/Kg
SL-187-SA5DN-SB-4.0-5.0(RES)	OCDF	0,382 ng/Kg	0.382U ng/Kg
SL-187-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.718 ng/Kg	0.718U ng/Kg
SL-187-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.299 ng/Kg	0.299U ng/Kg
SL-187-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.102 ng/Kg	0.102U ng/Kg
SL-187-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0,133 ng/Kg	0.133U ng/Kg
SL-187-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.208 ng/Kg	0.208U ng/Kg
SL-187-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.154 ng/Kg	0.154U ng/Kg
SL-187-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.212 ng/Kg	0.212U ng/Kg
SL-187-SA5DN-SB-9,0-10.0(RES)	1,2,3,7,8,9-HXCDD	0,160 ng/Kg	0.160U ng/Kg
SL-187-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.174 ng/Kg	0.174U ng/Kg
SL-187-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.174 ng/Kg	0.174U ng/Kg
SL-187-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.290 ng/Kg	0.290U ng/Kg
SL-187-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0600 ng/Kg	0.0600U ng/Kg
SL-187-SA5DN-SB-9.0-10.0(RES)	OCDD	2.72 ng/Kg	2.72U ng/Kg
SL-187-SA5DN-SB-9.0-10.0(RES)	OCDF	0.337 ng/Kg	0.337U ng/Kg
SL-192-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.746 ng/Kg	0.746U ng/Kg
SL-192-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0810 ng/Kg	0.0810U ng/Kg
SL-192-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0429 ng/Kg	0.0429U ng/Kg
SL-192-SA5DN-\$B-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0154 ng/Kg	0.0154U ng/Kg
SL-192-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0184 ng/Kg	0.0184U ng/Kg
SL-192-SA5DN-\$B-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0648 ng/Kg	0.0648U ng/Kg
SL-192-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0285 ng/Kg	0.0285U ng/Kg
SL-192-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0909 ng/Kg	0.0909U ng/Kg
SL-192-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.160 ng/Kg	0.160U ng/Kg
SL-192-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0176 ng/Kg	0.0176U ng/Kg
SL-192-SA5DN-\$B-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0148 ng/Kg	0.0148U ng/Kg
SL-192-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0307 ng/Kg	0.0307U ng/Kg
SL-192-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0573 ng/Kg	0.0573U ng/Kg
SL-192-SA5DN-SB-4.0-5.0(RES)	OCDD	3.95 ng/Kg	3.95U ng/Kg
SL-192-SA5DN-SB-4.0-5.0(RES)	OCDF	0.161 ng/Kg	0.161U ng/Kg
SL-194-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.77 ng/Kg	1.77U ng/Kg
SL-194-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.345 ng/Kg	0.345U ng/Kg
SL-194-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0432 ng/Kg	0.0432U ng/Kg
SL-194-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0742 ng/Kg	0.0742U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 9:40:44 AM

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO	B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-194-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0898 ng/Kg	0.0898U ng/Kg
SL-194-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.157 ng/Kg	0.157U ng/Kg
SL-194-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0746 ng/Kg	0.0746U ng/Kg
SL-194-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.245 ng/Kg	0.245U ng/Kg
SL-194-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.169 ng/Kg	0.169U ng/Kg
SL-194-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0838 ng/Kg	0.0838U ng/Kg
SL-194-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,146 ng/Kg	0.146U ng/Kg
SL-194-\$A5DN-\$B-4.0-5.0(RES)	2,3,7,8-TCDD	0.0385 ng/Kg	0.0385U ng/Kg
SL-194-SA5DN-SB-4.0-5.0(RES)	OCDF	1.23 ng/Kg	1.23U ng/Kg
SL-194-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	1.17 ng/Kg	1.17U ng/Kg
SL-194-SA5DN-SB-9,0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0,196 ng/Kg	0.196U ng/Kg
SL-194-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0505 ng/Kg	0.0505U ng/Kg
SL-194-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0384 ng/Kg	0.0384U ng/Kg
SL-194-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0664 ng/Kg	0.0664U ng/Kg
SL-194-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0234 ng/Kg	0.0234U ng/Kg
SL-194-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0485 ng/Kg	0.0485U ng/Kg
SL-194-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0568 ng/Kg	0.0568U ng/Kg
SL-194-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0206 ng/Kg	0.0206U ng/Kg
SL-194-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0164 ng/Kg	0.0164U ng/Kg
SL-194-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0,0336 ng/Kg	0.0336U ng/Kg
SL-194-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0541 ng/Kg	0.0541U ng/Kg
SL-194-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0,0274 ng/Kg	0.0274U ng/Kg
SL-194-SA5DN-SB-9.0-10.0(RES)	OCDF	0.520 ng/Kg	0,520U ng/Kg
SL-195-SA5DN-SB-4,0-5,0(RES)	1,2,3,4,6,7,8-HPCDD	0.519 ng/Kg	0.519U ng/Kg
SL-195-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0763 ng/Kg	0.0763U ng/Kg
SL-195-SA5DN-SB-4,0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0269 ng/Kg	0.0269U ng/Kg
SL-195-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0265 ng/Kg	0.0265U ng/Kg
SL-195-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0,0185 ng/Kg	0.0185U ng/Kg
SL-195-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0245 ng/Kg	0.0245U ng/Kg
SL-195-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.145 ng/Kg	0.145U ng/Kg
SL-195-\$A5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.295 ng/Kg	0.295U ng/Kg
SL-195-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0597 ng/Kg	0.0597U ng/Kg
SL-195-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0207 ng/Kg	0.0207U ng/Kg
SL-195-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0373 ng/Kg	0.0373U ng/Kg
SL-195-SA5DN-SB-4.0-5.0(RES)	OCDD	3.18 ng/Kg	3.18U ng/Kg
SL-195-\$A5DN-SB-4.0-5.0(RES)	OCDF	0.130 ng/Kg	0.130U ng/Kg
SL-195-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	1.65 ng/Kg	1.65U ng/Kg

9/28/2011 9:40:44 AM ADR version 1.4.0.111 Page 5 of 8

Lab Reporting Batch ID: DX107 Laboratory: LL EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SQ

Matrix:	SO				
Method Blan Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-195-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.261 ng/Kg	0.261U ng/Kg
SL-195-SA5DN-SB-9,0-10,0(RES)	1,2,3,4,7,8-HXCDF	0.0332 ng/Kg	0,0332U ng/Kg
SL-195-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0986 ng/Kg	0.0986U ng/Kg
SL-195-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0381 ng/Kg	0.0381U ng/Kg
SL-195-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0652 ng/Kg	0.0652U ng/Kg
SL-195-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0375 ng/Kg	0.0375U ng/Kg
SL-195-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0261 ng/Kg	0.0261U ng/Kg
SL-195-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0594 ng/Kg	0.0594U ng/Kg
SL-195-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0512 ng/Kg	0.0512U ng/Kg
SL-195-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0297 ng/Kg	0,0297U ng/Kg
SL-195-SA5DN-SB-9.0-10.0(RES)	OCDF	0.490 ng/Kg	0.490U ng/Kg
SL-196-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1,01 ng/Kg	1,01U ng/Kg
SL-196-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.254 ng/Kg	0.254U ng/Kg
SL-196-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0572 ng/Kg	0.0572U ng/Kg
SL-196-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0791 ng/Kg	0.0791U ng/Kg
SL-196-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0,130 ng/Kg	0.130U ng/Kg
SL-196-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.199 ng/Kg	0.199U ng/Kg
SL-196-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.120 ng/Kg	0.120U ng/Kg
SL-196-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.137 ng/Kg	0.137U ng/Kg
SL-196-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.173 ng/Kg	0.173U ng/Kg
SL-196-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0428 ng/Kg	0.0428U ng/Kg
SL-196-SA5DN-SB-4.0-5.0(RES)	OCDD	4.41 ng/Kg	4.41U ng/Kg
SL-196-SA5DN-SB-4.0-5.0(RES)	OCDF	0.328 ng/Kg	0.328U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.548 ng/Kg	0.548U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.224 ng/Kg	0.224U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0643 ng/Kg	0.0643U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0382 ng/Kg	0.0382U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0845 ng/Kg	0.0845U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0685 ng/Kg	0.0685U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0408 ng/Kg	0.0408U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0925 ng/Kg	0.0925U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0738 ng/Kg	0.0738U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0494 ng/Kg	0.0494U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0874 ng/Kg	0.0874U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0779 ng/Kg	0.0779U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	OCDD	2.55 ng/Kg	2.55U ng/Kg
SL-196-SA5DN-SB-9.0-10.0(RES)	OCDF	0.335 ng/Kg	0.335U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 9:40:44 AM ADR version 1.4.0.111 Page 6 of 8

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	and the second s			
Method Blar Sample ID	ık	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-197-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.761 ng/Kg	0.761U ng/Kg
SL-197-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.259 ng/Kg	0.259U ng/Kg
SL-197-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0237 ng/Kg	0.0237U ng/Kg
SL-197-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0292 ng/Kg	0.0292U ng/Kg
SL-197-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0667 ng/Kg	0.0667U ng/Kg
SL-197-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.141 ng/Kg	0.141U ng/Kg
SL-197-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0343 ng/Kg	0.0343U ng/Kg
SL-197-SA5DN-SB-4,0-5.0(RES)	1,2,3,7,8-PECDF	0.0778 ng/Kg	0.0778U ng/Kg
SL-197-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0970 ng/Kg	0,0970U ng/Kg
SL-197-\$A5DN-\$B-4.0-5.0(RES)	2.3.4.7.8-PECDF	0.0758 ng/Kg	0.0758U ng/Kg
SL-197-SA5DN-SB-4.0-5.0(RES)	OCDD	3.10 ng/Kg	3.10U ng/Kg
SL-197-SA5DN-SB-4.0-5.0(RES)	OCDF	0.289 ng/Kg	0.289U ng/Kg
\$L-197-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0,634 ng/Kg	0.634U ng/Kg
SL-197-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.149 ng/Kg	0.149U ng/Kg
SL-197-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0234 ng/Kg	0.0234U ng/Kg
SL-197-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0318 ng/Kg	0.0318U ng/Kg
SL-197-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0253 ng/Kg	0,0253U ng/Kg
SL-197-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0273 ng/Kg	0.0273U ng/Kg
SL-197-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0496 ng/Kg	0.0496U ng/Kg
SL-197-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0569 ng/Kg	0.0569U ng/Kg
SL-197-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0547 ng/Kg	0.0547U ng/Kg
SL-197-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0819 ng/Kg	0,0819U ng/Kg
SL-197-SA5DN-SB-9.0-10.0(RES)	OCDD	2.94 ng/Kg	2.94U ng/Kg
SL-197-SA5DN-SB-9.0-10.0(RES)	OCDF	0.183 ng/Kg	0.183U ng/Kg
SL-203-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.764 ng/Kg	0.764U ng/Kg
SL-203-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.140 ng/Kg	0.140U ng/Kg
SL-203-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0,0246 ng/Kg	0.0246U ng/Kg
SL-203-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0292 ng/Kg	0.0292U ng/Kg
SL-203-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.173 ng/Kg	0.173U ng/Kg
SL-203-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0304 ng/Kg	0.0304U ng/Kg
SL-203-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0954 ng/Kg	0.0954U ng/Kg
SL-203-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0510 ng/Kg	0.0510U ng/Kg
SL-203-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0774 ng/Kg	0.0774U ng/Kg
SL-203-SA5DN-SB-4.0-5.0(RES)	OCDD	3.73 ng/Kg	3.73U ng/Kg
SL-203-SA5DN-SB-4.0-5.0(RES)	OCDF	0.251 ng/Kg	0.251U ng/Kg
SL-203-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.604 ng/Kg	0.604U ng/Kg
SL-203-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.127 ng/Kg	0.127U ng/Kg

9/28/2011 9:40:45 AM ADR version 1.4.0.111 Page 7 of 8

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

	1613B SO	and the second of the second second second second second second second second second second second second second			
Method Blank Sample ID	(Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-203-\$A5DN-SB-9.0-10.0(RE\$)	1,2,3,4,7,8,9-HPCDF	0.0314 ng/Kg	0.0314U ng/Kg
SL-203-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0428 ng/Kg	0.0428U ng/Kg
SL-203-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0594 ng/Kg	0.0594U ng/Kg
SL-203-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0169 ng/Kg	0.0169U ng/Kg
SL-203-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0362 ng/Kg	0.0362U ng/Kg
SL-203-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0284 ng/Kg	0.0284U ng/Kg
SL-203-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0265 ng/Kg	0.0265U ng/Kg
SL-203-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0,0476 ng/Kg	0.0476U ng/Kg
SL-203-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0440 ng/Kg	0.0440U ng/Kg
SL-203-SA5DN-SB-9.0-10.0(RES)	OCDD	2.34 ng/Kg	2.34U ng/Kg
SL-203-SA5DN-SB-9.0-10.0(RES)	OCDF	0.188 ng/Kg	0.188U ng/Kg

9/28/2011 9:40:45 AM ADR version 1.4.0.111 Page 8 of 8

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO Lab Reporting RLSampleID Analyte Qual Result Limit Units Type Flag SL-181-SA5DN-SB-4.0-5.0 1,2,3,4,6,7,8-HPCDD JB 1.16 5.55 **PQL** ng/Kg 0.362 5.55 **PQL** ng/Kg 1,2,3,4,6,7,8-HPCDF JB 1,2,3,4,7,8,9-HPCDF **JBQ** 0.0814 5.55 PQL ng/Kg **JBQ** 1,2,3,4,7,8-HXCDF 0.112 5.55 PQL ng/Kg 1,2,3,6,7,8-HXCDD JB 0.0647 5.55 PQL ng/Kg **PQL** 1,2,3,6,7,8-HXCDF JB 0.0702 5.55 ng/Kg 1,2,3,7,8,9-HXCDD JB 0.0777 5.55 PQL ng/Kg **JBQ PQL** J (all detects) 1,2,3,7,8,9-HXCDF 0.0583 5.55 ng/Kg 1,2,3,7,8-PECDD 5.55 JQ 0.0721 PQL ng/Kg 1,2,3,7,8-PECDF **JBQ** 5.55 **PQL** 0.0962 ng/Kg PQL 2.3.4.6.7.8-HXCDF **JBQ** 0.120 5.55 ng/Kg 5.55 PQL 2,3,4,7,8-PECDF JB 0.108 ng/Kg 2,3,7,8-TCDD JBQ 0.0441 1.11 **PQL** ng/Kg PQL 2,3,7,8-TCDF 0.0425 J 1.11 ng/Kg OCDF JΒ 0.395 **PQL** 11.1 ng/Kg SL-181-SA5DN-SB-9.0-10.0 | 1,2,3,4,6,7,8-HPCDD JB 1.21 5.96 **PQL** ng/Kg **JBQ** 5.96 PQL 1,2,3,4,6,7,8-HPCDF 0.314 ng/Kg 1,2,3,4,7,8,9-HPCDF **JBQ** 0.0460 5.96 PQL ng/Kg 1,2,3,4,7,8-HXCDF JBO 0.0719 5.96 POL ng/Kg 1,2,3,6,7,8-HXCDD **JBQ** 0.0462 5.96 PQL ng/Kg 1,2,3,6,7,8-HXCDF JB 0.0596 5.96 PQL ng/Kg 1,2,3,7,8,9-HXCDD **JBQ** 0.0773 5.96 PQL ng/Kg J (all detects) 1,2,3,7,8-PECDD JQ 0.0459 5.96 PQL ng/Kg 1,2,3,7,8-PECDF **JBQ** 0.0461 5.96 **PQL** ng/Kg 2,3,4,6,7,8-HXCDF **JBQ** 0.111 5.96 PQL ng/Kg 2,3,4,7,8-PECDF **JBQ** 0.114 5.96 PQL ng/Kg OCDD JB 11.3 11.9 **PQL** ng/Kg OCDF **JBQ** 0.357 11.9 PQL ng/Kg SL-182-SA5DN-SB-4.0-5.0 0.711 5.62 1,2,3,4,6,7,8-HPCDD JB PQL ng/Kg JB 0.219 5.62 **PQL** 1,2,3,4,6,7,8-HPCDF ng/Kg PQL 0.0682 1,2,3,4,7,8,9-HPCDF JBQ 5.62 ng/Kg 1,2,3,4,7,8-HXCDF 0.0884 5.62 PQL ng/Kg JB 1,2,3,6,7,8-HXCDD JB. 0.109 5.62 PQL ng/Kg 1,2,3,6,7,8-HXCDF JBQ 0.0539 5.62 PQL ng/Kg PQL JBQ 0.251 5.62 1,2,3,7,8,9-HXCDD ng/Kg J (all detects) 1,2,3,7,8,9-HXCDF JΒ 0.423 5.62 **PQL** ng/Kg 1,2,3,7,8-PECDF JBQ 0.106 5.62 PQL ng/Kg 2,3,4,6,7,8-HXCDF JΒ 0.0938 5.62 PQL ng/Kg 2,3,4,7,8-PECDF **JBQ** 0.0557 5.62 PQL ng/Kg OCDD JΒ 3.06 11.2 **PQL** ng/Kg

JB

0.319

11.2

PQL

ng/Kg

OCDF

Lab Reporting Batch ID: DX107

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

EDD Filename: DX107_v1

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-182-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0CDD 0CDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	0.548 0.228 0.0422 0.0688 0.0287 0.0350 0.0600 0.0511 0.0258 0.0195 0.0819 0.103 2.54 0.281	5.68 5.68 5.68 5.68 5.68 5.68 5.68 5.68	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-184-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	JB JB JB JB JB JB JB JB JB JB JB JB JB J	4.24 0.764 0.108 0.0582 0.297 0.297 0.191 0.324 0.232 0.105 0.204 0.294 0.666 0.188 1.28	5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-184-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	0.580 0.183 0.0462 0.0419 0.0295 0.0448 0.0425 0.0140 0.0389 0.0254 0.0779 0.0665 1.88 0.174	5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-186-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD OCDD	B B B B B B B B B B B B B B B B B B B	0.579 0.0807 0.0597 0.0361 0.0319 0.114 0.0359 0.224 0.324 0.0499 0.0929 0.0405 0.0693 0.0195 0.0147 2.10 0.194	5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-187-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	B B B B B B B B B B B B B B B B B B B	1.67 0.212 0.0444 0.129 0.123 0.195 0.0982 0.353 0.478 0.119 0.207 0.0872 0.162 0.0310 0.382	5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.59	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-187-SA5DN-SB-9.0-10.0			0.718 0.299 0.102 0.133 0.208 0.154 0.212 0.160 0.174 0.253 0.288 0.174 0.290 0.0600 0.0882 2.72 0.337	5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.71	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107 v1 eQAPP Name: CDM SSFL 110509

Method: 1613B SO Matrix: Lab Reporting RLSampleID Analyte Qual Result Limit Units Flag Type SL-192-SA5DN-SB-4.0-5.0 1,2,3,4,6,7,8-HPCDD JB 0.746 5.79 PQL ng/Kg 1,2,3,4,6,7,8-HPCDF JBQ 0.0810 5.79 **PQL** ng/Kg 1,2,3,4,7,8,9-HPCDF **JBQ** 0.0429 5.79 **PQL** ng/Kg 1,2,3,4,7,8-HxCDD JB 0.0154 5.79 PQL ng/Kg **JBQ** 1,2,3,4,7,8-HXCDF 0.0184 5.79 PQL ng/Kg 1,2,3,6,7,8-HXCDD JB 0.0648 5.79 **PQL** ng/Kg PQL 1,2,3,6,7,8-HXCDF $_{ m JBC}$ 0.0285 5.79 ng/Kg 1,2,3,7,8,9-HXCDD **JBQ** 0.0909 5.79 PQL ng/Kg J (all detects) **JBQ PQL** 1,2,3,7,8,9-HXCDF 0.160 5.79 ng/Kg 1.2.3.7.8-PECDD JB 0.0176 5.79 PQL ng/Kg **PQL** 1,2,3,7,8-PECDF JBQ 0.0148 5.79 ng/Kg 2,3,4,6,7,8-HXCDF **JBQ** 0.0307 5.79 **PQL** ng/Kg 2,3,4,7,8-PECDF **JBQ** 0.0573 5.79 PQL ng/Kg PQL ng/Kg 2,3,7,8-TCDF JQ 0.0208 1.16 PQL JB. ng/Kg OCDD 3.95 11.6 JBQ 0.161 **PQL** OCDF 11.6 ng/Kg

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO Reporting RL Lab SampleID Analyte Qual Result Limit Туре Units Flag SL-195-SA5DN-SB-4.0-5.0 1,2,3,4,6,7,8-HPCDD JB 0.519 5.67 **PQL** ng/Kg PQL 1,2,3,4,6,7,8-HPCDF JB 0.0763 5.67 ng/Kg 1,2,3,4,7,8,9-HPCDF JB 0.0269 5.67 PQL ng/Kg PQL JBQ 0.0265 5.67 ng/Kg 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF **JBQ** 0.0185 5.67 PQL ng/Kg **JBQ** 5.67 PQL 1,2,3,6,7,8-HXCDD 0.129 ng/Kg 1,2,3,6,7,8-HXCDF JB 0.0245 5.67 PQL ng/Kg J (all detects) ng/Kg **JBQ** PQL 1,2,3,7,8,9-HXCDD 0.145 5.67 0.295 5.67 1,2,3,7,8,9-HXCDF JΒ **PQL** ng/Kg PQL JBQ 0.0597 5.67 ng/Kg 1,2,3,7,8-PECDF ng/Kg **JBQ** 0.0207 5.67 **PQL** 2.3.4.6.7.8-HXCDF 0.0373 2,3,4,7,8-PECDF **JBQ** 5.67 PQL ng/Kg OCDD 11.3 **PQL** JB 3.18 ng/Kg JB 0.130 PQL OCDF 11.3 ng/Kg SL-195-SA5DN-SB-9.0-10.0 1,2,3,4,6,7,8-HPCDD JB 1.65 5.79 PQL ng/Kg 1,2,3,4,6,7,8-HPCDF JΒ 0.261 5.79 PQL ng/Kg 1,2,3,4,7,8-HXCDF **JBQ** 0.0332 5.79 PQL ng/Kg 1,2,3,6,7,8-HXCDD **JBQ** 0.0986 5.79 PQL ng/Kg 0.0381 5.79 PQL ng/Kg 1,2,3,6,7,8-HXCDF JB 1,2,3,7,8,9-HXCDD **JBQ** 0.0652 5.79 PQL ng/Kg 1,2,3,7,8,9-HXCDF JB 0.0375 5.79 PQL ng/Kg J (all detects) 1,2,3,7,8-PECDD JQ 0.0262 5.79 PQL ng/Kg 1,2,3,7,8-PECDF JBQ 0.0261 5.79 **PQL** ng/Kg 2,3,4,6,7,8-HXCDF JB 0.0594 5.79 PQL ng/Kg 2,3,4,7,8-PECDF **JBQ** 0.0512 5.79 PQL ng/Kg 2,3,7,8-TCDD JBQ 0.0297 1.16 PQL ng/Kg OCDF JB 0.490 11.6 **PQL** ng/Kg SL-196-SA5DN-SB-4.0-5.0 1,2,3,4,6,7,8-HPCDD **JBQ** 1.01 5.62 **PQL** ng/Kg 5.62 **PQL** 1,2,3,4,6,7,8-HPCDF JB 0.254 ng/Kg JΒ 0.0572 5.62 **PQL** ng/Kg 1,2,3,4,7,8,9-HPCDF JBQ PQL 5.62 1,2,3,4,7,8-HxCDD 0.0791 ng/Kg 0.130 5.62 **PQL** ng/Kg 1,2,3,4,7,8-HXCDF JB PQL 1,2,3,6,7,8-HXCDD JB. 5.62 0.199ng/Kg **JBQ** 0.120 5.62 PQL ng/Kg 1,2,3,6,7,8-HXCDF PQL 0.340 5.62 ng/Kg JB 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF JB 0.413 5.62 **PQL** ng/Kg J (all detects) PQL 1,2,3,7,8-PECDD 0.1385.62 ng/Kg J. 1,2,3,7,8-PECDF JΒ 0.183 5.62 **PQL** ng/Kg POL 2,3,4,6,7,8-HXCDF JB 0.137 5.62 ng/Kg

JB

JBQ

JB

JBQ

0.173

0.0428

0.0345

4.41

0.328

5.62

1.12

1.12

11.2

11.2

PQL

PQL

PQL

PQL

PQL

ng/Kg

ng/Kg

ng/Kg

ng/Kg

ng/Kg

2,3,4,7,8-PECDF

2,3,7,8-TCDD

2,3,7,8-TCDF

OCDD

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Matrix: SO				1 1			
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-196-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.548	5.57	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.224	5.57	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0643	5.57	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0382	5.57	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0845	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0685	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0408	5.57	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0925	5.57	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0738	5.57	PQL	ng/Kg	,
	1,2,3,7,8-PECDD	J	0.0441	5.57	PQL	ng/Kg	
1	1,2,3,7,8-PECDF	JBQ	0.0494	5.57	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0874	5.57	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0779	5.57	PQL	ng/Kg	
	OCDD	JB	2.55	11.1	PQL	ng/Kg	
	OCDF	JBQ	0.335	11.1	PQL	ng/Kg	
SL-197-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JВ	0.761	5.62	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.259	5.62	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0237	5.62	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0292	5.62	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0667	5.62	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.141	5.62	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0343	5.62	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.301	5.62	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.276	5.62	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JQ	0.0414	5.62	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0778	5.62	PQL	ng/Kg	
İ	2,3,4,6,7,8-HXCDF	JB	0.0970	5.62	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0758	5.62	PQL	ng/Kg	
	OCDD	JB	3.10	11.2	PQL	ng/Kg	
	OCDF	JB	0.289	11.2	PQL	ng/Kg	
SL-197-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.634	5.78	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.149	5.78	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0234	5.78	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0318	5.78	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0253	5.78	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0273	5.78	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JBQ	0.0496	5.78	PQL	ng/Kg	o (un dotooto)
	1,2,3,7,8,9-HXCDF	JBQ	0.0569	5.78	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0547	5.78	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0819	5.78	PQL	ng/Kg	
	OCDD	JB	2.94	11.6	PQL	ng/Kg	
	OCDF	JB	0.183	11.6	PQL	ng/Kg	

Lab Reporting Batch ID: DX107 Laboratory: LL

EDD Filename: DX107_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-203-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF OCDD OCDF	明治の 単語 田田 田田 田田 田田 田田 田田 田田 田田 田田 田田 田田 田田 田田	0.764 0.140 0.0246 0.0292 0.173 0.0304 0.307 0.414 0.0498 0.0954 0.0510 0.0774 3.73 0.251	5.74 5.74 5.74 5.74 5.74 5.74 5.74 5.74	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-203-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0CDD 0CDF	######################################	0.604 0.127 0.0314 0.0428 0.0594 0.0169 0.0362 0.0284 0.0295 0.0265 0.0476 0.0440 2.34 0.188	5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

SAMPLE DELIVERY GROUP

DX108

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
5-July-2011	SL-192-SA5DN-SB-9.0-10.0	6336233	N	METHOD	1613B	Ш
5-July-2011	SL-186-SA5DN-SB-9.0-10.0	6336232	N	METHOD	1613B	III
6-July-2011	DUP-19-SA5DN-QC-070611	6337154	FD	METHOD	1613B	111
6-July-2011	SL-205-SA5DN-SB-9.0-10.0	6337153	N	METHOD	1613B	10
6-July-2011	SL-205-SA5DN-SB-4.0-5.0	6337152	N	METHOD	1613B	Ш
6-July-2011	SL-201-SA5DN-SB-9.0-10.0	6337151	N	METHOD	1613B	111
6-July-2011	SL-201-SA5DN-SB-4.0-5.0	6337150	N	METHOD	1613B	111
6-July-2011	SL-200-SA5DN-SB-9.0-10.0	6337149	N	METHOD	1613B	111
6-July-2011	SL-200-SA5DN-SB-4.0-5.0MSD	6337148	MSD	METHOD	1613B	111
6-July-2011	SL-200-SA5DN-SB-4.0-5.0MS	6337147	MS	METHOD	1613B	Ш
6-July-2011	SL-200-SA5DN-SB-4.0-5.0	6337146	N	METHOD	1613B	Ш
6-July-2011	SL-191-SA5DN-SB-9.0-10.0	6337145	N	METHOD	1613B	III
6-July-2011	SL-191-SA5DN-SB-4.0-5.0	6337144	N	METHOD	1613B	III
6-July-2011	SL-190-SA5DN-SB-9.0-10.0	6337143	N	METHOD	1613B	III
6-July-2011	SL-190-SA5DN-SB-4.0-5.0	6337142	N	METHOD	1613B	Ш

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX108

Laboratory: LL

EDD Filename: DX108_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B

Matrix: SO

Sample ID: DUP-19-SA5DN-QC-070611 Collected: 7/6/2011 9:20:00 AM Analysis Type: RES Dilution: 1

Campic is, but to chosit qu'oront	Conco	ico. morto	11 0120100	/ / till / t	marysis rype. ILLO		Ditation.		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.417	JB	0.0208	MDL	5.57	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.122	JB	0.00819	MDL	5.57	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0741	JВ	0.0168	MDL	5.57	PQL	ng/Kg	UJ	B, FD
1,2,3,4,7,8-HxCDD	0.0811	JB	0.0160	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.117	JB	0.0159	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.126	JB	0.0164	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.132	JBQ	0.0138	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.217	JB	0.0158	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.290	J	0.0186	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.171	JB	0.0150	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.224	JB	0.00924	MDL	5.57	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.134	JBQ	0.0154	MDL	5.57	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.192	JB	0.00901	MDL	5.57	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0386	JQ	0.0129	MDL	1.11	PQL	ng/Kg	J	Z, FD
2,3,7,8-TCDF	0.0648	J	0.0120	MDL	1.11	PQL	ng/Kg	J	Z
OCDD	0.894	JB	0.0201	MDL	11.1	PQL	ng/Kg	U	В
OCDF	0.148	JB	0.0195	MDL	11.1	PQL	ng/Kg	UJ	B, FD

Sample ID: SL-186-SA5DN-SB-9.0-10.0 Collected: 7/5/2011 8:00:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.631	JBQ	0.0229	MDL	5.71	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.434	JBQ	0.0108	MDL	5.71	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0846	JBQ	0.0181	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0198	JBQ	0.0124	MDL	5.71	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0881	JBQ	0.0171	MDL	5.71	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0412	JBQ	0.0131	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0605	JBQ	0.0141	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0308	JBQ	0.0124	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0775	JQ	0.0191	MDL	5.71	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0356	JBQ	0.00813	MDL	5.71	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.190	JBQ	0.0144	MDL	5.71	PQL	ng/Kg	Ų	В
2,3,4,7,8-PECDF	0.119	JBQ	0.00836	MDL	5.71	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0136	JQ	0.0134	MDL	1.14	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 9:46:24 AM ADR version 1.4.0.111 Page 1 of 11

Lab Reporting Batch ID: DX108

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method Category: SVÖA

Method: 1613B Matrix: SO

Sample ID: SL-186-SA5DN-SB-9.0-10.0 Collected: 7/5/2011 8:00:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDD	3.44	JВ	0.0214	MDL	11.4	PQL	ng/Kg	υ	В
OCDF	0.378	JВ	0.0203	MDL	11.4	PQL	ng/Kg	υ	В

Sample ID: SL-190-SA5DN-SB-4.0-5.0 Collected: 7/6/2011 10:35:00 Analysis Type: RES Dilution: 1

· · · · · · · · · · · · · · · · · · ·			1		<u> </u>	Γ .	1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.461	JB	0.0201	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.335	JB	0.0119	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0872	JBQ	0.0183	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0956	JBQ	0.0209	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0765	JBQ	0.0147	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0610	JB	0.0174	MDL	5.74	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.171	JBQ	0.0141	MDL	5.74	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.306	J	0.0179	MDL	5.74	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0214	JBQ	0.0127	MDL	5.74	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.171	JBQ	0.0147	MDL	5.74	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.102	JBQ	0.00723	MDL	5.74	PQL	ng/Kg	U	В
OCDD	1.02	JB	0.0210	MDL	11.5	PQL	ng/Kg	U	В
OCDF	0.328	JB	0.0219	MDL	11.5	PQL	ng/Kg	U	В

Sample ID: SL-190-SA5DN-SB-9.0-10.0 Collected: 7/6/2011 10:40:00 Analysis Type: RES Dilution: 1

2111pto 121 02 100 0110211 02 010 1010	July old Type: The							Dilation, (
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.536	JB	0.0226	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.461	JВ	0.0106	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.124	JB	0.0179	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0571	JB	0.0145	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.157	JB	0.0190	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0543	JB	0.0150	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.104	JBQ	0.0157	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0672	JB	0.0147	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0905	JQ	0.0192	MDL	5.79	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0537	JBQ	0.0141	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.113	JBQ	0.00926	MDL	5.79	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.220	JBQ	0.0161	MDL	5.79	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

9/28/2011 9:46:24 AM ADR version 1.4.0.111 Page 2 of 11

Lab Reporting Batch ID: DX108 Laboratory: LL

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVÖA Method: 1613B Matrix: SO

Sample ID: SL-190-SA5DN-SB-9.0-10.0 Collected: 7/6/2011 10:40:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,7,8-PECDF	0.184	JB	0.00938	MDL	5.79	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0181	JQ	0.0132	MDL	1.16	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0268	J	0.0177	MDL	1.16	PQL	ng/Kg	J	Z
OCDD	1.26	JB	0.0189	MDL	11.6	PQL	ng/Kg	υ	В
OCDF	0.384	JB	0.0256	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-191-SA5DN-SB-4.0-5.0 Collected: 7/6/2011 7:40:00 AM Analysis Type: RES Dilution: 1

Sample ID: SL-191-SA5DN-SB-4.0-5.0	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.535	JB	0.0211	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.212	JB	0.00896	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.107	JB	0.0190	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.148	JBQ	0.0224	MDL	5.70	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.255	JB	0.0226	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.308	JB	0.0232	MDL	5.70	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.225	JB	0.0183	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.497	JB	0.0219	MDL	5.70	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.624	J	0.0271	MDL	5.70	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.212	JBQ	0.0155	MDL	5.70	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.382	JBQ	0.0101	MDL	5.70	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.220	JBQ	0.0214	MDL	5.70	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.280	JBQ	0.0107	MDL	5.70	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0619	JQ	0.0144	MDL	1.14	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0571	J	0.0135	MDL	1.14	PQL	ng/Kg	J	Z
OCDD	1.53	JВ	0.0256	MDL	11.4	PQL	ng/Kg	U	В
OCDF	0.190	JB	0.0234	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-191-SA5DN-SB-9.0-10.0 Collected: 7/6/2011 7:50:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.31	JB	0.0259	MDL	5.82	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.318	JΒ	0.0107	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0708	JBQ	0.0193	MDL	5.82	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.119	JВ	0.0192	MDL	5.82	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0,212	JB	0.0207	MDL	5.82	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX108

Laboratory: LL

Dilution: 1

EDD Filename: DX108_v1

eQAPP Name: CDM_SSFL_110509

Method Category: Method: 1613B

SVOA

Matrix:

SO

Sample ID: SL-191-SA5DN-SB-9.0-10.0	Collected: 7/6/2011 7:50:00 AM	Analysis Type: RES
Compress. CE-101-CACCIT-CE-0.0-10.0	Concited. NotZoTT 1.50.00 Am	Allalysis Type, INCO

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDD	0.177	JВ	0.0194	MDL	5.82	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.212	JB	0.0170	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.179	JB	0.0188	MDL	5.82	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.213	JQ	0.0224	MDL	5.82	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.272	JBQ	0.0149	MDL	5.82	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.436	JB	0.0105	MDL	5.82	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.170	JB	0.0199	MDL	5.82	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.375	JB	0.0105	MDL	5.82	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.127	J	0.0141	MDL	1.16	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.105	J	0.0160	MDL	1.16	PQL	ng/Kg	J	Z
OCDD	9.64	JB	0.0248	MDL	11.6	PQL	ng/Kg	J	Z
OCDF	0.495	JB	0.0241	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-192-SA5DN-SB-9.0-10.0 Collected: 7/5/2011 12:20:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.679	JB	0.0210	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.406	JB	0.0111	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.114	JB	0.0196	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0209	JB	0.0135	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.106	JB	0.0194	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0863	JB	0.0138	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0637	JB	0.0165	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.113	JB	0.0129	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.159	JQ	0.0197	MDL	5.75	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0193	JBQ	0.0125	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0400	JBQ	0.00820	MDL	5.75	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.200	JB	0.0152	MDL	5.75	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.102	JBQ	0.00831	MDL	5.75	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0131	JQ	0.0119	MDL	1.15	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0138	JQ	0.0135	MDL	1.15	PQL	ng/Kg	J	Z
OCDD	3.14	JB	0.0145	MDL	11.5	PQL	ng/Kg	U	В
OCDF	0.412	JB	0.0227	MDL	11.5	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Page 4 of 11

Lab Reporting Batch ID: DX108 Laboratory: LL

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-200-SA5DN-SB-4.0-5.0 Collected: 7/6/2011 9:10:00 AM Analysis Type: RES Dilution: 1

Campic ib: CE 200 Crobit CB 410-010	0000				nury old 1	iyala iype. KEO			Dittaon. 1		
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.461	JB	0.0314	MDL	5.53	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.133	JB	0.0119	MDL	5.53	PQL	ng/Kg	U	В		
1,2,3,4,7,8,9-HPCDF	0.134	JB	0.0248	MDL	5.53	PQL	ng/Kg	บม	B, FD		
1,2,3,4,7,8-HxCDD	0.0640	JB	0.0203	MDL	5.53	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.105	JBQ	0.0180	MDL	5.53	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.122	JBQ	0.0209	MDL	5.53	PQL	ng/Kg	υ	В		
1,2,3,6,7,8-HXCDF	0.0923	JBQ	0.0147	MDL	5.53	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.239	JB	0.0200	MDL.	5.53	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.349	J	0.0227	MDL	5.53	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.110	JB	0.0146	MDL	5.53	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.191	JB	0.00846	MDL	5.53	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.0985	JBQ	0.0171	MDL	5.53	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.157	JB	0.00927	MDL	5.53	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.0682	J	0.0137	MDL	1.11	PQL	ng/Kg	J	Z, FD		
2,3,7,8-TCDF	0.0390	J	0.0119	MDL	1.11	PQL	ng/Kg	J	Z		
OCDD	0.827	JB	0.0270	MDL	11.1	PQL	ng/Kg	U	В		
OCDF	0.264	JBQ	0.0283	MDL	11.1	PQL	ng/Kg	UJ	B, FD		

Sample ID: SL-200-SA5DN-SB-9.0-10.0 Collected: 7/6/2011 9:25:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.532	JB	0.0221	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.177	JB	0.00952	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.128	JBQ	0.0172	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0774	JBQ	0.0161	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.111	JB	0.0145	MDL	5.81	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0883	JB	0.0168	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0999	JB	0.0125	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.148	JBQ	0.0165	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.158	J	0.0157	MDL	5.81	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0794	JB	0.0154	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0724	JBQ	0.00881	MDL	5.81	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.126	JB	0.0135	MDL	5.81	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.124	JB	0.00846	MDL	5.81	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX108 Laboratory: LL

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA			į
Method:	1613B	Matrix:	so	

Sample ID: SL-200-SA5DN-SB-9.0-10.0 Collected: 7/6/2011 9:25:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDD	0.0280	JQ	0.0160	MDL	1.16	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0182	J	0.0130	MDL	1.16	PQL	ng/Kg	J	Z
OCDD	1.08	JB	0.0241	MDL	11.6	PQL	ng/Kg	U	В
OCDF	0.354	JB	0.0260	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-201-SA5DN-SB-4.0-5.0 Collected: 7/6/2011 2:35:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.490	JB	0.0198	MDL	5.83	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.118	JBQ	0.00807	MDL	5.83	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0781	JBQ	0.0175	MDL	5.83	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0221	JBQ	0.0142	MDL	5.83	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0473	JBQ	0.0123	MDL	5.83	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0871	JBQ	0.0146	MDL	5.83	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0409	JB	0.00994	MDL,	5.83	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.166	JBQ	0.0138	MDL	5.83	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.231	JQ	0.0149	MDL	5.83	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0374	JBQ	0.0130	MDL	5.83	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0473	JBQ	0.00819	MDL	5.83	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0637	JBQ	0.0118	MDL	5.83	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0552	JB	0.00889	MDL	5.83	PQL	ng/Kg	U	В
OCDD	1.15	JB	0.0255	MDL	11.7	PQL	ng/Kg	υ	В
OCDF	0.166	JB	0.0240	MDL	11.7	PQL	ng/Kg	υ	В

Sample ID: SL-201-SA5DN-SB-9.0-10.0 Collected: 7/6/2011 2:40:00 PM Analysis Type: RES Dilution: 1

•						•			
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.431	JB	0.0217	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.100	JBQ	0.00779	MDL	5.81	PQL	ng/Kg	Ų	В
1,2,3,4,7,8,9-HPCDF	0.0429	JBQ	0.0178	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0401	JBQ	0.0119	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0443	JBQ	0.0157	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0303	JBQ	0.00956	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0509	JBQ	0.0150	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0367	JQ	0.0145	MDL	5.81	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX108 Laboratory: LL

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-201-SA5DN-SB-9.0-10.0 Collected: 7/6/2011 2:40:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDD	0.0286	JBQ	0.0162	MDL	5.81	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0257	JBQ	0.00921	MDL	5.81	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0731	JBQ	0.0111	MDL	5.81	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0566	JB	0.00945	MDL	5.81	PQL	ng/Kg	U	В
OCDD	0.844	JB	0.0264	MDL	11.6	PQL	ng/Kg	U	В
OCDF	0.169	JBQ	0.0254	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-205-SA5DN-SB-4.0-5.0 Collected: 7/6/2011 1:20:00 PM Analysis Type: RES Dilution: 1

3ample ID: 3L-203-3A3DN-3B-4.0-3.0	Conec	Collected: Holzott 1.20.00 FWL Analysis Type: NEO								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.362	JB	0.0152	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0790	JB	0.00660	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0520	JB	0.0139	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0338	JBQ	0.0138	MDL	5.69	PQL	ng/Kg	Ų	В	
1,2,3,6,7,8-HXCDD	0.113	JBQ	0.0161	MDL	5.69	PQL	ng/Kg	Ų	В	
1,2,3,6,7,8-HXCDF	0.0272	JBQ	0.0107	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.349	JB	0.0161	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.434	J	0.0149	MDL	5.69	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0256	JBQ	0.0117	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0979	JBQ	0.00718	MDL	5.69	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0440	JBQ	0.0116	MDL	5.69	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0456	JB	0.00730	MDL	5.69	PQL	ng/Kg	Ų	В	
2,3,7,8-TCDF	0.0117	J	0.00962	MDL	1.14	PQL	ng/Kg	J	Z	
OCDD	0.856	JB	0.0205	MDL	11.4	PQL	ng/Kg	U	В	
OCDF	0.183	JBQ	0.0196	MDL	11.4	PQL	ng/Kg	U	В	

Sample ID: SL-205-SA5DN-SB-9.0-10.0 Collected: 7/6/2011 1:25:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.506	JВ	0.0188	MDL	5.79	PQL	ng/Kg	Ų	В
1,2,3,4,6,7,8-HPCDF	0.131	JB	0.00697	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0545	JBQ	0.0150	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0298	JBQ	0.0119	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0550	JB	0.0124	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0610	JB	0.0123	MDL	5.79	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

9/28/2011 9:46:25 AM ADR version 1.4.0.111 Page 7 of 11

Lab Reporting Batch ID: DX108 Laboratory: LL

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVÖA Method: 1613B Matrix: SO

Sample ID: SL-205-SA5DN-SB-9.0-10.0 Collected: 7/6/2011 1:25:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDF	0.0469	JBQ	0.00968	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0981	JB	0.0116	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0910	JQ	0.0145	MDL	5.79	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0580	JBQ	0.0120	MDL	5.79	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0883	JB	0.00826	MDL	5.79	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0853	JB	0.0109	MDL	5.79	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0982	JB	0.00909	MDL	5.79	PQL	ng/Kg	Ų	В	
2,3,7,8-TCDF	0.0210	JQ	0.0165	MDL	1.16	PQL	ng/Kg	J	Z	
OCDD	1.31	JB	0.0197	MDL	11.6	PQL	ng/Kg	U	В	
OCDF	0.246	JB	0.0231	MDL	11.6	PQL	ng/Kg	U	В	
		<u> </u>								

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX108

Laboratory: LL

EDD Filename: DX108_v1

eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
,	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
Ē	Laboratory Triplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX108

Laboratory: LL

EDD Filename: DX108_v1

eQAPP Name: CDM_SSFL_110509

F Field Blank Contamination FD Field Duplicate Precision FT Field Triplicate Precision H Extraction to Analysis Estimation H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Rejection H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Temperature Estimation I Internal Standard Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Lower Rejection	
FT Field Triplicate Precision H Extraction to Analysis Estimation H Preservation H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Estimation H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Leaching Estimation H Sampling to Leaching Estimation H Temperature Estimation H Temperature Estimation L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection	
H Extraction to Analysis Estimation H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Estimation H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection	
H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Estimation H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Estimation H Temperature Estimation H Temperature Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection	
H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Estimation I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Lower Rejection	
H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection	
H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Lower Rejection	
H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection	_
H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection	
H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection	
H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection	
H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection	
H Temperature Rejection Internal Standard Estimation Internal Standard Rejection Laboratory Control Precision Laboratory Control Spike Lower Estimation Laboratory Control Spike Lower Rejection	
Internal Standard Estimation Internal Standard Rejection Laboratory Control Precision Laboratory Control Spike Lower Estimation Laboratory Control Spike Lower Rejection	_
I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection	
L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection	
L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection	
L Laboratory Control Spike Lower Rejection	
L Laboratory Control Spike Upper Estimation	
L Laboratory Control Spike Upper Rejection	
M Continuing Tune	
M Initial Tune	
M Performance Evaluation Mixture	
M Resolution Check Mixture	
Q Laboratory Duplicate Precision	
Q Laboratory Triplicate Precision	
Q Matrix Spike Lower Estimation	
Q Matrix Spike Lower Rejection	
Q Matrix Spike Precision	
Q Matrix Spike Upper Estimation	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX108

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX108_v1

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX108

Lab Reporting Batch ID: DX108 Laboratory: LL EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 1613B <i>Matrix:</i> SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1940B370051	7/15/2011 12:51:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	0.412 ng/Kg 0.341 ng/Kg 0.341 ng/Kg 0.120 ng/Kg 0.0278 ng/Kg 0.0977 ng/Kg 0.0321 ng/Kg 0.0810 ng/Kg 0.0698 ng/Kg 0.0474 ng/Kg 0.0366 ng/Kg 0.179 ng/Kg 0.104 ng/Kg 0.823 ng/Kg 0.418 ng/Kg	DUP-19-SA5DN-QC-070611 SL-186-SA5DN-SB-9.0-10.0 SL-190-SA5DN-SB-4.0-5.0 SL-190-SA5DN-SB-9.0-10.0 SL-191-SA5DN-SB-9.0-10.0 SL-191-SA5DN-SB-9.0-10.0 SL-192-SA5DN-SB-9.0-10.0 SL-200-SA5DN-SB-9.0-10.0 SL-201-SA5DN-SB-9.0-10.0 SL-201-SA5DN-SB-9.0-10.0 SL-205-SA5DN-SB-9.0-10.0 SL-205-SA5DN-SB-9.0-10.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP-19-SA5DN-QC-070611(RES)	1,2,3,4,6,7,8-HPCDD	0.417 ng/Kg	0.417U ng/Kg
DUP-19-SA5DN-QC-070611(RES)	1,2,3,4,6,7,8-HPCDF	0.122 ng/Kg	0.122U ng/Kg
DUP-19-SA5DN-QC-070611(RES)	1,2,3,4,7,8,9-HPCDF	0,0741 ng/Kg	0.0741U ng/Kg
DUP-19-SA5DN-QC-070611(RES)	1,2,3,4,7,8-HxCDD	0.0811 ng/Kg	0.0811U ng/Kg
DUP-19-SA5DN-QC-070611(RES)	1,2,3,4,7,8-HXCDF	0,117 ng/Kg	0.117U ng/Kg
DUP-19-SA5DN-QC-070611(RES)	1,2,3,6,7,8-HXCDD	0.126 ng/Kg	0.126U ng/Kg
DUP-19-SA5DN-QC-070611(RES)	1,2,3,6,7,8-HXCDF	0,132 ng/Kg	0.132U ng/Kg
DUP-19-SA5DN-QC-070611(RES)	1,2,3,7,8,9-HXCDD	0.217 ng/Kg	0.217U ng/Kg
DUP-19-SA5DN-QC-070611(RES)	1,2,3,7,8-PECDD	0.171 ng/Kg	0,171U ng/Kg
DUP-19-\$A5DN-QC-070611(RES)	2,3,4,6,7,8-HXCDF	0.134 ng/Kg	0.134U ng/Kg
DUP-19-SA5DN-QC-070611(RES)	2,3,4,7,8-PECDF	0.192 ng/Kg	0.192U ng/Kg
DUP-19-SA5DN-QC-070611(RES)	OCDD	0.894 ng/Kg	0.894U ng/Kg
DUP-19-SA5DN-QC-070611(RES)	OCDF	0.148 ng/Kg	0.148U ng/Kg
SL-186-SA5DN-\$B-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.631 ng/Kg	0.631U ng/Kg
SL-186-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.434 ng/Kg	0.434U ng/Kg
SL-186-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0846 ng/Kg	0.0846U ng/Kg
SL-186-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0198 ng/Kg	0.0198U ng/Kg
SL-186-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0,0881 ng/Kg	0.0881U ng/Kg
SL-186-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0412 ng/Kg	0.0412U ng/Kg
SL-186-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0605 ng/Kg	0.0605U ng/Kg
SL-186-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0308 ng/Kg	0.0308U ng/Kg
SL-186-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0356 ng/Kg	0.0356U ng/Kg
SL-186-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.190 ng/Kg	0.190U ng/Kg
SL-186-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.119 ng/Kg	0.119U ng/Kg
SL-186-SA5DN-SB-9.0-10.0(RES)	OCDD	3.44 ng/Kg	3.44U ng/Kg
SL-186-SA5DN-SB-9.0-10.0(RES)	OCDF	0.378 ng/Kg	0.378U ng/Kg
SL-190-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.461 ng/Kg	0.461U ng/Kg
SL-190-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.335 ng/Kg	0.335U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 9:45:57 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX108 Laboratory: LL

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-190-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0872 ng/Kg	0.0872U ng/Kg
SL-190-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0956 ng/Kg	0.0956U ng/Kg
SL-190-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0765 ng/Kg	0.0765U ng/Kg
SL-190-SA5DN-\$B-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0610 ng/Kg	0.0610U ng/Kg
SL-190-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.171 ng/Kg	0.171U ng/Kg
SL-190-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0214 ng/Kg	0.0214U ng/Kg
SL-190-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.171 ng/Kg	0.171U ng/Kg
SL-190-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.102 ng/Kg	0.102U ng/Kg
SL-190-SA5DN-SB-4.0-5.0(RES)	OCDD	1.02 ng/Kg	1.02U ng/Kg
SL-190-SA5DN-SB-4.0-5.0(RES)	OCDF	0.328 ng/Kg	0.328U ng/Kg
SL-190-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.536 ng/Kg	0.536U ng/Kg
SL-190-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.461 ng/Kg	0.461U ng/Kg
SL-190-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.124 ng/Kg	0.124U ng/Kg
SL-190-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0571 ng/Kg	0.0571U ng/Kg
SL-190-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.157 ng/Kg	0.157U ng/Kg
SL-190-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0543 ng/Kg	0.0543U ng/Kg
SL-190-\$A5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.104 ng/Kg	0.104U ng/Kg
SL-190-SA5DN-SB-9,0-10,0(RE\$)	1,2,3,7,8,9-HXCDD	0.0672 ng/Kg	0.0672U ng/Kg
SL-190-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0537 ng/Kg	0.0537U ng/Kg
SL-190-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.113 ng/Kg	0,113U ng/Kg
SL-190-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0,220 ng/Kg	0.220U ng/Kg
SL-190-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.184 ng/Kg	0.184U ng/Kg
SL-190-SA5DN-SB-9.0-10.0(RES)	OCDD	1.26 ng/Kg	1.26U ng/Kg
SL-190-SA5DN-SB-9.0-10.0(RES)	OCDF	0.384 ng/Kg	0.384U ng/Kg
SL-191-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.535 ng/Kg	0,535U ng/Kg
SL-191-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.212 ng/Kg	0.212U ng/Kg
SL-191-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.107 ng/Kg	0.107U ng/Kg
SL-191-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.255 ng/Kg	0.255U ng/Kg
SL-191-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0,225 ng/Kg	0.225U ng/Kg
SL-191-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.212 ng/Kg	0.212U ng/Kg
SL-191-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.220 ng/Kg	0,220U ng/Kg
SL-191-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,280 ng/Kg	0.280U ng/Kg
SL-191-SA5DN-SB-4.0-5.0(RES)	OCDD	1.53 ng/Kg	1.53U ng/Kg
SL-191-SA5DN-SB-4.0-5.0(RES)	OCDF	0.190 ng/Kg	0.190U ng/Kg
SL-191-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	1.31 ng/Kg	1.31U ng/Kg
SL-191-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.318 ng/Kg	0.318U ng/Kg
SL-191-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0708 ng/Kg	0.0708U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 9:45:57 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX108 Laboratory: LL

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-191-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.119 ng/Kg	0.119U ng/Kg
SL-191-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.212 ng/Kg	0.212U ng/Kg
SL-191-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.212 ng/Kg	0.212U ng/Kg
SL-191-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.179 ng/Kg	0.179U ng/Kg
SL-191-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.170 ng/Kg	0.170U ng/Kg
SL-191-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.375 ng/Kg	0.375U ng/Kg
SL-191-SA5DN-SB-9.0-10.0(RES)	OCDF	0.495 ng/Kg	0.495U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.679 ng/Kg	0.679U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.406 ng/Kg	0.406U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.114 ng/Kg	0.114U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0209 ng/Kg	0.0209U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.106 ng/Kg	0.106U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0863 ng/Kg	0.0863U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0637 ng/Kg	0.0637U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.113 ng/Kg	0.113U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0193 ng/Kg	0.0193U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0400 ng/Kg	0.0400U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.200 ng/Kg	0.200U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.102 ng/Kg	0.102U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	OCDD	3.14 ng/Kg	3.14U ng/Kg
SL-192-SA5DN-SB-9.0-10.0(RES)	OCDF	0.412 ng/Kg	0.412U ng/Kg
SL-200-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.461 ng/Kg	0.461U ng/Kg
SL-200-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.133 ng/Kg	0.133U ng/Kg
SL-200-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.134 ng/Kg	0.134U ng/Kg
SL-200-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0640 ng/Kg	0.0640U ng/Kg
SL-200-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.105 ng/Kg	0.105U ng/Kg
SL-200-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.122 ng/Kg	0.122U ng/Kg
SL-200-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0923 ng/Kg	0.0923U ng/Kg
SL-200-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.239 ng/Kg	0.239U ng/Kg
SL-200-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.110 ng/Kg	0.110U ng/Kg
SL-200-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0985 ng/Kg	0.0985U ng/Kg
SL-200-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.157 ng/Kg	0.157U ng/Kg
SL-200-SA5DN-SB-4.0-5.0(RES)	OCDD	0.827 ng/Kg	0.827U ng/Kg
SL-200-SA5DN-SB-4.0-5.0(RES)	OCDF	0.264 ng/Kg	0.264U ng/Kg
SL-200-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.532 ng/Kg	0.532U ng/Kg
SL-200-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.177 ng/Kg	0.177U ng/Kg
SL-200-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.128 ng/Kg	0.128U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX108 Laboratory: LL

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blank Sample ID	(Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-200-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0774 ng/Kg	0.0774U ng/Kg
SL-200-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.111 ng/Kg	0.111U ng/Kg
SL-200-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0883 ng/Kg	0.0883U ng/Kg
SL-200-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0999 ng/Kg	0.0999U ng/Kg
SL-200-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.148 ng/Kg	0,148U ng/Kg
SL-200-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0794 ng/Kg	0.0794U ng/Kg
SL-200-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0724 ng/Kg	0.0724U ng/Kg
SL-200-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.126 ng/Kg	0.126U ng/Kg
SL-200-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.124 ng/Kg	0.124U ng/Kg
SL-200-SA5DN-SB-9.0-10.0(RES)	OCDD	1.08 ng/Kg	1.08U ng/Kg
SL-200-SA5DN-SB-9.0-10.0(RES)	OCDF	0.354 ng/Kg	0.354U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.490 ng/Kg	0.490U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.118 ng/Kg	0.118U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0781 ng/Kg	0.0781U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0221 ng/Kg	0,0221U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0473 ng/Kg	0.0473U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0871 ng/Kg	0.0871U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0409 ng/Kg	0.0409U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0,166 ng/Kg	0.166U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0374 ng/Kg	0.0374U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0473 ng/Kg	0.0473U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0637 ng/Kg	0,0637U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RE\$)	2,3,4,7,8-PECDF	0.0552 ng/Kg	0.0552U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RES)	OCDD	1.15 ng/Kg	1.15U ng/Kg
SL-201-SA5DN-SB-4.0-5.0(RES)	OCDF	0.166 ng/Kg	0.166U ng/Kg
SL-201-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.431 ng/Kg	0.431U ng/Kg
SL-201-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.100 ng/Kg	0.100U ng/Kg
SL-201-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0429 ng/Kg	0.0429U ng/Kg
SL-201-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0401 ng/Kg	0.0401U ng/Kg
SL-201-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0443 ng/Kg	0.0443U ng/Kg
SL-201-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0303 ng/Kg	0.0303U ng/Kg
SL-201-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0509 ng/Kg	0.0509U ng/Kg
SL-201-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0286 ng/Kg	0.0286U ng/Kg
SL-201-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0257 ng/Kg	0.0257U ng/Kg
SL-201-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0731 ng/Kg	0.0731U ng/Kg
SL-201-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0566 ng/Kg	0.0566U ng/Kg
SL-201-SA5DN-SB-9.0-10.0(RES)	OCDD	0.844 ng/Kg	0.844U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 9:45:57 AM ADR version 1.4.0.111 Page 4 of 5

Lab Reporting Batch ID: DX108

Laboratory: LL

EDD Filename: DX108_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-201-SA5DN-SB-9.0-10.0(RES)	OCDF	0.169 ng/Kg	0.169U ng/Kg
SL-205-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.362 ng/Kg	0.362U ng/Kg
SL-205-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0790 ng/Kg	0.0790U ng/Kg
SL-205-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0520 ng/Kg	0.0520U ng/Kg
SL-205-SA5DN-SB-4.0-5.0(RE\$)	1,2,3,4,7,8-HXCDF	0.0338 ng/Kg	0.0338U ng/Kg
SL-205-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.113 ng/Kg	0.113U ng/Kg
SL-205-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0272 ng/Kg	0.0272U ng/Kg
SL-205-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.349 ng/Kg	0.349U ng/Kg
SL-205-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0256 ng/Kg	0.0256U ng/Kg
SL-205-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0979 ng/Kg	0.0979U ng/Kg
SL-205-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0440 ng/Kg	0.0440U ng/Kg
SL-205-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0456 ng/Kg	0,0456U ng/Kg
SL-205-SA5DN-SB-4.0-5.0(RES)	OCDD	0.856 ng/Kg	0.856U ng/Kg
SL-205-SA5DN-SB-4.0-5.0(RES)	OCDF	0.183 ng/Kg	0.183U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.506 ng/Kg	0.506U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.131 ng/Kg	0.131U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0545 ng/Kg	0.0545U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0,0298 ng/Kg	0,0298U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0550 ng/Kg	0.0550U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0,0610 ng/Kg	0.0610U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0469 ng/Kg	0.0469U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0981 ng/Kg	0.0981U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0580 ng/Kg	0.0580U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0883 ng/Kg	0.0883U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0853 ng/Kg	0.0853U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0982 ng/Kg	0.0982U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	OCDD	1.31 ng/Kg	1.31U ng/Kg
SL-205-SA5DN-SB-9.0-10.0(RES)	OCDF	0.246 ng/Kg	0.246U ng/Kg

9/28/2011 9:45:57 AM

ADR version 1.4.0.111

Field Duplicate RPD Report

Lab Reporting Batch ID: DX108 Laboratory: LL

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO		en desar a manda de la companya de la companya de la companya de la companya de la companya de la companya de			
	Concenti	Concentration (%)			
Analyte	SL-200-SA5DN-SB-4.0- 5.0	DUP-19-SA5DN-QC- 070611	Sample RPD	eQAPP RPD	Flag
MOISTURE	13.7	14.5	6		No Qualifiers Applied

	Concentrat	tion (ng/Kg)				
Analyte	SL-200-SA5DN-SB-4.0- 5.0	DUP-19-SA5DN-QC- 070611	Sample RPD	eQAPP RPD	Flag	
1,2,3,4,6,7,8-HPCDD	0.461	0.417	10	50.00		
1,2,3,4,6,7,8-HPCDF	0.133	0.122	9	50.00		
1,2,3,4,7,8-HxCDD	0.0640	0.0811	24	50.00		
1,2,3,4,7,8-HXCDF	0.105	0.117	11	50.00		
1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	0.122 0.0923	0.126 0.132	3 35	50.00 50.00		
1,2,3,7,8,9-HXCDD	0.239	0.217	10	50.00	No Qualifiers Applied	
1,2,3,7,8,9-HXCDF	0.349	0.290	18	50.00		
1,2,3,7,8-PECDD	0.110	0.171	43	50.00		
1,2,3,7,8-PECDF	0.191	0.224	16	50.00		
2,3,4,6,7,8-HXCDF	0.0985	0.134	31	50.00		
2,3,4,7,8-PECDF	0.157	0.192	20	50.00		
2,3,7,8-TCDF	0.0390	0.0648	50	50.00		
OCDD	0.827	0.894	- 8	50.00	17-11 -1-1	
1,2,3,4,7,8,9-HPCDF	0.134	0.0741	- 58	50.00		
2,3,7,8-TCDD	0.0682	0.0386	55	50.00	J(all detects)	
OCDF	0.264	0.148	56	50.00		

Page 1 of 1

Lab Reporting Batch ID: DX108

Laboratory: LL

EDD Filename: DX108_v1

eQAPP Name: CDM_SSFL_110509

Method:	1613B
Matrix:	SO

Watrix: SU							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
DUP-19-SA5DN-QC-070611	<u> </u>		0.417	5.57	PQL	 	
DOP-19-5A5DN-QC-070611	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF	JB JB	0.417	5.57	PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.122	5.57	PQL	ng/Kg ng/Kg	
	11,2,3,4,7,8,9-11F-CDI	JB	0.0741	5.57	PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0011	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.126	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.132	5.57	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.217	5.57	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	J	0.290	5.57	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	ĴΒ	0.171	5.57	PQL	ng/Kg	0 (01) 00(00(0)
	1,2,3,7,8-PECDF	JB	0.224	5.57	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.134	5.57	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.192	5.57	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0386	1.11	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.0648	1.11	PQL	ng/Kg	
	OCDD	JB	0.894	11.1	PQL	ng/Kg	
	OCDF	JВ	0.148	11.1	PQL	ng/Kg	
SL-186-SA5DN-SB-9.0-10.0	1 2 3 4 6 7 8-HPCDD	JBQ	0.631	5.71	PQL	ng/Kg	
02 100 0/103/1 05 0/0 10/0	1,2,3,4,6,7,8-HPCDF	JBQ	0.434	5.71	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0846	5.71	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0198	5.71	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0881	5.71	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0412	5.71	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0605	5.71	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0308	5.71	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JQ	0.0775	5.71	PQL	ng/Kg	, ,
	1,2,3,7,8-PECDF	JBQ	0.0356	5.71	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.190	5.71	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.119	5.71	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0136	1.14	PQL	ng/Kg	
	OCDD	JB	3.44	11.4	PQL	ng/Kg	
	OCDF	JB	0.378	11.4	PQL	ng/Kg	
SL-190-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.461	5.74	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.335	5.74	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0872	5.74	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0956	5.74	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0765	5.74	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0610	5.74	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.171	5.74	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	J	0.306	5.74	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0214	5.74	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.171	5.74	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.102	5.74	PQL	ng/Kg	
	OCDD	JB	1.02	11.5	PQL	ng/Kg	
	OCDF	JB	0.328	11.5	PQL	ng/Kg	

Lab Reporting Batch ID: DX108 Laboratory: LL

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Watrix: SU							
		Lab		Reporting			
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-190-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDD	ង-১៦មិខិទីឧ៦៦៦១៩១៩៦៩	0.536 0.461 0.124 0.0571 0.157 0.0543 0.104 0.0672 0.0905 0.0537 0.113 0.220 0.184 0.0181 0.0268 1.26	5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-191-SA5DN-SB-4.0-5.0	OCDF 1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	ត ត ម ទី ទី ទី ទី ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១ ១	0.384 0.535 0.212 0.107 0.148 0.255 0.308 0.225 0.497 0.624 0.212 0.382 0.220 0.280 0.0619 0.0571 1.53 0.190	5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.70	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDF 0,3,7,8-TCDF 0CDD 0CDF	ង ង	1.31 0.318 0.0708 0.119 0.212 0.177 0.212 0.179 0.213 0.272 0.436 0.170 0.375 0.127 0.105 9.64 0.495	5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX108 Laboratory: LL

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Watrix: 50							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-192-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JB JB	0.679 0.406 0.114	5.75 5.75 5.75	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF	JB JB	0.0209 0.106	5.75 5.75	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	JB JB JB	0.0863 0.0637 0.113	5.75 5.75 5.75	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF	JQ JBQ JBQ	0.159 0.0193 0.0400	5.75 5.75 5.75	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	J (all detects)
	2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	JB JBQ JQ	0.200 0.102 0.0131	5.75 5.75 1.15	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	2,3,7,8-TCDF OCDD	JQ JB	0.0138 3.14	1.15 11.5	PQL PQL	ng/Kg ng/Kg	
CL 200 CAEDN CD 4 0 5 0	OCDF	JB ID	0.412	11.5	PQL	ng/Kg	
SL-200-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD	JB JB JB JB	0.461 0.133 0.134 0.0640	5.53 5.53 5.53 5.53	PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	JBQ JBQ JBQ	0.105 0.122 0.0923	5.53 5.53 5.53	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JB J JB	0.239 0.349 0.110	5.53 5.53 5.53	PQL PQL PQL	ng/Kg πg/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	JB JBQ JB	0.191 0.0985 0.157	5.53 5.53 5.53	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	2,3,7,8-TCDD 2,3,7,8-TCDF	J J JB	0.0682 0.0390	1.11 1.11	PQL PQL	ng/Kg ng/Kg	
	OCDD OCDF	JBQ	0.827 0.264	11.1	PQL PQL	ng/Kg ng/Kg	
SL-200-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JB JBQ	0.532 0.177 0.128	5.81 5.81 5.81	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JBQ JB JB	0.0774 0.111 0.0883	5.81 5.81 5.81	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF	JB JBQ J	0.0999 0.148 0.158	5.81 5.81 5.81	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JB JBQ JB	0.0794 0.0724 0.126	5.81 5.81 5.81	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	- (
	2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF	JB JQ J	0.124 0.0280 0.0182	5.81 1.16 1.16	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	OCDD OCDF	JB JB	1.08 0.354	11.6 11.6	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	

Lab Reporting Batch ID: DX108 Laboratory: LL

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

EDD I heriame. DX 100							W_33FE_11030
Method: 1613B		A CHARLES					
Matrix: SO						ender to a first and t	en en en a para en antara en antara en antara en antara en antara en antara en antara en antara en antara en a
Wattix. 30							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-201-SA5DN-SB-4.0-5.0		<u> </u>		<u> </u>			
5L-201-5A5DN-5B-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.490	5.83	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JBQ JBQ	0.118 0.0781	5.83	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0781	5.83 5.83	PQL PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0221	5.83	PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0473	5.83	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0409	5.83	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.166	5.83	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JQ	0.100	5.83	PQL	ng/Kg	o (an detecto)
	1,2,3,7,8-PECDD	JBQ	0.0374	5.83	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0473	5.83	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0637	5.83	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0552	5.83	PQL	ng/Kg	
	OCDD	JB	1.15	11.7	PQL	ng/Kg	
	OCDF	JB	0.166	11.7	PQL	ng/Kg	
SL-201-SA5DN-SB-9.0-10.0	<u> </u>	JВ	0.431	5.81	PQL	ng/Kg	
3L-201-3A3DIN-3B-9.0-10.0	1,2,3,4,6,7,8-HPCDF	JBQ	0.431	5.81	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0429	5.81	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0423	5.81	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0443	5.81	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0303	5.81	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0509	5.81	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JQ	0.0367	5.81	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0386	5.81	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0257	5.81	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0731	5.81	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0566	5.81	PQL	ng/Kg	
	OCDD	JВ	0.844	11.6	PQL	ng/Kg	
	OCDF	JBQ	0.169	11.6	PQL	ng/Kg	
SL-205-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.362	5.69	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0790	5.69	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0520	5.69	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0338	5.69	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.113	5.69	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0272	5.69	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.349	5.69	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	J	0.434	5.69	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0256	5.69	PQL	ng/Kg	J (a.i. 2010010)
	1,2,3,7,8-PECDF	JBQ	0.0979	5.69	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0440	5.69	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0456	5.69	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.0117	1.14	PQL	ng/Kg	
	OCDD	JΒ	0.856	11.4	PQL	ng/Kg	
	OCDF	JBQ	0.183	11.4	PQL	ng/Kg	

Lab Reporting Batch ID: DX108 Laboratory: LL

EDD Filename: DX108_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B								
Matrix: SO								
SamplelD	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag	
SL-205-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	田田の田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	0.506 0.131 0.0545 0.0298 0.0550 0.0610 0.0469 0.0981 0.0910 0.0580 0.0883 0.0853 0.0982 0.0210 1.31 0.246	5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)	

SAMPLE DELIVERY GROUP

DX109

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
7-July-2011	DUP20-SA5DN-QC-070711	6338375	FD	METHOD	1613B	III
7-July-2011	SL-164-SA5DN-SB-9.0-10.0	6338364	N	METHOD	1613B	III
7-July-2011	SL-166-SA5DN-SB-4.0-5.0	6338365	N	METHOD	1613B	111
7-July-2011	SL-166-SA5DN-SB-4.0-5.0MS	6338366	MS	METHOD	1613B	III
7-July-2011	SL-166-SA5DN-SB-4.0-5.0MSD	6338367	MSD	METHOD	1613B	III
7-July-2011	SL-166-SA5DN-SB-9.0-10.0	6338368	N	METHOD	1613B	III
7-July-2011	SL-167-SA5DN-SB-4.0-5.0	6338369	N	METHOD	1613B	111
7-July-2011	SL-167-SA5DN-SB-9.0-10.0	6338370	N	METHOD	1613B	111
7-July-2011	SL-168-SA5DN-SB-4.0-5.0	6338371	N	METHOD	1613B	III
7-July-2011	SL-168-SA5DN-SB-9.0-10.0	6338372	N	METHOD	1613B	Ш
7-July-2011	SL-164-SA5DN-SB-4.0-5.0	6338363	N	METHOD	1613B	III
7-July-2011	SL-169-SA5DN-SB-7.5-8.5	6338374	N	METHOD	1613B	111
7-July-2011	EB21-SA5DN-SB-070711	6338376	ЕВ	METHOD	1613B	111
7-July-2011	SL-169-SA5DN-SB-4.0-5.0	6338373	N	METHOD	1613B	III
8-July-2011	SL-159-SA5DN-SB-9.0-10.0	6339526	N	METHOD	1613B	III
8-July-2011	SL-155-SA5DN-SB-4.0-5.0	6339517	N	METHOD	1613B	111
8-July-2011	SL-155-SA5DN-SB-9.0-10.0	6339518	N	METHOD	1613B	III
8-July-2011	SL-156-SA5DN-SB-4.0-5.0	6339519	N	METHOD	1613B	III
8-July-2011	SL-156-SA5DN-SB-9.0-10.0	6339520	N	METHOD	1613B	III
8-July-2011	SL-157-SA5DN-SB-4.0-5.0	6339521	N	METHOD	16 1 3B	III
8-July-2011	SL-157-SA5DN-SB-9.0-10.0	6339522	N	METHOD	1613B	III
8-July-2011	SL-158-SA5DN-SB-4.0-5.0	6339523	N	METHOD	1613B	Ш
8-July-2011	SL-158-SA5DN-SB-9.0-10.0	6339524	N	METHOD	1613B	Ш
8-July-2011	SL-159-SA5DN-SB-4.0-5.0	6339525	N	METHOD	1613B	111

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX109

eQAPP Name: CDM SSFL 110509 EDD Filename: DX109_v1

Method Category: SVOA Method: 1613B

Matrix: AQ

Sample ID: EB21-SA5DN-SB-070711	Collec	ted: 7/7/20	11 1:30:00	PM A	nalysis Ty	pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	7.63	JB	0.484	MDL	10.2	PQL	pg/L	υ	В	
1,2,3,4,6,7,8-HPCDF	1.41	JB	0.140	MDL	10.2	PQL	pg/L	υ	В	
1,2,3,4,7,8,9-HPCDF	0.290	JBQ	0.181	MDL	10.2	PQL	pg/L	U	В	
1,2,3,4,7,8-HXCDF	0.583	JBQ	0.183	MDL	10.2	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDD	0.533	JBQ	0.285	MDL	10.2	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDF	0.258	JBQ	0.174	MDL	10.2	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDD	0.526	JBQ	0.300	MDL	10.2	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDF	0.475	JBQ	0.217	MDL	10.2	PQL	pg/L	υ	В	
1,2,3,7,8-PECDF	0.235	JBQ	0.202	MDL	10.2	PQL	pg/L	U	В	
2,3,4,6,7,8-HXCDF	0.505	JBQ	0.175	MDL	10.2	PQL	pg/L	U	В	
2,3,4,7,8-PECDF	0.411	JBQ	0.173	MDL	10.2	PQL	pg/L	U	В	
OCDD	13.8	JB	0.447	MDL	20.4	PQL	pg/L	U	В	
OCDF	1.56	JBQ	0.544	MDL	20.4	PQL	pg/L	U	В	

Method Category: SVOA Matrix: SO Method: 1613B

Collected: 7/7/2011 9:40:00 AM Analysis Type: RES Sample ID: DUP20-SA5DN-QC-070711 Data Lab Lab DL RLReview Reason DLRL Units Qual Code Result Qual Туре Type Analyte 1,2,3,4,6,7,8-HPCDD 0.412 0.0331 MDL 5.77 **PQL** ng/Kg U В ng/Kg 0.00746 MDL 5.77 PQL IJ B, FD 1,2,3,4,6,7,8-HPCDF 0.0758 JBQ U 0.0217 **JBQ** 0.0147 MDL 5.77 **PQL** ng/Kg 1,2,3,4,7,8,9-HPCDF ng/Kg U 0.0235 **JBQ** 0.0126 MDL 5.77 PQL В 1,2,3,4,7,8-HXCDF B, FD 0.0396 JBQ 0.0224 MDL 5.77 **PQL** ng/Kg ŲJ 1,2,3,6,7,8-HXCDD 0.0178 JBQ 0.0105 MDL 5.77 PQL ng/Kg UJ B, FD 1,2,3,6,7,8-HXCDF U В 1,2,3,7,8,9-HXCDD 0.114 JBQ 0.0225 MDL. 5.77 **PQL** ng/Kg UJ 0.114 JBQ 0.0146 MDL 5.77 PQL ng/Kg B, FD 1,2,3,7,8,9-HXCDF JQ MDL PQL J Z, FD 1,2,3,7,8-PECDD 0.0496 0.0262 5.77 ng/Kg 0.0118 UJ FD 0.0118 U MDL 5.77 PQL ng/Kg 1,2,3,7,8-PECDF UJ B, FD JBQ 0.0119 MDL 5.77 **PQL** 2,3,4,6,7,8-HXCDF 0.0362 ng/Kg 0.0120 U 0.0120 MDL 5.77 **PQL** ng/Kg UJ FD 2,3,4,7,8-PECDF ŲJ FD 0.0297 MDL 1.15 PQL 2,3,7,8-TCDD 0.0297 U ng/Kg 1.04 0.0210 MDL 11.5 PQL ng/Kg OCDD

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 9/28/2011 10:05:51 AM

Page 1 of 15

Dilution: 1

Laboratory: LL

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX109

EDD Filename: DX109_v1

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method Category:	SVOA	
Method:	1613B	Matrix: SO

Sample ID: DUP20-SA5DN-QC-070711	Collec	ted: 7/7/20	11 9:40:00	AM A	Inalysis T	ype: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
OCDF	0.121	JBQ	0.0453	MDL	11.5	PQL	ng/Kg	UJ	B, FD	
IOCDF	V.121	1 300	0.0400	INDL	11.5	1 04	1 1197119	Q 3	0,10	

Sample ID: SL-155-SA5DN-SB-4.0-5.0	Collect	ted: 7/8/20	11 8:45:00	AM A	nalysis Ty	pe: RES		ı	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.474	JВ	0.0300	MDL	5.63	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0630	JBQ	0.00699	MDL	5.63	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0373	JB	0.0151	MDL	5.63	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0257	JBQ	0.0120	MDL	5.63	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDD	0.0683	JBQ	0.0190	MDL	5.63	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0169	JBQ	0.0102	MDL	5.63	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0993	JBQ	0.0194	MDL	5.63	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDF	0.101	JB	0.0152	MDL	5.63	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0314	JBQ	0.0101	MDL	5.63	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0331	JBQ	0.0118	MDL	5.63	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0415	JBQ	0.0102	MDL	5.63	PQL	ng/Kg	U	В	
OCDD	1.09	JB	0.0222	MDL	11.3	PQL	ng/Kg	υ	В	
OCDF	0.131	JBQ	0.0364	MDL	11.3	PQL	ng/Kg	U	В	

Sample ID: SL-155-SA5DN-SB-9.0-10.0	Collected: 7/8/2011 8:50:00 AM	Analysis Type: RES	Dilution: 1
-------------------------------------	--------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.510	JВ	0.0333	MDL	5.87	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0656	JB	0.00755	MDL	5.87	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0255	JBQ	0.0132	MDL	5.87	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0265	J	0.0218	MDL	5.87	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0252	JBQ	0.0151	MDL	5.87	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0455	JBQ	0.0208	MDL	5.87	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0315	JBQ	0.0146	MDL	5.87	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.0301 .	JB	0.0126	MDL	5.87	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0704	JBQ	0.0121	MDL	5.87	PQL	ng/Kg	U	В
OCDD	2.11	JB	0.0259	MDL	11.7	PQL	ng/Kg	Ú	В
OCDF	0.130	JB	0.0410	MDL	11.7	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-156-SA5DN-SB-4.0-5.0 Collected: 7/8/2011 1:40:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.561	JB	0.0432	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.112	JB	0.0113	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0332	JQ	0.0286	MDL	5.69	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.104	JBQ	0.0287	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0585	JBQ	0.0166	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.112	JB	0.0290	MDL	5.69	PQL	ng/Kg	υ	₿
1,2,3,7,8,9-HXCDF	0.175	JB	0.0203	MDL	5.69	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0578	JQ	0.0391	MDL	5.69	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0703	JBQ	0.0150	MDL	5.69	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0569	JBQ	0.0176	MDL	5.69	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0910	JBQ	0.0150	MDL	5.69	PQL	ng/Kg	IJ	В
OCDD	1.81	JB	0.0290	MDL	11.4	PQL	ng/Kg	U	В
OCDF	0.167	JBQ	0.0591	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-156-SA5DN-SB-9.0-10.0 Collected: 7/8/2011 1:45:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.533	JBQ	0.0351	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0978	JB	0.0129	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0510	JBQ	0.0191	MDL	5.67	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0720	JQ	0.0251	MDL	5.67	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0925	JBQ	0.0218	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0741	JBQ	0.0251	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0848	JBQ	0.0188	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.109	JB	0.0240	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0896	JB	0.0191	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.116	JQ	0.0287	MDL	5.67	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.178	JB	0.0155	MDL	5.67	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0743	JBQ	0.0149	MDL	5.67	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.146	JB	0.0151	MDL.	5.67	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0657	JB	0.0396	MDL	1.13	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0633	JQ	0.0328	MDL	1.13	PQL	ng/Kg	J	Z
OCDD	2.52	JB	0.0325	MDL	11.3	PQL	ng/Kg	U	В
OCDF	0.211	JBQ	0.0497	MDL	11.3	PQL	ng/Kg	Ų	В

^{*} denotes a non-reportable result

9/28/2011 10:05:51 AM ADR version 1.4.0.111 Page 3 of 15

Lab Reporting Batch ID: DX109

Laboratory: LL

EDD Filename: DX109_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID; SL-157-SA5DN-SB-4.0-5.0 Collected: 7/8/2011 11:05:00 Analysis Type: RES Dilution: 1

001100		11 11.00.0	v 7	naryono rj	pe. NEO		Ditation. 1		
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
0.416	JB	0.0354	MDL	5.64	PQL	ng/Kg	U	В	
0.0944	JB	0.00979	MDL	5.64	PQL	ng/Kg	U	В	
0.0490	JBQ	0.0188	MDL	5.64	PQL	ng/Kg	U	В	
0.0551	J	0.0265	MDL	5.64	PQL	ng/Kg	J	Z	
0.109	JB	0.0196	MDL.	5.64	PQL	ng/Kg	U	В	
0.128	JBQ	0.0272	MDL	5.64	PQL	ng/Kg	U	В	
0.0926	JBQ	0.0167	MDL	5.64	PQL	ng/Kg	U	В	
0.204	JB	0.0277	MDL	5.64	PQL	ng/Kg	U	В	
0.325	JBQ	0.0227	MDL	5.64	PQL	ng/Kg	U	В	
0.167	JQ	0.0347	MDL	5.64	PQL	ng/Kg	J	Z	
0.224	JB	0.0164	MDL	5.64	PQL	ng/Kg	J	Z	
0.0868	JBQ	0.0171	MDL	5.64	PQL	ng/Kg	U	В	
0.170	JBQ	0.0162	MDL	5.64	PQL	ng/Kg	υ	B	
0.0861	JBQ	0.0391	MDL	1.13	PQL	ng/Kg	υ	В	
0.0535	JQ	0.0379	MDL	1.13	PQL	ng/Kg	J	Z	
0.877	JB	0.0269	MDL	11.3	PQL	ng/Kg	U	В	
0.150	JBQ	0.0469	MDL	11.3	PQL	ng/Kg	U	В	
	Lab Result 0.416 0.0944 0.0944 0.0490 0.0551 0.109 0.128 0.0926 0.204 0.325 0.167 0.224 0.0868 0.170 0.0861 0.0535 0.877	Lab Result Lab Qual 0.416 JB 0.0944 JB 0.0490 JBQ 0.0551 J 0.109 JB 0.128 JBQ 0.0926 JBQ 0.204 JB 0.325 JBQ 0.167 JQ 0.224 JB 0.0868 JBQ 0.170 JBQ 0.0861 JBQ 0.0877 JB	Lab Result Lab Qual DL 0.416 JB 0.0354 0.0944 JB 0.00979 0.0490 JBQ 0.0188 0.0551 J 0.0265 0.109 JB 0.0196 0.128 JBQ 0.0272 0.0926 JBQ 0.0167 0.204 JB 0.0277 0.325 JBQ 0.0227 0.167 JQ 0.0347 0.224 JB 0.0164 0.0868 JBQ 0.0171 0.170 JBQ 0.0162 0.0861 JBQ 0.0391 0.0535 JQ 0.0379 0.877 JB 0.0269	Lab Result Lab Qual DL Type 0.416 JB 0.0354 MDL 0.0944 JB 0.00979 MDL 0.0490 JBQ 0.0188 MDL 0.0551 J 0.0265 MDL 0.109 JB 0.0196 MDL 0.128 JBQ 0.0272 MDL 0.0926 JBQ 0.0167 MDL 0.204 JB 0.0277 MDL 0.325 JBQ 0.0227 MDL 0.167 JQ 0.0347 MDL 0.224 JB 0.0164 MDL 0.0868 JBQ 0.0171 MDL 0.170 JBQ 0.0162 MDL 0.0861 JBQ 0.0391 MDL 0.0535 JQ 0.0379 MDL 0.877 JB 0.0269 MDL	Lab Result Lab Qual DL DL Type RL 0.416 JB 0.0354 MDL 5.64 0.0944 JB 0.00979 MDL 5.64 0.0490 JBQ 0.0188 MDL 5.64 0.0490 JBQ 0.0188 MDL 5.64 0.0551 J 0.0265 MDL 5.64 0.109 JB 0.0196 MDL 5.64 0.128 JBQ 0.0272 MDL 5.64 0.0926 JBQ 0.0167 MDL 5.64 0.0926 JBQ 0.0167 MDL 5.64 0.204 JB 0.0277 MDL 5.64 0.325 JBQ 0.0227 MDL 5.64 0.167 JQ 0.0347 MDL 5.64 0.0224 JB 0.0164 MDL 5.64 0.0868 JBQ 0.0171 MDL 5.64 0.0861 JBQ 0.0391	Lab Result Lab Qual DL Type RL Type RL Type 0.416 JB 0.0354 MDL 5.64 PQL 0.0944 JB 0.00979 MDL 5.64 PQL 0.0490 JBQ 0.0188 MDL 5.64 PQL 0.0551 J 0.0265 MDL 5.64 PQL 0.109 JB 0.0196 MDL 5.64 PQL 0.128 JBQ 0.0272 MDL 5.64 PQL 0.0926 JBQ 0.0167 MDL 5.64 PQL 0.204 JB 0.0277 MDL 5.64 PQL 0.325 JBQ 0.0277 MDL 5.64 PQL 0.167 JQ 0.0347 MDL 5.64 PQL 0.224 JB 0.0164 MDL 5.64 PQL 0.0868 JBQ 0.0171 MDL 5.64 PQL 0.0861 JBQ 0.0391	Lab Result Lab Qual DL Type RL Type RL Type Units 0.416 JB 0.0354 MDL 5.64 PQL ng/Kg 0.0944 JB 0.00979 MDL 5.64 PQL ng/Kg 0.0490 JBQ 0.0188 MDL 5.64 PQL ng/Kg 0.0551 J 0.0265 MDL 5.64 PQL ng/Kg 0.109 JB 0.0196 MDL 5.64 PQL ng/Kg 0.128 JBQ 0.0272 MDL 5.64 PQL ng/Kg 0.0926 JBQ 0.0167 MDL 5.64 PQL ng/Kg 0.204 JB 0.0277 MDL 5.64 PQL ng/Kg 0.325 JBQ 0.0227 MDL 5.64 PQL ng/Kg 0.167 JQ 0.0347 MDL 5.64 PQL ng/Kg 0.167 JQ 0.0347 MDL 5.64 PQL ng/Kg 0.167 JQ 0.0347 MDL 5.64 PQL ng/Kg 0.0868 JBQ 0.0164 MDL 5.64 PQL ng/Kg 0.0861 JBQ 0.0391 MDL 5.64 PQL ng/Kg 0.0535 JQ 0.0379 MDL 1.13 PQL ng/Kg 0.0535 <td>Lab Result Lab Qual DL Type RL Type RL Type RL Type Data Review Qual 0.416 JB 0.0354 MDL 5.64 PQL ng/Kg U 0.0944 JB 0.00979 MDL 5.64 PQL ng/Kg U 0.0490 JBQ 0.0188 MDL 5.64 PQL ng/Kg U 0.0551 J 0.0265 MDL 5.64 PQL ng/Kg J 0.109 JB 0.0196 MDL 5.64 PQL ng/Kg U 0.128 JBQ 0.0272 MDL 5.64 PQL ng/Kg U 0.0926 JBQ 0.0167 MDL 5.64 PQL ng/Kg U 0.204 JB 0.0277 MDL 5.64 PQL ng/Kg U 0.325 JBQ 0.0227 MDL 5.64 PQL ng/Kg U 0.167 JQ 0.0347 MDL</td>	Lab Result Lab Qual DL Type RL Type RL Type RL Type Data Review Qual 0.416 JB 0.0354 MDL 5.64 PQL ng/Kg U 0.0944 JB 0.00979 MDL 5.64 PQL ng/Kg U 0.0490 JBQ 0.0188 MDL 5.64 PQL ng/Kg U 0.0551 J 0.0265 MDL 5.64 PQL ng/Kg J 0.109 JB 0.0196 MDL 5.64 PQL ng/Kg U 0.128 JBQ 0.0272 MDL 5.64 PQL ng/Kg U 0.0926 JBQ 0.0167 MDL 5.64 PQL ng/Kg U 0.204 JB 0.0277 MDL 5.64 PQL ng/Kg U 0.325 JBQ 0.0227 MDL 5.64 PQL ng/Kg U 0.167 JQ 0.0347 MDL	

Sample ID: SL-157-SA5DN-SB-9.0-10.0 Collected: 7/8/2011 11:10:00 Analysis Type: RES Dilution: 1

001100	Analyona Type: Time				Dilation 1			
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.394	JB	0.0299	MDL	5.81	PQL	ng/Kg	U	В
0.0835	JB	0.00835	MDL	5.81	PQL	ng/Kg	U	В
0.0657	JBQ	0.0138	MDL	5.81	PQL	ng/Kg	U	В
0.0557	JQ	0.0220	MDL	5.81	PQL	ng/Kg	J	Z
0.0636	JBQ	0.0198	MDL	5.81	PQL	ng/Kg	υ	В
0.0591	JBQ	0.0215	MDL	5.81	PQL	ng/Kg	U	В
0.0775	JBQ	0.0162	MDL	5.81	PQL	ng/Kg	U	В
0.0809	JBQ	0.0225	MDL	5.81	PQL	ng/Kg	U	В
0.0660	JBQ	0.0168	MDL	5.81	PQL	ng/Kg	U	В
0.0603	JQ	0.0285	MDL	5.81	PQL	ng/Kg	J	Z
0.114	JBQ	0.0133	MDL	5.81	PQL	ng/Kg	U	В
0.0568	JBQ	0.0126	MDL	5.81	PQL	ng/Kg	U	В
0.120	JB	0.0134	MDL	5.81	PQL	ng/Kg	υ	В
	Lab Result 0.394 0.0835 0.0657 0.0557 0.0636 0.0775 0.0809 0.0660 0.0603 0.114 0.0568	Lab Result Lab Qual 0.394 JB 0.0835 JB 0.0657 JBQ 0.0557 JQ 0.0636 JBQ 0.0591 JBQ 0.0775 JBQ 0.0809 JBQ 0.0660 JBQ 0.0603 JQ 0.114 JBQ 0.0568 JBQ	Lab Result Lab Qual DL 0.394 JB 0.0299 0.0835 JB 0.00835 0.0657 JBQ 0.0138 0.0557 JQ 0.0220 0.0636 JBQ 0.0198 0.0591 JBQ 0.0215 0.0775 JBQ 0.0162 0.0809 JBQ 0.0225 0.0660 JBQ 0.0168 0.0603 JQ 0.0285 0.114 JBQ 0.0133 0.0568 JBQ 0.0126	Lab Result Lab Qual DL Type 0.394 JB 0.0299 MDL 0.0835 JB 0.00835 MDL 0.0657 JBQ 0.0138 MDL 0.0557 JQ 0.0220 MDL 0.0636 JBQ 0.0198 MDL 0.0591 JBQ 0.0215 MDL 0.0775 JBQ 0.0162 MDL 0.0809 JBQ 0.0225 MDL 0.0660 JBQ 0.0168 MDL 0.0603 JQ 0.0285 MDL 0.114 JBQ 0.0133 MDL 0.0568 JBQ 0.0126 MDL	Lab Result Lab Qual DL DL Type RL 0.394 JB 0.0299 MDL 5.81 0.0835 JB 0.00835 MDL 5.81 0.0657 JBQ 0.0138 MDL 5.81 0.0557 JQ 0.0220 MDL 5.81 0.0636 JBQ 0.0198 MDL 5.81 0.0591 JBQ 0.0215 MDL 5.81 0.0775 JBQ 0.0162 MDL 5.81 0.0809 JBQ 0.0225 MDL 5.81 0.0660 JBQ 0.0168 MDL 5.81 0.0603 JQ 0.0285 MDL 5.81 0.0568 JBQ 0.0126 MDL 5.81	Lab Result Lab Qual DL Type RL Type RL Type 0.394 JB 0.0299 MDL 5.81 PQL 0.0835 JB 0.00835 MDL 5.81 PQL 0.0657 JBQ 0.0138 MDL 5.81 PQL 0.0557 JQ 0.0220 MDL 5.81 PQL 0.0636 JBQ 0.0198 MDL 5.81 PQL 0.0591 JBQ 0.0215 MDL 5.81 PQL 0.0775 JBQ 0.0162 MDL 5.81 PQL 0.0809 JBQ 0.0225 MDL 5.81 PQL 0.0660 JBQ 0.0168 MDL 5.81 PQL 0.0603 JQ 0.0285 MDL 5.81 PQL 0.0568 JBQ 0.0126 MDL 5.81 PQL	Lab Result Lab Qual DL Type RL Type RL Type Units 0.394 JB 0.0299 MDL 5.81 PQL ng/Kg 0.0835 JB 0.00835 MDL 5.81 PQL ng/Kg 0.0657 JBQ 0.0138 MDL 5.81 PQL ng/Kg 0.0557 JQ 0.0220 MDL 5.81 PQL ng/Kg 0.0636 JBQ 0.0198 MDL 5.81 PQL ng/Kg 0.0591 JBQ 0.0215 MDL 5.81 PQL ng/Kg 0.0775 JBQ 0.0162 MDL 5.81 PQL ng/Kg 0.0809 JBQ 0.0225 MDL 5.81 PQL ng/Kg 0.0660 JBQ 0.0168 MDL 5.81 PQL ng/Kg 0.0603 JQ 0.0285 MDL 5.81 PQL ng/Kg 0.0568 JBQ 0.0126 MDL 5.81	Lab Result Lab Qual DL Type RL Type RL Type RL Type Data Review Qual 0.394 JB 0.0299 MDL 5.81 PQL ng/Kg U 0.0835 JB 0.00835 MDL 5.81 PQL ng/Kg U 0.0657 JBQ 0.0138 MDL 5.81 PQL ng/Kg U 0.0557 JQ 0.0220 MDL 5.81 PQL ng/Kg J 0.0636 JBQ 0.0198 MDL 5.81 PQL ng/Kg U 0.0591 JBQ 0.0215 MDL 5.81 PQL ng/Kg U 0.0775 JBQ 0.0162 MDL 5.81 PQL ng/Kg U 0.0809 JBQ 0.0225 MDL 5.81 PQL ng/Kg U 0.0660 JBQ 0.0168 MDL 5.81 PQL ng/Kg U 0.0603 JQ 0.0285 MDL </td

^{*} denotes a non-reportable result

9/28/2011 10:05:51 AM ADR version 1.4.0.111 Page 4 of 15

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-157-SA5DN-SB-9.0-10.0 Collected: 7/8/2011 11:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDD	1.12	JB	0.0216	MDL.	11.6	PQL	ng/Kg	U	В
OCDF	0.160	JB	0.0400	MDL	11.6	PQL	ng/Kg	C	В

Sample ID: SL-158-SA5DN-SB-4.0-5.0 Collected: 7/8/2011 10:00:00 Analysis Type: RES Dilution: 1

Sample ID. GL-100-GAGBIT-GB-4.0-0.0	001100	ica. moreo	Analysis Type: 1140				Bildeoni I			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.487	JB	0.0299	MDL	5.57	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.125	JB	0.00898	MDL	5.57	PQL	ng/Kg	Ų	В	
1,2,3,4,7,8,9-HPCDF	0.0608	JB	0.0166	MDL	5.57	PQL	ng/Kg	Ų	В	
1,2,3,4,7,8-HxCDD	0.0746	JQ	0.0235	MDL	5.57	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0870	JB	0.0193	MDL	5.57	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.141	JB	0.0227	MDL	5.57	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0886	JB	0.0166	MDL	5.57	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.200	JB	0.0221	MDL	5.57	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.362	JВ	0.0175	MDL	5.57	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0788	J	0.0293	MDL	5.57	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0955	JBQ	0.0137	MDL	5.57	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0861	JB	0.0159	MDL	5.57	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0902	JBQ	0.0130	MDL	5.57	PQL	ng/Kg	υ	В	
2,3,7,8-TCDD	0.0510	JB	0.0330	MDL	1.11	PQL	ng/Kg	υ	В	
OCDD	1.06	JB	0.0268	MDL	11.1	PQL	ng/Kg	υ	В	
OCDF	0.198	JBQ	0.0400	MDL	11.1	PQL	ng/Kg	U	В	

Sample ID: SL-158-SA5DN-SB-9.0-10.0 Collected: 7/8/2011 10:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Quai	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.585	JBQ	0.0272	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.107	JB	0.00738	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0317	JB	0.0143	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0233	JQ	0.0217	MDL	5.67	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0388	JBQ	0.0148	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0317	JBQ	0.0223	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0223	JBQ	0.0122	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0679	JB	0.0208	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0560	JBQ	0.0152	MDL	5.67	PQL	ng/Kg	U	В

Page 5 of 15

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-158-SA5DN-SB-9.0-10.0 Collected: 7/8/2011 10:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDD	0.0303	JQ	0.0265	MDL	5.67	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0256	JBQ	0.0135	MDL	5.67	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0477	JBQ	0.0116	MDL	5.67	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0414	JBQ	0.0130	MDL	5.67	PQL	ng/Kg	U	₿
2,3,7,8-TCDF	0.0351	JQ	0.0332	MDL	1.13	PQL	ng/Kg	J	Z
OCDD	2.39	JB	0.0209	MDL	11.3	PQL	ng/Kg	U	В
OCDF	0.187	JB	0.0406	MDL	11.3	PQL	ng/Kg	Ų	В

Sample ID: SL-159-SA5DN-SB-4.0-5.0 Collected: 7/8/2011 2:55:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.397	JВ	0.0277	MDL	5.73	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0536	JBQ	0.00715	MDL	5.73	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0178	JBQ	0.0145	MDL	5.73	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.167	JBQ	0.0235	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0273	JBQ	0.0160	MDL	5.73	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.243	JBQ	0.0233	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.541	JB	0.0188	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.129	JBQ	0.0140	MDL	5.73	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0256	JB	0.0135	MDL	5.73	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0612	JBQ	0.0144	MDL	5.73	PQL	ng/Kg	υ	В
OCDD	0.901	JB	0.0225	MDL	11.5	PQL	ng/Kg	U	В
OCDF	0.0585	JBQ	0.0474	MDL	11.5	PQL	ng/Kg	U	В

Sample ID: SL-159-SA5DN-SB-9.0-10.0 Collected: 7/8/2011 3:00:00 PM Analysis Type: RES Dilution: 1

-			•						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.445	JB	0.0261	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0993	JB	0.00955	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0685	JB	0.0231	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0446	JBQ	0.0135	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0392	JBQ	0.0194	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0337	JB	0.0105	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0766	JB	0.0198	MDL	5.66	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.117	J	0.0176	MDL	5.66	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

9/28/2011 10:05:52 AM ADR version 1.4.0.111 Page 6 of 15

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-159-SA5DN-SB-9.0-10.0 Collected: 7/8/2011 3:00:00 PM Analysis Type: RES Dilution: 1

		<u> </u>										
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,7,8-PECDD	0.0266	JBQ	0.0153	MDL	5.66	PQL	ng/Kg	U	В			
1,2,3,7,8-PECDF	0.0347	JBQ	0.00783	MDL	5.66	PQL	ng/Kg	U	В			
2,3,4,6,7,8-HXCDF	0.0483	JB	0.0121	MDL	5.66	PQL	ng/Kg	Ų	В			
2,3,4,7,8-PECDF	0.0484	JBQ	0.00794	MDL	5.66	PQL	ng/Kg	υ	В			
2,3,7,8-TCDD	0.0348	J	0.0158	MDL	1.13	PQL	ng/Kg	J	Z			
OCDD	0.827	JB	0.0281	MDL	11.3	PQL	ng/Kg	U	В			
OCDF	0.213	JBQ	0.0372	MDL	11.3	PQL	ng/Kg	U	В			

Sample ID: SL-164-SA5DN-SB-4.0-5.0 Collected: 7/7/2011 8:05:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.509	JB	0.0349	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.143	JB	0.00866	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0141	JB	0.0141	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0217	JBQ	0.0166	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0500	JBQ	0.0223	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0463	JBQ	0.0143	MDL	5.72	PQL	ng/Kg	Ų	В
1,2,3,7,8,9-HXCDD	0.0839	JBQ	0.0226	MDL	5.72	PQL	ng/Kg	Ų	В
1,2,3,7,8,9-HXCDF	0.120	JBQ	0.0192	MDL	5.72	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0664	JBQ	0.0156	MDL	5.72	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0595	JBQ	0.0137	MDL	5.72	PQL	ng/Kg	U	В
OCDD	1.17	JB	0.0239	MDL	11.4	PQL	ng/Kg	U	В
OCDF	0.0912	JBQ	0.0378	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-164-SA5DN-SB-9.0-10.0 Collected: 7/7/2011 8:10:00 AM Analysis Type: RES Dilution: 1

- anipi										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.692	JB	0.0325	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.193	JBQ	0.0101	MDL	5.69	PQL	ng/Kg	U	, В	
1,2,3,4,7,8,9-HPCDF	0.0326	JBQ	0.0162	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0264	JQ	0.0206	MDL	5.69	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0494	JBQ	0.0155	MDL	5.69	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDD	0.0536	JBQ	0.0204	MDL	5.69	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0372	JBQ	0.0138	MDL	5.69	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	0.0596	JB	0.0220	MDL	5.69	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

9/28/2011 10:05:52 AM ADR version 1.4.0.111 Page 7 of 15

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-164-SA5DN-SB-9.0-10.0 Collected: 7/7/2011 8:10:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDF	0.0239	JBQ	0.0167	MDL	5.69	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.0144	JBQ	0.0138	MDL	5.69	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0625	JB	0.0157	MDL	5.69	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0459	JBQ	0.0128	MDL	5.69	PQL	ng/Kg	U	В
OCDD	2.23	JB	0.0221	MDL	11.4	PQL	ng/Kg	U	В
OCDF	0.168	JBQ	0.0352	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-166-SA5DN-SB-4.0-5.0 Collected: 7/7/2011 9:35:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.546	JB	0.0346	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.216	JB	0.00922	MDL	5.71	PQL	ng/Kg	UJ	B, FD
1,2,3,4,7,8,9-HPCDF	0.0360	JBQ	0.0151	MDL	5.71	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0353	JBQ	0.0184	MDL	5.71	PQL	ng/Kg	Ų	В
1,2,3,6,7,8-HXCDD	0.0227	U	0.0227	MDL	5.71	PQL	ng/Kg	UJ	FD
1,2,3,6,7,8-HXCDF	0.0427	JB	0.0162	MDL	5.71	PQL	ng/K g	UJ	B, FD
1,2,3,7,8,9-HXCDD	0.107	JB	0.0225	MDL	5.71	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.202	JB	0.0227	MDL	5.71	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8-PECDD	0.0251	υ	0.0251	MDL	5.71	PQL	ng/Kg	UJ	FD
1,2,3,7,8-PECDF	0.0301	JBQ	0.0132	MDL	5.71	PQL	ng/Kg	υJ	B, FD
2,3,4,6,7,8-HXCDF	0.0781	JB	0.0172	MDL	5.71	PQL	ng/Kg	UJ	B, FD
2,3,4,7,8-PECDF	0.0580	JBQ	0.0128	MDL	5.71	PQL	ng/Kg	UJ	B, FD
2,3,7,8-TCDD	0.0340	JBQ	0.0340	MDL	1.14	PQL	ng/Kg	UJ	B, FD
OCDD	1.20	JB	0.0220	MDL	11.4	PQL	ng/Kg	U	В
OCDF	0.207	JBQ	0.0382	MDL	11.4	PQL	ng/Kg	UJ	B, FD

Sample ID: SL-166-SA5DN-SB-9.0-10.0 Collected: 7/7/2011 9:30:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.536	JB	0.0361	MDL	5.78	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.169	JBQ	0.0121	MDL	5.78	PQL	ng/Kg	С	В
1,2,3,4,7,8,9-HPCDF	0.0605	JBQ	0.0198	MDL	5.78	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0356	JQ	0.0265	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0837	JBQ	0.0169	MDL	5.78	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0667	JBQ	0.0254	MDL	5.78	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

9/28/2011 10:05:52 AM ADR version 1.4.0.111 Page 8 of 15

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-166-SA5DN-SB-9.0-10.0 Collected: 7/7/2011 9:30:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDF	0.0614	JB	0.0157	MDL	5.78	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0793	JBQ	0.0249	MDL	5.78	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0771	JBQ	0.0183	MDL	5.78	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0663	JQ	0.0251	MDL	5.78	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0341	JB	0.0148	MDL	5.78	PQL	n g /Kg	U	В
2,3,4,6,7,8-HXCDF	0.103	JB	0.0161	MDL	5.78	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0890	JBQ	0.0143	MDL	5.78	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0439	JBQ	0.0326	MDL	1.16	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0302	JQ	0.0271	MDL	1.16	PQL	ng/Kg	J	Z
OCDD	1.47	JBQ	0.0217	MDL	11.6	PQL	ng/Kg	U	В
OCDF	0.270	JB	0.0403	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-167-SA5DN-SB-4.0-5.0 Collected: 7/7/2011 10:40:00 Analysis Type: RES Dilution: 1

Sample 15. GE-101-GAGBIN-GB-4.0-0.0	00//00	00//00000 ////2011 10/40/00						<i></i>		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.610	JВ	0.0389	MDL	5.75	PQL	ng/Kg	υ	В	
1,2,3,4,6,7,8-HPCDF	0.274	JB	0.0115	MDL	5.75	PQL	ng/Kg	υ	В	
1,2,3,4,7,8,9-HPCDF	0.0399	JBQ	0.0199	MDL	5.75	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HXCDF	0.0792	JBQ	0.0207	MDL	5.75	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0433	JBQ	0.0265	MDL	5.75	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0590	JB	0.0185	MDL	5.75	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0801	JBQ	0.0265	MDL	5.75	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDF	0.0799	JB	0.0215	MDL	5.75	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0249	JBQ	0.0157	MDL	5.75	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0965	JBQ	0.0189	MDL	5.75	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0816	JB	0.0152	MDL	5.75	PQL	ng/Kg	U	В	
OCDD	1.75	JB	0.0317	MDL	11.5	PQL	ng/Kg	U	В	
OCDF	0.232	JB	0.0457	MDL	11.5	PQL	ng/Kg	υ	В	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.605	JB	0.0350	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.318	JB	0.0115	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0758	JB	0.0176	MDL	5.79	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Laboratory: LL Lab Reporting Batch ID: DX109

eQAPP Name: CDM_SSFL_110509 EDD Filename: DX109_v1

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-167-SA5DN-SB-9.0-10.0 Collected: 7/7/2011 10:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	0.127	JQ	0.0282	MDL	5.79	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.112	JBQ	0.0183	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.118	JB	0.0265	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0976	JB	0.0171	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.124	JBQ	0.0273	MDL	5.79	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0984	JBQ	0.0213	MDL	5.79	PQL	ng/Kg	Ų	В
1,2,3,7,8-PECDD	0.148	J	0.0294	MDL	5.79	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.163	JB	0.0147	MDL,	5.79	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.100	JBQ	0.0173	MDL	5.79	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.187	JBQ	0.0144	MDL	5.79	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0480	JBQ	0.0293	MDL	1.16	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0425	JQ	0.0273	MDL	1.16	PQL	ng/Kg	J	Z
OCDD	1.84	JB	0.0219	MDL	11.6	PQL	ng/Kg	Ų	В
OCDF	0.219	JBQ	0.0394	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-168-SA5DN-SB-4.0-5.0 Collected: 7/7/2011 1:25:00 PM Analysis Type: RES Dilution: 1

	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Type	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	0.467	JB	0.0364	MDL	5.87	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.249	JBQ	0.0124	MDL	5.87	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.102	JB	0.0222	MDL	5.87	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.137	JQ	0.0298	MDL	5.87	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.192	JB	0.0234	MDL	5.87	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.135	JBQ	0.0286	MDL	5.87	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.198	JBQ	0.0203	MDL	5.87	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.126	JBQ	0.0277	MDL	5.87	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.120	JB	0.0238	MDL	5.87	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.281	J	0.0348	MDL	5.87	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.347	JB	0.0176	MDL	5.87	PQL	ng/Kg	٢	Z
2,3,4,6,7,8-HXCDF	0.154	JB	0.0214	MDL	5.87	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.284	JBQ	0.0169	MDL	5.87	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0773	JBQ	0.0405	MDL	1.17	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.0335	JQ	0.0328	MDL	1.17	PQL	ng/Kg	J	Z
OCDD	1.27	JB	0.0253	MDL	11.7	PQL	ng/Kg	Ú	В

^{*} denotes a non-reportable result

9/28/2011 10:05:52 AM Page 10 of 15

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-168-SA5DN-SB-4.0-5.0 Collected: 7/7/2011 1:25:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDF	0.274	JBQ	0.0463	MDL	11.7	PQL	ng/Kg	11	D

Sample ID: SL-168-SA5DN-SB-9.0-10.0 Collected: 7/7/2011 1:15:00 PM Analysis Type: RES Dilution: 1

Sample ID. SE-100-SASDIN-SD-3.0-10.0	Conec	Conected. 1112011 1:15.50 fm Analysis Type. 1125						Bhation. 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	1.01	JB	0.0349	MDL	5.62	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.305	JB	0.0114	MDL	5.62	PQL	ng/Kg	U	В		
1,2,3,4,7,8,9-HPCDF	0.0756	JBQ	0.0200	MDL	5.62	PQL	ng/Kg	υ	В		
1,2,3,4,7,8-HxCDD	0.103	J	0.0281	MDL	5.62	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	0.191	JB	0.0181	MDL	5.62	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.186	JBQ	0.0279	MDL	5.62	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.133	JBQ	0.0155	MDL	5.62	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.128	JB	0.0276	MDL	5.62	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.125	JB	0.0228	MDL	5.62	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.215	JQ	0.0256	MDL	5.62	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.249	JB	0.0155	MDL	5.62	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.176	JBQ	0.0176	MDL	5.62	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.246	JBQ	0.0146	MDL	5.62	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.0570	JBQ	0.0323	MDL	1.12	PQL	ng/Kg	U	В		
2,3,7,8-TCDF	0.0326	JQ	0.0287	MDL	1.12	PQL	ng/Kg	Ĵ	Z		
OCDD	8.11	JB	0.0293	MDL	11.2	PQL	ng/Kg	J	Z		
OCDF	0.299	JBQ	0.0359	MDL	11.2	PQL	ng/Kg	U	В		

Sample ID: SL-169-SA5DN-SB-4.0-5.0 Collected: 7/7/2011 2:30:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.545	JB	0.0382	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0984	JBQ	0.00940	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0488	JBQ	0.0192	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0552	JBQ	0.0167	MDL	5.75	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0642	JBQ	0.0243	MDL	5.75	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0589	JBQ	0.0148	MDL	5.75	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0824	JB	0.0252	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0322	JBQ	0.0210	MDL	5.75	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0892	JQ	0.0296	MDL	5.75	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

9/28/2011 10:05:52 AM ADR version 1.4.0.111 Page 11 of 15

Lab Reporting Batch ID: DX109

Laboratory: LL

EDD Filename: DX109_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA **
Method: 1613B

Matrix: SO

Sample ID: SL-169-SA5DN-SB-4.0-5.0

Collected: 7/7/2011 2:30:00 PM

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDF	0.0851	JB	0.0139	MDL	5.75	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0647	JBQ	0.0165	MDL	5.75	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0974	JB	0.0139	MDL	5.75	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0457	JB	0.0375	MDL	1.15	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0301	JQ	0.0286	MDL	1.15	PQL	ng/Kg	J	Z
OCDD	3.37	JB	0.0295	MDL	11.5	PQL	ng/Kg	U	В
OCDF	0.234	JBQ	0.0513	MDL	11.5	PQL	ng/Kg	U	В

Sample ID: SL-169-SA5DN-SB-7.5-8.5

Collected: 7/7/2011 2:35:00 PM

Analysis Type: RES

Dilution: 1

0ampio 12, 02 100 01 10211 0= 110 010						1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.512	JB	0.0348	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0460	JBQ	0.00810	MDL	5.63	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0196	JB	0.0154	MDL	5.63	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0348	JB	0.0135	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0269	JB	0.0222	MDL.	5.63	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0215	JBQ	0.0121	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0445	JBQ	0.0214	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0318	JBQ	0.0164	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0317	JBQ	0.0129	MDL	5.63	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0214	JBQ	0.0129	MDL	5.63	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0349	JBQ	0.0125	MDL	5.63	PQL	ng/Kg	U	В
OCDD	1.37	JB	0.0263	MDL	11.3	PQL	ng/Kg	U	В
OCDF	0.0888	JB	0.0392	MDL	11.3	PQL	ng/Kg	U	, В

Page 12 of 15

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX109 Laboratory: LL EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
***************************************	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
·	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Laboratory Triplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
	Internal Standard Estimation
I	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
Ĺ	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
М	Initial Tune
М	Performance Evaluation Mixture
М	Resolution Check Mixture
Q ·	Laboratory Duplicate Precision
Q	Laboratory Triplicate Precision ·
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX109 Laboratory: LL EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX109

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ					
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples	
BLK1990B371537	7/21/2011 3:37:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-ECDD 1,2,3,7,8,PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0,0DD 0CDF	4.77 pg/L 1.11 pg/L 0.617 pg/L 0.627 pg/L 0.272 pg/L 0.447 pg/L 0.625 pg/L 0.360 pg/L 0.596 pg/L 0.295 pg/L 0.321 pg/L 0.382 pg/L 0.382 pg/L 0.382 pg/L	EB21-SA5DN-SB-070711	

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB21-SA5DN-SB-070711(RES)	1,2,3,4,6,7,8-HPCDD	7.63 pg/L	7.63U pg/L
EB21-\$A5DN-\$B-070711(RE\$)	1,2,3,4,6,7,8-HPCDF	1.41 pg/L	1.41U pg/L
EB21-SA5DN-SB-070711(RES)	1,2,3,4,7,8,9-HPCDF	0,290 pg/L	0.290U pg/L
EB21-\$A5DN-SB-070711(RES)	1,2,3,4,7,8-HXCDF	0.583 pg/L	0.583U pg/L
EB21-SA5DN-SB-070711(RES)	1,2,3,6,7,8-HXCDD	0.533 pg/L	0.533U pg/L
EB21-\$A5DN-\$B-070711(RE\$)	1,2,3,6,7,8-HXCDF	0.258 pg/L	0.258U pg/L
EB21-\$A5DN-\$B-070711(RES)	1,2,3,7,8,9-HXCDD	0.526 pg/L	0.526U pg/L
EB21-SA5DN-SB-070711(RES)	1,2,3,7,8,9-HXCDF	0.475 pg/L	0.475U pg/L
EB21-SA5DN-SB-070711(RES)	1,2,3,7,8-PECDF	0,235 pg/L	0.235U pg/L
EB21-SA5DN-SB-070711(RES)	2,3,4,6,7,8-HXCDF	0.505 pg/L	0.505U pg/L
EB21-SA5DN-SB-070711(RES)	2,3,4,7,8-PECDF	0.411 pg/L	0.411U pg/L
EB21-SA5DN-SB-070711(RES)	OCDD	13.8 pg/L	13.8U pg/L
EB21-SA5DN-SB-070711(RES)	OCDF	1.56 pg/L	1.56U pg/L

<i>Method:</i> 1613B <i>Matrix:</i> SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1940B370051	7/15/2011 12:51:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0,3,4,6,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,5,8-PECDF 0,3,4,5,8-PECDF 0,3,4,5,8-PECDF	0.412 ng/Kg 0.341 ng/Kg 0.120 ng/Kg 0.0278 ng/Kg 0.0977 ng/Kg 0.0321 ng/Kg 0.0810 ng/Kg 0.0698 ng/Kg 0.0474 ng/Kg 0.0366 ng/Kg 0.179 ng/Kg 0.104 ng/Kg 0.823 ng/Kg 0.418 ng/Kg	SL-159-SA5DN-SB-9.0-10.0

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 10:05:23 AM ADR version 1.4.0.111 Page 1 of 9

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1990B371952	7/19/2011 7:52:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,8-PECDF 2,3,7,8-TCDD OCDD	0.470 ng/Kg 0.209 ng/Kg 0.0716 ng/Kg 0.0659 ng/Kg 0.0305 ng/Kg 0.0427 ng/Kg 0.0428 ng/Kg 0.0659 ng/Kg 0.0333 ng/Kg 0.0994 ng/Kg 0.0653 ng/Kg 0.0555 ng/Kg 0.857 ng/Kg 0.281 ng/Kg	DUP20-SA5DN-QC-070711 SL-155-SA5DN-SB-4.0-5.0 SL-155-SA5DN-SB-9.0-10.0 SL-156-SA5DN-SB-9.0-10.0 SL-156-SA5DN-SB-9.0-10.0 SL-157-SA5DN-SB-9.0-10.0 SL-157-SA5DN-SB-9.0-10.0 SL-158-SA5DN-SB-9.0-10.0 SL-158-SA5DN-SB-4.0-5.0 SL-159-SA5DN-SB-4.0-5.0 SL-164-SA5DN-SB-9.0-10.0 SL-166-SA5DN-SB-9.0-10.0 SL-166-SA5DN-SB-9.0-10.0 SL-166-SA5DN-SB-9.0-10.0 SL-166-SA5DN-SB-9.0-10.0 SL-168-SA5DN-SB-9.0-10.0 SL-169-SA5DN-SB-9.0-10.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP20-SA5DN-QC-070711(RE\$)	1,2,3,4,6,7,8-HPCDD	0,412 ng/Kg	0.412U ng/Kg
DUP20-SA5DN-QC-070711(RES)	1,2,3,4,6,7,8-HPCDF	0.0758 ng/Kg	0.0758U ng/Kg
DUP20-\$A5DN-QC-070711(RES)	1,2,3,4,7,8,9-HPCDF	0.0217 ng/Kg	0.0217U ng/Kg
DUP20-SA5DN-QC-070711(RES)	1,2,3,4,7,8-HXCDF	0.0235 ng/Kg	0.0235U ng/Kg
DUP20-SA5DN-QC-070711(RES)	1,2,3,6,7,8-HXCDD	0.0396 ng/Kg	0.0396U ng/Kg
DUP20-SA5DN-QC-070711(RES)	1,2,3,6,7,8-HXCDF	0.0178 ng/Kg	0.0178U ng/Kg
DUP20-SA5DN-QC-070711(RES)	1,2,3,7,8,9-HXCDD	0.114 ng/Kg	0.114U ng/Kg
DUP20-SA5DN-QC-070711(RES)	1,2,3,7,8,9-HXCDF	0.114 ng/Kg	0.114U ng/Kg
DUP20-SA5DN-QC-070711(RES)	2,3,4,6,7,8-HXCDF	0.0362 ng/Kg	0.0362U ng/Kg
DUP20-SA5DN-QC-070711(RES)	OCDD	1.04 ng/Kg	1.04U ng/Kg
DUP20-SA5DN-QC-070711(RES)	OCDF	0.121 ng/Kg	0.121U ng/Kg
SL-155-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.474 ng/Kg	0.474U ng/Kg
SL-155-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0630 ng/Kg	0.0630U ng/Kg
SL-155-SA5DN-SB-4,0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0,0373 ng/Kg	0.0373U ng/Kg
SL-155-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0257 ng/Kg	0.0257U ng/Kg
SL-155-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0683 ng/Kg	0.0683U ng/Kg
SL-155-\$A5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0169 ng/Kg	0.0169U ng/Kg
SL-155-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0993 ng/Kg	0.0993U ng/Kg
SL-155-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.101 ng/Kg	0.101U ng/Kg
SL-155-\$A5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,0314 ng/Kg	0.0314U ng/Kg
SL-155-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0,0331 ng/Kg	0.0331U ng/Kg
SL-155-\$A5DN-SB-4.0-5.0(RE\$)	2,3,4,7,8-PECDF	0.0415 ng/Kg	0.0415U ng/Kg
SL-155-SA5DN-SB-4.0-5.0(RES)	OCDD	1.09 ng/Kg	1.09U ng/Kg
SL-155-SA5DN-SB-4.0-5.0(RES)	OCDF	0,131 ng/Kg	0.131U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 10:05:23 AM ADR version 1.4.0.111 Page 2 of 9

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	en en en en en en en en en en en en en e			
Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-155-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.510 ng/Kg	0.510U ng/Kg
SL-155-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0656 ng/Kg	0.0656U ng/Kg
SL-155-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0255 ng/Kg	0.0255U ng/Kg
SL-155-SA5DN-SB-9,0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0252 ng/Kg	0.0252U ng/Kg
SL-155-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0455 ng/Kg	0.0455U ng/Kg
SL-155-SA5DN-SB-9,0-10,0(RES)	1,2,3,7,8,9-HXCDF	0.0315 ng/Kg	0.0315U ng/Kg
SL-155-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0301 ng/Kg	0.0301U ng/Kg
SL-155-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0704 ng/Kg	0.0704U ng/Kg
SL-155-SA5DN-SB-9.0-10.0(RES)	OCDD	2.11 ng/Kg	2.11U ng/Kg
SL-155-SA5DN-SB-9.0-10.0(RES)	OCDF	0.130 ng/Kg	0.130U ng/Kg
SL-156-SA5DN-SB-4,0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.561 ng/Kg	0.561U ng/Kg
SL-156-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.112 ng/Kg	0.112U ng/Kg
SL-156-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.104 ng/Kg	0.104U ng/Kg
SL-156-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0585 ng/Kg	0.0585U ng/Kg
SL-156-\$A5DN-\$B-4,0-5,0(RES)	1,2,3,7,8,9-HXCDD	0.112 ng/Kg	0.112U ng/Kg
SL-156-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.175 ng/Kg	0.175U ng/Kg
SL-156-\$A5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,0703 ng/Kg	0.0703U ng/Kg
SL-156-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0569 ng/Kg	0.0569U ng/Kg
SL-156-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0910 ng/Kg	0.0910U ng/Kg
SL-156-SA5DN-SB-4.0-5.0(RES)	OCDD	1.81 ng/Kg	1.81U ng/Kg
SL-156-SA5DN-SB-4.0-5.0(RES)	OCDF	0.167 ng/Kg	0.167U ng/Kg
SL-156-\$A5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.533 ng/Kg	0.533U ng/Kg
SL-156-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0978 ng/Kg	0,0978U ng/Kg
SL-156-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0510 ng/Kg	0.0510U ng/Kg
SL-156-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0925 ng/Kg	0.0925U ng/Kg
SL-156-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0741 ng/Kg	0.0741U ng/Kg
SL-156-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0848 ng/Kg	0.0848U ng/Kg
SL-156-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.109 ng/Kg	0.109U ng/Kg
SL-156-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0896 ng/Kg	0.0896U ng/Kg
SL-156-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0743 ng/Kg	0.0743U ng/Kg
SL-156-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.146 ng/Kg	0.146U ng/Kg
SL-156-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0657 ng/Kg	0.0657U ng/Kg
SL-156-SA5DN-SB-9.0-10.0(RES)	OCDD	2.52 ng/Kg	2.52U ng/Kg
SL-156-SA5DN-SB-9.0-10.0(RES)	OCDF	0.211 ng/Kg	0.211U ng/Kg
SL-157-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.416 ng/Kg	0.416U ng/Kg
SL-157-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0944 ng/Kg	0.0944U ng/Kg
SL-157-\$A5DN-\$B-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0,0490 ng/Kg	0.0490U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 10:05:24 AM ADR version 1.4.0.111 Page 3 of 9

Lab Reporting Batch ID: DX109

Laboratory: LL

EDD Filename: DX109_v1

eQAPP Name: CDM_SSFL_110509

Methou.	613B O	নি ক্ষিত্ৰ কৰিব কৰিব কৰিব কৰিব কৰিব কৰিব কৰিব কৰি			
Method Blank Sample ID		Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-157-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.109 ng/Kg	0.109U ng/Kg
SL-157-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.128 ng/Kg	0.128U ng/Kg
SL-157-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0926 ng/Kg	0.0926U ng/Kg
SL-157-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.204 ng/Kg	0,204U ng/Kg
SL-157-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.325 ng/Kg	0.325U ng/Kg
SL-157-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0868 ng/Kg	0.0868U ng/Kg
SL-157-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.170 ng/Kg	0.170U ng/Kg
SL-157-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0861 ng/Kg	0.0861U ng/Kg
SL-157-SA5DN-SB-4.0-5.0(RES)	OCDD	0.877 ng/Kg	0.877U ng/Kg
SL-157-\$A5DN-\$B-4.0-5.0(RE\$)	OCDF	0.150 ng/Kg	0.150U ng/Kg
SL-157-\$A5DN-\$B-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.394 ng/Kg	0.394U ng/Kg
SL-157-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0835 ng/Kg	0.0835U ng/Kg
SL-157-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0657 ng/Kg	0.0657U ng/Kg
SL-157-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0636 ng/Kg	0.0636U ng/Kg
SL-157-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0591 ng/Kg	0.0591U ng/Kg
SL-157-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0775 ng/Kg	0.0775U ng/Kg
SL-157-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0809 ng/Kg	0.0809U ng/Kg
SL-157-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0660 ng/Kg	0.0660U ng/Kg
SL-157-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.114 ng/Kg	0.114U ng/Kg
SL-157-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0568 ng/Kg	0.0568U ng/Kg
SL-157-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.120 ng/Kg	0.120U ng/Kg
SL-157-SA5DN-SB-9.0-10.0(RES)	OCDD	1.12 ng/Kg	1.12U ng/Kg
SL-157-SA5DN-SB-9.0-10.0(RES)	OCDF	0,160 ng/Kg	0.160U ng/Kg
SL-158-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.487 ng/Kg	0.487U ng/Kg
SL-158-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.125 ng/Kg	0.125U ng/Kg
SL-158-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0608 ng/Kg	0.0608U ng/Kg
SL-158-SA5DN-\$B-4.0-5.0(RE\$)	1,2,3,4,7,8-HXCDF	0,0870 ng/Kg	0.0870U ng/Kg
SL-158-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.141 ng/Kg	0.141U ng/Kg
SL-158-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0886 ng/Kg	0.0886U ng/Kg
SL-158-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0,200 ng/Kg	0.200U ng/Kg
SL-158-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0955 ng/Kg	0.0955U ng/Kg
SL-158-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0,0861 ng/Kg	0.0861U ng/Kg
SL-158-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0902 ng/Kg	0.0902U ng/Kg
SL-158-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0510 ng/Kg	0.0510U ng/Kg
SL-158-SA5DN-SB-4.0-5.0(RES)	OCDD	1.06 ng/Kg	1.06U ng/Kg
SL-158-SA5DN-SB-4.0-5.0(RES)	OCDF	0.198 ng/Kg	0.198U ng/Kg
SL-158-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.585 ng/Kg	0.585U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 10:05:24 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	त्यां प्रशासन्ति विश्वविद्यात् । इतिहास्त्राचित्राच्या स्वति विश्वविद्यात् । स्वति विश्वविद्यात् । स्वति विश्वविद्यात् । स्वति विश्वविद्यात् । स्वति विश्वविद्यात् । स्वति विश्वविद्यात् ।			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-158-SA5DN-SB-9,0-10,0(RES)	1,2,3,4,6,7,8-HPCDF	0.107 ng/Kg	0.107U ng/Kg
SL-158-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0317 ng/Kg	0.0317U ng/Kg
SL-158-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0388 ng/Kg	0.0388U ng/Kg
SL-158-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0317 ng/Kg	0.0317U ng/Kg
SL-158-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0223 ng/Kg	0.0223U ng/Kg
SL-158-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0679 ng/Kg	0.0679U ng/Kg
SL-158-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0560 ng/Kg	0.0560U ng/Kg
SL-158-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0256 ng/Kg	0.0256U ng/Kg
SL-158-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0477 ng/Kg	0.0477U ng/Kg
SL-158-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0414 ng/Kg	0.0414U ng/Kg
SL-158-SA5DN-SB-9.0-10.0(RES)	OCDD	2.39 ng/Kg	2.39U ng/Kg
SL-158-SA5DN-SB-9.0-10.0(RES)	OCDF	0,187 ng/Kg	0.187U ng/Kg
SL-159-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.397 ng/Kg	0.397U ng/Kg
SL-159-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0536 ng/Kg	0.0536U ng/Kg
SL-159-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0178 ng/Kg	0.0178U ng/Kg
SL-159-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0273 ng/Kg	0.0273U ng/Kg
SL-159-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.129 ng/Kg	0.129U ng/Kg
SL-159-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0256 ng/Kg	0.0256U ng/Kg
SL-159-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0612 ng/Kg	0.0612U ng/Kg
SL-159-SA5DN-SB-4.0-5.0(RES)	OCDD	0,901 ng/Kg	0.901U ng/Kg
SL-159-SA5DN-SB-4.0-5.0(RES)	OCDF	0.0585 ng/Kg	0.0585U ng/Kg
SL-159-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.445 ng/Kg	0.445U ng/Kg
SL-159-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0993 ng/Kg	0.0993U ng/Kg
SL-159-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0685 ng/Kg	0.0685U ng/Kg
SL-159-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0446 ng/Kg	0.0446U ng/Kg
SL-159-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0392 ng/Kg	0.0392U ng/Kg
SL-159-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0337 ng/Kg	0.0337U ng/Kg
SL-159-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0766 ng/Kg	0.0766U ng/Kg
SL-159-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0266 ng/Kg	0.0266U ng/Kg
SL-159-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0347 ng/Kg	0.0347U ng/Kg
SL-159-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0483 ng/Kg	0.0483U ng/Kg
SL-159-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0484 ng/Kg	0.0484U ng/Kg
SL-159-SA5DN-SB-9.0-10.0(RES)	OCDD	0.827 ng/Kg	0.827U ng/Kg
SL-159-SA5DN-SB-9.0-10.0(RES)	OCDF	0.213 ng/Kg	0.213U ng/Kg
SL-164-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.509 ng/Kg	0.509U ng/Kg
SL-164-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.143 ng/Kg	0.143U ng/Kg
SL-164-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0141 ng/Kg	0.0141U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 10:05:24 AM ADR version 1.4.0.111 Page 5 of 9

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	en er en en en en en en en en en en en en en		**************************************	
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-164-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0217 ng/Kg	0.0217U ng/Kg
SL-164-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0500 ng/Kg	0.0500U ng/Kg
SL-164-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0463 ng/Kg	0.0463U ng/Kg
SL-164-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0839 ng/Kg	0.0839U ng/Kg
SL-164-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.120 ng/Kg	0.120U ng/Kg
SL-164-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0664 ng/Kg	0.0664U ng/Kg
SL-164-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0595 ng/Kg	0.0595U ng/Kg
SL-164-SA5DN-SB-4,0-5,0(RES)	OCDD	1.17 ng/Kg	1.17U ng/Kg
SL-164-SA5DN-SB-4.0-5.0(RES)	OCDF	0.0912 ng/Kg	0.0912U ng/Kg
SL-164-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.692 ng/Kg	0,692U ng/Kg
SL-164-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.193 ng/Kg	0.193U ng/Kg
SL-164-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0326 ng/Kg	0.0326U ng/Kg
SL-164-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0494 ng/Kg	0.0494U ng/Kg
SL-164-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0536 ng/Kg	0.0536U ng/Kg
SL-164-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0372 ng/Kg	0.0372U ng/Kg
SL-164-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0596 ng/Kg	0.0596U ng/Kg
SL-164-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0239 ng/Kg	0.0239U ng/Kg
SL-164-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0144 ng/Kg	0.0144U ng/Kg
SL-164-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0625 ng/Kg	0.0625U ng/Kg
SL-164-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0459 ng/Kg	0.0459U ng/Kg
SL-164-SA5DN-SB-9.0-10.0(RES)	OCDD	2.23 ng/Kg	2.23U ng/Kg
SL-164-SA5DN-SB-9.0-10.0(RES)	OCDF	0.168 ng/Kg	0.168U ng/Kg
SL-166-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.546 ng/Kg	0.546U ng/Kg
SL-166-SA5DN-\$B-4,0-5,0(RE\$)	1,2,3,4,6,7,8-HPCDF	0.216 ng/Kg	0.216U ng/Kg
SL-166-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0360 ng/Kg	0.0360U ng/Kg
SL-166-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0353 ng/Kg	0.0353U ng/Kg
SL-166-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0427 ng/Kg	0.0427U ng/Kg
SL-166-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.107 ng/Kg	0.107U ng/Kg
SL-166-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.202 ng/Kg	0.202U ng/Kg
SL-166-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0301 ng/Kg	0.0301U ng/Kg
SL-166-SA5DN-SB-4,0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0781 ng/Kg	0.0781U ng/Kg
SL-166-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0580 ng/Kg	0.0580U ng/Kg
SL-166-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0340 ng/Kg	0.0340U ng/Kg
SL-166-SA5DN-SB-4.0-5.0(RES)	OCDD	1.20 ng/Kg	1.20U ng/Kg
SL-166-SA5DN-SB-4.0-5.0(RES)	OCDF	0.207 ng/Kg	0.207U ng/Kg
SL-166-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.536 ng/Kg	0,536U ng/Kg
SL-166-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.169 ng/Kg	0.169U ng/Kg

9/28/2011 10:05:24 AM ADR version 1.4.0.111 Page 6 of 9

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	in the remove size of earling gas			
Method Blar Sample ID	ηk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-166-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0605 ng/Kg	0.0605U ng/Kg
SL-166-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0837 ng/Kg	0.0837U ng/Kg
SL-166-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0667 ng/Kg	0.0667U ng/Kg
SL-166-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0614 ng/Kg	0.0614U ng/Kg
SL-166-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0793 ng/Kg	0.0793U ng/Kg
SL-166-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0,0771 ng/Kg	0.0771U ng/Kg
SL-166-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0341 ng/Kg	0.0341U ng/Kg
SL-166-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.103 ng/Kg	0.103U ng/Kg
SL-166-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0890 ng/Kg	0.0890U ng/Kg
SL-166-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0439 ng/Kg	0.0439U ng/Kg
SL-166-SA5DN-SB-9.0-10.0(RES)	OCDD	1.47 ng/Kg	1.47U ng/Kg
SL-166-SA5DN-SB-9.0-10.0(RES)	OCDF	0.270 ng/Kg	0.270U ng/Kg
SL-167-SA5DN-SB-4.0-5.0(RE\$)	1,2,3,4,6,7,8-HPCDD	0.610 ng/Kg	0.610U ng/Kg
SL-167-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.274 ng/Kg	0.274U ng/Kg
SL-167-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0399 ng/ Kg	0.0399U ng/Kg
SL-167-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0792 ng/Kg	0.0792U ng/Kg
SL-167-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0433 ng/Kg	0.0433U ng/Kg
SL-167-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0590 ng/Kg	0.0590U ng/Kg
SL-167-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0801 ng/Kg	0.0801U ng/Kg
SL-167-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0799 ng/Kg	0.0799U ng/Kg
SL-167-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0249 ng/Kg	0.0249U ng/Kg
SL-167-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0965 ng/Kg	0.0965U ng/Kg
SL-167-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0816 ng/Kg	0.0816U ng/Kg
SL-167-SA5DN-SB-4.0-5.0(RES)	OCDD	1.75 ng/Kg	1.75U ng/Kg
SL-167-SA5DN-SB-4.0-5.0(RES)	OCDF	0.232 ng/Kg	0.232U ng/Kg
SL-167-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.605 ng/Kg	0,605U ng/Kg
SL-167-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.318 ng/Kg	0.318U ng/Kg
SL-167-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0758 ng/Kg	0.0758U ng/Kg
SL-167-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.112 ng/Kg	0.112U ng/Kg
SL-167-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.118 ng/Kg	0.118U ng/Kg
SL-167-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0976 ng/Kg	0.0976U ng/Kg
SL-167-\$A5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.124 ng/Kg	0.124U ng/Kg
SL-167-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0984 ng/Kg	0.0984U ng/Kg
SL-167-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.163 ng/Kg	0.163U ng/Kg
SL-167-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.100 ng/Kg	0.100U ng/Kg
SL-167-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.187 ng/Kg	0.187U ng/Kg
SL-167-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0480 ng/Kg	0.0480U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 10:05:24 AM ADR version 1.4.0.111 Page 7 of 9

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	न्त्राचार क्षेत्र चार्यक्रमें स्थापने क्षेत्र के प्रदेशीय के स्थापने के स्थापने क्षेत्र के स्थापने क्षेत्र के न्याचार क्षेत्र चार्यक्रमें स्थापने के स्थापने के स्थापने के स्थापने के स्थापने के स्थापने के स्थापने के स्थाप			
Method Blan Sample ID	ık	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-167-SA5DN-SB-9.0-10.0(RES)	OCDD	1.84 ng/Kg	1.84U ng/Kg
SL-167-SA5DN-SB-9.0-10.0(RES)	OCDF	0.219 ng/Kg	0.219U ng/Kg
SL-168-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.467 ng/Kg	0.467U ng/Kg
SL-168-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.249 ng/Kg	0.249U ng/Kg
SL-168-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.102 ng/Kg	0.102U ng/Kg
SL-168-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.192 ng/Kg	0.192U ng/Kg
SL-168-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.135 ng/Kg	0.135U ng/Kg
SL-168-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.198 ng/Kg	0,198U ng/Kg
SL-168-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.126 ng/Kg	0.126U ng/Kg
SL-168-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.120 ng/Kg	0.120U ng/Kg
SL-168-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.154 ng/Kg	0.154U ng/Kg
SL-168-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.284 ng/Kg	0.284U ng/Kg
SL-168-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0773 ng/Kg	0.0773U ng/Kg
SL-168-SA5DN-SB-4.0-5.0(RES)	OCDD	1.27 ng/Kg	1.27U ng/Kg
SL-168-SA5DN-SB-4.0-5.0(RES)	OCDF	0.274 ng/Kg	0.274U ng/Kg
SL-168-SA5DN-SB-9,0-10,0(RES)	1,2,3,4,6,7,8-HPCDD	1.01 ng/Kg	1.01U ng/Kg
SL-168-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.305 ng/Kg	0.305U ng/Kg
SL-168-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0756 ng/Kg	0.0756U ng/Kg
SL-168-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.191 ng/Kg	0.191U ng/Kg
SL-168-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.133 ng/Kg	0.133U ng/Kg
SL-168-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.128 ng/Kg	0.128U ng/Kg
SL-168-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.125 ng/Kg	0.125U ng/Kg
SL-168-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.176 ng/Kg	0.176U ng/Kg
SL-168-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.246 ng/Kg	0.246U ng/Kg
SL-168-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0570 ng/Kg	0.0570U ng/Kg
SL-168-SA5DN-SB-9.0-10.0(RES)	OCDF	0.299 ng/Kg	0.299U ng/Kg
SL-169-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.545 ng/Kg	0.545U ng/Kg
SL-169-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0984 ng/Kg	0.0984U ng/Kg
SL-169-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0488 ng/Kg	0.0488U ng/Kg
SL-169-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0552 ng/Kg	0.0552U ng/Kg
SL-169-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0642 ng/Kg	0.0642U ng/Kg
SL-169-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0589 ng/Kg	0.0589U ng/Kg
SL-169-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0824 ng/Kg	0.0824U ng/Kg
SL-169-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0322 ng/Kg	0.0322U ng/Kg
SL-169-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0851 ng/Kg	0.0851U ng/Kg
SL-169-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0647 ng/Kg	0.0647U ng/Kg
SL-169-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0974 ng/Kg	0.0974U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 10:05:24 AM ADR version 1.4.0.111 Page 8 of 9

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	The second second second second second second second second second second second second second second second se			
Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-169-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0457 ng/Kg	0.0457U ng/Kg
SL-169-SA5DN-SB-4.0-5.0(RES)	OCDD	3.37 ng/Kg	3.37U ng/Kg
SL-169-SA5DN-SB-4.0-5.0(RES)	OCDF	0.234 ng/Kg	0.234U ng/Kg
SL-169-SA5DN-SB-7.5-8.5(RES)	1,2,3,4,6,7,8-HPCDD	0.512 ng/Kg	0.512U ng/Kg
SL-169-SA5DN-SB-7.5-8.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0460 ng/Kg	0.0460U ng/Kg
SL-169-SA5DN-SB-7.5-8.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0196 ng/Kg	0.0196U ng/Kg
SL-169-SA5DN-SB-7.5-8.5(RES)	1,2,3,4,7,8-HXCDF	0.0348 ng/Kg	0.0348U ng/Kg
SL-169-SA5DN-SB-7,5-8.5(RES)	1,2,3,6,7,8-HXCDD	0.0269 ng/Kg	0.0269U ng/Kg
SL-169-SA5DN-SB-7.5-8.5(RES)	1,2,3,6,7,8-HXCDF	0.0215 ng/Kg	0.0215U ng/Kg
SL-169-SA5DN-SB-7,5-8.5(RES)	1,2,3,7,8,9-HXCDD	0.0445 ng/Kg	0.0445U ng/Kg
SL-169-SA5DN-SB-7.5-8.5(RES)	1,2,3,7,8,9-HXCDF	0.0318 ng/Kg	0.0318U ng/Kg
SL-169-SA5DN-SB-7.5-8.5(RES)	1,2,3,7,8-PECDF	0.0317 ng/Kg	0.0317U ng/Kg
SL-169-SA5DN-SB-7.5-8.5(RES)	2,3,4,6,7,8-HXCDF	0.0214 ng/Kg	0.0214U ng/Kg
SL-169-SA5DN-SB-7.5-8.5(RES)	2,3,4,7,8-PECDF	0.0349 ng/Kg	0.0349U ng/Kg
SL-169-SA5DN-SB-7.5-8.5(RES)	OCDD	1.37 ng/Kg	1.37U ng/Kg
SL-169-SA5DN-SB-7.5-8.5(RES)	OCDF	0.0888 ng/Kg	0.0888U ng/Kg

9/28/2011 10:05:24 AM ADR version 1.4.0.111 Page 9 of 9

Field Duplicate RPD Report

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method: 160.3N Matrix: SO						
		Concenti	ation (%)			
	Analyte	SL-166-SA5DN-SB-4.0- 5.0	DUP20-SA5DN-QC- 070711	Sample RPD	eQAPP RPD	Flag
MOISTURE		13.2	14.2	7		No Qualifiers Applied

Method: 1613B

	Concentrati	ion (ng/Kg)				
Analyte	SL-166-SA5DN-SB-4.0- 5.0	DUP20-SA5DN-QC- 070711	Sample RPD	eQAPP RPD	Flag	
1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD OCDD	0.546 0.0360 0.0353 0.107 1.20	0.412 0.0217 0.0235 0.114 1.04	28 50 40 6 14	50.00 50.00 50.00 50.00 50.00	No Qualifiers Applied	
1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	0.216 5.71 U 0.0427 0.202 5.71 U 0.0301 0.0781 0.0580 0.0340 0.207	0.0758 0.0396 0.0178 0.114 0.0496 5.77 U 0.0362 5.77 U 1.15 U 0.121	96 200 82 56 200 200 73 200 200 200 52	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)	

9/28/2011 10:04:59 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB21-SA5DN-SB-070711	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	7.63 1.41 0.290 0.583 0.533 0.258 0.526 0.475 0.235 0.505 0.411 13.8 1.56	10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP20-SA5DN-QC-070711	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF OCDD	និង ទី ទី ទី ទី ទី ទី ទី ទី ទី ទី ទី ទី ទី	0.412 0.0758 0.0217 0.0235 0.0396 0.0178 0.114 0.114 0.0496 0.0362 1.04 0.121	5.77 5.77 5.77 5.77 5.77 5.77 5.77 5.77	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-155-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 0,2,3,7,8-PECDF 0,2,3,7,8-PECDF	######################################	0.474 0.0630 0.0373 0.0257 0.0683 0.0169 0.0993 0.101 0.0314 0.0331 0.0415 1.09 0.131	5.63 5.63 5.63 5.63 5.63 5.63 5.63 5.63	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO		e a construïter est préfét, à			enid for loss		
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL. Type	Units	Flag
SL-155-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.510 0.0656 0.0255 0.0265 0.0252 0.0455 0.0315 0.0301 0.0704 2.11 0.130	5.87 5.87 5.87 5.87 5.87 5.87 5.87 5.87	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-156-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	路電路路路の田田路路の田田田田田田田田田田田田田田田田田田田田田田田田田田田田	0.561 0.112 0.0332 0.104 0.0585 0.112 0.175 0.0578 0.0703 0.0569 0.0910 1.81 0.167	5.69 5.69 5.69 5.69 5.69 5.69 5.69 5.69	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-156-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HCDD 2,3,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	0.533 0.0978 0.0510 0.0720 0.0925 0.0741 0.0848 0.109 0.0896 0.116 0.178 0.0743 0.146 0.0657 0.0633 2.52	5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.67	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

JBQ

0.211

11.3

PQL

ng/Kg

OCDF

Lab Reporting Batch ID: DX109 Laboratory: LL EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO				<u> </u>			
0 1 10		Lab	D	Reporting	RL Tour	11-14-	C!
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-157-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.416	5.64	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0944	5.64	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0490	5.64	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0551	5.64	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.109	5.64	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.128	5.64	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0926	5.64	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.204	5.64	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.325	5.64	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JQ	0.167	5.64	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.224	5.64	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0868	5.64	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.170	5.64	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0861	1.13	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0535	1.13	PQL	ng/Kg	
	OCDD	JB	0.877	11.3	PQL	ng/Kg	
	OCDF	JBQ	0.150	11.3	PQL	ng/Kg	
SL-157-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.394	5.81	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0835	5.81	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0657	5.81	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0557	5.81	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0636	5.81	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0591	5.81	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0775	5.81	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0809	5.81	PQL	ng/Kg	J (all detects)
•	1,2,3,7,8,9-HXCDF	JBQ	0.0660	5.81	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JQ	0.0603	5.81	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.114	5.81	PQL	ng/Kg	
İ	2,3,4,6,7,8-HXCDF	JBQ	0.0568	5.81	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.120	5.81	PQL	ng/Kg	
	OCDD	JB	1.12	11.6	PQL	ng/Kg	
	OCDF	JB	0.160	11.6	PQL	ng/Kg	
SL-158-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.487	5.57	PQL	ng/Kg	
0E-100-0/10B/1-0B-4.0 0.0	1,2,3,4,6,7,8-HPCDF	JB	0.125	5.57	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0608	5.57	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0746	5.57	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0870	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.141	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0886	5.57	PQL	ng/Kg	İ
	1,2,3,7,8,9-HXCDD	JB	0.200	5.57	PQL	ng/Kg	1 (-1) -4-14-3
	1,2,3,7,8,9-HXCDF	JB	0.362	5.57	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	J	0.0788	5.57	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0955	5.57	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0861	5.57	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0902	5.57	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0510	1.11	PQL	ng/Kg	
	OCDD	ĴΒ	1.06	11.1	PQL	ng/Kg	
	OCDF	JBQ	0.198	1 11.1	PQL	ng/Kg	

Laboratory: LL Lab Reporting Batch ID: DX109

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO						r	
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-158-SA5DN-SB-9.0-10.0		JBQ	0.585	5.67	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.107	5.67	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0317	5.67	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0233	5.67	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ JBQ	0.0388 0.0317	5.67	PQL PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	JBQ	0.0317	5.67 5.67	PQL	ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0223	5.67	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0560	5.67	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JQ	0.0303	5.67	PQL	ng/Kg	
I	1,2,3,7,8-PECDF	JBQ	0.0256	5.67	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0477	5.67	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0414	5.67	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0351	1.13	PQL	ng/Kg	
	OCDD	JB	2.39	11.3	PQL	ng/Kg	
	OCDF	, JB	0.187	11.3	PQL	ng/Kg	
SL-159-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.397	5.73	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0536	5.73	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0178	5.73	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.167	5.73	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0273	5.73	PQL PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ JB	0.243 0.541	5.73 5.73	PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF	JBQ	0.129	5.73	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0256	5.73	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0612	5.73	PQL	ng/Kg	
	OCDD	JB	0.901	11.5	PQL	ng/Kg	
	OCDF	JBQ	0.0585	11.5	PQL	ng/Kg	
SL-159-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.445	5.66	PQL	ng/Kg	
I	1,2,3,4,6,7,8-HPCDF	JB	0.0993	5.66	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0685	5.66	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0446	5.66	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0392	5.66	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0337	5.66	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB J	0.0766 0.117	5.66 5.66	PQL PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JBQ	0.117	5.66	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.0200	5.66	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0483	5.66	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0484	5.66	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0348	1.13	PQL	ng/Kg	
	OCDD	JB	0.827	11.3	PQL	ng/Kg	
	OCDF	JBQ	0.213	11.3	PQL	ng/Kg	

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Watrix: SO						,	
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-164-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.509	5.72	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.143	5.72	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JВ	0.0141	5.72	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0217	5.72	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0500	5.72	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0463	5.72	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JBQ	0.0839	5.72	PQL	ng/Kg	o (an acteois)
	1,2,3,7,8,9-HXCDF	JBQ	0.120	5.72	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0664	5.72	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0595	5.72	PQL	ng/Kg	
	OCDD	JB	1.17	11.4	PQL	ng/Kg	
	OCDF	JBQ	0.0912	11.4	PQL	ng/Kg	
SL-164-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.692	5.69	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.193	5.69	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0326	5.69	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0264	5.69	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0494	5.69	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0536	5.69	PQL	ng/Kg	
İ	1,2,3,6,7,8-HXCDF	JBQ	0.0372	5.69	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JB	0.0596	5.69	POL	ng/Kg	o (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0239	5,69	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0144	5.69	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0625	5.69	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0459	5.69	PQL	ng/Kg	
	OCDD	JB	2.23	11.4	PQL	ng/Kg	
	OCDF	JBQ	0.168	11.4	PQL	ng/Kg	
SL-166-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.546	5.71	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.216	5.71	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0360	5.71	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0353	5.71	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0427	5.71	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.107	5.71	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.202	5.71	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.0301	5.71	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0781	5.71	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0580	5.71	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0340	1.14	PQL	ng/Kg	
	OCDD	JB	1.20	11.4	PQL	ng/Kg	
	OCDF	JBQ	0.207	11.4	PQL	ng/Kg	

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Lab Qual Result Reporting RL Type Units	J (all detects)
SampleID Analyte Qual Result Limit Type Units SL-166-SA5DN-SB-9.0-10.0 1,2,3,4,6,7,8-HPCDD JB 0.536 5.78 PQL ng/Kg 1,2,3,4,6,7,8-HPCDF JBQ 0.169 5.78 PQL ng/Kg 1,2,3,4,7,8,9-HPCDF JBQ 0.0605 5.78 PQL ng/Kg 1,2,3,4,7,8-HXCDD JBQ 0.0837 5.78 PQL ng/Kg 1,2,3,6,7,8-HXCDD JBQ 0.0667 5.78 PQL ng/Kg 1,2,3,7,8-HXCDF JBQ 0.0667 5.78 PQL ng/Kg 1,2,3,7,8-HXCDF JBQ 0.0793 5.78 PQL ng/Kg 1,2,3,7,8-PECDD JBQ 0.0771 5.78 PQL ng/Kg 1,2,3,7,8-PECDF JB 0.0341 5.78 PQL ng/Kg 1,2,3,7,8-PECDF JB 0.0341 5.78 PQL ng/Kg 1,2,3,7,8-PECDF JB 0.0341 5.78 PQL ng/Kg	J (all detects)
SL-166-SA5DN-SB-9.0-10.0	J (all detects)
1,2,3,4,6,7,8-HPCDF JBQ 0.169 5.78 PQL ng/Kg 1,2,3,4,7,8,9-HPCDF JBQ 0.0605 5.78 PQL ng/Kg 1,2,3,4,7,8-HXCDD JQ 0.0356 5.78 PQL ng/Kg 1,2,3,6,7,8-HXCDF JBQ 0.0667 5.78 PQL ng/Kg 1,2,3,6,7,8-HXCDF JB 0.0614 5.78 PQL ng/Kg 1,2,3,7,8,9-HXCDF JBQ 0.0793 5.78 PQL ng/Kg 1,2,3,7,8,9-HXCDF JBQ 0.0771 5.78 PQL ng/Kg 1,2,3,7,8-PECDD JQ 0.0663 5.78 PQL ng/Kg 1,2,3,7,8-PECDF JB 0.0341 5.78 PQL ng/Kg 2,3,4,6,7,8-HXCDF JB 0.0341 5.78 PQL ng/Kg 1,2,3,7,8-PECDF JB 0.0341 5.78 PQL ng/Kg 2,3,4,6,7,8-HXCDF JB 0.0390 5.78 PQL ng/Kg 2,3,4,7,8-PECDF JBQ 0.0890 5.78 PQL ng/Kg	J (all detects)
1,2,3,4,7,8,9-HPCDF JBQ 0.0605 5.78 PQL ng/Kg 1,2,3,4,7,8-HXCDD JQ 0.0356 5.78 PQL ng/Kg 1,2,3,4,7,8-HXCDF JBQ 0.0837 5.78 PQL ng/Kg 1,2,3,6,7,8-HXCDD JBQ 0.0667 5.78 PQL ng/Kg 1,2,3,7,8,9-HXCDD JBQ 0.0793 5.78 PQL ng/Kg 1,2,3,7,8-PECDD JBQ 0.0771 5.78 PQL ng/Kg 1,2,3,7,8-PECDD JQ 0.0663 5.78 PQL ng/Kg 1,2,3,7,8-PECDF JB 0.0341 5.78 PQL ng/Kg 2,3,4,6,7,8-HXCDF JB 0.0341 5.78 PQL ng/Kg 1,2,3,7,8-PECDF JB 0.0341 5.78 PQL ng/Kg 2,3,4,6,7,8-HXCDF JB 0.103 5.78 PQL ng/Kg 1,2,3,7,8-PECDF JBQ 0.0890 5.78 PQL ng/Kg	J (all detects)
1,2,3,4,7,8-HxCDD JQ 0.0356 5.78 PQL ng/Kg 1,2,3,4,7,8-HXCDF JBQ 0.0837 5.78 PQL ng/Kg 1,2,3,6,7,8-HXCDD JBQ 0.0667 5.78 PQL ng/Kg 1,2,3,7,8,9-HXCDF JBQ 0.0793 5.78 PQL ng/Kg 1,2,3,7,8,9-HXCDF JBQ 0.0771 5.78 PQL ng/Kg 1,2,3,7,8-PECDD JQ 0.0663 5.78 PQL ng/Kg 1,2,3,7,8-PECDF JB 0.0341 5.78 PQL ng/Kg 2,3,4,6,7,8-HXCDF JB 0.0341 5.78 PQL ng/Kg 1,2,3,7,8-PECDF JB 0.0341 5.78 PQL ng/Kg 2,3,4,6,7,8-HXCDF JB 0.103 5.78 PQL ng/Kg 2,3,4,7,8-PECDF JBQ 0.0890 5.78 PQL ng/Kg	J (all detects)
1,2,3,4,7,8-HXCDF	J (all detects)
1,2,3,6,7,8-HXCDD	J (all detects)
1,2,3,6,7,8-HXCDF JB 0.0614 5.78 PQL ng/Kg 1,2,3,7,8,9-HXCDD JBQ 0.0793 5.78 PQL ng/Kg 1,2,3,7,8,9-HXCDF JBQ 0.0771 5.78 PQL ng/Kg 1,2,3,7,8-PECDD JQ 0.0663 5.78 PQL ng/Kg 1,2,3,7,8-PECDF JB 0.0341 5.78 PQL ng/Kg 2,3,4,6,7,8-HXCDF JB 0.103 5.78 PQL ng/Kg 2,3,4,7,8-PECDF JBQ 0.0890 5.78 PQL ng/Kg	J (all detects)
1,2,3,7,8,9-HXCDD JBQ 0.0793 5.78 PQL ng/Kg 1,2,3,7,8,9-HXCDF JBQ 0.0771 5.78 PQL ng/Kg 1,2,3,7,8-PECDD JQ 0.0663 5.78 PQL ng/Kg 1,2,3,7,8-PECDF JB 0.0341 5.78 PQL ng/Kg 2,3,4,6,7,8-HXCDF JB 0.103 5.78 PQL ng/Kg 2,3,4,7,8-PECDF JBQ 0.0890 5.78 PQL ng/Kg	J (all detects)
1,2,3,7,8,9-HXCDF JBQ 0.0771 5.78 PQL ng/Kg 1,2,3,7,8-PECDD JQ 0.0663 5.78 PQL ng/Kg 1,2,3,7,8-PECDF JB 0.0341 5.78 PQL ng/Kg 2,3,4,6,7,8-HXCDF JB 0.103 5.78 PQL ng/Kg 2,3,4,7,8-PECDF JBQ 0.0890 5.78 PQL ng/Kg	J (all detects)
1,2,3,7,8-PECDD	
1,2,3,7,8-PECDF JB 0.0341 5.78 PQL ng/K 2,3,4,6,7,8-HXCDF JB 0.103 5.78 PQL ng/K 2,3,4,7,8-PECDF JBQ 0.0890 5.78 PQL ng/K	
2,3,4,6,7,8-HXCDF	•
2,3,4,7,8-PECDF JBQ 0.0890 5.78 PQL ng/K	
2,3,4,7,6-PECDF	
	.
2,3,7,8-TCDF	
OCDF JB 0.270 11.6 PQL ng/K	
SL-167-SA5DN-SB-4.0-5.0 1,2,3,4,6,7,8-HPCDD JB 0.610 5.75 PQL ng/Ks	
1,2,3,4,6,7,8-HPCDF JB 0.274 5.75 PQL ng/Kg	
1,2,3,4,7,8,9-HPCDF JBQ 0.0399 5.75 PQL ng/Kg	
1,2,3,4,7,8-HXCDF JBQ 0.0792 5.75 PQL ng/Kg	
1,2,3,6,7,8-HXCDD JBQ 0.0433 5.75 PQL ng/Ki	
1,2,3,6,7,8-HXCDF JB 0.0590 5.75 PQL ng/Kg	
1,2,3,7,8,9-HXCDD	
2,3,4,6,7,8-HXCDF	
2,3,4,7,8-FECDF JB 0.0010 3.75 FQL ng/Kg	
OCDF JB 0.232 11.5 PQL ng/K	
SL-167-SA5DN-SB-9.0-10.0 1,2,3,4,6,7,8-HPCDD JB 0.605 5.79 PQL ng/Ki	
1,2,3,4,6,7,8-HPCDF JB 0.318 5.79 PQL ng/Kj	
1,2,3,4,7,8,9-HPCDF	
1,1-1-1,1,1,1-1,1-1	
1,2,3,4,7,8-HXCDF	
1,2,3,6,7,8-HXCDF JB 0.0976 5.79 PQL ng/K	
1,2,3,7,8,9-HXCDD JBQ 0.124 5.79 PQL ng/K	
1,2,3,7,8,9-HXCDF JBQ 0.0984 5.79 PQL ng/Kj	
1,2,3,7,8,9-1XCDI J 0.148 5.79 PQL ng/K	'
1,2,3,7,8-PECDF JB 0.163 5.79 PQL ng/K	
2,3,4,6,7,8-HXCDF JBQ 0.100 5.79 PQL ng/K	
2,3,4,7,8-PECDF JBQ 0.187 5.79 PQL ng/Kj	·
2,3,7,8-TCDD JBQ 0.0480 1.16 PQL ng/K	· I
2,3,7,8-TCDF JQ 0.0425 1.16 PQL ng/K	
OCDD JB 1.84 11.6 PQL ng/K	
OCDF JBQ 0.219 11.6 PQL ng/kj	

Lab Reporting Batch ID: DX109 Laboratory: LL

EDD Filename: DX109_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-168-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDD	# # # # # # # # # # # # # # # # # # #	0.467 0.249 0.102 0.137 0.192 0.135 0.198 0.126 0.120 0.281 0.347 0.154 0.284 0.0773 0.0335 1.27	5.87 5.87 5.87 5.87 5.87 5.87 5.87 5.87	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	Flag J (all detects)
SL-168-SA5DN-SB-9.0-10.0	OCDF 1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 0CDD 0CDF	明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明 明	0.274 1.01 0.305 0.0756 0.103 0.191 0.186 0.133 0.128 0.125 0.215 0.249 0.176 0.246 0.0570 0.0326 8.11 0.299	11.7 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 1.12 11.2	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-169-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF		0.545 0.0984 0.0488 0.0552 0.0642 0.0589 0.0824 0.0322 0.0892 0.0851 0.0647 0.0974 0.0457 0.0301 3.37 0.234	5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75	PAL PAL PAL PAL PAL PAL PAL PAL PAL PAL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Laboratory: LL Lab Reporting Batch ID: DX109

eQAPP Name: CDM_SSFL_110509 EDD Filename: DX109_v1

Method: 1613B Matrix: SO										
SamplelD	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag			
SL-169-SA5DN-SB-7.5-8.5	1,2,3,4,6,7,8-HPCDD	JB	0.512	5.63	PQL	ng/Kg				
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0460	5.63	PQL	ng/Kg				
	1,2,3,4,7,8,9-HPCDF	JB	0.0196	5.63	PQL	ng/Kg				
	1,2,3,4,7,8-HXCDF	JB	0.0348	5.63	PQL	ng/Kg				
	1,2,3,6,7,8-HXCDD	JB	0.0269	5.63	PQL	ng/Kg				
	1,2,3,6,7,8-HXCDF	JBQ	0.0215	5.63	PQL	ng/Kg				
	1,2,3,7,8,9-HXCDD	JBQ	0.0445	5.63	PQL	ng/Kg	J (all detects)			
	1,2,3,7,8,9-HXCDF	JBQ	0.0318	5.63	PQL	ng/Kg				
	1,2,3,7,8-PECDF	JBQ	0.0317	5.63	PQL	ng/Kg				
	224670 HYODE	IRO	0.0217	5 63	POI	na/Ka				

JBQ

JBQ

JΒ

JΒ

0.0214

0.0349

1.37

0.0888

PQL

PQL

PQL

PQL

ng/Kg

ng/Kg

ng/Kg

ng/Kg

5.63

5.63

11.3

11.3

2,3,4,6,7,8-HXCDF

2,3,4,7,8-PECDF OCDD

OCDF

SAMPLE DELIVERY GROUP

DX110

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
11-Jul-2011	SL-149-SA5DN-SB-4.0-5.0	6340984	N	METHOD	1613B	111
11-Jul-2011	SL-298-SA6-SS-0.0-0.5	6340995	N	METHOD	1613B	III
11-Jul-2011	SL-149-SA6-SS-0.0-0.5	6340990	. N	METHOD	1613B	111
11-Jul-2011	SL-297-SA6-SS-0.0-0.5	6340991	N	METHOD	1613B	HI
11-Jul-2011	SL-297-SA6-SS-0.0-0.5MS	6340992	MS	METHOD	1613B	111
11-Jul-2011	SL-297-SA6-SS-0.0-0.5MSD	6340993	MSD	METHOD	1613B	111
11-Jul-2011	SL-297-SA6-SS-0.0-0.5MSD	P340991M371013	MSD	METHOD	1613B	111
11-Jul-2011	SL-297-SA6-SS-0.0-0.5MS	P340991R370916	MS	METHOD	1613B	Ш
11-Jul-2011	DUP01-SA6-QC-071111	6340996	FD	METHOD	1613B	111
11-Jul-2011	SL-199-SA5DN-SB-4.0-5.0	6340985	N	METHOD	1613B	Ш
11-Jul-2011	SL-199-SA5DN-SB-9.0-10.0	6340986	N	METHOD	1613B	Ш
11-Jul-2011	SL-135-SA6-SB-4.0-5.0	6340987	N	METHOD	1613B	111
11-Jul-2011	SL-292-SA6-SS-0.0-0.5	6340994	N	METHOD	1613B	111
11-Jul-2011	SL-138-SA6-SB-4.0-5.0	6340988	N	METHOD	1613B	111
11-Jul-2011	SL-138-SA6-SB-9.0-10.0	6340989	N	METHOD	1613B	III
11-Jul-2011	SL-289-SA6-SS-0.0-0.5	6342345	N	METHOD	1613B	111
12-Jul-2011	SL-136-SA6-SB-4.0-5.0	6342337	N	METHOD	1613B	III
12-Jul-2011	SL-136-SA6-SB-9.0-10.0	6342338	N	METHOD	1613B	Ш
12-Jul-2011	SL-139-SA6-SB-4.0-5.0	6342339	N	METHOD	1613B	111
12-Jul-2011	SL-139-SA6-SB-9.0-10.0	6342340	N	METHOD	1613B	Ш
12-Jul-2011	SL-275-SA6-SB-4.0-5.0	6342341	N	METHOD	1613B	111
12-Jul-2011	SL-275-SA6-SB-9.0-10.0	6342342	N	METHOD	1613B	111
12-Jul-2011	SL-276-SA6-SB-4.0-5.0	6342343	N	METHOD	1613B	111
12-Jul-2011	SL-276-SA6-SB-9.0-10.0	6342344	N	METHOD	1613B	111

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX110 Laboratory: LL

EDD Filename: PrepDX110_v1 eQAPP Name: CDM_SSFL_110509

Method Categor	GENCHEN	nomination of the second conference in	e develope	e e de la Company	ericania comina internativa de
Method:	1613B	Matrix:	SO		

Sample ID: DUP01-SA6-QC-071111	Collect	ted: 7/11/2	011 9:50:0	00 4	Inalysis T	ype: RES	;	,	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,7,8-TCDD	0.936	J	0.100	MDL	1.01	PQL	ng/Kg	J	Z	T

Sample ID: SL-135-SA6-SB-4.0-5.0	Collec	ted: 7/11/2	2011 12:00:	:00 A	nalysis T	ype: RES		E	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.458	JB	0.0418	MDL	5.75	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.177	JBQ	0.0124	MDL	5.75	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0298	JBQ	0.0264	MDL	5.75	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0452	JBQ	0.0289	MDL	5.75	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0268	JBQ	0.0185	MDL	5.75	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0749	JBQ	0.0289	MDL	5.75	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0932	JBQ	0.0267	MDL	5.75	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0542	JBQ	0.0226	MDL	5.75	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0288	JQ	0.0166	MDL	5.75	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.0516	JB	0.0167	MDL	5.75	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0432	JBQ	0.0169	MDL	5.75	PQL	ng/Kg	U	В	
OCDD	0.987	JBQ	0.0373	MDL	11.5	PQL	ng/Kg	· υ	В	
OCDF	0.229	JBQ	0.0754	MDL	11.5	PQL	ng/Kg	U	В	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.805	JB	0.0948	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.173	JBQ	0.0646	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0745	JBQ	0.0395	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0470	JBQ	0.0322	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0716	JB	0.0399	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0280	JBQ	0.0264	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0672	JBQ	0.0391	MDL	5.40	PQL	ng/Kg	Ü	В
1,2,3,7,8,9-HXCDF	0.0711	JB	0.0375	MDL	5.40	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0402	JBQ	0.0276	MDL	5.40	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0550	JBQ	0.0296	MDL	5.40	PQL	ng/Kg	U	В

Collected: 7/12/2011 8:25:00

Analysis Type: RES

Dilution: 1

Z

В

OCDD

OCDF

Sample ID: SL-136-SA6-SB-4.0-5.0

0.0952

0.120

MDL

MDL

10.8

10.8

PQL

PQL

ng/Kg

ng/Kg

U

JB

JBQ

6.26

0.313

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX110

EDD Filename: PrepDX110_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM
Method: 1613B

Matrix: SO

MDL

0.121

Sample ID: SL-136-SA6-SB-9.0-10.0	Collec	Collected: 7/12/2011 8:35:00 Analys						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.681	JB	0.0670	MDL	5.40	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.165	JBQ	0.0453	MDL	5.40	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0408	JBQ	0.0293	MDL	5.40	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0367	JBQ	0.0237	MDL	5.40	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0359	JB	0.0289	MDL	5.40	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0419	JB	0.0235	MDL	5.40	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0646	JBQ	0.0281	MDL	5.40	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0479	JQ	0.0410	MDL	1.08	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0430	JQ	0.0413	MDL	1.08	PQL	ng/Kg	U	В	
OCDD	2.50	JB	0.0934	MDL	10.8	PQL	ng/Kg	υ	В	
		+		 				· · · · · · · · · · · · · · · · · · ·		

Sample ID: SL-138-SA6-SB-4.0-5.0

OCDF

Collected: 7/11/2011 3:05:00

JBQ

0.187

Analysis Type: RES

10.8

PQL

ng/Kg

U

Dilution: 1

В

Laboratory: LL

							Dilation, (
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.493	JB	0.0482	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.129	JB	0.0141	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0361	JBQ	0.0272	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0321	JBQ	0.0235	MDL	5.31	PQL	ng/Kg	Ü	В
1,2,3,6,7,8-HXCDD	0.0317	JB	0.0251	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0239	JBQ	0.0198	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0571	JBQ	0.0241	MDL	5.31	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0529	JBQ	0.0177	MDL	5.31	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0546	JBQ	0.0193	MDL	5.31	PQL	ng/Kg	υ	В
OCDD	1.60	JB	0.0466	MDL	10.6	PQL	ng/Kg	υ	В
OCDF	0.138	JBQ	0.0932	MDL	10.6	PQL	ng/Kg	U	В

Sample ID: SL-138-SA6-SB-9.0-10.0

Collected: 7/11/2011 3:15:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.848	JBQ	0.0633	MDL	5.51	PQL	ng/Kg	Ü	В
1,2,3,4,6,7,8-HPCDF	0.272	JB	0.0168	MDL	5.51	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0574	JBQ	0.0303	MDL	5.51	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.121	JBQ	0.0329	MDL	5.51	PQL	ng/Kg	u	В
1,2,3,4,7,8-HXCDF	0.160	JBQ	0.0249	MDL	5.51	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 8:06:43 AM

ADR version 1.4.0.111

Page 2 of 12

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

Matrix:

Sample ID: SL-138-SA6-SB-9.0-10.0	Collec	Collected: 7/11/2011 3:15:00					Analysis Type: RES			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDD	0.108	JВ	0.0341	MDL	5.51	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0833	JBQ	0.0211	MDL	5.51	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0675	JBQ	0.0334	MDL	5.51	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.115	JBQ	0.0290	MDL	5.51	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.133	JBQ	0.0456	MDL	5.51	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.176	JQ	0.0221	MDL	5.51	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.101	JBQ	0.0230	MDL	5.51	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.191	JB	0.0212	MDL	5.51	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.113	JQ	0.0475	MDL	1.10	PQL	ng/Kg	J	Z	
OCDD	4.73	JB	0.0583	MDL	11.0	PQL	ng/Kg	J	Z	
OCDF	0.447	JBQ	0.0928	MDL	11.0	PQL	ng/Kg	υ	8	

Sample ID; SL-139-SA6-SB-4.0-5.0

Collected: 7/12/2011 9:45:00

Analysis Type: RES

Dilution: 1

•									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.533	JB	0.0585	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.119	JBQ	0.0329	MDL	5.37	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0511	JBQ	0.0478	MDL.	5.37	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0619	JB	0.0268	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0388	JB	0.0259	MDL,	5.37	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0435	JBQ	0.0261	MDL.	5.37	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0739	JBQ	0.0261	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0410	JB	0.0312	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0602	JBQ	0.0335	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0746	J	0.0229	MDL	5.37	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0550	JB	0.0259	MDL	5.37	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.102	JBQ	0.0213	MDL	5.37	PQL	ng/Kg	u	В
OCDD	1.87	JB	0.0932	MDL	10.7	PQL	ng/Kg	U	В
OCDF	0.236	JBQ	0.0782	MDL	10.7	PQL	ng/Kg	U	B

Sample ID: SL-139-SA6-SB-9.0-10.0

Collected: 7/12/2011 9:55:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.694	JB	0.0588	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.212	JBQ	0.0390	MDL	5.60	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

ADR version 1.4.0.111 10/27/2011 8:06:43 AM Page 3 of 12

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

NA - Ale to	
Method Categor	y: GENCHEM

Matrix: SO

Sample ID: SL-139-SA6-SB-9.0-10.0	Collec	ted: 7/12/2	:011 9:55:0	00 A	nalysis T	ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	0.0691	JBQ	0.0339	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.102	JBQ	0.0221	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0850	JB	0.0351	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0895	JBQ	0.0212	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0759	JBQ	0.0358	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.119	JBQ	0.0440	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.148	J	0.0238	MDL	5.60	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0599	JBQ	0.0224	MDL	5.60	PQL	ng/Kg	U.	В
2,3,4,7,8-PECDF	0.130	JBQ	0.0231	MDL	5.60	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0755	J	0.0334	MDL	1.12	PQL	ng/Kg	U	В
OCDD	2.45	JB	0.0947	MDL	11.2	PQL	ng/Kg	U	В
	1	 					+		

Sample ID: SL-149-SA5DN-SB-4.0-5.0

OCDF

Collected: 7/11/2011 8:15:00

0.0798

MDL

0.163

Analysis Type: RES

ng/Kg

11.2

Dilution: 1

В

nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.807	JBQ	0.0654	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.251	JB	0.0272	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0619	JB	0.0256	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.109	JBQ	0.0385	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0558	JB	0.0215	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.122	JBQ	0.0382	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0982	JBQ	0.0370	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0310	JQ	0.0213	MDL	5.44	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0801	JBQ	0.0247	MDL	5.44	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0580	JB	0.0220	MDL	5.44	PQL	ng/Kg	U	В
OCDD	6.19	JВ	0.0920	MDL	10.9	PQL	ng/Kg	J	Z
OCDF	0.518	JBQ	0.118	MDL	10.9	PQL	ng/Kg	U	В

Sample ID: SL-149-SA6-SS-0.0-0.5

Collected: 7/11/2011 9:15:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.24	JB	0.0714	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.14	JB	0.0884	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.61	JВ	0.0773	MDL	5.02	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 8:06:43 AM

ADR version 1.4.0.111

Page 4 of 12

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

and the company of th

Method C	ateț	jor	/ 2	e	ΕN	ICH	н	
Method:				1	*1 ×	1 - 1		

Matrix: SO

Sample ID: SL-149-SA6-SS-0.0-0.5	Collec	ted: 7/11/2	2011 9:15:0	0 A	nalysis T	ype: RES		Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,6,7,8-HXCDD	2.65	JB	0.0872	MDL	5.02	PQL	ng/Kg	J	Z			
1,2,3,6,7,8-HXCDF	0.993	JB	0.0707	MDL	5.02	PQL	ng/Kg	J	Z ·			
1,2,3,7,8,9-HXCDD	1.87	JB	0.0843	MDL	5.02	PQL	ng/Kg	J	Z			
1,2,3,7,8,9-HXCDF	0.434	JBQ	0.0754	MDL	5.02	PQL	ng/Kg	J	Z			
1,2,3,7,8-PECDD	0.906	JB	0.0658	MDL	5.02	PQL	ng/Kg	J	Z			
1,2,3,7,8-PECDF	1.01	J	0.0680	MDL	5.02	PQL	ng/Kg	J	Z			
2,3,4,6,7,8-HXCDF	1.04	JB	0.0614	MDL	5.02	PQL	ng/Kg	J	Z			
2,3,4,7,8-PECDF	1.27	JB	0.0626	MDL	5.02	PQL	ng/Kg	J	Z			
2,3,7,8-TCDD	0.267	J	0.0381	MDL	1.00	PQL	ng/Kg	J	Z			

Sample ID: SL-199-SA5DN-SB-4.0-5.0

Collected: 7/11/2011 10:00:00

Analysis Type: RES

Dilution: 1

					, 0.0 .	, pco		-	monon, I
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.703	JB	0.0582	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.195	JB	0.0167	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0396	JBQ	0.0355	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0741	JBQ	0.0302	MDL	5.79	PQL	ng/Kg	Ü	В
1,2,3,6,7,8-HXCDD	0.188	JB	0.0362	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0407	JBQ	0.0237	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.438	JBQ	0.0370	MDL	5.79	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.538	JBQ	0.0468	MDL	5.79	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0889	JBQ	0.0399	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.145	JQ	0.0215	MDL	5.79	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0839	JB	0.0279	MDL	5.79	PQL	ng/Kg	U	B
2,3,4,7,8-PECDF	0.0485	JB	0.0228	MDL	5.79	PQL	ng/Kg	U	В
OCDD	2.11	JB	0.0645	MDL	11.6	PQL	ng/Kg	U	В
OCDF	0.264	JB	0.148	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-199-SA5DN-SB-9.0-10.0

Collected: 7/11/2011 10:05:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.857	JB	0.0599	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.227	JBQ	0.0162	MDL	5.57	PQL	ng/Kg	U	B
1,2,3,4,7,8,9-HPCDF	0.0376	JBQ	0.0354	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0465	JBQ	0.0213	MDL	5.57	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 8:06:43 AM

ADR version 1.4.0.111

Page 5 of 12

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM			
Method:	1613B	Matrix:	SO	

Sample ID: SL-199-SA5DN-SB-9.0-10.0	Collec	ted: 7/11/2	011 10:05	:00 A	nalysis T	ype: RES			Dilution: 1
<i>Analyt</i> e	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDD	0.0397	JBQ	0.0321	MDL	5.57	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0191	JBQ	0.0187	MDL.	5.57	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0660	JBQ	0.0316	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0345	JQ	0.0211	MDL	5.57	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0487	JBQ	0.0201	MDL	5.57	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0579	JBQ	0.0220	MDL	5.57	PQL	ng/Kg	U	В
OCDD	3.74	JB	0.0480	MDL	11.1	PQL	ng/Kg	U	В
OCDF	0.271	JBQ	0.0989	MDL	11.1	PQL	ng/Kg	U	В

Sample ID: SL-275-SA6-SB-4.0-5.0 Collected: 7/12/2011 11:55:00 Analysis Type: RES Dilution: 1

					, ,	•			
nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.608	JВ	0.0525	MDL	5.15	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.117	JB	0.0219	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0798	JBQ	0.0542	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0664	JBQ	0.0173	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0785	JBQ	0.0281	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0364	JBQ	0.0139	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.134	JB	0.0283	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0569	JBQ	0.0240	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0324	JQ	0.0168	MDL	5.15	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0274	JBQ	0.0162	MDL	5.15	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0570	JBQ	0.0175	MDL	5.15	PQL	ng/Kg	U	В
OCDD	2.02	JB	0.0832	MDL	10.3	PQL	ng/Kg	U	В
OCDF	0.224	JBQ	0.0829	MDL	10.3	PQL	ng/Kg	U	В

Sample ID: SL-275-SA6-SB-9.0-10.0 Collected: 7/12/2011 12:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.555	JB	0.0452	MDL	5.45	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.128	JBQ	0.0172	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0396	JBQ	0.0125	MDL	5.45	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0337	JBQ	0.0257	MDL	5.45	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0280	JBQ	0.0251	MDL	5.45	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0257	JBQ	0.0164	MDL	5.45	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX110

EDD Filename: PrepDX110_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM CHARLES COMMON TO THE STATE OF THE S	i kinglerin samus katul kisal di Anjir	
Method:	1613B	Matrix: SO	

Sample ID: SL-275-SA6-SB-9.0-10.0	Collec	Collected: 7/12/2011 12:05:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,6,7,8-HXCDF	0.0393	JBQ	0.0117	MDL	5.45	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0387	JBQ	0.0163	MDL	5.45	PQL	ng/Kg	Ū	В
OCDD	2.71	JBQ	0.0624	MDL	10.9	PQL	ng/Kg	U	В
OCDF	0.152	JBQ	0.0759	MDL	10.9	PQL	ng/Kg	υ	В

Sample ID: SL-276-SA6-SB-4.0-5.0	Collec	ted: 7/12/2	2011 2:25:0	00 🗚	Inalysis T	ype: REA			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,7,8-TCDF	0.965	JC	0.0894	MDL	1.08	PQL	ng/Kg	J	Z	ヿ

Sample ID: SL-276-SA6-SB-4.0-5.0	Collec	ted: 7/12/2	12/2011 2:25:00 Analysis Type: RES Dilution				3 J 3 J 3 J	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Review	Reason Code
1,2,3,4,7,8,9-HPCDF	1.21	JB	0.111	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.529	JBQ	0.0784	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.46	JB	0.102	MDL	5.42	PQL	ng/Kg	j	Z
1,2,3,6,7,8-HXCDD	2.90	JB	0.0796	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.05	JB	0.101	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.17	JB	0.0766	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.232	JBQ	0.120	MDL,	5.42	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.230	JBQ	0.0587	MDL	5.42	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.756	JB	0.0986	MDL	5.42	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.81	JB	0.107	MDL	5.42	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0400	JQ	0.0313	MDL	1.08	PQL	ng/Kg	J	Z

Sample ID: SL-276-SA6-SB-9.0-10.0	Collec	Collected: 7/12/2011 2:35:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.423	JB	0.0407	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0993	JB	0.0144	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0357	JBQ	0.0165	MDL.	5.41	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0291	JBQ	0.0137	MDL	5.41	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0427	JBQ	0.0154	MDL	5.41	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0541	JBQ	0.0174	MDL	5.41	PQL	ng/Kg	U	В
OCDD	1.24	JB	0.0631	MDL	10.8	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 8:06:44 AM ADR version 1.4.0.111

Laboratory: LL

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

Method:	ory: GENCHEM 7 1613B			Ma	trix:	so				
Sample ID: SL-276	-SA6-SB-9.0-10.0	Collec	ted: 7/12/2	2011 2:35:0	00 A	nalysis T	ype: RES		D	ilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDF	Literature and the second seco	0.150	JB	0.0822	MDL	10.8	PQL	ng/Kg	U	В

Sample ID: SL-289-SA6-SS-0.0-0.5 Collected: 7/11/2011 3:50:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RL Review Reason Analyte Result Qual DL RL Units Type Type Qual Code 1,2,3,4,6,7,8-HPCDD 1.92 JB 0.0539 MDL 4.94 **PQL** В πg/Kg 1,2,3,4,6,7,8-HPCDF 0.300 JBQ 0.0207 MDL 4.94 PQL U В ng/Kg 1,2,3,4,7,8-HXCDF 0.0421 MDL PQL U **JBQ** 0.0149 4.94 ng/Kg В 1,2,3,6,7,8-HXCDD 0.0740 **JBQ** 0.0263 MDL 4.94 PQL U В ng/Kg 1,2,3,6,7,8-HXCDF U 0.0267 JBQ 0.0129 MDL 4.94 PQL ng/Kg В 1,2,3,7,8,9-HXCDD 0.0738 0.0268 MDL 4.94 JB PQL ng/Kg U В 1,2,3,7,8,9-HXCDF 0.0209 **JBQ** 0.0196 MDL 4.94 **PQL** U ng/Kg В 1,2,3,7,8-PECDF 0.0282 JQ 0.0161 MDL 4.94 **PQL** ng/Kg J Z 2,3,4,6,7,8-HXCDF 0.0410 JBQ 0.0143 MDL 4.94 **PQL** ng/Kg U В 2,3,4,7,8-PECDF 0.0424 **JBQ** 0.0170 MDL 4.94 PQL ng/Kg U В OCDF 0.493 0.0861 U JΒ MDL 9.88 **PQL** ng/Kg В

Sample ID: SL-292-SA6-SS-0.0-0.5	Collec	00 A	nalysis T	ype: RES	Dilution: 1				
	Lab	Lab		DL		RL		Data Review	Reason
Analvte	Result	Qual	l DL l	Type	l RL	Type	Units	Qual	Code

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.67	JB	0.181	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	2.52	JB	0.122	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	3.55	JB	0.113	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	4.86	JB	0.122	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.02	JB	0.130	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.04	JB	0.184	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	3.99	J	0.126	MDL	5.01	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	3.32	JB	0.107	MDL	5.01	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	4.57	JB	0.117	MDL	5.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.643	JQ	0.0925	MDL	1.00	PQL	ng/Kg	J	Z

Lab Lab DL RL Review Reason Analyte Result Qual DL Type RL Type Units Qual Code	Sample ID: SL-297-SA6-SS-0.0-0.5	SL-297-SA6-SS-0.0-0.5 Collected: 7/11/2011 9:42:00 Analysis Type: RES							Dilution: 1	
	Analyte		1	DL		RL		Units	Review	

0.535

MDL

5.04

PQL

ng/Kg

*XI

1,2,3,4,6,7,8-HPCDD

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

2850

10/27/2011 8:06:44 AM ADR version 1.4.0.111 Page 8 of 12

EΒ

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM	Arabita Arabine faktorking gateri				
Method:	1613B		Matrix:	so	13 11 14 4 1 m jr	

Sample ID: SL-297-SA6-SS-0.0-0.5	Collec	Collected: 7/11/2011 9:42:00			Analysis Type: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDD	0.939	JQ	0.0911	MDL	1.01	PQL	ng/Kg	J	Z
OCDD	56700	EВ	1.02	MDL	10.1	PQL	ng/Kg	J	*XI

Sample ID: SL-298-SA6-SS-0.0-0.5	Collec	Collected: 7/11/2011 8:32:00				Analysis Type: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	5730	EB	1.09	MDL	5.02	PQL	ng/Kg	J	*XI	
OCDD	97400	EB	1.61	MDL	10.0	PQL	ng/Kg	J	*XI	

Lab Reporting Batch ID: DX110 EDD Filename: PrepDX110_v1

Laboratory: LL eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description					
	Duplicate Sample Count = 0					
	Duplicate Sample Count > 1					
	Illogical Fraction					
	Laboratory Control Sample Count = 0					
	Laboratory Control Sample Count > 1					
	Laboratory Triplicate Precision					
	Matrix Spike Sample Count = 0					
	Matrix Spike Sample Count > 1					
	Method Blank Sample Count = 0					
	Method Blank Sample Count > 1					
	Percent Moisture					
*XI	Compound Quantitation and CRQL					
A	ICP Serial Dilution					
В	Calibration Blank Contamination					
В	Method Blank Contamination					
С	Continuing Calibration Verification Correlation Coefficient					
С	Continuing Calibration Verification Percent Difference Lower Estimation					
С	Continuing Calibration Verification Percent Difference Lower Rejection					
C	Continuing Calibration Verification Percent Difference Upper Estimation					
С	Continuing Calibration Verification Percent Difference Upper Rejection					
С	Initial Calibration Correlation Coefficient					
c	Initial Calibration Percent Relative Standard Deviation					
С	Initial Calibration Verification Correlation Coefficient					
С	Initial Calibration Verification Percent Difference Lower Estimation					
С	Initial Calibration Verification Percent Difference Lower Rejection					
С	Initial Calibration Verification Percent Difference Upper Estimation					
С	Initial Calibration Verification Percent Difference Upper Rejection					
E	Laboratory Control Precision					
E	Laboratory Duplicate Precision					
E	Matrix Spike Precision					

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 8:06:44 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX110 Laboratory: LL

EDD Filename: PrepDX110_v1 eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
H	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
н	Temperature Rejection
1	Internal Standard Estimation
I	Internal Standard Rejection
L	Laboratory Control Precision
ī	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
M	Continuing Tune
M	Initial Tune
M	Performance Evaluation Mixture
M	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX110

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: DX110_v1.

eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 161 <i>Matrix:</i> SO	3B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2030B371855	7/25/2011 6:55:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-ECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDD CODD OCDF	0.487 ng/Kg 0.198 ng/Kg 0.0894 ng/Kg 0.0284 ng/Kg 0.0788 ng/Kg 0.0466 ng/Kg 0.0517 ng/Kg 0.0580 ng/Kg 0.0495 ng/Kg 0.0396 ng/Kg 0.0396 ng/Kg 0.0900 ng/Kg 0.0844 ng/Kg 0.904 ng/Kg 0.314 ng/Kg	DUP01-SA6-QC-071111 SL-135-SA6-SB-4.0-5.0 SL-136-SA6-SB-4.0-5.0 SL-136-SA6-SB-4.0-5.0 SL-138-SA6-SB-4.0-5.0 SL-138-SA6-SB-4.0-5.0 SL-139-SA6-SB-9.0-10.0 SL-139-SA6-SB-9.0-10.0 SL-149-SA6-SB-9.0-10.0 SL-149-SA6-SB-9.0-10.0 SL-149-SA5DN-SB-4.0-5.0 SL-199-SA5DN-SB-4.0-5.0 SL-199-SA5DN-SB-9.0-10.0 SL-275-SA6-SB-4.0-5.0 SL-276-SA6-SB-4.0-5.0 SL-276-SA6-SB-4.0-5.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-289-SA6-SS-0.0-0.5 SL-292-SA6-SS-0.0-0.5 SL-298-SA6-SS-0.0-0.5
BLK2030B372235	7/27/2011 10:35:00 PM	2,3,7,8-TCDF	0.0224 ng/Kg	DUP01-SA6-QC-071111 SL-135-SA6-SB-4.0-5.0 SL-136-SA6-SB-4.0-5.0 SL-136-SA6-SB-9.0-10.0 SL-138-SA6-SB-9.0-10.0 SL-138-SA6-SB-4.0-5.0 SL-139-SA6-SB-9.0-10.0 SL-149-SA6-SB-9.0-10.0 SL-149-SA5DN-SB-4.0-5.0 SL-149-SA5DN-SB-4.0-5.0 SL-199-SA5DN-SB-9.0-10.0 SL-275-SA6-SB-4.0-5.0 SL-275-SA6-SB-4.0-5.0 SL-276-SA6-SB-4.0-5.0 SL-276-SA6-SB-4.0-5.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-289-SA6-SS-0.0-0.5 SL-292-SA6-SS-0.0-0.5 SL-297-SA6-SS-0.0-0.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.458 ng/Kg	0.458U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.177 ng/Kg	0.177U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0298 ng/Kg	0.0298U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0452 ng/Kg	0,0452U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0268 ng/Kg	0.0268U ng/Kg
SL-135-\$A6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0749 ng/Kg	0.0749U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0932 ng/Kg	0.0932U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0542 ng/Kg	0.0542U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0516 ng/Kg	0.0516U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0432 ng/Kg	0.0432U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	OCDD	0.987 ng/Kg	0.987U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	OCDF	0.229 ng/Kg	0.229U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.805 ng/Kg	0.805U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.173 ng/Kg	0.173U ng/Kg

10/27/2011 7:40:54 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX110 Laboratory: LL

EDD Filename: DX110_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B				Marina de Companyon de Companyon de Companyon de Companyon de Companyon de Companyon de Companyon de Companyon
Matrix: SO				er ter sû jer is september Askêrêrêrê
Method Blank				Associated
Sample ID	Analysis Date	Analyte	Result	Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0745 ng/Kg	0.0745U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0470 ng/Kg	0.0470U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0716 ng/Kg	0.0716U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0280 ng/Kg	0.0280U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0672 ng/Kg	0.0672U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0711 ng/Kg	0.0711U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0402 ng/Kg	0.0402U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0550 ng/Kg	0.0550U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	OCDF	0.313 ng/Kg	0.313U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.681 ng/Kg	0.681U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.165 ng/Kg	0.165U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0408 ng/Kg	0.0408U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0367 ng/Kg	0.0367U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0359 ng/Kg	0.0359U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0419 ng/Kg	0.0419U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0646 ng/Kg	0.0646U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0430 ng/Kg	0.0430U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	OCDD	2,50 ng/Kg	2.50U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	OCDF	0.187 ng/Kg	0.187U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.493 ng/Kg	0.493U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.129 ng/Kg	0.129U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0361 ng/Kg	0.0361U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0321 ng/Kg	0.0321U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0317 ng/Kg	0.0317U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0239 ng/Kg	0.0239U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0571 ng/Kg	0.0571U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0529 ng/Kg	0.0529U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0546 ng/Kg	0.0546U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	OCDD	1.60 ng/Kg	1.60U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	OCDF	0.138 ng/Kg	0.138U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.848 ng/Kg	0.848U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.272 ng/Kg	0.272U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0574 ng/Kg	0.0574U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.121 ng/Kg	0.121U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0,160 ng/Kg	0.160U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.108 ng/Kg	0.108U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	. 0.0833 ng/Kg	0.0833U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0675 ng/Kg	0.0675U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.115 ng/Kg	0.115U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.133 ng/Kg	0,133U ng/Kg

10/27/2011 7:40:54 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX110 Laboratory: LL

EDD Filename: DX110_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO			omition to the Kolenagian di	建筑设建设建筑地域
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-138-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0,101 ng/Kg	0.101U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.191 ng/Kg	0.191U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	OCDF	0.447 ng/Kg	0.447U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,533 ng/Kg	0.533U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.119 ng/Kg	0.119U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0511 ng/Kg	0.0511U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0619 ng/Kg	0.0619U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0388 ng/Kg	0.0388U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0435 ng/Kg	0.0435U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0739 ng/Kg	0.0739U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0410 ng/Kg	0.0410U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0602 ng/Kg	0.0602U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0550 ng/Kg	0.0550U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.102 ng/Kg	0.102U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	OCDD	1.87 ng/Kg	1.87U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	OCDF	0.236 ng/Kg	0.236U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0,694 ng/Kg	0.694U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.212 ng/Kg	0.212U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0691 ng/Kg	0.0691U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.102 ng/Kg	0.102U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0850 ng/Kg	0.0850U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0895 ng/Kg	0.0895U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0759 ng/Kg	0.0759U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0,119 ng/Kg	0.119U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0599 ng/Kg	0.0599U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.130 ng/Kg	0.130U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0755 ng/Kg	0.0755U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	OCDD	2.45 ng/Kg	2,45U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	OCDF	0.163 ng/Kg	0.163U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.807 ng/Kg	0.807U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.251 ng/Kg	0.251U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0619 ng/Kg	0.0619U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.109 ng/Kg	0.109U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0558 ng/Kg	0,0558U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.122 ng/Kg	0.122U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0982 ng/Kg	0.0982U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0801 ng/Kg	0.0801U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0580 ng/Kg	0.0580U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	OCDF	0.518 ng/Kg	0.518U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.703 ng/Kg	0.703U ng/Kg

10/27/2011 7:40:54 AM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX110 Laboratory: LL

EDD Filename: DX110_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				isnė užbyladkin samojaliny aliedė
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.195 ng/Kg	0.195U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0,0396 ng/Kg	0.0396U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0741 ng/Kg	0.0741U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.188 ng/Kg	0.188U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0407 ng/Kg	0.0407U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0889 ng/Kg	0.0889U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0839 ng/Kg	0.0839U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0485 ng/Kg	0.0485U ng/Kg
SL-199-SA5DN-SB-4,0-5,0(RES)	OCDD	2.11 ng/Kg	2.11U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	OCDF	0.264 ng/Kg	0.264U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.857 ng/Kg	0.857U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.227 ng/Kg	0.227U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0376 ng/Kg	0.0376U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0465 ng/Kg	0.0465U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0397 ng/Kg	0.0397U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0191 ng/Kg	0.0191U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0660 ng/Kg	0.0660U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0487 ng/Kg	0.0487U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0579 ng/Kg	0.0579U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	OCDD	3.74 ng/Kg	3.74U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	OCDF	0.271 ng/Kg	0.271U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.608 ng/Kg	0.608U ng/Kg
SL-275-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,4,6,7,8-HPCDF	0.117 ng/Kg	0.117U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0798 ng/Kg	0.0798U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0664 ng/Kg	0.0664U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0785 ng/Kg	0.0785U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0364 ng/Kg	0.0364U ng/Kg
SL-275-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,7,8,9-HXCDD	0.134 ng/Kg	0.134U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0569 ng/Kg	0.0569U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0274 ng/Kg	0.0274U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0570 ng/Kg	0.0570U ng/Kg
SL-275-\$A6-\$B-4.0-5.0(RE\$)	OCDD	2.02 ng/Kg	2.02U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	OCDF	0.224 ng/Kg	0.224U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.555 ng/Kg	0.555U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.128 ng/Kg	0.128U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0396 ng/Kg	0.0396U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0337 ng/Kg	0.0337U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0280 ng/Kg	0.0280U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0257 ng/Kg	0.0257U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0393 ng/Kg	0.0393U ng/Kg

10/27/2011 7:40:54 AM ADR version 1.4.0.111 Page 4 of 5

Lab Reporting Batch ID: DX110 Laboratory: LL

EDD Filename: DX110_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				E Palential Anton apprendiction of the
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-275-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0387 ng/Kg	0.0387U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	OCDD	2.71 ng/Kg	2.71U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	OCDF	0.152 ng/Kg	0.152U ng/Kg
SL-276-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.232 ng/Kg	0.232U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.423 ng/Kg	0.423U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0993 ng/Kg	0.0993U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0357 ng/Kg	0.0357U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0291 ng/Kg	0.0291U ng/Kg
SL-276-SA6-\$B-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0427 ng/Kg	0.0427U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0541 ng/Kg	0.0541U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	OCDD	1.24 ng/Kg	1.24U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	OCDF	0.150 ng/Kg	0.150U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDD	1.92 ng/Kg	1.92U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDF	0.300 ng/Kg	0.300U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.0421 ng/Kg	0.0421U ng/Kg
SL-289-SA6-SS-0,0-0.5(RES)	1,2,3,6,7,8-HXCDD	0.0740 ng/Kg	0.0740U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.0267 ng/Kg	0.0267U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.0738 ng/Kg	0.0738U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0209 ng/Kg	0.0209U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.0410 ng/Kg	0.0410U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.0424 ng/Kg	0.0424U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	OCDF	0.493 ng/Kg	0.493U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling
10/27/2011 7:40:54 AM ADR version 1.4.0.111

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: DX110_v1.

eQAPP Name: CDM_SSFL_110509

Matrix: SO		med deter A, m	* 144 1 71 1	the second reserve	ar meg e vie skill.	2 · · · \$1 1、15·40 \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$2	
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected - Compounds	Flag
SL-297-SA6-SS-0.0-0.5MS SL-297-SA6-SS-0.0-0.5MSD SL-297-SA6-SS-0.0-0.5)	OCDD	-489	-572	40.00-135.00	-	OCDD	No Qual, >4x
SL-297-SA6-SS-0,0-0,5MSD SL-297-SA6-SS-0,0-0,5)	1,2,3,4,6,7,8-HPCDD	-	35	40.00-135.00	-	1,2,3,4,6,7,8-HPCDD	No Qual, >4x

10/27/2011 7:32:21 AM ADR version 1.4.0.111 Page 1 of 1

Field Duplicate RPD Report

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: DX110_v1. eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO					
	Concent	ration (%)			
Analyte	SL-297-SA6-SS-0.0-0.5	DUP01-SA6-QC-071111	Sample RPD	eQAPP RPD	Flag
MOISTURE	0.85	0.80	6		No Qualifiers Applied

Method: 1613B Matrix: SO

	Concentra	tion (ng/Kg)			
Analyte	SL-297-SA6-SS-0.0-0.5	DUP01-SA6-QC-071111	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD	2850	3330	16	50.00	
1,2,3,4,6,7,8-HPCDF	354	419	17	50.00	
1,2,3,4,7,8,9-HPCDF	41.6	49.0	16	50.00	
1,2,3,4,7,8-HxCDD	12.0	14.0	15	50.00	
1,2,3,4,7,8-HXCDF	30.7	33.5	9	50.00	
1,2,3,6,7,8-HXCDD	70.9	84.3	17	50.00	
1,2,3,6,7,8-HXCDF	17.7	20.7	16	50.00	
1,2,3,7,8,9-HXCDD	27.6	31.9	14	50.00	
1,2,3,7,8,9-HXCDF	5.90	6.47	9	50.00	No Qualifiers Applied
1,2,3,7,8-PECDD	7.47	6.57	13	50.00	
1,2,3,7,8-PECDF	33.6	51.0	41	50.00	
2,3,4,6,7,8-HXCDF	31.1	37.9	20	50.00	
2,3,4,7,8-PECDF	28.7	34.2	17	50.00	
2,3,7,8-TCDD	0.939	0.936	0	50.00	
2,3,7,8-TCDF	11.8	11.5	3	50.00	
OCDD	56700	66100	15	50.00	
OCDF	. 736	848	14	50.00	

10/27/2011 7:43:49 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX110

EDD Filename: DX110_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Matrix: SO						* .	
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP01-SA6-QC-071111	2,3,7,8-TCDD	J	0.936	1.01	PQL	ng/Kg	J (all detects)
SL-135-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	0.458 0.177 0.0298 0.0452 0.0268 0.0749 0.0932 0.0542 0.0288 0.0516 0.0432 0.987 0.229	5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-136-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	0.805 0.173 0.0745 0.0470 0.0716 0.0280 0.0672 0.0711 0.0402 0.0550 6.26 0.313	5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40	PAL PAL PAL PAL PAL PAL PAL PAL PAL PAL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-136-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDD	# # # # # # # # # # # # # # # # # # #	0.681 0.165 0.0408 0.0367 0.0359 0.0419 0.0646 0.0479 0.0430 2.50 0.187	5.40 5.40 5.40 5.40 5.40 5.40 5.40 1.08 1.08 10.8	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-138-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.493 0.129 0.0361 0.0321 0.0317 0.0239 0.0571 0.0529 0.0546 1.60 0.138	5.31 5.31 5.31 5.31 5.31 5.31 5.31 5.31	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

10/27/2011 7:41:05 AM ADR version 1.4.0.111 Page 1 of 4

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: DX110_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Vlatr	ix:	SO
_		

Watrix: 50							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-138-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.848	5.51	PQL	ng/Kg	
02 100 0110 02 010 1010	1,2,3,4,6,7,8-HPCDF	JB	0.272	5.51	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0574	5.51	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.121	5.51	PQL.	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.160	5.51	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.108	5.51	PQL	ng/Kg	: '
	1,2,3,6,7,8-HXCDF	JBQ	0.0833	5.51	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0675	5.51	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.115	5.51	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.113	5.51	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JQ	0.176	5.51	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.170	5.51	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.101	5.51	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.131	1.10	PQL	ng/Kg	
	OCDD	JB .	4.73	11.0	PQL	ng/Kg	
	OCDF	JBQ	0.447	11.0	PQL	ng/Kg	
	·			<u> </u>			
SL-139-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.533	5.37	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.119	5.37	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0511	5.37	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0619	5.37	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0388	5.37	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0435	5.37	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0739	5.37	PQL	ng/Kg	l (all data da)
	1,2,3,7,8,9-HXCDF	JB	0.0410	5.37	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0602	5.37	PQL	ng/Kg	
	1,2,3,7,8-PECDF	J	0.0746	5.37	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0550	5.37	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.102	5.37	PQL	ng/Kg	
	OCDD .	JB	1.87	10.7	PQL	ng/Kg	
	OCDF	JBQ	0.236	10.7	PQL	ng/Kg	
SL-139-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.694	5.60	PQL	ng/Kg	
DE-103-0710-0D-3:0-10:0	1,2,3,4,6,7,8-HPCDF	JBQ	0.034	5.60	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0691	5.60	PQL		
	1,2,3,4,7,8-HXCDF	JBQ	0.102	5.60	PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.102	5.60	PQL		
	1,2,3,6,7,8-HXCDF	JBQ	0.0895	5.60	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0693	1	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0735	5.60 5.60	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	J	0.119	I I		ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ		5.60	PQL	ng/Kg	
:			0.0599	5.60	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.130	5.60	PQL	ng/Kg	
	2,3,7,8-TCDF OCDD	J	0.0755	1.12	PQL	ng/Kg	
	OCDF	JB	2.45	11.2	PQL	ng/Kg	
P		JBQ	0.163	11.2	PQL	ng/Kg	
SL-149-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.807	5.44	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.251	5.44	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0619	5.44	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.109	5.44	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0558	5.44	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.122	5.44	PQL	ng/Kg	المال المال المال
	1,2,3,7,8,9-HXCDF	JBQ	0.0982	5.44	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JQ	0.0310	5.44	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0801	5.44	PQL	ng/Kg	
!	2,3,4,7,8-PECDF	JB	0.0580	5.44	PQL	ng/Kg	
	OCDD	JВ	6.19	10.9	PQL	ng/Kg	
	OCDF	JBQ	0.518	10.9	PQL	ng/Kg	
	<u> </u>						

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: DX110_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B SO

Matrix:

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-149-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD		1.24 1.14 2.61 2.65 0.993 1.87 0.434 0.906 1.01 1.04 1.27 0.267	5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-199-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	######################################	0.703 0.195 0.0396 0.0741 0.188 0.0407 0.438 0.538 0.0889 0.145 0.0839 0.0485 2.11 0.264	5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-199-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	# # # # # # # # # # # # # # # # # # #	0.857 0.227 0.0376 0.0465 0.0397 0.0191 0.0660 0.0345 0.0487 0.0579 3.74 0.271	5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-275-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0CDD 0CDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	0.608 0.117 0.0798 0.0664 0.0785 0.0364 0.134 0.0569 0.0324 0.0274 0.0570 2.02 0.224	5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX110

EDD Filename: DX110_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		L.ab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-275-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.555	5.45	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.128	5.45	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0396	5.45	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0337	5.45	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0280	5.45	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0257	5.45	PQL	ng/Kg	J (all detects)
	2,3,4,6,7,8-HXCDF	JBQ	0.0393	5.45	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0387	5.45	PQL	ng/Kg	
	OCDD	JBQ	2.71	10.9	PQL	ng/Kg	
	OCDF	JBQ	0.152	10.9	PQL	ng/Kg	
SL-276-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF	JB	1.21	5.42	PQL	ng/Kg	
36-270-370-30-4.0-3.0	1,2,3,4,7,8,9=11FCDF 1,2,3,4,7,8-HxCDD	JBQ	0.529	5.42	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	2.46	5.42	PQL	ng/Kg	
		JB					
	1,2,3,6,7,8-HXCDD		2.90	5.42	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	1.05	5.42	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.17	5.42	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.232	5.42	PQL	ng/Kg	- (
	1,2,3,7,8-PECDD	JBQ	0.230	5.42	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.756	5.42	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	2.81	5.42	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0400	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	JC	0.965	1.08	PQL	ng/Kg	
SL-276-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.423	5.41	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0993	5.41	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0357	5.41	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0291	5.41	PQL	ng/Kg	1.4-11.4-1-4-3
	2,3,4,6,7,8-HXCDF	JBQ	0.0427	5.41	PQL	ng/Kg	J (all detects)
	2,3,4,7,8-PECDF	JBQ	0.0541	5.41	PQL	ng/Kg	
	OCDD	JB	1.24	10.8	PQL	ng/Kg	
	OCDF	JB	0.150	10.8	PQL	ng/Kg	
SL-289-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD	JB	1.92	4.94	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.300	4.94	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0421	4.94	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0740	4.94	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0267	4.94	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0738	4.94	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0209	4.94	PQL	ng/Kg	o (an actoria)
	1,2,3,7,8-PECDF	JQ	0.0282	4.94	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0410	4.94	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0424	4.94	PQL	ng/Kg	
	OCDF	JB	0.493	9.88	PQL	ng/Kg	
SL-292-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	2.67	5.01	PQL	ng/Kg	
32-232-070-00-0.0-0.3	1,2,3,4,7,8-HxCDD	JB	2.52	5.01	PQL		
	1,2,3,6,7,8-HXCDF					ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	3.55	5.01	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	4.86	5.01	PQL	ng/Kg	
		JB	1.02	5.01	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	2.04	5.01	PQL	ng/Kg	• ,
	1,2,3,7,8-PECDF	٦,	3.99	5.01	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	3.32	5.01	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	4.57	5.01	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.643	1.00	PQL	ng/Kg	
SL-297-SA6-SS-0.0-0.5	2,3,7,8-TCDD	JQ	0.939	1 .01	PQL	ng/Kg	J (all detects)
	<u> </u>						

10/27/2011 7:41:05 AM ADR version 1.4.0.111 Page 4 of 4

SAMPLE DELIVERY GROUP

DX120

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
26-Jul-2011	SL-077-SA6-SB-4.0-5.0	6356798	N	METHOD	1613B	Ш
26-Jul-2011	SL-077-SA6-SB-9.0-10.0	6356799	N	METHOD	1613B	Ш
26-Jul-2011	SL-080-SA6-SB-3.5-4.5	6356800	N	METHOD	1613B	111
26-Jul-2011	EB-SA6-SS-072611	6356801	EB	METHOD	1613B	111
26-Jul-2011	SL-311-SA6-SS-0.0-0.5	6356802	N	METHOD	1613B	111
26-Jul-2011	DUP08-SA6-QC-072611	6356797	FD	METHOD	1613B	UI
27-Jul-2011	SL-028-SA6-SS-0.0-0.5	6358402	N	METHOD	1613B	Ш
27-Jui-2011	SL-009-SA6-SS-0.0-0.5	6358398	N	METHOD	1613B	Ш
27-Jul-2011	SL-009-SA6-SS-0.0-0.5MS	6358399	MS	METHOD	1613B	10
27-Jul-2011	SL-009-SA6-SS-0.0-0.5MSD	6358400	MSD	METHOD	1613B	III
27-Jul-2011	SL-009-SA6-SS-0.0-0.5MSD	P358398M371933	MSD	METHOD	1613B	III
27-Jul-2011	SL-009-SA6-SS-0.0-0.5MS	P358398R371837	MS	METHOD	1613B	III
27-Jul-2011	DUP09-SA6-QC-072711	6358403	FD	METHOD	1613B	111
27-Jul-2011	SL-069-SA6-SB-4.0-5.0	6358404	N	METHOD	1613B	111
27-Jul-2011	SL-069-SA6-SB-9.0-10.0	6358405	N	METHOD	1613B	UI
27-Jul-2011	SL-017-SA6-SS-0.0-0.5	6358401	N	METHOD	1613B	Ш
27-Jul-2011	SL-089-SA6-SB-4.0-5.0	6358407	N	METHOD	1613B	111
27-Jul-2011	SL-089-SA6-SB-9.0-10.0	6358408	N	METHOD	1613B	m
27-Jul-2011	SL-076-SA6-SB-2.0-3.0	6358406	N	METHOD	1613B	111
27-Jul-2011	SL-117-SA6-SB-2.0-3.0	6358409	N	METHOD	1613B	nı
27-Jul-2011	EB-SA6-SB-072711	6358412	EB	METHOD	1613B	Ш
27-Jul-2011	SL-179-SA5DN-SB-4.0-5.0	6358410	N	METHOD	1613B	Ш
27-Jul-2011	SL-179-SA5DN-SB-9.0-10.0	6358411	N	METHOD	1613B	Ш

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B

Matrix: AQ

Sample ID: EB-SA6-SB-072711	Collected: 7/27/2011 1:00:00	Analysis Type: RES	Dilution: 1
· · · · · · · · · · · · · · · · · · ·		rinalyons ryper in-e	Direction, 1

·						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_	2000000	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	2.95	JB	0.566	MDL	9.80	PQL	pg/L	U	В	
1,2,3,4,6,7,8-HPCDF	0.567	JBQ	0.215	MDL	9.80	PQL	pg/L	U	В	
1,2,3,4,7,8-HxCDD	0.369	JBQ	0.346	MDL	9.80	PQL	pg/L	U	В	
1,2,3,4,7,8-HXCDF	0.225	JBQ	0.210	MDL	9.80	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDF	0.334	JBQ	0.216	MDL	9.80	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDD	0.679	JBQ	0.360	MDL	9.80	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDF	0.463	JB	0.213	MDL	9.80	PQL	pg/L	U	В	
1,2,3,7,8-PECDF	0.377	JQ	0.292	MDL	9.80	PQL	pg/L	J	Z	
2,3,4,7,8-PECDF	0.611	JBQ	0.254	MDL	9.80	PQL	pg/L	U	В	
2,3,7,8-TCDF	0.571	JQ	0.534	MDL	1.96	PQL	pg/L	J	Z	
OCDD	5.10	JBQ	0.418	MDL	19.6	PQL	pg/L	U	В	
OCDF	0.922	JB	0.542	MDL	19.6	PQL.	pg/L	U	В	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<del></del>									

Sample ID: EB-SA6-SS-072611 Collected: 7/26/2011 11:30:00 Analysis Type: RES Dilution: 1

Cample 10. ED-ONG-00-012011	Conec	Oblieuted. 1120/2011 11:30:00 Alialysis Type, Nac								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	3.71	JBQ	0.646	MDL	9.94	PQL	pg/L	U	В	
1,2,3,4,6,7,8-HPCDF	1.69	JB	0.317	MDL	9.94	PQL	pg/L	U	В	
1,2,3,4,7,8,9-HPCDF	0.449	JBQ	0.335	MDL.	9.94	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDD	0.484	JB	0.423	MDL	9.94	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDF	0.392	JBQ	0.308	MDL	9.94	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDD	0.576	JBQ	0.428	MDL	9.94	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDF	1.09	JBQ	0.319	MDL	9.94	PQL	pg/L	U	В	
1,2,3,7,8-PECDF	1.65	JQ	0.373	MDL	9.94	PQL	pg/L	J	Z	
2,3,4,6,7,8-HXCDF	0.368	JBQ	0.287	MDL	9.94	PQL	pg/L	U	В	
2,3,4,7,8-PECDF	1.95	JBQ	0.334	MDL	9.94	PQL	pg/L	U	В	
OCDD	7.99	JB	0.446	MDL	19.9	PQL	pg/L	U	В	
OCDF	1.26	JBQ	0.727	MDL	19.9	PQL	pg/L	U	В	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 11:35:26 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX120

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method Category: GENCHEM
Method: 1613B

1613B Matrix: SO

Sample ID: DUP08-SA6-QC-072611	Collec	Collected: 7/26/2011 12:14:00 Analysis Type: RES						Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8,9-HPCDF	1.49	JB	0.0474	MDL	5.08	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HxCDD	0.737	JB	0.0239	MDL	5.08	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	1.66	JB	0.0249	MDL	5.08	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	1.69	JB	0.0249	MDL	5.08	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.822	JBQ	0.0427	MDL	5.08	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.363	JB	0.0350	MDL	5.08	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	1.80	JB	0.0371	MDL	5.08	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.0680	JB	0.0193	MDL	1.02	PQL	ng/Kg	U	В		

Sample ID: DUP09-SA6-QC-072711 Collected: 7/27/2011 8:28:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	2.92	JB	0.0370	MDL	4.93	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	1.50	JB	0.0298	MDL	4.93	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	2.79	JB	0.0383	MDL	4.93	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	3.63	JB	0.0283	MDL	4.93	PQL	ng/Kg	J	Z	
,2,3,7,8,9-HXCDF	0.819	JB	0.0345	MDL	4.93	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	1.24	JB	0.0421	MDL	4.93	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	1.90	JB	0.0482	MDL	4.93	PQL	ng/Kg	J	Z, FD	
2,3,4,6,7,8-HXCDF	2.84	JB	0.0318	MDL	4.93	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	1.32	В	0.0202	MDL	0.986	PQL	ng/Kg	J	FD	

Sample ID: SL-009-SA6-SS-0.0-0.5 Collected: 7/27/2011 8:20:00 Analysis Type: RES Dilution: 1

Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
2.83	JB	0.0305	MDL	5.08	PQL	ng/Kg	J	Z		
1.58	JB	0.0282	MDL	5.08	PQL	ng/Kg	J	Z		
3.33	JB	0.0351	MDL	5.08	PQL	ng/Kg	J	Z		
3.42	JB	0.0267	MDL	5.08	PQL	ng/Kg	J	Z		
0.876	JB	0.0345	MDL	5.08	PQL	ng/Kg	J	Z		
1.32	JB	0.0449	MDL	5.08	PQL	ng/Kg	J	Z		
10.3	В	0.0513	MDL	5.08	PQL	ng/Kg	J	FD		
3.16	JB	0.0326	MDL	5.08	PQL	ng/Kg	J	Z		
6.67	В	0.0211	MDL	1.02	PQL	ng/Kg	J	FD		
80.5	В	0.0230	MDL	10.2	PQL	ng/Kg	J	Q, Q		
	Result       2.83       1.58       3.33       3.42       0.876       1.32       10.3       3.16       6.67	Result         Qual           2.83         JB           1.58         JB           3.33         JB           3.42         JB           0.876         JB           1.32         JB           10.3         B           3.16         JB           6.67         B	Result         Qual         DL           2.83         JB         0.0305           1.58         JB         0.0282           3.33         JB         0.0351           3.42         JB         0.0267           0.876         JB         0.0345           1.32         JB         0.0449           10.3         B         0.0513           3.16         JB         0.0326           6.67         B         0.0211	Result         Qual         DL         Type           2.83         JB         0.0305         MDL           1.58         JB         0.0282         MDL           3.33         JB         0.0351         MDL           3.42         JB         0.0267         MDL           0.876         JB         0.0345         MDL           1.32         JB         0.0449         MDL           10.3         B         0.0513         MDL           3.16         JB         0.0326         MDL           6.67         B         0.0211         MDL	Result         Qual         DL         Type         RL           2.83         JB         0.0305         MDL         5.08           1.58         JB         0.0282         MDL         5.08           3.33         JB         0.0351         MDL         5.08           3.42         JB         0.0267         MDL         5.08           0.876         JB         0.0345         MDL         5.08           1.32         JB         0.0449         MDL         5.08           10.3         B         0.0513         MDL         5.08           3.16         JB         0.0326         MDL         5.08           6.67         B         0.0211         MDL         1.02	Result         Qual         DL         Type         RL         Type           2.83         JB         0.0305         MDL         5.08         PQL           1.58         JB         0.0282         MDL         5.08         PQL           3.33         JB         0.0351         MDL         5.08         PQL           3.42         JB         0.0267         MDL         5.08         PQL           0.876         JB         0.0345         MDL         5.08         PQL           1.32         JB         0.0449         MDL         5.08         PQL           10.3         B         0.0513         MDL         5.08         PQL           3.16         JB         0.0326         MDL         5.08         PQL           6.67         B         0.0211         MDL         1.02         PQL	Result         Qual         DL         Type         RL         Type         Units           2.83         JB         0.0305         MDL         5.08         PQL         ng/Kg           1.58         JB         0.0282         MDL         5.08         PQL         ng/Kg           3.33         JB         0.0351         MDL         5.08         PQL         ng/Kg           3.42         JB         0.0267         MDL         5.08         PQL         ng/Kg           0.876         JB         0.0345         MDL         5.08         PQL         ng/Kg           1.32         JB         0.0449         MDL         5.08         PQL         ng/Kg           10.3         B         0.0513         MDL         5.08         PQL         ng/Kg           3.16         JB         0.0326         MDL         5.08         PQL         ng/Kg           6.67         B         0.0211         MDL         1.02         PQL         ng/Kg	Lab Result         Lab Qual         DL DL Type         RL Type         RL Type         RL Type         RL Type         RL Qual           2.83         JB         0.0305         MDL 5.08         PQL ng/Kg         J           1.58         JB         0.0282         MDL 5.08         PQL ng/Kg         J           3.33         JB         0.0351         MDL 5.08         PQL ng/Kg         J           3.42         JB         0.0267         MDL 5.08         PQL ng/Kg         J           0.876         JB         0.0345         MDL 5.08         PQL ng/Kg         J           1.32         JB         0.0449         MDL 5.08         PQL ng/Kg         J           10.3         B         0.0513         MDL 5.08         PQL ng/Kg         J           3.16         JB         0.0326         MDL 5.08         PQL ng/Kg         J           6.67         B         0.0211         MDL 1.02         PQL ng/Kg         J		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:35:26 AM ADR version 1.4.0.111 Page 2 of 12

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Mathadi	46420	,
Method Catego	ry: GENC	HEM

Matrix: SO

Sample ID: SL-017-SA6-SS-0.0-0.5	Collected: 7/27/2011 9:14:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HxCDD	4.75	JB	0.0824	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	4.18	JB	0.0557	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	1.17	JB	0.0596	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	2.18	JB	0.0588	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	2.36	JB	0.0388	MDL	5.00	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.326	JB	0.0244	MDL	1.00	PQL	ng/Kg	J	Z	
OCDD	21800	EB	0.188	MDL	10.0	PQL	na/Ka	J	*XI	

Sample ID: SL-028-SA6-SS-0.0-0.5

Collected: 7/27/2011 7:30:00

Analysis Type: RES

Dilution: 1

						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.52	JB	0.0345	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.77	JB	0.0342	MDL.	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.81	JB	0.0319	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.964	JB	0.0519	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.49	JB	0.0602	MDL	5.07	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	4.02	JB	0.0450	MDL	5.07	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.302	JB	0.0197	MDL	1.01	PQL	ng/Kg	J	Z

Sample ID: SL-069-SA6-SB-4.0-5.0

Collected: 7/27/2011 8:35:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.401	JВ	0.0121	MDL	5.22	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.124	JBQ	0.0248	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0266	JB	0.0154	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.104	JBQ	0.0163	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.120	JB	0.0158	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0597	JB	0.0130	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.107	JB	0.0154	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0782	JB	0.0168	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0351	JBQ	0.0119	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.0526	JBQ	0.0121	MDL	5.22	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.0733	JB	0.0136	MDL	5.22	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.106	JBQ	0.0124	MDL	5.22	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0117	JBQ	0.0105	MDL	1.04	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:35:26 AM

ADR version 1.4.0.111

Page 3 of 12

Lab Reporting Batch ID: DX120 Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM	
Method:	1613B	Matrix: SO

Sample ID: SL-069-SA6-SB-4.0-5.0	Collec	Collected: 7/27/2011 8:35:00					Analysis Type: RES			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,7,8-TCDF	0.0257	JBQ	0.0147	MDL	1.04	PQL	ng/Kg	U	В	
OCDF	0.991	JB	0.0310	MDL	10.4	PQL	ng/Kg	J	Ż	

Sample ID: SL-069-SA6-SB-9.0-10.0 Collected: 7/27/2011 8:45:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Analyte DL RL. Units Result Qual Type Type Qual Code 1,2,3,4,6,7,8-HPCDD 1.37 JΒ MDL PQL 0.0191 5.48 U ng/Kg В 1,2,3,4,6,7,8-HPCDF 0.150 **JBQ** 0.00885 MDL 5.48 **PQL** ng/Kg U В 1,2,3,4,7,8,9-HPCDF 0.0618 JΒ 0.0161 MDL 5.48 **PQL** U ng/Kg В 1,2,3,4,7,8-HxCDD 0.0355 **JBQ** 0.0136 MDL 5.48 PQL ng/Kg U В 1,2,3,4,7,8-HXCDF 0.0178 0.358 JB MDL 5.48 PQL ng/Kg J Z 1,2,3,6,7,8-HXCDD 8080.0 JB 0.0145 PQL U MDL 5.48 ng/Kg В 1,2,3,6,7,8-HXCDF 0.0515 JBQ 0.0146 MDL 5.48 **PQL** U В ng/Kg 1,2,3,7,8,9-HXCDD 0.143 U JB 0.0126 MDL 5.48 **PQL** ng/Kg В 1,2,3,7,8,9-HXCDF 0.164 0.0171 JBQ MDL 5.48 **PQL** U В ng/Kg 1,2,3,7,8-PECDD 0.0131 U 0.0451 JBQ MDL, 5.48 **PQL** ng/Kg В 1,2,3,7,8-PECDF 0.140 JΒ 0.0156 MDL 5.48 **PQL** J z ng/Kg 0.0593 U 2,3,4,6,7,8-HXCDF JΒ 0.0125 MDL 5.48 **PQL** ng/Kg В 2,3,4,7,8-PECDF 0.261 JBQ 0.0164 MDL 5.48 **PQL** J ng/Kg Z 2,3,7,8-TCDF U 0.0825 JВ 0.0313 MDL 1.10 PQL В ng/Kg OCDD 10.5 JВ 0.0240 MDL 11.0 PQL J z ng/Kg OCDF PQL 0.396 JB 0.0255 MDL В 11.0 U ng/Kg

Sample ID: SL-076-SA6-SB-2.0-3.0	Collected: 7/27/2011 11:05:00	Analysis Type: RES	Dilution: 1
----------------------------------	-------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.473	JB	0.0199	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0433	JBQ	0.00542	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0620	JBQ	0.0125	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0199	JBQ	0.0146	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0227	JBQ	0.0119	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0393	JBQ	0.0154	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0311	JB	0.00975	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0689	JBQ	0.0148	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0310	JBQ	0.0160	MDL	5.41	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM	
Method:	1613B	Matrix: SO

	Collec	ted: 7/27/	2011 11:05:	00 A	nalysis T	ype: RES		E	Dilution: 1		
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,7,8-PECDF	0.0268	JBQ	0.00769	MDL	5.41	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.0152	JBQ	0.0102	MDL	5.41	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0478	JBQ	0.00823	MDL	5.41	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.0638	JB	0.0180	MDL	1.08	PQL	ng/Kg	U	В		
2,3,7,8-TCDF	0.0129	JBQ	0.0116	MDL	1.08	PQL	ng/Kg	U	В		
OCDD	0.974	JB	0.0217	MDL	10.8	PQL	ng/Kg	U	В		
OCDF	0.135	JBQ	0.0341	MDL	10.8	PQL	ng/Kg	U	В		

Sample ID: SL-077-SA6-SB-4.0-5.0 Collected: 7/26/2011 9:30:00 Analysis Type: RES Dilution: 1

oanipie ib. OE-011-0A0-0B-4.0-3.0	Conected. 1120/2011 9.50.00 Analysis Type: NES								muuon: ¬	
<i>Inalyte</i>	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	1.83	JB	0.0336	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.326	JB	0.0484	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.102	JBQ	0.0283	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.174	JBQ	0.0246	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.518	JB	0.0294	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.125	JBQ	0.0239	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.220	JB	0.0284	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0880	JB	0.0279	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0581	JB	0.0166	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.655	JB	0.0156	MDL	5.38	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.204	JBQ	0.0244	MDL	5.38	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.282	JB	0.0150	MDL	5.38	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0208	JB	0.0141	MDL	1.08	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0649	JB	0.0221	MDL	1.08	PQL	ng/Kg	U	В	
OCDF	5.93	JB	0.0586	MDL	10.8	PQL	ng/Kg	j	Z	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.48	JB	0.0236	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.238	JB	0.0226	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2,19	JB	0.0226	MDL.	5.73	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.931	JB	0.0235	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.944	JB	0.0205	MDL	5.73	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:35:26 AM ADR version 1.4.0.111 Page 5 of 12

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

Matrix: SO

Sample ID: SL-077-SA6-SB-9.0-10.0	Collec	Collected: 7/26/2011 9:50:00 And						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8,9-HXCDD	0.421	JBQ	0.0238	MDL	5.73	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.806	JB	0.0254	MDL	5.73	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.231	JBQ	0.0178	MDL	5.73	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.926	JB	0.0223	MDL	5.73	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.13	JB	0.0212	MDL	5.73	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	1.24	JB	0.0213	MDL	5.73	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0576	JBQ	0.0121	MDL	1.15	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.481	JB	0.0397	MDL	1.15	PQL	ng/Kg	J	Z	

Sample ID: SL-080-SA6-SB-3.5-4.5

Collected: 7/26/2011 10:50:00

Dilution: 4

Sample ID: SL-080-SA6-SB-3.5-4.5	Collec	Collected: 7/26/2011 10:50:00 Analysis Type: RES Dilution: 1										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,4,6,7,8-HPCDD	0.435	JB	0.0136	MDL	5.19	PQL	ng/Kg	U	В			
1,2,3,4,6,7,8-HPCDF	0.0648	JBQ	0.00775	MDL	5.19	PQL	ng/Kg	U	В			
1,2,3,4,7,8,9-HPCDF	0.0331	JBQ	0.0133	MDL	5.19	PQL	ng/Kg	U	В			
1,2,3,4,7,8-HxCDD	0.0177	JBQ	0.00984	MDL	5.19	PQL	ng/Kg	U	В			
1,2,3,4,7,8-HXCDF	0.0497	JB	0.0135	MDL	5.19	PQL	ng/Kg	U	В			
1,2,3,6,7,8-HXCDD	0.0438	JBQ	0.0103	MDL	5.19	PQL	ng/Kg	U	В			
1,2,3,6,7,8-HXCDF	0.0325	JBQ	0.0114	MDL	5.19	PQL	ng/Kg	U	В			
1,2,3,7,8,9-HXCDD	0.0446	JBQ	0.0102	MDL	5.19	PQL	ng/Kg	U	В			
1,2,3,7,8,9-HXCDF	0.0502	JBQ	0.0145	MDL	5.19	PQL	ng/Kg	U	В			
1,2,3,7,8-PECDD	0.0156	JBQ	0.0112	MDL	5.19	PQL	ng/Kg	U	В			
1,2,3,7,8-PECDF	0.0287	JB	0.0114	MDL	5.19	PQL	ng/Kg	U	В			
2,3,4,6,7,8-HXCDF	0.0566	JBQ	0.0124	MDL	5.19	PQL	ng/Kg	U	В			
2,3,4,7,8-PECDF	0.0625	JBQ	0.0110	MDL	5.19	PQL	ng/Kg	U	В			
OCDD	1.08	JB	0.0138	MDL	10.4	PQL	ng/Kg	υ	В			
OCDF	0.172	JB	0.0185	MDL	10.4	PQL	ng/Kg	U	В			

Sample ID: SL-089-SA6-SB-4.0-5.0

Collected: 7/27/2011 9:50:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.27	JB	0.0103	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.189	JB	0.0169	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0727	JBQ	0.0159	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.212	JBQ	0.0147	MDL	5.40	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

ADR version 1.4.0.111 10/27/2011 11:35:26 AM Page 6 of 12

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method Categ	ory: GENCHEM
Method:	1613B

Matrix: SO

Sample ID: SL-089-SA6-SB-4.0-5.0	Collec	ted: 7/27/2	2011 9:50:0	0 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDD	0.370	JB	0.0162	MDL	5.40	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.119	JB	0.0132	MDL	5.40	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.176	JB	0.0159	MDL	5.40	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0618	JBQ	0.0163	MDL	5.40	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDD	0.0484	JB	0.0134	MDL	5.40	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDF	0.497	JB	0.0140	MDL	5.40	PQL	ng/Kg	J	<b>Z</b> '	
2,3,4,6,7,8-HXCDF	0.151	JB	0.0134	MDL	5.40	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.429	JB	0.0135	MDL	5.40	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0209	JBQ	0.00989	MDL	1.08	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.205	JB	0.0245	MDL	1.08	PQL	ng/Kg	J	Z	
OCDF	2.80	JB	0.0201	MDL	10.8	PQL	ng/Kg	J	Z	

Sample ID: SL-089-SA6-SB-9.0-10.0

Collected: 7/27/2011 10:00:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.44	JB	0.0153	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.473	JB	0.0214	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.346	JB	0.0224	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.396	JB	0.0177	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.26	JB	0.0228	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.216	JB	0.0153	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.570	JB	0.0229	MDL	5.31	PQL	ng/Kg	J	· Z
1,2,3,7,8,9-HXCDF	0.120	JBQ	0.0169	MDL	5.31	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.385	JB	0.0171	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.111	JB	0.0127	MDL	5.31	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.323	JВ	0.0141	MDL	5.31	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.357	JB	0.0124	MDL	5.31	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0567	JBQ	0.0101	MDL	1.06	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.204	JB	0.0189	MDL	1.06	PQL	ng/Kg	J	Z

Sample ID: SL-117-SA6-SB-2.0-3.0

Collected: 7/27/2011 12:15:00

Analysis Type: RES

Dilution: 1

Page 7 of 12

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.484	JB	0.0137	MDL	5.14	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.136	JB	0.00699	MDL	5.14	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:35:26 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM
Method: 1613B

Matrix: SO

Sample ID: SL-117-SA6-SB-2.0-3.0	Collec	ted: 7/27/2	011 12:15:	:00 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	0.0624	JB	0.0154	MDL	5.14	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HxCDD	0.0452	JBQ	0.00960	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0963	JBQ	0.00960	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0527	JB	0.0100	MDL.	5.14	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.0715	JB	0.00762	MDL	5.14	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	0.0756	JB	0.00929	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0586	JBQ	0.0100	MDL,	5.14	PQL	ng/Kg	U	8	
1,2,3,7,8-PECDD	0.0959	JBQ	0.00971	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.102	JB	0.00605	MDL	5.14	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0610	JB	0.00835	MDL	5.14	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.131	JB	0.00605	MDL	5.14	PQL	ng/Kg	υ	В	
2,3,7,8-TCDD	0.0404	JB	0.00939	MDL	1.03	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0225	JBQ	0.00856	MDL	1.03	PQL	ng/Kg	U	В	
OCDD	2.07	JB	0.0143	MDL	10.3	PQL	ng/Kg	U	В	
OCDF	0.349	JB	0.0195	MDL	10.3	PQL	ng/Kg	U	В	

Sample ID: SL-179-SA5DN-SB-4.0-5.0 Collected: 7/27/2011 2:31:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.33	JB	0.0382	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.90	JB	0.0547	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.982	JB	0.0282	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.11	JВ	0.0255	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.11	JB	0.0528	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.328	JB	0.0335	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.713	JB	0.0352	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.638	JB	0.0158	MDL	5.16	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.80	JB	0.0273	MDL	5.16	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.626	JB	0.0159	MDL	5.16	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0859	JB	0.0140	MDL	1.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.126	JB	0.0284	MDL	1.03	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

Matrix:

Sample ID: SL-179-SA5DN-SB-9.0-10.0	Collec	ted: 7/27/	2011 2:49:0	0 A	nalysis T	ype: RES	Analysis Type: RES			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	0.852	JB	0.00889	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.111	JBQ	0.0168	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0800	JB	0.0200	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0747	JB	0.0122	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.311	JB	0.0201	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0642	JB	0.0103	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.145	JB	0.0205	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0285	JB	0.0130	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0536	JB	0.0137	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0467	JB	0.00730	MDL	5.52	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0903	JB	0.0107	MDL	5.52	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0887	JBQ	0.00718	MDL	5.52	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0116	JBQ	0.0105	MDL	1.10	PQL	ng/Kg	U	B	
2,3,7,8-TCDF	0.0278	JBQ	0.0131	MDL	1.10	PQL	ng/Kg	U	В	
OCDF	1.98	JB	0.0200	MDL	11.0	PQL	ng/Kg	J	Z	

Sample ID:	SL-31	1-SA6-SS	-0.0-0.5
------------	-------	----------	----------

Collected: 7/26/2011 11:31:00 Analysis Type: RES

Dilution: 1

Page 9 of 12

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	3.49	JB	0.0259	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.63	JB	0.0225	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.48	JB	0.0223	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.06	JB	0.0373	MDL	5.07	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.151	JB	0.0228	MDL	1.01	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 10/27/2011 11:35:26 AM

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX120

EDD Filename: DX120_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

### Reason Code Legend

Reason Code	Description
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
·	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI .	Compound Quantitation and CRQL
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
H	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
н	Temperature Rejection
[	Internal Standard Estimation
1	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
M	Continuing Tune
М	Initial Tune
M	Performance Evaluation Mixture
M	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

# **Enclosure I**

EPA Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

**DX120** 

Lab Reporting Batch ID: DX120 Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2340B371734	8/23/2011 5:34:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDD 2,3,4,6,7,8-PECDF OCDD OCDF	2.80 pg/L 0.632 pg/L 0.512 pg/L 0.765 pg/L 0.547 pg/L 0.856 pg/L 0.489 pg/L 0.876 pg/L 0.588 pg/L 0.588 pg/L 1.02 pg/L 1.02 pg/L 2.84 pg/L	EB-SA6-SB-072711 EB-SA6-SS-072611

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-072711(RES)	1,2,3,4,6,7,8-HPCDD	2.95 pg/L	2.95U pg/L
EB-SA6-SB-072711(RES)	1,2,3,4,6,7,8-HPCDF	0.567 pg/L	0.567U pg/L
EB-SA6-SB-072711(RES)	1,2,3,4,7,8-HxCDD	0.369 pg/L	0.369U pg/L
EB-SA6-SB-072711(RES)	1,2,3,4,7,8-HXCDF	0,225 pg/L	0.225U pg/L
EB-SA6-SB-072711(RES)	1,2,3,6,7,8-HXCDF	0.334 pg/L	0.334U pg/L
EB-SA6-SB-072711(RES)	1,2,3,7,8,9-HXCDD	0.679 pg/L	0.679U pg/L
EB-SA6-SB-072711(RES)	1,2,3,7,8,9-HXCDF	0.463 pg/L	0.463U pg/L
EB-SA6-SB-072711(RES)	2,3,4,7,8-PECDF	0.611 pg/L	0.611U pg/L
EB-SA6-SB-072711(RES)	OCDD	5.10 pg/L	5.10U pg/L
EB-SA6-SB-072711(RES)	OCDF	0.922 pg/L	0.922U pg/L
EB-SA6-SS-072611(RES)	1,2,3,4,6,7,8-HPCDD	3.71 pg/L	3.71U pg/L
EB-SA6-SS-072611(RES)	1,2,3,4,6,7,8-HPCDF	1.69 pg/L	1.69U pg/L
EB-SA6-SS-072611(RES)	1,2,3,4,7,8,9-HPCDF	0.449 pg/L	0.449U pg/L
EB-SA6-SS-072611(RES)	1,2,3,6,7,8-HXCDD	0.484 pg/L	0.484U pg/L
EB-SA6-SS-072611(RES)	1,2,3,6,7,8-HXCDF	0.392 pg/L	0.392U pg/L
EB-SA6-SS-072611(RES)	1,2,3,7,8,9-HXCDD	0.576 pg/L	0.576U pg/L
EB-SA6-SS-072611(RES)	1,2,3,7,8,9-HXCDF	1.09 pg/L	1.09U pg/L
EB-SA6-SS-072611(RES)	2,3,4,6,7,8-HXCDF	0.368 pg/L	0.368U pg/L
EB-SA6-SS-072611(RES)	2,3,4,7,8-PECDF	1.95 pg/L	1.95U pg/L
EB-SA6-SS-072611(RES)	OCDD	7.99 pg/L	7.99U pg/L
EB-SA6-SS-072611(RES)	OCDF	1.26 pg/L,	1.26U pg/L

10/27/2011 11:33:16 AM ADR version 1.4.0.111 Page 1 of 4

Lab Reporting Batch ID: DX120 Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO							
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples			
BLK2220B371906	8/11/2011 7:06:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD 2,3,7,8-TCDD 0CDD 0CDF	0.375 ng/Kg 0.0662 ng/Kg 0.0516 ng/Kg 0.0516 ng/Kg 0.0259 ng/Kg 0.0276 ng/Kg 0.0288 ng/Kg 0.0193 ng/Kg 0.0352 ng/Kg 0.0495 ng/Kg 0.0262 ng/Kg 0.0265 ng/Kg 0.0255 ng/Kg 0.0152 ng/Kg 0.0165 ng/Kg 0.0166 ng/Kg 0.166 ng/Kg	DUP08-SA6-QC-072611 DUP09-SA6-QC-072711 SL-009-SA6-SS-0.0-0.5 SL-017-SA6-SS-0.0-0.5 SL-028-SA6-SS-0.0-0.5 SL-069-SA6-SB-4.0-5.0 SL-069-SA6-SB-4.0-5.0 SL-077-SA6-SB-4.0-5.0 SL-077-SA6-SB-4.0-5.0 SL-080-SA6-SB-3.5-4.5 SL-089-SA6-SB-4.0-5.0 SL-179-SA5DN-SB-4.0-5.0 SL-179-SA5DN-SB-4.0-5.0 SL-179-SA5DN-SB-9.0-10.0 SL-179-SA5DN-SB-9.0-10.0 SL-117-SA6-SB-2.0-3.0 SL-131-SA6-SS-0.0-0.5			

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP08-SA6-QC-072611(RES)	2,3,7,8-TCDD	0.0680 ng/Kg	0.0680U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.124 ng/Kg	0.124U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0266 ng/Kg	0.0266U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.104 ng/Kg	0.104U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.120 ng/Kg	0.120U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0597 ng/Kg	0.0597U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.107 ng/Kg	0.107U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0782 ng/Kg	0.0782U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0351 ng/Kg	0.0351U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0526 ng/Kg	0.0526U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0733 ng/Kg	0.0733U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.106 ng/Kg	0.106U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0117 ng/Kg	0.0117U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0257 ng/Kg	0.0257U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	1.37 ng/Kg	1.37U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.150 ng/Kg	0.150U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0618 ng/Kg	0.0618U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0355 ng/Kg	0.0355U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0808 ng/Kg	0.0808U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0515 ng/Kg	0.0515U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.143 ng/Kg	0.143U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.164 ng/Kg	0.164U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0451 ng/Kg	0.0451U ng/Kg
SL-069-\$A6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0593 ng/Kg	0.0593U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0825 ng/Kg	0.0825U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	OCDF	0.396 ng/Kg	0.396U ng/Kg
SL-076-\$A6-\$B-2.0-3.0(RE\$)	1,2,3,4,6,7,8-HPCDD	0.473 ng/Kg	0.473U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0433 ng/Kg	0.0433U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0620 ng/Kg	0.0620U ng/Kg

10/27/2011 11:33:16 AM ADR version 1.4.0.111 Page 2 of 4

Lab Reporting Batch ID: DX120 Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HxCDD	0.0199 ng/Kg	0.0199U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HXCDF	0.0227 ng/Kg	0.0227U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDD	0.0393 ng/Kg	0.0393U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDF	0.0311 ng/Kg	0.0311U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDD	0.0689 ng/Kg	0.0689U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDD	0.0310 ng/Kg	0.0310U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDF	0,0268 ng/Kg	0.0268U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.0152 ng/Kg	0.0152U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0.0478 ng/Kg	0.0478U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	2,3,7,8-TCDD	0,0638 ng/Kg	0.0638U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	2,3,7,8-TCDF	0.0129 ng/Kg	0.0129U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	OCDD	0.974 ng/Kg	0.974U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	OCDF	0.135 ng/Kg	0.135U ng/Kg
SL-077-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0,102 ng/Kg	0.102U ng/Kg
SL-077-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0880 ng/Kg	0.0880U ng/Kg
SL-077-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0581 ng/Kg	0.0581U ng/Kg
SL-077-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0208 ng/Kg	0.0208U ng/Kg
SL-077-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0649 ng/Kg	0.0649U ng/Kg
SL-077-SA6-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0576 ng/Kg	0.0576U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDD	0.435 ng/Kg	0.435U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0648 ng/Kg	0.0648U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0331 ng/Kg	0.0331U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8-HxCDD	0.0177 ng/Kg	0.0177U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8-HXCDF	0.0497 ng/Kg	0.0497U ng/Kg
SL-080-\$A6-\$B-3.5-4.5(RES)	1,2,3,6,7,8-HXCDD	0.0438 ng/Kg	0.0438U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDF	0.0325 ng/Kg	0.0325U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDD	0.0446 ng/Kg	0.0446U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDF	0.0502 ng/Kg	0.0502U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,7,8-PECDD	0.0156 ng/Kg	0.0156U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,7,8-PECDF	0.0287 ng/Kg	0.0287U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	2,3,4,6,7,8-HXCDF	0.0566 ng/Kg	0.0566U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	2,3,4,7,8-PECDF	0.0625 ng/Kg	0.0625U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	OCDD	1.08 ng/Kg	1.08U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	OCDF	0.172 ng/Kg	0.172U ng/Kg
SL-089-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.189 ng/Kg	0.189U ng/Kg
SL-089-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0727 ng/Kg	0.0727U ng/Kg
SL-089-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.176 ng/Kg	0.176U ng/Kg
SL-089-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0,0618 ng/Kg	0.0618U ng/Kg
SL-089-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0484 ng/Kg	0.0484U ng/Kg
SL-089-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0209 ng/Kg	0.0209U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:33:16 AM ADR version 1.4.0.111 Page 3 of 4

Lab Reporting Batch ID: DX120 Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-089-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.120 ng/Kg	0.120U ng/Kg
SL-089-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF .	0.111 ng/Kg	0.111U ng/Kg
SL-089-SA6-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0567 ng/Kg	0.0567U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDD	0.484 ng/Kg	0.484U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDF	0.136 ng/Kg	0.136U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0624 ng/Kg	0.0624U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HxCDD	0.0452 ng/Kg	0.0452U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HXCDF	0.0963 ng/Kg	0.0963U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDD	0,0527 ng/Kg	0.0527U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDF	0.0715 ng/Kg	0.0715U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDD	0,0756 ng/Kg	0.0756U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDF	0.0586 ng/Kg	0.0586U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDD	0.0959 ng/Kg	0.0959U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDF	0.102 ng/Kg	0.102U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.0610 ng/Kg	0.0610U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0,131 ng/Kg	0.131U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	2,3,7,8-TCDD	0.0404 ng/Kg	0.0404U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	2,3,7,8-TCDF	0.0225 ng/Kg	0.0225U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	OCDD	2.07 ng/Kg	2.07U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	OCDF	0.349 ng/Kg	0.349U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.111 ng/Kg	0.111U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0800 ng/Kg	0.0800U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0747 ng/Kg	0.0747U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0642 ng/Kg	0.0642U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.145 ng/Kg	0.145U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0285 ng/Kg	0.0285U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0536 ng/Kg	0.0536U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0467 ng/Kg	0.0467U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0903 ng/Kg	0.0903U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0,0887 ng/Kg	0.0887U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0116 ng/Kg	0.0116U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0278 ng/Kg	0.0278U ng/Kg

10/27/2011 11:33:16 AM ADR version 1.4.0.111 Page 4 of 4

## Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO			al in select				
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
iL-009-SA6-SS-0.0-0.5MS iL-009-SA6-SS-0.0-0.5MSD SL-009-SA6-SS-0.0-0.5)	OCDD	213	-17	40.00-135.00	22 (20.00)	OCDD	No Qual, >4x
SL-009-SA6-SS-0.0-0.5MS SL-009-SA6-SS-0.0-0.5MSD SL-009-SA6-SS-0.0-0.5)	OCDF	180	-	40.00-135.00	36 (20.00)	OCDF	J(all detects)

## Field Duplicate RPD Report

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

	Canaan	tration (0/)			
Analyte	Concent	Concentration (%)			·
	SL-009-SA6-SS-0.0-0.5	DUP09-SA6-QC-072711	Sample RPD	eQAPP RPD	Flag
MOISTURE	2.7	2.7	n		No Qualifiers Applie

Method: 1613B Matrix: SO					
	Concentra	tion (ng/Kg)			
Analyte	SL-009-SA6-SS-0.0-0.5	DUP09-SA6-QC-072711	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD	162	174	7	50.00	
1,2,3,4,6,7,8-HPCDF	30.9	30.8	0	50.00	
1,2,3,4,7,8,9-HPCDF	2.83	2.92	3	50.00	
1,2,3,4,7,8-HxCDD	1.58	1.50	5	50.00	
1,2,3,4,7,8-HXCDF	6.02	6.83	13	50.00	
1,2,3,6,7,8-HXCDD	6.58	6.42	2	50.00	
1,2,3,6,7,8-HXCDF	3.33	2.79	18	50.00	
1,2,3,7,8,9-HXCDD	3.42	3.63	6	50.00	No Qualifiers Applied
1,2,3,7,8,9-HXCDF	0.876	0.819	7	50.00	
1,2,3,7,8-PECDD	1.32	1.24	6	50.00	
2,3,4,6,7,8-HXCDF	3.16	2.84	11	50.00	
2,3,4,7,8-PECDF	5.95	5.96	0	50.00	
2,3,7,8-TCDF	4.53	4.11	10	50.00	
OCDD	1920	1790	7	50.00	
OCDF	80.5	86.7	7	50.00	
1,2,3,7,8-PECDF 2,3,7,8-TCDD	10.3 6.67	1.90 1.32	138 134	50.00 50.00	J(all detects)

10/27/2011 11:31:53 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-072711	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	2.95 0.567 0.369 0.225 0.334 0.679 0.463 0.377 0.611 0.571 5.10 0.922	9.80 9.80 9.80 9.80 9.80 9.80 9.80 9.80	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)
EB-SA6-SS-072611	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0CDD 0CDF	JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	3.71 1.69 0.449 0.484 0.392 0.576 1.09 1.65 0.368 1.95 7.99 1.26	9.94 9.94 9.94 9.94 9.94 9.94 9.94 9.94	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613B Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP08-SA6-QC-072611	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD	99999999999999999999999999999999999999	1.49 0.737 1.66 1.69 0.822 0.363 1.80 0.0680	5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
DUP09-SA6-QC-072711	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF		2.92 1.50 2.79 3.63 0.819 1.24 1.90 2.84	4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.93	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-009-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF	38 38 38 38 38 38 38 38 38 38 38 38 38 3	2.83 1.58 3.33 3.42 0.876 1.32 3.16	5.08 5.08 5.08 5.08 5.08 5.08 5.08	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-017-SA6-SS-0.0-0.5	1,2,3,4,7,8-HxCDD	JB	4.75	5.00	PQL	ng/Kg	, rug
	1,2,3,6,7,8-HXCDF	JB	4.18	5.00	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.17	5.00	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	2.18	5.00	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JВ	2.36	5.00	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.326	1.00	PQL	ng/Kg	
SL-028-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	2.52	5.07	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JВ	1.77	5.07	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	3.81	5.07	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.964	5.07	PQL	ng/Kg	. J (all detects)
	1,2,3,7,8-PECDD	JB	1.49	5.07	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	4.02	5.07	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.302	1.01	PQL	ng/Kg	
SL-069-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	0.401	5.22	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.124	5.22	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0266	5.22	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.104	5.22	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.120	5.22	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0597	5.22	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.107	5.22	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.0782	5.22	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0351	5.22	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0526	5.22	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0733	5.22	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.106	5.22	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0117	1.04	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0257	1.04	PQL	ng/Kg	
	OCDF	JB	0.991	10.4	PQL	ng/Kg	
SL-069-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	1.37	5.48	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.150	5.48	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF .	JB	0.0618	5.48	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0355	5.48	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.358	5.48	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0808	5.48	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0515	5.48	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.143	5.48	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.164	5.48	PQL	ng/Kg	a (an across)
	1,2,3,7,8-PECDD	JBQ	0.0451	5.48	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.140	5.48	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0593	5.48	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.261	5.48	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0825	1.10	PQL	ng/Kg	
	OCDD	JB	10.5	11.0	PQL	ng/Kg	
	OCDF	JB	0.396	11.0	PQL	ng/Kg	

10/27/2011 11:33:25 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX120 Laboratory: LL EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-076-SA6-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDD	JB	0.473	5.41	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0433	5.41	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0620	5.41	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0199	5.41	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0227	5.41	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0393	5.41	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0311	5.41	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0689	5.41	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0310	5.41	PQL	ng/Kg	J (all delects)
	1,2,3,7,8-PECDF	JBQ	0.0268	5.41	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0152	5.41	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0478	5.41	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0638	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0129	1.08	PQL	ng/Kg	
	OCDD	JB i	0.974	10.8	PQL	ng/Kg	
	OCDF	JBQ	0.135	10.8	PQL	ng/Kg	
SL-077-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	1.83	5.38	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.326	5.38	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.102	5.38	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.174	5.38	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.518	5.38	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.125	5.38	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.220	5.38	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.0880	5.38	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0581	5.38	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.655	5.38	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.204	5.38	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.282	5.38	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0208	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0649	1.08	PQL	ng/Kg	
	OCDF	JB	5.93	10.8	PQL	ng/Kg	
L-077-SA6-SB-9.0-10.0	1,2,3,4,7,8,9-HPCDF	JB	1.48	5.73	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.238	5.73	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	2.19	5.73	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.931	5.73	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.944	5.73	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.421	5.73	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.806	5.73	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.231	5.73	PQL	ng/Kg	·
	1,2,3,7,8-PECDF	JB	0.926	5.73	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.13	5.73	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	1.24	5.73	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0576	1.15	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.481	1.15	PQL	ng/Kg	

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

so

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix:

Samala ID	Analyte	Lab	<b>D</b>	Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-080-SA6-SB-3.5-4.5	1,2,3,4,6,7,8-HPCDD	JB	0.435	5.19	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0648	5.19	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0331	5.19	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0177	5.19	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0497	5.19	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0438	5.19	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0325	5.19	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0446	5.19	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0502	5.19	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0156	5.19	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JВ	0.0287	5.19	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0566	5.19	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0625	5.19	PQL	ng/Kg	
	OCDD	JB	1.08	10.4	PQL	ng/Kg	
	OCDF	JB	0.172	10.4	PQL	ng/Kg	
SL-089-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	1.27	5.40	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.189	5.40	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0727	5.40	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.212	5.40	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.370	5.40	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.119	5.40	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.176	5.40	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0618	5.40	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0484	5.40	PQL	ng/Kg	,
	1,2,3,7,8-PECDF	JB .	0.497	5.40	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.151	5.40	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.429	5.40	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0209	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.205	1.08	PQL	ng/Kg	
	OCDF	JB	2.80	10.8	PQL	ng/Kg	
SL-089-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF	JB	4.44	5.31	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.473	5.31	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.346	5.31	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.396	5.31	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.26	5.31	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.216	5.31	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.570	5.31	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.120	5.31	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.385	5.31	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.111	5.31	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.323	5.31	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.323	5.31	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0567	1.06	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0367	1.06	PQL	ng/kg	
	2,0,1,0-1000	l np	0.204	1.00	FUL	ng/Kg	

10/27/2011 11:33:25 AM ADR version 1.4.0.111 Page 4 of 5

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO Lab Reporting RLSampleID Analyte Qual Result Limit Units Flag Type SL-117-SA6-SB-2.0-3.0 1,2,3,4,6,7,8-HPCDD JB. 0.484 5.14 PQL ng/Kg 1,2,3,4,6,7,8-HPCDF 0.136 JB 5.14 PQL ng/Kg 1,2,3,4,7,8,9-HPCDF 0.0624 PQL JB 5.14 ng/Kg 1,2,3,4,7,8-HxCDD 0.0452 **PQL JBQ** 5.14 ng/Kg 1,2,3,4,7,8-HXCDF **JBQ** 0.0963 5.14 **PQL** ng/Kg 1,2,3,6,7,8-HXCDD 0.0527 **PQL** ng/Kg JB 5.14 1,2,3,6,7,8-HXCDF **PQL** JB 0.0715 5.14 ng/Kg 1,2,3,7,8,9-HXCDD JB 0.0756 5.14 **PQL** ng/Kg 1,2,3,7,8,9-HXCDF **JBQ** 0.0586 PQL. 5.14 ng/Kg J (all detects) 1,2,3,7,8-PECDD **JBQ** 0.0959 5.14 **PQL** ng/Kg PQL 1,2,3,7,8-PECDF J.R 0.102 5.14 ng/Kg 2,3,4,6,7,8-HXCDF JΒ 0.0610 5.14 **PQL** ng/Kg 2,3,4,7,8-PECDF JB **PQL** 0.131 5.14 ng/Kg 2,3,7,8-TCDD JB 0.0404 1.03 **PQL** ng/Kg 2,3,7,8-TCDF JBQ 0.0225 **PQL** 1.03 ng/Kg **PQL** OCDD JB 2.07 10.3 ng/Kg OCDF JB 0.349 10.3 PQL. ng/Kg SL-179-SA5DN-SB-4.0-5.0 1,2,3,4,7,8,9-HPCDF JB 2.33 5.16 PQL ng/Kg 1,2,3,4,7,8-HxCDD JB. 1.90 **PQL** 5.16 ng/Kg 1,2,3,4,7,8-HXCDF JB 0.982 **PQL** 5.16 ng/Kg PQL 1,2,3,6,7,8-HXCDF JB 1.11 5.16 ng/Kg 1,2,3,7,8,9-HXCDD JB 3.11 5.16 PQL ng/Kg PQL 1,2,3,7,8,9-HXCDF JB 0.328 5.16 ng/Kg J (all detects) 1,2,3,7,8-PECDD JB 0.713 5.16 **PQL** ng/Kg PQL 1,2,3,7,8-PECDF JB 0.638 5.16 ng/Kg 2,3,4,6,7,8-HXCDF JB 1.80 **PQL** 5.16 ng/Kg 2,3,4,7,8-PECDF JB **PQL** 0.626 5.16 ng/Kg 2,3,7,8-TCDD JB 0.0859 **PQL** 1.03 ng/Kg PQL 2,3,7,8-TCDF JB 0.126 1.03 ng/Kg SL-179-SA5DN-SB-9.0-10.0 1,2,3,4,6,7,8-HPCDF JB 0.852 5.52 PQL ng/Kg **PQL** 1,2,3,4,7,8,9-HPCDF **JBQ** 0.111 5.52 ng/Kg 1,2,3,4,7,8-HxCDD JB 0.0800 5.52 **PQL** ng/Kg 1,2,3,4,7,8-HXCDF JB 0.0747 5.52 **PQL** ng/Kg ng/Kg 1,2,3,6,7,8-HXCDD JΒ 0.311 5.52 PQL **PQL** 1,2,3,6,7,8-HXCDF JB 0.0642 5.52 ng/Kg ng/Kg 1,2,3,7,8,9-HXCDD JB 0.145 5.52 PQL **PQL** 1,2,3,7,8,9-HXCDF JB 0.0285 5.52 ng/Kg J (all detects) ng/Kg 0.0536 **PQL** 1,2,3,7,8-PECDD JB 5.52 1,2,3,7,8-PECDF JB **PQL** 0.0467 5.52 ng/Kg 2,3,4,6,7,8-HXCDF JB **PQL** 0.0903 5.52 ng/Kg 2,3,4,7,8-PECDF **JBQ** PQL 0.0887 5.52 ng/Kg 2,3,7,8-TCDD JBQ **PQL** 0.0116 1.10 ng/Kg 2,3,7,8-TCDF **JBQ PQL** 0.0278 1.10 ng/Kg OCDF JΒ 1.98 **PQL** 11.0 ng/Kg SL-311-SA6-SS-0.0-0.5 JB PQL 1,2,3,4,7,8,9-HPCDF 3.49 5.07 ng/Kg 1.2.3.4.7.8-HxCDD 1.63 **PQL** JR. 5.07 ng/Kg 1,2,3,7,8,9-HXCDD JΒ 3.48 5.07 **PQL** ng/Kg J (all detects) 1,2,3,7,8-PECDD JB 1.06 5.07 POI. ng/Kg 2,3,7,8-TCDD JB. 0.151 1.01 **PQL** ng/Kg

# **SAMPLE DELIVERY GROUP**

**DX121** 

# **Attachment I**

Sample ID Cross Reference and Data Review Level

## **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Jul-2011	SL-068-SA6-SB-4.0-5.0	6359587	N	METHOD	1613B	111
28-Jul-2011	SL-068-SA6-SB-19.0-20.0	6359588	N	METHOD	1613B	III
28-Jul-2011	SL-183-SA5DN-SB-4.0-5.0	6359582	N	METHOD	1613B	Ш
28-Jul-2011	SL-183-SA5DN-SB-4.0-5.0MS	6359583	MS	METHOD	1613B	Ш
28-Jul-2011	DUP21-SA5DN-QC-072811	6359586	FD	METHOD	1613B	Ш
28-Jul-2011	SL-070-SA6-SB-4.0-5.0	6359589	N	METHOD	1613B	111
28-Jul-2011	SL-183-SA5DN-SB-9.0-10.0	6359585	N	METHOD	1613B	111
28-Jul-2011	SL-090-SA6-SB-3.0-4.0	6359591	N	METHOD	1613B	Ш
28-Jul-2011	SL-070-SA6-SB-19.0-20.0	6359590	N	METHOD	1613B	Ш
28-Jul-2011	SL-172-SA5DN-SB-4.0-5.0	6359580	N	METHOD	1613B	111
28-Jul-2011	SL-172-SA5DN-SB-9.0-10.0	6359581	N	METHOD	1613B	III
29-Jul-2011	SL-180-SA5DN-SB-4.0-5.0	6360515	N	METHOD	1613B	111
29-Jul-2011	SL-180-SA5DN-SB-9.0-10.0	6360516	N	METHOD	16 <b>1</b> 3B	III
29-Jul-2011	SL-123-SA6-SB-4.0-5.0	6360520	N	METHOD	1613B	III
29-Jul-2011	SL-123-SA6-SB-7.0-8.0	6360521	N	METHOD	1613B	III
29-Jul-2011	SL-122-SA6-SB-0.0-0.5	6360519	N	METHOD	1613B	111
29-Jul-2011	SL-174-SA5DN-SB-4.0-5.0	6360517	N	METHOD	1613B	Ш
29-Jul-2011	SL-174-SA5DN-SB-9.0-10.0	6360518	N	METHOD	1613B	Ш

# Attachment II

**Overall Data Qualification Summary** 

Lab Reporting Batch ID: DX121

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: DUP21-SA5DN-QC-072811 Collected: 7/28/2011 10:19:00 Analysis Type: RES Dilution: 1

_ •	7//4/5/5							Directors. 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	1.12	JB	0.0169	MDL	5.42	PQL	ng/Kg	υ	В	
1,2,3,4,6,7,8-HPCDF	0.177	JB	0.00765	MDL	5.42	PQL	ng/Kg	υ	В	
1,2,3,4,7,8,9-HPCDF	0.0442	JB	0.0185	MDL	5.42	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HxCDD	0.0398	JQ	0.0134	MDL	5.42	PQL	ng/Kg	j	Z, FD	
1,2,3,4,7,8-HXCDF	0.0536	JB	0.0112	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0870	JBQ	0.0137	MDL	5.42	PQL	ng/Kg	υJ	B, FD	
1,2,3,6,7,8-HXCDF	0.0378	JBQ	0.00831	MDL	5.42	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8,9-HXCDD	0.0919	JB	0.0132	MDL	5.42	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDF	0.0923	JBQ	0.0133	MDL	5.42	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8-PECDD	0.0105	υ	0.0105	MDL	5.42	PQL	ng/Kg	UJ	FD	
1,2,3,7,8-PECDF	0.0467	JBQ	0.00721	MDL	5.42	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0484	JB	0.00931	MDL	5.42	PQL	ng/Kg	UJ	B, FD	
2,3,4,7,8-PECDF	0.0711	JBQ	0.00798	MDL	5.42	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0235	JQ	0.0121	MDL	1.08	PQL	ng/Kg	J	Ż, FD	
OCDD	8.41	JB	0.0130	MDL	10.8	PQL	ng/Kg	J	Z, FD	
OCDF	0.432	JB	0.0222	MDL	10.8	PQL	ng/Kg	U	В	

 Sample ID: SL-068-SA6-SB-19.0-20.0
 Collected: 7/28/2011 7:50:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.940	JB	0.0313	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.621	J	0.0322	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.666	JB	0.0266	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.02	JB	0.0330	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.502	JB	0.0218	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.767	JB	0.0318	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.263	JB	0.0224	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.321	JB	0.0236	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.513	JB	0.0172	MDL	5.63	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.635	JB	0.0224	MDL	5.63	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.423	JB	0.0207	MDL	5.63	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.148	J	0.0131	MDL	1.13	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.338	J	0.0274	MDL	1.13	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 11:46:59 AM ADR version 1.4.0.111

Page 1 of 12

Laboratory: LL

Lab Reporting Batch ID: DX121

Laboratory: LL

Dilution: 1

Page 2 of 12

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM
Method: 1613B

Matrix: SO

and the Authoritation and the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Co

Sample ID: SL-068-SA6-SB-4.0-5.0	Collec	ted: 7/28/2	011 7:40:0	10 A	nalysis Ty	1	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.35	JB	0.0122	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.227	JB	0.0185	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.142	J	0.0261	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.257	JB	0.0224	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.453	JB	0.0255	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.158	JB	0.0188	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.203	JB	0.0252	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0896	JB	0.0197	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.146	JB	0.0145	MD1.	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.204	JB	0.0161	MDL	5.34	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.188	JB	0.0190	MDL	5.34	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.183	JBQ	0.0163	MDL	5.34	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0776	J	0.0118	MDL	1.07	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0796	JQ	0.0204	MDL	1.07	PQL	ng/Kg	J	Z
OCDF ,	2.96	JB	0.0182	MDL	10.7	PQL	ng/Kg	J	Z

Sample ID: SL-070-SA6-SB-19.0-20.0	Collected: 7/28/2011 11:30:00	Analysis Type: RES	
------------------------------------	-------------------------------	--------------------	--

Data Lab Lab DL RLReview Reason Analyte Result DLRL Units Qual Type Type Qual Code 1,2,3,4,6,7,8-HPCDF 4.94 JB 0.0292 MDL 5.93 **PQL** Ζ ng/Kg 1,2,3,4,7,8,9-HPCDF 0.557 JΒ 0.0399 MDL 5.93 **PQL** ng/Kg J z 1,2,3,4,7,8-HxCDD 0.343 0.0361 MDL J 5.93 **PQL** J Z пд/Кд 1,2,3,4,7,8-HXCDF 0.408 JΒ 0.0251 MDL 5.93 **PQL** ng/Kg Z 1,2,3,6,7,8-HXCDD 1.43 JΒ 0.0373 MDL 5.93 **PQL** ng/Kg J Z 1,2,3,6,7,8-HXCDF 0.233 JB ng/Kg J Z 0.0227 MDL 5.93 **PQL** 1,2,3,7,8,9-HXCDD 0.679 JΒ 0.0349 MDL 5.93 PQL J Z ng/Kg 1,2,3,7,8,9-HXCDF 0.103 JΒ 5.93 **PQL** U 0.0274 MDL ng/Kg В 1,2,3,7,8-PECDD 0.182 JΒ 0.0276 MDL 5.93 **PQL** j Z ng/Kg 1,2,3,7,8-PECDF 0.705 JΒ 0.0224 MDL 5.93 **PQL** J Z ng/Kg 2,3,4,6,7,8-HXCDF 0.354 JB 0.0239 MDL 5.93 PQL J z ng/Kg 2,3,4,7,8-PECDF U 0.203 JΒ 0.0252 MDL 5.93 **PQL** ng/Kg В 2,3,7,8-TCDD 0.0859 JQ 0.0136 MDL PQL J Z 1.19 ng/Kg 2,3,7,8-TCDF z 0.270 JQ 0.0339 MDL 1.19 **PQL** ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
10/27/2011 11:47:00 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Matrix: SO

Sample ID: SL-070-SA6-SB-4.0-5.0	Collected: 7/28/2011 10:20:00 Analysis Type: RES							Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDF	0.696	JB	0.0111	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.163	JB	0.0251	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HxCDD	0.121	J	0.0180	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	0.224	JB	0.0213	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	0.234	JB	0.0181	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.169	JB	0.0150	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.177	JB	0.0177	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.149	JB	0.0185	MDL	5.42	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.249	JBQ	0.0136	MDL	5.42	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.361	JB	0.00973	MDL	5.42	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.149	JB	0.0161	MDL	5.42	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.258	JB	0.0120	MDL	5.42	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.0846	J	0.0120	MDL	1.08	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.110	J	0.0180	MDL	1.08	PQL	ng/Kg	J	Z		
OCDF	1.73	JB	0.0206	MDL	10.8	PQL	ng/Kg	J	Z		

Sample ID: SL-090-SA6-SB-3.0-4.0

Collected: 7/28/2011 11:20:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.363	JB	0.0122	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0582	JBQ	0.00587	MDL	5.41	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0362	JBQ	0.0188	MDL	5.41	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0109	JQ	0.00842	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0347	JB	0.00676	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0293	JBQ	0.00875	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0157	JBQ	0.00454	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0310	JB	0.00864	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0423	JBQ	0.00853	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0172	JBQ	0.00975	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0243	JBQ	0.00698	MDL	5.41	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0215	JB	0.00554	MDL	5.41	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0374	JBQ	0.00864	MDL	5.41	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0222	J	0.0112	MDL	1.08	PQL	ng/Kg	J	Z
OCDD	1.12	JB	0.0106	MDL	10.8	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:47:00 AM ADR version 1.4.0.111 Page 3 of 12

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Mothod		4643B				
medion care	july.	GENU	I LE-IVE			
Method Cate	TO PART		* 13 Table	- CT 1		

Matrix: SO

Sample ID: SL-090-SA6-SB-3.0-4.0	Collec					ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDF	0.243	JBQ	0.0279	MDL	10.8	PQL	ng/Kg	U	В

Sample ID: SL-122-SA6-SB-0.0-0.5 Collected: 7/29/2011 2:30:00 Analysis Type: RES Dilution: 1

Campic ID: CE IEE O/IO CD CIO CIO	001100	Odiletea, 1123/2011 2:30:00 Aliai					Allarysis Type. 1440			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	1.57	JB	0.0248	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.234	J	0.0232	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	4.33	JB	0.0402	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.650	JB	0.0239	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	1.48	JB	0.0335	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.403	JB	0.0214	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.838	JB	0.0420	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.188	JB	0.0252	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	1.37	JB	0.0476	MDL	4.91	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.38	JB	0.0378	MDL	4.91	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	2.60	JB	0.0545	MDL	4.91	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0680	J	0.0112	MDL	0.983	PQL	ng/Kg	J	Z	

Sample ID: SL-123-SA6-SB-4.0-5.0 Collected: 7/29/2011 9:40:00 Analysis

Analysis Type: RES

Dilution: 1

3ample to. 3L-123-3A0-3D-4.0-3.0	Conec	Conected. 1123/2011 9.40.00 Analysis Type: RES							Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,4,7,8,9-HPCDF	3.86	JB	0.0388	MDL	5.31	PQL	ng/Kg	J	Z			
1,2,3,4,7,8-HxCDD	3.30	J	0.0377	MDL	5.31	PQL	ng/Kg	j	Z			
1,2,3,4,7,8-HXCDF	1.22	JB	0.0403	MDL	5.31	PQL	ng/Kg	J	Z			
1,2,3,6,7,8-HXCDF	1.30	JB	0.0336	MDL	5.31	PQL	ng/Kg	J	Z			
1,2,3,7,8,9-HXCDD	2.31	JB	0.0360	MDL	5.31	PQL	ng/Kg	J	Z			
1,2,3,7,8,9-HXCDF	0.521	JB	0.0384	MDL	5.31	PQL	ng/Kg	J	Z			
1,2,3,7,8-PECDD	0.653	JB	0.0350	MDL.	5.31	PQL	ng/Kg	J	Z			
1,2,3,7,8-PECDF	0.459	JB	0.0253	MDL	5.31	PQL	ng/Kg	J	Z			
2,3,4,6,7,8-HXCDF	1.77	JB	0.0357	MDL	5.31	PQL	ng/Kg	J	Z			
2,3,4,7,8-PECDF	0.487	JB	0.0278	MDL	5.31	PQL	ng/Kg	J	Z			
2,3,7,8-TCDD	0.323	J	0.0128	MDL	1.06	PQL	ng/Kg	J	Z			
2,3,7,8-TCDF	0.277	J	0.0607	MDL	1.06	PQL	ng/Kg	J	Z			
OCDD	6810	EB	0.0556	MDL	10.6	PQL	ng/Kg	J	*XI			
· · · · · · · · · · · · · · · · · · ·			4		·							

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 11:47:00 AM ADR version 1.4.0.111

Page 4 of 12

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

Matrix:

Sample ID: SL-123-SA6-SB-7.0-8.0	Collec	Collected: 7/29/2011 9:50:00					Analysis Type: RES			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	2.36	JB	0.0323	MDL	5.44	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	1.55	J	0.0336	MDL	5.44	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	2.09	JB	0.0388	MDL	5.44	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	1.13	JB	0.0362	MDL	5.44	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	3.68	JB	0.0341	MDL	5.44	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.541	JB	0.0358	MDL	5.44	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.470	JB	0.0372	MDL	5.44	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.748	JB	0.0295	MDL	5.44	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.54	JB	0.0326	MDL.	5.44	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	1.29	JB	0.0289	MDL.	5.44	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.167	J	0.0124	MDL	1.09	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	1.02	J	0.0487	MDL	1.09	PQL	ng/Kg	J	z	

Sample ID: SL-172-SA5DN-SB-4.0-5.0

Collected: 7/28/2011 12:04:00 Analysis Type: RES

Dilution: 1

000000000000000000000000000000000000000			O	.00 /1	Analysis Type: 1120				Dilation. 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDF	0.756	JB	0.0116	MDL	5.53	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.0873	JBQ	0.0243	MDL	5.53	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.158	J	0.0402	MDL	5.53	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	0.0874	JB	0.0265	MDL	5.53	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.413	JB	0.0420	MDL	5.53	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.0721	JBQ	0.0223	MDL	5.53	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.467	JB	0.0386	MDL	5.53	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.320	JB	0.0311	MDL	5.53	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.119	JB	0.0203	MDL	5.53	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.190	JB	0.0163	MDL.	5.53	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.0825	JB	0.0255	MDL	5.53	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.112	JBQ	0.0195	MDL	5.53	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.0186	JQ	0.0165	MDL	1.11	PQL	ng/Kg	J	Z		
OCDF	1.88	JB	0.0251	MDL	11.1	PQL	ng/Kg	J	Z		

Sample ID: SL-172-SA5DN-SB-9.0-10.0

Collected: 7/28/2011 12:09:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5.67	JB	0.0270	MDL	5.85	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 10/27/2011 11:47:00 AM

Page 5 of 12

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method Catego	ory: GENCHEM
Method:	1613B

SO

Matrix:

Sample ID: SL-172-SA5DN-SB-9.0-10.0	Collec	ted: 7/28/2	2011 12:09:	00 A	nalysis Ty	pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	0.732	JB	0.00993	MDL	5.85	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.0718	JBQ	0.0202	MDL	5.85	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0893	J	0.0277	MDL	5.85	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0767	JBQ	0.0173	MDL	5.85	PQL	ng/Kg	U	. B	
1,2,3,6,7,8-HXCDD	0.224	JB	0.0271	MDL	5.85	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0417	JB	0.0142	MDL	5.85	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.201	JB	0.0264	MDL.	5.85	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0562	JB	0.0228	MDL	5.85	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDD	0.0700	JBQ	0.0175	MDL	5.85	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0625	JBQ	0.0123	MDL	5.85	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0506	JB	0.0158	MDL	5.85	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0553	JBQ	0.0139	MDL	5.85	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0220	JQ	0.0169	MDL	1.17	PQL	ng/Kg	J	Z	
OCDF	1.98	JB	0.0201	MDL	11.7	PQL	ng/Kg	J	Z	

Sample ID: SL-174-SA5DN-SB-4.0-5.0

Collected: 7/29/2011 2:49:00 Analys

Analysis Type: RES

Dilution: 1

	00,,00	Outcotcar Transcott Erroro Anthrysis						Dilation. 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5.57	JB	0.0246	MDL	5.65	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.873	JB	0.00804	MDL	5.65	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.114	JB	0.0212	MDL	5.65	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0561	J	0.0217	MDL	5.65	PQL	пд/Кд	J	Z
1,2,3,4,7,8-HXCDF	0.0892	JBQ	0.0177	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.230	JB	0.0219	MDL	5.65	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0649	JBQ	0.0132	MDL	5.65	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.127	JB	0.0204	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0448	JB	0.0192	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0511	JBQ	0.0162	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0582	JB	0.00851	MDL	5.65	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0793	JBQ	0.0159	MDL,	5.65	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0605	JBQ	0.0112	MDL,	5.65	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0361	J	0.0129	MDL,	1.13	PQL	ng/Kg	J	Z
OCDF	1.93	JB	0.0216	MDL	11.3	PQL	ng/Kg	J	Z
		L		L			1		

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method Category	GENCHEM		
Method:	1613B	Matrix: SO	

Sample ID: SL-174-SA5DN-SB-9.0-10.0	Collec	ted: 7/29/2	2011 2:51:0	0 A	nalysis T	pe: RES		L	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	0.989	JB	0.00575	MDL	5.68	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.142	JB	0.0147	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0715	JQ	0.0228	MDL	5.68	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.101	JB	0.0158	MDL	5.68	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.296	JB	0.0231	MDL	5.68	PQL	ng/Kg	j	Z	
1,2,3,6,7,8-HXCDF	0.0851	JB	0.0125	MDL	5.68	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.144	JB	0.0215	MDL	5.68	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0490	JB	0.0180	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0634	JB	0.0145	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0845	JBQ	0.00875	MDL	5.68	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.103	JB	0.0145	MDL	5.68	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0924	JВ	0.00990	MDL	5.68	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0512	JO	0.0106	MDL	1.14	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0336	JQ	0.0139	MDL	1.14	PQL	ng/Kg	J	Z	
OCDF	2.06	JB	0.0168	MDL.	11.4	PQL	ng/Kg	J	Z	

Sample ID: SL-180-SA5DN-SB-4.0-5.0 Collected: 7/29/2011 9:10:00 Analysis Type: RES Dilution: 1

Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.728	JВ	0.0128	MDL	5.59	PQL	ng/Kg	U	В
0.109	JB	0.00627	MDL	5.59	PQL	ng/Kg	U	В
0.0568	JBQ	0.0187	MDL	5.59	PQL	ng/Kg	U	В
0.0116	JQ	0.0107	MDL	5.59	PQL	ng/Kg	J	Z
0.0267	JB	0.00810	MDL	5.59	PQL	ng/Kg	U	В
0.0392	JBQ	0.0109	MDL	5.59	PQL	ng/Kg	U	В
0.0165	JBQ	0.00570	MDL	5.59	PQL	ng/Kg	U	В
0.0363	JBQ	0.0104	MDL	5.59	PQL	ng/Kg	U	В
0.0335	JBQ	0.0104	MDL	5.59	PQL	ng/Kg	U	В
0.0129	JB	0.0107	MDL	5.59	PQL	ng/Kg	U	В
0.0282	JBQ	0.00650	MDL	5.59	PQL	ng/Kg	U	В
0.0205	JBQ	0.00673	MDL	5.59	PQL	ng/Kg	U	В
0.0404	JB	0.00775	MDL	5.59	PQL	ng/Kg	U	В
0.0169	JQ	0.0111	MDL	1.12	PQL	ng/Kg	J	Z
0.0126	J	0.0121	MDL	1.12	PQL	ng/Kg	J	Z
	Result  0.728  0.109  0.0568  0.0116  0.0267  0.0392  0.0165  0.0363  0.0335  0.0129  0.0282  0.0205  0.0404  0.0169	Result         Qual           0.728         JB           0.109         JB           0.0568         JBQ           0.0116         JQ           0.0267         JB           0.0392         JBQ           0.0165         JBQ           0.0363         JBQ           0.0129         JB           0.0282         JBQ           0.0205         JBQ           0.0404         JB           0.0169         JQ	Result         Qual         DL           0.728         JB         0.0128           0.109         JB         0.00627           0.0568         JBQ         0.0187           0.0116         JQ         0.0107           0.0267         JB         0.00810           0.0392         JBQ         0.0109           0.0165         JBQ         0.00570           0.0363         JBQ         0.0104           0.0335         JBQ         0.0104           0.0129         JB         0.0107           0.0282         JBQ         0.00650           0.0205         JBQ         0.00775           0.0404         JB         0.00775           0.0169         JQ         0.0111	Result         Qual         DL         Type           0.728         JB         0.0128         MDL           0.109         JB         0.00627         MDL           0.0568         JBQ         0.0187         MDL           0.0116         JQ         0.0107         MDL           0.0267         JB         0.00810         MDL           0.0392         JBQ         0.0109         MDL           0.0363         JBQ         0.00570         MDL           0.0363         JBQ         0.0104         MDL           0.0335         JBQ         0.0104         MDL           0.0129         JB         0.0107         MDL           0.0282         JBQ         0.00650         MDL           0.0205         JBQ         0.00673         MDL           0.0404         JB         0.00775         MDL           0.0169         JQ         0.0111         MDL	Result         Qual         DL         Type         RL           0.728         JB         0.0128         MDL         5.59           0.109         JB         0.00627         MDL         5.59           0.0568         JBQ         0.0187         MDL         5.59           0.0116         JQ         0.0107         MDL         5.59           0.0267         JB         0.00810         MDL         5.59           0.0392         JBQ         0.0109         MDL         5.59           0.0165         JBQ         0.00570         MDL         5.59           0.0363         JBQ         0.0104         MDL         5.59           0.0335         JBQ         0.0104         MDL         5.59           0.0129         JB         0.0107         MDL         5.59           0.0282         JBQ         0.00650         MDL         5.59           0.0404         JB         0.00775         MDL         5.59           0.0404         JB         0.00775         MDL         5.59           0.0169         JQ         0.0111         MDL         1.12	Result         Qual         DL         Type         RL         Type           0.728         JB         0.0128         MDL         5.59         PQL           0.109         JB         0.00627         MDL         5.59         PQL           0.0568         JBQ         0.0187         MDL         5.59         PQL           0.0116         JQ         0.0107         MDL         5.59         PQL           0.0267         JB         0.00810         MDL         5.59         PQL           0.0392         JBQ         0.0109         MDL         5.59         PQL           0.0392         JBQ         0.00570         MDL         5.59         PQL           0.0392         JBQ         0.00570         MDL         5.59         PQL           0.0363         JBQ         0.0104         MDL         5.59         PQL           0.0335         JBQ         0.0104         MDL         5.59         PQL           0.0129         JB         0.0107         MDL         5.59         PQL           0.0282         JBQ         0.00650         MDL         5.59         PQL           0.0404         JB         0.00775<	Result         Qual         DL         Type         RL         Type         Units           0.728         JB         0.0128         MDL         5.59         PQL         ng/Kg           0.109         JB         0.00627         MDL         5.59         PQL         ng/Kg           0.0568         JBQ         0.0187         MDL         5.59         PQL         ng/Kg           0.0116         JQ         0.0107         MDL         5.59         PQL         ng/Kg           0.0267         JB         0.00810         MDL         5.59         PQL         ng/Kg           0.0392         JBQ         0.0109         MDL         5.59         PQL         ng/Kg           0.0165         JBQ         0.00570         MDL         5.59         PQL         ng/Kg           0.0363         JBQ         0.0104         MDL         5.59         PQL         ng/Kg           0.0335         JBQ         0.0104         MDL         5.59         PQL         ng/Kg           0.0129         JB         0.0107         MDL         5.59         PQL         ng/Kg           0.0282         JBQ         0.00650         MDL         5.59	Lab Result         Lab Qual         DL DL         Type         RL Type         RL Type         Lab Qual         Review Qual           0.728         JB         0.0128         MDL         5.59         PQL         ng/Kg         U           0.109         JB         0.00627         MDL         5.59         PQL         ng/Kg         U           0.0568         JBQ         0.0187         MDL         5.59         PQL         ng/Kg         U           0.0116         JQ         0.0107         MDL         5.59         PQL         ng/Kg         U           0.0267         JB         0.00810         MDL         5.59         PQL         ng/Kg         U           0.0392         JBQ         0.0109         MDL         5.59         PQL         ng/Kg         U           0.0392         JBQ         0.0109         MDL         5.59         PQL         ng/Kg         U           0.0165         JBQ         0.00570         MDL         5.59         PQL         ng/Kg         U           0.0333         JBQ         0.0104         MDL         5.59         PQL         ng/Kg         U           0.0129         JB         0.0107

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:47:00 AM ADR version 1.4.0.111 Page 7 of 12

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM	i dekalli daga ing daga daga daga karang paga ang palikang ing pagan belindikan karang paga	
Method:	1613B	Matrix: SO	

Sample ID: SL-180-SA5DN-SB-4.0-5.0	Collec	Collected: 7/29/2011 9:10:00				Analysis Type: RES			Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
OCDD	4.51	JB	0.0122	MDL	11.2	PQL	ng/Kg	J	Z		
OCDF	0.271	JBQ	0.0273	MDL	11.2	PQL	ng/Kg	U	В		

Sample ID: SL-180-SA5DN-SB-9.0-10.0 Collected: 7/29/2011 9:12:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Analyte DLRL. Result Qual Units Code Type Type Qual 1,2,3,4,6,7,8-HPCDD 2,57 JB MDL 0.0152 5.87 PQL Z ng/Kg J 1,2,3,4,6,7,8-HPCDF 0.293 JB 0.00563 MDL 5.87 PQL ng/Kg J Z 1,2,3,4,7,8,9-HPCDF 0.0751 JB 0.0171 MDL PQL U 5.87 В ng/Kg 1,2,3,4,7,8-HxCDD 0.0402 J 0.0165 MDL 5.87 PQL ng/Kg J Z 1,2,3,4,7,8-HXCDF Ü 0.0292 JB 0.0103 MDL 5.87 PQL ng/Kg В 1,2,3,6,7,8-HXCDD 0.124 JB 0.0168 PQL Z MDL. 5.87 ng/Kg J 1,2,3,6,7,8-HXCDF 0.0321 JB 0.00766 MDL 5.87 PQL U В ng/Kg 1,2,3,7,8,9-HXCDD 0.0977 JΒ 0.0162 MDL 5.87 **PQL** ng/Kg U В 1,2,3,7,8,9-HXCDF 0.0311 0.0134 JBQ MDL 5.87 PQL U ng/Kg В 1,2,3,7,8-PECDD 0.0413 **JBQ** 0.0109 MDL. 5.87 PQL ng/Kg U В 1,2,3,7,8-PECDF 0.0257 **JBQ** 0.00599 MDL 5.87 PQL U В ng/Kg U 2,3,4,6,7,8-HXCDF 0.0407 JВ 0.00910 MDL 5.87 **PQL** ng/Kg В 2,3,4,7,8-PECDF 0.0428 **JBQ** 0.00778 MDL PQL U 5.87 ng/Kg В 2,3,7,8-TCDD J 0.0109 J 0.0157 MDL 1.17 **PQL** Z ng/Kg 2,3,7,8-TCDF 0.0171 JQ 0.0125 MDL 1.17 **PQL** J Z ng/Kg OCDF 0.623 JВ 0.0284 MDL U 11.7 **PQL** В ng/Kg

Sample ID: SL-183-SA5DN-SB-4.0-5.0	Collected: 7/28/2011 10:11:00	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.800	JB	0.0184	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.113	JBQ	0.00617	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0361	JBQ	0.0175	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0161	J	0.0130	MDL	5.45	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	0.0386	JB	0.00999	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0411	JBQ	0.0135	MDL	5.45	PQL	ng/Kg	บม	B, FD
1,2,3,6,7,8-HXCDF	0.0120	JBQ	0.00752	MDL	5.45	PQL	ng/Kg	IJ	B, FD
1,2,3,7,8,9-HXCDD	0.0713	JBQ	0.0132	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0527	JBQ	0.0112	MDL	5.45	PQL	ng/Kg	UJ	B, FD

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:47:00 AM ADR version 1.4.0.111 Page 8 of 12

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B

Matrix: S

Sample ID: SL-183-SA5DN-SB-4.0-5.0	Collec	Collected: 7/28/2011 10:11:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,7,8-PECDD	0.0194	JBQ	0.0145	MDL	5.45	PQL	ng/Kg	UJ	B, FD		
1,2,3,7,8-PECDF	0.0458	JBQ	0.00808	MDL	5.45	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.0277	JBQ	0.00853	MDL	5.45	PQL	ng/Kg	IJ	B, FD		
2,3,4,7,8-PECDF	0.0562	JBQ	0.00965	MDL	5.45	PQL	ng/Kg	U	В		
2,3,7,8-TCDF	0.0159	U	0.0159	MDL	1.09	PQL	ng/Kg	UJ	FD		
OCDD	4.73	JB	0.0176	MDL	10.9	PQL	ng/Kg	J	Z, FD		
OCDF	0.309	JB	0.0248	MDL	10.9	PQL	na/Ka	U	В		

Sample ID: 3L=163-5A3DN-3B-9.0-10.0	Conec	tea: 112812	Collected: 1128/2011 10:30:00 Analysis Type: F					RES Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.554	JB	0.0177	MDL	5.70	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.109	JB	0.00803	MDL	5.70	PQL	ng/Kg	U	В		
1,2,3,4,7,8,9-HPCDF	0.0807	JB	0.0157	MDL	5.70	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.0677	J	0.0143	MDL	5.70	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	0.0924	JBQ	0.0126	MDL	5.70	PQL	ng/Kg	υ	В		
1,2,3,6,7,8-HXCDD	0.0725	JBQ	0.0147	MDL	5.70	PQL	ng/Kg	υ	В		
1,2,3,6,7,8-HXCDF	0.0735	JBQ	0.00894	MDL	5.70	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.0723	JBQ	0.0128	MDL	5.70	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.0947	JB	0.0119	MDL	5.70	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0518	JBQ	0.0127	MDL	5.70	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.0652	JBQ	0.00654	MDL	5.70	PQL	ng/Kg	u	В		
2,3,4,6,7,8-HXCDF	0.0702	JB	0.00849	MDL	5.70	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0840	JB	0.00849	MDL	5.70	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.0112	JQ	0.0111	MDL	1.14	PQL	ng/Kg	J	Z		
OCDD	2.78	JB	0.0173	MDL	11.4	PQL	ng/Kg	U	В		
OCDF	0.310	JB	0.0237	MDL	11.4	PQL	ng/Kg	U	В		

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 11:47:00 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX121 EDD Filename: DX121_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI	Compound Quantitation and CRQL
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
c	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 11:47:00 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
I	Internal Standard Estimation
Į.	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
M	Initial Tune
M	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection
•	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
z	Reporting Limit > Project Maximum Contamination Limit
z	Reporting Limit Trace Value
_	

^{*} denotes a non-reportable result

# **Enclosure I**

**EPA Level III ADR Outliers** (including Manual Review Outliers)

# Quality Control Outlier Reports

DX121

Lab Reporting Batch ID: DX121 Laboratory: LL

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 1613 <i>Matrix:</i> SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2230B371804	8/15/2011 6:04:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	0.353 ng/Kg 0.0526 ng/Kg 0.0314 ng/Kg 0.0198 ng/Kg 0.0198 ng/Kg 0.0237 ng/Kg 0.0114 ng/Kg 0.0270 ng/Kg 0.0321 ng/Kg 0.0239 ng/Kg 0.0220 ng/Kg 0.0220 ng/Kg 0.0221 ng/Kg 0.0422 ng/Kg 0.0422 ng/Kg 0.751 ng/Kg 0.751 ng/Kg	DUP21-SA5DN-QC-072811 SL-068-SA6-SB-19.0-20.0 SL-068-SA6-SB-4.0-5.0 SL-070-SA6-SB-4.0-5.0 SL-070-SA6-SB-4.0-5.0 SL-090-SA6-SB-3.0-4.0 SL-122-SA6-SB-0.0-0.5 SL-123-SA6-SB-4.0-5.0 SL-123-SA6-SB-7.0-8.0 SL-172-SA5DN-SB-4.0-5.0 SL-172-SA5DN-SB-9.0-10.0 SL-174-SA5DN-SB-9.0-10.0 SL-174-SA5DN-SB-9.0-10.0 SL-180-SA5DN-SB-9.0-10.0 SL-180-SA5DN-SB-9.0-10.0 SL-180-SA5DN-SB-9.0-10.0 SL-183-SA5DN-SB-9.0-10.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP21-SA5DN-QC-072811(RES)	1,2,3,4,6,7,8-HPCDD	1.12 ng/Kg	1.12U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,4,6,7,8-HPCDF	0.177 ng/Kg	0.177U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,4,7,8,9-HPCDF	0.0442 ng/Kg	0.0442U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,4,7,8-HXCDF	0.0536 ng/Kg	0.0536U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,6,7,8-HXCDD	0.0870 ng/Kg	0.0870U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,6,7,8-HXCDF	0.0378 ng/Kg	0.0378U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,7,8,9-HXCDD	0.0919 ng/Kg	0.0919U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,7,8,9-HXCDF	0.0923 ng/Kg	0.0923U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,7,8-PECDF	0.0467 ng/Kg	0.0467U ng/Kg
DUP21-SA5DN-QC-072811(RES)	2,3,4,6,7,8-HXCDF	0.0484 ng/Kg	0.0484U ng/Kg
DUP21-SA5DN-QC-072811(RES)	2,3,4,7,8-PECDF	0.0711 ng/Kg	0.0711U ng/Kg
DUP21-SA5DN-QC-072811(RES)	OCDF	0.432 ng/Kg	0.432U ng/Kg
SL-068-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0896 ng/Kg	0.0896U ng/Kg
SL-068-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.183 ng/Kg	0.183U ng/Kg
SL-070-\$A6-\$B-19.0-20.0(RES)	1,2,3,7,8,9-HXCDF	0.103 ng/Kg	0.103U ng/Kg
SL-070-SA6-SB-19.0-20.0(RES)	2,3,4,7,8-PECDF	0.203 ng/Kg	0.203U ng/Kg
SL-070-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.149 ng/Kg	0.149U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDD	0.363 ng/Kg	0.363U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0582 ng/Kg	0.0582U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0362 ng/Kg	0.0362U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,4,7,8-HXCDF	0.0347 ng/Kg	0.0347U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDD	0.0293 ng/Kg	0.0293U ng/Kg
SL-090-\$A6-\$B-3.0-4.0(RES)	1,2,3,6,7,8-HXCDF	0.0157 ng/Kg	0.0157U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDD	0.0310 ng/Kg	0.0310U ng/Kg
6L-090-SA6-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDF	0,0423 ng/Kg	0.0423U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,7,8-PECDD	0.0172 ng/Kg	0.0172U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,7,8-PECDF	0.0243 ng/Kg	0.0243U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	2,3,4,6,7,8-HXCDF	0.0215 ng/Kg	0.0215U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	2,3,4,7,8-PECDF	0.0374 ng/Kg	0.0374U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:45:26 AM ADR version 1.4.0.111 Page 1 of 3

Lab Reporting Batch ID: DX121 Laboratory: LL

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample !D	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-090-SA6-SB-3.0-4.0(RES)	OCDD	1.12 ng/Kg	1.12U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	OCDF	0.243 ng/Kg	0.243U ng/Kg
SL-172-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0873 ng/Kg	0.0873U ng/Kg
SL-172-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0874 ng/Kg	0.0874U ng/Kg
SL-172-SA5DN-S8-4,0-5.0(RES)	1,2,3,7,8-PECDD	0.119 ng/Kg	0.119U ng/Kg
SL-172-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0825 ng/Kg	0.0825U ng/Kg
SL-172-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.112 ng/Kg	0.112U ng/Kg
SL-172-SA5DN-SB-9,0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0718 ng/Kg	0.0718U ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0767 ng/Kg	0.0767Ú ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0417 ng/Kg	0.0417U ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0,0562 ng/Kg	0.0562U ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0700 ng/Kg	0.0700U ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0625 ng/Kg	. 0.0625U ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0506 ng/Kg	0.0506U ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0553 ng/Kg	0.0553U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.114 ng/Kg	0.114U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0892 ng/Kg	0.0892U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.127 ng/Kg	0.127U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0448 ng/Kg	0.0448U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0511 ng/Kg	0.0511U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0582 ng/Kg	0.0582U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0793 ng/Kg	0.0793U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0605 ng/Kg	0.0605U ng/Kg
SL-174-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.142 ng/Kg	0.142U ng/Kg
SL-174-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0490 ng/Kg	0.0490U ng/Kg
SL-174-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0634 ng/Kg	0.0634U ng/Kg
SL-174-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0845 ng/Kg	0.0845U ng/Kg
SL-174-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.103 ng/Kg	0.103U ng/Kg
SL-174-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0924 ng/Kg	0.0924U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.728 ng/Kg	0.728U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.109 ng/Kg	0.109U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0568 ng/Kg	0.0568U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0267 ng/Kg	0.0267U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0392 ng/Kg	0.0392U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0165 ng/Kg	0.0165U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0363 ng/Kg	0.0363U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0335 ng/Kg	0.0335U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0129 ng/Kg	0.0129U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0282 ng/Kg	0.0282U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0205 ng/Kg	0.0205U ng/Kg

10/27/2011 11:45:26 AM ADR version 1.4.0.111 Page 2 of 3

Lab Reporting Batch ID: DX121 Laboratory: LL

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B				
Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-180-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0404 ng/Kg	0.0404U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	OCDF	0.271 ng/Kg	0.271U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0751 ng/Kg	0.0751U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0292 ng/Kg	0.0292U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0321 ng/Kg	0.0321U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0977 ng/Kg	0.0977U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0311 ng/Kg	0.0311U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0413 ng/Kg	0.0413U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0257 ng/Kg	0.0257U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0407 ng/Kg	0.0407U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0428 ng/Kg	0.0428U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	OCDF	0.623 ng/Kg	0.623U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.800 ng/Kg	0.800U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.113 ng/Kg	0.113U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0361 ng/Kg	0.0361U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0386 ng/Kg	0.0386U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0411 ng/Kg	0.0411U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0120 ng/Kg	0.0120U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0713 ng/Kg	0.0713U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0527 ng/Kg	0.0527U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0194 ng/Kg	0.0194U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0458 ng/Kg	0.0458U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0277 ng/Kg	0.0277U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0562 ng/Kg	0.0562U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	OCDF	0.309 ng/Kg	0.309U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.554 ng/Kg	0.554U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.109 ng/Kg	0.109U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0807 ng/Kg	0.0807U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0924 ng/Kg	0.0924U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0725 ng/Kg	0.0725U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0723 ng/Kg	0.0723U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0947 ng/Kg	0.0947U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0518 ng/Kg	0.0518U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0652 ng/Kg	0.0652U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0702 ng/Kg	0.0702U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0840 ng/Kg	0.0840U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	OCDD	2.78 ng/Kg	2.78U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	OCDF	0.310 ng/Kg	0.310U ng/Kg

## Field Duplicate RPD Report

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

Matrix: SO					
	Concentr	ration (%)			
	SL-183-SA5DN-SB-4.0-	DUP21-SA5DN-QC-	Sample	eQAPP	
Analyte	5.0	072811	RPD	RPD	Flag
MOISTURE	10.9	9.8	11		No Qualifiers Applied

Method: 1613B Matrix: SO		sello modine i inchestato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato del colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato dela colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato dela colato de la colato de la colato de la colato de la colato de la colato de la colato de la colato dela colato de la colato dela colato de la colato de la colato de la colato de la colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela colato dela col	is of pearing they'r		i un propinsi propinsi da de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de la composita de l
	Concentrati	Concentration (ng/Kg)			
Analyte	SL-183-SA5DN-SB-4.0- 5.0	DUP21-\$A5DN-QC- 072811	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	0.800 0.113 0.0361	1.12 0.177 0.0442	33 44 20	50.00 50.00	

Analyte	5.0	072811	RPD	RPD	Flag
1,2,3,4,6,7,8-HPCDD	0.800	1.12	33	50.00	
1,2,3,4,6,7,8-HPCDF	0.113	0.177	44	50.00	1
1,2,3,4,7,8,9-HPCDF	0.0361	0.0442	20	50.00	
1,2,3,4,7,8-HXCDF	0.0386	0.0536	33	50.00	No Ouglifiers Applied
1,2,3,7,8,9-HXCDD	0.0713	0.0919	25	50.00	No Qualifiers Applied
1,2,3,7,8-PECDF	0.0458	0.0467	2	50.00	1
2,3,4,7,8-PECDF	0.0562	0.0711	23	50.00	
OCDF	0.309	0.432	33	50.00	
1,2,3,4,7,8-HxCDD	0.0161	0.0398	85	50.00	
1,2,3,6,7,8-HXCDD	0.0411	0.0870	72	50.00	
1,2,3,6,7,8-HXCDF	0.0120	0.0378	104	50.00	İ
1,2,3,7,8,9-HXCDF	0.0527	0.0923	55	50.00	J(all detects)
1,2,3,7,8-PECDD	0.0194	5.42 U	200	50.00	UJ(all non-detects)
2,3,4,6,7,8-HXCDF	0.0277	0.0484	54	50.00	1 '
2,3,7,8-TCDF	1.09 U	0.0235	200	50.00	
OCDD	4.73	8.41	56	50.00	

10/27/2011 11:45:12 AM Page 1 of 1

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Matrix: SO							· · · · · · · · · · · · · · · · · · ·
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP21-SA5DN-QC-072811	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 0CDD 0CDF	###4###################################	1.12 0.177 0.0442 0.0398 0.0536 0.0870 0.0378 0.0919 0.0923 0.0467 0.0484 0.0711 0.0235 8.41 0.432	5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-068-SA6-SB-19.0-20.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		0.940 0.621 0.666 2.02 0.502 0.767 0.263 0.321 0.513 0.635 0.423 0.148 0.338	5.63 5.63 5.63 5.63 5.63 5.63 5.63 5.63	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-068-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	B   B   B   B   B   B   B   B   B   B	1.35 0.227 0.142 0.257 0.453 0.158 0.203 0.0896 0.146 0.204 0.188 0.183 0.0776 0.0796 2.96	5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	どろまままままままま 1 出出 日本 出出 日本 日本 田田 田田 田田 田田 田田 田田 田田 田田 田田 田田 田田 田田 田田	4.94 0.557 0.343 0.408 1.43 0.233 0.679 0.103 0.182 0.705 0.354 0.203 0.0859 0.270	5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX121 Laboratory: LL EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-070-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0,3,7,8-TCDD	B B B B B B B B B B B B B B B B B B B	0.696 0.163 0.121 0.224 0.234 0.169 0.177 0.149 0.249 0.361 0.149 0.258 0.0846 0.110	5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-090-SA6-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	######################################	0.363 0.0582 0.0362 0.0109 0.0347 0.0293 0.0157 0.0310 0.0423 0.0172 0.0243 0.0215 0.0374 0.0222 1.12 0.243	5.41 5.41 5.41 5.41 5.41 5.41 5.41 5.41	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-122-SA6-SB-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD		1.57 0.234 4.33 0.650 1.48 0.403 0.838 0.188 1.37 1.38 2.60 0.0680	4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-123-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		3.86 3.30 1.22 1.30 2.31 0.521 0.653 0.459 1.77 0.487 0.323 0.277	5.31 5.31 5.31 5.31 5.31 5.31 5.31 5.31	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

10/27/2011 11:45:35 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Watrix: 50					· · · · · · · · · · · · · · · · · · ·	1	
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-123-SA6-SB-7.0-8.0	1,2,3,4,7,8,9-HPCDF	JB	2.36	5.44	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	1.55	5.44	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	2.09	5.44	PQL	ng/Kg	
İ	1,2,3,6,7,8-HXCDF	JB	1.13	5.44	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	3.68	5.44	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.541	5.44	PQL	ng/Kg	J (all detects)
1	1,2,3,7,8-PECDD	JB	0.470	5.44	PQL	ng/Kg	- ()
	1,2,3,7,8-PECDF	JB JB	0.748	5.44	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	JB	1.54 1.29	5.44 5.44	PQL PQL	ng/Kg ng/Kg	
	2,3,7,8-TCDD	J	0.167	1.09	PQL	ng/Kg	
1	2,3,7,8-TCDF	Ĵ	1.02	1.09	PQL	ng/Kg	
SL-172-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JВ	0.756	5.53	PQL	ng/Kg	
02 112 07 00011 00 4.0 0.0	1,2,3,4,7,8,9-HPCDF	JBQ	0.730	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.158	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JВ	0.0874	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.413	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0721	5.53	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.467	5.53	PQL	ng/Kg	1 (-11 -1-1-1-1
	1,2,3,7,8,9-HXCDF	JB	0.320	5.53	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.119	5.53	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.190	5.53	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0825	5.53	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.112	5.53	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0186	1.11	PQL	ng/Kg	
	OCDF	JB	1.88	11.1	PQL	ng/Kg	
SL-172-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	5.67	5.85	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.732	5.85	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0718	5.85	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0893	5.85	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0767	5.85	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	JB JB	0.224	5.85	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB JB	0.0417 0.201	5.85 5.85	PQL PQL	ng/Kg ng/Kg	I (all datasta)
	1,2,3,7,8,9-HXCDF	JB	0.251	5.85	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0302	5.85	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0625	5.85	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0506	5.85	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0553	5.85	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0220	1.17	PQL	ng/Kg	
	OCDF	JB	1.98	11.7	PQL	ng/Kg	
SL-174-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	5.57	5.65	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.873	5.65	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.114	5.65	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0561	5.65	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0892	5.65	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.230	5.65	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0649	5.65	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.127	5.65	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.0448	5.65	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0511	5.65	PQL	ng/Kg	
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JB JBQ	0.0582 0.0793	5.65 5.65	PQL PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0793	5.65	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0361	1.13	PQL	ng/Kg	
	OCDF	JВ	1.93	11.3	PQL	ng/Kg	
	<del> ·</del>			, ,,,,		1	

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		1 - 6					
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-174-SA5DN-SB-9.0-10.0			0.989				, 109
3L-174-3A3DIN-3B-9.0-10.0	1	JB		5.68	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.142	5.68	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0715	5.68	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.101	5.68	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.296	5.68	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0851	5.68	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.144	5.68	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.0490	5.68	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0634	5.68	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0845	5.68	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JВ	0.103	5.68	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0924	5.68	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0512	1.14	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0336	1.14	PQL	ng/Kg	
	OCDF	JB	2.06	11.4	PQL	ng/Kg	
SL-180-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.728	5.59	PQL	ng/Kg	
OE-100-0A0D14-0D-4:0-0:0	1,2,3,4,6,7,8-HPCDF	JB	0.720	I I	PQL		
	• • • • •			5.59		ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0568	5.59	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	ΊŒ	0.0116	5.59	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0267	5.59	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0392	5.59	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0165	5.59	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0363	5.59	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0335	5.59	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0129	5.59	PQL	ng/Kg	, ,
	1,2,3,7,8-PECDF	JBQ	0.0282	5.59	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0205	5.59	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0404	5.59	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0169	1.12	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.0126	1.12	PQL	ng/Kg	
	OCDD	JB	4.51	11.2	PQL	ng/Kg	
	OCDF	JBQ	0.271	11.2	PQL	ng/Kg ng/Kg	
01 400 04501 00 00 40 0				l		<del></del>	
SL-180-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	2.57	5.87	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.293	5.87	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0751	5.87	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0402	5.87	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0292	5.87	PQL.	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.124	5.87	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0321	5.87	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JВ	0.0977	5.87	PQL	ng/Kg	احتد حتدام الم) ا
	1,2,3,7,8,9-HXCDF	JBQ	0.0311	5.87	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0413	5.87	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0257	5.87	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0407	5.87	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0407	5.87	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0428	1.17	PQL		
	2,3,7,8-TCDF	_		1		ng/Kg	
		JQ	0.0171	1.17	PQL	ng/Kg	
	OCDF	JB	0.623	11.7	PQL	ng/Kg	

10/27/2011 11:45:35 AM

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-183-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.800	5.45	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.113	5.45	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0361	5.45	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0161	5.45	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0386	5.45	PQL	ng/Kg	•
	1,2,3,6,7,8-HXCDD	JBQ	0.0411	5.45	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0120	5.45	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0713	5.45	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0527	5.45	PQL	ng/Kg	•
	1,2,3,7,8-PECDD	JBQ	0.0194	5.45	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0458	5.45	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0277	5.45	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0562	5.45	PQL	ng/Kg	
	OCDD	JB	4.73	10.9	PQL	ng/Kg	
	OCDF	JB	0.309	10.9	PQL	ng/Kg	
SL-183-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.554	5.70	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.109	5.70	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0807	5.70	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0677	5.70	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0924	5.70	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0725	5.70	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0735	5.70	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0723	5.70	PQL	ng/Kg	1.7-11.4-1-4-2
	1,2,3,7,8,9-HXCDF	JB	0.0947	5.70	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0518	5.70	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0652	5.70	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0702	5.70	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0840	5.70	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0112	1.14	PQL	ng/Kg	
	OCDD	JB	2.78	11.4	PQL	пд/Кд	
•	OCDF	JB	0.310	11.4	PQL	ng/Kg	

10/27/2011 11:45:35 AM ADR version 1.4.0.111 Page 5 of 5

# **SAMPLE DELIVERY GROUP**

**DX123** 

## Attachment I

Sample ID Cross Reference and Data Review Level

#### Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
01-Aug-2011	SL-176-SA5DN-SB-4.0-5.0	6361794	N	METHOD	1613B	III
01-Aug-2011	SL-176-SA5DN-SB-9.0-10.0	6361795	N	METHOD	1613B	Ш
01-Aug-2011	SL-173-SA5DN-SB-4.0-5.0	6361788	N	METHOD	1613B	111
01-Aug-2011	SL-173-SA5DN-SB-9.0-10.0	6361789	N	METHOD	1613B	III
01-Aug-2011	SL-127-SA6-SB-2.0-3.0	6361796	N	METHOD	1613B	111
01-Aug-2011	SL-170-SA5DN-SB-4.0-5.0	6361786	N	METHOD	1613B	Ш
01-Aug-2011	SL-170-SA5DN-SB-9.0-10.0	6361787	N	METHOD	1613B	!!]
01-Aug-2011	SL-175-SA5DN-SB-4.0-5.0	6361790	N	METHOD	1613B	Ш
01-Aug-2011	SL-175-SA5DN-SB-4.0-5.0MS	6361791	MS	METHOD	1613B	111
01-Aug-2011	DUP22-SA5DN-QC-080111	6361797	FD	METHOD	1613B	W
01-Aug-2011	SL-175-SA5DN-SB-9.0-10.0	6361793	N	METHOD	1613B	m
02-Aug-2011	SL-145-SA6-SB-3.5-4.5	6363178	N	METHOD	1613B	III
02-Aug-2011	SL-160-SA5DN-SB-4.0-5.0	6363172	N	METHOD	1613B	111
02-Aug-2011	SL-128-SA6-SB-4.0-5.0	6363176	N	METHOD	1613B	Ш
02-Aug-2011	SL-128-SA6-SB-7.5-8.5	6363177	N	METHOD	1613B	111
02-Aug-2011	EB-SA6-SB-080211	6363175	EB	METHOD	1613B	Ш
02-Aug-2011	SL-162-SA5DN-SB-4.0-5.0	6363173	N	METHOD	1613B	111
02-Aug-2011	SL-162-SA5DN-SB-9.0-10.0	6363174	N	METHOD	1613B	<b>II</b> I

## **Attachment II**

**Overall Data Qualification Summary** 

Lab Reporting Batch ID: DX123

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX123_v1.

Method Category: SVOA Method: 1613B Matrix: AQ

Sample ID: EB-SA6-SB-080211

Collected: 8/2/2011 1:00:00 PM Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.60	JBQ	0.181	MDL	10.4	PQL	pg/L	υ	В
1,2,3,4,6,7,8-HPCDF	0.333	JB	0.0620	MDL	10.4	PQL	pg/L	U	В
1,2,3,4,7,8,9-HPCDF	0.121	JBQ	0.0716	MDL	10.4	PQL	pg/L	U	В
1,2,3,4,7,8-HXCDF	0.177	JBQ	0.0557	MDL	10.4	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDD	0.255	JBQ	0.132	MDL	10.4	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDD	0.189	JBQ	0.118	MDL	10.4	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDF	0.0584	JBQ	0.0577	MDL	10.4	PQL	pg/L	U	В
1,2,3,7,8-PECDF	0.117	JBQ	0.0969	MDL	10.4	PQL	pg/L	U	В
2,3,7,8-TCDF	0.136	JQ	0.133	MDL	2.07	PQL	pg/L	J	Z
OCDD	7.82	JB	0.226	MDL	20.7	PQL	pg/L	υ	В
OCDF	0.709	JBQ	0.182	MDL	20.7	PQL	pg/L	υ	В

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: DUP22-SA5DN-QC-080111

Collected: 8/1/2011 2:52:00 PM Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.551	JB	0.0496	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.245	JBQ	0.0542	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.285	JB	0.0362	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	1.59	JB	0.0551	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.239	JB	0.0325	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.609	JB	0.0494	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.156	JBQ	0.0420	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.157	JBQ	0.0416	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.385	JB	0.0199	MDL	5.46	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.323	JB	0.0346	MDL	5.46	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.142	JB	0.0202	MDL	5.46	PQL	ng/Kg	υJ	B, FD
2,3,7,8-TCDD	0.0336	JB	0.0182	MDL	1.09	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0521	JBQ	0.0294	MDL	1.09	PQL	ng/Kg	U	В

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:11:36 PM ADR version 1.4.0.111 Page 1 of 12

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

SVOA Method Category: Method: 1613B

Matrix: SO

MDL

MDL

MDL

Sample ID: SL-127-SA6-SB-2.0-3.0	Collec	ted: 8/1/20	11 10:15:0	00 A	nalysis T	ype: RES		Dilution: 1					
nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code				
1,2,3,4,7,8,9-HPCDF	0.536	JB	0.0313	MDL	5.00	PQL	ng/Kg	J	Z				
1,2,3,4,7,8-HxCDD	0.305	JB	0.0503	MDL	5.00	PQL	ng/Kg	υ	В				
1,2,3,4,7,8-HXCDF	2.45	JB	0.0540	MDL	5.00	PQL	ng/Kg	J	Z				
1,2,3,6,7,8-HXCDD	1.00	JB	0.0517	MDL	5.00	PQL	ng/Kg	J	Z				
1,2,3,6,7,8-HXCDF	0.618	JB	0.0508	MDL	5.00	PQL	ng/Kg	J	Z				
1,2,3,7,8,9-HXCDD	0.515	JB	0.0495	MDL	5.00	PQL	ng/Kg	J	Z				
1,2,3,7,8,9-HXCDF	0.245	JB	0.0551	MDL	5.00	PQL	ng/Kg	J	Z				
1,2,3,7,8-PECDD	0.257	JB	0.0319	MDL	5.00	PQL	ng/Kg	U	В				
1,2,3,7,8-PECDF	2.38	JB	0.0687	MDL	5.00	PQL	ng/Kg	J	Z				

0.0509

0.0140

0.129

Sample ID: SL-128-SA6-SB-4.0-5.0

2,3,4,6,7,8-HXCDF

2,3,7,8-TCDD

2,3,7,8-TCDF

Collected: 8/2/2011 12:25:00

JB

JВ

JΒ

0.629

0.0984

0.255

Analysis Type: RES

PQL

PQL

PQL

ng/Kg

ng/Kg

ng/Kg

J

U

J

5.00

1.00

1.00

Dilution: 1

z

В

z

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.38	JB	0.0411	MDL	5.21	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	1,43	JB	0.0151	MDL	5.21	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.199	JB	0.0267	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0391	JBQ	0.0222	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.847	JB	0.0363	MDL	5.21	PQL	ng/Kg	J	Ž
1,2,3,6,7,8-HXCDD	0.222	JB	0.0227	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.185	JB	0.0313	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.117	JB	0.0205	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0953	JB	0.0398	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0392	JBQ	0.0165	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0559	JBQ	0.0148	MDL	5.21	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.157	JB	0.0341	MDL	5.21	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.294	JBQ	0.0145	MDL,	5.21	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0201	JBQ	0.0174	MDL	1.04	PQL	ng/Kg	U	В
OCDF	1.48	JB	0.0351	MDL	10.4	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 10/27/2011 12:11:36 PM

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX123

Laboratory: LL EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

SVOA Method Category: Method: 1613B

Matrix: SO

pitelininkerikan kilonomian masangan pasiki samban pangaran mengangan kalang

Sample ID: SL-128-SA6-SB-7.5-8.5	Collec	ted: 8/2/20	011 12:35:0	10 A	nalysis T	ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.66	JB	0.0356	MDL	5.35	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	1.27	JB	0.0121	MDL	5.35	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.144	JB	0.0215	MDL	5.35	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0316	JB	0.0196	MDL	5.35	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.592	JB	0.0409	MDL	5.35	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.152	JB	0.0192	MDL	5.35	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.155	JB	0.0337	MDL	5.35	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.144	JBQ	0.0199	MDL	5.35	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.121	JBQ	0.0390	MDL	5.35	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0419	JBQ	0.0173	MDL	5.35	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0833	JBQ	0.0138	MDL	5.35	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.169	JB	0.0360	MDL	5.35	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.224	JB	0.0148	MDL	5.35	PQL	ng/Kg	U	В

Sample ID: SL-145-SA6-SB-3.5-4.5

2,3,7,8-TCDF

OCDF

Collected: 8/2/2011 8:28:00 AM

0.0226

0.0364

MDL

MDL

JBQ

JΒ

0.0477

1.21

Analysis Type: RES

PQL

PQL

ng/Kg

ng/Kg

U

J

1.07

10.7

Dilution: 1

В

z

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.247	JBQ	0.0171	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0462	JBQ	0.00527	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0211	JBQ	0.0110	MDL	5.30	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0141	JBQ	0.0125	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0196	JB	0.00883	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0242	JBQ	0.0127	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0239	JB	0.00721	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0504	JВ	0.0121	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0509	JBQ	0.0100	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0335	JBQ	0.0140	MDL	5.30	PQL	ng/Kg	Ü	В
1,2,3,7,8-PECDF	0.0219	JB	0.00947	MDL	5.30	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0125	JBQ	0.0101	MDL	5.30	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0392	JBQ	0.00990	MDL	5.30	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0154	JBQ	0.0137	MDL	1.06	PQL	ng/Kg	υ	В
OCDD	0.711	JB	0.0233	MDL	10.6	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area iV Collocated Soil Sampling

10/27/2011 12:11:36 PM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX123

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method Category: SVOA
Method: 1613B

1613B Matrix: SO

Sample ID: SL-145-SA6-SB-3.5-4.5	Collec	ted: 8/2/20	111 8:28:00	AM A	nalysis T	ype: RES		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDF	0.110	JBQ	0.0228	MDL	10.6	PQL	na/Ka	u	B

Sample ID: SL-160-SA5DN-SB-4.0-5.0 Collected: 8/2/2011 8:46:00 AM Analysis Type: RES Dilution: 1

Oanipie ib. OL-100-0A3511-05-4.0-3.0	Conet	Conected: 6/2/2011 6.46.00 AW Analysis Type: KES							Dilation: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.305	JB	0.0193	MDL	5.54	PQL	ng/Kg	υ	В		
1,2,3,4,6,7,8-HPCDF	0.0524	JB	0.00608	MDL	5.54	PQL	ng/Kg	υ	В		
1,2,3,4,7,8,9-HPCDF	0.0455	JB	0.0125	MDL	5.54	PQL	ng/Kg	υ	В		
1,2,3,4,7,8-HXCDF	0.0343	JBQ	0.00946	MDL	5.54	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.0207	JBQ	0.0151	MDL	5.54	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDF	0.0316	JBQ	0.00800	MDL	5.54	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.0490	JBQ	0.0135	MDL	5.54	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.0438	JBQ	0.0114	MDL	5.54	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0179	JBQ	0.0179	MDL	5.54	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.0293	JBQ	0.0109	MDL	5.54	PQL	ng/Kg	υ	В		
2,3,4,6,7,8-HXCDF	0.0225	JB	0.00912	MDL	5.54	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0411	JBQ	0.0116	MDL	5.54	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.0214	JBQ	0.0173	MDL	1.11	PQL	ng/Kg	U	В		
2,3,7,8-TCDF	0.0173	JBQ	0.0164	MDL	1.11	PQL	ng/Kg	U	В		
OCDD	0.896	JB	0.0298	MDL	11.1	PQL	ng/Kg	U	В		
OCDF	0.176	JBQ	0.0304	MDL	11.1	PQL	ng/Kg	U	В		

Sample ID: SL-162-SA5DN-SB-4.0-5.0 Collected: 8/2/2011 2:00:00 PM Analysis Type: RES Dilution: 1

50111p1012. 02 102 0110B11 0B 4:0 0:0	Onecied. U.B.2011 2.00.001 III Analysis Type. N.C.								Dilution. 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.395	JB	0.0258	MDL	5.50	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.0600	JBQ	0.00769	MDL	5.50	PQL	ng/Kg	U	В		
1,2,3,4,7,8,9-HPCDF	0.0411	JBQ	0.0161	MDL	5.50	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0249	JBQ	0.0144	MDL	5.50	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.0792	JBQ	0.0175	MDL	5.50	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDF	0.0243	JBQ	0.0118	MDL	5.50	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.168	JB	0.0151	MDL	5.50	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.311	JB	0.0172	MDL	5.50	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.0438	JB	0.0231	MDL	5.50	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.0989	JB	0.0140	MDL	5.50	PQL	ng/Kg	U	В		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:11:36 PM ADR version 1.4.0.111 Page 4 of 12

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

Method Categ	ary: SVOA
• •	
B # - 48 1-	40400

Matrix: SO

38mple ID: 3L-162-3A5DN-5B-4.0-5.0	Collec	Collected: 8/2/2011 2:00:00 PM Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
2,3,4,6,7,8-HXCDF	0.0323	JBQ	0.0134	MDL	5.50	PQL	ng/Kg	υ	8		
2,3,4,7,8-PECDF	0.0534	JB	0.0153	MDL	5.50	PQL	ng/Kg	U	В		
OCDD	1.56	JB	0.0318	MDL	11.0	PQL	ng/Kg	U	В		
OCDF	0.185	JBQ	0.0479	MDL	11.0	PQL	na/Ka	u	В		

Sample ID: SL-162-SA5DN-SB-9.0-10.0 Collected: 8/2/2011 3:15:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.330	JB	0.0256	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0710	JB	0.00806	MDL	5.69	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0247	JB	0.0166	MDL	5.69	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0268	JB	0.0126	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0564	JB	0.0164	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0250	JB	0.0104	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0745	JB	0.0164	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0851	JB	0.0142	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0331	JBQ	0.0145	MDL	5.69	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0272	JВ	0.0120	MDL	5.69	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0426	JBQ	0.0154	MDL	5.69	PQL	ng/Kg	U	B
2,3,7,8-TCDD	0.0286	JBQ	0.0191	MDL	1.14	PQL	ng/Kg	U	В
OCDD	1.15	JB	0.0338	MDL	11.4	PQL	ng/Kg	U	B
OCDF	0.189	JBQ	0.0397	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-170-SA5DN-SB-4.0-5.0

Collected: 8/1/2011 12:01:00

Analysis Type: RES

Dilution: 1

oumpic ibt ou the entert ob 410 ele	00//00	OI II L	12.01.0	у д	naiyara i	ype, itto	,	Divisor. 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.94	JB	0.0214	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.244	JB	0.0248	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.212	JB	0.0653	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.275	JB	0.0334	MDL,	5.40	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.815	JB	0.0660	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.147	JB	0.0320	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.383	JB	0.0653	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.156	JB	0.0330	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.141	JBQ	0.0283	MDL	5.40	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:11:36 PM

ADR version 1.4.0.111

Page 5 of 12

Lab Reporting Batch ID: DX123

EDD Filename: DX123_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-170-SA5DN-SB-4.0-5.0

Collected: 8/1/2011 12:01:00

Analysis Type: RES

Dilution: 1

	Conco	Analysis type: the								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8-PECDF	0.345	JB	0.0267	MDL	5.40	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.157	JB	0.0318	MDL	5.40	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.143	JB	0.0256	MDL	5.40	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0351	JBQ	0.0162	MDL	1.08	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0903	JB	0.0455	MDL	1.08	PQL	ng/Kg	U	В	
OCDF	4.55	JB	0.0266	MDL	10.8	PQL	ng/Kg	J	Z	

Sample ID: SL-170-SA5DN-SB-9.0-10.0

Collected: 8/1/2011 12:02:00

Analysis Type: RES

Dilution: 1

Sample ID. SE-110-SASDIN-SB-9.0-10.0	Conec	teu: oi iizu	11 12:02:0	v A	naiysis i	ype: K⊑3		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.756	JB	0.0288	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.172	JB	0.00880	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0725	JBQ	0.0133	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0301	JB	0.0166	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.111	JB	0.0141	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0535	JBQ	0.0167	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0533	JB	0.0126	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0587	JBQ	0.0156	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0722	JBQ	0.0159	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0372	JBQ	0.0216	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.152	JBQ	0.0133	MDL	5.53	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0420	JBQ	0.0133	MDL	5.53	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0538	JBQ	0.0140	MDL	5.53	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0313	JBQ	0.0289	MDL	1.11	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0621	JBQ	0.0265	MDL	1.11	PQL	ng/Kg	U	В
OCDD	10.4	JB	0.0248	MDL	11.1	PQL	ng/Kg	J	Z
OCDF	0.418	JB	0.0310	MDL	11.1	PQL	ng/Kg	U	В

Sample ID: SL-173-SA5DN-SB-4.0-5.0

Collected: 8/1/2011 10:03:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.09	JB	0.0273	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.195	JB	0.0109	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0442	JBQ	0.0176	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0483	JBQ	0.0130	MDL	5.67	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

Method Category	y same	SVOA
Method:		1613B

Matrix: so

Sample ID: SL-173-SA5DN-SB-4.0-5.0	Collec	ted: 8/1/20	11 10:03:0	00 A	Analysis Type: RES Diluti				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDD	0.0690	JBQ	0.0193	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0460	JBQ	0.0110	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0732	JBQ	0.0177	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0486	JBQ	0.0128	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0635	JBQ	0.0181	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0423	JBQ	0.0134	MDL	5.67	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0363	JB	0.0120	MDL	5.67	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0547	JB	0.0148	MDL	5.67	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0230	JBQ	0.0224	MDL.	1.13	PQL	ng/Kg	U	В
OCDD	8.99	JB	0.0218	MDL	11.3	PQL	ng/Kg	J	Z
OCDF	0.497	JВ	0.0321	MDL	11.3	PQL	ng/Kg	U	В

Sample ID: SL-173-SA5DN-SB-9.0-10.0

Collected: 8/1/2011 10:05:00

Analysis Type: RES

Dilution: 1

anipie ib. GL-113-GAJDI1-3D-3.0-10.0	Conet	teu. Oi IIZ	111 10.03.	JU 74	iiaiysis i	ype: KES		Diluuon: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.964	JB	0.0278	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.151	JB	0.0101	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0524	JBQ	0.0165	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0302	JBQ	0.0167	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0392	JBQ	0.0141	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0682	JB	0.0172	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0345	JBQ	0.0119	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0596	JBQ	0.0159	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0316	JBQ	0.0150	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0504	JBQ	0.0315	MDL	5.68	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.0425	JBQ	0.0135	MDL	5.68	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0665	JBQ	0.0150	MDL	5.68	PQL	ng/Kg	υ	В	
OCDD	7.55	JB	0.0248	MDL	11.4	PQL	ng/Kg	J	Z	
OCDF	0.380	JBQ	0.0316	MDL	11.4	PQL	ng/Kg	υ	В	
					1		1			

Sample ID: SL-175-SA5DN-SB-4.0-5.0

Collected: 8/1/2011 2:45:00 PM

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.497	JВ	0.0428	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.368	JB	0.0441	MDL	5.37	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:11:36 PM

ADR version 1.4.0.111

Page 7 of 12

Lab Reporting Batch ID: DX123

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX123_v1.

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-175-SA5DN-SB-4.0-5.0 Coll	lected: 8/1/2011 2:45:00 PM	Analysis Type: RES	Dilution: 1
-----------------------------------------	-----------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	0.337	JB	0.0384	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	1.93	JB	0.0447	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.298	JB	0.0367	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.813	JB	0.0448	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.180	JВ	0.0371	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.231	JB	0.0340	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.578	JB	0.0267	MDL	5.37	PQL	пg/Kg	U	В
2,3,4,6,7,8-HXCDF	0.399	JB	0.0362	MDL	5.37	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.355	JB	0.0257	MDL	5.37	PQL	ng/Kg	UJ	B, FD
2,3,7,8-TCDD	0.0418	JВ	0.0193	MDL	1.07	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0596	JB	0.0379	MDL	1.07	PQL	ng/Kg	U	В

Sample ID: SL-175-SA5DN-SB-9.0-10.0

Collected:	8/1/2011	2:53:00 PM	Analysis Type:	RES
Ourceseu.	0/1/4011	2,00,00 F IVI	Wildiable I Ahe.	111-0

Dilution: 1		RES	Analysis Type:	2:53:00 PM
	Data			

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.834	JB	0.0211	MDL	5.67	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.150	JB	0.0314	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.135	JB	0.0339	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.129	JB	0.0308	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.397	JB	0.0352	MDL	5.67	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.125	JB	0.0276	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.189	JB	0.0341	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.135	JBQ	0.0302	MDL	5.67	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.150	JBQ	0.0280	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.135	JВ	0.0137	MDL	5.67	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.149	JB	0.0295	MDL	5.67	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.170	JBQ	0.0140	MDL	5.67	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0323	JB	0.0189	MDL	1.13	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0305	JBQ	0.0226	MDL	1.13	PQL	ng/Kg	U	B
OCDF	2.11	JB	0.0370	MDL	11.3	PQL	ng/Kg	J	Z

Sample ID: SL-176-SA5DN-SB-4.0-5.0	Collec	ted: 8/1/20	11 8:21:00	AM A	nalysis T	ype: RES	i		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.33	JВ	0.0502	MDL	5.39	PQL	ng/Kg	J	z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:11:36 PM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX123

Laboratory: LL

Dilution: 1

Dilution: 1

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

and property and a local department of a consequence of a second section of the

Method Category: SVOA

Method: 1613B

Matrix: SO

Sample ID: SL-176-SA5DN-SB-4.0-5.0 Collected: 8/1/2011 8:21:00 AM Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	0.776	JB	0.0563	MDL	5.39	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.532	JB	0.0499	MDL	5.39	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	5.10	JB	0.0570	MDL	5.39	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.628	JB	0.0453	MDL	5.39	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.75	JB	0.0509	MDL	5.39	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.260	JB	0.0520	MDL	5.39	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.440	JB	0.0553	MDL	5.39	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.328	JB	0.0251	MDL	5.39	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.865	JB	0.0465	MDL	5.39	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.299	JBQ	0.0254	MDL	5.39	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0319	JBQ	0.0203	MDL	1.08	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0880	JBQ	0.0407	MDL	1.08	PQL	ng/Kg	U	В
	·					<u> </u>	L	1	

Sample ID: SL-176-SA5DN-SB-9.0-10.0 Collected: 8/1/2011 8:23:00 AM Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.80	JB	0.0192	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.238	JB	0.0345	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.106	JB	0.0458	MDL,	5.60	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0946	JB	0.0270	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.560	JB	0.0462	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0952	JB	0.0234	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.216	JB	0.0439	MDL	5.60	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0689	JBQ	0.0311	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.102	JBQ	0.0282	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.103	JB	0.0135	MDL	5.60	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.135	JBQ	0.0266	MDL	5.60	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0864	JBQ	0.0142	MDL	5.60	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0268	JB	0.0154	MDL	1.12	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0243	JB	0.0194	MDL	1.12	PQL	ng/Kg	U	В
OCDF	4.52	JB	0.0369	MDL	11.2	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 12:11:36 PM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX123 EDD Filename: DX123_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
<del></del>	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
c	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX123

EDD Filename: DX123_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

		COAL I MAINC, ODIN_COI L
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	*****
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	, The Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the
Н	Sampling to Extraction Rejection	1/4/1/
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
]	Internal Standard Estimation	
l	Internal Standard Rejection	
L ·	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L,	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
М	Continuing Tune	
М	Initial Tune	
M	Performance Evaluation Mixture	
М	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
<del></del>	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX123

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX123_v1.

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

## **Enclosure I**

EPA Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

**DX123** 

Lab Reporting Batch ID: DX123

EDD Filename: DX123_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 161 <i>Matrix:</i> AQ	3 <b>B</b>			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2200B371122	8/10/2011 11:22:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF CODD OCDF	3.70 pg/L 0.669 pg/L 0.287 pg/L 0.230 pg/L 0.448 pg/L 0.265 pg/L 0.242 pg/L 0.290 pg/L 0.198 pg/L 0.227 pg/L 0.517 pg/L 9.52 pg/L 1.03 pg/L	EB-SA6-SB-080211

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-080211(RE\$)	1,2,3,4,6,7,8-HPCDD	3.60 pg/L	3.60U pg/L
EB-SA6-SB-080211(RES)	1,2,3,4,6,7,8-HPCDF	0.333 pg/L	0.333U pg/L
EB-SA6-SB-080211(RES)	1,2,3,4,7,8,9-HPCDF	0.121 pg/L	0.121U pg/L
EB-SA6-SB-080211(RES)	1,2,3,4,7,8-HXCDF	0.177 pg/L	0.177U pg/L
B-SA6-SB-080211(RES)	1,2,3,6,7,8-HXCDD	0.255 pg/L	0.255U pg/L
EB-SA6-SB-080211(RES)	1,2,3,7,8,9-HXCDD	0.189 pg/L	0.189U pg/L
EB-SA6-SB-080211(RES)	1,2,3,7,8,9-HXCDF	0.0584 pg/L	0.0584U pg/L
EB-SA6-SB-080211(RES)	1,2,3,7,8-PECDF	0.117 pg/L	0.117U pg/L
EB-SA6-SB-080211(RES)	OCDD	7.82 pg/L	7.82U pg/L
EB-SA6-SB-080211(RES)	OCDF	0.709 pg/L	0.709U pg/L

Method: 1613 Matrix: SO	<b>B</b>			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2270B370700	8/18/2011 7:00:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD 0,0,0,0	0.291 ng/Kg 0.0805 ng/Kg 0.0805 ng/Kg 0.0937 ng/Kg 0.0933 ng/Kg 0.0930 ng/Kg 0.0813 ng/Kg 0.0813 ng/Kg 0.0813 ng/Kg 0.0135 ng/Kg 0.117 ng/Kg 0.135 ng/Kg 0.133 ng/Kg 0.133 ng/Kg 0.133 ng/Kg 0.133 ng/Kg 0.135 ng/Kg 0.0841 ng/Kg 0.089 ng/Kg 0.0485 ng/Kg 0.0485 ng/Kg 0.620 ng/Kg 0.171 ng/Kg	DUP22-SA5DN-QC-080111 SL-127-SA6-SB-2.0-3.0 SL-128-SA6-SB-3.0-3.0 SL-128-SA6-SB-7.5-8.5 SL-145-SA6-SB-7.5-8.5 SL-160-SA5DN-SB-4.0-5.0 SL-162-SA5DN-SB-4.0-5.0 SL-170-SA5DN-SB-9.0-10.0 SL-170-SA5DN-SB-9.0-10.0 SL-173-SA5DN-SB-4.0-5.0 SL-173-SA5DN-SB-4.0-5.0 SL-173-SA5DN-SB-4.0-5.0 SL-175-SA5DN-SB-4.0-5.0 SL-176-SA5DN-SB-4.0-5.0 SL-176-SA5DN-SB-4.0-5.0 SL-176-SA5DN-SB-4.0-5.0 SL-176-SA5DN-SB-9.0-10.0

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP22-SA5DN-QC-080111(RES)	1,2,3,4,7,8-HxCDD	0.245 ng/Kg	0.245U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:09:48 PM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX123 Laboratory: LL

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
DUP22-SA5DN-QC-080111(RES)	1,2,3,4,7,8-HXCDF	0.285 ng/Kg	0.285U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	1,2,3,6,7,8-HXCDF	0.239 ng/Kg	0.239U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	1,2,3,7,8,9-HXCDF	0.156 ng/Kg	0.156U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	1,2,3,7,8-PECDD	0.157 ng/Kg	0.157U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	1,2,3,7,8-PECDF	0.385 ng/Kg	0.385U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	2,3,4,7,8-PECDF	0.142 ng/Kg	0.142U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	2,3,7,8-TCDD	0.0336 ng/Kg	0.0336U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	2,3,7,8-TCDF	0.0521 ng/Kg	0.0521U ng/Kg	
SL-127-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HxCDD	0.305 ng/Kg	0.305U ng/Kg	
SL-127-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDD	0.257 ng/Kg	0.257U ng/Kg	
SL-127-SA6-SB-2.0-3.0(RES)	2,3,7,8-TCDD	0.0984 ng/Kg	0.0984U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.199 ng/Kg	0.199U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0391 ng/Kg	0.0391U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.222 ng/Kg	0.222U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.185 ng/Kg	0.185U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.117 ng/Kg	0.117U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0953 ng/Kg	0.0953U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0392 ng/Kg	0.0392U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0559 ng/Kg	0.0559U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.157 ng/Kg	0.157U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.294 ng/Kg	0.294U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0201 ng/Kg	0.0201U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	1,2,3,4,7,8,9-HPCDF	0.144 ng/Kg	0.144U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	1,2,3,4,7,8-HxCDD	0.0316 ng/Kg	0.0316U ng/Kg	
SL-128-\$A6-\$B-7.5-8.5(RES)	1,2,3,6,7,8-HXCDD	0,152 ng/Kg	0.152U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	1,2,3,6,7,8-HXCDF	0.155 ng/Kg	0.155U ng/Kg	
SL-128-\$A6-\$B-7.5-8.5(RE\$)	1,2,3,7,8,9-HXCDD	0,144 ng/Kg	0.144U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	1,2,3,7,8,9-HXCDF	0.121 ng/Kg	0.121U ng/Kg	
SL-128-SA6-SB-7,5-8,5(RES)	1,2,3,7,8-PECDD	0.0419 ng/Kg	0.0419U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	1,2,3,7,8-PECDF	0.0833 ng/Kg	0.0833U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	2,3,4,6,7,8-HXCDF	0,169 ng/Kg	0.169U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	2,3,4,7,8-PECDF	0.224 ng/Kg	0.224U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	2,3,7,8-TCDF	0.0477 ng/Kg	0.0477U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDD	0.247 ng/Kg	0.247U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0462 ng/Kg	0.0462U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0211 ng/Kg	0.0211U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8-HxCDD	0.0141 ng/Kg	0.0141U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8-HXCDF	0.0196 ng/Kg	0.0196U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDD	0.0242 ng/Kg	0.0242U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDF	0.0239 ng/Kg	0.0239U ng/Kg	

10/27/2011 12:09:49 PM ADR version 1.4.0.111 Page 2 of 6

Lab Reporting Batch ID: DX123 Laboratory: LL

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				AND THE PROPERTY OF THE PROPERTY.
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte		Modified Final Result	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDD	0.0504 ng/Kg	0.0504U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDF	0.0509 ng/Kg	0.0509U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,7,8-PECDD	0,0335 ng/Kg	0.0335U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,7,8-PECDF	0.0219 ng/Kg	0.0219U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	2,3,4,6,7,8-HXCDF	0.0125 ng/Kg	0.0125U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	2,3,4,7,8-PECDF	0.0392 ng/Kg	0.0392U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	2,3,7,8-TCDF	0.0154 ng/Kg	0.0154U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	OCDD	0.711 ng/Kg	0.711U ng/Kg	
SL-145-SA6-SB-3,5-4,5(RES)	OCDF	0.110 ng/Kg	0.110U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,305 ng/Kg	0.305U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0524 ng/Kg	0.0524U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0455 ng/Kg	0.0455U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0343 ng/Kg	0.0343U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0207 ng/Kg	0.0207U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0,0316 ng/Kg	0.0316U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0490 ng/Kg	0.0490U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0438 ng/Kg	0.0438U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0179 ng/Kg	0.0179U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0293 ng/Kg	0.0293U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0225 ng/Kg	0.0225U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0411 ng/Kg	0.0411U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0214 ng/Kg	0.0214U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0173 ng/Kg	0.0173U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	OCDD ,	0.896 ng/Kg	0.896U ng/Kg	
SL-160-SA5DN-SB-4.0-5.0(RES)	OCDF	0.176 ng/Kg	0.176U ng/Kg	
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.395 ng/Kg	0.395U ng/Kg	
SL-162-SA5DN-SB-4,0-5,0(RES)	1,2,3,4,6,7,8-HPCDF	0.0600 ng/Kg	0.0600U ng/Kg	
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0411 ng/Kg	0.0411U ng/Kg	
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0249 ng/Kg	0.0249U ng/Kg	
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0792 ng/Kg	0.0792U ng/Kg	
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0243 ng/Kg	0.0243U ng/Kg	
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.168 ng/Kg	0.168U ng/Kg	
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0438 ng/Kg	0.0438U ng/Kg	
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0989 ng/Kg	0.0989U ng/Kg	
SL-162-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0323 ng/Kg	0.0323U ng/Kg	
SL-162-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0534 ng/Kg	0.0534U ng/Kg	
SL-162-SA5DN-SB-4.0-5.0(RES)	OCDD	1.56 ng/Kg	1.56U ng/Kg	
SL-162-SA5DN-SB-4.0-5.0(RES)	OCDF	0.185 ng/Kg	0.185U ng/Kg	
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0,330 ng/Kg	0.330U ng/Kg	
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0,0710 ng/Kg	0.0710U ng/Kg	

10/27/2011 12:09:49 PM ADR version 1.4.0.111 Page 3 of 6

Lab Reporting Batch ID: DX123 Laboratory: LL

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0247 ng/Kg	0.0247U ng/Kg	
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0268 ng/Kg	0.0268U ng/Kg	
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0564 ng/Kg	0.0564U ng/Kg	
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0250 ng/Kg	0.0250U ng/Kg	
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0745 ng/Kg	0.0745U ng/Kg	
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0851 ng/Kg	0.0851U ng/Kg	
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0331 ng/Kg	0.0331U ng/Kg	
SL-162-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0272 ng/Kg	0.0272U ng/Kg	
SL-162-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0426 ng/Kg	0.0426U ng/Kg	
SL-162-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0286 ng/Kg	0.0286U ng/Kg	
SL-162-SA5DN-SB-9.0-10.0(RES)	OCDD	1.15 ng/Kg	1.15U ng/Kg	
SL-162-SA5DN-SB-9.0-10.0(RES)	OCDF	0.189 ng/Kg	0.189U ng/Kg	
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.244 ng/Kg	0.244U ng/Kg	
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.212 ng/Kg	0.212U ng/Kg	
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.275 ng/Kg	0.275U ng/Kg	
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.147 ng/Kg	0.147U ng/Kg	
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0,383 ng/Kg	0.383U ng/Kg	
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.156 ng/Kg	0.156U ng/Kg	
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.141 ng/Kg	0.141U ng/Kg	
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.345 ng/Kg	0.345U ng/Kg	
SL-170-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.157 ng/Kg	0.157U ng/Kg	
SL-170-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.143 ng/Kg	0.143U ng/Kg	
SL-170-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0351 ng/Kg	0.0351U ng/Kg	
SL-170-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0903 ng/Kg	0.0903U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.756 ng/Kg	0.756U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.172 ng/Kg	0.172U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0725 ng/Kg	0.0725U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0301 ng/Kg	0.0301U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.111 ng/Kg	0.111U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0535 ng/Kg	0.0535U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0533 ng/Kg	0.0533U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0587 ng/Kg	0.0587U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0722 ng/Kg	0.0722U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0372 ng/Kg	0.0372U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.152 ng/Kg	0.152U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0420 ng/Kg	0.0420U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0538 ng/Kg	0.0538U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0313 ng/Kg	0.0313U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0621 ng/Kg	0.0621U ng/Kg	
SL-170-SA5DN-SB-9.0-10.0(RES)	OCDF	0.418 ng/Kg	0.418U ng/Kg	
		U,410 lig/Ng	0.7100 Hg/kg	

10/27/2011 12:09:49 PM ADR version 1.4.0.111 Page 4 of 6

Lab Reporting Batch ID: DX123 Laboratory: LL

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B				
Matrix: SO				
Method Blank				Associated
Sample ID	Analysis Date	Analyte	Result	Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.09 ng/Kg	1.09U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.195 ng/Kg	0.195U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0442 ng/Kg	0.0442U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0483 ng/Kg	0.0483U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0690 ng/Kg	0.0690U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0460 ng/Kg	0.0460U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0732 ng/Kg	0.0732U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0486 ng/Kg	0.0486U ng/Kg	
SL-173-SA5DN-SB-4,0-5.0(RES)	1,2,3,7,8-PECDD	0.0635 ng/Kg	0.0635U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0423 ng/Kg	0.0423U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0363 ng/Kg	0.0363U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0547 ng/Kg	0.0547U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0230 ng/Kg	0.0230U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	OCDF	0.497 ng/Kg	0.497U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.964 ng/Kg	0.964U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.151 ng/Kg	0.151U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0524 ng/Kg	0.0524U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0302 ng/Kg	0.0302U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0392 ng/Kg	0.0392U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0682 ng/Kg	0.0682U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0345 ng/Kg	0.0345U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0596 ng/Kg	0.0596U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0316 ng/Kg	0.0316U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0504 ng/Kg	0.0504U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0425 ng/Kg	0.0425U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0665 ng/Kg	0.0665U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	OCDF	0.380 ng/Kg	0.380U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.337 ng/Kg	0.337U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.298 ng/Kg	0.298U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.180 ng/Kg	0.180U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.231 ng/Kg	0.231U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.578 ng/Kg	0.578U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.355 ng/Kg	0.355U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0418 ng/Kg	0.0418U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0596 ng/Kg	0.0596U ng/Kg	
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.150 ng/Kg	0.150U ng/Kg	
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3.4,7,8-HxCDD	0.135 ng/Kg	0.135U ng/Kg	
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.129 ng/Kg	0.129U ng/Kg	
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.125 ng/Kg	0.125U ng/Kg	
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0,189 ng/Kg	0.189U ng/Kg	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:09:49 PM ADR version 1.4.0.111 Page 5 of 6

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613E Matrix: SO				indiana dependental de la constanta de la constanta de la constanta de la constanta de la constanta de la cons
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.135 ng/Kg	0.135U ng/Kg
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.150 ng/Kg	0.150U ng/Kg
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.135 ng/Kg	0.135U ng/Kg
SL-175-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.149 ng/Kg	0.149U ng/Kg
SL-175-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.170 ng/Kg	0.170U ng/Kg
SL-175-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0323 ng/Kg	0,0323U ng/Kg
SL-175-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0305 ng/Kg	0.0305U ng/Kg
SL-176-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.440 ng/Kg	0.440U ng/Kg
SL-176-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.328 ng/Kg	0.328U ng/Kg
SL-176-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.299 ng/Kg	0.299U ng/Kg
SL-176-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0319 ng/Kg	0.0319U ng/Kg
SL-176-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0,0880 ng/Kg	0.0880U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.238 ng/Kg	0.238U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.106 ng/Kg	0.106U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0946 ng/Kg	0.0946U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0952 ng/Kg	0.0952U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.216 ng/Kg	0.216U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0689 ng/Kg	0.0689U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.102 ng/Kg	0.102U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.103 ng/Kg	0.103U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.135 ng/Kg	0.135U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0864 ng/Kg	0.0864U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0268 ng/Kg	0.0268U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0243 ng/Kg	0.0243U ng/Kg

10/27/2011 12:09:49 PM ADR version 1.4.0.111 Page 6 of 6

#### Field Duplicate RPD Report

Lab Reporting Batch ID: DX123

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

EDD Filename: DX123_v1.

Method: 160.3M

Matrix. 30					
	Concenti	ration (%)			
Analyte	SL-175-SA5DN-SB-4.0- 5.0	DUP22-SA5DN-QC- 080111	Sample RPD	eQAPP RPD	Flag
MOISTURE	9.2	9.2	0		No Qualifiers Applied

Method: 1613B Matrix: SO

	Concentrati	ion (ng/Kg)				
Analyte	SL-175-SA5DN-SB-4.0- 5.0	DUP22-SA5DN-QC- 080111	Sample RPD	eQAPP RPD	Flag	
1,2,3,4,6,7,8-HPCDD	48.0	40.8	16	50.00		
1,2,3,4,6,7,8-HPCDF	6.13	5.67	8	50.00		
1,2,3,4,7,8,9-HPCDF	0.497	0.551	10	50.00		
,2,3,4,7,8-HxCDD	0.368	0.245	40	50.00		
,2,3,4,7,8-HXCDF	0.337	0.285	17	50.00		
,2,3,6,7,8-HXCDD	1.93	1.59	19	50.00		
,2,3,6,7,8-HXCDF	0.298	0.239	22	50.00		
,2,3,7,8,9-HXCDD	0.813	0.609	29	50.00		
,2,3,7,8,9-HXCDF	0.180	0.156	14	50.00	No Qualifiers Applie	
,2,3,7,8-PECDD	0.231	0.157	38	50.00		
,2,3,7,8-PECDF	0.578	0.385	40	50.00	į	
,3,4,6,7,8-HXCDF	0.399	0.323	21	50.00		
,3,7,8-TCDD	0.0418	0.0336	22	50.00		
,3,7,8-TCDF	0.0596	0.0521	13	50.00		
OCDD	565	413	31	50.00		
CDF	15.7	16.9	7	50.00		
,3,4,7,8-PECDF	0.355	0.142	86	50.00	J(all detects)	

Lab Reporting Batch ID: DX123 Laboratory: LL

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

AQ

Matrix:

Lab Reporting RLSampleID Analyte Qual Limit Result Type Units Flag EB-SA6-SB-080211 1,2,3,4,6,7,8-HPCDD JBQ 3.60 10.4 **PQL** pg/L 1,2,3,4,6,7,8-HPCDF JΒ 0.333 10.4 PQL pg/L 1,2,3,4,7,8,9-HPCDF **JBQ** 0.121 10.4 PQL pg/L 1,2,3,4,7,8-HXCDF **JBQ** 0.177 10.4 PQL pg/L pg/L 1,2,3,6,7,8-HXCDD **JBQ** 0.255 10.4 PQL 1,2,3,7,8,9-HXCDD **JBQ** 0.189 10.4 PQL pg/L J (all detects) 1,2,3,7,8,9-HXCDF JBQ 0.0584 PQL pg/L 10.4 1,2,3,7,8-PECDF **JBQ** 0.117 10.4 PQL pg/L 2,3,7,8-TCDF 0.136 2.07 JQ **PQL** pg/L OCDD JB 7.82 20.7 **PQL** pg/L OCDF **JBQ** 0.709 **PQL** 20.7 pg/L

Method: 1613B

Matrix: SO Reporting RL Lab SampleID Analyte Qual Result Limit Units Type Flag DUP22-SA5DN-QC-080111 1,2,3,4,7,8,9-HPCDF 0.551 5.46 POL JB ng/Kg 1,2,3,4,7,8-HxCDD **JBQ** 0.245 5.46 **PQL** ng/Kg 1,2,3,4,7,8-HXCDF JB 0.285 5.46 **PQL** ng/Kg ng/Kg 1,2,3,6,7,8-HXCDD JB 1.59 5.46 **PQL** 1,2,3,6,7,8-HXCDF JB 0.239 **PQL** 5.46 ng/Kg 1,2,3,7,8,9-HXCDD JB 0.609 5.46 **PQL** ng/Kg 1,2,3,7,8,9-HXCDF 0.156 5.46 **PQL JBQ** ng/Kg J (all detects) 1,2,3,7,8-PECDD **JBQ** 0.157 5.46 **PQL** ng/Kg 1,2,3,7,8-PECDF JB 0.385 5.46 PQL ng/Kg 2,3,4,6,7,8-HXCDF JB 0.3235.46 PQL ng/Kg 0.142 2.3.4.7.8-PECDF JB 5.46 **PQL** ng/Kg 2,3,7,8-TCDD JB 0.0336 1.09 PQL ng/Kg 2,3,7,8-TCDF JBQ 0.0521 1.09 **PQL** ng/Kg SL-127-SA6-SB-2.0-3.0 1,2,3,4,7,8,9-HPCDF JB 0.536 5.00 PQL ng/Kg 1,2,3,4,7,8-HxCDD JB 0.305 5.00 **PQL** ng/Kg 1,2,3,4,7,8-HXCDF JB 2.45 5.00 PQL ng/Kg 1,2,3,6,7,8-HXCDD JB 1.00 5.00 PQL ng/Kg 1,2,3,6,7,8-HXCDF JB 0.618 5.00 **PQL** ng/Kg 1,2,3,7,8,9-HXCDD JB PQL 0.515 5.00 ng/Kg J (all detects) 1,2,3,7,8,9-HXCDF JB 0.245 5.00 **PQL** ng/Kg 1,2,3,7,8-PECDD 0.257 **PQL** JR. 5.00 ng/Kg 1,2,3,7,8-PECDF JB 2.38 5.00 **PQL** ng/Kg 2,3,4,6,7,8-HXCDF PQL JB 0.629 5.00 ng/Kg ng/Kg 2,3,7,8-TCDD JB 0.0984 1.00 **PQL** 2,3,7,8-TCDF JB 0.255 PQL 1.00 ng/Kg

10/27/2011 12:10:08 PM ADR version 1.4.0.111 Page 1 of 6

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-128-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF	JB JB JB JB JB JB JB JB JB JB JB JB JB J	4.38 1.43 0.199 0.0391 0.847 0.222 0.185 0.117 0.0953 0.0392 0.0559 0.157 0.294 0.0201 1.48	5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-128-SA6-SB-7.5-8.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-TCDF 0CDF	田野田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	2.66 1.27 0.144 0.0316 0.592 0.152 0.155 0.144 0.121 0.0419 0.0833 0.169 0.224 0.0477	5.35 5.35 5.35 5.35 5.35 5.35 5.35 5.35	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-145-SA6-SB-3.5-4.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	<b>3000000000000000000000000000000000000</b>	0.247 0.0462 0.0211 0.0141 0.0196 0.0242 0.0239 0.0504 0.0509 0.0335 0.0219 0.0125 0.0392 0.0711 0.711	5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

10/27/2011 12:10:08 PM ADR version 1.4.0.111 Page 2 of 6

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-160-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF	JB JB	0.305 0.0524	5.54 5.54	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0455	5.54	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0343	5.54	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0207	5.54	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0316	5.54	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0490	5.54	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0438	5.54	PQL	ng/Kg	14 11 14 13
	1,2,3,7,8-PECDD	JBQ	0.0179	5.54	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.0293	5.54	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0225	5.54	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0411	5.54	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0214	1.11	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0173	1.11	PQL	ng/Kg	
	OCDD	JB	0.896	11.1	PQL	ng/Kg	
	OCDF	JBQ	0.176	11.1	PQL	ng/Kg	
SL-162-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JΒ	0.395	5.50	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ .	0.0600	5.50	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0411	5.50	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0249	5.50	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0792	5.50	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0243	5.50	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.168	5.50	PQL	ng/Kg	1 (-11 -1-44-)
	1,2,3,7,8,9-HXCDF	JB	0.311	5.50	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0438	5.50	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0989	5.50	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0323	5.50	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0534	5.50	PQL	ng/Kg	
	OCDD	JB	1.56	11.0	PQL	ng/Kg	
	OCDF	JBQ	0.185	11.0	PQL	ng/Kg	
SL-162-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.330	5.69	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JВ	0.0710	5.69	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0247	5.69	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0268	5.69	PQL	ng/Kg	
İ	1,2,3,6,7,8-HXCDD	JB	0.0564	5.69	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0250	5.69	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0745	5.69	PQL	ng/Kg	I /all datacts\
	1,2,3,7,8,9-HXCDF	JB	0.0851	5.69	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.0331	5.69	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0272	5.69	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0426	5.69	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0286	1.14	PQL	ng/Kg	
	OCDD	JB	1.15	11.4	PQL	ng/Kg	
	OCDF	JBQ	0.189	11.4	PQL	ng/Kg	

Lab Reporting Batch ID: DX123

EDD Filename: DX123_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-170-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JB	1.94 0.244	5.40 5.40	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF	JB JB	0.212 0.275	5.40 5.40	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	JB JB	0.815 0.147	5.40 5.40	PQL PQL	ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF	JB JB	0.383 0.156	5.40 5.40	PQL PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDD 1,2,3,7,8-PECDF	JBQ JB	0.141 0.345	5.40 5.40	PQL PQL	ng/Kg ng/Kg	
	2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	JB JB	0.157 0.143	5.40 5.40	PQL PQL	ng/Kg ng/Kg	
	2,3,7,8-TCDD  2,3,7,8-TCDF  OCDF	JBQ JB JB	0.0351 0.0903 4.55	1.08 1.08 10.8	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
SL-170-SA5DN-SB-9.0-10.0		JB JB	0.756 0.172	5.53 5.53	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD	JBQ JB	0.0725 0.0301	5.53 5.53	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JB JBQ	0.111 0.0535	5.53 5.53	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	JB JBQ	0.0533 0.0587	5.53 5.53	PQL PQL	ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JBQ JBQ	0.0722 0.0372	5.53 5.53	PQL PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JBQ JBQ	0.152 0.0420	5.53 5.53	PQL PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF 2,3,7,8-TCDD	JBQ JBQ	0.0538 0.0313	5.53 1.11	PQL PQL	ng/Kg ng/Kg	
	2,3,7,8-TCDF OCDD	JBQ JB	0.0621 10.4	1.11 11.1	PQL PQL	ng/Kg ng/Kg	
SL-173-SA5DN-SB-4.0-5.0	OCDF 1,2,3,4,6,7,8-HPCDD	JB JB	0.418 1.09	11.1 5.67	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JBQ	0.195 0.0442	5.67 5.67	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JBQ JBQ	0.0483 0.0690	5.67 5.67	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	JBQ JBQ	0.0460 0.0732	5.67 5.67	PQL PQL	ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JBQ JBQ	0.0486 0.0635	5.67 5.67	PQL PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JBQ JB	0.0423 0.0363	5.67 5.67	PQL PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD	JB JBQ	0.0547 0.0230	5.67 1.13	PQL PQL	ng/Kg ng/Kg	
	OCDF	JB JB	8.99 0.497	11.3 11.3	PQL PQL	ng/Kg   ng/Kg	

Lab Reporting Batch ID: DX123

EDD Filename: DX123_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Keporung   Limit	RL Type	Units	Flag
SL-173-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.964	5.68	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.151	5.68	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0524	5.68	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0302	5.68	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0392	5.68	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0682	5.68	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0345	5.68	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0596	5.68	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0316	5.68	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0504	5.68	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0425	5.68	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0665	5.68	PQL	ng/Kg	
	OCDD	JB	7.55	11.4	PQL	ng/Kg	
	OCDF	JBQ	0.380	11.4	PQL	ng/Kg	
SL-175-SA5DN-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF	JB	0.497	5.37	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JВ	0.368	5.37	PQL	ng/Kg	•
	1,2,3,4,7,8-HXCDF	JВ	0.337	5.37	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.93	5.37	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.298	5.37	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.813	5.37	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.180	5.37	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.231	5.37	PQL	ng/Kg	o (all detects)
	1,2,3,7,8-PECDF	JB	0.578	5.37	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.399	5.37	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.355	5.37	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0418	1.07	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0596	1.07	PQL	ng/Kg	
SL-175-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF	JB	0.834	5.67	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.150	5.67	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.135	5.67	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.129	5.67	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.397	5.67	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.125	5.67	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.189	5.67	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.135	5.67	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.150	5.67	PQL	ng/Kg	o (an acteois)
	1,2,3,7,8-PECDF	JB	0.135	5.67	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.149	5.67	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.170	5.67	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0323	1.13	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0305	1.13	PQL	ng/Kg	
	OCDF	JB	2.11	11.3	PQL	ng/Kg	
SL-176-SA5DN-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF	JВ	1.33	5.39	PQL	ng/Kg	·
	1,2,3,4,7,8-HxCDD	JB	0.776	5.39	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB				ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.532 5.10	5.39	PQL		
	1,2,3,6,7,8-HXCDF	JB	0.628	5.39	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB		5.39	PQL PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.75	5.39		ng/Kg	(مادمغمام)
	1,2,3,7,6,9-FACDF 1,2,3,7,8-PECDD		0.260	5.39	PQL	ng/Kg	J (all detects)
		JB	0.440	5.39	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.328	5.39	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.865	5.39	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.299	5.39	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0319	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0880	1.08	PQL	ng/Kg	

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Quai	Result	Reporting Limit	RL Type	Units	Flag
SL-176-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF	JB	1.80	5.60	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.238	5.60	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.106	5.60	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0946	5.60	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.560	5.60	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0952	5.60	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.216	5.60	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0689	5.60	PQL	ng/Kg	J (all detects
	1,2,3,7,8-PECDD	JBQ	0.102	5.60	PQL	ng/Kg	•
	1,2,3,7,8-PECDF	JB	0.103	5.60	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.135	5.60	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0864	5.60	PQL	ng/Kg	
	2,3,7,8-TCDD	JВ	0.0268	1.12	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0243	1.12	PQL	ng/Kg	
	OCDF	JB	4.52	11.2	PQL	ng/Kg	

# **SAMPLE DELIVERY GROUP**

**DX124** 

#### **Attachment I**

Sample ID Cross Reference and Data Review Level

#### **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
03-Aug-2011	SL-011-SA6-SB-0.5-1.5	6364636	N	METHOD	1613B	111
03-Aug-2011	SL-003-SA6-SB-4.0-5.0	6364633	N	METHOD	1613B	Ш
03-Aug-2011	SL-003-SA6-SB-8.5-9.5	6364634	N	METHOD	1613B	HI
03-Aug-2011	SL-188-SA5DN-SB-4.0-5.0	6364638	N	METHOD	<b>1</b> 613B	III
03-Aug-2011	SL-004-SA6-SB-1.5-2.5	6364635	N	METHOD	1613B	111
03-Aug-2011	SL-188-SA5DN-SB-9.0-10.0	6364639	N	METHOD	1613B	lli
03-Aug-2011	EB23-SA5DN-SB-080311	6364637	ЕВ	METHOD	1613B	Ш
03-Aug-2011	SL-193-SA5DN-SB-4.0-5.0	6364640	N	METHOD	1613B	Ш
03-Aug-2011	SL-002-SA6-SB-4.0-5.0	6364631	N	METHOD	1613B	111
03-Aug-2011	SL-002-SA6-SB-9.0-10.0	6364632	N	METHOD	16 <b>1</b> 3B	III
03-Aug-2011	SL-193-SA5DN-SB-9.0-10.0	6364641	N	METHOD	1613B	III
04-Aug-2011	SL-204-SA5DN-SB-9.0-10.0	6366529	N	METHOD	1613B	III
04-Aug-2011	SL-204-SA5DN-SB-4.0-5.0	6366528	N	METHOD	1613B	III
04-Aug-2011	SL-189-SA5DN-SB-4.0-5.0	6366524	N	METHOD	1613B	ŧII
04-Aug-2011	SL-189-SA5DN-SB-4.0-5.0 M	6366525	MS	METHOD	1613B	111
04-Aug-2011	DUP23-SA5DN-QC-080411	6366530	FD	METHOD	1613B	III
04-Aug-2011	SL-189-SA5DN-SB-9.0-10.0	6366527	N	METHOD	1613B	III
04-Aug-2011	SL-185-SA5DN-SB-4.0-5.0	6366522	N	METHOD	1613B	III
04-Aug-2011	SL-185-SA5DN-SB-9.0-10.0	6366523	N	METHOD	1613B	111

TB = Trip Blank FB = Field Blank

## **Attachment II**

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX124

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL 110509

Laboratory: LL

Page 1 of 14

Method Category: SVOA Method: 1613B Matrix: AQ

Sample ID: EB23-SA5DN-SB-080311 Collected: 8/3/2011 1:00:00 PM Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte Result Qual DLType RL Туре Units Qual Code 1,2,3,4,6,7,8-HPCDD 3.78 **JBQ** 0.257 MDL 11.2 PQL pg/L 1,2,3,4,6,7,8-HPCDF 0.491 JBQ MDL 0.119 11.2 PQL U В pg/L 1,2,3,4,7,8,9-HPCDF 0.350 **JBQ** 0.135 MDL 11.2 **PQL** pg/L U В 1,2,3,4,7,8-HxCDD 0.216 0.190 MDL 11.2 POL JQ J Z pg/L 1,2,3,4,7,8-HXCDF MDL 11.2 U 0.211 JB 0.123 PQL В pg/L 1,2,3,6,7,8-HXCDD 0.339 **JBQ** 0.204 MDL 11.2 **PQL** U В pg/L 0.109 1,2,3,6,7,8-HXCDF 0.263 MDL 11.2 PQL z JQ J pg/L 1,2,3,7,8-PECDD 0.493 JBQ 0.264 MDL 11.2 **PQL** U В pg/L 1,2,3,7,8-PECDF 0.557 JBQ 0.179 MDL 11.2 PQL U В pg/L 2,3,4,6,7,8-HXCDF 0.118 MDL 11.2 PQL 0.256 **JBQ** pg/L U В 2,3,4,7,8-PECDF 0.634 **JBQ** 0.173 MDL 11.2 **PQL** U В pg/L OCDD 22.4 U 8.38 JB 0.413 MDL **PQL** В pg/L OCDF 0.812 JBQ 0.285 MDL 22.4 PQL U В pg/L

Method Category: SVOA Method: 1613B Matrix: SO

ample ID: DUP23-SA5DN-QC-080411	Collec	ted: 8/4/20	011 10:59:0	0 A	nalysis T	ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.553	JB	0.0133	MDL	5.31	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0922	JB	0.00432	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0292	JB	0.0102	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0395	JB	0.0105	MDL	5.31	PQL	ng/Kg	UJ	B, FD
1,2,3,4,7,8-HXCDF	0.0860	JB	0.00787	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0993	JBQ	0.0111	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0697	JB	0.00643	MDL	5.31	PQL	ng/Kg	บม	B, FD
1,2,3,7,8,9-HXCDD	0.163	JB	0.0108	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.193	JB	0.00965	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0762	JB	0.0110	MDL	5.31	PQL	ng/Kg	บม	B, FD
1,2,3,7,8-PECDF	0.178	JB	0.00654	MDL	5.31	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0467	JВ	0.00765	MDL	5.31	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.125	JB	0.00698	MDL	5.31	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0290	JQ	0.00942	MDL	1.06	PQL	ng/Kg	J	Z, FD

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:40 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX124

Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

SO

Sample ID: DUP23-SA5DN-QC-080411	Collec	Collected: 8/4/2011 10:59:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.0436	JB	0.0120	MDL	1.06	PQL	ng/Kg	UJ	B, FD
OCDD	5.41	JB	0.0116	MDL	10.6	PQL	ng/Kg	J	Z, FD
OCDF	0.251	JBO	0.0195	MDI	10.6	POL	na/Ka	11)	B

Sample ID: SL-002-SA6-SB-4.0-5.0

Collected: 8/3/2011 2:30:00 PM Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.99	JB	0.0170	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.983	JB	0.0267	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.126	JB	0.0238	MDL	5.53	PQL	ng/Kg	U ·	В
1,2,3,4,7,8-HXCDF	0.521	JB	0.0226	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.31	JB	0.0249	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.305	JB	0.0214	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.496	JB	0.0231	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.174	JB	0.0269	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.209	JB	0.0225	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.13	JB	0.0175	MDL	5.53	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.358	JВ	0.0212	MDL	5.53	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.812	JB	0.0177	MDL	5.53	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0335	J	0.0151	MDL	1.11	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.256	JB	0.0348	MDL	1.11	PQL	ng/Kg	J	Z

Sample ID: SL-002-SA6-SB-9.0-10.0

Collected: 8/3/2011 2:33:00 PM

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.89	JB	0.0119	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.773	JB	0.0225	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.0984	JB	0.0248	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.681	JB	0.0197	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.826	JB	0.0254	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.423	JB	0.0171	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.295	JB	0.0244	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.167	JB	0.0209	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0749	JB	0.0150	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	2.82	JB	0.0192	MDL	5.49	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

ADR version 1.4.0.111 12/21/2011 11:55:41 AM Page 2 of 14

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Categ	ory is SVOA during	ĠŎĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ			
Method:	1613B		Matrix:	so	

Sample ID: SL-002-SA6-SB-9.0-10.0  Analyte	Collec	Collected: 8/3/2011 2:33:00 PM Analysis Type: RES							
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,6,7,8-HXCDF	0.345	JB	0.0180	MDL	5.49	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.67	JB	0.0193	MDL	5.49	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0170	J	0.0102	MDL	1.10	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.323	JB	0.0384	MDL	1.10	PQL	ng/Kg	J	Ž
OCDF	10.8	JB	0.0202	MDL	11.0	PQL	ng/Kg	J	Z

Sample ID: SL-003-SA6-SB-4.0-5.0	Collec	11 8:40:00	Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.73	JB	0.0131	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.560	JB	0.0261	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.0728	JB	0.0212	MDL	5.85	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.319	JB	0.0210	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.650	JB	0.0213	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.212	JB	0.0177	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.268	JB	0.0207	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0997	JB	0.0234	MDL	5.85	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0835	JB	0.0152	MDL	5.85	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.409	JB	0.0155	MDL	5.85	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.229	JB	0.0185	MDL	5.85	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.505	JB	0.0159	MDL	5.85	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0327	J	0.0137	MDL	1.17	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0893	JB	0.0297	MDL	1.17	PQL	ng/Kg	U	В
OCDF	7.17	JB	0.0261	MDL	11.7	PQL	ng/Kg	J	Z

Sample ID: SL-003-SA6-SB-8.5-9.5	Collec	ted: 8/3/201	1 8:44:00 A	 nalysis Ty	pe: RES	4	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.67	JB	0.0124	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.521	JB	0.0202	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.0873	JВ	0.0228	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.412	JB	0.0179	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.690	JB	0.0240	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.214	JB	0.0157	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.263	JB	0.0217	MDL.	5.47	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:41 AM ADR version 1.4.0.111 Page 3 of 14

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	ry: SVOA		
Method:	1613B	Matrix: SO	

Sample ID: SL-003-SA6-SB-8.5-9.5	Collec	Collected: 8/3/2011 8:44:00 AM Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL_	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,7,8,9-HXCDF	0.106	JBQ	0.0193	MDL	5.47	PQL	ng/Kg	υ	В		
1,2,3,7,8-PECDD	0.0489	JВ	0.0167	MDL,	5.47	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.354	JB	0.0150	MDL	5.47	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.251	JB	0.0161	MDL	5.47	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.715	JB	0.0153	MDL	5.47	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.0352	J	0.0121	MDL	1.09	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.264	JB	0.0312	MDL	1.09	PQL	ng/Kg	J	Z		
OCDF	7.76	JB	0.0218	MDL	10.9	PQL	ng/Kg	J	Z		

Sample ID: SL-004-SA6-SB-1.5-2.5 Collected: 8/3/2011 11:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL	RL	RL Tunn	Units	Data Review Qual	Reason Code
	· <del></del>	<del></del>	<del>'</del>	Type	<del></del>	Туре	1	Quai	
1,2,3,4,6,7,8-HPCDF	2.86	JB	0.0110	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.490	JB	0.0286	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.0871	JB	0.0195	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.199	JB	0.0161	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.722	JB	0.0198	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.143	JBQ	0.0126	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.249	JB	0.0187	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0347	JBQ	0.0204	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0272	JBQ	0.0126	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0840	JB	0.00872	MDL	5.15	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.181	JB	0.0139	MDL	5.15	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.120	JB	0.00955	MDL	5.15	PQL	ng/Kg	υ	В
2,3,7,8-TCDD	0.0138	JQ	0.0113	MDL	1.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0152	JBQ	0.0116	MDL	1.03	PQL	ng/Kg	U	В
OCDF	8.66	JB	0.0304	MDL	10.3	PQL	ng/Kg	J	Z

Sample ID: SL-011-SA6-SB-0.5-1.5 Collected: 8/3/2011 7:54:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.77	JB	0.0162	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.324	JB	0.00697	MDL	5.27	PQL	ng/Kg	j	Z
1,2,3,4,7,8,9-HPCDF	0.0846	JB	0.0126	MDL	5.27	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0570	JB	0.0155	MDL	5.27	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:41 AM ADR version 1.4.0.111 Page 4 of 14

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-011-SA6-SB-0.5-1.5 Collected: 8/3/2011 7:54:00 AM Analysis Type: RES Dilution: 1 Data Lab DLRLReview Lab Reason Result DLRLUnits Analyte Qual Type Туре Qual Code 1,2,3,4,7,8-HXCDF 0.165 JΒ 0.0158 MDL 5.27 PQL ng/Kg J Z 1,2,3,6,7,8-HXCDD 0.197 JB 0.0160 MDL 5.27 PQL J Z ng/Kg 1,2,3,6,7,8-HXCDF 0.0916 JΒ 0.0126 MDL 5.27 **PQL** ng/Kg z 1,2,3,7,8,9-HXCDD 0.157 JВ 0.0154 MDL 5.27 PQL J z ng/Kg 1,2,3,7,8,9-HXCDF 0.0612 JB 0.0153 MDL 5.27 PQL ng/Kg Ų В 5.27 1,2,3,7,8-PECDD 0.118 **JBQ** 0.0134 MDL PQL J Z ng/Kg 1,2,3,7,8-PECDF 0.00954 5.27 PQL J Z 0.0907 JB MDL ng/Kg 0.0810 0.0120 U 2,3,4,6,7,8-HXCDF JB MDL 5.27 PQL ng/Kg В z 2,3,4,7,8-PECDF 0.371 JB 0.0101 MDL 5.27 PQL J ng/Kg 2,3,7,8-TCDD 0.0383 0.0108 PQL J Z J MDL 1.05 ng/Kg

Sample ID: SL-185-SA5DN-SB-4.0-5.0 Collected: 8/4/2011 3:20:00 PM Analysis Type: RES Dilution: 1

JΒ

0.0208

MDL

PQL

ng/Kg

10.5

U

В

0.657

Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.411	JB	0.0141	MDL	5.72	PQL	ng/Kg	U	В
0.0610	JBQ	0.00459	MDL	5.72	PQL	ng/Kg	U	В
0.0534	JB	0.0148	MDL	5.72	PQL	ng/Kg	U	В
0.0172	JBQ	0.0103	MDL	5.72	PQL	ng/Kg	U	В
0.0240	JB	0.00781	MDL	5.72	PQL	ng/Kg	U	В
0.0521	JBQ	0.0108	MDL	5.72	PQL	ng/Kg	U	В
0.0204	JBQ	0.00586	MDL	5.72	PQL	ng/Kg	U	В
0.0612	JBQ	0.0102	MDL	5.72	PQL	ng/Kg	U	В
0.0932	JBQ	0.00999	MDL	5.72	PQL	ng/Kg	U	В
0.0146	JB	0.0103	MDL	5.72	PQL	ng/Kg	U	В
0.0223	JBQ	0.00608	MDL	5.72	PQL	ng/Kg	U	В
0.0216	JB	0.00700	MDL	5.72	PQL	ng/Kg	U	В
0.0530	JВ	0.00700	MDL	5.72	PQL	ng/Kg	U	В
0.0159	J	0.0117	MDL	1.14	PQL	ng/Kg	J	Z
1.18	JB	0.0118	MDL	11.4	PQL	ng/Kg	U	В
0.194	JBQ	0.0347	MDL	11.4	PQL	ng/Kg	U	В
	Result  0.411  0.0610  0.0534  0.0172  0.0240  0.0521  0.0204  0.0612  0.0932  0.0146  0.0223  0.0216  0.0530  0.0159  1.18	Result         Qual           0.411         JB           0.0610         JBQ           0.0534         JB           0.0172         JBQ           0.0240         JB           0.0521         JBQ           0.0204         JBQ           0.0612         JBQ           0.0932         JBQ           0.0146         JB           0.0223         JBQ           0.0216         JB           0.0530         JB           0.0159         J           1.18         JB	Result         Qual         DL           0.411         JB         0.0141           0.0610         JBQ         0.00459           0.0534         JB         0.0148           0.0172         JBQ         0.0103           0.0240         JB         0.00781           0.0521         JBQ         0.0108           0.0204         JBQ         0.00586           0.0612         JBQ         0.0102           0.0932         JBQ         0.00999           0.0146         JB         0.0103           0.0223         JBQ         0.00608           0.0216         JB         0.00700           0.0530         JB         0.00700           0.0159         J         0.0117           1.18         JB         0.0118	Result         Qual         DL         Type           0.411         JB         0.0141         MDL           0.0610         JBQ         0.00459         MDL           0.0534         JB         0.0148         MDL           0.0172         JBQ         0.0103         MDL           0.0240         JB         0.00781         MDL           0.0521         JBQ         0.0108         MDL           0.0204         JBQ         0.00586         MDL           0.0612         JBQ         0.0102         MDL           0.0932         JBQ         0.00999         MDL           0.0146         JB         0.0103         MDL           0.0223         JBQ         0.00608         MDL           0.0216         JB         0.00700         MDL           0.0530         JB         0.00700         MDL           0.0159         J         0.0117         MDL           1.18         JB         0.0118         MDL	Result         Qual         DL         Type         RL           0.411         JB         0.0141         MDL         5.72           0.0610         JBQ         0.00459         MDL         5.72           0.0534         JB         0.0148         MDL         5.72           0.0172         JBQ         0.0103         MDL         5.72           0.0240         JB         0.00781         MDL         5.72           0.0521         JBQ         0.0108         MDL         5.72           0.0204         JBQ         0.00586         MDL         5.72           0.0612         JBQ         0.0102         MDL         5.72           0.0932         JBQ         0.00999         MDL         5.72           0.0146         JB         0.0103         MDL         5.72           0.0223         JBQ         0.00608         MDL         5.72           0.0530         JB         0.00700         MDL         5.72           0.0159         J         0.0117         MDL         1.14           1.18         JB         0.0118         MDL         11.4	Result         Qual         DL         Type         RL         Type           0.411         JB         0.0141         MDL         5.72         PQL           0.0610         JBQ         0.00459         MDL         5.72         PQL           0.0534         JB         0.0148         MDL         5.72         PQL           0.0172         JBQ         0.0103         MDL         5.72         PQL           0.0240         JB         0.00781         MDL         5.72         PQL           0.0521         JBQ         0.0108         MDL         5.72         PQL           0.0204         JBQ         0.00586         MDL         5.72         PQL           0.0612         JBQ         0.0102         MDL         5.72         PQL           0.0932         JBQ         0.00999         MDL         5.72         PQL           0.0146         JB         0.0103         MDL         5.72         PQL           0.0223         JBQ         0.00608         MDL         5.72         PQL           0.0530         JB         0.00700         MDL         5.72         PQL           0.0159         J         0.0117<	Result         Qual         DL         Type         RL         Type         Units           0.411         JB         0.0141         MDL         5.72         PQL         ng/Kg           0.0610         JBQ         0.00459         MDL         5.72         PQL         ng/Kg           0.0534         JB         0.0148         MDL         5.72         PQL         ng/Kg           0.0172         JBQ         0.0103         MDL         5.72         PQL         ng/Kg           0.0240         JB         0.00781         MDL         5.72         PQL         ng/Kg           0.0521         JBQ         0.0108         MDL         5.72         PQL         ng/Kg           0.0204         JBQ         0.00586         MDL         5.72         PQL         ng/Kg           0.0612         JBQ         0.0102         MDL         5.72         PQL         ng/Kg           0.0932         JBQ         0.00999         MDL         5.72         PQL         ng/Kg           0.0146         JB         0.0103         MDL         5.72         PQL         ng/Kg           0.0223         JBQ         0.00608         MDL         5.72	Lab Result         Lab Qual         DL DL Type         RL Type         RL Type         RL Type         RL Qual         Review Qual           0.411         JB         0.0141         MDL         5.72         PQL ng/Kg         U           0.0610         JBQ         0.00459         MDL         5.72         PQL ng/Kg         U           0.0534         JB         0.0148         MDL         5.72         PQL ng/Kg         U           0.0172         JBQ         0.0103         MDL         5.72         PQL ng/Kg         U           0.0240         JB         0.00781         MDL         5.72         PQL ng/Kg         U           0.0521         JBQ         0.0108         MDL         5.72         PQL ng/Kg         U           0.0204         JBQ         0.00586         MDL         5.72         PQL ng/Kg         U           0.0612         JBQ         0.0102         MDL         5.72         PQL ng/Kg         U           0.0932         JBQ         0.00999         MDL         5.72         PQL ng/Kg         U           0.0223         JBQ         0.00608         MDL         5.72         PQL ng/Kg         U           0.0530 <t< td=""></t<>

OCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:41 AM ADR version 1.4.0.111 Page 5 of 14

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-185-SA5DN-SB-9.0-10.0	Collec	Collected: 8/4/2011 3:30:00 PM Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.436	JB	0.0149	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0605	JB	0.00411	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0455	JBQ	0.0131	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0288	JBQ	0.00651	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0143	JBQ	0.00926	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0141	JBQ	0.00491	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0348	JBQ	0.00846	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0383	JB	0.00857	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0205	JBQ	0.00926	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0136	JB	0.00526	MDL	5.71	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.0127	JBQ	0.00549	MDL	5.71	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0385	JB	0.00617	MDL	5.71	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0114	JBQ	0.0106	MDL	1.14	PQL	ng/Kg	υ	В	
OCDD	2.94	JB	0.0127	MDL	11.4	PQL	ng/Kg	J	Z	
OCDF	0.303	JB	0.0337	MDL	11.4	PQL	ng/Kg	U	В	

Sample ID: SL-188-SA5DN-SB-4.0-5.0 Collected: 8/3/2011 10:57:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.516	JB	0.0146	MDL	5.73	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.147	JB	0.00529	MDL	5.73	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0849	JB	0.0144	MDL	5.73	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.154	JB	0.0112	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.263	JB	0.0112	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.170	JB	0.0116	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.214	JB	0.00863	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.152	JB	0.0112	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.200	JB	0.0148	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.298	JB	0.0136	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.352	JВ	0.00725	MDL	5.73	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.147	JВ	0.0100	MDL	5.73	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.339	JB	0.00806	MDL	5.73	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0952	J	0.0131	MDL	1.15	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.105	JB	0.0139	MDL	1.15	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
12/21/2011 11:55:41 AM ADR version 1.4.0.111

Page 6 of 14

Lab Reporting Batch ID: DX124

Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-188-SA5DN-SB-4.0-5.0	Collec	Collected: 8/3/2011 10:57:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
OCDD	1.93	JB	0.0129	MDL	11.5	PQL	ng/Kg	U	В
OCDF	0.295	JB	0.0255	MDL	11.5	PQL	ng/Kg	U	В

Collected: 8/3/2011 11:58:00 Sample ID: SL-188-SA5DN-SB-9.0-10.0 Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte Result DLQual Туре RL Units Type Qual Code 0.904 1,2,3,4,6,7,8-HPCDD JB 0.0162 MDL 5.57 PQL В U ng/Kg 1,2,3,4,6,7,8-HPCDF 0.203 JΒ 0.00538 MDL 5.57 **PQL** ng/Kg U В 1,2,3,4,7,8,9-HPCDF 0.0855 JB ng/Kg 0.0155 MDL 5.57 PQL U В 1,2,3,4,7,8-HxCDD 0.106 JΒ 0.0115 MDL 5.57 PQL U ng/Kg В 1.2,3,4,7,8-HXCDF 0.239 JB 0.0127 MDL 5.57 PQL ng/Kg J Z 1,2,3,6,7,8-HXCDD J Z 0.153 JB 0.0123 MDL 5.57 **PQL** ng/Kg 1,2,3,6,7,8-HXCDF 0.183 JB 0.00974 MDL 5.57 PQL J z ng/Kg 1,2,3,7,8,9-HXCDD 0.182 JB 0.0118 MDL PQL Z 5.57 ng/Kg J 1,2,3,7,8,9-HXCDF 0.218 JBQ 0.0174 MDL 5.57 PQL J ng/Kg Z 1,2,3,7,8-PECDD 0.192 JВ 0.0129 MDL 5.57 **PQL** J Z ng/Kg 1,2,3,7,8-PECDF 0.431 JB 0.00997 MDL J Z 5.57 PQL ng/Kg 0.121 2,3,4,6,7,8-HXCDF JB 0.0119 MDL 5.57 PQL J Z ng/Kg 2,3,4,7,8-PECDF 0.304 JB 0.0112 MDL 5.57 PQL ng/Kg J Z 2,3,7,8-TCDD 0.0764 J 0.0115 Z MDL 1.11 PQL J ng/Kg 2,3,7,8-TCDF 0.137 JB 0.0246 MDL 1.11 PQL ng/Kg J Z OCDD JB 0.0136 MDL POL J 6.68 11.1 Z ng/Kg OCDF 0.445 JB 0.0304 U MDL 11,1 PQL ng/Kg В

Sample ID: SL-189-SA5DN-SB-4.0-5.0	Collected: 8/4/2011 10:52:00	Analysis Type: RES	Dilution: 1
------------------------------------	------------------------------	--------------------	-------------

ample ID. OL-100-ONOBIT-OD-110-010	Conec	Onecied. 0.42011 10.02.00 Analysis Type, 1020 Dide							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.535	JB	0.0142	MDL	5.24	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0913	JB	0.00418	MDL	5.24	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0461	JB	0.0142	MDL	5.24	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0112	JBQ	0.0111	MDL	5.24	PQL	ng/Kg	UJ	B, FD
1,2,3,4,7,8-HXCDF	0.0910	JB	0.0100	MDL	5.24	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0686	JB	0.0112	MDL	5.24	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0249	JB	0.00736	MDL	5.24	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8,9-HXCDD	0.176	JВ	0.0109	MDL	5.24	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:41 AM ADR version 1.4.0.111 Page 7 of 14

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-189-SA5DN-SB-4.0-5.0	Collec	Collected: 8/4/2011 10:52:00 Analysi						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8,9-HXCDF	0.227	JB	0.0138	MDL	5.24	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0182	JB	0.0120	MDL	5.24	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8-PECDF	0.231	JB	0.00978	MDL	5.24	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.0404	JB	0.00868	MDL	5.24	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.115	JB	0.0113	MDL	5.24	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0108	U	0.0108	MDL	1.05	PQL	ng/Kg	UJ	FD	
2,3,7,8-TCDF	0.0754	JB	0.0241	MDL	1.05	PQL	ng/Kg	UJ	B, FD	
OCDD	2.91	JB	0.0100	MDL	10.5	PQL	ng/Kg	J	Z, FD	
OCDF	0.221	JB	0.0284	MDL	10.5	PQL	ng/Kg	U	В	

Sample ID: SL-189-SA5DN-SB-9.0-10.0 Collected: 8/4/2011 11:37:00 Analysis Type: RES Dilution: 1

Sample ID: SL-189-SA5DN-SB-9.0-10.0	Collec	tea: 8/4/20	177 17:37:0	0 A	Analysis Type: RES				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	1.36	JB	0.0151	MDL	5.67	PQL	ng/Kg	J	Z		
1,2,3,4,6,7,8-HPCDF	0.261	JB	0.00611	MDL	5.67	PQL	ng/Kg	υ	В		
1,2,3,4,7,8,9-HPCDF	0.133	JB	0.0180	MDL	5.67	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.0690	JBQ	0.0141	MDL	5.67	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.295	JB	0.0149	MDL	5.67	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	0.120	JB	0.0146	MDL	5.67	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDF	0.129	JB	0.0113	MDL	5.67	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.146	JB	0.0140	MDL	5.67	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.177	JB	0.0176	MDL	5.67	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.120	JB	0.0125	MDL	5.67	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.643	JB	0.0151	MDL	5.67	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.138	JB	0.0131	MDL	5.67	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.237	JB	0.0175	MDL	5.67	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.0229	JQ	0.0110	MDL	1.13	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.188	JB	0.0385	MDL	1.13	PQL	ng/Kg	J	Z		
OCDD	8.78	JB	0.0136	MDL	11.3	PQL	ng/Kg	J	Z		
OCDF	0.717	JB	0.0294	MDL	11.3	PQL	ng/Kg	J	Z		

Sample ID: SL-193-SA5DN-SB-4.0-5.0 Collected: 8/3/2011 2:00:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.81	JB	0.00879	MDL	5.56	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:41 AM ADR version 1.4.0.111 Page 8 of 14

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVCA

Method: 1613B Matrix: SO

Collec	Collected: 8/3/2011 2:00:00 PM Analysis Type: RES							Dilution: 1	
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
0.357	JB	0.0227	MDL	5.56	PQL	ng/Kg	J	Z	
0.141	JB	0.0203	MDL	5.56	PQL	ng/Kg	j	Z	
0.313	JB	0.0169	MDL	5.56	PQL	ng/Kg	J	Z	
0.542	JВ	0.0215	MDL	5.56	PQL	ng/Kg	J	Z	
0.208	JB	0.0138	MDL	5.56	PQL	ng/Kg	J	Z	
0.307	JB	0.0194	MDL	5.56	PQL	ng/Kg	J	Z	
0.161	JB	0.0203	MDL	5.56	PQL	ng/Kg	J	Z	
0.150	JB	0.0171	MDL	5.56	PQL	ng/Kg	J	Z	
0.588	JB	0.0124	MDL	5.56	PQL	ng/Kg	J	Z	
0.268	JB	0.0154	MDL	5.56	PQL	ng/Kg	J	Z	
0.403	JB	0.0138	MDL	5.56	PQL	ng/Kg	J	Z	
0.0357	J	0.0126	MDL	1.11	PQL	ng/Kg	J	Z	
0.167	JB	0.0345	MDL	1.11	PQL	ng/Kg	J	Z	
8.65	JB	0.0326	MDL	11.1	PQL	ng/Kg	J	Z	
	Lab Result  0.357  0.141  0.313  0.542  0.208  0.307  0.161  0.150  0.588  0.268  0.403  0.0357  0.167	Lab Result         Lab Qual           0.357         JB           0.141         JB           0.313         JB           0.542         JB           0.208         JB           0.307         JB           0.161         JB           0.150         JB           0.588         JB           0.268         JB           0.403         JB           0.0357         J           0.167         JB	Lab Result         Lab Qual         DL           0.357         JB         0.0227           0.141         JB         0.0203           0.313         JB         0.0169           0.542         JB         0.0215           0.208         JB         0.0138           0.307         JB         0.0194           0.161         JB         0.0203           0.150         JB         0.0171           0.588         JB         0.0124           0.268         JB         0.0154           0.403         JB         0.0138           0.0357         J         0.0126           0.167         JB         0.0345	Lab Result         Lab Qual         DL Type           0.357         JB         0.0227         MDL           0.141         JB         0.0203         MDL           0.313         JB         0.0169         MDL           0.542         JB         0.0215         MDL           0.208         JB         0.0138         MDL           0.307         JB         0.0194         MDL           0.161         JB         0.0203         MDL           0.150         JB         0.0171         MDL           0.588         JB         0.0124         MDL           0.268         JB         0.0154         MDL           0.403         JB         0.0138         MDL           0.0357         J         0.0126         MDL           0.167         JB         0.0345         MDL	Lab Result         Lab Qual         DL Type         RL           0.357         JB         0.0227         MDL         5.56           0.141         JB         0.0203         MDL         5.56           0.313         JB         0.0169         MDL         5.56           0.542         JB         0.0215         MDL         5.56           0.208         JB         0.0138         MDL         5.56           0.307         JB         0.0194         MDL         5.56           0.161         JB         0.0203         MDL         5.56           0.150         JB         0.0171         MDL         5.56           0.588         JB         0.0171         MDL         5.56           0.268         JB         0.0154         MDL         5.56           0.403         JB         0.0138         MDL         5.56           0.0357         J         0.0126         MDL         1.11           0.167         JB         0.0345         MDL         1.11	Lab Result         Lab Qual         DL Type         RL Type         RL Type           0.357         JB         0.0227         MDL         5.56         PQL           0.141         JB         0.0203         MDL         5.56         PQL           0.313         JB         0.0169         MDL         5.56         PQL           0.542         JB         0.0215         MDL         5.56         PQL           0.208         JB         0.0138         MDL         5.56         PQL           0.307         JB         0.0194         MDL         5.56         PQL           0.161         JB         0.0203         MDL         5.56         PQL           0.150         JB         0.0171         MDL         5.56         PQL           0.588         JB         0.0124         MDL         5.56         PQL           0.268         JB         0.0154         MDL         5.56         PQL           0.403         JB         0.0138         MDL         5.56         PQL           0.0357         J         0.0126         MDL         1.11         PQL           0.167         JB         0.0345         MDL	Lab Result         Lab Qual         DL Type         RL Type         RL Type         Units           0.357         JB         0.0227         MDL         5.56         PQL         ng/Kg           0.141         JB         0.0203         MDL         5.56         PQL         ng/Kg           0.313         JB         0.0169         MDL         5.56         PQL         ng/Kg           0.542         JB         0.0215         MDL         5.56         PQL         ng/Kg           0.208         JB         0.0138         MDL         5.56         PQL         ng/Kg           0.307         JB         0.0194         MDL         5.56         PQL         ng/Kg           0.161         JB         0.0203         MDL         5.56         PQL         ng/Kg           0.150         JB         0.0171         MDL         5.56         PQL         ng/Kg           0.588         JB         0.0124         MDL         5.56         PQL         ng/Kg           0.268         JB         0.0154         MDL         5.56         PQL         ng/Kg           0.403         JB         0.0138         MDL         5.56         PQL	Lab Result         Lab Qual         DL Type         RL Type         RL Type         RL Type         Units Review Qual           0.357         JB         0.0227         MDL         5.56         PQL         ng/Kg         J           0.141         JB         0.0203         MDL         5.56         PQL         ng/Kg         J           0.313         JB         0.0169         MDL         5.56         PQL         ng/Kg         J           0.542         JB         0.0215         MDL         5.56         PQL         ng/Kg         J           0.208         JB         0.0138         MDL         5.56         PQL         ng/Kg         J           0.307         JB         0.0194         MDL         5.56         PQL         ng/Kg         J           0.161         JB         0.0203         MDL         5.56         PQL         ng/Kg         J           0.150         JB         0.0171         MDL         5.56         PQL         ng/Kg         J           0.588         JB         0.0124         MDL         5.56         PQL         ng/Kg         J           0.403         JB         0.0138         MDL <td< td=""></td<>	

Sample ID: SL-193-SA5DN-SB-9.0-10.0	Collected: 8/3/2011 3:00:00 PM	Analysis Type: RES	Dilution: 1
0011DIG 1D, OE-100-0A0DIN-0B-3.0-10.0	Conected. 0/3/2011 3:00:00 FW	Alialysis lype, ICES	Dilation, 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5.16	JB	0.0237	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.806	JB	0.00635	MDL	5.57	PQL	ng/Kg	j	Z
1,2,3,4,7,8,9-HPCDF	0.134	JB	0.0210	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0462	JB	0.0157	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.153	JB	0.0126	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.220	JB	0.0166	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0868	JB	0.00947	MDL	5.57	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.127	JB	0.0165	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0417	JBQ	0.0180	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0374	JB	0.0117	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.136	JBQ	0.00970	MDL	5.57	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.104	JB	0.0115	MDL	5.57	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.195	JB	0.0109	MDL	5.57	PQL	ng/Kg	υ	В
OCDF	2.12	JB	0.0358	MDL	11.1	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
12/21/2011 11:55:41 AM ADR version 1.4.0.111 Page 9 of 14

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-204-SA5DN-SB-4.0-5.0	Collec	ted: 8/4/20	11 9:20:00	AM A	nalysis Ty	/pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	3.02	JB	0.0234	MDL	5.51	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	0.600	JB	0.00665	MDL	5.51	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.129	JB	0.0200	MDL	5.51	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.115	JB	0.0150	MDL	5.51	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.453	JB	0.0173	MDL	5.51	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.291	JB	0.0160	MDL	5.51	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.165	JB	0.0129	MDL	5.51	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.437	JB	0.0156	MDL	5.51	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.404	JB	0.0220	MDL	5.51	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.173	JB	0.0159	MDL	5.51	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.516	JB	0.0135	MDL	5.51	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.168	JB	0.0161	MDL	5.51	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.394	JB	0.0154	MDL	5.51	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0495	J	0.0105	MDL	1.10	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.171	JB	0.0345	MDL	1.10	PQL	ng/Kg	J	Z	
OCDF	1.52	JB	0.0315	MDL	11.0	PQL	ng/Kg	J	Z	

Sample ID: SL-204-SA5DN-SB-9.0-10.0 Collected: 8/4/2011 9:00:00 AM Analysis Type: RES Dilution: 1

		2 2.							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.688	JВ	0.0127	MDL	5.85	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.134	JB	0.00456	MDL	5.85	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0672	JB	0.0137	MDL	5.85	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0929	JB	0.0116	MDL	5.85	PQL	ng/Kg	Ü	В
1,2,3,4,7,8-HXCDF	0.150	JB	0.0106	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.146	JB	0.0122	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.104	JB	0.00760	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.233	JВ	0.0118	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.311	JB	0.0143	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.154	JB	0.0130	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.248	JBQ	0.00655	MDL	5.85	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0769	JB	0.00877	MDL	5.85	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.195	JB	0.00737	MDL	5.85	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0436	J	0.00994	MDL	1,17	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:41 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Matrix: SO

Sample ID: SL-204-SA5DN-SB-9.0-10.0	Collec	Collected: 8/4/2011 9:00:00 AM Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.0890	JBQ	0.0119	MDL	1.17	PQL	ng/Kg	U	В
OCDD	4.26	JB	0.0119	MDL	11.7	PQL	ng/Kg	J	Z
OCDF	0.274	JB	0.0283	MDL	11.7	PQL	na/Ka	U	В

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX124
EDD Filename: DX124_v1

Laboratory: LL eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
· "	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Hendine, DV 124_41		EWAFF Name, CDM_SSFL_
F	Equipment Blank Contamination	<del>-</del> -
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	<del>.</del>
Н	Extraction to Analysis Estimation	· · · · · · · · · · · · · · · · · · ·
н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	,
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
Ī	Internal Standard Estimation	
1	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	T-1
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
М	Continuing Tune	
М	Initial Tune	
М	Performance Evaluation Mixture	
М	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX124

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Filename: DX124_v1		eQAPP Name: CDM_
R	Continuing Calibration Verification Percent Recovery Lower Estimation	
R	Continuing Calibration Verification Percent Recovery Lower Rejection	-
R	Continuing Calibration Verification Percent Recovery Upper Estimation	
R	Continuing Calibration Verification Percent Recovery Upper Rejection	
R	Continuing Calibration Verification Relative Response Factor	
R	Initial Calibration Relative Response Factor	
R	Initial Calibration Verification Percent Recovery Lower Estimation	
R	Initial Calibration Verification Percent Recovery Lower Rejection	
R	Initial Calibration Verification Percent Recovery Upper Estimation	
R	Initial Calibration Verification Percent Recovery Upper Rejection	
R	Initial Calibration Verification Relative Response Factor	
S	Surrogate/Tracer Recovery Lower Estimation	
S	Surrogate/Tracer Recovery Lower Rejection	
S	Surrogate/Tracer Recovery Upper Estimation	
S	Surrogate/Tracer Recovery Upper Rejection	
T	Trip Blank Contamination	
Z	Reporting Limit	
Z	Reporting Limit > Project Maximum Contamination Limit	
Z	Reporting Limit Trace Value	

^{*} denotes a non-reportable result

## **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX124

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ						
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples		
BLK2200B371122	8/10/2011 11:22:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD	3,70 pg/L 0.669 pg/L 0.287 pg/L 0.230 pg/L 0.248 pg/L 0.265 pg/L 0.242 pg/L 0.290 pg/L 0.198 pg/L 0.517 pg/L 9.52 pg/L 1.03 pg/L	EB23-SA5DN-SB-080311		

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB23-SA5DN-SB-080311(RES)	1,2,3,4,6,7,8-HPCDD	3.78 pg/L	3.78U pg/L
EB23-SA5DN-SB-080311(RES)	1,2,3,4,6,7,8-HPCDF	0.491 pg/L	0.491U pg/L
EB23-SA5DN-SB-080311(RES)	1,2,3,4,7,8,9-HPCDF	0.350 pg/L	0,350U pg/L
EB23-SA5DN-SB-080311(RES)	1,2,3,4,7,8-HXCDF	0.211 pg/L	0.211U pg/L
EB23-SA5DN-SB-080311(RES)	1,2,3,6,7,8-HXCDD	0.339 pg/L	0.339U pg/L
EB23-SA5DN-SB-080311(RES)	1,2,3,7,8-PECDD	0.493 pg/L	0.493U pg/L
EB23-SA5DN-SB-080311(RES)	1,2,3,7,8-PECDF	0.557 pg/L	0.557U pg/L
EB23-SA5DN-SB-080311(RES)	2,3,4,6,7,8-HXCDF	0.256 pg/L	0.256U pg/L
EB23-SA5DN-SB-080311(RES)	2,3,4,7,8-PECDF	0.634 pg/L	0.634U pg/L
EB23-SA5DN-SB-080311(RES)	OCDD	8.38 pg/L	8.38U pg/L
EB23-SA5DN-SB-080311(RES)	OCDF	0.812 pg/L	0.812U pg/L

	,			7.0120 pg/c
Method: 1613 Matrix: SO	B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2290B371948	8/18/2011 7:48:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDF CCDD OCDF	0.0532 ng/Kg 0.0269 ng/Kg 0.0255 ng/Kg 0.0255 ng/Kg 0.0273 ng/Kg 0.0273 ng/Kg 0.0177 ng/Kg 0.0242 ng/Kg 0.0309 ng/Kg 0.0322 ng/Kg 0.0101 ng/Kg 0.0227 ng/Kg 0.0441 ng/Kg 0.0189 ng/Kg 0.0507 ng/Kg 0.138 ng/Kg	DUP23-SA5DN-QC-080411 SL-002-SA6-SB-4.0-5.0 SL-003-SA6-SB-9.0-10.0 SL-003-SA6-SB-9.0-5.0 SL-003-SA6-SB-8.5-9.5 SL-004-SA6-SB-1.5-2.5 SL-011-SA6-SB-0.5-1.5 SL-185-SA5DN-SB-4.0-5.0 SL-185-SA5DN-SB-9.0-10.0 SL-188-SA5DN-SB-4.0-5.0 SL-189-SA5DN-SB-4.0-5.0 SL-189-SA5DN-SB-4.0-5.0 SL-193-SA5DN-SB-9.0-10.0 SL-193-SA5DN-SB-9.0-10.0 SL-193-SA5DN-SB-9.0-10.0 SL-193-SA5DN-SB-9.0-10.0 SL-193-SA5DN-SB-4.0-5.0 SL-193-SA5DN-SB-4.0-5.0 SL-193-SA5DN-SB-9.0-10.0

12/21/2011 11:54:48 AM ADR version 1.4.0.111 Page 1 of 4

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP23-SA5DN-QC-080411(RES)	1,2,3,4,6,7,8-HPCDD	0.553 ng/Kg	0.553U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,4,6,7,8-HPCDF	0.0922 ng/Kg	0,0922U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,4,7,8,9-HPCDF	0.0292 ng/Kg	0.0292U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,4,7,8-HxCDD	0.0395 ng/Kg	0.0395U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,4,7,8-HXCDF	0.0860 ng/Kg	0.0860U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,6,7,8-HXCDD	0.0993 ng/Kg	0.0993U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,6,7,8-HXCDF	0,0697 ng/Kg	0.0697U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,7,8-PECDD	0.0762 ng/Kg	0.0762U ng/Kg
DUP23-SA5DN-QC-080411(RES)	2,3,4,6,7,8-HXCDF	0.0467 ng/Kg	0.0467U ng/Kg
DUP23-SA5DN-QC-080411(RES)	2,3,4,7,8-PECDF	0,125 ng/Kg	0.125U ng/Kg
DUP23-SA5DN-QC-080411(RES)	2,3,7,8-TCDF	0.0436 ng/Kg	0.0436U ng/Kg
DUP23-SA5DN-QC-080411(RES)	OCDF	0.251 ng/Kg	0.251U ng/Kg
SL-002-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.126 ng/Kg	0.126U ng/Kg
SL-002-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0984 ng/Kg	0.0984U ng/Kg
SL-002-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0749 ng/Kg	0.0749U ng/Kg
SL-003-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0728 ng/Kg	0.0728U ng/Kg
SL-003-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0997 ng/Kg	0.0997U ng/Kg
SL-003-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0835 ng/Kg	0.0835U ng/Kg
SL-003-SA6-SB-4.0-5,0(RES)	2,3,7,8-TCDF	0.0893 ng/Kg	0.0893U ng/Kg
SL-003-SA6-SB-8.5-9.5(RES)	1,2,3,4,7,8-HxCDD	0.0873 ng/Kg	0.0873U ng/Kg
SL-003-SA6-SB-8.5-9.5(RES)	1,2,3,7,8,9-HXCDF	0.106 ng/Kg	0.106U ng/Kg
SL-003-SA6-SB-8.5-9.5(RES)	1,2,3,7,8-PECDD	0.0489 ng/Kg	0.0489U ng/Kg
SL-004-SA6-SB-1.5-2.5(RES)	1,2,3,4,7,8-HxCDD	0.0871 ng/Kg	0.0871U ng/Kg
SL-004-SA6-SB-1.5-2.5(RES)	1,2,3,7,8,9-HXCDF	0.0347 ng/Kg	0.0347U ng/Kg
SL-004-SA6-SB-1.5-2.5(RES)	1,2,3,7,8-PECDD	0.0272 ng/Kg	0.0272U ng/Kg
SL-004-SA6-SB-1.5-2.5(RES)	2,3,4,7,8-PECDF	0.120 ng/Kg	0.120U ng/Kg
SL-004-SA6-SB-1.5-2.5(RES)	2,3,7,8-TCDF	0,0152 ng/Kg	0.0152U ng/Kg
SL-011-SA6-SB-0.5-1.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0846 ng/Kg	0.0846U ng/Kg
SL-011-SA6-SB-0.5-1,5(RES)	1,2,3,4,7,8-HxCDD	0,0570 ng/Kg	0.0570U ng/Kg
SL-011-SA6-SB-0.5-1.5(RES)	1,2,3,7,8,9-HXCDF	0.0612 ng/Kg	0.0612U ng/Kg
SL-011-SA6-SB-0.5-1.5(RES)	2,3,4,6,7,8-HXCDF	0,0810 ng/Kg	0.0810U ng/Kg
SL-011-SA6-SB-0.5-1.5(RES)	OCDF	0.657 ng/Kg	0.657U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.411 ng/Kg	0.411U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0610 ng/Kg	0.0610U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0,0534 ng/Kg	0.0534U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0172 ng/Kg	0.0172U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0240 ng/Kg	0.0240U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0521 ng/Kg	0.0521U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0204 ng/Kg	0.0204U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0612 ng/Kg	0.0612U ng/Kg

Lab Reporting Batch ID: DX124

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				Alexandrocal posteric
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0932 ng/Kg	0.0932U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0146 ng/Kg	0.0146U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0223 ng/Kg	0.0223U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0216 ng/Kg	0.0216U ng/Kg
SL-185-SA5DN-SB-4,0-5.0(RES)	2,3,4,7,8-PECDF	0.0530 ng/Kg	0.0530U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	OCDD	1.18 ng/Kg	1.18U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	OCDF	0.194 ng/Kg	0.194U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.436 ng/Kg	0.436U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0605 ng/Kg	0.0605U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0455 ng/Kg	0.0455U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0288 ng/Kg	0.0288U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0143 ng/Kg	0.0143U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0141 ng/Kg	0.0141U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0348 ng/Kg	0.0348U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0383 ng/Kg	0.0383U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0205 ng/Kg	0.0205U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0136 ng/Kg	0.0136U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0,0127 ng/Kg	0.0127U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0385 ng/Kg	0.0385U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0114 ng/Kg	0.0114U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	OCDF	0.303 ng/Kg	0.303U ng/Kg
SL-188-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.516 ng/Kg	0.516U ng/Kg
SL-188-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.147 ng/Kg	0.147U ng/Kg
SL-188-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0849 ng/Kg	0.0849U ng/Kg
SL-188-\$A5DN-SB-4.0-5.0(RES)	OCDD	1.93 ng/Kg	1.93U ng/Kg
SL-188-SA5DN-SB-4.0-5.0(RES)	OCDF	0,295 ng/Kg	0.295U ng/Kg
SL-188-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.904 ng/Kg	0.904U ng/Kg
SL-188-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0,203 ng/Kg	0.203U ng/Kg
SL-188-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0855 ng/Kg	0.0855U ng/Kg
SL-188-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0,106 ng/Kg	0.106U ng/Kg
SL-188-SA5DN-SB-9.0-10.0(RES)	OCDF	0.445 ng/Kg	0.445U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.535 ng/Kg	0.535U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0913 ng/Kg	0.0913U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0461 ng/Kg	0.0461U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0112 ng/Kg	0.0112U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0910 ng/Kg	0.0910U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0686 ng/Kg	0.0686U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0249 ng/Kg	0.0249U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0182 ng/Kg	0.0182U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0404 ng/Kg	0.0404U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:54:48 AM

ADR version 1.4.0.111

Laboratory: LL

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B		and the second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	herioologick o diku	
Matrix:	so				Tarristanting of Language Comment
Method Blani	<				Associated
Sample ID		Analysis Date	Analyte	Result	Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-189-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.115 ng/Kg	0.115U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0754 ng/Kg	0.0754U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	OCDF	0.221 ng/Kg	0.221U ng/Kg
SL-189-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.261 ng/Kg	0,261U ng/Kg
SL-189-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.133 ng/Kg	0.133U ng/Kg
SL-189-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0690 ng/Kg	0.0690U ng/Kg
SL-189-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.120 ng/Kg	0.120U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.134 ng/Kg	0.134U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0462 ng/Kg	0.0462U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0,0868 ng/Kg	0.0868U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0417 ng/Kg	0.0417U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0374 ng/Kg	0.0374U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.104 ng/Kg	0.104U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0,195 ng/Kg	0.195U ng/Kg
SL-204-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0,129 ng/Kg	0.129U ng/Kg
SL-204-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.115 ng/Kg	0.115U ng/Kg
SL-204-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.688 ng/Kg	0.688U ng/Kg
SL-204-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.134 ng/Kg	0.134U ng/Kg
SL-204-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0672 ng/Kg	0.0672U ng/Kg
SL-204-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0929 ng/Kg	0.0929U ng/Kg
SL-204-\$A5DN-\$B-9.0-10.0(RE\$)	2,3,4,6,7,8-HXCDF	0.0769 ng/Kg	0.0769U ng/Kg
SL-204-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.195 ng/Kg	0.195U ng/Kg
SL-204-\$A5DN-\$B-9,0-10,0(RE\$)	2,3,7,8-TCDF	0.0890 ng/Kg	0.0890U ng/Kg
SL-204-SA5DN-SB-9.0-10.0(RES)	OCDF	0.274 ng/Kg	0.274U ng/Kg

Page 4 of 4

#### Field Duplicate RPD Report

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509 Method: 1603M

Matrix: SO	Tide to the present about the north section of the presente	The factor was proper at the first feet for the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	. 16-4 secularitansi	edramora and other parameters and sense
	Concenti	Concentration (%)			
Analyte	SL-189-SA5DN-SB-4.0- 5.0	DUP23-SA5DN-QC- 080411	Sample RPD		Flag
MOISTURE	9.0	9.8	9		No Qualifiers Applied

Method: 1613B Matrix: SO		ne literaturate an sitema portuguira			A Marchaell Pharaceults
	Concentrat	ion (ng/Kg)			
Analyte	SL-189-SA5DN-SB-4.0- 5.0	DUP23-SA5DN-QC- 080411	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD	0.535	0.553	3	50.00	
1,2,3,4,6,7,8-HPCDF	0.0913	0.0922	1	50.00	
1,2,3,4,7,8,9-HPCDF	0.0461	0.0292	45	50.00	
1,2,3,4,7,8-HXCDF	0.0910	0.0860	6	50.00	
1,2,3,6,7,8-HXCDD	0.0686	0.0993	37	50.00	
1,2,3,7,8,9-HXCDD	0.176	0.163	8	50.00	No Qualifiers Applied
1,2,3,7,8,9-HXCDF	0.227	0.193	16	50.00	
1,2,3,7,8-PECDF	0.231	0.178	26	50.00	
2,3,4,6,7,8-HXCDF	0.0404	0.0467	14	50.00	
2,3,4,7,8-PECDF	0.115	0.125	8	50.00	
OCDF	0.221	0.251	13	50.00	
1,2,3,4,7,8-HxCDD	0.0112	0.0395	112	50.00	
1,2,3,6,7,8-HXCDF	0.0249	0.0697	95	50.00	
1,2,3,7,8-PECDD	0.0182	0.0762	123	50.00	J(all detects)
2,3,7,8-TCDD	1.05 U	0.0290	200	50.00	UJ(all non-detects)
2,3,7,8-TCDF	0.0754	0.0436	53	50.00	1
OCDD	2.91	5.41	60	50.00	-

12/21/2011 11:53:27 AM Page 1 of 1

Lab Reporting Batch ID: DX124

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method: 1613B

Matrix: AC

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB23-SA5DN-SB-080311	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0CDD 0CDF		3.78 0.491 0.350 0.216 0.211 0.339 0.263 0.493 0.557 0.256 0.634 8.38 0.812	11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613B

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
							r-ray
DUP23-SA5DN-QC-080411	1,2,3,4,6,7,8-HPCDD	JB	0.553	5.31	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0922	5.31	PQL	ng/Kg	•
	1,2,3,4,7,8,9-HPCDF	JB	0.0292	5.31	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0395	5.31	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0860	5.31	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0993	5.31	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0697	5.31	PQL	ng/Kg	
1	1,2,3,7,8,9-HXCDD	JB	0.163	5.31	PQL	ng/Kg	
Ì	1,2,3,7,8,9-HXCDF	JB	0.193	5.31	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0762	5.31	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JΒ	0.178	5.31	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0467	5.31	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JВ	0.125	5.31	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0290	1.06	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0436	1.06	PQL	ng/Kg	
	OCDD	JB	5.41	10.6	PQL	ng/Kg	
	OCDF	JBQ	0.251	10.6	PQL	ng/Kg	
SL-002-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	4.99	5.53	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.983	5.53	PQL	ng/Kg	
•	1,2,3,4,7,8-HxCDD	JB	0.126	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.521	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.31	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.305	5.53	PQL	ng/Kg	
,	1,2,3,7,8,9-HXCDD	JB	0.496	5.53	PQL	ng/Kg	17-11-1-44-3
	1,2,3,7,8,9-HXCDF	JB	0.174	5.53	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.209	5.53	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	1.13	5.53	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.358	5.53	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.812	5.53	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0335	1.11	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.256	1.11	PQL	ng/Kg	

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-002-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		3.89 0.773 0.0984 0.681 0.826 0.423 0.295 0.167 0.0749 2.82 0.345 1.67 0.0170 0.323 10.8	5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-003-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD		2.73 0.560 0.0728 0.319 0.650 0.212 0.268 0.0997 0.0835 0.409 0.229 0.505 0.0327 0.0893 7.17	5.85 5.85 5.85 5.85 5.85 5.85 5.85 5.85	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-003-SA6-SB-8.5-9.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	a a a a a a a a a a a a a a a a a a a	2.67 0.521 0.0873 0.412 0.690 0.214 0.263 0.106 0.0489 0.354 0.251 0.715 0.0352 0.264 7.76	5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX124

EDD Filename: DX124_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B

,							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-004-SA6-SB-1.5-2.5	1,2,3,4,6,7,8-HPCDF	JB	2.86	5.15	PQL	ng/Kg	
02 00 1 07 10 02 7:0 2:0	1.2.3.4.7.8.9-HPCDF	JB	0.490	5.15	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0871	5.15	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.199	5.15	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.722	5.15	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.143	5.15	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.249	5.15	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0347	5.15	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0272	5.15	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0840	5.15	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.181	5.15	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.120	5.15	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0138	1.03	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0152	1.03	PQL	ng/Kg	
	OCDF	JB	8.66	10.3	PQL	ng/Kg	
SL-011-SA6-SB-0.5-1.5	1,2,3,4,6,7,8-HPCDD	JB	1.77	5.27	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.324	5.27	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0846	5.27	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0570	5.27	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.165	5.27	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.197	5.27	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0916	5.27	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.157	5.27	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.0612	5.27	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.118	5.27	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0907	5.27	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	JB JB	0.0810 0.371	5.27	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.371	5.27 1.05	PQL PQL	ng/Kg	
	OCDF	JB	0.0363	10.5	PQL	ng/Kg ng/Kg	
01 405 045011 00 40 50				l			
SL-185-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.411	5.72	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0610	5.72	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0534	5.72	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0172	5.72	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JB JBQ	0.0240 0.0521	5.72 5.72	PQL PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0321	5.72	-	ng/Kg   ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0204	5.72	PQL PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0012	5.72	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0332	5.72	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0223	5.72	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0216	5.72	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0530	5.72	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0159	1.14	PQL	ng/Kg	
	OCDD	JВ	1.18	11.4	PQL	ng/Kg	
	OCDF	JBQ	0.194	11.4	PQL	ng/Kg	

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Metriod: 1613E

		1 - 6		[			
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-185-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.436	5.71	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0605	5.71	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0455	5.71	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0288	5.71	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0143	5.71	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0141	5.71	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0348	5.71	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.0383	5.71	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0305	5.71	PQL	ng/Kg	J (all delects)
	1,2,3,7,8-PECDF	JB	0.0203	5.71	PQL		
	2,3,4,6,7,8-HXCDF	JBQ	0.0130			ng/Kg	
	2,3,4,7,8-PECDF			5.71	PQL	ng/Kg	
ļ		JB	0.0385	5.71	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0114	1.14	PQL	ng/Kg	
	OCDD	JB	2.94	11.4	PQL	ng/Kg	
	OCDF	JB	0.303	11.4	PQL	ng/Kg	
SL-188-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.516	5.73	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.147	5.73	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JВ	0.0849	5.73	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.154	5.73	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JВ	0.263	5.73	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.170	5.73	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.214	5.73	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JВ	0.152	5.73	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JВ	0.200	5.73	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.298	5.73	PQL	ng/Kg	v (un uotocto)
	1,2,3,7,8-PECDF	JB	0.352	5.73	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.147	5.73	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.339	5.73	PQL	ng/Kg	
	2,3,7,8-TCDD	j	0.0952	1.15	PQL		
	2,3,7,8-TCDF	JB	0.0952	1.15	PQL PQL	ng/Kg ng/Kg	
	OCDD	JB JB					
	OCDF		1.93	11.5	PQL	ng/Kg	
01 400 045011 00 0 0 40 0		JB	0.295	11.5	PQL	ng/Kg	
SL-188-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.904	5.57	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.203	5.57	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0855	5.57	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.106	5.57	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.239	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.153	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.183	5.57	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.182	5.57	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.218	5.57	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.192	5.57	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.431	5.57	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.121	5.57	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.304	5.57	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0764	1.11	PQL	ng/Kg	
	2,3,7,8-TCDF	JВ	0.137	1.11	PQL	ng/Kg	
	OCDD	JB	6.68	11.1	PQL	ng/Kg	
	OCDF	JB	0.445	11.1	PQL	ng/Kg	
	0001	JD.	0.440	11.1	ר עב	ngmy	

Lab Reporting Batch ID: DX124

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX124_v1

Method: 1613B

		Lab		Reporting	RL	<del></del>	
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-189-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.535	5.24	PQL	ng/Kg	
3E-103-3A3D14-3D-4.0-3.0	1,2,3,4,6,7,8-HPCDF	JB	0.033	5.24	PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0461	5.24	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0112	5.24	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0910	5.24	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0686	5.24	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0249	5.24	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.176	5.24	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.227	5.24	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0182	5.24	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.231	5.24	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0404	5.24	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.115	5.24	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0754	1.05	PQL	ng/Kg	
	OCDD	JB	2.91	10.5	PQL	ng/Kg	
	OCDF	JB	0.221	10.5	PQL	ng/Kg	
SL-189-SA5DN-SB-9.0-10.0		JB	1.36	5.67	PQL	<del></del>	
0.01-0.8-dC-MGCAC-801-3C	1,2,3,4,6,7,8-HPCDF					ng/Kg	
	1,2,3,4,0,7,8-HPCDF	JB JB	0.261	5.67	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.133 0.0690	5.67 5.67	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF				PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB JB	0.295 0.120	5.67 5.67	PQL PQL	ng/Kg	
		JB				ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.129	5.67	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD		0.146	5.67	PQL	ng/Kg	1.7-11.4-1-1-3
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JB	0.177	5.67	PQL.	ng/Kg	J (all detects)
		JB	0.120	5.67	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.643	5.67	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.138	5.67	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.237	5.67	PQL	ng/Kg	
	2,3,7,8-TCDD 2,3,7,8-TCDF	JQ	0.0229	1.13	PQL	ng/Kg	
	IOCDD	JB JB	0.188	1.13	PQL	ng/Kg	
	OCDF	JB JB	8.78	11.3	PQL	ng/Kg	
			0.717	11.3	PQL	ng/Kg	
SL-193-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	2.81	5.56	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.357	5.56	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.141	5.56	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.313	5.56	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.542	5.56	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.208	5.56	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.307	5.56	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.161	5.56	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.150	5.56	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.588	5.56	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.268	5.56	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.403	5.56	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0357	1.11	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.167	1.11	PQL	ng/Kg	
	OCDF	JB	8.65	11.1	PQL	ng/Kg	

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613E

Watrix: SU							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-193-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	5.16	5.57	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.806	5.57	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.134	5.57	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0462	5.57	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.153	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.220	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0868	5.57	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JB	0.127	5.57	PQL	ng/Kg	J (all delects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0417	5.57	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	0.0374	5.57	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.136	5.57	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.104	5.57	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.195	5.57	PQL	ng/Kg	
	OCDF	JB	2.12	11.1	PQL	ng/Kg	
SL-204-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	3.02	5.51	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.600	5.51	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.129	5.51	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.115	5.51	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.453	5.51	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.291	5.51	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.165	5.51	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.437	5.51	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.404	5.51	PQL	ng/Kg	o (an detecto)
	1,2,3,7,8-PECDD	JB	0.173	5.51	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.516	5.51	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.168	5.51	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.394	5.51	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0495	1.10	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.171	1.10	PQL	ng/Kg	
	OCDF	JB	1.52	11.0	PQL	ng/Kg	
SL-204-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.688	5.85	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JВ	0.134	5.85	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0672	5.85	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0929	5.85	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.150	5.85	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.146	5.85	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.104	5.85	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.233	5.85	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.311	5.85	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.154	5.85	PQL	ng/Kg	•
	1,2,3,7,8-PECDF	JBQ	0.248	5.85	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0769	5.85	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.195	5.85	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0436	1.17	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0890	1.17	PQL	ng/Kg	
	OCDD	JB	4.26	11.7	PQL	ng/Kg	
_	OCDF	JB	0.274	11.7	PQL	ng/Kg	

## **SAMPLE DELIVERY GROUP**

**DX125** 

## Attachment I

Sample ID Cross Reference and Data Review Level

## **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
04-Aug-2011	SL-014-SA6-SB-4.0-5.0	6366548	N	METHOD	1613B	Iff
04-Aug-2011	SL-014-SA6-SB-9.0-10.0	6366549	N	METHOD	1613B	111
04-Aug-2011	SL-025-SA6-SB-4.0-5.0	6366556	N	METHOD	1613B	Ш
04-Aug-2011	SL-025-SA6-SB-9.0-10.0	6366557	N	METHOD	1613B	Ш
04-Aug-2011	SL-019-SA6-SB-4.0-5.0	6366550	N	METHOD	1613B	III
04-Aug-2011	SL-019-SA6-SB-4.0-5.0 MS	6366551	MS	METHOD	1613B	Ш
04-Aug-2011	SL-019-SA6-SB-4.0-5.0 MSD	6366552	MSD	METHOD	1613B	III
04-Aug-2011	DUP11-SA6-QC-080411	6366558	FD	METHOD	1613B	Ш
04-Aug-2011	SL-019-SA6-SB-9.0-10.0	6366553	N	METHOD	1613B	111
04-Aug-2011	SL-006-SA6-SB-4.0-5.0	6366546	N	METHOD	1613B	III
04-Aug-2011	SL-006-SA6-SB-9.0-10.0	6366547	N	METHOD	1613B	11)
04-Aug-2011	SL-024-SA6-SB-4.0-5.0	6366554	N	METHOD	1613B	III
04-Aug-2011	SL-024-SA6-SB-9.0-10.0	6366555	N	METHOD	1613B	Ш
05-Aug-2011	SL-010-SA6-SB-4.0-5.0	6367765	N	METHOD	1613B	111
05-Aug-2011	SL-198-SA5DN-SB-4.0-5.0	6367772	N	METHOD	1613B	Ш
05-Aug-2011	SL-198-SA5DN-SB-9.0-10.0	6367773	N	METHOD	1613B	111
05-Aug-2011	SL-023-SA6-SB-0.0-1.0	6367767	N	METHOD	1613B	111
05-Aug-2011	SL-022-SA6-SB-0.0-1.0	6367766	N	METHOD	1613B	III
05-Aug-2011	SL-060-SA5DN-SB-4.0-5.0	6367770	N	METHOD	1613B	Iti
05-Aug-2011	SL-060-SA5DN-SB-7.0-8.0	6367771	N	METHOD	1613B	111
05-Aug-2011	SL-114-SA6-SB-4.0-5.0	6367768	N	METHOD	1613B	111
05-Aug-2011	SL-114-SA6-SB-9.0-10.0	6367769	N	METHOD	1613B	111

## Attachment II

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA	kaltukterika kalunda biranda di atrica di mulu	antinia da colog	n na 1945, an sa shini ka marana na kadhara shi an an an an an an an an An an an an an an an an an an an an an an
Method:	1613B	Matrix:	SO	

Sample ID: DUP11-SA6-QC-080411	Collec	ted: 8/4/20	11 11:10:0	00 A	nalysis T	/pe: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Quai	Reason Code
1,2,3,4,7,8,9-HPCDF	2.05	JB	0.113	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.270	JB	0.0981	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.928	J	0.0921	MDL	5.41	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDD	2.23	J	0.101	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.798	J	0.0828	MDL	5.41	PQL	ng/Kg	J	Ž, FD
1,2,3,7,8,9-HXCDD	0.602	JQ	0.0959	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.189	JBQ	0.0928	MDL	5.41	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8-PECDD	0.148	JQ	0.0803	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.755	JQ	0.0574	MDL	5.41	POL	ng/Kg	J	Z, FD
2,3,4,6,7,8-HXCDF	0.967	JQ	0.0854	MDL	5.41	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.603	JBQ	0.0566	MDL,	5.41	PQL	ng/Kg	J	Z, FD
2,3,7,8-TCDF	0.274	JQ	0.0996	MDL	1.08	PQL	ng/Kg	J	Z, FD
OCDD	1990	В	0.214	MDL	10.8	PQL	ng/Kg	J	FD
OCDF	25.2	В	0.0788	MDL	10.8	PQL	ng/Kg	J	FD

Analyte	Lab Result	Lab Qual	DL.	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.363	JB	0.0966	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0438	JBQ	0.0420	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0814	JQ	0.0432	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.0770	JQ	0.0570	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0503	JBQ	0.0465	MDL	5.44	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0454	JBQ	0.0430	MDL	5.44	PQL	ng/Kg	υ	В
OCDD	0.691	JB	0.0473	MDL	10.9	PQL	ng/Kg	U	В
OCDF	0.119	JBQ	0.0917	MDL	10.9	PQL	ng/Kg	υ	В

Sample ID: SL-006-SA6-SB-9.0-10.0 Collected: 8/4/2011 11:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.488	JBQ	0.0768	MDL	5.63	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0850	JBQ	0.0277	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0465	JBQ	0.0457	MDL	5.63	PQL	ng/Kg	υ	В
I,2,3,6,7,8-HXCDD	0.253	JQ	0.0602	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0651	JQ	0.0408	MDL	5.63	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM ADR version 1.4.0.111 Page 1 of 12

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-006-SA6-SB-9.0-10.0	Collec	Collected: 8/4/2011 11:50:00 A					Analysis Type: RES				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,7,8,9-HXCDD	0.437	JQ	0.0584	MDL	5.63	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.588	JBQ	0.0484	MDL	5.63	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.0975	JQ	0.0437	MDL	5.63	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.0721	JBQ	0.0448	MDL	5.63	PQL	ng/Kg	U	В		
OCDD	1.11	JB	0.0483	MDL	11.3	PQL	ng/Kg	U	В		
OCDF	0.205	JBQ	0.0782	MDL	11.3	POL	na/Ka	IJ	В		

Sample ID: SL-010-SA6-SB-4.0-5.0 Collected: 8/5/2011 8:05:00 AM Analysis Type: RES Dilution: 1

oumple 15. oz-010-0710-05-4.0-0.0	Dilution.								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.330	JB	0.0856	MDL	5.58	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0907	JBQ	0.0329	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0765	JQ	0.0611	MDL	5.58	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0506	JQ	0.0308	MDL	5.58	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0469	JBQ	0.0290	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0612	JQ	0.0441	MDL	5.58	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0482	JBQ	0.0419	MDL	5.58	PQL	ng/Kg	U	В
OCDD	1.09	JBQ	0.0707	MDL	11.2	PQL	ng/Kg	U	В
OCDF	0.106	JBQ	0.0906	MDL	11.2	PQL	ng/Kg	U	В

Sample ID: SL-014-SA6-SB-4.0-5.0 Collected: 8/4/2011 7:55:00 AM Analysis Type: RES Dilution: 1

outspie in: or-old-ove-or-are-org	Conec	(CO. 0/4/20	11 7.55.00	AUI A	naiyaia i	ype. KLJ		Dilation.			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL. Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDF	4.09	JB	0.0578	MDL	5.51	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.920	JB	0.0909	MDL.	5.51	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	0.452	JQ	0.0821	MDL	5.51	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	0.933	J	0.0997	MDL	5.51	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.311	JQ	0.0674	MDL	5.51	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.302	J	0.0960	MDL	5.51	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.101	JBQ	0.0559	MDL	5.51	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	1.67	JQ	0.0677	MDL	5.51	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.293	J	0.0716	MDL	5.51	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.268	JBQ	0.0652	MDL	5.51	PQL	ng/Kg	U	В		
2,3,7,8-TCDF	0.185	JQ	0.150	MDL	1.10	PQL	ng/Kg	J	Z		
OCDF	9.75	JB	0.0863	MDL.	11.0	PQL	ng/Kg	j	Z		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM ADR version 1.4.0.111 Page 2 of 12

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-014-SA6-SB-9.0-10.0	Collec	ted: 8/4/20	11 8:00:00	AM A	nalysis Tj	/pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	1.22	JBQ	0.132	MDL	5.50	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.188	JBQ	0.119	MDL	5.50	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.684	JQ	0.0989	MDL	5.50	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	2.00	J	0.126	MDL	5.50	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.354	J	0.0828	MDL	5.50	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.721	J	0.119	MDL	5.50	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.213	JBQ	0.0642	MDL	5.50	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.150	JQ	0.0930	MDL	5.50	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.843	JQ	0.0912	MDL	5.50	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.553	JQ	0.0849	MDL	5.50	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.383	JB	0.0855	MDL	5.50	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.356	JQ	0.183	MDL	1.10	PQL	ng/Kg	J	Z	

 Sample ID: SL-019-SA6-SB-4.0-5.0
 Collected: 8/4/2011 11:05:00
 Analysis Type: REA
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	1.79	С	0.0502	MDL	1.08	PQL	ng/Kg	J	FD

Sample ID: SL-019-SA6-SB-4.0-5.0 Collected: 8/4/2011 11:05:00 Analysis Type: RES Dilution: 1

	• • • • • • • • • • • • • • • • • • • •				, 4.4 .,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Dianom			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	1.54	JB	0.0802	MDL	5.41	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.230	JBQ	0.0941	MDL	5.41	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	8.24		0.0919	MDL	5.41	PQL	ng/Kg	J	FD	
1,2,3,6,7,8-HXCDD	1.79	J	0.0913	MDL	5.41	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	2.63	J	0.0838	MDL	5.41	PQL	ng/Kg	J	Z, FD	
1,2,3,7,8,9-HXCDD	0.553	J	0.0898	MDL	5.41	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.717	JB	0.0709	MDL	5.41	PQL	ng/Kg	J	Z, FD	
1,2,3,7,8-PECDD	0.170	JQ	0.0993	MDL	5.41	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	1.69	J	0.0839	MDL	5.41	PQL	ng/Kg	J	Z, FD	
2,3,4,6,7,8-HXCDF	1.52	J	0.0780	MDL	5.41	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	3.13	JB	0.0761	MDL	5.41	PQL	ng/Kg	J	Ž, FD	
OCDD	1060	В	0.142	MDL	10.8	PQL	ng/Kg	J	FD	
OCDF	14.7	В	0.0664	MDL	10.8	PQL	ng/Kg	J	FD	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM ADR version 1.4.0.111 Page 3 of 12

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	ony biningvola and and a	landetaramational elimination to be a la la la la la la la la la la la la l	a and a	
Method:	1613B	Matrix:	so	er i versione i terre per gri

Sample ID: SL-019-SA6-SB-9.0-10.0	Collec	Collected: 8/4/2011 11:15:00						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	2.18	JB	0.0576	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.480	JBQ	0.0858	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.153	JBQ	0.0808	MDL	5.48	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HXCDF	0.346	J	0.0765	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.650	J	0.0814	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.328	JQ	0.0675	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.300	JQ	0.0807	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.120	JB	0.0591	MDL	5.48	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.338	JQ	0.0833	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.613	JQ	0.0602	MDL	5.48	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.370	J	0.0699	MDL	5.48	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.430	JBQ	0.0577	MDL	5.48	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.157	JQ	0.122	MDL	1.10	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.138	JQ	0.130	MDL,	1.10	PQL	ng/Kg	L	Z	
OCDF	5.23	JB	0.0819	MDL	11.0	PQL	ng/Kg	J	Z	

Sample ID: SL-022-SA6-SB-0.0-1.0 Collected: 8/5/2011 10:30:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.48	JBQ	0.102	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.353	JQ	0.0763	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.322	JQ	0.0754	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0960	JQ	0.0878	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	4.68	J	0.138	MDL	5.23	PQL	ng/Kg	J	Z

Sample ID: SL-023-SA6-SB-0.0-1.0 Collected: 8/5/2011 10:00:00 Analysis Type: RES Dilution: 1

Analyte	Ləb Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.71	JB	0.0423	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.161	JBQ	0.0630	MDL	5.17	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0862	JBQ	0.0771	MDL	5.17	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.183	JQ	0.0568	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.282	JQ	0.0752	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.152	JQ	0.0459	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.252	JQ	0.0716	MDL	5.17	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM ADR version 1.4.0.111 Page 4 of 12

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method Categor	yadana (SIV/O)A kanda lakka	
Method:	1613B	Matrix: SO

Sample ID: SL-023-SA6-SB-0.0-1.0	Collec	Collected: 8/5/2011 10:00:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDD	0.114	JQ	0.0669	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.522	J	0.0488	MDL	5.17	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.196	JQ	0.0567	MDL	5.17	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.198	JBQ	0.0465	MDL	5.17	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.106	JQ	0.100	MDL	1.03	PQL	ng/Kg	J	Z

Sample ID: SL-024-SA6-SB-4.0-5.0 Collected: 8/4/2011 2:50:00 PM Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Analyte Result Qual DL Type RLТуре Units Qual Code 1,2,3,4,6,7,8-HPCDD 0.355 JBQ 0.0619 MDL **PQL** U 5.39 ng/Kg В 1,2,3,4,6,7,8-HPCDF 0.108 JB 0.0250 MDL 5.39 PQL ng/Kg U В 1,2,3,4,7,8,9-HPCDF U 0.0710 JΒ 0.0326 MDL 5.39 **PQL** ng/Kg В 1,2,3,4,7,8-HxCDD 0.169 JBQ 0.0502 5.39 PQL U В MDL ng/Kg 1,2,3,4,7,8-HXCDF 0.158 JQ 0.0342 MDL. PQL J 5.39 ng/Kg Z 1,2,3,6,7,8-HXCDD 0.170 JQ 0.0517 MDL 5.39 PQL J ng/Kg Z 1,2,3,6,7,8-HXCDF 0.209 J 0.0318 MDL 5.39 **PQL** J z ng/Kg 1,2,3,7,8,9-HXCDD 0.221 JQ 0.0501 MDL 5.39 PQL J Z ng/Kg 1,2,3,7,8,9-HXCDF 0.184 JΒ 0.0303 MDL 5.39 **PQL** U В ng/Kg 1,2,3,7,8-PECDD 0.317 JQ 0.0622 MDL 5.39 **PQL** ng/Kg J Z JQ z 1,2,3,7,8-PECDF 0.312 0.0386 MDL 5.39 **PQL** J ng/Kg 2,3,4,6,7,8-HXCDF 0.0956 JQ 0.0317 MDL 5.39 **PQL** ng/Kg J Z 2,3,4,7,8-PECDF 0.409 JB 0.0356 MDL 5.39 **PQL** J Z ng/Kg 2,3,7,8-TCDD J Z 0.149 0.104 MDL, 1.08 **PQL** ng/Kg 2,3,7,8-TCDF 0.120 JQ 0.0810 MDL 1.08 **PQL** ng/Kg J z OCDD JΒ U

JBQ

0.0457

0.0652

MDL

MDL

10.8

10.8

**PQL** 

**PQL** 

ng/Kg

ng/Kg

U

1.21

0.228

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	2.83	JB	0.0794	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	0.412	JB	0.0300	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.0783	JBQ	0.0484	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.103	JBQ	0.0581	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.129	JQ	0.0594	MDL	5.52	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

OCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 12/21/2011 2:46:27 PM ADR version 1.4.0.111 В

В

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-024-SA6-SB-9.0-10.0	Collec	Collected: 8/4/2011 2:55:00 PM Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDF	0.0548	JQ	0.0368	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.110	JQ	0.0568	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0652	JBQ	0.0364	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0409	JQ	0.0364	MDL	5.52	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.0827	JQ	0.0392	MDL	5.52	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.118	JBQ	0.0392	MDL.	5.52	PQL	ng/Kg	U	В	
OCDF	1.08	JB	0.0666	MDL	11.0	PQL	ng/Kg	J	Z	

Sample ID: SL-025-SA6-SB-4.0-5.0 Collected: 8/4/2011 9:00:00 AM Analysis Type: RES Dilution: 1

Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.349	JB	0.0672	MDL	5.32	PQL	ng/Kg	U	В
0.0725	JBQ	0.0238	MDL	5.32	PQL	ng/Kg	U	В
0.0477	JQ	0.0321	MDL	5.32	PQL	ng/Kg	J	Z
0.0550	JBQ	0.0316	MDL	5.32	PQL	ng/Kg	U	В
0.0485	JQ	0.0413	MDL	5.32	PQL	ng/Kg	J	Z
0.0753	JBQ	0.0373	MDL	5.32	PQL	ng/Kg	U	В
0.0981	JQ	0.0910	MDL	1.06	PQL	ng/Kg	J	Z
3.03	JB	0.0383	MDL.	10.6	PQL	ng/Kg	J	Z
0.123	JBQ	0.0675	MDL	10.6	PQL	ng/Kg	U	В
	Result  0.349  0.0725  0.0477  0.0550  0.0485  0.0753  0.0981  3.03	Result         Qual           0.349         JB           0.0725         JBQ           0.0477         JQ           0.0550         JBQ           0.0485         JQ           0.0753         JBQ           0.0981         JQ           3.03         JB	Result         Qual         DL           0.349         JB         0.0672           0.0725         JBQ         0.0238           0.0477         JQ         0.0321           0.0550         JBQ         0.0316           0.0485         JQ         0.0413           0.0753         JBQ         0.0373           0.0981         JQ         0.0910           3.03         JB         0.0383	Result         Qual         DL         Type           0.349         JB         0.0672         MDL           0.0725         JBQ         0.0238         MDL           0.0477         JQ         0.0321         MDL           0.0550         JBQ         0.0316         MDL           0.0485         JQ         0.0413         MDL           0.0753         JBQ         0.0373         MDL           0.0981         JQ         0.0910         MDL           3.03         JB         0.0383         MDL	Result         Qual         DL         Type         RL           0.349         JB         0.0672         MDL         5.32           0.0725         JBQ         0.0238         MDL         5.32           0.0477         JQ         0.0321         MDL         5.32           0.0550         JBQ         0.0316         MDL         5.32           0.0485         JQ         0.0413         MDL         5.32           0.0753         JBQ         0.0373         MDL         5.32           0.0981         JQ         0.0910         MDL         1.06           3.03         JB         0.0383         MDL         10.6	Result         Qual         DL         Type         RL         Type           0.349         JB         0.0672         MDL         5.32         PQL           0.0725         JBQ         0.0238         MDL         5.32         PQL           0.0477         JQ         0.0321         MDL         5.32         PQL           0.0550         JBQ         0.0316         MDL         5.32         PQL           0.0485         JQ         0.0413         MDL         5.32         PQL           0.0753         JBQ         0.0373         MDL         5.32         PQL           0.0981         JQ         0.0910         MDL         1.06         PQL           3.03         JB         0.0383         MDL         10.6         PQL	Result         Qual         DL         Type         RL         Type         Units           0.349         JB         0.0672         MDL         5.32         PQL         ng/Kg           0.0725         JBQ         0.0238         MDL         5.32         PQL         ng/Kg           0.0477         JQ         0.0321         MDL         5.32         PQL         ng/Kg           0.0550         JBQ         0.0316         MDL         5.32         PQL         ng/Kg           0.0485         JQ         0.0413         MDL         5.32         PQL         ng/Kg           0.0753         JBQ         0.0373         MDL         5.32         PQL         ng/Kg           0.0981         JQ         0.0910         MDL         1.06         PQL         ng/Kg           3.03         JB         0.0383         MDL         10.6         PQL         ng/Kg	Lab Result         Lab Qual         DL Type         RL Type         RL Type         RL Type         RL Type         RL Qual           0.349         JB         0.0672         MDL         5.32         PQL         ng/Kg         U           0.0725         JBQ         0.0238         MDL         5.32         PQL         ng/Kg         U           0.0477         JQ         0.0321         MDL         5.32         PQL         ng/Kg         J           0.0550         JBQ         0.0316         MDL         5.32         PQL         ng/Kg         U           0.0485         JQ         0.0413         MDL         5.32         PQL         ng/Kg         J           0.0753         JBQ         0.0373         MDL         5.32         PQL         ng/Kg         U           0.0981         JQ         0.0910         MDL         1.06         PQL         ng/Kg         J           3.03         JB         0.0383         MDL         10.6         PQL         ng/Kg         J

Diduoni.	Sample ID: SL-025-SA6-SB-9.0-10.0	Collected: 8/4/2011 9:05:00 AM	Analysis Type: RES	Dilution: 1
----------	-----------------------------------	--------------------------------	--------------------	-------------

9-1-1-1										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.348	JBQ	0.0683	MDL	5.45	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0625	JBQ	0.0305	MDL	5.45	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0394	JQ	0.0311	MDL	5.45	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.0782	JQ	0.0489	MDL	5.45	PQL	ng/Kg	j	Z	
2,3,4,7,8-PECDF	0.0667	JB	0.0357	MDL	5.45	PQL	ng/Kg	Ü	В	
OCDD	0.822	JBQ	0.0476	MDL	10.9	PQL	ng/Kg	U	В	
OCDF	0.158	JBQ	0.0661	MDL	10.9	PQL	ng/Kg	U	В	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM ADR version 1.4.0.111 Page 6 of 12

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX125

Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method Categor	ye svoata e	
Method:	1613B	Matrix: SO

Sample ID: SL-060-SA5DN-SB-4.0-5.0	Collec	ted: 8/5/20	11 11:32:0	)0 A	Analysis Type: RES			Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.882	JBQ	0.0669	MDL	5.03	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.166	JBQ	0.0191	MDL	5.03	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.111	JBQ	0.0357	MDL	5.03	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HxCDD	0.0699	JBQ	0.0505	MDL	5.03	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0990	J	0.0677	MDL	5.03	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.131	JQ	0.0477	MDL	5.03	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.108	JQ	0.0572	MDL	5.03	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.112	JQ	0.0457	MDL	5.03	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.155	JBQ	0.0583	MDL	5.03	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDF	0.0977	JQ	0.0428	MDL	5.03	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.103	J	0.0618	MDL	5.03	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.0635	JB	0.0440	MDL.	5.03	PQL	ng/Kg	U	В	
OCDD	9.27	JB	0.0567	MDL	10.1	PQL	ng/Kg	J	Z	
OCDF	0.388	JBQ	0.0676	MDL	10.1	PQL	ng/Kg	U	В	

Sample ID: SL-060-SA5DN-SB-7.0-8.0

Collected: 8/5/2011 1:05:00 PM Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.529	JB	0.0693	MDL	5.72	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0815	JBQ	0.0237	MDL	5.72	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0646	JBQ	0.0410	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0519	JQ	0.0461	MDL	5.72	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.0781	JQ	0.0535	MDL	5.72	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0929	JBQ	0.0405	MDL	5.72	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0891	JBQ	0.0427	MDL	5.72	PQL	ng/Kg	U	В
OCDD	4.62	JB	0.0424	MDL	11.4	PQL	ng/Kg	J	Z
OCDF	0.350	JBQ	0.0838	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-114-SA6-SB-4.0-5.0

Collected: 8/5/2011 3:05:00 PM Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.443	JB	0.0714	MDL	5.27	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0830	JВ	0.0256	MDL	5.27	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0852	JQ	0.0377	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.0925	J	0.0515	MDL	5.27	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM

ADR version 1.4.0.111

Page 7 of 12

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B		Matrix:	SO
Method Catego	ry ⊪ SVOA	<b>Problem</b>		aj displanta

Sample ID: SL-114-SA6-SB-4.0-5.0	Collec	Collected: 8/5/2011 3:05:00 PM Analysis Type: RES									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,6,7,8-HXCDF	0.0316	JQ	0.0305	MDL	5.27	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.187	J	0.0496	MDL	5.27	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.0780	JBQ	0.0376	MDL	5.27	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.184	J	0.0731	MDL	5.27	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.167	JQ	0.0384	MDL	5.27	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.0513	J	0.0352	MDL	5.27	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.160	JBQ	0.0377	MDL	5.27	PQL	ng/Kg	U	В		
OCDD	0.935	JBQ	0.0571	MDL	10.5	PQL	ng/Kg	U	В		
OCDF	0.156	JBQ	0.0858	MDL	10.5	PQL	ng/Kg	U	В		

Sample ID: SL-114-SA6-SB-9.0-10.0 Collected: 8/5/2011 3:15:00 PM Analysis Type: RES Dilution: 1

54mpic 151 62 114 5/10 65 516 1616	001.00				, 0.0 . ,	, DC		-	<i>3774</i> 4017.
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.222	JB	0.0670	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0777	JBQ	0.0246	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0485	JBQ	0.0399	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0397	JQ	0.0310	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.0860	J	0.0496	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0716	J	0.0268	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.0595	JQ	0.0465	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0420	JBQ	0.0254	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0870	J	0.0647	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.199	JQ	0.0453	MDL	5.50	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0710	JQ	0.0264	MDL	5.50	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.101	JBQ	0.0447	MDL	5.50	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.110	JQ	0.0773	MDL	1.10	PQL	ng/Kg	J	Z
OCDD	0.733	JBQ	0.0437	MDL	11.0	PQL	ng/Kg	υ	В
OCDF	0.127	JBQ	0.0770	MDL	11.0	PQL	ng/Kg	U	В

Sample ID: SL-198-SA5DN-SB-4.0-5.0 Collected: 8/5/2011 8:49:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.13	JB	0.0392	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.111	JB	0.0760	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.222	JBQ	0.0738	MDL	5.80	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM ADR version 1.4.0.111 Page 8 of 12

Lab Reporting Batch ID: DX125

Laboratory: LL

EDD Filename: DX125_v1

eQAPP Name: CDM_SSFL_110509

vetic	io Car	erory:	SV(0)	mijetan diku di
		V		

Sample ID: SL-198-SA5DN-SB-4.0-5.0	Collec	Collected: 8/5/2011 8:49:00 AM Analysis Type: RES					Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	0.211	JQ	0.0769	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.636	J	0.0755	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.147	JQ	0.0620	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.882	JQ	0.0738	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.982	JB	0.0757	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.130	J	0.0686	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.752	J	0.0430	MDL	5.80	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.140	J	0.0699	MDL	5.80	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.161	JBQ	0.0440	MDL	5.80	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.143	JQ	0.0879	MDL	1.16	PQL	ng/Kg	J	Z
OCDF	5.79	JB	0.0773	MDL	11.6	PQL	ng/Kg	J	Z

Sample ID: SL-198-SA5DN-SB-9.0-10.0

Collected: 8/5/2011 9:13:00 AM Analysis Type: RES

Matrix:

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.34	JB	0.0378	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.189	JBQ	0.0808	MDL	5.33	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0875	JQ	0.0564	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.200	JQ	0.0683	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0874	JQ	0.0438	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.194	JQ	0.0648	MDL	5.33	PQL	ng/Kg	j	Z
2,3,4,6,7,8-HXCDF	0.145	JQ	0.0502	MDL	5.33	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0592	JB	0.0357	MDL	5.33	PQL	ng/Kg	υ	В
OCDF	4.33	JBQ	0.0921	MDL	10.7	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX125 EDD Filename: DX125_v1

Laboratory: LL eQAPP Name: CDM_SSFL_110509

### Reason Code Legend

Reason Code	Description						
<del></del>	Duplicate Sample Count = 0						
<del></del>	Duplicate Sample Count > 1						
	Illogical Fraction						
	Laboratory Control Sample Count = 0						
	Laboratory Control Sample Count > 1						
	Laboratory Triplicate Precision						
	Matrix Spike Sample Count = 0						
	Matrix Spike Sample Count > 1						
	Method Blank Sample Count = 0						
	Method Blank Sample Count > 1						
	Percent Moisture						
*#	Professional Judgment						
A	ICP Serial Dilution						
В	Calibration Blank Contamination						
В	Method Blank Contamination						
С	Continuing Calibration Verification Correlation Coefficient						
С	Continuing Calibration Verification Percent Difference Lower Estimation						
С	Continuing Calibration Verification Percent Difference Lower Rejection						
С	Continuing Calibration Verification Percent Difference Upper Estimation						
С	Continuing Calibration Verification Percent Difference Upper Rejection						
С	Initial Calibration Correlation Coefficient						
С	Initial Calibration Percent Relative Standard Deviation						
С	Initial Calibration Verification Correlation Coefficient						
С	Initial Calibration Verification Percent Difference Lower Estimation						
c	Initial Calibration Verification Percent Difference Lower Rejection						
С	Initial Calibration Verification Percent Difference Upper Estimation						
С	Initial Calibration Verification Percent Difference Upper Rejection						
Ę	Laboratory Control Precision						
E	Laboratory Duplicate Precision						
E	Matrix Spike Precision						

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX125

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

EDD Filename: DX125_v1

F	Equipment Blank Contamination	COM F Name: OBM_OOFE_
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
ı	Internal Standard Estimation	
I	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
M	Continuing Tune	
M	initial Tune	
M	Performance Evaluation Mixture	
М	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX125

EDD Filename: DX125_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

## **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX125

### Method Blank Outlier Report

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 1613E <i>Matrix:</i> SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2300B371838	8/19/2011 6:38:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,7,8-HXCDD 1,2,3,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	0.238 ng/Kg 0.0694 ng/Kg 0.0615 ng/Kg 0.103 ng/Kg 0.0418 ng/Kg 0.0660 ng/Kg 0.596 ng/Kg 0.136 ng/Kg	DUP11-SA6-QC-080411 SL-006-SA6-SB-4.0-5.0 SL-006-SA6-SB-9.0-10.0 SL-010-SA6-SB-4.0-5.0 SL-014-SA6-SB-4.0-5.0 SL-014-SA6-SB-9.0-10.0 SL-019-SA6-SB-9.0-10.0 SL-019-SA6-SB-9.0-10.0 SL-022-SA6-SB-0.0-1.0 SL-022-SA6-SB-0.0-1.0 SL-024-SA6-SB-4.0-5.0 SL-024-SA6-SB-4.0-5.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-198-SA5DN-SB-4.0-5.0 SL-114-SA6-SB-9.0-10.0 SL-198-SA5DN-SB-9.0-10.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP11-SA6-QC-080411(RES)	1,2,3,4,7,8-HxCDD	0,270 ng/Kg	0.270U ng/Kg
DUP11-SA6-QC-080411(RES)	P11-SA6-QC-080411(RES) 1,2,3,7,8,9-HXCDF		0.189U ng/Kg
SL-006-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.363 ng/Kg	0.363U ng/Kg
SL-006-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0438 ng/Kg	0.0438U ng/Kg
SL-006-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0503 ng/Kg	0.0503U ng/Kg
SL-006-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0454 ng/Kg	0.0454U ng/Kg
SL-006-SA6-SB-4.0-5.0(RES)	OCDD	0.691 ng/Kg	0.691U ng/Kg
SL-006-SA6-SB-4.0-5.0(RES)	OCDF	0.119 ng/Kg	0.119U ng/Kg
SL-006-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0,488 ng/Kg	0.488U ng/Kg
SL-006-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0850 ng/Kg	0.0850U ng/Kg
SL-006-SA6-SB-9.0-10.0(RES) 1,2,3,4,7,8,9-HPCDF		0.0465 ng/Kg	0.0465U ng/Kg
SL-006-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0721 ng/Kg	0.0721U ng/Kg
SL-006-SA6-SB-9.0-10.0(RES)	OCDD	1.11 ng/Kg	1.11U ng/Kg
SL-006-SA6-SB-9.0-10.0(RES)	OCDF	0.205 ng/Kg	0.205U ng/Kg
SL-010-SA6-SB-4,0-5,0(RES)	1,2,3,4,6,7,8-HPCDD	0.330 ng/Kg	0.330U ng/Kg
SL-010-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0907 ng/Kg	0.0907U ng/Kg
SL-010-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0469 ng/Kg	0.0469U ng/Kg
SL-010-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0482 ng/Kg	0.0482U ng/Kg
SL-010-SA6-SB-4.0-5.0(RES)	OCDD	1.09 ng/Kg	1.09U ng/Kg
SL-010-SA6-SB-4.0-5.0(RES)	OCDF	0.106 ng/Kg	0.106U ng/Kg
SL-014-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.101 ng/Kg	0.101U ng/Kg
SL-014-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.268 ng/Kg	0.268U ng/Kg
SL-014-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.188 ng/Kg	0.188U ng/Kg
SL-019-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.230 ng/Kg	0.230U ng/Kg
SL-019-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.153 ng/Kg	0.153U ng/Kg
SL-019-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0,120 ng/Kg	0.120U ng/Kg
SL-023-SA6-SB-0.0-1.0(RES)	1,2,3,4,7,8,9-HPCDF	0.161 ng/Kg	0.161U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:08 PM ADR version 1.4.0.111 Page 1 of 3

### Method Blank Outlier Report

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B			n Garaja Kandis Kalayaya ya maja k
Matrix: SO			
Method Blank			Associated
Sample ID Analy	is Date Analyte	Result	Samples

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-023-SA6-SB-0.0-1.0(RES)	1,2,3,4,7,8-HxCDD	0.0862 ng/Kg	0.0862U ng/Kg	
SL-023-SA6-SB-0.0-1.0(RES)	2,3,4,7,8-PECDF	0.198 ng/Kg	0.198U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.355 ng/Kg	0.355U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.108 ng/Kg	0.108U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0710 ng/Kg	0.0710U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.169 ng/Kg	0.169U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.184 ng/Kg	0.184U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	OCDD	1.21 ng/Kg	1.21U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	OCDF	0.228 ng/Kg	0.228U ng/Kg	
SL-024-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0783 ng/Kg	0.0783U ng/Kg	
SL-024-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.103 ng/Kg	0.103U ng/Kg	
SL-024-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0652 ng/Kg	0.0652U ng/Kg	
SL-024-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.118 ng/Kg	0.118U ng/Kg	
SL-025-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.349 ng/Kg	0.349U ng/Kg	
SL-025-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0725 ng/Kg	0.0725U ng/Kg	
SL-025-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0550 ng/Kg	0.0550U ng/Kg	
SL-025-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0753 ng/Kg	0.0753U ng/Kg	
SL-025-SA6-SB-4.0-5.0(RES)	OCDF	0.123 ng/Kg	0.123U ng/Kg	
SL-025-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.348 ng/Kg	0.348U ng/Kg	
SL-025-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0625 ng/Kg	0.0625U ng/Kg	
SL-025-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0667 ng/Kg	0.0667U ng/Kg	
SL-025-SA6-SB-9.0-10.0(RES)	OCDD	0.822 ng/Kg	0.822U ng/Kg	
SL-025-SA6-SB-9.0-10.0(RES)	OCDF	0.158 ng/Kg	0.158U ng/Kg	
SL-060-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.882 ng/Kg	0.882U ng/Kg	
SL-060-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.166 ng/Kg	0.166U ng/Kg	
SL-060-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.111 ng/Kg	0.111U ng/Kg	
SL-060-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0699 ng/Kg	0.0699U ng/Kg	
SL-060-SA5DN-SB-4,0-5,0(RES)	1,2,3,7,8,9-HXCDF	0,155 ng/Kg	0.155U ng/Kg	
SL-060-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0635 ng/Kg	0.0635U ng/Kg	
SL-060-SA5DN-SB-4.0-5.0(RES)	OCDF	0,388 ng/Kg	0.388U ng/Kg	
SL-060-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDD	0.529 ng/Kg	0.529U ng/Kg	
SL-060-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0815 ng/Kg	0.0815U ng/Kg	
SL-060-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0646 ng/Kg	0.0646U ng/Kg	
SL-060-SA5DN-SB-7,0-8,0(RES)	1,2,3,7,8,9-HXCDF	0,0929 ng/Kg	0.0929U ng/Kg	
SL-060-SA5DN-SB-7.0-8.0(RES)	2,3,4,7,8-PECDF	0.0891 ng/Kg	0.0891U ng/Kg	
SL-060-SA5DN-SB-7.0-8.0(RES)	OCDF	0,350 ng/Kg	0.350U ng/Kg	
SL-114-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.443 ng/Kg	0.443U ng/Kg	
SL-114-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0830 ng/Kg	0.0830U ng/Kg	
SL-114-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0780 ng/Kg	0.0780U ng/Kg	
SL-114-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.160 ng/Kg	0.160U ng/Kg	

12/21/2011 2:46:08 PM ADR version 1.4.0.111 Page 2 of 3

### Method Blank Outlier Report

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO			<b>esticato</b> a d'Alexandre de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-114-SA6-SB-4.0-5.0(RES)	OCDD	0.935 ng/Kg	0.935U ng/Kg
SL-114-SA6-SB-4.0-5.0(RES)	OCDF	0.156 ng/Kg	0.156U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.222 ng/Kg	0.222U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0777 ng/Kg	0.0777U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0,0485 ng/Kg	0.0485U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0420 ng/Kg	0.0420U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.101 ng/Kg	0.101U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	OCDD	0.733 ng/Kg	0.733U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	OCDF	0.127 ng/Kg	0.127U ng/Kg
SL-198-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.111 ng/Kg	0.111U ng/Kg
SL-198-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.222 ng/Kg	0.222U ng/Kg
SL-198-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.161 ng/Kg	0.161U ng/Kg
SL-198-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.189 ng/Kg	0.189U ng/Kg
SL-198-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0592 ng/Kg	0.0592U ng/Kg

12/21/2011 2:46:08 PM ADR version 1.4.0.111 Page 3 of 3

### Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO		Tribe Paulisia		validii saxii, ax			
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-019-SA6-SB-4.0-5.0 MS SL-019-SA6-SB-4.0-5.0 MSD (SL-019-SA6-SB-4.0-5.0)	OCDD	185	301	40.00-135.00	•	OCDD	No Qual, >4x

12/21/2011 2:44:27 PM ADR version 1.4.0.111 Page 1 of 1

### Field Duplicate RPD Report

Lab Reporting Batch ID: DX125

Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Analyte	Concent	Concentration (%)			
	SL-019-SA6-SB-4.0-5.0	DUP11-SA6-QC-080411	Sample RPD	eQAPP RPD	Flag
MOISTURE	8.8	8.4	5		No Qualifiers Applied

MOISTURE	8.8	8.4	5		No Qualifiers Applied	
Method: 1613B Matrix: SO						
	Concentra	tion (ng/Kg)				
Analyte	SL-019-SA6-SB-4.0-5.0	DUP11-SA6-QC-080411	Sample RPD	eQAPP RPD	Flag	
1,2,3,4,6,7,8-HPCDD	59.5	84.1	34	50.00		
1,2,3,4,6,7,8-HPCDF	10.1	11.2	10	50.00		
1,2,3,4,7,8,9-HPCDF	1.54	2.05	28	50.00		
1,2,3,4,7,8-HxCDD	0.230	0.270	16	50.00	No Overstone Applied	
1,2,3,6,7,8-HXCDD	1.79	2.23	22	50.00	No Qualifiers Applied	
1,2,3,7,8,9-HXCDD	0.553	0,602	8	50.00		
1,2,3,7,8-PECDD	0.170	0.148	14	50.00		
2,3,4,6,7,8-HXCDF	1.52	0.967	44	50.00		
1,2,3,4,7,8-HXCDF	8.24	0.928	160	50.00		
1,2,3,6,7,8-HXCDF	2.63	0.798	107	50.00		
1,2,3,7,8,9-HXCDF	0.717	0.189	117	50.00	1	
1,2,3,7,8-PECDF	1.69	0.755	76	50.00	J(all detects)	
2,3,4,7,8-PECDF	3.13	0.603	135	50.00	1	
2,3,7,8-TCDF	1.79	0.274	147	50.00		
OCDD	1060	1990	61	50.00		
OCDF	14.7	25.2	53	50.00		

Page 1 of 1

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

matrix. 30				1			
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP11-SA6-QC-080411	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF	18 1 1 1 0 0 0 10 0 10 0 10 0 10 0 10 0	2.05 0.270 0.928 2.23 0.798 0.602 0.189 0.148 0.755 0.967 0.603 0.274	5.41 5.41 5.41 5.41 5.41 5.41 5.41 5.41	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-006-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JB JBQ JQ JBQ JBQ JB JB JB	0.363 0.0438 0.0814 0.0770 0.0503 0.0454 0.691 0.119	5.44 5.44 5.44 5.44 5.44 10.9 10.9	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-006-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 1,2,3,7,8-PECDF 0,0,0	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.488 0.0850 0.0465 0.253 0.0651 0.437 0.588 0.0975 0.0721 1.11 0.205	5.63 5.63 5.63 5.63 5.63 5.63 5.63 5.63	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-010-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF OCDD OCDF	######################################	0.330 0.0907 0.0765 0.0506 0.0469 0.0612 0.0482 1.09 0.106	5.58 5.58 5.58 5.58 5.58 5.58 5.58 11.2 11.2	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-014-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	#5 <u>#</u> 5 <u>#</u> 55	4.09 0.920 0.452 0.933 0.311 0.302 0.101 1.67 0.293 0.268 0.185 9.75	5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.51	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-014-SA6-SB-9.0-10.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF	JBQ JBQ JJ J J BQ JQ J J J BQ	1.22 0.188 0.684 2.00 0.354 0.721 0.213 0.150 0.843 0.553 0.383 0.356	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-019-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	387778773 387778	1.54 0.230 1.79 2.63 0.553 0.717 0.170 1.69 1.52 3.13	5.41 5.41 5.41 5.41 5.41 5.41 5.41 5.41	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-019-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 0CDF	######################################	2.18 0.480 0.153 0.346 0.650 0.328 0.300 0.120 0.338 0.613 0.370 0.430 0.157 0.138 5.23	5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.48	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-022-SA6-SB-0.0-1.0	1,2,3,4,6,7,8-HPCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF	BGGG-	3.48 0.353 0.322 0.0960 4.68	5.23 5.23 5.23 5.23 5.23	PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-023-SA6-SB-0.0-1.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	<b>585-5555</b> 88	2.71 0.161 0.0862 0.183 0.282 0.152 0.252 0.114 0.522 0.196 0.198 0.106	5.17 5.17 5.17 5.17 5.17 5.17 5.17 5.17	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-024-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	5-6-5-5-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6	0.355 0.108 0.0710 0.169 0.158 0.170 0.209 0.221 0.184 0.317 0.312 0.0956 0.409 0.149 0.120	5.39 5.39 5.39 5.39 5.39 5.39 5.39 5.39	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-024-SA6-SB-9.0-10.0	OCDF  1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0CDF	# # # # # # # # # # # # # # # # # # #	1.21 0.228 2.83 0.412 0.0783 0.103 0.129 0.0548 0.110 0.0652 0.0409 0.0827 0.118 1.08	10.8 10.8 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-025-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	# # # # # # # # # # # # # # # # # # #	0.349 0.0725 0.0477 0.0550 0.0485 0.0753 0.0981 3.03 0.123	5.32 5.32 5.32 5.32 5.32 5.32 1.06 10.6	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-025-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD 2,3,4,7,8-PECDF OCDD OCDF	JBQ JBQ JQ JQ JB JBQ JBQ	0.348 0.0625 0.0394 0.0782 0.0667 0.822 0.158	5.45 5.45 5.45 5.45 5.45 10.9 10.9	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

12/21/2011 2:46:17 PM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX125

Laboratory: LL eQAPP Name: CDM_SSFL_110509

**PQL** 

PQL

ng/Kg ng/Kg

ng/Kg

11.0

11.0

0.127

**JBQ** 

JBQ

EDD Filename: DX125_v1

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-060-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF OCDD OCDF	######################################	0.882 0.166 0.111 0.0699 0.0990 0.131 0.108 0.112 0.155 0.0977 0.103 0.0635 9.27 0.388	5.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-060-SA5DN-SB-7.0-8.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	E E E E E E E E E E E E E E E E E E E	0.529 0.0815 0.0646 0.0519 0.0781 0.0929 0.0891 4.62 0.350	5.72 5.72 5.72 5.72 5.72 5.72 5.72 11.4 11.4	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-114-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	##G-G-B-G-B##	0.443 0.0830 0.0852 0.0925 0.0316 0.187 0.0780 0.184 0.167 0.0513 0.160 0.935 0.156	5.27 5.27 5.27 5.27 5.27 5.27 5.27 5.27	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-114-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD	క్రాప్ట్రాల్లో	0.222 0.0777 0.0485 0.0397 0.0860 0.0716 0.0595 0.0420 0.0870 0.199 0.0710 0.101 0.110	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

OCDF

Lab Reporting Batch ID: DX125

Laboratory: LL

EDD Filename: DX125_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-198-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	2.13	5.80	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.111	5.80	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.222	5.80	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JQ	0.211	5.80	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	J	0.636	5.80	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JQ	0.147	5.80	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JQ	0.882	5.80	PQL	ng/Kg	14-11-2-4 4 3
	1,2,3,7,8,9-HXCDF	JB	0.982	5.80	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	j	0.130	5.80	PQL	ng/Kg	
	1,2,3,7,8-PECDF	J	0.752	5.80	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	J	0.140	5.80	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.161	5.80	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.143	1.16	PQL	ng/Kg	
	OCDF	JB	5.79	11.6	PQL	ng/Kg	
SL-198-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF	JB	1.34	5.33	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.189	5.33	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JQ	0.0875	5.33	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JQ	0.200	5.33	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JQ	0.0874	5.33	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JQ	0.194	5.33	PQL	ng/Kg	,
	2,3,4,6,7,8-HXCDF	JQ	0.145	5.33	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0592	5.33	PQL	ng/Kg	
	OCDF	JBQ	4.33	10.7	PQL	ng/Kg	

12/21/2011 2:46:17 PM ADR version 1.4.0.111 Page 5 of 5

# **SAMPLE DELIVERY GROUP**

**DX126** 

# Attachment I

Sample ID Cross Reference and Data Review Level

### **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
08-Aug-2011	SL-273-SA6-SB-4.0-5.0	6369644	N	METHOD	1613B	IV
08-Aug-2011	SL-273-SA6-SB-9.0-10.0	6369645	N	METHOD	1613B	IV
08-Aug-2011	SL-153-SA5DN-SB-4.0-5.0	6369642	N	METHOD	1613B	IV
08-Aug-2011	SL-153-SA5DN-SB-7.0-8.0	6369643	N	METHOD	1613B	IV
08-Aug-2011	SL-083-SA5DN-SB-4.0-5.0	6369641	N	METHOD	1613B	IV
08-Aug-2011	SL-031-SA6-SB-4.0-5.0	6369646	N	METHOD	1613B	īV
08-Aug-2011	SL-031-SA6-SB-9.0-10.0	6369647	N	METHOD	1613B	IV
09-Aug-2011	SL-044-SA6-SB-2.5-3.5	6371379	N	METHOD	1613B	IV
09-Aug-2011	SL-012-SA5DN-SB-4.0-5.0	6371383	N	METHOD	1613B	IV
09-Aug-2011	SL-012-SA5DN-SB-9.0-10.0	6371384	N	METHOD	1613B	iV
09-Aug-2011	SL-042-SA6-SB-2.5-3.5	6371378	N	METHOD	1613B	IV
09-Aug-2011	SL-011-SA5DN-SB-4.0-5.0	6371382	N	METHOD	1613B	IV
09-Aug-2011	EB-SA6-SB-080911	6371381	EB	METHOD	1613B	IV
09-Aug-2011	SL-049-SA6-SB-2.5-3.5	6371380	N	METHOD	1613B	IV
09-Aug-2011	SL-009-SA5DN-SB-4.0-5.0	6371385	N	METHOD	1613B	IV
09-Aug-2011	SL-009-SA5DN-SB-4.0-5.0MS	6371386	MS	METHOD	1613B	IV
09-Aug-2011	DUP24-SA5DN-QC-080911	6371389	FD	METHOD	1613B	IV
09-Aug-2011	SL-009-SA5DN-SB-9.0-10.0	6371388	N	METHOD	1613B	IV

## **Attachment II**

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method Category 🦡 🖟 G	EYCHEM _{aar ayaaran a} a wa			
Method: 16	613B	Matrix:	AQ	

Sample ID: EB-SA6-SB-080911	Collec	ted: 8/9/20	11 1:00:00	PM A	nalysis Ty	pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	4.38	JB	0.137	MDL	9.59	PQL	pg/L	U	В	
1,2,3,4,6,7,8-HPCDF	0.650	JB	0.0665	MDL	9.59	PQL	pg/L	U	В	
1,2,3,4,7,8,9-HPCDF	0.550	JBQ	0.0789	MDL	9.59	PQL	pg/L	Ü	В	
1,2,3,4,7,8-HXCDF	0.216	JBQ	0.0682	MDL	9.59	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDD	0.366	JBQ	0.116	MDL	9.59	PQL	pg/L	Ü	В	
1,2,3,6,7,8-HXCDF	0.223	JBQ	0.0665	MDL	9.59	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDD	0.452	JBQ	0.115	MDL	9.59	PQL	pg/L	U	В	
1,2,3,7,8-PECDD	0.238	JBQ	0.115	MDL	9.59	PQL	pg/L	U	В	
1,2,3,7,8-PECDF	0.163	JBQ	0.0657	MDL	9.59	PQL	pg/L	U	В	
2,3,4,6,7,8-HXCDF	0.162	JBQ	0.0603	MDL.	9.59	PQL	pg/L	υ	В	
2,3,4,7,8-PECDF	0.292	JBQ	0.0549	MDL	9.59	PQL	pg/L	U	В	
2,3,7,8-TCDD	0.344	JBQ	0.112	MDL	1.92	PQL	pg/L	U	В	
OCDD	7.99	JBQ	0.139	MDL	19.2	PQL	pg/L	υ	В	
OCDF	1.02	JB	0.121	MDL	19.2	PQL	pg/L	U	В	

Method Category: GENCHEM		tanin kanggaran (1941) ayan kanggaran kanggaran kanggaran Tanin 1941 in
Method: 1613B	Matrix: SO	

Sample ID: DUP24-SA5DN-QC-080911	Collec	ted: 8/9/20	11 3:28:00	PM A	nalysis Ty	/pe: RES		I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.699	JB	0.0455	MDL	5.51	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.122	JB	0.0220	MDL	5.51	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0441	JBQ	0.0279	MDL	5.51	PQL	ng/Kg	ÜJ	B, FD
1,2,3,4,7,8-HxCDD	0.0520	JQ	0.0365	MDL	5.51	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	0.0763	JBQ	0.0255	MDL	5.51	PQL	ng/Kg	UJ	B, FD
1,2,3,6,7,8-HXCDD	0.0589	JBQ	0.0366	MDL	5.51	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0357	JBQ	0.0231	MDL	5.51	PQL	пg/Kg	UJ	B, FD
1,2,3,7,8,9-HXCDD	0.0440	JB	0.0355	MDL	5.51	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8,9-HXCDF	0.0396	JQ	0.0195	MDL	5.51	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.140	JBQ	0.0519	MDL	5.51	PQL	ng/Kg	ŲJ	B, FD
1,2,3,7,8-PECDF	0.0543	JQ	0.0257	MDL	5.51	PQL	ng/Kg	J	Z, FD
2,3,4,6,7,8-HXCDF	0.0279	JBQ	0.0201	MDL	5.51	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.121	JQ	0.0258	MDL	5.51	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 7:10:52 AM ADR version 1.4.0.111 Page 1 of 11

Lab Reporting Batch ID: DX126

Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	ry: GENCHEM				
Method:	1613B	Matrix:	SO	ing and the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the pr	
	04504 00 00044	 		=-	

Sample ID: DUP24-SA5DN-QC-080911	Collec	Collected: 8/9/2011 3:28:00 PM Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDD	4.76	JB	0.0378	MDL	11.0	PQL	ng/Kg	J	Z
OCDF	0.273	JQ	0.0532	MDL	11.0	PQL	ng/Kg	J	Z, FD

Sample ID: SL-009-SA5DN-SB-4.0-5.0 Collected: 8/9/2011 3:25:00 PM Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte Result DLRL Units Qual Type Type Qual Code 1,2,3,4,6,7,8-HPCDD 0.555 JBQ 0.0646 MDL 5.51 **PQL** ng/Kg U В 1,2,3,4,6,7,8-HPCDF 0.0752 JB 0.0263 MDL 5.51 **PQL** U ng/Kg В 1,2,3,4,7,8,9-HPCDF 0.0371 U 0.0371 MDL 5.51 **PQL** IJ ng/Kg FD U 1,2,3,4,7,8-HxCDD 0.0410 0.0410 MDL 5.51 PQL IJ FD ng/Kg 1,2,3,4,7,8-HXCDF 0.0284 U 0.0284 MDL 5.51 **PQL** ng/Kg IJ FD 1,2,3,6,7,8-HXCDD 0.0715 JBQ 0.0427 MDL 5.51 **PQL** ng/Kg U 1,2,3,6,7,8-HXCDF 0.0234 U 0.0234 MDL PQL IJ 5.51 ng/Kg FD 1,2,3,7,8,9-HXCDD 0.0813 JB 0.0427 MDL 5.51 **PQL** ng/Kg UJ B, FD 5.51 1,2,3,7,8,9-HXCDF 0.0413 J 0.0222 MDL **PQL** J Z ng/Kg 1,2,3,7,8-PECDD U UJ 0.0639 0.0639 MDL 5.51 **PQL** ng/Kg FD 1,2,3,7,8-PECDF 0.125 JQ 0.0371 MDL PQL J Z, FD 5.51 ng/Kg 2,3,4,6,7,8-HXCDF 0.0278 JBQ 0.0224 PQL U MDL 5.51 ng/Kg В 2,3,4,7,8-PECDF 0.100 J 0.0360 MDL 5.51 POL ng/Kg J Z OCDD Z 4.04 JB 0.0486 MDL 11.0 PQL ng/Kg OCDF 0.140 JQ 0.0598 11.0 MDL **PQL** ng/Kg J Z, FD

Sample ID: SL-009-SA5DN-SB-9.0-10.0	Collected: 8/9/2011 4:15:00 PM	Analysis Type: RES	Dilution: 1
-------------------------------------	--------------------------------	--------------------	-------------

Analyte	Lab	Lab	D/	DL Tune	D/	RL Turns	Unita	Data Review	Reason
nnaryte	Result	Qual	DL.	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	1.08	JBQ	0.0626	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.187	JBQ	0.0296	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.127	JQ	0.0408	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.135	JB	0.0317	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.194	JBQ	0.0401	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.129	JB	0.0413	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0954	JQ	0.0253	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.277	JB	0.0557	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.221	JQ	0.0311	MDL	5.56	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.142	JBQ	0.0245	MDL	5.56	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 7:10:52 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B		Matrix:	SO		
					rectors and the significant	
wearon caregor	Y GENUTEW					
THE PARTY HAVE A PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH	ALMANDER MARKETS	Charles and the State of Contract of	a National Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of	elimina and	aktivi firetorio esperatorio espera	ur likabasak adhirida

Sample ID: SL-009-SA5DN-SB-9.0-10.0	Collec	Collected: 8/9/2011 4:15:00 PM Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,7,8-PECDF	0.186	J	0.0277	MDL	5.56	PQL	ng/Kg	J	Z
OCDD	9.81	JB	0.0374	MDL	11.1	PQL	ng/Kg	J	Z
OCDF	0.381	J	0.0506	MDL	11.1	PQL	ng/Kg	J	Z

 Sample ID: SL-011-SA5DN-SB-4.0-5.0
 Collected: 8/9/2011 11:40:00
 Analysis Type: RES
 Dilution: 1

•										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.429	JB	0.0674	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0885	JBQ	0.0261	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0521	JQ	0.0507	MDL	5.60	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.0755	JBQ	0.0494	MDL	5.60	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0752	JBQ	0.0478	MDL	5.60	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0395	JBQ	0.0287	MDL	5.60	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0642	JQ	0.0344	MDL	5.60	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.105	J	0.102	MDL	1.12	PQL	ng/Kg	J	Z	
OCDD	3.03	JB	0.0524	MDL	11.2	PQL	ng/Kg	J	Z	
OCDF	0.225	JQ	0.0789	MDL	11.2	PQL	ng/Kg	J	Z	
			.1		·			4		

Sample ID: SL-012-SA5DN-SB-4.0-5.0 Collected: 8/9/2011 8:50:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.13	JB	0.0689	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.148	JB	0.0320	MDL	5.04	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.102	JB	0.0456	MDL	5.04	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.108	JBQ	0.0445	MDL	5.04	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.104	JQ	0.0308	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0749	JBQ	0.0631	MDL	5.04	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0624	JQ	0.0356	MDL	5.04	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0374	JQ	0.0343	MDL	5.04	PQL	ng/Kg	J	Z
OCDD	8.10	JB	0.0548	MDL	10.1	PQL	ng/Kg	J	Z
OCDF	0.534	J	0.0791	MDL	10.1	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX126

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Sample ID: SL-012-SA5DN-SB-9.0-10.0	Collec	Collected: 8/9/2011 9:30:00 AM Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.913	JB	0.0508	MDL	5.80	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.110	JB	0.0221	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0600	JBQ	0.0364	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0380	JBQ	0.0287	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0236	JBQ	0.0236	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0566	JBQ	0.0387	MDL	5.80	PQL	ng/Kg	Ų	В
1,2,3,7,8,9-HXCDF	0.0363	JQ	0.0274	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0404	JQ	0.0328	MDL	5.80	PQL	ng/Kg	J	Z
OCDD	6.21	JB	0.0457	MDL.	11.6	PQL	ng/Kg	J	Z
OCDF	0.182	JQ	0.0643	MDL	11.6	PQL	ng/Kg	J	Z

Sample ID: SL-031-SA6-SB-4.0-5.0	Collected: 8/8/2011 2:50:00 PM	Analysis Type: RES	Dilution: 1
Oampic 15. OE-001-0A0-0B-4.0-3.0	Conected. Didizoti 2.30.00 Fig.	Allalysis type, NEO	Diluuon.

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.459	JBQ	0.0648	MDL	5.28	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.209	JBQ	0.0230	MDL	5.28	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0388	JB	0.0364	MDL	5.28	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0585	JQ	0.0531	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.106	JBQ	0.0472	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.197	JBQ	0.0537	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.101	JBQ	0.0398	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.316	JBQ	0.0510	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.232	J	0.0400	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.155	JBQ	0.0731	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.273	JQ	0.0410	MDL	5.28	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0634	JB	0.0357	MDL	5.28	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.216	J	0.0411	MDL	5.28	PQL	лд/Кд	J	Z
OCDD	2.31	JB	0.0460	MDL	10.6	PQL	лд/Кд	J	Z
OCDF	0.448	JQ	0.0752	MDL	10.6	PQL	ng/Kg	J	Z

Sample ID: SL-031-SA6-SB-9.0-10.0 Collected: 8/8/2011 3:00:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.321	JBQ	0.0577	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0700	JBQ	0.0202	MDL	5.44	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 7:10:52 AM ADR version 1.4.0.111 Page 4 of 11

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Collected: 8/8/2011 3:00:00 PM Analysis Type: RES Dilution:										
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
0.0586	JB	0.0317	MDL	5.44	PQL	ng/Kg	U	В		
0.189	JBQ	0.0413	MDL	5.44	PQL	ng/Kg	υ	В		
0.227	JB	0.0420	MDL	5.44	PQL	ng/Kg	υ	В		
0.190	JBQ	0.0338	MDL	5.44	PQL	ng/Kg	υ	В		
0.282	JBQ	0.0406	MDL	5.44	PQL	ng/Kg	J	Z		
0.224	J	0.0310	MDL	5.44	PQL	ng/Kg	j	Z		
0.333	JB	0.0681	MDL	5.44	PQL	ng/Kg	U	В		
0.300	J	0.0364	MDL	5.44	PQL	ng/Kg	J	Z		
0.0811	JBQ	0.0300	MDL	5.44	PQL	ng/Kg	U .	В		
0.280	JQ	0.0368	MDL	5.44	PQL	ng/Kg	J	Z		
0.0974	JQ	0.0824	MDL	1.09	PQL	ng/Kg	J	Z		
1.45	JB	0.0385	MDL	10.9	PQL	ng/Kg	J	Z		
0.145	J	0.0581	MDL	10.9	PQL	ng/Kg	J	Z		
	Lab Result  0.0586  0.189  0.227  0.190  0.282  0.224  0.333  0.300  0.0811  0.280  0.0974  1.45	Lab Result         Lab Qual           0.0586         JB           0.189         JBQ           0.227         JB           0.190         JBQ           0.282         JBQ           0.224         J           0.333         JB           0.300         J           0.0811         JBQ           0.280         JQ           0.0974         JQ           1.45         JB	Lab Result         Lab Qual         DL           0.0586         JB         0.0317           0.189         JBQ         0.0413           0.227         JB         0.0420           0.190         JBQ         0.0338           0.282         JBQ         0.0406           0.224         J         0.0310           0.333         JB         0.0681           0.300         J         0.0364           0.0811         JBQ         0.0300           0.280         JQ         0.0368           0.0974         JQ         0.0824           1.45         JB         0.0385	Lab Result         Lab Qual         DL DL Type           0.0586         JB         0.0317         MDL           0.189         JBQ         0.0413         MDL           0.227         JB         0.0420         MDL           0.190         JBQ         0.0338         MDL           0.282         JBQ         0.0406         MDL           0.224         J         0.0310         MDL           0.333         JB         0.0681         MDL           0.300         J         0.0364         MDL           0.0811         JBQ         0.0300         MDL           0.280         JQ         0.0368         MDL           0.0974         JQ         0.0824         MDL           1.45         JB         0.0385         MDL	Lab Result         Lab Qual         DL DL         Type         RL           0.0586         JB         0.0317         MDL         5.44           0.189         JBQ         0.0413         MDL         5.44           0.227         JB         0.0420         MDL         5.44           0.190         JBQ         0.0338         MDL         5.44           0.282         JBQ         0.0406         MDL         5.44           0.224         J         0.0310         MDL         5.44           0.333         JB         0.0681         MDL         5.44           0.300         J         0.0364         MDL         5.44           0.0811         JBQ         0.0300         MDL         5.44           0.280         JQ         0.0368         MDL         5.44           0.0974         JQ         0.0824         MDL         1.09           1.45         JB         0.0385         MDL         10.9	Lab Result         Lab Qual         DL Type         RL Type         RL Type           0.0586         JB         0.0317         MDL         5.44         PQL           0.189         JBQ         0.0413         MDL         5.44         PQL           0.227         JB         0.0420         MDL         5.44         PQL           0.190         JBQ         0.0338         MDL         5.44         PQL           0.282         JBQ         0.0406         MDL         5.44         PQL           0.224         J         0.0310         MDL         5.44         PQL           0.333         JB         0.0681         MDL         5.44         PQL           0.300         J         0.0364         MDL         5.44         PQL           0.0811         JBQ         0.0300         MDL         5.44         PQL           0.280         JQ         0.0368         MDL         5.44         PQL           0.0974         JQ         0.0824         MDL         1.09         PQL           1.45         JB         0.0385         MDL         10.9         PQL	Lab Result         Lab Qual         DL DL Type         RL Type         RL Type         Units           0.0586         JB 0.0317         MDL 5.44         PQL ng/Kg           0.189         JBQ 0.0413         MDL 5.44         PQL ng/Kg           0.227         JB 0.0420         MDL 5.44         PQL ng/Kg           0.190         JBQ 0.0338         MDL 5.44         PQL ng/Kg           0.282         JBQ 0.0406         MDL 5.44         PQL ng/Kg           0.224         J 0.0310         MDL 5.44         PQL ng/Kg           0.333         JB 0.0681         MDL 5.44         PQL ng/Kg           0.300         J 0.0364         MDL 5.44         PQL ng/Kg           0.0811         JBQ 0.0300         MDL 5.44         PQL ng/Kg           0.280         JQ 0.0368         MDL 5.44         PQL ng/Kg           0.0974         JQ 0.0824         MDL 1.09         PQL ng/Kg           1.45         JB 0.0385         MDL 10.9         PQL ng/Kg	Lab Result         Lab Qual         DL Type         RL Type         RL Type         RL Type         Data Review Qual           0.0586         JB         0.0317         MDL         5.44         PQL         ng/Kg         U           0.189         JBQ         0.0413         MDL         5.44         PQL         ng/Kg         U           0.227         JB         0.0420         MDL         5.44         PQL         ng/Kg         U           0.190         JBQ         0.0338         MDL         5.44         PQL         ng/Kg         U           0.282         JBQ         0.0406         MDL         5.44         PQL         ng/Kg         J           0.224         J         0.0310         MDL         5.44         PQL         ng/Kg         J           0.333         JB         0.0681         MDL         5.44         PQL         ng/Kg         U           0.300         J         0.0364         MDL         5.44         PQL         ng/Kg         U           0.0811         JBQ         0.0300         MDL         5.44         PQL         ng/Kg         U           0.280         JQ         0.0368         MDL		

Sample ID: SL-042-SA6-SB-2.5-3.5 Collected: 8/9/2011 9:56:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.451	JBQ	0.0504	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0336	JBQ	0.0252	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.305	JBQ	0.0497	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0525	JBQ	0.0328	MDL	5.28	PQL	ng/Kg	U	B
1,2,3,7,8,9-HXCDD	0.938	JB	0.0485	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.231	J	0.0262	MDŁ	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.134	JB	0.0759	MDL	5.28	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.117	J	0.0347	MDL	5.28	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0338	JBQ	0.0242	MDL	5.28	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0695	JQ	0.0345	MDL	5.28	PQL	ng/Kg	J	Z
OCDD	1.71	JBQ	0.0367	MDL	10.6	PQL	ng/Kg	J	Z
OCDF	0.152	J	0.0654	MDL,	10.6	PQL	ng/Kg	J	Z

Sample ID: SL-044-SA6-SB-2.5-3.5 Collected: 8/9/2011 8:09:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.73	JB	0.0571	MDL	5.93	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0642	JBQ	0.0572	MDL	5.93	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 7:10:52 AM ADR version 1.4.0.111 Page 5 of 11

Lab Reporting Batch ID: DX126

Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-044-SA6-SB-2.5-3.5	Collec	ted: 8/9/20	11 8:09:00	AM A	nalysis Ty	ype: RES	i	I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	0.221	JBQ	0.0912	MDL	5.93	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.626	JB	0.0731	MDL	5.93	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.160	JBQ	0.0721	MDL	5.93	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.420	JBQ	0.0701	MDL	5.93	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.122	JBQ	0.0700	MDL	5.93	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0862	JQ	0.0370	MDL	5.93	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.177	JBQ	0.0384	MDL	5.93	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0891	J	0.0342	MDL	5.93	PQL	ng/Kg	J	Z
OCDF	2.00	J	0.0700	MDL	11.9	PQL	ng/Kg	J	Z

Sample ID: SL-049-SA6-SB-2.5-3.5 Collected: 8/9/2011 2:15:00 PM Analysis Type: RES Dilution: 1

	00,,00	Timely of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the term							
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.596	JBQ	0.0565	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0463	JB	0.0213	MDL	5.34	PQL	ng/Kg	U	8
1,2,3,6,7,8-HXCDD	0.153	JBQ	0.0492	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0324	JBQ	0.0274	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.318	JB	0.0467	MDL,	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0880	JQ	0.0296	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0684	JBQ	0.0615	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0455	J	0.0336	MDL	5.34	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0657	JQ	0.0326	MDL	5.34	PQL	ng/Kg	J	Z
OCDD	1.49	JBQ	0.0521	MDL	10.7	PQL	ng/Kg	J	Z
OCDF	0.126	J	0.0722	MDL	10.7	PQL	ng/Kg	J	Z

Sample ID: SL-083-SA5DN-SB-4.0-5.0 Collected: 8/8/2011 11:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.91	JB	0.0637	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.190	JB	0.0151	MDL	5.56	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0449	JQ	0.0342	MDL.	5.56	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.0584	JQ	0.0424	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0504	JBQ	0.0251	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.191	JBQ	0.0445	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.231	JBQ	0.0444	MDL	5.56	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 7:10:52 AM

ADR version 1.4.0.111

Page 6 of 11

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM		
Method:	1613B	Matrix: SO	Mary Mary Market Part of the A

Sample ID: SL-083-SA5DN-SB-4.0-5.0	Collec	Collected: 8/8/2011 11:45:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,7,8,9-HXCDF	0.0701	JBQ	0.0314	MDL	5.56	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.111	JBQ	0.0298	MDL	5.56	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.0369	JBQ	0.0237	MDL	5.56	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0869	JBQ	0.0288	MDL	5.56	PQL	ng/Kg	U	В		
OCDF	0.751	J	0.0753	MDL	11.1	PQL	ng/Kg	J	Z		

Sample ID: SL-153-SA5DN-SB-4.0-5.0 Collected: 8/8/2011 8:34:00 AM Analysis Type: RES Dilution: 1 Data Lab Review Lab DLRLReason Analyte Result DL RLQual Type Type Units Qual Code 1,2,3,4,6,7,8-HPCDD 0.195 JВ 0.0709 MDL 5.67 PQL υ ng/Kg В 1,2,3,4,6,7,8-HPCDF 0.0366 JBQ 0.0313 MDL 5.67 **PQL** ng/Kg U В 1,2,3,6,7,8-HXCDD 0.271 JBQ 0.0578 MDL 5.67 PQL ng/Kg J Z 1,2,3,7,8,9-HXCDD JBQ PQL 0.383 0.0555 MDL 5.67 ng/Kg J Z 1,2,3,7,8,9-HXCDF 0.849 J 0.0380 MDL 5.67 **PQL** ng/Kg J z 1,2,3,7,8-PECDF 0.109 0.0475 MDL PQL J 5.67 J ng/Kg Z 2,3,4,6,7,8-HXCDF ng/Kg 0.0387 JBQ 0.0373 MDL 5.67 PQL U В OCDD 0.939 JB U 0.0493 MDL 11.3 **PQL** ng/Kg В

Sample ID: SL-153-SA5DN-SB-7.0-8.0	Collected: 8/8/2011 9:50:00 AM Analysis Type: RES								Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.344	JB	0.0541	MDL	5.55	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0684	JBQ	0.0206	MDL	5.55	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0970	JQ	0.0529	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0418	JBQ	0.0386	MDL	5.55	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0802	JBQ	0.0517	MDL	5.55	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.149	JQ	0.0273	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0512	JQ	0.0371	MDL	5.55	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.0619	J	0.0371	MDL	5.55	PQL	ng/Kg	J	Z	
OCDD	0.999	JB	0.0421	MDL,	11.1	PQL	ng/Kg	U	В	
OCDF	0.141	JQ	0.0637	MDL	11.1	PQL	ng/Kg	J	Z	

. .. .. .. ...

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/4/2012 7:10:52 AM ADR version 1.4.0.111 Page 7 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX126

Laboratory: LL

EDD Filename: DX126_v1

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

Matrix:

Sample ID	: SL-2	73-SA6	-SB-4	.0-5.0
-----------	--------	--------	-------	--------

Sample ID: SL-273-SA6-SB-4.0-5.0	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.402	JB	0.0617	MDL	5.25	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0392	JB	0.0244	MDL	5.25	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0470	JBQ	0.0338	MDL	5.25	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0695	JBQ	0.0496	MDL	5.25	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0470	JBQ	0.0274	MDL	5.25	PQL	ng/Kg	U	B
1,2,3,7,8,9-HXCDF	0.0550	JQ	0.0285	MDL	5.25	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0845	JQ	0.0398	MDL	5.25	PQL	ng/Kg	J	Z
OCDD	0.616	JBQ	0.0383	MDL	10.5	PQL	пд/Кд	U	В
OCDF	0.183	.10	0.0677	MDI	10.5	POL	na/Ka	J	7

Sample ID: SL-273-SA6-SB-9.0-10.0

Collected: 8/8/2011 8:30:00 AM Analysis Type: RES

Dilution: 1

Jampic ID. OL-210-070-0D-0.0-10.0	Onecied. Golden Analysis Type. NES Diadon.								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.478	JB	0.0663	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.131	JBQ	0.0247	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0495	JB	0.0352	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.109	JBQ	0.0541	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0856	JBQ	0.0370	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.226	JBQ	0.0528	MDL	5.65	PQL	ng/Kg	U .	В
1,2,3,7,8,9-HXCDF	0.129	J	0.0353	MDL	5.65	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0992	JQ	0.0389	MDL	5.65	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0332	JBQ	0.0296	MDL	5.65	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0772	JQ	0.0389	MDL	5.65	PQL	ng/Kg	J	Z
OCDD	1.09	JBQ	0.0381	MDL	11.3	PQL	ng/Kg	U	В
OCDF	0.228	JQ	0.0748	MDL	11.3	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/4/2012 7:10:52 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX126

Laboratory: LL

EDD Filename: DX126_v1

eQAPP Name: CDM_SSFL_110509

### Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
<del></del>	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
-	Laboratory Triplicate Precision
P	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX126 Laboratory: LL EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
H	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
1	Internal Standard Estimation
l	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
М	Initial Tune
М	Performance Evaluation Mixture
M	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 7:10:52 AM ADR version 1.4.0.111 Page 10 of 11

Lab Reporting Batch ID: DX126

EDD Filename: DX126_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

## Enclosure I

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX126

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613E Matrix: AQ				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2240B371404	8/16/2011 2:04:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD OCDD OCDF	3.99 pg/L 0.817 pg/L 0.551 pg/L 0.551 pg/L 0.200 pg/L 0.405 pg/L 0.373 pg/L 0.218 pg/L 0.458 pg/L 0.595 pg/L 0.437 pg/L 0.280 pg/L 0.280 pg/L 0.450 pg/L 0.457 pg/L 0.139 pg/L 0.159 pg/L 1.57 pg/L	EB-SA6-SB-080911

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-080911(RES)	1,2,3,4,6,7,8-HPCDD	4.38 pg/L	4.38U pg/L
EB-SA6-SB-080911(RES)	1,2,3,4,6,7,8-HPCDF	0.650 pg/L	0.650U pg/L
EB-SA6-SB-080911(RES)	1,2,3,4,7,8,9-HPCDF	0.550 pg/L	0.550U pg/L
EB-SA6-SB-080911(RES)	1,2,3,4,7,8-HXCDF	0.216 pg/L	0.216U pg/L
EB-SA6-SB-080911(RES)	1,2,3,6,7,8-HXCDD	0.366 pg/L	0.366U pg/L
EB-SA6-SB-080911(RES)	1,2,3,6,7,8-HXCDF	0.223 pg/L	0.223U pg/L
EB-SA6-SB-080911(RES)	1,2,3,7,8,9-HXCDD	0.452 pg/L	0.452U pg/L
EB-SA6-SB-080911(RES)	1,2,3,7,8-PECDD	0.238 pg/L	0.238U pg/L
E8-SA6-SB-080911(RES)	1,2,3,7,8-PECDF	0.163 pg/L	0.163U pg/L
EB-SA6-SB-080911(RES)	2,3,4,6,7,8-HXCDF	0.162 pg/L	0.162U pg/L
EB-SA6-SB-080911(RES)	2,3,4,7,8-PECDF	0.292 pg/L	0.292U pg/L
EB-SA6-SB-080911(RES)	2,3,7,8-TCDD	0.344 pg/L	0.344U pg/L
EB-SA6-SB-080911(RES)	OCDD	7.99 pg/L	7.99U pg/L
EB-SA6-SB-080911(RES)	OCDF	1.02 pg/L	1.02U pg/L

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2310B371554	8/22/2011 3:54:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF OCDD	0.206 ng/Kg 0.0461 ng/Kg 0.0425 ng/Kg 0.0624 ng/Kg 0.0497 ng/Kg 0.0816 ng/Kg 0.0511 ng/Kg 0.0911 ng/Kg 0.0440 ng/Kg 0.280 ng/Kg	DUP24-SA5DN-QC-080911 SL-009-SA5DN-SB-4.0-5.0 SL-009-SA5DN-SB-9.0-10.0 SL-011-SA5DN-SB-4.0-5.0 SL-012-SA5DN-SB-9.0-10.0 SL-012-SA5DN-SB-9.0-10.0 SL-031-SA6-SB-9.0-10.0 SL-031-SA6-SB-2.5-3.5 SL-042-SA6-SB-2.5-3.5 SL-049-SA6-SB-2.5-3.5 SL-049-SA6-SB-2.5-3.5 SL-153-SA5DN-SB-7.0-8.0 SL-273-SA6-SB-4.0-5.0 SL-273-SA6-SB-4.0-5.0 SL-273-SA6-SB-9.0-10.0

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2380B370305	8/30/2011 3:05:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF	0.236 ng/Kg 0.0494 ng/Kg 0.0519 ng/Kg 0.0513 ng/Kg 0.0537 ng/Kg 0.0428 ng/Kg 0.0356 ng/Kg 0.0356 ng/Kg 0.0365 ng/Kg 0.0344 ng/Kg 0.426 ng/Kg	SL-083-SA5DN-SB-4.0-5.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP24-SA5DN-QC-080911(RES)	1,2,3,4,6,7,8-HPCDD	0.699 ng/Kg	0.699U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,4,6,7,8-HPCDF	0.122 ng/Kg	0.122U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,4,7,8,9-HPCDF	0.0441 ng/Kg	0.0441U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,4,7,8-HXCDF	0.0763 ng/Kg	0,0763U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,6,7,8-HXCDD	0.0589 ng/Kg	0.0589U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,6,7,8-HXCDF	0.0357 ng/Kg	0,0357U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,7,8,9-HXCDD	0.0440 ng/Kg	0.0440U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,7,8-PECDD	0.140 ng/Kg	0.140U ng/Kg
DUP24-SA5DN-QC-080911(RES)	2,3,4,6,7,8-HXCDF	0.0279 ng/Kg	0.0279U ng/Kg
SL-009-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,555 ng/Kg	0.555U ng/Kg
SL-009-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0752 ng/Kg	0.0752U ng/Kg
SL-009-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0,0715 ng/Kg	0.0715U ng/Kg
SL-009-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0813 ng/Kg	0.0813U ng/Kg
SL-009-SA5DN-SB-4,0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0278 ng/Kg	0.0278U ng/Kg
SL-009-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.187 ng/Kg	0.187U ng/Kg
SL-009-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.135 ng/Kg	0.135U ng/Kg
SL-009-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.194 ng/Kg	0.194U ng/Kg
SL-009-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.129 ng/Kg	0.129U ng/Kg
SL-009-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.277 ng/Kg	0.277U ng/Kg
SL-009-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.142 ng/Kg	0.142U ng/Kg
SL-011-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.429 ng/Kg	0.429U ng/Kg
SL-011-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0885 ng/Kg	0.0885U ng/Kg
SL-011-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0755 ng/Kg	0.0755U ng/Kg
SL-011-\$A5DN-\$B-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0752 ng/Kg	0.0752U ng/Kg
SL-011-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0395 ng/Kg	0.0395U ng/Kg
SL-012-SA5DN-S8-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.148 ng/Kg	0.148U ng/Kg
SL-012-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.102 ng/Kg	0.102U ng/Kg
SL-012-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.108 ng/Kg	0.108U ng/Kg
SL-012-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0749 ng/Kg	0.0749U ng/Kg
SL-012-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.913 ng/Kg	0.913U ng/Kg
SL-012-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.110 ng/Kg	0.110U ng/Kg
SL-012-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0600 ng/Kg	0.0600U ng/Kg

1/4/2012 7:10:07 AM ADR version 1.4.0.111 Page 2 of 4

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method Blank		9.101010	Associated
Metrioa: 161 Matrix: SO	Paris in an american it and it and interior forms	ika ili ang dia disebuah persampada alam pe	

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-012-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0380 ng/Kg	0.0380U ng/Kg	
SL-012-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0236 ng/Kg	0.0236U ng/Kg	
SL-012-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0566 ng/Kg	0.0566U ng/Kg	
SL-031-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.459 ng/Kg	0.459U ng/Kg	
SL-031-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.209 ng/Kg	0.209U ng/Kg	
SL-031-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0388 ng/Kg	0.0388U ng/Kg	
SL-031-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.106 ng/Kg	0.106U ng/Kg	
SL-031-SA6-SB-4,0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.197 ng/Kg	0.197U ng/Kg	
SL-031-SA6-SB-4,0-5,0(RE\$)	1,2,3,6,7,8-HXCDF	0.101 ng/Kg	0.101U ng/Kg	
SL-031-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.155 ng/Kg	0.155U ng/Kg	
SL-031-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0634 ng/Kg	0.0634U ng/Kg	
SL-031-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.321 ng/Kg	0.321U ng/Kg	
SL-031-SA6-SB-9,0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0700 ng/Kg	0.0700U ng/Kg	
SL-031-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0586 ng/Kg	0.0586U ng/Kg	
SL-031-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.189 ng/Kg	0.189U ng/Kg	
SL-031-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.227 ng/Kg	0.227U ng/Kg	
SL-031-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.190 ng/Kg	0.190U ng/Kg	
SL-031-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.333 ng/Kg	0.333U ng/Kg	
SL-031-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0811 ng/Kg	0.0811U ng/Kg	
SL-042-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	0.451 ng/Kg	0.451U ng/Kg	
SL-042-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0336 ng/Kg	0.0336U ng/Kg	
SL-042-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.0525 ng/Kg	0.0525U ng/Kg	
SL-042-SA6-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.134 ng/Kg	0.134U ng/Kg	
SL-042-SA6-SB-2.5-3.5(RES)	2,3,4,6,7,8-HXCDF	0.0338 ng/Kg	0.0338U ng/Kg	
SL-044-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0642 ng/Kg	0.0642U ng/Kg	
SL-044-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8-HXCDF	0,221 ng/Kg	0.221U ng/Kg	
SL-044-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.160 ng/Kg	0.160U ng/Kg	
SL-044-SA6-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.122 ng/Kg	0.122U ng/Kg	
SL-044-SA6-SB-2.5-3.5(RES)	2,3,4,6,7,8-HXCDF	0.177 ng/Kg	0.177U ng/Kg	
SL-049-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	0.596 ng/Kg	0.596U ng/Kg	
SL-049-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0463 ng/Kg	0.0463U ng/Kg	
SL-049-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDD	0.153 ng/Kg	0.153U ng/Kg	
SL-049-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.0324 ng/Kg	0.0324U ng/Kg	
SL-049-SA6-SB-2,5-3,5(RE\$)	1,2,3,7,8-PECDD	0.0684 ng/Kg	0.0684U пд/Кд	
SL-083-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.190 ng/Kg	0.190U ng/Kg	
SL-083-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0504 ng/Kg	0.0504U ng/Kg	
SL-083-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.191 ng/Kg	0.191U ng/Kg	
SL-083-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0701 ng/Kg	0.0701U ng/Kg	
SL-083-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.111 ng/Kg	0.111U ng/Kg	
SL-083-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0369 ng/Kg	0.0369U ng/Kg	

1/4/2012 7:10:07 AM ADR version 1.4.0.111 Page 3 of 4

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-083-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0869 ng/Kg	0.0869U ng/Kg
SL-153-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.195 ng/Kg	0.195U ng/Kg
SL-153-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0366 ng/Kg	0.0366U ng/Kg
SL-153-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0387 ng/Kg	0.0387U ng/Kg
SL-153-SA5DN-SB-4.0-5.0(RES)	OCDD	0.939 ng/Kg	0.939U ng/Kg
SL-153-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDD	0.344 ng/Kg	0.344U ng/Kg
SL-153-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0684 ng/Kg	0,0684U ng/Kg
SL-153-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,7,8-HXCDF	0.0418 ng/Kg	0.0418U ng/Kg
SL-153-SA5DN-SB-7,0-8,0(RES)	1,2,3,6,7,8-HXCDD	0.0802 ng/Kg	0.0802U ng/Kg
SL-153-SA5DN-SB-7.0-8.0(RES)	OCDD	0.999 ng/Kg	0.999U ng/Kg
SL-273-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,402 ng/Kg	0.402U ng/Kg
SL-273-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0392 ng/Kg	0.0392U ng/Kg
SL-273-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0470 ng/Kg	0.0470U ng/Kg
SL-273-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0695 ng/Kg	0.0695U ng/Kg
SL-273-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0470 ng/Kg	0.0470U ng/Kg
SL-273-SA6-SB-4.0-5.0(RES)	OCDD	0,616 ng/Kg	0.616U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.478 ng/Kg	0.478U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.131 ng/Kg	0.131U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0495 ng/Kg	0.0495U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.109 ng/Kg	0.109U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0856 ng/Kg	0.0856U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.226 ng/Kg	0,226U ng/Kg
SL-273-SA6-SB-9,0-10,0(RES)	2,3,4,6,7,8-HXCDF	0.0332 ng/Kg	0.0332U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	OCDD	1.09 ng/Kg	1.09U ng/Kg

1/4/2012 7:10:07 AM ADR version 1.4.0.111 Page 4 of 4

### Field Duplicate RPD Report

Lab Reporting Batch ID: DX126

Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO		iki di Aliku ili Kejing pada ili ka	ing (company) series		Salas il Maria de La Carlina de Car
	Concentr	ation (%)			
Analyte	SL-009-SA5DN-SB-4.0- 5.0	DUP24-SA5DN-QC- 080911	Sample RPD	eQAPP RPD	Flag
MOISTURE	9.8	10.9	11		No Qualifiers Applied

	Concentrati	Concentration (ng/Kg)			
Analyte	SL-009-SA5DN-SB-4.0- 5.0	DUP24-SA5DN-QC- 080911	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD	0.555	0.699	23	50.00	
1,2,3,4,6,7,8-HPCDF	0.0752	0.122	47	50.00	
1,2,3,6,7,8-HXCDD	0.0715	0.0589	19	50.00	
,2,3,7,8,9-HXCDF	0.0413	0.0396	4	50.00	No Qualifiers Applie
2,3,4,6,7,8-HXCDF	0.0278	0.0279	0	50.00	
2,3,4,7,8-PECDF	0.100	0.121	19	50.00	
OCDD	4.04	4.76	16	50.00	
,2,3,4,7,8,9-HPCDF	5.51 U	0.0441	200	50.00	
,2,3,4,7,8-HxCDD	5.51 U	0.0520	200	50.00	
,2,3,4,7,8-HXCDF	5.51 U	0.0763	200	50.00	
,2,3,6,7,8-HXCDF	5.51 U	0.0357	200	50.00	J(all detects)
,2,3,7,8,9-HXCDD	0.0813	0.0440	60	50.00	UJ(all non-detects
,2,3,7,8-PECDD	5.51 U	0.140	200	50.00	1
1,2,3,7,8-PECDF	0.125	0.0543	79	50.00	
OCDF	0.140	0.273	64	50.00	

1/4/2012 7:09:21 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

### Method: 1613B

Matrix: AC

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-080911	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	4.38 0.650 0.550 0.216 0.366 0.223 0.452 0.238 0.163 0.162 0.292 0.344 7.99 1.02	9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Methoda 1613

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP24-SA5DN-QC-080911	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	5 to 5 to 5 to 5 to 5 to 5 to 5 to 5 to	0.699 0.122 0.0441 0.0520 0.0763 0.0589 0.0357 0.0440 0.0396 0.140 0.0543 0.0279 0.121 4.76 0.273	5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.51	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-009-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	g g g g g g g g g g g g g g g g g g g	0.555 0.0752 0.0715 0.0813 0.0413 0.125 0.0278 0.100 4.04 0.140	5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.51	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/4/2012 7:10:14 AM ADR version 1.4.0.111 Page 1 of 4

Lab Reporting Batch ID: DX126

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method: 1613B

Matrix: SO				•	*.		
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL. Type	Units	Flag
SL-009-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	BC BC BC BC BC BC BC BC BC BC BC BC BC B	1.08 0.187 0.127 0.135 0.194 0.129 0.0954 0.277 0.221 0.142 0.186 9.81 0.381	5.56 5.56 5.56 5.56 5.56 5.56 5.56 5.56	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-011-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	5 to 5 to 5 to 5 to 5 to 5 to 5 to 5 to	0.429 0.0885 0.0521 0.0755 0.0752 0.0395 0.0642 0.105 3.03 0.225	5.60 5.60 5.60 5.60 5.60 5.60 5.60 1.12 11.2	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-012-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 0CDD 0CDF	- #55858 ###866868	1.13 0.148 0.102 0.108 0.104 0.0749 0.0624 0.0374 8.10 0.534	5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-012-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF OCDD OCDF	B B B C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C B	0.913 0.110 0.0600 0.0380 0.0236 0.0566 0.0363 0.0404 6.21 0.182	5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-031-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF	58-888889858-88888888888888888888888888	0.459 0.209 0.0388 0.0585 0.106 0.197 0.101 0.316 0.232 0.155 0.273 0.0634 0.216 2.31 0.448	5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Watrix: 50							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL. Type	Units	Flag
SL-031-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	BC   B	0.321 0.0700 0.0586 0.189 0.227 0.190 0.282 0.224 0.333 0.300 0.0811 0.280 0.0974 1.45 0.145	5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-042-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	- Bobara-asasas Bobbara-asasas	0.451 0.0336 0.305 0.0525 0.938 0.231 0.134 0.117 0.0338 0.0695 1.71 0.152	5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-044-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDF	1	1.73 0.0642 0.221 0.626 0.160 0.420 0.122 0.0862 0.177 0.0891 2.00	5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-049-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF OCDD OCDF	- 85 - 85 - 85 - 85 - 85 - 85 - 85 - 85	0.596 0.0463 0.153 0.0324 0.318 0.0880 0.0684 0.0455 0.0657 1.49 0.126	5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/4/2012 7:10:14 AM ADR version 1.4.0.111 Page 3 of 4

Lab Reporting Batch ID: DX126

Laboratory: LL EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

iviatrix: 50						Υ	
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-083-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF CODF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.91 0.190 0.0449 0.0584 0.0504 0.191 0.231 0.0701 0.111 0.0369 0.0869 0.751	5.56 5.56 5.56 5.56 5.56 5.56 5.56 5.56	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-153-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF OCDD	JB JBQ JBQ JBQ JBQ JBQ JBQ	0.195 0.0366 0.271 0.383 0.849 0.109 0.0387 0.939	5.67 5.67 5.67 5.67 5.67 5.67 5.67 11.3	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-153-SA5DN-SB-7.0-8.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF OCDD OCDF	18 JBQ JQ JQ J JB JQ JQ JBQ JQ JBQ JBQ JBQ	0.344 0.0684 0.0970 0.0418 0.0802 0.149 0.0512 0.0619 0.999 0.141	5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.5	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-273-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JB JBQ JBQ JBQ JQ JQ JBQ JBQ JQ	0.402 0.0392 0.0470 0.0695 0.0470 0.0550 0.0845 0.616 0.183	5.25 5.25 5.25 5.25 5.25 5.25 5.25 10.5 10.5	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-273-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0CDD 0CDF	# # # # # # # # # # # # # # # # # # #	0.478 0.131 0.0495 0.109 0.0856 0.226 0.129 0.0992 0.0332 0.0772 1.09 0.228	5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

ADR version 1.4.0.111 1/4/2012 7:10:14 AM Page 4 of 4

### **Enclosure II**

### **Level IV Validation Reports**

### Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Santa Susana Field Laboratory

Collection Date: August 8 through August 9, 2011

LDC Report Date: December 28, 2011

Matrix: Soil/Water

Parameters: Dioxins/Dibenzofurans

Validation Level: Level IV

Laboratory: Lancaster Laboratories

Sample Delivery Group (SDG): DX126

### Sample Identification

SL-083-SA5DN-SB-4.0-5.0

SL-153-SA5DN-SB-4.0-5.0

SL-153-SA5DN-SB-7.0-8.0

SL-273-SA6-SB-4.0-5.0

SL-273-SA6-SB-9.0-10.0

SL-031-SA6-SB-4.0-5.0

SL-031-SA6-SB-9.0-10.0

SL-042-SA6-SB-2.5-3.5

SL-044-SA6-SB-2.5-3.5

SL-049-SA6-SB-2.5-3.5

EB-SA6-SB-080911

SL-011-SA5DN-SB-4.0-5.0

SL-012-SA5DN-SB-4.0-5.0

SL-012-SA5DN-SB-9.0-10.0

SL-009-SA5DN-SB-4.0-5.0

SL-009-SA5DN-SB-9.0-10.0

DUP24-SA5DN-QC-080911

SL-009-SA5DN-SB-4.0-5.0MS

SL-009-SA5DN-SB-4.0-5.0MSD

### Introduction

This data review covers 18 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1613B for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Quality Assurance Project Plan for Santa Susana Field Laboratory (SSFL), RCRA Facility Investigation, Surficial Media Operable Unit (March 2009, Revision 4) and the USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

The chromatographic resolution between 2,3,7,8-TCDD and the peaks representing any other unlabeled TCDD isomers was resolved with a valley of less than or equal to 25%.

PFK and static resolving power were within validation criteria.

### III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

### IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were within QC limits.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

### V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BLK224001	8/12/11	2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDD 0CDD 0CDF	0.139 pg/L 0.457 pg/L 0.280 pg/L 0.450 pg/L 0.457 pg/L 0.405 pg/L 0.218 pg/L 0.268 pg/L 0.200 pg/L 0.373 pg/L 0.458 pg/L 0.595 pg/L 0.817 pg/L 0.591 pg/L 0.595 pg/L 1.57 pg/L	All water samples in SDG DX126
BLK231004	8/19/11	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD	0.0911 ng/Kg 0.0624 ng/Kg 0.0816 ng/Kg 0.0440 ng/Kg 0.0497 ng/Kg 0.0511 ng/Kg 0.0461 ng/Kg 0.206 ng/Kg 0.0425 ng/Kg 0.280 ng/Kg	SL-153-SA5DN-SB-4.0-5.0 SL-153-SA5DN-SB-7.0-8.0 SL-273-SA6-SB-4.0-5.0 SL-273-SA6-SB-9.0-10.0 SL-031-SA6-SB-9.0-10.0 SL-031-SA6-SB-9.0-10.0 SL-042-SA6-SB-2.5-3.5 SL-044-SA6-SB-2.5-3.5 SL-049-SA6-SB-2.5-3.5 SL-011-SA5DN-SB-4.0-5.0 SL-012-SA5DN-SB-4.0-5.0 SL-012-SA5DN-SB-9.0-10.0 SL-009-SA5DN-SB-9.0-10.0 DUP24-SA5DN-QC-080911
BLK238001	8/19/11	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD	0.0365 ng/Kg 0.0544 ng/Kg 0.0682 ng/Kg 0.0519 ng/Kg 0.0537 ng/Kg 0.0234 ng/Kg 0.0513 ng/Kg 0.0428 ng/Kg 0.0356 ng/Kg 0.0494 ng/Kg 0.236 ng/Kg 0.426 ng/Kg	SL-083-SA5DN-SB-4.0-5.0

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
EB-SA6-SB-080911	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD OCDD OCDF	0.344 pg/L 0.163 pg/L 0.292 pg/L 0.298 pg/L 0.216 pg/L 0.223 pg/L 0.162 pg/L 0.366 pg/L 0.452 pg/L 0.650 pg/L 4.38 pg/L 0.550 pg/L 7.99 pg/L 1.02 pg/L	0.344U pg/L 0.163U pg/L 0.292U pg/L 0.238U pg/L 0.216U pg/L 0.223U pg/L 0.162U pg/L 0.366U pg/L 0.452U pg/L 0.650U pg/L 4.38U pg/L 0.550U pg/L 7.99U pg/L 1.02U pg/L
SL-153-SA5DN-SB-4.0-5.0	2,3,4,6,7,8-HxCDF	0.0387 ng/Kg	0.0387U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0366 ng/Kg	0.0366U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.195 ng/Kg	0.195U ng/Kg
	OCDD	0.939 ng/Kg	0.939U ng/Kg
SL-153-SA5DN-SB-7.0-8.0	1,2,3,4,7,8-HxCDF	0.0418 ng/Kg	0.0418U ng/Kg
	1,2,3,6,7,8-HxCDD	0.0802 ng/Kg	0.0802U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0684 ng/Kg	0.0684U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.344 ng/Kg	0.344U ng/Kg
	OCDD	0.999 ng/Kg	0.999U ng/Kg
SL-273-SA6-SB-4.0-5.0	1,2,3,4,7,8-HxCDF	0.0470 ng/Kg	0.0470U ng/Kg
	1,2,3,6,7,8-HxCDF	0.0470 ng/Kg	0.0470U ng/Kg
	1,2,3,6,7,8-HxCDD	0.0695 ng/Kg	0.0695U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0392 ng/Kg	0.0392U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.402 ng/Kg	0.402U ng/Kg
	OCDD	0.616 ng/Kg	0.616U ng/Kg
SL-273-SA6-SB-9.0-10.0	1,2,3,6,7,8-HxCDF	0.0856 ng/Kg	0.0856U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0332 ng/Kg	0.0332U ng/Kg
	1,2,3,6,7,8-HxCDD	0.109 ng/Kg	0.109U ng/Kg
	1,2,3,7,8,9-HxCDD	0.226 ng/Kg	0.226U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.131 ng/Kg	0.131U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.478 ng/Kg	0.478U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.0495 ng/Kg	0.0495U ng/Kg
	OCDD	1.09 ng/Kg	1.09U ng/Kg
SL-031-SA6-SB-4.0-5.0	1,2,3,7,8-PeCDD	0.155 ng/Kg	0.155U ng/Kg
	1,2,3,4,7,8-HxCDF	0.106 ng/Kg	0.106U ng/Kg
	1,2,3,6,7,8-HxCDF	0.101 ng/Kg	0.101U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0634 ng/Kg	0.0634U ng/Kg
	1,2,3,6,7,8-HxCDD	0.197 ng/Kg	0.197U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.209 ng/Kg	0.209U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.459 ng/Kg	0.459U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.0388 ng/Kg	0.0388U ng/Kg
SL-031-SA6-SB-9.0-10.0	1,2,3,7,8-PeCDD	0.333 ng/Kg	0.333U ng/Kg
	1,2,3,4,7,8-HxCDF	0.189 ng/Kg	0.189U ng/Kg
	1,2,3,6,7,8-HxCDF	0.190 ng/Kg	0.190U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0811 ng/Kg	0.0811U ng/Kg
	1,2,3,6,7,8-HxCDD	0.227 ng/Kg	0.227U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0700 ng/Kg	0.0700U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.321 ng/Kg	0.321U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.0586 ng/Kg	0.0586U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-042-SA6-SB-2.5-3.5	1,2,3,7,8-PeCDD	0.134 ng/Kg	0.134U ng/Kg
	1,2,3,6,7,8-HxCDF	0.0525 ng/Kg	0.0525U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0338 ng/Kg	0.0338U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0336 ng/Kg	0.0336U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.451 ng/Kg	0.451U ng/Kg
SL-044-SA6-SB-2.5-3.5	1,2,3,7,8-PeCDD	0.122 ng/Kg	0.122U ng/Kg
	1,2,3,4,7,8-HxCDF	0.221 ng/Kg	0.221U ng/Kg
	1,2,3,6,7,8-HxCDF	0.160 ng/Kg	0.160U ng/Kg
	2,3,4,6,7,8-HxCDF	0.177 ng/Kg	0.177U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.0642 ng/Kg	0.0642U ng/Kg
SL-049-SA6-SB-2.5-3.5	1,2,3,7,8-PeCDD	0.0684 ng/Kg	0.0684U ng/Kg
	1,2,3,6,7,8-HxCDF	0.0324 ng/Kg	0.0324U ng/Kg
	1,2,3,6,7,8-HxCDD	0.153 ng/Kg	0.153U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0463 ng/Kg	0.0463U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.596 ng/Kg	0.596U ng/Kg
SL-011-SA5DN-SB-4.0-5.0	2,3,4,6,7,8-HxCDF	0.0395 ng/Kg	0.0395U ng/Kg
	1,2,3,6,7,8-HxCDD	0.0755 ng/Kg	0.0755U ng/Kg
	1,2,3,7,8,9-HxCDD	0.0752 ng/Kg	0.0752U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.429 ng/Kg	0.429U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0885 ng/Kg	0.0885U ng/Kg
SL-012-SA5DN-SB-4.0-5.0	1,2,3,7,8-PeCDD	0.0749 ng/Kg	0.0749U ng/Kg
	1,2,3,6,7,8-HxCDD	0.102 ng/Kg	0.102U ng/Kg
	1,2,3,7,8,9-HxCDD	0.108 ng/Kg	0.108U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.148 ng/Kg	0.148U ng/Kg
SL-012-SA5DN-SB-9.0-10.0	1,2,3,4,7,8-HxCDF	0.0380 ng/Kg	0.0380U ng/Kg
	1,2,3,6,7,8-HxCDF	0.0236 ng/Kg	0.0236U ng/Kg
	1,2,3,7,8,9-HxCDD	0.0566 ng/Kg	0.0566U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.110 ng/Kg	0.110U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.913 ng/Kg	0.913U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.0600 ng/Kg	0.0600U ng/Kg
SL-009-SA5DN-SB-4.0-5.0	2,3,4,6,7,8-HxCDF	0.0278 ng/Kg	0.0278U ng/Kg
	1,2,3,6,7,8-HxCDD	0.0715 ng/Kg	0.0715U ng/Kg
	1,2,3,7,8,9-HxCDD	0.0813 ng/Kg	0.0813U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0752 ng/Kg	0.0752U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.555 ng/Kg	0.555U ng/Kg
SL-009-SA5DN-SB-9.0-10.0	1,2,3,7,8-PeCDD	0.277 ng/Kg	0.277U ng/Kg
	1,2,3,4,7,8-HxCDF	0.135 ng/Kg	0.135U ng/Kg
	2,3,4,6,7,8-HxCDF	0.142 ng/Kg	0.142U ng/Kg
	1,2,3,6,7,8-HxCDD	0.194 ng/Kg	0.194U ng/Kg
	1,2,3,7,8,9-HxCDD	0.129 ng/Kg	0.129U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.187 ng/Kg	0.187U ng/Kg
DUP24-SA5DN-QC-080911	1,2,3,7,8-PeCDD	0.140 ng/Kg	0.140U ng/Kg
	1,2,3,4,7,8-HxCDF	0.0763 ng/Kg	0.0763U ng/Kg
	1,2,3,6,7,8-HxCDF	0.0357 ng/Kg	0.0357U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0279 ng/Kg	0.0279U ng/Kg
	1,2,3,6,7,8-HxCDD	0.0589 ng/Kg	0.0589U ng/Kg
	1,2,3,7,8,9-HxCDD	0.0440 ng/Kg	0.0440U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.122 ng/Kg	0.122U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.699 ng/Kg	0.699U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.0441 ng/Kg	0.0441U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-083-SA5DN-SB-4.0-5.0	1,2,3,7,8-PeCDF	0.111 ng/Kg	0.111U ng/Kg
	2,3,4,7,8-PeCDF	0.0869 ng/Kg	0.0869U ng/Kg
	1,2,3,4,7,8-HxCDF	0.0504 ng/Kg	0.0504U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0369 ng/Kg	0.0369U ng/Kg
	1,2,3,6,7,8-HxCDD	0.191 ng/Kg	0.191U ng/Kg
	1,2,3,7,8,9-HxCDF	0.0701 ng/Kg	0.0701U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.190 ng/Kg	0.190U ng/Kg

Sample EB-SA6-SB-080911 was identified as an equipment blank. No polychlorinated dioxin/dibenzofuran contaminants were found with the following exceptions:

Equipment Blank ID	Sampling Date	Compound	Concentration	Associated Samples
EB-SA6-SB-080911	8/9/11	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD OCDD	0.344 pg/L 0.163 pg/L 0.292 pg/L 0.238 pg/L 0.216 pg/L 0.223 pg/L 0.162 pg/L 0.366 pg/L 0.452 pg/L 0.650 pg/L 4.38 pg/L 0.550 pg/L 7.99 pg/L 1.02 pg/L	SL-042-SA6-SB-2.5-3.5 SL-044-SA6-SB-2.5-3.5 SL-049-SA6-SB-2.5-3.5

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X for other contaminants) than the concentrations found in the associated field blanks.

### VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within the QC limits.

### VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits.

### VIII. Regional Quality Assurance and Quality Control

Not applicable.

### IX. Internal Standards

All internal standard recoveries were within QC limits.

### X. Target Compound Identifications

All target compound identifications were within validation criteria.

### XI. Compound Quantitation and RLs

All compound quantitation and RLs were within validation criteria.

All compounds reported below the RL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG DX126	All compounds reported below the RL.	J (all detects)	Α

### XII. System Performance

The system performance was acceptable.

### XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

### XIV. Field Duplicates

Samples SL-009-SA5DN-SB-4.0-5.0 and DUP24-SA5DN-QC-080911 were identified as field duplicates. No polychlorinated dioxins/dibenzofurans were detected in any of the samples with the following exceptions:

	Concentra	tion (ng/Kg)			
Compound	SL-009-SA5DN-SB-4.0-5.0	DUP24-SA5DN-QC-080911	RPD (Limits)	Flags	A or P
1,2,3,7,8-PeCDF	0.125	0.0543	79 (≤50)	J (all detects)	А
2,3,4,7,8-PeCDF	0.100	0.121	19 (≤50)	-	-
1,2,3,7,8-PeCDD	5.51U	0.140	200 (≤50)	J (all detects) UJ (all non-detects)	А
1,2,3,4,7,8-HxCDF	5.51U	0.0763	200 (≤50)	J (all detects) UJ (all non-detects)	A

	Concentra	tion (ng/Kg)			
Compound	SL-009-SA5DN-SB-4.0-5.0	DUP24-SA5DN-QC-080911	RPD (Limits)	Flags	A or P
1,2,3,6,7,8-HxCDF	5.51U	0.0357	200 (≤50)	J (all detects) UJ (all non-detects)	Α
2,3,4,6,7,8-HxCDF	0.0278	0.0279	0 (≤50)	-	-
1,2,3,4,7,8-HxCDD	5.51U	0.0520	200 (≤50)	J (all detects) UJ (all non-detects)	Α
1,2,3,6,7,8-HxCDD	0.0715	0.0589	19 (≤50)	-	-
1,2,3,7,8,9-HxCDD	0.0813	0.0440	60 (≤50)	J (all detects)	Α
1,2,3,7,8,9-HxCDF	0.0413	0.0396	4 (≤50)	-	-
1,2,3,4,6,7,8-HpCDF	0.0752	0.122	47 (≤50)	-	-
1,2,3,4,6,7,8-HpCDD	0.555	0.699	23 (≤50)	-	-
1,2,3,4,7,8,9-HpCDF	5.51U	0.0441	200 (≤50)	J (all detects) UJ (all non-detects)	A
OCDD	4.04	4.76	16 (≤50)	-	-
OCDF	0.140	0.273	64 (≤50)	J (all detects)	Α

### Santa Susana Field Laboratory Dioxins/Dibenzofurans - Data Qualification Summary - SDG DX126

SDG	Sample	Compound	Flag	A or P	Reason (Code)
DX126	SL-083-SA5DN-SB-4.0-5.0 SL-153-SA5DN-SB-4.0-5.0 SL-153-SA5DN-SB-7.0-8.0 SL-273-SA6-SB-4.0-5.0 SL-273-SA6-SB-9.0-10.0 SL-031-SA6-SB-9.0-10.0 SL-031-SA6-SB-9.0-10.0 SL-042-SA6-SB-2.5-3.5 SL-044-SA6-SB-2.5-3.5 SL-049-SA6-SB-2.5-3.5 SL-049-SA6-SB-2.5-3.5 EB-SA6-SB-080911 SL-011-SA5DN-SB-4.0-5.0 SL-012-SA5DN-SB-4.0-5.0 SL-012-SA5DN-SB-9.0-10.0 SL-009-SA5DN-SB-9.0-10.0 DUP24-SA5DN-SB-9.0-10.0	All compounds reported below the RL.	J (all detects)	A	Compound quantitation and RLs (Z)
DX126	SL-009-SA5DN-SB-4.0-5.0 DUP24-SA5DN-QC-080911	1,2,3,7,8-PeCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF	J (all detects) J (all detects) J (all detects)	А	Field duplicates (RPD) (FD)
DX126	SL-009-SA5DN-SB-4.0-5.0 DUP24-SA5DN-QC-080911	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8,9-HpCDF	J (all detects) UJ (all non-detects)	А	Field duplicates (RPD) (FD)

### Santa Susana Field Laboratory Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG DX126

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX126	EB-SA6-SB-080911	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 0CDD	0.344U pg/L 0.163U pg/L 0.292U pg/L 0.238U pg/L 0.216U pg/L 0.162U pg/L 0.366U pg/L 0.452U pg/L 0.650U pg/L 4.38U pg/L 0.550U pg/L 7.99U pg/L 1.02U pg/L	A	В
DX126	SL-153-SA5DN-SB-4.0-5.0	2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDD	0.0387U ng/Kg 0.0366U ng/Kg 0.195U ng/Kg 0.939U ng/Kg	А	В

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX126	SL-153-SA5DN-SB-7.0-8.0	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDD	0.0418U ng/Kg 0.0802U ng/Kg 0.0684U ng/Kg 0.344U ng/Kg 0.999U ng/Kg	A	В
DX126	SL-273-SA6-SB-4.0-5.0	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDD	0.0470U ng/Kg 0.0470U ng/Kg 0.0695U ng/Kg 0.0392U ng/Kg 0.402U ng/Kg 0.616U ng/Kg	А	В
DX126	SL-273-SA6-SB-9.0-10.0	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF OCDD	0.0856U ng/Kg 0.0332U ng/Kg 0.109U ng/Kg 0.226U ng/Kg 0.131U ng/Kg 0.478U ng/Kg 0.0495U ng/Kg 1.09U ng/Kg	А	В
DX126	SL-031-SA6-SB-4.0-5.0	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD	0.155U ng/Kg 0.106U ng/Kg 0.101U ng/Kg 0.0634U ng/Kg 0.197U ng/Kg 0.209U ng/Kg 0.459U ng/Kg 0.0388U ng/Kg	А	В
DX126	SL-031-SA6-SB-9.0-10.0	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF	0.333U ng/Kg 0.189U ng/Kg 0.190U ng/Kg 0.0811U ng/Kg 0.227U ng/Kg 0.0700U ng/Kg 0.321U ng/Kg 0.0586U ng/Kg	А	В
DX126	SL-042-SA6-SB-2.5-3.5	1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD	0.134U ng/Kg 0.0525U ng/Kg 0.0338U ng/Kg 0.0336U ng/Kg 0.451U ng/Kg	А	В
DX126	SL-044-SA6-SB-2.5-3.5	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF	0.122U ng/Kg 0.221U ng/Kg 0.160U ng/Kg 0.177U ng/Kg 0.0642U ng/Kg	А	В
DX126	SL-049-SA6-SB-2.5-3.5	1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD	0.0684U ng/Kg 0.0324U ng/Kg 0.153U ng/Kg 0.0463U ng/Kg 0.596U ng/Kg	А	В

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX126	SL-011-SA5DN-SB-4.0-5.0	2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF	0.0395U ng/Kg 0.0755U ng/Kg 0.0752U ng/Kg 0.429U ng/Kg 0.0885U ng/Kg	A	В
DX126	SL-012-SA5DN-SB-4.0-5.0	1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF	0.0749U ng/Kg 0.102U ng/Kg 0.108U ng/Kg 0.148U ng/Kg	А	В
DX126	SL-012-SA5DN-SB-9.0-10.0	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF	0.0380U ng/Kg 0.0236U ng/Kg 0.0566U ng/Kg 0.110U ng/Kg 0.913U ng/Kg 0.0600U ng/Kg	А	8
DX126	SL-009-SA5DN-SB-4.0-5.0	2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD	0.0278U ng/Kg 0.0715U ng/Kg 0.0813U ng/Kg 0.0752U ng/Kg 0.555U ng/Kg	А	В
DX126	SL-009-SA5DN-SB-9.0-10.0	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF	0.277U ng/Kg 0.135U ng/Kg 0.142U ng/Kg 0.194U ng/Kg 0.129U ng/Kg 0.129U ng/Kg	А	В
DX126	DUP24-SA5DN-QC-080911	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF	0.140U ng/Kg 0.0763U ng/Kg 0.0357U ng/Kg 0.0279U ng/Kg 0.0589U ng/Kg 0.0440U ng/Kg 0.122U ng/Kg 0.699U ng/Kg 0.0441U ng/Kg	А	В
DX126	SL-083-SA5DN-SB-4.0-5.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	0.111U ng/Kg 0.0869U ng/Kg 0.0504U ng/Kg 0.0369U ng/Kg 0.191U ng/Kg 0.0701U ng/Kg 0.190U ng/Kg	А	В

Santa Susana Field Laboratory Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG DX126

No Sample Data Qualified in this SDG

SDG	#: <u>26850C21</u> #: <u>DX126</u> ratory: <u>Lancaster Labora</u>		N COMPLE Leve		ESS WORKSHEE		Date:_/ Page:_/ Reviewer:	
METI	HOD: HRGC/HRMS Diox	ins/Dibenzofurar	ns (EPA Metho	d 161	13B)	2r	nd Reviewer:	<u> </u>
The s	samples listed below were ation findings worksheets	e reviewed for ea	•		•	ation findings a	are noted in atta	ached
	Validation	Area			Con	nments		
l.	Technical holding times		A Sam	npling (	dates: 8/8	8/9/11		
II.	HRGC/HRMS Instrument po	erformance check	A					
111.	Initial calibration		Δ	0/	6 PSD = 20/3	5		
IV.	Routine calibration/ICV		A	co	v = ac limi-	+-		
V.	Blanks		34					
VI.	Matrix spike/Matrix spike du	plicates	-\					
VII.	Laboratory control samples		A	OP	R			
VIII.	Regional quality assurance	and quality control	N					
IX.	Internal standards		A 8	(	limi +			
Х.	Target compound identificat	tions	Δ					
XI.	Compound quantitation and	CRQLs	Δ				<del></del>	
XII.	System performance		Α					
XIII.	Overall assessment of data		A					1
XIV.	Field duplicates		SW	D =	15, 17			
XV.	Field blanks		SW E	B=	11			
Note: Validat	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:	R = Rin FB = Fid	o compounds dete sate eld blank	ected	D = Duplicate TB = Trip blank EB = Equipment b	lank		
	\$011 + wal	l , l		Ι.				<del></del>
13	SL-083-SA5DN-SB-4.0-5.0	11 EB-SA6-SB-0	80911 W		Blank 224001	31		
2 2	SL-153-SA5DN-SB-4.0-5.0	12 <b>2</b> SL-011-SA5D	N-SB-4.0-5.0		Blank 231004	32		
3 2	SL-153-SA5DN-SB-7.0-8.0	13 2 SL-012-SA5D		237	Blank 23800 1	33		
4 2	SL-273-SA6-SB-4.0-5.0	14 2 SL-012-SA5D	_	24		34	*1	
	SL-273-SA6-SB-9.0-10.0	15 2 SL-009-SA5D		25		35		
$\Box$	SL-031-SA6-SB-4.0-5.0	16 ⁷ SL-009-SA5D		26		36	<del>'</del>	
	SL-031-SA6-SB-9.0-10.0	177 DUP24-SA5D		27		37		
87	SL-042-SA6-SB-2.5-3.5	18 Z SL-009-SA5D	N-SB-4.0-5.0MS	28	1	38		

Notes:			
•	 	 	

30

39

40

19 1/SL-009-SA5DN-SB-4.0-5.0MSD 29

20

SL-044-SA6-SB-2.5-3.5

SL-049-SA6-SB-2.5-3.5

102

Page:_/_of_	2
Reviewer: FT	
2nd Reviewer: 🖊	
<i>i</i> '_ '	

Method: Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times			77.38 30.17	
All technical holding times were met.				
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check	10.57 18.75			
Was PFK exact mass 380.9760 verified?	_		ļ	
Were the retention time windows established for all homologues?	_			
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers ≤ 25% ?	_			
Is the static resolving power at least 10,000 (10% valley definition)?				
Was the mass resolution adequately check with PFK?	<u>                                     </u>			
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?		TO THE WAY THE BE	ा सह	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
III. Initial calibration				
Was the initial calibration performed at 5 concentration levels?				
Were all percent relative standard deviations (%RSD) ≤ 20% for unlabeled compounds and ≤ 35% for labeled compounds?	-			
Did all calibration standards meet the Ion Abundance Ratio criteria?	_			
Was the signal to noise ratio for each target compound ≥ 2.5 and for each recovery and internal standard ≥ 10?	-			
IV. Continuing calibration				
Was a routine calibration performed at the beginning and end of each 12 hour period?	_			
Were all the concentrations for the unlabeled compounds and labeled compounds within the QC limits (Method 1613B, Table 6)?	_			
Did all routine calibration standards meet the Ion Abundance Ratio criteria?	201.0			
V. Blanks		NEW YORK		
Was a method blank associated with every sample in this SDG?				
Was a method blank performed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet?		- Attention		
VI. Mátrix spike/Mátrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	_			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VII. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?		: 		
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

LDC #: 26850c2/

### VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: FT
2nd Reviewer: _____

Validation Area	Yes	No	NA	Findings/Comments
VIII. Regional Quality Assurance and Quality Control		i silent		
Were performance evaluation (PE) samples performed?			_	
Were the performance evaluation (PE) samples within the acceptance limits?			_	
IX: Internal standards	( ev			
Were internal standard recoveries within the 25-150% criteria?				
Was the minimum S/N ratio of all internal standard peaks > 10?		<u>}                                    </u>		
X. Target compound identification				
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?				
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?	/			
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?	/			
Did compound spectra contain all characteristic ions listed in the table attached?				
Was the Ion Abundance Ratio for the two quantitation ions within criteria?				
Was the signal to noise ratio for each target compound and labeled standard <u>&gt;</u> 2.5?	_			
Does the maximum intensity of each specified characteristic ion coincide within $\pm2$ seconds (includes labeled standards)?	_			
For PCDF identification, was any signal (S/N $\geq$ 2.5, at $\pm$ seconds RT) detected in the corresponding PCDPE channel?		-		
Was an acceptable lock mass recorded and monitored?	<u></u>	P. X. 5 -4 -		
XI. Compound quantitation/CRQLs	1007 x Av. 50			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII: System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				
XV: Field blanks		1044 a 2 14 A 2 15 14 A 2 15		
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	1. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

<del>-</del>
$\aleph$
8
33
268
$\sim$
#
8
닠

Reviewer:_ 2nd Reviewer:

 $\omega$ 

Page:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed? *EMPC N/A

YN X

Conc. units: pg/L

Blank analysis date: 8/16/11 Was the method blank contaminated? Brank extraction date: 8/12/11

Associated samples: ALL WATER

							:	
Compound	Blank ID			Sa	Sample Identification	tion		
	BLK224001	5X	11					
I	0.139	0.695						
А	0.457*	2.285	0.344*∪					
	0.280*	1.4	0.163*U					
ņ	0.450*	2.25	0.292*U					
В	0.437*	2.185	0.238*U					
¥	0.405	2.025	0.216*U					
الت	0.218*	1.09	0.223*U	,				
M	0.268	1.34	0.162*U					
S	0.200*	1						
D	0.373*	1.865	0.366*U					
Ш	0.458	2.29	0.452*U			:		
Z	0.595*	2.975						
0	0.817*	4.085	0.650U					
L	3.99	19.95	4.38U					
Ь	0.551*	2.755	0.550*U					
9	8.97	44.85	7.99*U					
	į	i C						

7	
$^{\circ}$	J
C	)
C	٥
Ğ	)
α	١
Ü	j
C	Į
٠.	
#	
Ç.	J
$\overline{}$	١
_	1

Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? N/A V V V

Was a method blank performed for each matrix and whenever a sample extraction was performed? *EMPC

∀N K

Was the method blank contaminated?

Associated samples: 2-10, 12-17 Blank analysis date: 8/22/11 Blank extraction date: 8/19/11 Conc. units: ng/kg

Compound	Blank ID				Ş	Sample Identification	tion			
	BLK231004	2X	2	3	4	5	9	7	· c	σ
В	0.0911*	0.4555					0.155*U	0.333U	0.134U	0.122*U
<b>Y</b>	0.0624*	0.312		0.0418*U	0.0470*U		0.106*U	0.189*∪		0.221*U
F	0.0816*	0.408			0.0470*U	0.0856*U	0.101*U	0.190*∪	0.0525*U	0.160*U
M	0.0440*	0.22	0.0387*U			0.0332*U	0.0634U	0.0811*U	0.0338*U	0.177*U
a	0.0497*	0.2485		0.0802*U	0.0695*U	0.109*U	0.197*U	0.227U		Į.
ш	0.0511*	0.2555				0.226*U				
0	0.0461*	0.2305	0.0366*U	0.0684*U	0.0392U	0.131*U	0.209*U	0.0700*∪	0.0336*U	
ĮĮ,	0.206	1.03	0.195U	0.344∪	0.402U	0.478U	0.459*U	0.321*U	0.451*U	
d.	0.0425*	0.2125				0.0495U	0.0388U	0.0586U		0.0642*U
	0	,								

_	
?	į
۲	,
ĭ	j
α	2
2620	j
Ħ	
Č	)
$\Box$	)

Blanks

Reviewer: 2nd Reviewer:

, 20

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed? *EMPC

Was the method blank contaminated? YN X

N/A

Associated samples: 2-10, 12-17 Blank analysis date: 8/22/11 Blank extraction date: 8/19/11 Conc. units: na/ka

Sollo: dillio:										
Compound	Blank ID				Š	Sample Identification	ıtion		;	
-	BLK231004	2X	10	12	13	14	15	16	17	
В	0.0911*	0.4555	0.0684*U		0.0749*U			0.277U	0.140*U	
×	0.0624*	0.312				0.0380*U		0.135U	0.0763*U	
ſ	0.0816*	0.408	0.0324*U			0.0236*U			0.0357*U	
M	0.0440*	0.22		0.0395*U			0.0278*U	0.142*U	0.0279*U	
۵	0.0497*	0.2485	0.153*U	0.0755*U	0.102U		0.0715*U	0.194*U	0.0589*U	
Ш	0.0511*	0.2555		0.0752*U	0.108*U	0.0566*U	0.0813U	0.129U	0.0440U	
0	0.0461*	0.2305	0.0463U	ወ. ዕያዩታ"	0.148U	0.110U	0.0752U	0.187*U	0.122U	
ш.	0.208	1.03	0.596*U	0.424.0 0.0885.1L		0.913U	0.555*U		0.699	
Р	0.0425*	0.2125				0.0600*U			0.0441*U	
(	000	7								

Ψ.
$\ddot{\mathcal{C}}$
8
3
8
3
#
$\circ$

Blanks

Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? N N N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed? *EMPC

Was the method blank contaminated? Blank extraction date: 8/19/11

∀W V/

Blank analysis date: 8/22/11

Associated samples:_



Conc. units: ng/kg							-[	,	
Compound	Blank ID			Sa	Sample Identification	tion			
	BI K238001	2X	ţ.						
_	0.0365*	0.1825	0.111*U						
· 0	0.0544*	0.272	0.0869*∪						
В	0.0682*	0.341							
¥	0.0519*	0.2595	0.0504*U						
Ţ	0.0537*	0.2685							
M	0.0234*	0.117	0.0369*∪						
D	0.0513*	0.2565	0.191*U	:					
Ш	0.0428*	0.214							
Z	0.0356*	0.178	0.0701*U						
0	0.0494*	0.247	0.190U						
ш	0.236*	1.18		 :					
9	0.426*	2.13							

Ξ
$\tilde{S}$
Š
9
÷.
# ()
Ď
_

## VALIDATION FINDINGS WORKSHEET Field Blank

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were field blank identified in this SDG?

Y N N/A Were target compounds detected in the field blank?

Blank unit: pg/L Associated sample unit: pg/Kg

Blank unit: pg/L Associated sample unit: ng/Kg Sampling date : 8/9/11

Associated samples: 8-10, 12-17 >5x

#

2nd Reviewer:

and and and				
Compound	Blank ID		Sample Identification	
	11	Σς		
А	0.344*	1.72		T
	0.163*	0.815		1
7	0.292*	1.46		
8	0.238*	1.19		
¥	0.216*	1.08		<u> </u>
_1	0.223*	1.115		
M	0.162*	0.81		
9		0		
D	0.366*	1.83		
ш	0.452*	2.26		
V		0		
0	0.650	3.25		
ĹĿ	4.38	21.9		
۵.	0.550*	2.75		
g	7.99*	39.95		
Q	1 02	5.1		<u> </u>

LDC#: 26850 C2

### VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:	1 of
Reviewer:	F
2nd Reviewer:	<u> </u>
`	

Y N NA Were field duplicate pairs identified in this SDG?

Y N NA Were target analytes detected in the field duplicate pairs?

* enpc

(fd

	Concentration	(ng/kg)	<u> </u>	
Compound	15	17	RPD	
1	0.125*	0.0543*	79	J/Adit
J	0.100	0.121*	19	,
В	<del>०.००३९८-</del> उ.८१ <i>७</i>	0.140*	200	1/W/L
К	<del>0.0284U -</del> どぶし	0.0763*	200	1
L	<del>0.0234U−</del> ≤.5(∪	0.0357*	200	1
М	0.0278*	0.0279*	0	
С	<del>-0.0410U</del> S.51 U	0.0520*	200	1/N/C
D	0.0715*	0.0589*	19	
E	0.0813	0.0440	60	J/Adu
N	0.0413	0.0396*	4	
0	0.0752	0.122	47	
F	0.555*	0.699	23	
Р	0.0371U5.5[V	0.0441*	200	1/m/V
G	4.04	4.76	16	
Q	0.140*	0.273*	64	1/Adv

V:\FIELD DUPLICATES\templates\26850C21.wpd

# VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: /of / Reviewer: FT

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF =  $(A_x)(C_{s_2})/(A_b)(C_x)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

			-	Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF (CX-x std)	RRF	%RSD	%RSD
_	KA L	115/2	2.3.7.8-TCDF ( ¹³ C-2.3.7.8-TCDF)	101	1.017	650-1	1,032	£ + 9	4.79
		<del>-</del>	2,3,7,8-TCDD ( ¹³ C-2,3,7,8-TCDD)	-182	- <del>  </del>	781.1	1.186	5.5%	5.26
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	0.995	1660	1001	1.001	3.43	3.43
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	1.077	LL0.1	. 1 01 1	101.1	4.02	4.02
			OCDF (13C-OCDF)	0.945	Stoo	6-974	476.0	3.2	3.54
7	14)	(1/1/4/9	2,3,7,8-TCDF (¹3C-2,3,7,8-TCDF)	1027	7101	1.02%	-0xk	7:1	777
	,	<b></b>	2,3,7,8-TCDD ( ¹³ C-2,3,7,8-TCDD)	1.133	561.1	1.142	1.17.7	3.52	352
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	0.971	1260	1.018	1.08	4.32	4.32
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	7.00.1	1.053	1.087	1.087	4.49	4.49
			ocde (13c-ocde)	0.950	Crsp.o	1.001	1.001	5.01	10-2
က			2.3,7,8-TCDF ( ¹³ C-2.3,7,8-TCDF)						
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)						
			OCDF (13C-OCDF)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10,0% of the recalculated results.

### LDC# 268500 2/

## VALIDATION FINDINGS WORKSHEET Routine Calibration Results Verification

Page: of Z Reviewer: FT 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF =  $\{A_x\}(C_s)/(A_s)(C_s)$ 

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF

 $A_x = Area$  of compound,  $C_x = Concentration$  of compound,

 $A_s = Area$  of associated internal standard  $C_s = Concentration of internal standard$ 

		, <u> </u>		, )04)	Reported	Recalculated	Reported	Recalculated
		Calibration	. !	Average RRF	ENC. PRF	CONC. RRF		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
#	Standard ID	Date	Compound (Reference Internal Standard)	(initial)	(၁၁)	(CC)	₹.	₫%
~-	Ged 10:16	(1/9) 8	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	0.0	9.140	9-140	76	6
		• •	2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	10.0	9-150	(PRI-6	92	4
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	50.0	50.360	025:05	[0]	101
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	50.0	281.05	081.05	10 C	901
			OCDF (13C-OCDF)	100.00	107.420	024-201	107	[0]
7	Cest 13:04	8 22 11	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	1	9.970	077.6	001	901
			2,3,7,8-TCDD ( ¹³ C-2,3,7,8-TCDD)		10.640	01-9-01	2	20
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)		52.00	29.00	401	ha)
			1,2,3,4,6,7,8-HpCDD ( ¹³ C-1,2,4,6,7,8,-HpCDD)		53.430	05h.4S	201	Soi
			OCDF (*3C-OCDF)		104. \$\$0	104 8/20	105	<u>ا</u> مد
ო	cen 0133	8 23 11	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)		10.330	10.330	601	<u>80</u>
		•	2,3,7,8-TCDD (13C-2,3,7,8-TCDD)		10.720	022.01	101	[4]
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)		51.920	026.12	hol	<i>50</i> 2
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)		5]. 370	01.370	601	603
			OCDF (13C-OCDF)		106.120	106.127	90	201

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the results. recalculated

12
200
56
)C #:
Ξ

### Routine Calibration Results Verification VALIDATION FINDINGS WORKSHEET

/of/	FI	1
Page:_	Reviewer:	2nd Reviewer:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8298) 16 1 ろ 1ろ

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF =  $(A_a)(C_b)/(A_b)(C_x)$ 

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, A_x = Concentration of compound, C_x = Concentration of compound, C_x Where:

 $A_{\rm s}$  = Area of associated internal standard  $C_{\rm s}$  = Concentration of internal standard

				conc.	Reported	Recalculated	Reported	Recalculated
*	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	CONC RRF (CC)	(CC)	₩	ď%
<u>-</u>	200 CD	8 30/1)	2,3,7,8-TCDF (¹³C-2,3,7,8-TCDF)	10.0	10.3	દ∙ છો	€ 01	169
		-	2,3,7,8-TCDD ( ¹³ C-2,3,7,8-TCDD)	10.0	10,44	/hr.0)	hol	ho)
			1,2,3,6,7,8-HxCDD ('3C-1,2,3,6,7,8-HxCDD)	50.0S	51.120	2115	701	70]
			1,2,3,4,6,7,8-HpCDD ( ¹³ C-1,2,4,6,7,8,-HpCDD)	O:as	50.940	arbas	7 01	701
			OCDE (13C-OCDD)	100.00	100,00	(00.0)	001	00
2			2,3,7,8-TCDF (¹³C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD ( ¹³ C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			Coche (1°c-ochh)		•			
3			2,3,7,8-TCDF (13C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)					
]			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			OCDF (13C-OCDD)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

### Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Page: ___of___ 2nd Reviewer: Reviewer: FT

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSR - SR)/SA

SSR = Spiked sample result, SR = Sample result SA = Spike added Where:

RPD = 1 MSR - MSDR 1 * 2/(MSR + MSDR)

MSR = Matrix spike percent recovery MSDR = Matrix spike duplicate percent recovery

Recalculated RPD

Reported RPD

Matrix Spike Duplicate

Percent Recovery

O

 $\circ$ 

101 <u>2</u>

0 5 2

104 190

실

9

اح)

<u>ਤ</u> ŝ

Recalc

Reported

 $\geq$ MS/MSD samples:

<u>5</u>

7

Recalc Percent Recovery م ğ Matrix Spike 0 Reported bol <u>호</u> 10/2 6 0 777 21.9 5 0 Spiked Sample 1 Concentration ξŢ 727 4: 229 シニ 吉 Concentration Sample 0-140 2 2 C 3 3 \<u>\ \.</u> 8 ⊇ 109 MSD 60 ×16 Added Spike 0 6 01 21.8 9 બ 218 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8-HxCDD Compound 1,2,3,7,8-PeCDD 2,3,7,8-TCDD OCDF

Comments: Refer to Matrix Spike/Matrix Spike Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

_	
N	
0	ı
B	
$Z_{2}^{o}$	
Š	
N	
	l
#	
$\circ$	

# VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: of	Reviewer: FT	2nd Reviewer:	

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery ≈ 100 * SSC/SA Where

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCS ID: 0PR 231004

LCSD = Laboratory control sample duplicate percent recovery

		Receiption	\								
080 180	RPD										
-	ecovery	Recalc									
uso i	Percent Recovery	Reported					A 5				
S	tecovery	Recalc	301	(0 X	₹d	Tol	19	,			
1.08	Percent Recovery	Reported	७५	801	801	301	اهي				
Sample	tration	CSD	7								
Spiked (	Concentration ( NA )	O SOI	1.10	8 01	90	10 ک	210				
ike	Added (ng Ke)	) Q	Δ'n	-							
Sp	Ad )	l CS	20.0	0.00	100.0	0.00	2002				
	Compound		2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8,9-HpCDF	OCDF				

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 26800 CZ/

### **VALIDATION FINDINGS WORKSHEET**

Sample Calculation Verification

:0f_	
F	7
<u> </u>	
	OT_ F

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Y/N N/A Y N N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration =  $(A_x)(I_s)(DF)$  $(A_{ls})(RRF)(V_o)(\%S)$ Area of the characteristic ion (EICP) for the compound Area of the characteristic ion (EICP) for the specific  $A_{is}$ internal standard Amount of internal standard added in nanograms (ng) = V_o Volume or weight of sample extract in milliliters (ml) or grams (g). RRF Relative Response Factor (average) from the initial calibration Df Dilution Factor. %S Percent solids, applicable to soil and solid matrices

#	Sample ID	Compound	Reported Concentration ( )	Calculated Concentration ( )	Qualification
			ļ		
ļ			<u> </u>		
					<u> </u>
				-	

# **SAMPLE DELIVERY GROUP**

**DX127** 

# Attachment I

Sample ID Cross Reference and Data Review Level

### **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
10-Aug-2011	SL-185-SA6-SB-4.0-5.0	6372859	N	METHOD	1613B	111
10-Aug-2011	SL-185-SA6-SB-9.0-10.0	6372860	N	METHOD	1613B	III
10-Aug-2011	SL-151-SA6-SB-4.0-5.0	6372853	N	METHOD	1613B	III
10-Aug-2011	SL-151-SA6-SB-9.0-10.0	6372854	N	METHOD	1613B	III
10-Aug-2011	SL-007-SA5DN-SB-4.0-5.0	6372849	N	METHOD	1613B	III
10-Aug-2011	SL-183-SA6-SB-4.0-5.0	6372857	N	METHOD	1613B	III
10-Aug-2011	SL-183-SA6-SB-9.0-10.0	6372858	N	METHOD	1613B	111
10-Aug-2011	SL-071-SA5DN-SB-4.0-5.0	6372850	N	METHOD	1613B	111
10-Aug-2011	SL-071-SA5DN-SB-9.0-10.0	6372851	N	METHOD	1613B	Ш
10-Aug-2011	SL-182-SA6-SB-4.0-5.0	6372855	N	METHOD	1613B	111
10-Aug-2011	SL-182-SA6-SB-9.0-10.0	6372856	N	METHOD	1613B	HI
10-Aug-2011	SL-072-SA5DN-SB-4.0-5.0	6372852	N	METHOD	1613B	Ш
11-Aug-2011	SL-006-SA5DN-SB-4.0-5.0	6374029	N	METHOD	1613B	Ш
11-Aug-2011	SL-006-SA5DN-SB-9.0-10.0	6374030	N	METHOD	1613B	Ш
11-Aug-2011	SL-155-SA6-SB-4.0-5.0	6374032	N	METHOD	1613B	Ш
11-Aug-2011	SL-155-SA6-SB-4.0-5.0MS	6374033	MS	METHOD	1613B	III
11-Aug-2011	SL-155-SA6-SB-4.0-5.0MSD	6374034	MSD	METHOD	1613B	111
11-Aug-2011	DUP24-SA6-QC-081111	6374037	FD	METHOD	1613B	111
11-Aug-2011	SL-207-SA5DN-SB-4.0-5.0	6374031	N	METHOD	1613B	III
11-Aug-2011	EB-SA5DN-SB-081111	6374038	EB	METHOD	1613B	Ш
11-Aug-2011	SL-033-SA6-SB-2.5-3.5	6374036	N	METHOD	1613B	111
11-Aug-2011	SL-174-SA6-SB-2.0-3.0	6374035	N	METHOD	1613B	111

## **Attachment II**

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX127

Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM ...

Method: 1613B Matrix: AQ

Sample ID: EB-SA5DN-SB-081111 Collected: 8/11/2011 12:30:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.76	JB	0.144	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,6,7,8-HPCDF	0.446	JBQ	0.0483	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,7,8,9-HPCDF	0.161	JB	0.0600	MDL	10.6	PQL	pg/L	υ	В
1,2,3,4,7,8-HXCDF	0.217	JBQ	0.0554	MDL	10.6	PQL	pg/L	υ	В
1,2,3,6,7,8-HXCDD	0.274	JBQ	0.0995	MDL	10.6	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDF	0.164	JB	0.0551	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDD	0.193	JBQ	0.0992	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDF	0.200	JBQ	0.0589	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8-PECDD	0.136	JB	0.110	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8-PECDF	0.0761	JBQ	0.0581	MDL	10.6	PQL	pg/L	U	В
2,3,4,6,7,8-HXCDF	0.126	JBQ	0.0538	MDL	10.6	PQL	pg/L	U	В
2,3,4,7,8-PECDF	0.273	JB	0.0507	MDL	10.6	PQL	pg/L	U	В
2,3,7,8-TCDD	0.152	JBQ	0.118	MDL	2.11	PQL	pg/L	U	В
OCDD	4.40	JB	0.106	MDL	21.1	PQL	pg/L	U	В
OCDF	0.433	JB	0.143	MDL	21.1	PQL	pg/L	U	В

Method Category: GENCHEM Method: 1613B

Matrix: SO

Dilution: 1 Sample ID: DUP24-SA6-QC-081111 Collected: 8/11/2011 10:15:00 Analysis Type: RES

	Thaife The Training The Training The Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Training Tr						- Divaon. I			
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.232	JB	0.0769	MDL	5.18	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0533	JBQ	0.0281	MDL	5.18	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0533	U	0.0533	MDL	5.18	PQL	ng/Kg	ÛĴ	FD	
1,2,3,4,7,8-HXCDF	0.0326	U	0.0326	MDL	5.18	PQL	ng/Kg	UJ	FD	
1,2,3,6,7,8-HXCDD	0.0529	U	0.0529	MDL	5.18	PQL	ng/Kg	UJ	FD	
1,2,3,6,7,8-HXCDF	0.0558	JB	0.0288	MDL	5.18	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0534	JBQ	0.0513	MDL	5.18	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8,9-HXCDF	0.0562	JBQ	0.0296	MDL	5.18	PQL	ng/Kg	บม	B, FD	
1,2,3,7,8-PECDD	0.0893	JQ	0.0781	MDL	5.18	PQL	ng/Kg	J	Z, FD	
1,2,3,7,8-PECDF	0.0374	Ų	0.0374	MDL	5.18	PQL	ng/Kg	UJ	FD	
2,3,4,6,7,8-HXCDF	0.0298	U	0.0298	MDL	5.18	PQL	ng/Kg	UJ	FD	
2,3,4,7,8-PECDF	0.0707	JBQ	0.0386	MDL	5.18	PQL	ng/Kg	UJ	B, FD	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

ADR version 1.4.0.111 1/3/2012 10:07:06 AM Page 1 of 13

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM			na seka ariya unungan kana Kana
Method:	1613B	Matrix:	so	

Sample ID: DUP24-SA6-QC-081111	Collec	Collected: 8/11/2011 10:15:00 Analysis				alysis Type: RES			Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
OCDD	0.660	JB	0.0502	MDL	10.4	PQL	ng/Kg	U	В		
OCDF	0.226	JBQ	0.0869	MDL	10.4	PQL	ng/Kg	UJ	B, FD		

Sample ID: SL-006-SA5DN-SB-4.0-5.0 Collected: 8/11/2011 8:20:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte DLRL Result Qual Units Qual Type Type Code JΒ z 1,2,3,4,6,7,8-HPCDD 1.55 0.0904 MDL 5.66 **PQL** ng/Kg Z 1,2,3,4,6,7,8-HPCDF 0.319 JΒ 0.0264 MDL 5.66 **PQL** ng/Kg 1,2,3,4,7,8-HxCDD 0.0768 JBQ 0.0486 MDL 5.66 **PQL** ng/Kg U В 1,2,3,4,7,8-HXCDF 0.0663 JB 0.0400 MDL 5.66 **PQL** ng/Kg υ В 0.0477 J Z 1,2,3,6,7,8-HXCDD 0.105 J MDL 5.66 **PQL** ng/Kg JBQ U 1,2,3,6,7,8-HXCDF 0.0327 0.0326 MDL 5.66 **PQL** ng/Kg В 1,2,3,7,8,9-HXCDD 0.135 0.0499 MDL PQL ng/Kg U JB 5.66 В 0.0453 1,2,3,7,8,9-HXCDF 0.0986 JBQ PQL U В MDL 5.66 ng/Kg 1,2,3,7,8-PECDD 0.0828 0.0740 J z JQ MDL 5.66 PQL ng/Kg 1,2,3,7,8-PECDF 0.0468 JQ 0.0374 MDL Z 5.66 PQL ng/Kg 2,3,4,6,7,8-HXCDF 0.0584 JQ 0.0364 PQL J MDL 5.66 ng/Kg Z OCDF z JBQ J 0.827 0.112 MDL 11.3 PQL ng/Kg

Sample ID: SL-006-SA5DN-SB-9.0-10.0	Collec	Collected: 8/11/2011 9:10:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.361	JB	0.0641	MDL.	5.57	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.0869	JBQ	0.0273	MDL	5.57	PQL	ng/Kg	U	В		
1,2,3,4,7,8,9-HPCDF	0.0536	JB	0.0442	MDL	5.57	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.0477	JB	0.0449	MDL	5.57	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.106	JB	0.0332	MDL	5.57	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.0590	JQ	0.0452	MDL	5.57	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.0769	JB	0.0296	MDL	5.57	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.0945	JBQ	0.0454	MDL	5.57	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.0605	JBQ	0.0370	MDL	5.57	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.116	JQ	0.0753	MDL	5.57	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.0939	JQ	0.0329	MDL	5.57	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.0503	J	0.0314	MDL	5.57	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.112	JBQ	0.0317	MDL	5.57	PQL	ng/Kg	U	В		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:07:06 AM ADR version 1.4.0.111 Page 2 of 13

Lab Reporting Batch ID: DX127

Laboratory: LL

EDD Filename: DX127_v1

eQAPP Name: CDM_SSFL_110509

Sample ID: SL-006-SA5DN-SB-9.0-10.0	Collec	Collected: 8/11/2011 9:10:00 Analysis Type: RES						Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
OCDD	2.44	JB	0.0552	MDL	11.1	PQL	ng/Kg	U	В		
OCDF	0.263	JB	0.0831	MDL	11.1	PQL	ng/Kg	U	В		

Collec	Collected: 8/10/2011 9:20:00 Analysis Type						Dilution: 1	
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.367	JB	0.0950	MDL	5.82	PQL	ng/Kg	U	В
0.0691	JВ	0.0298	MDL	5.82	PQL	ng/Kg	U	В
0.0606	JBQ	0.0557	MDL	5.82	PQL	ng/Kg	U	В
0.0813	JBQ	0.0449	MDL	5.82	PQL	ng/Kg	U	В
0.219	JQ	0.0641	MDL	5.82	PQL	ng/Kg	J	Z
0.0976	JBQ	0.0398	MDL	5.82	PQL	ng/Kg	U	В
0.375	JBQ	0.0591	MDL	5.82	PQL	ng/Kg	J	Z
0.0843	JQ	0.0497	MDL	5.82	PQL	ng/Kg	J	Z
0.0768	JQ	0.0411	MDL	5.82	PQL	ng/Kg	J	Z
0.0923	JBQ	0.0501	MDL	5.82	PQL	ng/Kg	υ	В
1.40	JBQ	0.0568	MDL,	11.6	PQL	ng/Kg	U	В
0.210	JBQ	0.112	MDL	11.6	PQL	ng/Kg	U	В
	Lab Result  0.367  0.0691  0.0606  0.0813  0.219  0.0976  0.375  0.0843  0.0768  0.0923  1.40	Lab Result         Lab Qual           0.367         JB           0.0691         JB           0.0606         JBQ           0.0813         JBQ           0.219         JQ           0.0976         JBQ           0.375         JBQ           0.0843         JQ           0.0768         JQ           0.0923         JBQ           1.40         JBQ	Lab Result         Lab Qual         DL           0.367         JB         0.0950           0.0691         JB         0.0298           0.0606         JBQ         0.0557           0.0813         JBQ         0.0449           0.219         JQ         0.0641           0.0976         JBQ         0.0398           0.375         JBQ         0.0591           0.0843         JQ         0.0497           0.0768         JQ         0.0411           0.0923         JBQ         0.0501           1.40         JBQ         0.0568	Lab Result         Lab Qual         DL Type           0.367         JB         0.0950         MDL           0.0691         JB         0.0298         MDL           0.0606         JBQ         0.0557         MDL           0.0813         JBQ         0.0449         MDL           0.219         JQ         0.0641         MDL           0.0976         JBQ         0.0398         MDL           0.375         JBQ         0.0591         MDL           0.0843         JQ         0.0497         MDL           0.0768         JQ         0.0411         MDL           0.0923         JBQ         0.0501         MDL           1.40         JBQ         0.0568         MDL	Lab Result         Lab Qual         DL Type         RL           0.367         JB         0.0950         MDL         5.82           0.0691         JB         0.0298         MDL         5.82           0.0606         JBQ         0.0557         MDL         5.82           0.0813         JBQ         0.0449         MDL         5.82           0.219         JQ         0.0641         MDL         5.82           0.0976         JBQ         0.0398         MDL         5.82           0.375         JBQ         0.0591         MDL         5.82           0.0843         JQ         0.0497         MDL         5.82           0.0768         JQ         0.0411         MDL         5.82           0.0923         JBQ         0.0501         MDL         5.82           1.40         JBQ         0.0568         MDL         11.6	Lab Result         Lab Qual         DL Type         RL Type         RL Type           0.367         JB         0.0950         MDL         5.82         PQL           0.0691         JB         0.0298         MDL         5.82         PQL           0.0606         JBQ         0.0557         MDL         5.82         PQL           0.0813         JBQ         0.0449         MDL         5.82         PQL           0.219         JQ         0.0641         MDL         5.82         PQL           0.0976         JBQ         0.0398         MDL         5.82         PQL           0.375         JBQ         0.0591         MDL         5.82         PQL           0.0843         JQ         0.0497         MDL         5.82         PQL           0.0768         JQ         0.0411         MDL         5.82         PQL           0.0923         JBQ         0.0501         MDL         5.82         PQL           1.40         JBQ         0.0568         MDL         11.6         PQL	Lab Result         Lab Qual         DL DL DL         Type         RL Type         RL Type         Units           0.367         JB         0.0950         MDL         5.82         PQL         ng/kg           0.0691         JB         0.0298         MDL         5.82         PQL         ng/kg           0.0606         JBQ         0.0557         MDL         5.82         PQL         ng/kg           0.0813         JBQ         0.0449         MDL         5.82         PQL         ng/kg           0.219         JQ         0.0641         MDL         5.82         PQL         ng/kg           0.0976         JBQ         0.0398         MDL         5.82         PQL         ng/kg           0.375         JBQ         0.0591         MDL         5.82         PQL         ng/kg           0.0843         JQ         0.0497         MDL         5.82         PQL         ng/kg           0.0923         JBQ         0.0501         MDL         5.82         PQL         ng/kg           1.40         JBQ         0.0568         MDL         11.6         PQL         ng/kg	Lab Result         Lab Qual         DL Type         RL Type         RL Type         Lab Review Qual           0.367         JB         0.0950         MDL         5.82         PQL ng/Kg         U           0.0691         JB         0.0298         MDL         5.82         PQL ng/Kg         U           0.0606         JBQ         0.0557         MDL         5.82         PQL ng/Kg         U           0.0813         JBQ         0.0449         MDL         5.82         PQL ng/Kg         U           0.219         JQ         0.0641         MDL         5.82         PQL ng/Kg         J           0.0976         JBQ         0.0398         MDL         5.82         PQL ng/Kg         U           0.375         JBQ         0.0591         MDL         5.82         PQL ng/Kg         J           0.0843         JQ         0.0497         MDL         5.82         PQL ng/Kg         J           0.0768         JQ         0.0501         MDL         5.82         PQL ng/Kg         U           0.0923         JBQ         0.0568         MDL         11.6         PQL ng/Kg         U

Sample ID: SL-033-SA6-SB-2.5-3.5	Collec	ted: 8/11/2	:011 2:40:0	0 A	nalysis Ty	/pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	4.60	JB	0.107	MDL	5.18	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	0.947	JB	0.0318	MDL	5.18	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.0637	JB	0.0589	MDL	5.18	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0799	JB	0.0480	MDL	5.18	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.196	JQ	0.0750	MDL	5.18	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.114	JB	0.0418	MDL	5.18	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.237	JBQ	0.0731	MDL	5.18	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.135	JBQ	0.0474	MDL	5.18	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0952	J	0.0833	MDL	5.18	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.134	JQ	0.0451	MDL	5.18	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.248	JBQ	0.0470	MDL	5.18	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.112	JQ	0.102	MDL	1.04	PQL	ng/Kg	J	Z	
OCDF	2.48	JB	0.0999	MDL	10.4	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:07:06 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Categ	ary: GENCHEM			PROGRAMMA ZWYSOW.
Method:	1613B	Matrix:	so	

Sample ID: SL-071-SA5DN-SB-4.0-5.0	Collec	Collected: 8/10/2011 11:19:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	1.32	JBQ	0.121	MDL	5.71	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.0633	JBQ	0.0627	MDL	5.71	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0419	JB	0.0410	MDL	5.71	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.0705	J	0.0656	MDL	5.71	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.0720	JBQ	0.0479	MDL	5.71	PQL	ng/Kg	U	В		
OCDF	0.189	JB	0.143	MDL	11.4	PQL	ng/Kg	U	В		

Sample ID: SL-071-SA5DN-SB-9.0-10.0	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.729	JB	0.0812	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0563	JBQ	0.0527	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0310	JB	0.0308	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0528	JQ	0.0399	MDL	5.53	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0557	JQ	0.0327	MDL	5.53	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0430	JB	0.0395	MDL,	5.53	PQL	ng/Kg	U	В
OCDD	2.98	JB	0.0491	MDL	11.1	PQL	ng/Kg	J	Z
OCDF	0.163	JB	0.104	MDL	11.1	PQL	ng/Kg	U	В

Sample ID: SL-072-SA5DN-SB-4.0-5.0	Collec	Collected: 8/10/2011 2:35:00 Analysis Ty						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL_	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	2.30	JB	0.0612	MDL	5.93	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.287	JBQ	0.128	MDL	5.93	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDD	0.950	J	0.120	MDL	5.93	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0878	JBQ	0.0577	MDL	5.93	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	0.477	JBQ	0.110	MDL	5.93	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.120	JB	0.0794	MDL	5.93	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0947	JQ	0.0571	MDL	5.93	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.220	JQ	0.0628	MDL	5.93	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.0802	JBQ	0.0589	MDL	5.93	PQL	ng/Kg	U	В	
OCDF	5.56	JB	0.153	MDL	11.9	PQL	ng/Kg	J	Z	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:07:06 AM ADR version 1.4.0.111 Page 4 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B

Matrix: SO

Sample ID: SL-151-SA6-SB-4.0-5.0 Collected: 8/10/2011 8:59:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Analyte Result Qual DLТуре RLТуре Units Qual Code 1,2,3,4,6,7,8-HPCDD 0.281 0.0739 MDL. 5.20 **PQL** ₿ ng/Kg 1,2,3,4,6,7,8-HPCDF 0.0582 JBQ 0.0186 MDL, 5.20 PQL ng/Kg U В 1,2,3,4,7,8-HXCDF 0.0441 **JBQ** 0.0351 MDL 5.20 **PQL** ng/Kg U В 1,2,3,6,7,8-HXCDD 0.0504 0.0477 JQ MDL. 5.20 PQL J Z ng/Kg U 1,2,3,6,7,8-HXCDF 0.0497 JBQ 0.0303 MDL 5.20 PQL ng/Kg В 1,2,3,7,8,9-HXCDD JBQ 0.0479 MDL 5.20 PQL U 0.126 ng/Kg В 1,2,3,7,8-PECDF 0.0458 JQ 0.0357 MDL 5.20 **PQL** J Z ng/Kg 2,3,4,6,7,8-HXCDF 0.0398 J 0.0320 MDL 5.20 PQL ng/Kg J z 2,3,4,7,8-PECDF U 0.0481 **JBQ** 0.0345 MDL 5.20 PQL ng/Kg В OCDD 1.13 JΒ 0.0440 MDL 10.4 PQL U В ng/Kg OCDF 0.181 JB 0.103 MDL 10.4 PQL U В ng/Kg

Sample ID: SL-151-SA6-SB-9.0-10.0 Collected: 8/10/2011 9:00:00 Analysis Type: RES Dilution: 1

	Lab	Lab		DL		RL.		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	0.313	JBQ	0.0778	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0921	JB	0.0232	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0649	JB	0.0509	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0891	JBQ	0.0517	MDL	5.59	PQL	ng/Kg	Ü	В
1,2,3,4,7,8-HXCDF	0.114	JBQ	0.0336	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0887	JQ	0.0513	MDL	5.59	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0958	JB	0.0287	MDL	5.59	PQL	ng/Kg	Ų	В
1,2,3,7,8,9-HXCDD	0.102	JB	0.0517	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.127	JBQ	0.0413	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.274	JQ	0.0780	MDL	5.59	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.213	JQ	0.0371	MDL	5.59	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0772	JQ	0.0317	MDL	5.59	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.218	JB	0.0390	MDL	5.59	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.128	J	0.0854	MDL	1.12	PQL	ng/Kg	J	Z
OCDD	0.891	JBQ	0.0406	MDL	11.2	PQL	ng/Kg	U	В
OCDF	0.181	JB	0.104	MDL	11.2	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX127

Laboratory: LL

UJ

B, FD

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B Matrix: SO

Sample ID: SL-155-SA6-SB-4.0-5.0 Collected: 8/11/2011 10:09:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL. RLReview Reason Analyte Result Qual DLType RLТуре Units Qual Code 1,2,3,4,6,7,8-HPCDD 0.0702 0.232 MDL. 5.28 PQL ng/Kg В 1,2,3,4,6,7,8-HPCDF 0.0664 JBQ 0.0227 MDL 5.28 PQL ng/Kg U В 1,2,3,4,7,8-HxCDD 0.0694 JB 0.0469 MDL 5.28 **PQL** ng/Kg IJ B, FD 1,2,3,4,7,8-HXCDF 0.0905 JBQ 0.0324 MDL, UJ 5.28 **PQL** ng/Kg B. FD 1,2,3,6,7,8-HXCDD 0.0909 J 0.0480 MDL J Z, FD 5.28 **PQL** ng/Kg 1,2,3,6,7,8-HXCDF 0.0916 JB 0.0302 MDL 5.28 **PQL** U В ng/Kg 1,2,3,7,8,9-HXCDD 0.150 JΒ 0.0485 MDL 5.28 PQL ng/Kg UJ B, FD 1,2,3,7,8,9-HXCDF 0.110 JBQ 0.0367 MDL 5.28 PQL ng/Kg IJ B. FD 1,2,3,7,8-PECDD 0.185 JQ 0.0706 MDL 5.28 PQL ng/Kg J Z, FD 1,2,3,7,8-PECDF JQ 0.0357 ng/Kg 0.164 MDL 5.28 **PQL** J Z, FD 0.0675 Z, FD 2,3,4,6,7,8-HXCDF J 0.0319 MDL 5.28 PQL J ng/Kg 2,3,4,7,8-PECDF 0.139 JBQ 5.28 PQL ŲJ 0.0352 MDL ng/Kg B, FD OCDD 0.725 JB 0.0449 MDL 10.6 **PQL** U В ng/Kg OCDF

0.0857

MDL

10.6

**PQL** 

ng/Kg

**JBQ** 

0.112

		,	· · · — · · · · ·		, 0.0 .	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			D1146011.	
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.395	JB	0.0706	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.102	JBQ	0.0260	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0881	JBQ	0.0409	MDL.	5.21	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.128	JBQ	0.0373	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.154	JQ	0.0547	MDL	5.21	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.117	JBQ	0.0329	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.144	JB	0.0520	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.119	J	0.0846	MDL	5.21	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.103	J	0.0463	MDL	5.21	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.113	J	0.0332	MDL	5.21	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.163	JB	0.0447	MDL	5.21	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.101	JQ	0.0967	MDL	1.04	PQL	ng/Kg	J	Z	
OCDD	1.06	JB	0.0507	MDL	10.4	PQL	ng/Kg	U	В	
OCDF	0.147	JBQ	0.0860	MDL	10.4	PQL	ng/Kg	U	В	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-182-SA6-SB-4.0-5.0 Collected: 8/10/2011 12:45:00 Analysis Type: RES Dilution: 1 Data DLLab Lab RL Review Reason Analyte Result Qual DL Туре RL Туре Units Qual Code 1,2,3,4,6,7,8-HPCDD 0.362 JB 0.0707 MDL 5.25 PQL ng/Kg В 1,2,3,4,6,7,8-HPCDF 0.0898 JBQ 0.0202 MDL 5.25 PQL U ng/Kg В 1,2,3,4,7,8,9-HPCDF 0.0699 JBQ 0.0481 MDL 5.25 PQL ng/Kg U В 1,2,3,4,7,8-HxCDD 0.201 JBQ 0.0549 MDL 5.25 PQL ng/Kg U В 1,2,3,4,7,8-HXCDF 0.202 PQL **JBQ** 0.0350 MDL 5.25 ng/Kg U В 1,2,3,6,7,8-HXCDD 0.131 0.0527 MDL 5.25 PQL J Z ng/Kg 1,2,3,6,7,8-HXCDF 5.25 0.151 JB 0.0278 MDL **PQL** ng/Kg В 1,2,3,7,8,9-HXCDD 0.170 JBQ 0.0508 MDL 5.25 PQL υ В ng/Kg 1,2,3,7,8,9-HXCDF 0.163 JB 0.0398 MDL 5.25 PQL U ng/Kg В 1,2,3,7,8-PECDD 0.146 J 0.0746 MDL 5.25 PQL J Z ng/Kg 1,2,3,7,8-PECDF 0.325 JQ 0.0355 MDL 5.25 **PQL** J ng/Kg Z 2,3,4,6,7,8-HXCDF 0.126 JQ 0.0314 MDL PQL J 5.25 ng/Kg Z 2,3,4,7,8-PECDF 0.244 JBQ 0.0382 MDL U 5.25 **PQL** В ng/Kg 2,3,7,8-TCDF 0.128 JQ 0.0834 MDL 1.05 **PQL** J z ng/Kg OCDD 3.62 JΒ 0.0402 MDL PQL J 10.5 Z ng/Kg

Sample ID: SL-182-SA6-SB-9.0-10.0	Collected: 8/10/2011 12:49:00	Analysis Type: RES	Dilution: 1
3amble ID; 3L-102-3A0-3D-9.0-10.0	Gollectea: 8/10/2011 12:49:00	Anaivsis ivpe: K⊑5	Dilution: 1

0.104

MDL

10.5

PQL

ng/Kg

U

В

0.232

	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL.	Туре	RL	Type	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	0.205	JB	0.0814	MDL	5.60	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0749	JB	0.0446	MDL	5.60	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.108	JBQ	0.0606	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.154	JB	0.111	MDL.	5.60	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0984	JQ	0.0737	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.197	JB	0.0914	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.121	JB	0.0661	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.183	JBQ	0.0595	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.287	JQ	0.0894	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.159	JQ	0.0490	MDL	5.60	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0407	J	0.0401	MDL	5.60	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.242	JBQ	0.0506	MDL	5.60	PQL	ng/Kg	Ų	В
OCDD	0.713	JBQ	0.0653	MDL	11.2	PQL	ng/Kg	U	В
OCDF	0.214	JBQ	0.163	MDL	11.2	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

OCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:07:06 AM ADR version 1.4.0.111 Page 7 of 13

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Categ	ory GENCHEM			. ≃n r <u>e</u> nnencen popularing pour supur Proposition (1 - 2 proposition) (1 oct	
Method:	1613B	Matrix:	so		

Sample ID: SL-183-SA6-SB-4.0-5.0	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.505	JB	0.0667	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.143	JB	0.0254	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0969	JBQ	0.0487	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.131	JB	0.0295	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.136	JQ	0.0497	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0731	JBQ	0.0268	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.123	JB	0.0504	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0788	JBQ	0.0334	MDL	5.48	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.203	JQ	0.0744	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.233	JQ	0.0382	MDL	5.48	PQL	ng/Kg	J	Ž
2,3,4,6,7,8-HXCDF	0.0800	JQ	0.0285	MDL	5.48	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.142	JB	0.0375	MDL.	5.48	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.136	J	0.0861	MDL	1.10	PQL	ng/Kg	J	Z
OCDD	3.53	JB	0.0552	MDL	11.0	PQL	ng/Kg	J	Z
OCDF	0.172	JB	0.0978	MDL	11.0	PQL	ng/Kg	U	В

Sample ID: SL-183-SA6-SB-9.0-10.0	Collected: 8/10/2011 10:30:00	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.319	JBQ	0.0646	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0403	JBQ	0.0185	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0560	JBQ	0.0466	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0561	JBQ	0.0447	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0576	JBQ	0.0396	MDL	5.53	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0399	J	0.0309	MDL	5.53	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0471	JBQ	0.0391	MDL	5.53	PQL	ng/Kg	U	В
OCDD	0.572	JB	0.0390	MDL	11,1	PQL	ng/Kg	U	В
OCDF	0.307	JB	0.119	MDL	11.1	PQL	ng/Kg	U	В

Sample ID: SL-185-SA6-SB-4.0-5.0 Collected: 8/10/2011 7:49:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.512	JBQ	0.0700	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0569	JBQ	0.0200	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0581	JBQ	0.0374	MDL	5.52	PQL	ng/Kg	U	В

Page 8 of 13

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/3/2012 10:07:06 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B		Matrix:	so
Method Categ	ory: GENCHEM	in in the second second second	A ALAMANA AN	

Sample ID: SL-185-SA6-SB-4.0-5.0	Collec	Collected: 8/10/2011 7:49:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	0.475	JB	0.0468	MDL	5.52	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0631	JQ	0.0604	MDL	5.52	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0752	JQ	0.0292	MDL	5.52	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0495	JBQ	0.0307	MDL	5.52	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0786	J	0.0646	MDL	1.10	PQL	ng/Kg	J	Ž
OCDD	3.90	JB	0.0459	MDL	11.0	PQL	ng/Kg	J	Z
OCDF	0.133	JBQ	0.0849	MDL	11.0	PQL	ng/Kg	U	В

Sample ID: SL-185-SA6-SB-9.0-10.0	Collec	Collected: 8/10/2011 7:50:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.159	JB	0.0658	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0381	JBQ	0.0193	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0597	JB	0.0437	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0760	JQ	0.0503	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.0768	JBQ	0.0491	MDL	5.57	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.120	JBQ	0.0338	MDL	5.57	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0961	J	0.0935	MDL	1.11	PQL	ng/Kg	J	Z
OCDD	1.04	JB	0.0438	MDL	11.1	PQL	ng/Kg	U	В
OCDE	0.244	IPO	0.100	MDI	44.4	DOL	nall/a	111	

Sample ID: SL-207-SA5DN-SB-4.0-5.0	Collected: 8/11/2011 10:55:00 Analysis Type: RES Dile									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.287	JB	0.0704	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0816	JB	0.0224	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0557	JB	0.0392	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0579	JB	0.0518	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0791	JВ	0.0324	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.106	J	0.0531	MDL	5.66	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0982	JBQ	0.0290	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0769	JB	0.0555	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0923	JBQ	0.0372	MDL	5.66	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.180	J	0.0676	MDL	5.66	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.218	JQ	0.0426	MDL	5.66	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:07:06 AM ADR version 1.4.0.111 Page 9 of 13

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Category	GENCHEM	strend consider to the second constant of the second constant of the second constant of the second constant of
Method:	1613B	Matrix: SO

Sample ID: SL-207-SA5DN-SB-4.0-5.0	Collected: 8/11/2011 10:55:00 Analysis Type: RES								Dilution: 1		
<i>Analyt</i> e	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
2,3,4,6,7,8-HXCDF	0.0740	JQ	0.0317	MDL	5.66	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.163	JB	0.0405	MDL	5.66	PQL	ng/Kg	U	В		
2,3,7,8-TCDF	0.105	J	0.0756	MDL	1.13	PQL	ng/Kg	J	Z		
OCDD	1.21	JB	0.0434	MDL	11.3	PQL	ng/Kg	Ü	В		
OCDF	0.162	JB	0.0808	MDL	11.3	PQL	ng/Kg	U	В		

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX127

EDD Filename: DX127_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

### Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
-	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
É	Laboratory Control Precision
É	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX127

EDD Filename: DX127_v1

EQAPP Name: CDM_SSFL_110509

Honamic. DA	'@'T'	COOM I HUME. ODM_OOI E
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
н	Extraction to Analysis Estimation	
н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	.,-
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
н	Temperature Estimation	
Н	Temperature Rejection	
1	Internal Standard Estimation	
Ī	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	*****
L	Laboratory Control Spike Upper Rejection	
M	Continuing Tune	
М	Initial Tune	
М	Performance Evaluation Mixture	
M	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	
·	·	<del>-</del>

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/3/2012 10:07:06 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX127

Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

# **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX127

Lab Reporting Batch ID: DX127

Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ						
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples		
BLK2290B371851	8/18/2011 6:51:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDD	3.13 pg/L 1.11 pg/L 0.553 pg/L 0.355 pg/L 0.346 pg/L 0.414 pg/L 0.546 pg/L 0.547 pg/L 0.546 pg/L 0.546 pg/L 0.548 pg/L 0.400 pg/L 0.400 pg/L 0.441 pg/L 0.680 pg/L 0.247 pg/L 5.33 pg/L 0.962 pg/L	EB-SA5DN-SB-081111		

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-\$A5DN-SB-081111(RES)	1,2,3,4,6,7,8-HPCDD	2.76 pg/L	2.76U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,4,6,7,8-HPCDF	0.446 pg/L	0.446U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,4,7,8,9-HPCDF	0.161 pg/L	0.161U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,4,7,8-HXCDF	0.217 pg/L	0.217U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,6,7,8-HXCDD	0.274 pg/L	0.274U pg/L
EB-\$A5DN-SB-081111(RES)	1,2,3,6,7,8-HXCDF	0.164 pg/L	0.164U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,7,8,9-HXCDD	0.193 pg/L	0.193U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,7,8,9-HXCDF	0.200 pg/L	0.200U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,7,8-PECDD	0.136 pg/L	0.136U pg/L
EB-\$A5DN-\$B-081111(RES)	1,2,3,7,8-PECDF	0.0761 pg/L	0.0761U pg/L
EB-SA5DN-SB-081111(RES)	2,3,4,6,7,8-HXCDF	0.126 pg/L	0.126U pg/L
EB-SA5DN-SB-081111(RES)	2,3,4,7,8-PECDF	0.273 pg/L	0.273U pg/L
EB-SA5DN-SB-081111(RES)	2,3,7,8-TCDD	0.152 pg/L	0.152U pg/L
EB-SA5DN-SB-081111(RES)	OCDD	4.40 pg/L	4.40U pg/L
EB-SA5DN-SB-081111(RES)	OCDF	0.433 pg/L	0.433U pg/L

1/3/2012 9:47:42 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2340B371616	8/24/2011 4:16:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	0.259 ng/Kg 0.0585 ng/Kg 0.0765 ng/Kg 0.0560 ng/Kg 0.0487 ng/Kg 0.0380 ng/Kg 0.0465 ng/Kg 0.0390 ng/Kg 0.0865 ng/Kg 0.515 ng/Kg 0.109 ng/Kg	DUP24-SA6-QC-081111 SL-006-SA5DN-SB-4.0-5.0 SL-006-SA5DN-SB-9.0-10.0 SL-007-SA5DN-SB-4.0-5.0 SL-033-SA6-SB-2.5-3.5 SL-071-SA5DN-SB-4.0-5.0 SL-071-SA5DN-SB-4.0-5.0 SL-151-SA6-SB-4.0-5.0 SL-151-SA6-SB-4.0-5.0 SL-151-SA6-SB-4.0-5.0 SL-182-SA6-SB-9.0-10.0 SL-182-SA6-SB-9.0-10.0 SL-183-SA6-SB-9.0-10.0 SL-183-SA6-SB-9.0-10.0 SL-183-SA6-SB-9.0-10.0 SL-185-SA6-SB-9.0-10.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP24-SA6-QC-081111(RES)	1,2,3,4,6,7,8-HPCDD	0.232 ng/Kg	0.232U ng/Kg
DUP24-SA6-QC-081111(RES)	1,2,3,4,6,7,8-HPCDF	0.0533 ng/Kg	0.0533U ng/Kg
DUP24-SA6-QC-081111(RES)	1,2,3,6,7,8-HXCDF	0.0558 ng/Kg	0.0558U ng/Kg
DUP24-SA6-QC-081111(RES)	1,2,3,7,8,9-HXCDD	0.0534 ng/Kg	0.0534U ng/Kg
DUP24-SA6-QC-081111(RES)	1,2,3,7,8,9-HXCDF	0,0562 ng/Kg	0.0562U ng/Kg
DUP24-\$A6-QC-081111(RE\$)	2,3,4,7,8-PECDF	0.0707 ng/Kg	0.0707U ng/Kg
DUP24-SA6-QC-081111(RES)	OCDD	0.660 ng/Kg	0.660U ng/Kg
DUP24-SA6-QC-081111(RES)	OCDF	0.226 ng/Kg	0.226U ng/Kg
SL-006-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0768 ng/Kg	0.0768U ng/Kg
SL-006-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0663 ng/Kg	0.0663U ng/Kg
SL-006-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0327 ng/Kg	0.0327U ng/Kg
SL-006-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.135 ng/Kg	0.135U ng/Kg
SL-006-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0986 ng/Kg	0.0986U ng/Kg
SL-006-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.361 ng/Kg	0.361U ng/Kg
SL-006-SA5DN-SB-9,0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0869 ng/Kg	0.0869U ng/Kg
SL-006-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0536 ng/Kg	0.0536U ng/Kg
SL-006-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0477 ng/Kg	0.0477U ng/Kg
SL-006-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.106 ng/Kg	0.106U ng/Kg
SL-006-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0769 ng/Kg	0.0769U ng/Kg
SL-006-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0945 ng/Kg	0.0945U ng/Kg
SL-006-\$A5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0605 ng/Kg	0.0605U ng/Kg
SL-006-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.112 ng/Kg	0.112U ng/Kg
SL-006-SA5DN-SB-9.0-10.0(RES)	OCDD	2.44 ng/Kg	2.44U ng/Kg
SL-006-SA5DN-SB-9.0-10.0(RES)	OCDF	0.263 ng/Kg	0.263U ng/Kg
SL-007-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.367 ng/Kg	0.367U ng/Kg
SL-007-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0691 ng/Kg	0.0691U ng/Kg
SL-007-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0606 ng/Kg	0.0606U ng/Kg

1/3/2012 9:47:42 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated
Method: Matrix:	1613B SO	arakan yaki alim cahan akin da banan			

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-007-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0813 ng/Kg	0.0813U ng/Kg
SL-007-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0976 ng/Kg	0.0976U ng/Kg
SL-007-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0923 ng/Kg	0.0923U ng/Kg
SL-007-SA5DN-\$B-4.0-5.0(RE\$)	OCDD	1,40 ng/Kg	1.40U ng/Kg
SL-007-SA5DN-SB-4.0-5.0(RES)	OCDF	0.210 ng/Kg	0.210U ng/Kg
SL-033-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0637 ng/Kg	0.0637U ng/Kg
SL-033-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8-HXCDF	0.0799 ng/Kg	0.0799U ng/Kg
SL-033-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.114 ng/Kg	0.114U ng/Kg
SL-033-SA6-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDF	0.135 ng/Kg	0.135U ng/Kg
SL-033-SA6-SB-2.5-3.5(RES)	2,3,4,7,8-PECDF	0.248 ng/Kg	0.248U ng/Kg
SL-071-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0633 ng/Kg	0.0633U ng/Kg
SL-071-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0419 ng/Kg	0.0419U ng/Kg
SL-071-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0720 ng/Kg	0.0720U ng/Kg
SL-071-SA5DN-SB-4.0-5.0(RES)	OCDF	0.189 ng/Kg	0.189U ng/Kg
SL-071-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.729 ng/Kg	0.729U ng/Kg
SL-071-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0563 ng/Kg	0.0563U ng/Kg
SL-071-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0310 ng/Kg	0.0310U ng/Kg
SL-071-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0430 ng/Kg	0.0430U ng/Kg
SL-071-SA5DN-SB-9.0-10.0(RES)	OCDF	0.163 ng/Kg	0.163U ng/Kg
SL-072-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.287 ng/Kg	0.287U ng/Kg
SL-072-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0878 ng/Kg	0.0878U ng/Kg
SL-072-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.120 ng/Kg	0.120U ng/Kg
SL-072-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0802 ng/Kg	0.0802U ng/Kg
SL-151-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.281 ng/Kg	0.281U ng/Kg
SL-151-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0582 ng/Kg	0.0582U ng/Kg
SL-151-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0441 ng/Kg	0.0441U ng/Kg
SL-151-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0497 ng/Kg	0.0497U ng/Kg
SL-151-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.126 ng/Kg	0.126U ng/Kg
SL-151-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0481 ng/Kg	0.0481U ng/Kg
SL-151-SA6-SB-4.0-5.0(RES)	OCDD	1.13 ng/Kg	1.13U ng/Kg
GL-151-SA6-SB-4.0-5.0(RES)	OCDF	0.181 ng/Kg	0.181U ng/Kg
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.313 ng/Kg	0.313U ng/Kg
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0921 ng/Kg	0.0921U ng/Kg
GL-151-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0649 ng/Kg	0.0649U ng/Kg
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0891·ng/Kg	0.0891U ng/Kg
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.114 ng/Kg	0.114U ng/Kg
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0958 ng/Kg	0.0958U ng/Kg
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.102 ng/Kg	0.102U ng/Kg
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.127 ng/Kg	0.127U ng/Kg
SL-151-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.218 ng/Kg	0.218U ng/Kg

1/3/2012 9:47:42 AM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B		in and the committee of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the co	ations because it is	a a Chaile a la Chaile a
Matrix: SO				
Method Blank				Associated
Sample ID	Analysis Date	Analyte	Result	Samples

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-151-SA6-SB-9.0-10.0(RES)	OCDD	0.891 ng/Kg	0.891U ng/Kg
SL-151-SA6-SB-9.0-10.0(RES)	OCDF	0,181 ng/Kg	0.181U ng/Kg
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.232 ng/Kg	0.232U ng/Kg
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0664 ng/Kg	0.0664U ng/Kg
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0694 ng/Kg	0.0694U ng/Kg
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0905 ng/Kg	0.0905U ng/Kg
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0916 ng/Kg	0.0916U ng/Kg
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.150 ng/Kg	0.150U ng/Kg
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.110 ng/Kg	0.110U ng/Kg
SL-155-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.139 ng/Kg	0.139U ng/Kg
SL-155-SA6-SB-4.0-5.0(RES)	OCDD	0.725 ng/Kg	0.725U ng/Kg
SL-155-SA6-SB-4.0-5.0(RES)	OCDF	0.112 ng/Kg	0.112U ng/Kg
SL-174-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDD	0,395 ng/Kg	0.395U ng/Kg
SL-174-SA6-SB-2.0-3,0(RES)	1,2,3,4,6,7,8-HPCDF	0.102 ng/Kg	0.102U ng/Kg
SL-174-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0881 ng/Kg	0.0881U ng/Kg
SL-174-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HXCDF	0.128 ng/Kg	0.128U ng/Kg
SL-174-\$A6-\$B-2.0-3.0(RE\$)	1,2,3,6,7,8-HXCDF	0.117 ng/Kg	0.117U ng/Kg
SL-174-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDD	0.144 ng/Kg	0.144U ng/Kg
SL-174-SA6-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0.163 ng/Kg	0.163U ng/Kg
SL-174-SA6-SB-2.0-3.0(RES)	OCDD	1,06 ng/Kg	1.06U ng/Kg
SL-174-SA6-SB-2.0-3.0(RES)	OCDF	0.147 ng/Kg	0.147U ng/Kg
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.362 ng/Kg	0.362U ng/Kg
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0898 ng/Kg	0.0898U ng/Kg
SL-182-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,4,7,8,9-HPCDF	0.0699 ng/Kg	0.0699U ng/Kg
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.201 ng/Kg	0.201U ng/Kg
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.202 ng/Kg	0.202U ng/Kg
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.151 ng/Kg	0.151U ng/Kg
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.170 ng/Kg	0.170U ng/Kg
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.163 ng/Kg	0.163U ng/Kg
SL-182-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.244 ng/Kg	0.244U ng/Kg
SL-182-SA6-SB-4.0-5.0(RES)	OCDF	0.232 ng/Kg	0.232U ng/Kg
SL-182-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.205 ng/Kg	0.205U ng/Kg
SL-182-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0749 ng/Kg	0.0749U ng/Kg
SL-182-SA6-S8-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.108 ng/Kg	0.108U ng/Kg
SL-182-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.154 ng/Kg	0.154U ng/Kg
SL-182-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.121 ng/Kg	0.121U ng/Kg
SL-182-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.183 ng/Kg	0.183U ng/Kg
SL-182-\$A6-\$B-9,0-10.0(RES)	2,3,4,7,8-PECDF	0.242 ng/Kg	0.242U ng/Kg
SL-182-SA6-SB-9.0-10.0(RES)	OCDD	0.713 ng/Kg	0.713U ng/Kg
SL-182-SA6-SB-9.0-10.0(RES)	OCDF	0.214 ng/Kg	0.214U ng/Kg

1/3/2012 9:47:42 AM ADR version 1.4.0.111 Page 4 of 5

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	i kii ilikkii ini ini avenoadeinin	k Angli (Balkar 2) and kangkar kangkar birah Kulikana da kang di ang makapang birah	Kalualikulujuju kotali aratkaje	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.505 ng/Kg	0.505U ng/Kg
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.143 ng/Kg	0.143U ng/Kg
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0969 ng/Kg	0.0969U ng/Kg
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.131 ng/Kg	0.131U ng/Kg
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0731 ng/Kg	0.0731U ng/Kg
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.123 ng/Kg	0.123U ng/Kg
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0788 ng/Kg	0.0788U ng/Kg
SL-183-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.142 ng/Kg	0.142U ng/Kg
SL-183-SA6-SB-4.0-5.0(RES)	OCDF	0.172 ng/Kg	0.172U ng/Kg
SL-183-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.319 ng/Kg	0.319U ng/Kg
SL-183-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0403 ng/Kg	0.0403U ng/Kg
SL-183-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0560 ng/Kg	0.0560U ng/Kg
SL-183-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0561 ng/Kg	0.0561U ng/Kg
SL-183-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0576 ng/Kg	0.0576U ng/Kg
SL-183-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0471 ng/Kg	0.0471U ng/Kg
SL-183-SA6-SB-9.0-10.0(RES)	OCDD	0.572 ng/Kg	0.572U ng/Kg
SL-183-SA6-SB-9.0-10.0(RES)	OCDF	0.307 ng/Kg	0.307U ng/Kg
SL-185-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.512 ng/Kg	0.512U ng/Kg
SL-185-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0569 ng/Kg	0.0569U ng/Kg
SL-185-SA6-SB-4.0-5.0(RE\$)	1,2,3,4,7,8,9-HPCDF	0.0581 ng/Kg	0.0581U ng/Kg
SL-185-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0495 ng/Kg	0.0495U ng/Kg
SL-185-SA6-SB-4.0-5.0(RES)	OCDF	0.133 ng/Kg	0.133U ng/Kg
SL-185-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.159 ng/Kg	0.159U ng/Kg
SL-185-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0381 ng/Kg	0.0381U ng/Kg
SL-185-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0597 ng/Kg	0.0597U ng/Kg
SL-185-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0768 ng/Kg	0.0768U ng/Kg
SL-185-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.120 ng/Kg	0.120U ng/Kg
SL-185-\$A6-\$B-9,0-10.0(RE\$)	OCDD	1.04 ng/Kg	1.04U ng/Kg
SL-185-SA6-SB-9.0-10.0(RES)	OCDF	0.214 ng/Kg	0.214U ng/Kg
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.287 ng/Kg	0.287U ng/Kg
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0816 ng/Kg	0.0816U ng/Kg
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0557 ng/Kg	0.0557U ng/Kg
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0579 ng/Kg	0.0579U ng/Kg
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0791 ng/Kg	0.0791U ng/Kg
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0982 ng/Kg	0.0982U ng/Kg
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0769 ng/Kg	0.0769U ng/Kg
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0923 ng/Kg	0.0923U ng/Kg
SL-207-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.163 ng/Kg	0.163U ng/Kg
SL-207-SA5DN-SB-4.0-5.0(RES)	OCDD	1.21 ng/Kg	1.21U ng/Kg
SL-207-SA5DN-SB-4,0-5,0(RES)	OCDF	0.162 ng/Kg	0.162U ng/Kg

1/3/2012 9:47:42 AM ADR version 1.4.0.111 Page 5 of 5

### Field Duplicate RPD Report

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO		al best allignment of a state of the same	ekildistekti (kon	en en en en en en Planten Barrison	papasi Mindralla istii Mingr
	Concen	Concentration (%)			
Analyte	SL-155-SA6-SB-4.0-5.0	DUP24-SA6-QC-081111	Sample RPD	eQAPP RPD	Flag
MOISTURE	5.6	5.0	11		No Qualifiers Applied

	Concentra	tion (ng/Kg)			
Analyte	SL-155-SA6-SB-4.0-5.0	DUP24-SA6-QC-081111	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDF OCDD	0.232 0.0664 0.0916 0.725	0.232 0.0533 0.0558 0.660	0 22 49 9	50.00 50.00 50.00 50.00	No Qualifiers Applied
1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF	0.0694 0.0905 0.0909 0.150 0.110 0.185 0.164 0.0675 0.139 0.112	5.18 U 5.18 U 5.18 U 0.0534 0.0562 0.0893 5.18 U 5.18 U 0.0707 0.226	200 200 200 95 65 70 200 200 65 67	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)

Page 1 of 1

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: AQ

SampleID Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA5DN-SB-081111  1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	2.76 0.446 0.161 0.217 0.274 0.164 0.193 0.200 0.136 0.0761 0.126 0.273 0.152 4.40 0.433	10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP24-SA6-QC-081111	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,7,8-PECDF OCDD OCDF	38 38 38 38 38 38 38 38 38 38 38 38 38 3	0.232 0.0533 0.0558 0.0534 0.0562 0.0893 0.0707 0.660 0.226	5.18 5.18 5.18 5.18 5.18 5.18 5.18 10.4 10.4	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-006-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	855558 855558 855558 8558	1.55 0.319 0.0768 0.0663 0.105 0.0327 0.135 0.0986 0.0828 0.0468 0.0584 0.827	5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/K/K/K/Kg ng/K/Kg ng/K/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng	J (all detects)

1/3/2012 9:47:52 AM ADR version 1.4.0.111 Page 1 of 6

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method:	16135	analiantare entrologica entrol	iku iki inikatut ataut	in a said			
Matrix:	so					ene i užu sissu i Atriti.	
				Reporting	RL		

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-006-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0CDD 0CDF	H H H H H H H H H H H H H H H H H H H	0.361 0.0869 0.0536 0.0477 0.106 0.0590 0.0769 0.0945 0.0605 0.116 0.0939 0.0503 0.112 2.44 0.263	5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-007-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.367 0.0691 0.0606 0.0813 0.219 0.0976 0.375 0.0843 0.0768 0.0923 1.40 0.210	5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-033-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	JB JB JB JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ	4.60 0.947 0.0637 0.0799 0.196 0.114 0.237 0.135 0.0952 0.134 0.248 0.112 2.48	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-071-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 2,3,4,7,8-PECDF OCDF	JBQ JBQ JB J JBQ JB	1.32 0.0633 0.0419 0.0705 0.0720 0.189	5.71 5.71 5.71 5.71 5.71 5.71 11.4	PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-071-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JB JBQ JB JQ JQ JB JB	0.729 0.0563 0.0310 0.0528 0.0557 0.0430 2.98 0.163	5.53 5.53 5.53 5.53 5.53 5.53 11.1 11.1	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-072-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0CDF	а Бърава с В в	2.30 0.287 0.950 0.0878 0.477 0.120 0.0947 0.220 0.0802 5.56	5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-151-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	ਜ਼ਜ਼ <u>ਜ਼</u> ਜ਼ਜ਼ਜ਼ ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼	0.281 0.0582 0.0441 0.0504 0.0497 0.126 0.0458 0.0398 0.0481 1.13 0.181	5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-151-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 0CDD 0CDF	ងគ្លឹកធ្ងង់កង្គង្គង់គង់	0.313 0.0921 0.0649 0.0891 0.114 0.0887 0.0958 0.102 0.127 0.274 0.213 0.0772 0.218 0.128 0.891 0.181	5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.59	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-155-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0CDD 0CDF	######################################	0.232 0.0664 0.0694 0.0905 0.0909 0.0916 0.150 0.110 0.185 0.164 0.0675 0.139 0.725 0.112	5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 9:47:52 AM ADR version 1.4.0.111 Page 3 of 6

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613E

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-174-SA6-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDF OCDD OCDF	# # # # # # # # # # # # # # # # # # #	0.395 0.102 0.0881 0.128 0.154 0.117 0.144 0.119 0.103 0.113 0.163 0.101 1.06 0.147	5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-182-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF	#######################################	0.362 0.0898 0.0699 0.201 0.202 0.131 0.151 0.170 0.163 0.146 0.325 0.126 0.244 0.128 3.62 0.232	5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-182-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	######################################	0.205 0.0749 0.108 0.154 0.0984 0.197 0.121 0.183 0.287 0.159 0.0407 0.242 0.713 0.214	5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

ADR version 1.4.0.111 Page 4 of 6

Lab Reporting Batch ID: DX127

EDD Filename: DX127_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Metrod: 1613B

flatrix: SO

Matrix: SO							· · · · · · · · · · · · · · · · · · ·
Completo	Amatus	Lab	Dagu(6	Reporting	RL Turns		Eta o
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-183-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JB JB JBQ JB JQ	0.505 0.143 0.0969 0.131 0.136	5.48 5.48 5.48 5.48 5.48	PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JBQ JB JBQ JQ JQ JQ	0.0731 0.123 0.0788 0.203 0.233 0.0800	5.48 5.48 5.48 5.48 5.48 5.48	PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
	2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	JB J JB JB	0.142 0.136 3.53 0.172	5.48 1.10 11.0 11.0	PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg	
SL-183-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JBQ JBQ JBQ JBQ JBQ JBB JB JB JB JB	0.319 0.0403 0.0560 0.0561 0.0576 0.0399 0.0471 0.572 0.307	5.53 5.53 5.53 5.53 5.53 5.53 5.53 11.1 11.1	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-185-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	BQQQ 男 G G B ¬ 男 G	0.512 0.0569 0.0581 0.475 0.0631 0.0752 0.0495 0.0786 3.90 0.133	5.52 5.52 5.52 5.52 5.52 5.52 5.52 1.10 11.0	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-185-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD	JB JB JB JB JB JB JB JB JB JB JB JB JB J	0.159 0.0381 0.0597 0.0760 0.0768 0.120 0.0961 1.04 0.214	5.57 5.57 5.57 5.57 5.57 5.57 1.11 11.1	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 9:47:52 AM ADR version 1.4.0.111 Page 5 of 6

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO								
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag	
SL-207-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF	JB JB JB JB JB JB JQ JQ JQ JB JB JB	0.287 0.0816 0.0557 0.0579 0.0791 0.106 0.0982 0.0769 0.0923 0.180 0.218 0.0740 0.163 0.105 1,21	5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66	Pal Pal Pal Pal Pal Pal Pal Pal Pal Pal	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)	

1/3/2012 9:47:52 AM ADR version 1.4.0.111 Page 6 of 6

# **SAMPLE DELIVERY GROUP**

**DX129** 

# Attachment I

Sample ID Cross Reference and Data Review Level

### Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
17-Aug-2011	SL-154-SA6-SB-3.0-4.0	6380503	N	METHOD	1613B	EII
17-Aug-2011	SL-224-SA6-SB-3.0-4.0	6380506	N	METHOD	1613B	111
17-Aug-2011	SL-224-SA6-SB-3.0-4.0MS	6380507	MS	METHOD	1613B	III
17-Aug-2011	SL-224-SA6-SB-3.0-4.0MSD	6380508	MSD	METHOD	1613B	lti
17-Aug-2011	DUP12-SA6-QC-081711	6380510	FD	METHOD	1613B	Ш
17-Aug-2011	SL-221-SA6-SB-1.0-2.0	6380504	N	METHOD	16 <b>1</b> 3B	111
17-Aug-2011	SL-223-SA6-SB-2.5-3.5	6380505	N	METHOD	1613B	111
17-Aug-2011	EB-SA6-SB-081711	6380511	EΒ	METHOD	16 <b>1</b> 3B	111
17-Aug-2011	SL-226-SA6-SB-3.5-4.5	6380509	N	METHOD	1613B	111
19-Aug-2011	SL-315-SA6-SB-3.0-4.0	6382932	N	METHOD	1613B	111
19-Aug-2011	SL-214-SA6-SB-1.0-2.0	6382933	N	METHOD	1613B	III
22-Aug-2011	SL-007-SA5DN-SS-0.0-0.5	6384486	N	METHOD	1613B	<b>111</b>
22-Aug-2011	SL-215-SA6-SB-4.0-5.0	6384477	N	METHOD	1613B	111
22-Aug-2011	SL-310-SA6-SB-4.0-5.0	6384485	N	METHOD	1613B	IH
22-Aug-2011	SL-279-SA6-SB-1.0-2.0	6384482	N	METHOD	1613B	Ш
22-Aug-2011	SL-279-SA6-SB-4.0-5.0	6384483	N	METHOD	1613B	111
22-Aug-2011	SL-242-SA6-SB-9.0-10.0	6384481	N	METHOD	16 <b>1</b> 3B	111
22-Aug-2011	SL-242-SA6-SB-4.0-5.0	6384480	N	METHOD	16 <b>1</b> 3B	111
22-Aug-2011	SL-279-SA6-SB-9.0-10.0	6384484	N	METHOD	1613B	111
22-Aug-2011	SL-241-SA6-SB-4.0-5.0	6384478	N	METHOD	1613B	111
22-Aug-2011	SL-241-SA6-SB-9.0-10.0	6384479	N	METHOD	1613B	111

## **Attachment II**

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: AQ

Sample ID: EB-SA6-SB-081711	Collec	ted: 8/17/2	011 1:00:0	00 A	nalysis T	pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	2.81	JBQ	0.554	MDL	9.56	PQL	pg/L	U	В	
1,2,3,4,6,7,8-HPCDF	0.562	JBQ	0.236	MDL	9.56	PQL	pg/L	U	В	
1,2,3,4,7,8,9-HPCDF	0.367	JBQ	0.274	MDL	9.56	PQL	pg/L	U	В	
1,2,3,4,7,8-HxCDD	0.405	JBQ	0.372	MDL	9.56	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDF	0.277	JBQ	0.185	MDL	9.56	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDD	0.522	JBQ	0.373	MDL	9.56	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDF	0.316	JBQ	0.186	MDL	9.56	PQL	pg/L	U	В	
1,2,3,7,8-PECDD	0.710	JBQ	0.490	MDL	9.56	PQL	pg/L	U	В	
2,3,4,6,7,8-HXCDF	0.303	JBQ	0.172	MDL	9.56	PQL	pg/L	U	В	
2,3,4,7,8-PECDF	0.740	JВ	0.233	MDL	9.56	PQL	pg/L	U	В	
OCDD	4.18	JBQ	0.374	MDL	19.1	PQL	pg/L	U	В	
OCDF	0.569	JBQ	0.553	MDL	19.1	PQL	pg/L	U	В	

Method Catego	ory: GENCHEM	
Method:	1613B	Matrix: SO

Analysis Type: RES

Dilution: 1

U

В

Collected: 8/17/2011 10:10:00

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.310	JBQ	0.0390	MDL	5.30	PQL	ng/Kg	UJ	B, FD
1,2,3,4,6,7,8-HPCDF	0.156	JB	0.0139	MDL	5.30	PQL	ng/Kg	บม	B, FD
1,2,3,4,7,8-HxCDD	0.230	J	0.0482	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	0.339	JB	0.0299	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDD	0.244	JBQ	0.0475	MDL	5.30	PQL	ng/Kg	บง	B, FD
1,2,3,6,7,8-HXCDF	0.344	JB	0.0276	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,7,8,9-HXCDD	0.230	JB	0.0452	MDL.	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,7,8,9-HXCDF	0.229	JB	0.0307	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDD	0.483	JBQ	0.0624	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDF	0.585	JB	0.0344	MDL	5.30	PQL	ng/Kg	J	Z, FD
2,3,4,6,7,8-HXCDF	0.190	JBQ	0.0277	MDL	5.30	PQL	ng/Kg	J	Ž, FD
2,3,4,7,8-PECDF	0.442	JB	0.0332	MDL	5.30	PQL	ng/Kg	J	Z, FD
2,3,7,8-TCDD	0.0807	JQ	0.0802	MDL	1.06	PQL	ng/Kg	j	Z, FD
2,3,7,8-TCDF	0.110	JQ	0.0573	MDL	1.06	POL	na/Ka	J	Z. FD

^{*} denotes a non-reportable result

OCDD

Sample ID: DUP12-SA6-QC-081711

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

0.299

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 1 of 13

0.0365

MDL

10.6

PQL

ng/Kg

JBQ

Lab Reporting Batch ID: DX129

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method Category:	GENCHEM		musika (2002) kata kata kata da maranga. Katan manaka kata da manaka kata da manaka kata da manaka kata da manaka kata da manaka kata da manaka kata d
Method:	1613B	Matrix: SO	

Sample ID: DUP12-SA6-QC-081711	Collected: 8/17/2011 10:10:00 Analysis Type: RES							Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
OCDF	0.208	J	0.0569	MDL	10.6	PQL	ng/Kg	J	Z		

Sample ID: St007-SA5DN-SS-0.0-0.5	Collec	Collected: 8/22/2011 8:00:00 Analysis Type: RES Dilit							
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.19	JB	0.0378	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	1.57	J	0.0433	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.304	JQ	0.0642	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.739	JB	0.0634	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	3.15	JB	0.0751	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.621	JB	0.0629	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	2.04	JB	0.0807	MDL	5.55	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.94	JB	0.0746	MDL	5.55	PQL	ng/Kg	J	Z
OCDF	4.88	J	0.0558	MDL	11.1	PQL	ng/Kg	J	Ž

Sample ID: SL-154-SA6-SB-3.0-4.0	Collec	ted: 8/17/2	011 7:45:0	00 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.382	JB	0.0461	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0307	JBQ	0.0121	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0300	JQ	0.0263	MDL	5.24	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0301	JB	0.0197	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0292	JBQ	0.0169	MDL	5.24	PQL	ng/Kg	U T	В	
1,2,3,7,8,9-HXCDD	0.0723	JBQ	0.0342	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0295	JBQ	0.0233	MDL	5.24	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0293	JBQ	0.0186	MDL	5.24	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0537	JBQ	0.0241	MDL	5.24	PQL	ng/Kg	U	В	
OCDD	4.14	JB	0.0432	MDL	10.5	PQL	ng/Kg	J	Z	
OCDF	0.0760	JQ	0.0708	MDL	10.5	PQL	ng/Kg	J	Z	

Sample ID: SL-214-SA6-SB-1.0-2.0	Collec	Collected: 8/19/2011 11:32:00 Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.443	JB	0.0448	MDL	5.34	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.133	JBQ	0.0139	MDL	5.34	PQL	ng/Kg	υ	В	

^{*} denotes a non-reportable result

EDD Filename: DX129_v1

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/3/2012 10:32:56 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-214-SA6-SB-1.0-2.0 Collected: 8/19/2011 11:32:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Analyte Result Qual DL Туре RLТуре Units Qual Code 1,2,3,4,7,8,9-HPCDF 0.0450 0.0232 MDL 5.34 **PQL** ng/Kg Z 1,2,3,4,7,8-HxCDD 0.159 JQ 0.0446 MDL 5.34 PQL Z ng/Kg J 1,2,3,4,7,8-HXCDF 0.210 JB 0.0271 MDL 5.34 PQL ng/Kg U В 1,2,3,6,7,8-HXCDD 0.142 JBQ 0.0432 MDL 5.34 PQL U ng/Kg В 1,2,3,6,7,8-HXCDF JΒ 0.0248 MDL 5.34 **PQL** υ 0.186 ng/Kg В 1,2,3,7,8,9-HXCDD 0.229 0.0432 J JB MDL 5.34 PQL ng/Kg z 1,2,3,7,8,9-HXCDF 0.137 0.0278 MDL JΒ 5.34 **PQL** ng/Kg В 1,2,3,7,8-PECDD 0.212 JВ 0.0727 MDL 5.34 PQL ng/Kg U В 2,3,4,6,7,8-HXCDF 0.0933 **JBQ** 0.0248 MDL 5.34 PQL U ng/Kg В 2,3,4,7,8-PECDF 0.313 **JBQ** 0.0288 MDL 5.34 **PQL** J Z ng/Kg 2,3,7,8-TCDD 0.0910 JQ 0.0841 MDL 1.07 PQL J ng/Kg Z 2,3,7,8-TCDF 0.0765 JQ 0.0530 MDL 1.07 PQL J ng/Kg Z OCDD 1.07 JB U 0.0335 MDL 10.7 PQL В ng/Kg

Sample ID: SL-215-SA6-SB-4.0-5.0 Collected: 8/22/2011 8:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.27	JB	0.0609	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.539	JB	0.0189	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0675	JQ	0.0287	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.119	J	0.0444	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0803	JBQ	0.0287	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.193	JB	0.0450	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0649	JBQ	0.0257	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.212	JB	0.0434	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0339	JBQ	0.0322	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0891	JB	0.0608	MDL	5.53	PQL	ng/Kg	U	B
2,3,4,6,7,8-HXCDF	0.0542	JB	0.0263	MDL	5.53	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0727	JBQ	0.0292	MDL	5.53	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0689	JQ	0.0617	MDL	1,11	PQL	ng/Kg	J	Z
OCDF	1.81	JQ	0.0649	MDL	11.1	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 3 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-221-SA6-SB-1.0-2.0 Collected: 8/17/2011 10:55:00 Analysis Type: RES Dilution: 1

•										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	2.06	JBQ	0.0597	MDL	5.29	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	0.170	JB	0.0163	MDL	5.29	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0420	JBQ	0.0230	MDL	5.29	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.102	JBQ	0.0381	MDL	5.29	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.0361	JBQ	0.0209	MDL	5.29	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	0.0801	JBQ	0.0409	MDL	5.29	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0409	JBQ	0.0278	MDL	5.29	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0302	JBQ	0.0221	MDL	5.29	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0437	JBQ	0.0256	MDL	5.29	PQL	ng/Kg	U	В	
OCDF	0.512	JQ	0.0683	MDL	10.6	PQL	ng/Kg	J	Ž	

Sample ID: SL-223-SA6-SB-2.5-3.5 Collected: 8/17/2011 11:56:00 Analysis Type: RES Dilution: 1

<u></u>											
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.358	JB	0.0611	MDL	5.00	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.0574	JBQ	0.0180	MDL	5.00	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0303	JB	0.0270	MDL	5.00	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.0970	JBQ	0.0389	MDL	5.00	PQL	ng/Kg	υ	В		
1,2,3,7,8,9-HXCDF	0.0868	JBQ	0.0279	MDL	5.00	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0875	JBQ	0.0742	MDL	5.00	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0888	JB	0.0347	MDL	5.00	PQL	ng/Kg	U	В		
OCDD	2.16	JB	0.0413	MDL	10.0	PQL	ng/Kg	J	Z		
OCDF	0.367	JQ	0.0953	MDL	10.0	PQL	ng/Kg	J	Z		
		·									

Sample ID: SL-224-SA6-SB-3.0-4.0 Collected: 8/17/2011 10:06:00 Analysis Type: RES Dilution: 1

Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.131	JBQ	0.0533	MDL	5.26	PQL	ng/Kg	UJ	B, FD
0.0332	JB	0.0182	MDL	5.26	PQL	ng/Kg	UJ	B, FD
0.0433	U	0.0433	MDL	5.26	PQL	ng/Kg	UJ	FD
0.0268	U	0.0268	MDL	5.26	PQL	ng/Kg	UJ	FD
0.0414	U	0.0414	MDL	5.26	PQL	ng/Kg	UJ	FD
0.0232	U	0.0232	MDL	5.26	PQL	ng/Kg	ບງ	FD
0.0949	JBQ	0.0389	MDL	5.26	PQL	ng/Kg	UJ	B, FD
0.0239	U	0.0239	MDL	5.26	PQL	ng/Kg	UJ	FD
	Result  0.131  0.0332  0.0433  0.0268  0.0414  0.0232  0.0949	Result         Qual           0.131         JBQ           0.0332         JB           0.0433         U           0.0268         U           0.0414         U           0.0232         U           0.0949         JBQ	Result         Qual         DL           0.131         JBQ         0.0533           0.0332         JB         0.0182           0.0433         U         0.0433           0.0268         U         0.0268           0.0414         U         0.0414           0.0232         U         0.0232           0.0949         JBQ         0.0389	Lab Result         Lab Qual         DL DL Type           0.131         JBQ         0.0533         MDL           0.0332         JB         0.0182         MDL           0.0433         U         0.0433         MDL           0.0268         U         0.0268         MDL           0.0414         U         0.0414         MDL           0.0232         U         0.0232         MDL           0.0949         JBQ         0.0389         MDL	Lab Result         Lab Qual         DL DL         Type         RL           0.131         JBQ         0.0533         MDL         5.26           0.0332         JB         0.0182         MDL         5.26           0.0433         U         0.0433         MDL         5.26           0.0268         U         0.0268         MDL         5.26           0.0414         U         0.0414         MDL         5.26           0.0232         U         0.0232         MDL         5.26           0.0949         JBQ         0.0389         MDL         5.26	Lab Result         Lab Qual         DL DL DL         DL Type         RL RL         RL Type           0.131         JBQ         0.0533         MDL         5.26         PQL           0.0332         JB         0.0182         MDL         5.26         PQL           0.0433         U         0.0433         MDL         5.26         PQL           0.0268         U         0.0268         MDL         5.26         PQL           0.0414         U         0.0414         MDL         5.26         PQL           0.0232         U         0.0232         MDL         5.26         PQL           0.0949         JBQ         0.0389         MDL         5.26         PQL	Result         Qual         DL         Type         RL         Type         Units           0.131         JBQ         0.0533         MDL         5.26         PQL         ng/Kg           0.0332         JB         0.0182         MDL         5.26         PQL         ng/Kg           0.0433         U         0.0433         MDL         5.26         PQL         ng/Kg           0.0268         U         0.0268         MDL         5.26         PQL         ng/Kg           0.0414         U         0.0414         MDL         5.26         PQL         ng/Kg           0.0232         U         0.0232         MDL         5.26         PQL         ng/Kg           0.0949         JBQ         0.0389         MDL         5.26         PQL         ng/Kg	Lab Result         Lab Qual         DL Type         RL Type         RL Type         Units Volume         Data Review Qual           0.131         JBQ         0.0533         MDL         5.26         PQL         ng/Kg         UJ           0.0332         JB         0.0182         MDL         5.26         PQL         ng/Kg         UJ           0.0433         U         0.0433         MDL         5.26         PQL         ng/Kg         UJ           0.0268         U         0.0268         MDL         5.26         PQL         ng/Kg         UJ           0.0414         U         0.0414         MDL         5.26         PQL         ng/Kg         UJ           0.0232         U         0.0232         MDL         5.26         PQL         ng/Kg         UJ           0.0949         JBQ         0.0389         MDL         5.26         PQL         ng/Kg         UJ

Page 4 of 13

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

A District of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Con

0.263

0.133

0.314

0.170

0.539

Sample ID: SL-224-SA6-SB-3.0-4.0	Collec	Collected: 8/17/2011 10:06:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDD	0.0659	U	0.0659	MDL	5.26	PQL	ng/Kg	บม	FD
1,2,3,7,8-PECDF	0.0312	JB	0.0292	MDL	5.26	PQL	ng/Kg	UJ	B, FD
2,3,4,6,7,8-HXCDF	0.0209	U	0.0209	MDL	5.26	PQL	ng/Kg	UJ	FD
2,3,4,7,8-PECDF	0.0298	JBQ	0.0287	MDL	5.26	PQL	ng/Kg	υJ	B, FD
2,3,7,8-TCDD	0.0769	U	0.0769	MDL	1.05	PQL	ng/Kg	υJ	FD
2,3,7,8-TCDF	0.0635	U	0.0635	MDL	1.05	PQL	ng/Kg	บม	FD

0.0435

0.0823

MDL

MDL

10.5

10.5

PQL

PQL

ng/Kg

ng/Kg

J

J

J

J

В

z

Z

z

Z

Sample ID: SL-226-SA6-SB-3.5-4.5	Collec		Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.946	JB	0.0518	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.219	JB	0.0157	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0948	J	0.0255	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.165	J	0.0376	MDL	5.18	PQL	ng/Kg	J	Z

JBQ

JQ

1,2,3,4,7,8-HXCDF 0.0298 0.196 JΒ MDL 5.18 PQL ng/Kg U В 1,2,3,6,7,8-HXCDD 0.230 JB 0.0376 MDL 5.18 **PQL** ng/Kg U В 1,2,3,6,7,8-HXCDF 0.189 JBQ 0.0272 MDL 5.18 PQL U В ng/Kg 1,2,3,7,8,9-HXCDD 0.233 **JBQ** 0.0357 PQL J z MDL 5.18 ng/Kg 1,2,3,7,8,9-HXCDF 0.225 JB 0.0307 MDL PQL ng/Kg z 5.18 J 1,2,3,7,8-PECDD 0.229 U JΒ 0.0620 MDL 5.18 **PQL** ng/Kg В 1,2,3,7,8-PECDF 0.344 JB 0.0310 MDL. 5.18 **PQL** ng/Kg J z 2,3,4,6,7,8-HXCDF 0.128 JBQ 0.0275 MDL, 5.18 PQL J Z ng/Kg

0.0289

0.0763

0.0608

MDL

MDL

MDL

5.18

1.04

10.4

PQL

**PQL** 

PQL

ng/Kg

ng/Kg

ng/Kg

Sample ID: SL-241-SA6-SB-4.0-5.0 Collected: 8/22/2011 12:12:00 Analysis Type: RES Dilution: 1

JB

JQ

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.282	JBQ	0.0363	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0463	JBQ	0.0109	MDL	5.21	PQL	пд/Кд	υ	В
1,2,3,4,7,8,9-HPCDF	0.0399	J	0.0165	MDL	5.21	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0506	JB	0.0187	MDL	5.21	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

2,3,4,7,8-PECDF

2,3,7,8-TCDD

OCDF

OCDD

OCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 5 of 13

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	ry: GENCHEM	en andre de de la participa de la company de la company de la company de la company de la company de la company	
Method:	1613B	Matrix: SO	

Sample ID: SL-241-SA6-SB-4.0-5.0	Collec	Collected: 8/22/2011 12:12:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDD	0.0570	JB	0.0255	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0240	JB	0.0168	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0388	JBQ	0.0248	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0320	JBQ	0.0194	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0225	JBQ	0.0218	MDL	5.21	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0267	JBQ	0.0162	MDL	5.21	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0522	JB	0.0206	MDL	5.21	PQL	ng/Kg	U	В
OCDD	1.56	JB	0.0329	MDL	10.4	PQL	ng/Kg	U	В
OCDF	0.107	J	0.0465	MDL	10.4	PQL	ng/Kg	J	Z

Sample ID: SL-241-SA6-SB-9.0-10.0 Collected: 8/22/2011 12:13:00 Ani	Inalysis Type: RES	Dilution: 1
---------------------------------------------------------------------	--------------------	-------------

· · · · · · · · · · · · · · · · · · ·										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.283	JB	0.0420	MDL	5.37	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0462	JB	0.0103	MDL	5.37	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0313	JQ	0.0155	MDL	5.37	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0239	JBQ	0.0190	MDL	5.37	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0483	JB	0.0293	MDL	5.37	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0221	JBQ	0.0172	MDL	5.37	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0861	JBQ	0.0221	MDL	5.37	PQL	ng/Kg	U	В	
OCDD	0.480	JB	0.0321	MDL	10.7	PQL	ng/Kg	U	В	
OCDF	0.147	JQ	0.0565	MDL	10.7	PQL	ng/Kg	J	Z	

Sample ID: SL-242-SA6-SB-4.0-5.0 Collected: 8/22/2011 11:05:00 Analysis Type: RES Dilution: 1

		<b>/</b>							
Analyte	Lab Result	Lab Qual	DL.	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.315	JB	0.0422	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0498	JB	0.0109	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0427	JQ	0.0183	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0257	JB	0.0196	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.114	JBQ	0.0288	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0239	JBQ	0.0175	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.218	JB	0.0276	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.216	JB	0.0206	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0640	JBQ	0.0218	MDL	5.29	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 6 of 13

Lab Reporting Batch ID: DX129

Laboratory: LL

EDD Filename: DX129_v1

eQAPP Name: CDM_SSFL_110509

Sample ID: SL-242-SA6-SB-4.0-5.0	Collec	Collected: 8/22/2011 11:05:00 Analysis Type: RES							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,4,6,7,8-HXCDF	0.0301	JBQ	0.0179	MDL	5.29	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0342	JB	0.0213	MDL	5.29	PQL	ng/Kg	U	В	
OCDD	2.25	JB	0.0320	MDL	10.6	PQL	ng/Kg	J	Z	
OCDF	0.100	JQ	0.0536	MDL	10.6	PQL	ng/Kg	J	Z	

Sample ID: SL-242-SA6-SB-9.0-10.0 Collected: 8/22/2011 11:04:00 Analysis Type: RES Dilution: 1 Data DL RL Lab Lab Review Reason DL Analyte Result Qual Type RLUnits Qual Code Type 1,2,3,4,6,7,8-HPCDD 0.365 JВ 0.0421 MDL, 5.25 PQL ng/Kg U В 1,2,3,4,6,7,8-HPCDF 0.122 **JBQ** 0.0137 MDL 5.25 **PQL** ng/Kg U В 1,2,3,4,7,8,9-HPCDF 0.0507 JQ 0.0223 MDL 5.25 **PQL** ng/Kg J Z 1,2,3,4,7,8-HxCDD 0.0342 JQ 0.0341 MDL 5.25 **PQL** ng/Kg J Z 0.0763 0.0253 MDL PQL U 1,2,3,4,7,8-HXCDF **JBQ** 5.25 ng/Kg В 1,2,3,6,7,8-HXCDD 0.0837 JBQ 0.0348 U MDL, 5.25 **PQL** ng/Kg В 1,2,3,6,7,8-HXCDF 0.0473 **JBQ** 0.0232 MDL 5.25 PQL ng/Kg U В 1,2,3,7,8,9-HXCDD 0.0946 JBQ 0.0344 MDL U 5.25 PQL ng/Kg В 0.0529 JBQ 0.0264 5.25 PQL υ 1,2,3,7,8,9-HXCDF MDL ng/Kg В 1,2,3,7,8-PECDD 0.0885 JBQ 0.0537 MDL 5.25 PQL ng/Kg Ų В 0.195 JBQ 0.0292 5.25 **PQL** J Z 1,2,3,7,8-PECDF MDL ng/Kg 2,3,4,6,7,8-HXCDF 0.0765 **JBQ** 0.0232 MDL 5.25 PQL U В ng/Kg 2,3,4,7,8-PECDF 0.170 JB 0.0264 MDL 5.25 **PQL** U В ng/Kg 2,3,7,8-TCDD 0.0834 J 0.0686 MDL PQL J Z 1.05 ng/Kg 2,3,7,8-TCDF 0.0563 JQ 0.0512 MDL 1.05 PQL ng/Kg Z OCDD 1.41 JΒ 0.0368 MDL PQL U В 10.5 ng/Kg OCDF JQ 0,166 0.0489 MDL 10.5 **PQL** ng/Kg Z

Samble ID: Str219-3A0-3D-1.0-2.0 Collected: 0/22/2011 10:25:00 Analysis Tybe: Rc3 Dilluid	Sample ID: SL-279-SA6-SB-1.0-2.0	Collected: 8/22/2011 10:25:00	Analysis Type: RES	Dilution: 1
-------------------------------------------------------------------------------------------	----------------------------------	-------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.969	JB	0.0452	MDL	5.08	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.166	JB	0.0120	MDL	5.08	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0667	J	0.0254	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.0900	J	0.0345	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.196	JB	0.0269	MDL	5.08	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.156	JB	0.0362	MDL	5.08	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

 Sample ID: SL-279-SA6-SB-1.0-2.0
 Collected: 8/22/2011 10:25:00
 Analysis Type: RES
 Dilution: 1

								•	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDF	0.169	JBQ	0.0233	MDL	5.08	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.151	JB	0.0351	MDL	5.08	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.162	JB	0.0289	MDL	5.08	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.222	JB	0.0450	MDL	5.08	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.324	JB	0.0250	MDL	5.08	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.111	JBQ	0.0240	MDL	5.08	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.301	JB	0.0249	MDL	5.08	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0657	J	0.0533	MDL	1.02	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0889	J	0.0408	MDL	1.02	PQL	ng/Kg	J	Z
OCDD	9.19	JB	0.0400	MDL	10.2	PQL	ng/Kg	J	Z
OCDF	0.372	JQ	0.0524	MDL	10.2	PQL	ng/Kg	J	Z

Sample ID: SL-279-SA6-SB-4.0-5.0 Collected: 8/22/2011 11:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.389	JBQ	0.0458	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.157	JB	0.0144	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0531	JQ	0.0258	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.138	JQ	0.0376	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.178	JB	0.0270	MDL	5.13	PQL	ng/Kg	U	B
1,2,3,6,7,8-HXCDD	0.150	JBQ	0.0383	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.142	JBQ	0.0234	MDL	5.13	PQL	ng/Kg	U	В
,2,3,7,8,9-HXCDD	0.131	JBQ	0.0382	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.153	JBQ	0.0259	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.315	JBQ	0.0619	MDL	5.13	PQL	ng/Kg	υ	В
,2,3,7,8-PECDF	0.334	JB	0.0293	MDL	5.13	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.119	JBQ	0.0243	MDL,	5.13	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.320	JB	0.0278	MDL	5.13	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.121	J	0.0741	MDL	1.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0977	JQ	0.0489	MDL	1.03	PQL	ng/Kg	J	Z
OCDD	1.95	JB	0.0362	MDL	10.3	PQL	ng/Kg	U	В
OCDF	0.161	JQ	0.0628	MDL	10.3	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-279-SA6-SB-9.0-10.0 Collected: 8/22/2011 11:50:00 Analysis Type: RES Dilution: 1 Data DL Lab Lab RL Review Reason Analyte Result Qual DL Туре RLТуре Units Qual Code 1,2,3,4,6,7,8-HPCDD 1.57 JB 0.0484 MDL. 5.39 **PQL** ng/Kg J z 1,2,3,4,6,7,8-HPCDF 0.271 JBQ 0.0158 MDL PQL 5.39 ng/Kg J Ζ 1,2,3,4,7,8,9-HPCDF 0.0889 J 0.0316 MDL 5.39 PQL ng/Kg J z 1,2,3,4,7,8-HxCDD 0.116 JQ 0.0368 MDL PQL 5.39 ng/Kg J Z 1,2,3,4,7,8-HXCDF 0.211 JΒ 0.0243 MDL 5.39 PQL ng/Kg U В JB 1,2,3,6,7,8-HXCDD 0.146 0.0368 MDL 5.39 **PQL** U В ng/Kg 1,2,3,6,7,8-HXCDF JBQ 0.145 0.0213 MDL 5.39 **PQL** ng/Kg U В 1,2,3,7,8,9-HXCDD 0.125 JBQ 0.0370 MDL 5.39 PQL U В ng/Kg 1,2,3,7,8,9-HXCDF 0.124 JB 0.0274 MDL **PQL** U 5.39 ng/Kg В 1,2,3,7,8-PECDD 0.126 JBQ 0.0511 MDL PQL U В 5.39 ng/Kg 1,2,3,7,8-PECDF 0.230 JΒ 0.0270 MDL 5.39 **PQL** J ng/Kg Z, 2,3,4,6,7,8-HXCDF 0.0814 JΒ 0.0232 MDL PQL U 5.39 ng/Kg В 2,3,4,7,8-PECDF 0.224 JBQ 0.0258 MDL PQL U 5.39 ng/Kg В

Sample ID: SL-310-SA6-SB-4.0-5.0 Collected: 8/22/2011 9:15:00 Analysis Type: RES Dilution: 1

0.0621

MDL

10.8

**PQL** 

ng/Kg

J

z

JQ

0.654

	Lab	Lab		DL.		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	2.28	JB	0.0348	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.301	JB	0.0139	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0415	JB	0.0205	MDL.	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0491	JB	0.0154	MDL	5.48	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.170	JBQ	0.0246	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0273	JB	0.0135	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.210	JBQ	0.0230	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.113	JBQ	0.0163	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0304	JBQ	0.0181	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0750	JBQ	0.0135	MDL	5.48	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0322	JBQ	0.0138	MDL	5.48	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0637	JBQ	0.0138	MDL	5.48	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0246	J	0.0218	MDL	1.10	PQL	ng/Kg	J	Z
OCDF	0.781	JB	0.0285	MDL	11.0	PQL	ng/Kg	J	Z

OCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 9 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENGHEM

Method: 1613B Matrix: SO

Collected: 8/19/2011 8:14:00 Sample ID: SL-315-SA6-SB-3.0-4.0 Analysis Type: RES Dilution: 1 Data Lab DLRLReview Lab Reason Analyte Result Qual DL Туре RL. Туре Units Qual Code 1,2,3,4,6,7,8-HPCDF 2.46 0.0315 MDL **PQL** 5.18 ng/Kg J Ζ 1,2,3,4,7,8,9-HPCDF 0.491 J 0.0494 MDL 5.18 PQL J z ng/Kg 1,2,3,4,7,8-HxCDD 0.458 JQ 0.0561 MDL. 5.18 PQL ng/Kg J Z JB 0.0351 J 1,2,3,4,7,8-HXCDF 0.353 MDL 5.18 PQL ng/Kg Z J z 1,2,3,6,7,8-HXCDD 0.537 JBQ 0.0545 MDL 5.18 **PQL** ng/Kg 1,2,3,6,7,8-HXCDF 0.280 JB 0.0316 MDL. 5.18 **PQL** J z ng/Kg JΒ PQL J z 1,2,3,7,8,9-HXCDD 0.370 0.0523 MDL 5.18 ng/Kg 1,2,3,7,8,9-HXCDF 0.226 JBQ 0.0343 MDL 5.18 PQL ng/Kg J z JВ 0.0524 MDL **PQL** J Z 1,2,3,7,8-PECDD 0.615 5.18 ng/Kg 0.516 JBQ MDL PQL J Z 1,2,3,7,8-PECDF 0.0277 5.18 ng/Kg 0.264 JΒ 0.0306 MDL 5.18 **PQL** J Z 2,3,4,6,7,8-HXCDF ng/Kg 2,3,4,7,8-PECDF 0.464 JB 0.0256 MDL 5.18 PQL J ng/Kg Z JQ PQL J Z 2,3,7,8-TCDD 0.163 0.0548 MDL 1.04 ng/Kg 2,3,7,8-TCDF 8080.0 J 0.0416 MDL 1.04 **PQL** J z ng/Kg OCDF 4.83 0.0503 MDL **PQL** J z 10.4 ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 10 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129

Laboratory: LL

EDD Filename: DX129_v1

eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	Duplicate Sample Count = 0
<del></del>	Duplicate Sample Count > 1
<del></del>	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision
	· · · · · · · · · · · · · · · · · · ·

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Filename: DX129_v1	eQAPP	Name: CDM_S
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
H	Extraction to Analysis Rejection	<u> </u>
Н	Preservation	
н	Sampling to Analysis Estimation	
H	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	· · · · · · · · · · · · · · · · · · ·
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
I	Internal Standard Estimation	
I	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
Ļ	Laboratory Control Spike Upper Rejection	
M	Continuing Tune	
M	Initial Tune	
M	Performance Evaluation Mixture	
M	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/3/2012 10:32:56 AM

Lab Reporting Batch ID: DX129 Laboratory: LL EDD Filename: DX129_v1

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/3/2012 10:32:56 AM

eQAPP Name: CDM_SSFL_110509

^{*} denotes a non-reportable result

## **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX129

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2340B371734	8/23/2011 5:34:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-PECDD 2,3,4,6,7,8-PECDF OCDD OCDF	2.80 pg/L 0.632 pg/L 0.512 pg/L 0.765 pg/L 0.547 pg/L 0.856 pg/L 0.489 pg/L 0.876 pg/L 0.588 pg/L 0.588 pg/L 0.562 pg/L 1.02 pg/L 6.56 pg/L	EB-SA6-SB-081711

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-081711(RES)	1,2,3,4,6,7,8-HPCDD	2.81 pg/L	2.81U pg/L
EB-SA6-SB-081711(RES)	1,2,3,4,6,7,8-HPCDF	0.562 pg/L	0.562U pg/L
EB-SA6-SB-081711(RES)	1,2,3,4,7,8,9-HPCDF	0.367 pg/L	0.367U pg/L
EB-SA6-SB-081711(RES)	1,2,3,4,7,8-HxCDD	0.405 pg/L	0.405U pg/L
EB-SA6-SB-081711(RES)	1,2,3,6,7,8-HXCDF	0.277 pg/L	0.277U pg/L
EB-SA6-SB-081711(RES)	1,2,3,7,8,9-HXCDD	0.522 pg/L	0.522U pg/L
EB-SA6-SB-081711(RES)	1,2,3,7,8,9-HXCDF	0.316 pg/L	0.316U pg/L
EB-SA6-SB-081711(RES)	1,2,3,7,8-PECDD	0.710 pg/L	0.710U pg/L
EB-SA6-SB-081711(RES)	2,3,4,6,7,8-HXCDF	0.303 pg/L	0.303U pg/L
EB-SA6-SB-081711(RES)	2,3,4,7,8-PECDF	0.740 pg/L	0.740U pg/L
EB-SA6-SB-081711(RES)	OCDD	4.18 pg/L	4.18U pg/L
EB-SA6-SB-081711(RES)	OCDF	0.569 pg/L	0.569U pg/L

#### Method: 1613B Matrix: SO

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2380B370305	8/30/2011 3:05:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD	0.236 ng/Kg 0.0494 ng/Kg 0.0519 ng/Kg 0.0513 ng/Kg 0.0537 ng/Kg 0.0428 ng/Kg 0.0356 ng/Kg 0.0682 ng/Kg 0.0365 ng/Kg 0.0234 ng/Kg 0.0544 ng/Kg 0.426 ng/Kg	DUP12-SA6-QC-081711 SL-007-SA5DN-SS-0.0-0.5 SL-154-SA6-SB-3.0-4.0 SL-214-SA6-SB-1.0-2.0 SL-215-SA6-SB-1.0-2.0 SL-221-SA6-SB-1.0-2.0 SL-221-SA6-SB-2.5-3.5 SL-224-SA6-SB-3.0-4.0 SL-226-SA6-SB-3.5-4.5 SL-241-SA6-SB-4.0-5.0 SL-241-SA6-SB-9.0-10.0 SL-242-SA6-SB-4.0-5.0 SL-242-SA6-SB-4.0-5.0 SL-279-SA6-SB-4.0-5.0 SL-279-SA6-SB-9.0-10.0 SL-279-SA6-SB-9.0-10.0 SL-279-SA6-SB-9.0-10.0 SL-315-SA6-SB-3.0-4.0

1/3/2012 10:32:01 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO							
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples			
BLK2410B372134	8/30/2011 9:34:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0,0CDD 0CDF	0.173 ng/Kg 0.0734 ng/Kg 0.0294 ng/Kg 0.0282 ng/Kg 0.0284 ng/Kg 0.0284 ng/Kg 0.0221 ng/Kg 0.0303 ng/Kg 0.0198 ng/Kg 0.0300 ng/Kg 0.0366 ng/Kg 0.0245 ng/Kg 0.0368 ng/Kg 0.0369 ng/Kg 0.0369 ng/Kg	SL-310-SA6-SB-4.0-5.0			

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP12-SA6-QC-081711(RES)	1,2,3,4,6,7,8-HPCDD	0.310 ng/Kg	0.310U ng/Kg
DUP12-SA6-QC-081711(RES)	1,2,3,4,6,7,8-HPCDF	0.156 ng/Kg	0.156U ng/Kg
DUP12-SA6-QC-081711(RES)	1,2,3,6,7,8-HXCDD	0.244 ng/Kg	0.244U ng/Kg
DUP12-SA6-QC-081711(RES)	OCDD	0.299 ng/Kg	0.299U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDD	0.382 ng/Kg	0.382U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0307 ng/Kg	0.0307U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,4,7,8-HXCDF	0.0301 ng/Kg	0.0301U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDF	0.0292 ng/Kg	0.0292U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDD	0.0723 ng/Kg	0.0723U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDF	0.0295 ng/Kg	0.0295U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	2,3,4,6,7,8-HXCDF	0.0293 ng/Kg	0.0293U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	2,3,4,7,8-PECDF	0.0537 ng/Kg	0.0537U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDD	0.443 ng/Kg	0.443U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDF	0.133 ng/Kg	0.133U ng/Kg
SL-214-\$A6-SB-1.0-2.0(RE\$)	1,2,3,4,7,8-HXCDF	0.210 ng/Kg	0.210U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDD	0.142 ng/Kg	0.142U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDF	0.186 ng/Kg	0.186U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDF	0.137 ng/Kg	0.137U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,7,8-PECDD	0.212 ng/Kg	0.212U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	2,3,4,6,7,8-HXCDF	0.0933 ng/Kg	0.0933U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	OCDD	1.07 ng/Kg	1.07U ng/Kg
SL-215-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,4,7,8-HXCDF	0.0803 ng/Kg	0.0803U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.193 ng/Kg	0.193U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0649 ng/Kg	0.0649U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.212 ng/Kg	0,212U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0339 ng/Kg	0.0339U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0891 ng/Kg	0.0891U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0542 ng/Kg	0.0542U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0727 ng/Kg	0.0727U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDF	0.170 ng/Kg	0.170U ng/Kg

1/3/2012 10:32:01 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO			Phillips of the second of the second	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,4,7,8-HXCDF	0.0420 ng/Kg	0.0420U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDD	0.102 ng/Kg	0.102U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDF	0.0361 ng/Kg	0.0361U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDD	0.0801 ng/Kg	0.0801U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDF	0.0409 ng/Kg	0.0409U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	2,3,4,6,7,8-HXCDF	0.0302 ng/Kg	0.0302U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	2,3,4,7,8-PECDF	0.0437 ng/Kg	0.0437U ng/Kg
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	0,358 ng/Kg	0.358U ng/Kg
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0574 ng/Kg	0.0574U ng/Kg
SL-223-SA6-SB-2,5-3,5(RES)	1,2,3,4,7,8-HXCDF	0.0303 ng/Kg	0.0303U ng/Kg
SL-223-SA6-SB-2,5-3.5(RE\$)	1,2,3,7,8,9-HXCDD	0.0970 ng/Kg	0.0970U ng/Kg
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDF	0.0868 ng/Kg	0.0868U ng/Kg
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.0875 ng/Kg	0.0875U ng/Kg
SL-223-SA6-SB-2,5-3,5(RES)	2,3,4,7,8-PECDF	0.0888 ng/Kg	0.0888U ng/Kg
SL-224-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDD	0.131 ng/Kg	0.131U ng/Kg
SL-224-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0332 ng/Kg	0.0332U ng/Kg
SL-224-SA6-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDD	0.0949 ng/Kg	0.0949U ng/Kg
SL-224-SA6-SB-3.0-4.0(RES)	1,2,3,7,8-PECDF	0.0312 ng/Kg	0.0312U ng/Kg
SL-224-SA6-SB-3.0-4.0(RES)	2,3,4,7,8-PECDF	0.0298 ng/Kg	0.0298U ng/Kg
SL-224-SA6-SB-3.0-4.0(RES)	OCDD	0,263 ng/Kg	0.263U ng/Kg
SL-226-\$A6-\$B-3,5-4.5(RE\$)	1,2,3,4,6,7,8-HPCDD	0.946 ng/Kg	0,946U ng/Kg
SL-226-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDF	0.219 ng/Kg	0.219U ng/Kg
SL-226-\$A6-\$B-3.5-4.5(RE\$)	1,2,3,4,7,8-HXCDF	0.196 ng/Kg	0.196U ng/Kg
SL-226-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDD	0.230 ng/Kg	0.230U ng/Kg
SL-226-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDF	0.189 ng/Kg	0.189U ng/Kg
SL-226-SA6-SB-3.5-4.5(RES)	1,2,3,7,8-PECDD	0.229 ng/Kg	0.229U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,282 ng/Kg	0.282U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0463 ng/Kg	0.0463U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0506 ng/Kg	0.0506U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0570 ng/Kg	0.0570U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0,0240 ng/Kg	0.0240U ng/Kg
SL-241-\$A6-\$B-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0388 ng/Kg	0.0388U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0320 ng/Kg	0.0320U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0225 ng/Kg	0.0225U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0267 ng/Kg	0.0267U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0522 ng/Kg	0.0522U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	OCDD	1.56 ng/Kg	1.56U ng/Kg
SL-241-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.283 ng/Kg	0.283U ng/Kg
SL-241-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0462 ng/Kg	0.0462U ng/Kg
SL-241-\$A6-\$B-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0239 ng/Kg	0.0239U ng/Kg

1/3/2012 10:32:01 AM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B	raiskiskiskiskiskiskiskiskiskiskiskiskiski	dia and market and a substitution of the		Mark State Control Control Control
Matrix:	so				Tiller en klasticker på appring her a kommerte prograf.
Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-241-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0483 ng/Kg	0.0483U ng/Kg
SL-241-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0221 ng/Kg	0.0221U ng/Kg
SL-241-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0861 ng/Kg	0.0861U ng/Kg
SL-241-SA6-SB-9.0-10.0(RES)	OCDD	0.480 ng/Kg	0.480U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.315 ng/Kg	0,315U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0498 ng/Kg	0.0498U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0257 ng/Kg	0.0257U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.114 ng/Kg	0.114U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0239 ng/Kg	0.0239U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0640 ng/Kg	0.0640U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0301 ng/Kg	0.0301U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0342 ng/Kg	0.0342U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.365 ng/Kg	0.365U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.122 ng/Kg	0.122U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0763 ng/Kg	0.0763U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0837 ng/Kg	0.0837U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0473 ng/Kg	0.0473U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0946 ng/Kg	0.0946U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0529 ng/Kg	0.0529U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0885 ng/Kg	0.0885U ng/Kg
SL-242-\$A6-\$B-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0765 ng/Kg	0.0765U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.170 ng/Kg	0.170U ng/Kg
SL-242-\$A6-\$B-9.0-10.0(RES)	OCDD	1.41 ng/Kg	1.41U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDD	0.969 ng/Kg	0.969U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDF	0.166 ng/Kg	0.166U ng/Kg
SL-279-\$A6-SB-1.0-2.0(RES)	1,2,3,4,7,8-HXCDF	0.196 ng/Kg	0.196U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDD	0.156 ng/Kg	0.156U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDF	0.169 ng/Kg	0.169U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDD	0.151 ng/Kg	0.151U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDF	0.162 ng/Kg	0.162U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,7,8-PECDD	0.222 ng/Kg	0.222U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	2,3,4,6,7,8-HXCDF	0.111 ng/Kg	0.111U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.389 ng/Kg	0.389U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.157 ng/Kg	0.157U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.178 ng/Kg	0.178U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.150 ng/Kg	0.150U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.142 ng/Kg	0.142U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.131 ng/Kg	0.131U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.153 ng/Kg	0.153U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.315 ng/Kg	0.315U ng/Kg

1/3/2012 10:32:01 AM ADR version 1.4.0.111 Page 4 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	sinung di panggang di Araba	istinandellandet til det det statet til det statet til statet til statet til statet til statet til statet til s Til statet til statet til statet til statet til statet til statet til statet til statet til statet til statet		
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-279-SA6-SB-4.0-5.0(RES)	OCDD	1.95 ng/Kg	1.95U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.211 ng/Kg	0.211U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.146 ng/Kg	0.146U ng/Kg
SL-279-SA6-SB-9,0-10,0(RES)	1,2,3,6,7,8-HXCDF	0.145 ng/Kg	0.145U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.125 ng/Kg	0.125U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.124 ng/Kg	0.124U ng/Kg
SL-279-SA6-SB-9,0-10,0(RES)	1,2,3,7,8-PECDD	0.126 ng/Kg	0,126U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0814 ng/Kg	0.0814U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.224 ng/Kg	0.224U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.301 ng/Kg	0.301U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0415 ng/Kg	0.0415U ng/Kg
SL-310-SA6-SB-4,0-5,0(RES)	1,2,3,4,7,8-HXCDF	0.0491 ng/Kg	0.0491U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0273 ng/Kg	0.0273U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.113 ng/Kg	0.113U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0304 ng/Kg	0.0304U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,0750 ng/Kg	0.0750U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0322 ng/Kg	0.0322U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0637 ng/Kg	0.0637U ng/Kg

#### Field Duplicate RPD Report

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO	ining a managaran na in ing panggan panggan an				
	Concent	ration (%)			
Analyte	SL-224-SA6-SB-3.0-4.0	DUP12-SA6-QC-081711	Sample RPD	eQAPP RPD	Flag
MOISTURE	9.2	6.4	36		No Qualifiers Applie

Method: 1613B Matrix: SO

	Concentra	tion (ng/Kg)			
Analyte	SL-224-SA6-SB-3.0-4.0 DUP12-SA6-QC-081711		Sample RPD	eQAPP RPD	Flag
OCDD OCDF	0.263 0.133	0.299 0.208	13 44	50.00 50.00	No Qualifiers Applied
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	0.131 0.0332 5.26 U 5.26 U 5.26 U 5.26 U 0.0949 5.26 U 0.0312 5.26 U 0.0312 5.26 U 0.0298 1.05 U	0.310 0.156 0.230 0.339 0.244 0.344 0.230 0.229 0.483 0.585 0.190 0.442 0.0807 0.110	81 130 200 200 200 200 83 200 200 180 200 175 200 200	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

THE CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY

Method: 1613B

AQ

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-081711	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	2.81 0.562 0.367 0.405 0.277 0.522 0.316 0.710 0.303 0.740 4.18 0.569	9.56 9.56 9.56 9.56 9.56 9.56 9.56 9.56	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613E

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
			Nesun	LIIIIC	Type		гау
DUP12-SA6-QC-081711	1,2,3,4,6,7,8-HPCDD	JBQ	0.310	5.30	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.156	5.30	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.230	5.30	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.339	5.30	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.244	5.30	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.344	5.30	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.230	5.30	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.229	5.30	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.483	5.30	PQL	ng/Kg	o (all delects)
	1,2,3,7,8-PECDF	JB	0.585	5.30	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.190	5.30	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.442	5.30	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0807	1.06	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.110	1.06	PQL	ng/Kg	
	OCDD	JBQ	0.299	10.6	PQL	ng/Kg	
	OCDF	J	0.208	10.6	PQL	ng/Kg	
SL-007-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	3.19	5.55	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	J	1.57	5.55	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.304	5.55	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.739	5.55	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	3.15	5.55	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JB	0.621	5.55	PQL	ng/Kg	` '
	1,2,3,7,8,9-HXCDF	JB	2.04	5.55	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.94	5.55	PQL	ng/Kg	
	OCDF	J	4.88	11.1	PQL	ng/Kg	
SL-154-SA6-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDD	JB	0.382	5.24	PQL	ng/Kg	<u> </u>
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0307	5.24	PQL	ng/Kg	
İ	1,2,3,4,7,8,9-HPCDF	JQ	0.0300	5.24	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0301	5.24	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0292	5.24	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0723	5.24	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0295	5.24	PQL	ng/Kg	
1	2,3,4,6,7,8-HXCDF	JBQ	0.0293	5.24	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0537	5.24	PQL	ng/Kg	
	OCDD	JB	4.14	10.5	PQL	ng/Kg	
	OCDF	JQ	0.0760	10.5	PQL	ng/Kg	

1/3/2012 10:32:12 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-214-SA6-SB-1.0-2.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	まなななないのである。	0.443 0.133 0.0450 0.159 0.210 0.142 0.186 0.229 0.137 0.212 0.0933 0.313 0.0910 0.0765 1.07	5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-215-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	<b>පිපිළිසසියම් පරිස</b> ස	3.27 0.539 0.0675 0.119 0.0803 0.193 0.0649 0.212 0.0339 0.0891 0.0542 0.0727 0.0689 1.81	5.53 5.53 5.53 5.53 5.53 5.53 5.53 5.53	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-221-SA6-SB-1.0-2.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDF	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.06 0.170 0.0420 0.102 0.0361 0.0801 0.0409 0.0302 0.0437 0.512	5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.29	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-223-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,7,8-PECDF OCDD OCDF	B G B G B B B G B B B G	0.358 0.0574 0.0303 0.0970 0.0868 0.0875 0.0888 2.16 0.367	5.00 5.00 5.00 5.00 5.00 5.00 5.00 10.0	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-224-SA6-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF OCDD OCDF	JBQ JB JBQ JB JBQ JBQ JQ	0.131 0.0332 0.0949 0.0312 0.0298 0.263 0.133	5.26 5.26 5.26 5.26 5.26 5.26 10.5	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 10:32:12 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

watrix: 50		,		· · · · · · · · · · · · · · · · · · ·			
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-226-SA6-SB-3.5-4.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	HE PEREBER CREE	0.946 0.219 0.0948 0.165 0.196 0.230 0.189 0.233 0.225 0.229 0.344 0.128 0.314 0.170 0.539	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-241-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0,0DD 0,0DF	C S S S S S S S S S S S S S S S S S S S	0.282 0.0463 0.0399 0.0506 0.0570 0.0240 0.0388 0.0320 0.0225 0.0267 0.0522 1.56 0.107	5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-241-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	99999999999999999999999999999999999999	0.283 0.0462 0.0313 0.0239 0.0483 0.0221 0.0861 0.480 0.147	5.37 5.37 5.37 5.37 5.37 5.37 5.37 10.7	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-242-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0CDD 0CDF	ъ	0.315 0.0498 0.0427 0.0257 0.114 0.0239 0.218 0.216 0.0640 0.0301 0.0342 2.25 0.100	5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.29	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 10:32:12 AM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX129

Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-242-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDD	B	0.365 0.122 0.0507 0.0342 0.0763 0.0837 0.0473 0.0946 0.0529 0.0885 0.195 0.0765 0.170 0.0834 0.0563 1.41 0.166	5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-279-SA6-SB-1.0-2.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HCDD 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	SäBäaaaagaaa	0.969 0.166 0.0667 0.0900 0.196 0.156 0.159 0.151 0.162 0.222 0.324 0.111 0.301 0.0657 0.0889 9.19 0.372	5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-279-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDF 2,3,7,8-TCDF OCDD OCDF	Sassassassassassassassassassassassassass	0.389 0.157 0.0531 0.138 0.178 0.150 0.142 0.131 0.153 0.315 0.334 0.119 0.320 0.121 0.0977 1.95 0.161	5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-279-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF CODF	JB JBQ JQ JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	1.57 0.271 0.0889 0.116 0.211 0.146 0.145 0.125 0.124 0.126 0.230 0.0814 0.224 0.654	5.39 5.39 5.39 5.39 5.39 5.39 5.39 5.39	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-310-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	JB JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	2.28 0.301 0.0415 0.0491 0.170 0.0273 0.210 0.113 0.0304 0.0750 0.0322 0.0637 0.0246 0.781	5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.48	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-315-SA6-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDF OCDF	思」 くまなままなままままして りままままなままままます。	2.46 0.491 0.458 0.353 0.537 0.280 0.370 0.226 0.615 0.516 0.264 0.464 0.163 0.0808 4.83	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 10:32:12 AM ADR version 1.4.0.111 Page 5 of 5

## **SAMPLE DELIVERY GROUP**

**DE253** 

## **Attachment I**

**Sample ID Cross Reference and Data Review Level** 

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
23-Sep-2011	SL-028-SA7-SB-8.0-9.0	6418471	N	3050B	6010B	111
23-Sep-2011	SL-028-SA7-SB-8.0-9.0	6418471	N	3050B	6020	Ш
23-Sep-2011	SL-028-SA7-SB-8.0-9.0	6418471	N	3060A	7199	Ш
23-Sep-2011	SL-028-SA7-SB-8.0-9.0	6418471	N	3550B	8082	111
23-Sep-2011	SL-028-SA7-SB-8.0-9.0	6418471	N	3550B	8270C	111
23-Sep-2011	SL-028-SA7-SB-8.0-9.0	6418471	N	3550B	8270C SIM	111
23-Sep-2011	SL-028-SA7-SB-8.0-9.0	6418471	N	METHOD	300.0	111
23-Sep-2011	SL-028-SA7-SB-8.0-9.0	6418471	N	METHOD	314.0	Ш
23-Sep-2011	SL-028-SA7-SB-8.0-9.0	6418471	N	METHOD	7471A	111
26-Sep-2011	SL-001-SA3-SS-0.0-0.5	6419488	N	3050B	6010B	Ш
26-Sep-2011	SL-001-SA3-SS-0.0-0.5	6419488	N	3050B	6020	<b>III</b>
26-Sep-2011	SL-001-SA3-SS-0.0-0.5	6419488	N	3060A	7199	HI
26-Sep-2011	SL-001-SA3-SS-0.0-0.5	6419488	N	3550B	8081A	111
26-Sep-2011	SL-001-SA3-SS-0.0-0.5	6419488	N	3550B	8082	111
26-Sep-2011	SL-001-SA3-SS-0.0-0.5	6419488	N	3550B	8151A	111
26-Sep-2011	SL-001-SA3-SS-0.0-0.5	6419488	N	3550B	8270C	Ш
26-Sep-2011	SL-001-SA3-SS-0.0-0.5	6419488	N	3550B	8270C SIM	Ш
26-Sep-2011	SL-001-SA3-SS-0.0-0.5	6419488	N	METHOD	300.0	III
26-Sep-2011	SL-001-SA3-SS-0.0-0.5	6419488	N	METHOD	314.0	III
26-Sep-2011	SL-001-SA3-SS-0.0-0.5	6419488	N	METHOD	7471A	Ш
26-Sep-2011	SL-002-SA3-SS-0.0-0.5	6419489	<b>N</b>	3050B	6010B	Ш
26-Sep-2011	SL-002-SA3-SS-0.0-0.5	6419489	N	3050B	6020	111
26-Sep-2011	SL-002-SA3-SS-0.0-0.5	6419489	N	3060A	7199	Ш
26-Sep-2011	SL-002-SA3-SS-0.0-0.5	6419489	N	3550B	8081A	Ш
26-Sep-2011	SL-002-SA3-SS-0.0-0.5	6419489	N	3550B	8082	111
26-Sep-2011	SL-002-SA3-SS-0.0-0.5	6419489	N	3550B	8151A	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
26-Sep-2011	SL-002-SA3-SS-0.0-0.5	6419489	N	3550B	8270C	III
26-Sep-2011	SL-002-SA3-SS-0.0-0.5	6419489	N	3550B	8270C SIM	Ш
26-Sep-2011	SL-002-SA3-SS-0.0-0.5	6419489	N	METHOD	300.0	III
26-Sep-2011	SL-002-SA3-SS-0.0-0.5	6419489	N	METHOD	314.0	III
26-Sep-2011	SL-002-SA3-SS-0.0-0.5	6419489	N	METHOD	7471A	III
26-Sep-2011	SL-027-SA5DS-SS-0.0-0.5	6419498	N	3050B	6010B	111
26-Sep-2011	SL-027-SA5DS-SS-0.0-0.5	6419498	N	3050B	6020	III
26-Sep-2011	SL-027-SA5DS-SS-0.0-0.5	6419498	N	3060A	7199	III
26-Sep-2011	SL-027-SA5DS-SS-0.0-0.5	6419498	N	3550B	8081A	1(1
26-Sep-2011	SL-027-SA5DS-SS-0.0-0.5	6419498	N	3550B	8082	111
26-Sep-2011	SL-027-SA5DS-SS-0.0-0.5	6419498	N	3550B	8151A	Ш
26-Sep-2011	SL-027-SA5DS-SS-0.0-0.5	6419498	N	3550B	8270C	III
26-Sep-2011	SL-027-SA5DS-SS-0.0-0.5	6419498	N	3550B	8270C SIM	111
26-Sep-2011	SL-027-SA5DS-SS-0.0-0.5	6419498	N	METHOD	300.0	Ш
26-Sep-2011	SL-027-SA5DS-SS-0.0-0.5	6419498	N	METHOD	314.0	111
26-Sep-2011	SL-027-SA5DS-SS-0.0-0.5	6419498	N	METHOD	7471A	111
26-Sep-2011	SL-026-SA5DS-SS-0.0-0.5	6419497	N	3050B	6010B	Ш
26-Sep-2011	SL-026-SA5DS-SS-0.0-0.5	6419497	N	3050B	6020	III
26-Sep-2011	SL-026-SA5DS-SS-0.0-0.5	6419497	N	3060A	7199	III
26-Sep-2011	SL-026-SA5DS-SS-0.0-0.5	6419497	N	3550B	8081A	111
26-Sep-2011	SL-026-SA5DS-SS-0.0-0.5	6419497	N	3550B	8082	Ш
26-Sep-2011	SL-026-SA5DS-SS-0.0-0.5	6419497	N	3550B	8151A	Ш
26-Sep-2011	SL-026-SA5DS-SS-0.0-0.5	6419497	N	3550B	8270C	111
26-Sep-2011	SL-026-SA5DS-SS-0.0-0.5	6419497	N	3550B	8270C SIM	1(1
26-Sep-2011	SL-026-SA5DS-SS-0.0-0.5	6419497	N	METHOD	300.0	111
26-Sep-2011	SL-026-SA5DS-SS-0.0-0.5	6419497	N	METHOD	314.0	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
26-Sep-2011	SL-026-SA5DS-SS-0.0-0.5	6419497	N	METHOD	7471A	111
26-Sep-2011	SL-028-SA5DS-SS-0.0-0.5	6419499	N	3050B	6010B	iii
26-Sep-2011	SL-028-SA5DS-SS-0.0-0.5	6419499	N	3050B	6020	Itti
26-Sep-2011	SL-028-SA5DS-SS-0.0-0.5	6419499	N	3060A	7199	III
26-Sep-2011	SL-028-SA5DS-SS-0.0-0.5	6419499	N	3550B	8081A	111
26-Sep-2011	SL-028-SA5DS-SS-0.0-0.5	6419499	N	3550B	8082	Ш
26-Sep-2011	SL-028-SA5DS-SS-0.0-0.5	6419499	N	3550B	8151A	III
26-Sep-2011	SL-028-SA5DS-SS-0.0-0.5	6419499	N	3550B	8270C	III
26-Sep-2011	SL-028-SA5DS-SS-0.0-0.5	6419499	N	3550B	8270C SIM	Ш
26-Sep-2011	SL-028-SA5DS-SS-0.0-0.5	6419499	N	METHOD	300.0	ш
26-Sep-2011	SL-028-SA5DS-SS-0.0-0.5	6419499	N	METHOD	314.0	III
26-Sep-2011	SL-028-SA5DS-SS-0.0-0.5	6419499	N	METHOD	7471A	111
26-Sep-2011	SL-029-SA5DS-SS-0.0-0.5	6419500	N	3050B	6010B	Ш
26-Sep-2011	SL-029-SA5DS-SS-0.0-0.5	6419500	N	3050B	6020	Ш
26-Sep-2011	SL-029-SA5DS-SS-0.0-0.5	6419500	N	3060A	7199	m
26-Sep-2011	SL-029-SA5DS-SS-0.0-0.5	6419500	N	3550B	8081A	Ш
26-Sep-2011	SL-029-SA5DS-SS-0.0-0.5	6419500	N	3550B	8082	Ш
26-Sep-2011	SL-029-SA5DS-SS-0.0-0.5	6419500	N	3550B	8151A	Ш
26-Sep-2011	SL-029-SA5DS-SS-0.0-0.5	6419500	N	3550B	8270C	111
26-Sep-2011	SL-029-SA5DS-SS-0.0-0.5	6419500	N	3550B	8270C SIM	III
26-Sep-2011	SL-029-SA5DS-SS-0.0-0.5	6419500	N	METHOD	300.0	Ш
26-Sep-2011	SL-029-SA5DS-SS-0.0-0.5	6419500	N	METHOD	314.0	Ш
26-Sep-2011	SL-029-SA5DS-SS-0.0-0.5	6419500	N	METHOD	7471A	III
26-Sep-2011	SL-030-SA5DS-SS-0.0-0.5	6419501	N	3050B	6010B	Ш
26-Sep-2011	SL-030-SA5DS-SS-0.0-0.5	6419501	N	3050B	6020	111
26-Sep-2011	SL-030-SA5DS-SS-0.0-0.5	6419501	N	3060A	7199	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
26-Sep-2011	SL-030-SA5DS-SS-0.0-0.5	6419501	N	3550B	8081A	III
26-Sep-2011	SL-030-SA5DS-SS-0.0-0.5	6419501	N	3550B	8082	111
26-Sep-2011	SL-030-SA5DS-SS-0.0-0.5	6419501	N	3550B	8151A	Ш
26-Sep-2011	SL-030-SA5DS-SS-0.0-0.5	6419501	N	3550B	8270C	III
26-Sep-2011	SL-030-SA5DS-SS-0.0-0.5	6419501	N	3550B	8270C SIM	Ш
26-Sep-2011	SL-030-SA5DS-SS-0.0-0.5	6419501	N	METHOD	300.0	111
26-Sep-2011	SL-030-SA5DS-SS-0.0-0.5	6419501	, N	METHOD	314.0	Ш
26-Sep-2011	SL-030-SA5DS-SS-0.0-0.5	6419501	N	METHOD	7471A	Ш
26-Sep-2011	SL-031-SA5DS-SS-0.0-0.5	6419502	N	3050B	6010B	Ш
26-Sep-2011	SL-031-SA5DS-SS-0.0-0.5	6419502	N	3050B	6020	111
26-Sep-2011	SL-031-SA5DS-SS-0.0-0.5	6419502	N	3060A	7199	Ш
26-Sep-2011	SL-031-SA5DS-SS-0.0-0.5	6419502	N	3550B	8081A	111
26-Sep-2011	SL-031-SA5DS-SS-0.0-0.5	6419502	N	3550B	8082	111
26-Sep-2011	SL-031-SA5DS-SS-0.0-0.5	6419502	N	3550B	8151A	Ш
26-Sep-2011	SL-031-SA5DS-SS-0.0-0.5	6419502	N	3550B	8270C	111
26-Sep-2011	SL-031-SA5DS-SS-0.0-0.5	6419502	N	3550B	8270C SIM	Ш
26-Sep-2011	SL-031-SA5DS-SS-0.0-0.5	6419502	N	METHOD	300.0	Ш
26-Sep-2011	SL-031-SA5DS-SS-0.0-0.5	6419502	N	METHOD	314.0	Ш
26-Sep-2011	SL-031-SA5DS-SS-0.0-0.5	6419502	N	METHOD	7471A	111
26-Sep-2011	SL-032-SA5DS-SS-0.0-0.5	6419503	N	3050B	6010B	111
26-Sep-2011	SL-032-SA5DS-SS-0.0-0.5	6419503	N	3050B	6020	III
26-Sep-2011	SL-032-SA5DS-SS-0.0-0.5	6419503	N	3060A	7199	111
26-Sep-2011	SL-032-SA5DS-SS-0.0-0.5	6419503	N	3550B	8081A	Ш
26-Sep-2011	SL-032-SA5DS-SS-0.0-0.5	6419503	N	3550B	8082	Ш
26-Sep-2011	SL-032-SA5DS-SS-0.0-0.5	6419503	N	3550B	8151A	Ш
26-Sep-2011	SL-032-SA5DS-SS-0.0-0.5	6419503	N	3550B	8270C	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
26-Sep-2011	SL-032-SA5DS-SS-0.0-0.5	6419503	N	3550B	8270C SIM	Ш
26-Sep-2011	SL-032-SA5DS-SS-0.0-0.5	6419503	N	METHOD	300.0	, III
26-Sep-2011	SL-032-SA5DS-SS-0.0-0.5	6419503	N	METHOD	314.0	Ш
26-Sep-2011	SL-032-SA5DS-SS-0.0-0.5	6419503	N	METHOD	7471A	Ш
26-Sep-2011	SL-032-SA5DS-SS-0.0-0.5DU	P419503D271501B	DUP	METHOD	300.0	Ш
26-Sep-2011	SL-032-SA5DS-SS-0.0-0.5MS	P419503R271514B	MS	METHOD	300.0	111
26-Sep-2011	SL-002-SA5DS-SS-0.0-0.5	6419490	N	3050B	6010B	111
26-Sep-2011	SL-002-SA5DS-SS-0.0-0.5	6419490	N	3050B	6020	111
26-Sep-2011	SL-002-SA5DS-SS-0.0-0.5	6419490	N	3060A	7199	111
26-Sep-2011	SL-002-SA5DS-SS-0.0-0.5	6419490	N	3550B	8081A	Ш
26-Sep-2011	SL-002-SA5DS-SS-0.0-0.5	6419490	N	3550B	8082	111
26-Sep-2011	SL-002-SA5DS-SS-0.0-0.5	6419490	N	3550B	8151A	Ш
26-Sep-2011	SL-002-SA5DS-SS-0.0-0.5	6419490	N	3550B	8270C	III
26-Sep-2011	SL-002-SA5DS-SS-0.0-0.5	6419490	N	3550B	8270C SIM	111
26-Sep-2011	SL-002-SA5DS-SS-0.0-0.5	6419490	N	METHOD	300.0	Ш
26-Sep-2011	SL-002-SA5DS-SS-0.0-0.5	6419490	N	METHOD	314.0	Ш
26-Sep-2011	SL-002-SA5DS-SS-0.0-0.5	6419490	N	METHOD	7471A	111
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5	6419491	N	3050B	6010B	f11
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5	6419491	N	3050B	6020	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5	6419491	N	3060A	7199	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5	6419491	N	3550B	8081A	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5	6419491	N	3550B	8082	111
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5	6419491	N	3550B	8151A	HI
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5	6419491	N	3550B	8270C	111
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5	6419491	N	3550B	8270C SIM	Ш
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5	6419491	N	METHOD	300.0	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5	6419491	N	METHOD	314.0	111
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5	6419491	N	METHOD	7471A	Ш
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 M	6419492	MS	3050B	6010B	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 M	6419492	мѕ	3050B	6020	Ш
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 M	6419492	MS	3060A	7199	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 M	6419492	MS	3550B	8081A	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 M	6419492	MS	3550B	8082	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 M	6419492	MS	3550B	8151A	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 M	6419492	MS	3550B	8270C	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 M	6419492	MS	3550B	8270C SIM	Ш
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 M	6419492	MS	METHOD	300.0	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 M	6419492	MS	METHOD	314.0	Ш
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 M	6419492	MS	METHOD	7471A	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 D	6419494	DUP	3050B	6010B	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 D	6419494	DUP	3050B	6020	HI
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 D	6419494	DUP	3060A	7199	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 D	6419494	DUP	METHOD	300.0	III
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 D	6419494	DUP	METHOD	314.0	111
26-Sep-2011	SL-001-SA5DS-SS-0.0-0.5 D	6419494	DUP	METHOD	7471A	III .
26-Sep-2011	DUP01-SA5DS-QC-092611	6419504	FD	3050B	6010B	III
26-Sep-2011	DUP01-SA5DS-QC-092611	6419504	FD	3050B	6020	Ш
26-Sep-2011	DUP01-SA5DS-QC-092611	6419504	FD	3060A	7199	111
26-Sep-2011	DUP01-SA5DS-QC-092611	6419504	FD	3550B	8081A	Ш
26-Sep-2011	DUP01-SA5DS-QC-092611	6419504	FD	3550B	8082	III
26-Sep-2011	DUP01-SA5DS-QC-092611	6419504	FD	3550B	8151A	111
26-Sep-2011	DUP01-SA5DS-QC-092611	6419504	FD	3550B	8270C	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level	
26-Sep-2011	DUP01-SA5DS-QC-092611	6419504	FD	3550B	8270C SIM	ili	
26-Sep-2011	DUP01-SA5DS-QC-092611	6419504	FD	METHOD	300.0	Ш	
26-Sep-2011	DUP01-SA5DS-QC-092611	6419504	FD	METHOD	314.0	111	
26-Sep-2011	DUP01-SA5DS-QC-092611	6419504	FD	METHOD	7471A	111	

# Attachment II

**Overall Data Qualification Summary** 

Lab Reporting Batch ID: DE253 Laboratory: LL

EDD Filename: DE253 v2. eQAPP Name: CDM_SSFL_110509 Method Category: GENCHEM Matrix: SO Method: 300.D Sample ID: DUP01-SA5DS-QC-092611 Collected: 9/26/2011 3:10:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RL Review Reason Analyte Result Qual DLRLType Type Units Qual Code FLUORIDE 2.9 0.82 MDL PQL mg/Kg Sample ID: SL-001-SA3-SS-0.0-0.5 Collected: 9/26/2011 7:50:00 Analysis Type: RES Dilution: 1 Data RLLab Lab Review Reason Analyte Result Qual DLType RLType Units Qual Code FLUORIDE 0.80 0.80 MDL 1.0 **PQL** mg/Kg UJ Q Sample ID: SL-001-SA5DS-SS-0.0-0.5 Collected: 9/26/2011 3:05:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RL Review Reason Analyte Result Qual DL Type RL Type Units Qual Code FLUORIDE PQL mg/Kg Sample ID: SL-002-SA3-SS-0.0-0.5 Collected: 9/26/2011 8:15:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RL Review Reason Analyte Result Qual DL RL Units Qual Code Type Type FLUORIDE 0.79 0.99 **PQL** mg/Kg Q Analysis Type: RES Sample ID: SL-002-SA5DS-SS-0.0-0.5 Collected: 9/26/2011 2:35:00 Dilution: 1 Data Lab DL RLReview Lab Reason Analyte Result Qual DL RL Units Qual Code Type Type FLUORIDE 1.4 0.83 MDL 1.0 **PQL** mg/Kg .1 Q Sample ID: SL-026-SA5DS-SS-0.0-0.5 Collected: 9/26/2011 10:35:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte Result DL RL Units Qual Code Qual Type Type FLUORIDE 0.83 MDL **PQL** UJ Q U 0.83 1.0 mg/Kg Sample ID: SL-027-SA5DS-SS-0.0-0.5 Collected: 9/26/2011 9:25:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Analyte Result Qual DL Type RL Type Units Qual Code FLUORIDE **PQL** Q 2.5 0.80 MDL 1.0 mg/Kg J

Collected: 9/26/2011 10:50:00

DL

0.79

Lab

Qual

Lab

Result

0.79

Analyte

FLUORIDE

Sample ID: SL-028-SA5DS-SS-0.0-0.5

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 10:35:38 AM ADR version 1.4.0.1

Units

mg/Kg

Dilution: 1

Reason

Code

Q

Data

Review

Qual

UJ

Analysis Type: RES

RL

0.99

RL

Type

PQL

DL

Type

MDL

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

Laboratory: LL

eQAPP Name: CDM SSFL 110509 EDD Filename: DE253 v2.

EDD Filename: DE253_V2.						EWAP	rivaille	. CDIVI_3.	SFL_11050	
Method Category: GENCHEM										
Method: 300.0	A CONTRACT	and the second	Ma	trix:	SO			a para		
Sample ID: SL-029-SA5DS-SS-0.0-0.5	Collec	Collected: 9/26/2011 11:10:00 Analysis Ty							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	2.6		0.81	MDL	1.0	PQL.	mg/Kg	J	Q	
Sample ID: SL-030-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/20	011 11:25	:00 🔏	analysis T	ype: RES		ı	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	1.2		0.83	MDL	1.0	PQL	mg/Kg	J	Q	
Sample ID: SL-031-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/20	011 11:50	:00 🔏	\nalysis T	ype: RES		ı	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	1.6		0.82	MDL	1.0	PQL	mg/Kg	J	Q	
Sample ID: SL-032-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 12:10	:00 🔏	\nalysis T	ype: RES	•		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	1.2	ere reservice	0.83	MDL	1.0	PQL	mg/Kg	J	Q	
Method Category: METALS  Method: 6010B			Ma	itrix:	S0)					
Sample ID: DUP01-SA5DS-QC-092611	Collec	ted: 9/26/2	011 3:10:0	00 A	Analysis T	ype: REA		1	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	

Sample ID: DUP01-SA5DS-QC-092611	Collected: 9/26/2011 3:10:00				Analysis T	vpe: REA	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
TIN	2.90	J	0.316	MDL	9.88	PQL	mg/Kg	U	В	

Sample ID: SL-001-SA3-SS-0.0-0.5	Collect	Collected: 9/26/2011 7:50:00 Analysis Type: REA								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SODIUM	87.8	J	5.83	MDL	98.0	PQL	mg/Kg	J	Z	
TIN	3.17	J	0.314	MDL	9.80	PQL	mg/Kg	U	В	
Zirconium	2.95	J	0.451	MDL	4.90	PQL	mg/Kg	U	В	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/6/2012 10:35:38 AM

Page 2 of 30

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253 Laboratory: LL

EDD Filename: PrepDE253_v2 eQAPP Name: CDM_SSFL_110509

Analyte	Lab Result	Lab Qual	DL		RL	RL Type	Units	Data Review Qual	Reason Code
TIN	3.00	J	0.322	MDL	10.1	PQL	mg/Kg	U	В

ample ID:SL-002-SA3-SS-0.0-0.5	Collec	Collected: 9/26/2011 8:15:00 Analysis Type: REA									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
SODIUM	74.5	J	5.78	MDL	97.1	PQL	mg/Kg	J	Z		
TIN	2.78	J	0.311	MDL	9.71	PQL	mg/Kg	U	В		
Zirconium	2.40	J	0.447	MDL	4.85	PQL	mg/Kg	U	В		

Sample ID: SL-002-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 2:35	:00 A	Inalysis T	ype: REA			Dilution: 1	
	Lab	Lab		DL		RL		Data Review	Reason	
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code	
TIN	3.06	J	0.320	MDL	10.0	PQL	mg/Kg	υ	В	

Sample ID: SL-026-SA5DS-SS-0.0-0.5	Collec	Collected: 9/26/2011 10:35:00 Analysis Type: REA Dilution									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
TIN	2.20	J	0.315	MDL	9.85	PQL	mg/Kg	υ	В		
Zirconium	2.89	J	0.453	MDL	4.92	PQL	mg/Kg	υ	В		

Sample ID:SL-027-SA5DS-SS-0.0-0.5	Collec	Collected: 9/26/2011 9:25:00 A					Analysis Type: REA				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
TIN	2.63	J	0.314	MDL	9.83	PQL	mg/Kg	υ	В		

Sample ID:SL-028-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 10:50	):00 <i>A</i>	nalysis T	ype: REA			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TIN	3.05	J	0.312	MDL	9.76	PQL	mg/Kg	U	В

Sample ID:SL-028-SA5DS-SS-0.0-0.5	Collec	nalysis T	ype: REA	.3	Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Zirconium	2.42	J	0.449	MDL	4.88	PQL	mg/Kg	j	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

Method Category: METALS						e e e			
Method: 6010B			Ma	trix:	SO	-	i Suniu E		
Sample ID: SL-028-SA7-SB-8.0-9.0	Collec	ted: 9/23/2	011 2:14:0	0 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TIN	2.53	J	0.339	MDL	10.6	PQL	mg/Kg	U	В
Zirconium	0.771	J	0.488	MDL	5.30	PQL	mg/Kg	U	В
Sample ID: SL-029-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:10:	:00 A	nalysis Ty	/pe: REA		,	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TIN	3.12	J	0.328	MDL	10.2	PQL	mg/Kg	U	В
Sample ID: SL-029-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:10:	:00 A	nalysis T	/pe: REA	4		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Zirconium	4.39	J	0.471	MDL	5.12	PQL	mg/Kg	J	Z
Sample ID: SL-030-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:25	:00 A	nalysis T	pe: REA			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TIN	3.08	J	0.324	MDL	10.1	PQL	mg/Kg	U	В
Sample ID: SL-030-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:25	:00 A	nalvsis T	ype: REA	4		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Zirconium	3.54	J	0.466	MDL	5.06	PQL	mg/Kg	J	Z
Sample ID: SL-031-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:50	:00 A	nalysis T	ype: REA	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Dilution: 1
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TIN	3.21	J	0.331	MDL	10.4	PQL	mg/Kg	U	В
Sample ID: SL-031-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:50	:00 A	nalysis T	ype: REA	.4		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Zirconium	5.13	J	0.476	MDL	5.18	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

Method: 6010B		Mag.z	Ma	trix:	so				a de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della constantina della cons
Sample ID: SL-032-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 12:10	:00 A	nalysis T	ype: REA		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
rin	3.07	J	0.327	MDL	10.2	PQL	mg/Kg	υ	В
Sample ID: SL-032-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 12:10	:00 A	nalysis T	ype: REA	4	ı	Dilution: 1
1,59		T						Data	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Zirconium	2.88	J	0.470	MDL	5.11	PQL	mg/Kg	J	Z

Method Category:	TALS TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PR	
Method:	20 Matrix: SO	

Sample ID: DUP01-SA5DS-QC-092611  Analyte	Collec	ted: 9/26/2	011 3:10:0	00 A	nalysis Ty	pe: REA	4	Dilution: 2		
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.430		0.0745	MDL	0.201	PQL	mg/Kg	J	Q	
ARSENIC	8.99		0.0806	MDL	0.403	PQL	mg/Kg	J	Q	
CADMIUM	0.351		0.0443	MDL	0.101	PQL	mg/Kg	J	Q	
CHROMIUM	63.1		0.121	MDL	0.403	PQL	mg/Kg	J	А	
COPPER	8.84		0.0806	MDL	0.403	PQL	mg/Kg	J	Q	
LEAD	48.0		0.0103	MDL	0.201	PQL	mg/Kg	J	А	
NICKEL	19.4		0.101	MDL	0.403	PQL	mg/Kg	J	Q, A	
SILVER	0.0541	J	0.0143	MDL	0.101	PQL	mg/Kg	J	Z, Q	
THALLIUM	0.197		0.0302	MDL	0.101	PQL	mg/Kg	J	Q	
VANADIUM	118		0.0222	MDL	0.101	PQL	mg/Kg	J	А	
ZINC	82.3		0.564	MDL	3.02	PQL	mg/Kg	J	Α	

Sample ID: DUP01-SA5DS-QC-092611	Collec	ted: 9/26/2	011 3:10:0	0	Analysis Ty	/pe: REA	A7 Dilution:			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	0.275	J	0.0584	MDL	0.403	PQL	mg/Kg	J	Z, Q	

Sample ID: DUP01-SA5DS-QC-092611	Collec	ted: 9/26/2	011 3:10:0	00 A	nalysis Ty	/pe: REA	8	Dilution: 2			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
MOLYBDENUM	0.906		0.0504	MDL	0.101	PQL	mg/Kg	J	Q		

^{*} denotes a non-reportable result

Page 5 of 30

1/6/2012 10:35:38 AM

Lab Reporting Batch ID: DE253

Laboratory: LL eQAPP Name: CDM SSFL 110509 EDD Filename: DE253 v2.

EDD Filename: DE253_v2.						eQAP	P Name	: CDM_S	SFL_110509
Wethod Category: METALS		144							la de la companya de la companya de la companya de la companya de la companya de la companya de la companya de
Wethod: 6020	and the second	S-KSSTT-MA	Ma	trix:	SO.	a a second	entre di Anne.		
Sample ID: DUP01-SA5DS-QC-092611	Collec	ted: 9/26/2	011 3:10:0	00 A	nalysis Ty	pe: REA	9	ı	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	98.1	1250-50-0180-50	0.107	MDL	0.403	PQL	mg/Kg	J	A
Sample ID: SL-001-SA3-SS-0.0-0.5	Collec	ted: 9/26/2	⊥ 011 7:50:0	10 A	nalysis Ty	ne: REA	4		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
NTIMONY	0.122	J	0.0725	MDL	0.196	PQL	mg/Kg	J	Z, Q
ARSENIC	3.15		0.0784	MDL	0.392	PQL	mg/Kg	J	Q
CADMIUM	0.170		0.0431	MDL	0.0980	PQL	mg/Kg	J	Q
CHROMIUM	12.0		0.118	MDL	0.392	PQL	mg/Kg	J	А
COPPER	6.59		0.0784	MDL	0.392	PQL	mg/Kg	J	Q
EAD	15.0		0.0100	MDL	0.196	PQL	mg/Kg	J	А
NICKEL	8.35		0.0980	MDL	0.392	PQL	mg/Kg	J	Q, A
BILVER	0.0759	J	0.0139	MDL	0.0980	PQL	mg/Kg	J	Z, Q
THALLIUM	0.251		0.0294	MDL	0.0980	PQL	mg/Kg	J	Q
/ANADIUM	24.5		0.0216	MDL	0.0980	PQL	mg/Kg	J	Α
ZINC	86.9		0.549	MDL	2.94	PQL	mg/Kg	J	Α
Sample ID: SL-001-SA3-SS-0.0-0.5	Collec	ted: 9/26/2	011 7:50:0	00 A	nalysis Ty	/pe: REA	7	1	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.145	J	0.0569	MDL	0.392	PQL	mg/Kg	J	Z, Q
Sample ID: SL-001-SA3-SS-0.0-0.5	Collec	ted: 9/26/2	011 7:50:0	00 A	nalysis Ty	/pe: REA	8	1	Dilution: 2
•	Lab	Lab	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Analyte	Result	Qual	<u> </u>			TO A COLORA A	/ N.C. (100 NO.	37 Mars - 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2	A. C. 973000 0 14 (1. 10)
MOLYBDENUM	0.473		0.0490	MDL	0.0980	PQL	mg/Kg	J	Q
Sample ID: SL-001-SA3-SS-0.0-0.5	Collec	ted: 9/26/2	011 7:50:0	00 A	nalysis Ty	/pe: REA	.9		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	84.7		0.104	MDL	0.392	PQL	mg/Kg	J	А

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

EDD Filename: DE253_v2.						eQAP	r name	E. CDIVI_S	SFL_11050
Method Category: METALS  Method: 6020			Ma	trix:	so		pulsikas		
Sample ID: SL-001-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 3:05:0	0 A	nalysis Ty	pe: REA	4	I.	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.436		0.0730	MDL	0.197	PQL	mg/Kg	J	Q
ARSENIC	7.36		0.0790	MDL	0.395	PQL.	mg/Kg	J	Q
CADMIUM	0.294		0.0434	MDL	0.0987	PQL	mg/Kg	J	Q
CHROMIUM	54.1		0.118	MDL	0.395	PQL	mg/Kg	J	Α
COPPER	7.37		0.0790	MDL	0.395	PQL	mg/Kg	J	Q
LEAD	40.1		0.0101	MDL	0.197	PQL	mg/Kg	J	А
NICKEL	14.0		0.0987	MDL	0.395	PQL	mg/Kg	J	Q, A
SILVER	0.0372	J	0.0140	MDL	0.0987	PQL	mg/Kg	J	Z, Q
THALLIUM	0.172		0.0296	MDL	0.0987	PQL	mg/Kg	J	Q
VANADIUM	98.1		0.0217	MDL	0.0987	PQL	mg/Kg	J	Α
ZINC	72.7		0.553	MDL	2.96	PQL	mg/Kg	J	Α
Sample ID: SL-001-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 3:05:0	0 A	nalysis Ty	pe: REA	7	1	Dilution: 2
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Analyte	086 1.70 0 15 TOUR MET MAN WAY	1		1 C. C. C. C. C. C.		PQL		J J	Z, Q
SELENIUM	0.257	J	0.0572	MDL	0.395	PQL	mg/Kg	J	Z, Q
Sample ID: SL-001-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 3:05:0	0 A	nalysis Ty	/pe: REA	.8	7	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.757		0.0494	MDL	0.0987	PQL	mg/Kg	J	Q
Sample ID: SL-001-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 3:05:0	ю д	nalysis Ty	vpe: REA	.9		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
gating to the first of the decrease of a three translations and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th	69.4	Quar	0.105	MDL	0.395	PQL	mg/Kg	J	A
BARIUM	09.4		0.103	L	.l			J	
Sample ID: SL-002-SA3-SS-0.0-0.5	Collect	ted: 9/26/2	011 8:15:0	00 A	nalysis T	ype: REA	1		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.141	J	0.0733	MDL	0.198	PQL	mg/Kg	J	Z, Q
ARSENIC	2.97		0.0792	MDL	0.396	PQL	mg/Kg	J	Q
CADMIUM	0.217		0.0436	MDL	0.0990	PQL	mg/Kg	j	Q
			0.440	MDI	0.396	PQL	mg/Kg	J	А
CHROMIUM	14.7		0.119	MDL	0.550	1 00	mg/mg	1	

^{*} denotes a non-reportable result

Page 7 of 30

Lab Reporting Batch ID: DE253

EDD Filename: DE253_v2. eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method:	6020	Matrix: SO	Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio	Harris Co. 24.2.
Method Category:	WETALS			- 1944 - 1944

Sample 15: 02-002-0A0-00-0.0	Conec	tcu, sizoiz	011 0.10.0	~ ~	nuny sis i y	pc	-	Bildaon. Z				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
LEAD	15.5	T	0.0101	MDL	0.198	PQL	mg/Kg	J	А			
NICKEL	9.40		0.0990	MDL	0.396	PQL	mg/Kg	J	Q, A			
SILVER	0.0809	J	0.0141	MDL	0.0990	PQL	mg/Kg	J	Z, Q			
THALLIUM	0.237		0.0297	MDL	0.0990	PQL	mg/Kg	J	Q			
VANADIUM	31.0		0.0218	MDL	0.0990	PQL	mg/Kg	J	Α			
ZINC	106		0.554	MDL	2.97	PQL	mg/Kg	J	А			

Sample ID: SL-002-SA3-SS-0.0-0.5	Collec	ted: 9/26/2	011 8:15:0	00 A	Analysis T	Dilution: 2			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.132	J	0.0574	MDL	0.396	PQL	mg/Kg	J	Z, Q

Sample ID: SL-002-SA3-SS-0.0-0.5	Collect	ted: 9/26/2	011 8:15:0	0 A	naiysis Ty	pe: REA	8	Dilution: 2			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE	<del>'</del>	A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR				SALAMARIA S MARKET	A 1040, 1 11 11	- PER (), 593	green against green and an a		
MOLYBDENUM	0.429		0.0495	MDL	0.0990	PQL	mg/Kg	J	Q		

Sample ID: SL-002-SA3-SS-0.0-0.5	Collect	ted: 9/26/2	011 8:15:0	00 A	nalysis Ty	/pe: REA	9		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	All the Control of the Control	3 2 432 - 2			na na na najawa na mining na na na na na na na na na na na na na	33, 250,000	of a fire garage and	, T. G. C. J. H. 177 W.	Confidence of the Confidence of the
BARIUM	86.7		0.105	MDL	0.396	PQL	mg/Kg	J	Α

Sample ID: SL-002-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 2:35:0	0 A	nalysis Ty	/pe: REA	.4	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.309		0.0748	MDL	0.202	PQL	mg/Kg	J	Q	
ARSENIC	6.53		0.0809	MDL	0.405	PQL	mg/Kg	J	Q	
CADMIUM	0.345		0.0445	MDL	0.101	PQL	mg/Kg	J	Q	
СНКОМІИМ	48.8		0.121	MDL	0.405	PQL	mg/Kg	J	А	
COPPER	11.0		0.0809	MDL	0.405	PQL	mg/Kg	J	Q	
LEAD	24.2		0.0103	MDL	0.202	PQL	mg/Kg	J	А	
NICKEL	15.8		0.101	MDL	0.405	PQL	mg/Kg	J	Q, A	
SILVER	0.0472	J	0.0144	MDL	0.101	PQL	mg/Kg	J	Z, Q	
THALLIUM	0.219		0.0303	MDL	0.101	PQL	mg/Kg	J	Q	
VANADIUM	84.4		0.0222	MDL	0.101	PQL	mg/Kg	J	А	

^{*} denotes a non-reportable result

1/6/2012 10:35:38 AM ADR version 1.4.0.111 Page 8 of 30

Lab Reporting Batch ID: DE253

EDD Filename: DE253_v2.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

LDD I licitatic. DL200_42.						<b></b>			01 =_110000
Method Category: METALS  Method: 6020		W. Henry	Ma	trixe	SO				
Sample ID: SL-002-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 2:35:0	00 A	nalysis Ty	/pe: REA	.4		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ZINC	75.9		0.566	MDL	3.03	PQL	mg/Kg	J	Α
Sample ID: SL-002-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 2:35:0	00 A	nalysis T	pe: REA	.7		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.294	J	0.0587	MDL	0.405	PQL	mg/Kg	J	Z, Q
Sample ID: SL-002-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 2:35:0	00 A	nalysis T	pe: REA	.8		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.747		0.0506	MDL	0.101	PQL	mg/Kg	J	Q
Sample ID: SL-002-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 2:35:0	00 A	nalysis T	ype: REA	.9		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	105		0.107	MDL	0.405	PQL	mg/Kg	J	А
Sample ID: SL-026-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 10:35	:00 A	nalysis T	ype: REA	4		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.102	J	0.0736	MDL	0.199	PQL	mg/Kg	J	Z, Q
ARSENIC	3.27		0.0795	MDL	0.398	PQL	mg/Kg	J	Q
CADMIUM	0.152		0.0437	MDL	0.0994	PQL	mg/Kg	J	Q
CHROMIUM	24.8		0.119	MDL	0.398	PQL	mg/Kg	J	А
COPPER	11.9		0.0795	MDL	0.398	PQL	mg/Kg	J	Q
LEAD	12.1		0.0101	MDL	0.199	PQL	mg/Kg	J	А
NICKEL	20.0		0.0994	MDL	0.398	PQL	mg/Kg	J	Q, A
SILVER	0.0205	J	0.0141	MDL	0.0994	PQL	mg/Kg	J	Z, Q
THALLIUM	0.186		0.0298	MDL	0.0994	PQL	mg/Kg	J	Q
VANADIUM	63.9		0.0219	MDL	0.0994	PQL	mg/Kg	J	А
ZINC	58.8		0.557	MDL	2.98	PQL	mg/Kg	J	А

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

eOAPP Name: CDM SSFL 110509

EDD Filename: DF253 v2

Laboratory: LL

EDD Filename: DE253_v2.		eQAPP Name: CDM_SSFL_110								
Method Category: METALS  Method: 6020	and the second	Pagan	Ma	trix:	so	files established	Net Sacres			
Sample ID: SL-026-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 10:35	:00 A	nalysis Ty	/pe: REA	7	ı	Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	0.154	J	0.0577	MDL	0.398	PQL	mg/Kg	J	Z, Q	
Sample ID: SL-026-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 10:35	:00 A	nalysis Ty	/pe: REA	8		Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MOLYBDENUM	0.404		0.0497	MDL	0.0994	PQL	mg/Kg	J	Q	
Sample ID: SL-026-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 10:35	:00 A	nalysis Ty	/pe: REA	9	ı	Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BARIUM	101	. orconstant multi-	0.105	MDL	0.398	PQL	mg/Kg	j	A	
Sample ID: SL-027-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 9:25:0	00 A	nalvsis Tv	/pe: REA	4	,,	Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.194	J	0.0734	MDL	0.198	PQL	mg/Kg	J	Z, Q	
ARSENIC	5.79		0.0794	MDL	0.397	PQL	mg/Kg	j	Q	
CADMIUM	0.354		0.0437	MDL	0.0992	PQL	mg/Kg	J	Q	
CHROMIUM	44.5		0.119	MDL	0.397	PQL	mg/Kg	J	Α	
COPPER	14.1		0.0794	MDL	0.397	PQL	mg/Kg	J	Q	
LEAD	10.1		0.0101	MDL	0.198	PQL	mg/Kg	J	Α	
NICKEL	20.6		0.0992	MDL	0.397	PQL	mg/Kg	J	Q, A	
SILVER	0.161		0.0141	MDL	0.0992	PQL	mg/Kg	J	Q	
THALLIUM	0.367		0.0298	MDL	0.0992	PQL	mg/Kg	J	Q	
VANADIUM	95.0		0.0218	MDL	0.0992	PQL	mg/Kg	J	A	

Sample ID: SL-027-SA5DS-SS-0.0-0.5	Collected: 9/26/2011 9:25:00 Analysis Type						.7	1	Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
	0.000		0.0570	I	0.007	l noi		50, 50,000 (200,000 (200,000 (200,000))	7.0	
SELENIUM	0.282	J	0.0576	MDL	0.397	PQL	mg/Kg	J	Z, Q	

104

0.556

MDL

2.98

PQL

mg/Kg

ZINC

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.						eQAP	P Name	: CDM_S	SFL_110509
Method Category: METALS Method: 6020			Ma	trix:	s0	100			
Sample ID: SL-027-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 9:25:0	0 A	nalysis Ty	pe: REA	8		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.413		0.0496	MDL	0.0992	PQL	mg/Kg	J	Q
Sample ID: SL-027-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 9:25:0	0 A	nalysis Ty	pe: REA	9		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	128		0.105	MDL	0.397	PQL	mg/Kg	J	Α
Sample ID: SL-028-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 10:50:	.00 A	nalysis Ty	/pe: REA	4		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.145	J	0.0722	MDL	0.195	PQL	mg/Kg	J	Z, Q
ARSENIC	2.80		0.0781	MDL	0.391	PQL	mg/Kg	J	Q
CADMIUM	0.362		0.0430	MDL	0.0976	PQL	mg/Kg	J	Q
CHROMIUM	22.5		0.117	MDL	0.391	PQL	mg/Kg	J	А
COPPER	16.5		0.0781	MDL	0.391	PQL	mg/Kg	J	Q
LEAD	28.1		0.010	MDL	0.195	PQL	mg/Kg	J	Α
NICKEL	17.3		0.0976	MDL	0.391	PQL	mg/Kg	J	Q, A
SILVER	0.351		0.0139	MDL	0.0976	PQL	mg/Kg	J	Q
THALLIUM	0.244		0.0293	MDL	0.0976	PQL	mg/Kg	J	Q
VANADIUM	62.6		0.0215	MDL	0.0976	PQL	mg/Kg	J	A
ZINC	109		0.547	MDL	2.93	PQL	mg/Kg	J	A
Sample ID: SL-028-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 10:50	:00 A	nalysis Ty	/pe: REA	7		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.144	J	0.0566	MDL	0.391	PQL	mg/Kg	J	Z, Q
Sample ID: SL-028-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 10:50	:00 A	nalysis T	, pe: REA	8		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code

0.0976

0.0488

MDL

PQL

mg/Kg

MOLYBDENUM

0.384

Q

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

WETALS

Method Calegory

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Sample ID: SL-028-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 10:50	:00 A	nalysis Ty	/pe: REA	9	D	ilution: 2
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	140		0.103	MDL	0.391	PQL	mg/Kg	J	Α

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.0969	J	0.0597	MDL	0.412	PQL	mg/Kg	J	Z

Dilution: 2 Collected: 9/23/2011 2:14:00 Analysis Type: RES Sample ID: SL-028-SA7-SB-8.0-9.0 Data DL RLReview Reason Lab Lab DLRLUnits Qual Code Analyte Result Qual Type Туре ANTIMONY 0.0762 U 0.0762 MDL 0.206 PQL mg/Kg UJ Q ARSENIC 4.27 0.0824 MDL 0.412 PQL mg/Kg j Q CADMIUM 0.0453 MDL 0.103 PQL J 0.0722 mg/Kg Ζ J MDL 0.412 PQL Q CHROMIUM 20.1 0.124 mg/Kg J Q COPPER 8.13 0.0824 MDL 0.412 PQL mg/Kg J 0.0105 MDL 0.206 PQL Q LEAD 4.25 mg/Kg 0.103 MDL 0.412 PQL mg/Kg J Q NICKEL 11.7 Z **PQL** J SILVER 0.0176 J 0.0146 MDL 0.103 mg/Kg VANADIUM 38.8 0.0227 MDL 0.103 PQL mg/Kg J Q

Sample ID: SL-029-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:10:	:00 A	nalysis Ty	/pe: REA	4	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL_	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.343		0.0744	MDL	0.201	PQL	mg/Kg	J	Q	
ARSENIC	8.36		0.0804	MDL	0.402	PQL	mg/Kg	J	Q	
CADMIUM	0.252		0.0442	MDL	0.101	PQL	mg/Kg	J	Q	
СНКОМІИМ	58.8		0.121	MDL	0.402	PQL	mg/Kg	J	А	
COPPER	22.4		0.0804	MDL	0.402	PQL	mg/Kg	J	Q	
LEAD	15.7		0.0103	MDL	0.201	PQL	mg/Kg	J	А	
NICKEL	29.2		0.101	MDL	0.402	PQL	mg/Kg	j	Q, A	
SILVER	0.0472	J	0.0143	MDL	0.101	PQL	mg/Kg	J	Z, Q	
THALLIUM	0.539		0.0302	MDL	0.101	PQL	mg/Kg	J	Q	
VANADIUM	118		0.0221	MDL	0.101	PQL	mg/Kg	J	Α	
ZINC	116		0.563	MDL	3.02	PQL	mg/Kg	J	А	

^{*} denotes a non-reportable result

Page 12 of 30

1/6/2012 10:35:39 AM

Lab Reporting Batch ID: DE253

Laboratory: LL eQAPP Name: CDM SSFL 110509

EDD Filename: DE253_v2. eQAPP Name: CDM_

EDD Filename: DE253_v2.						eQAP	P Name	: CDM_S	SFL_11050
Method Category: METALS Method: 6020		and designation of the second			SO.				
Sample ID: SL-029-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 11:10:	:00 A	nalysis Ty	/pe: REA	7		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.412		0.0583	MDL	0.402	PQL	mg/Kg	j	Q
Sample ID: SL-029-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 11:10	:00 A	nalvsis Tv	pe: REA	8		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.514		0.0503	MDL	0.101	PQL	mg/Kg	J	Q
Sample ID: SL-029-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 11:10:	:00 A	nalvsis Ti	pe: REA	9		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	143	l	0.107	MDL	0.402	PQL	mg/Kg	J	Α
Sample ID: SL-030-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 11:25:	:00 A	' nalvsis Tv	vpe: REA	4		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	9.83		0.0810	MDL	0.405	PQL	mg/Kg	J	Q
CADMIUM	0.283		0.0445	MDL	0.101	PQL	mg/Kg	J	Q
CHROMIUM	68.5		0.121	MDL	0.405	PQL	mg/Kg	J	Α
COPPER	25.6		0.0810	MDL	0.405	PQL	mg/Kg	J	Q
LEAD	17.8		0.0103	MDL	0.202	PQL	mg/Kg	J	А
NICKEL	34.2	:	0.101	MDL	0.405	PQL	mg/Kg	J	Q, A
SILVER	0.0488	J	0.0144	MDL	0.101	PQL	mg/Kg	J	Z, Q
THALLIUM	0.616		0.0304	MDL	0.101	PQL	mg/Kg	J	Q
VANADIUM	136		0.0223	MDL	0.101	PQL	mg/Kg	J	Α
ZINC	138		0.567	MDL	3.04	PQL	mg/Kg	J	А
Sample ID: SL-030-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 11:25	:00 A	nalysis Ty	ype: REA	.6		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.182	J	0.0749	MDL	0.202	PQL	mg/Kg	J	Z, Q
Sample ID: SL-030-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 11:25	:00 <i>A</i>	nalysis T	ype: REA	.7		Dilution: 2
,	Lab	Lab		DL		RL	Units	Data Review Qual	Reason Code
Analyte	Result	Qual	DL	Туре	RL	Type	Ullits	Quui	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 10:35:39 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.						eQAP	P Name	: CDM_S	SFL_110509
Method Category: METALS  Method: 6020			Tarana .	100000000000	SO	risi (14.)			
Sample ID: SL-030-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:25:	00 A	nalysis Ty	/pe: REA	8		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.651	e como especia	0.0506	MDL	0.101	PQL	mg/Kg	J	Q
Sample ID: SL-030-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:25:	00 A	nalysis Ty	/pe: REA	9		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	180		0.107	MDL	0.405	PQL	mg/Kg	J	Α
Sample ID: SL-031-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:50:	00 A	nalysis Ty	/pe: REA	4		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.341		0.0751	MDL	0.203	PQL	mg/Kg	J	Q
ARSENIC	8.83		0.0812	MDL	0.406	PQL	mg/Kg	J	Q
CADMIUM	0.268		0.0447	MDL	0.101	PQL	mg/Kg	J	Q
CHROMIUM	55.5		0.122	MDL	0.406	PQL	mg/Kg	J	Α
COPPER	24.8		0.0812	MDL	0.406	PQL	mg/Kg	J	Q
LEAD	32.3		0.0104	MDL	0.203	PQL	mg/Kg	J	Α
NICKEL	28.6		0.101	MDL	0.406	PQL	mg/Kg	J	Q, A
SILVER	0.0554	J	0.0144	MDL	0.101	PQL	mg/Kg	J	Z, Q
THALLIUM	0.526		0.0304	MDL	0.101	PQL	mg/Kg	J	Q
VANADIUM	111		0.0223	MDL	0.101	PQL	mg/Kg	J	Α
ZINC	138		0.568	MDL	3.04	PQL	mg/Kg	J	A
Sample ID: SL-031-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:50	:00 A	nalysis T	ype: REA	.7		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.510		0.0589	MDL	0.406	PQL	mg/Kg	J	Q
Sample ID: SL-031-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:50	:00 A	nalysis T	ype: REA	.8		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.664		0.0507	MDL	0.101	PQL	mg/Kg	J	Q

Page 14 of 30

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.						eQAP	P Name	: CDM_S	SFL_110509	
Method Category: METALS Method: 6020	urraen.		Ma	trix:	so.		286.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00 1986.00			
Sample ID: SL-031-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 11:50:	00 A	nalysis Ty	pe: REA	9	Į.	Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BARIUM	151		0.108	MDL	0.406	PQL	mg/Kg	J	Α	
Sample ID: SL-032-SA5DS-SS-0.0-0.5	Collected: 9/26/2011 12:10:00 Analysis Type: REA4								Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.317		0.0749	MDL	0.202	PQL	mg/Kg	J	Q	
ARSENIC	8.40		0.0810	MDL	0.405	PQL	mg/Kg	J	Q	
CADMIUM	0.282		0.0445	MDL	0.101	PQL	mg/Kg	J	Q	
CHROMIUM	47.7		0.121	MDL	0.405	PQL	mg/Kg	J	Α	
COPPER	20.1		0.0810	MDL	0.405	PQL	mg/Kg	J	Q	
LEAD	15.3		0.0103	MDL	0.202	PQL	mg/Kg	J	Α	
NICKEL	26.2		0.101	MDL	0.405	PQL	mg/Kg	J	Q, A	
SILVER	0.0435	J	0.0144	MDL	0.101	PQL	mg/Kg	J	Z, Q	
THALLIUM	0.474		0.0304	MDL	0.101	PQL	mg/Kg	J	Q	
VANADIUM	97.5		0.0223	MDL	0.101	PQL	mg/Kg	J	Α	
ZINC	101		0.567	MDL	3.04	PQL	mg/Kg	J	Α	
Sample ID: SL-032-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 12:10:	:00 A	nalysis Ty	/pe: REA	.7	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	0.515		0.0587	MDL	0.405	PQL	mg/Kg	J	Q	
Sample ID: SL-032-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 12:10	:00 A	nalysis T	vpe: REA	.8	1	Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MOLYBDENUM	0.794		0.0506	MDL	0.101	PQL	mg/Kg	J	Q	
Sample ID: SL-032-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 12:10	:00 A	nalysis T	ype: REA	.9		Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BARIUM	146		0.107	MDL	0.405	PQL	mg/Kg	J	Α	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

EDD Filename: DE253_v2.	eQAPP Name: CDM_SSFL_110509									
Method Category: METALS  Method: 7199	Sie Bleesen Ukolesee		Ma	trix:	S0			and the second		
Sample ID: SL-026-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/20	011 10:35	:00 A	nalysis Ty	/pe: RES		ı	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
HEXAVALENT CHROMIUM	0.34	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z	
Sample ID: SL-028-SA5DS-SS-0.0-0.5	Collected: 9/26/2011 10:50:00 Analysis Type: RES Dilution									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
HEXAVALENT CHROMIUM	0.38	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z	
Sample ID: SL-028-SA7-SB-8.0-9.0	Collect	ted: 9/23/20	011 2:14:0	00 A	nalysis Ty	/pe: RES		ı	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
HEXAVALENT CHROMIUM	0.32	J	0.22	MDL	1.1	PQL	mg/Kg	J	Z	
Sample ID: SL-031-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/20	011 11:50	:00 A	nalysis Ty	ype: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
HEXAVALENT CHROMIUM	0.38	J	0.21	MDL	1.0	PQL	mg/Kg	J	Z	
Sample ID: SL-032-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 12:10	:00 A	nalysis Ty	ype: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
HEXAVALENT CHROMIUM	0.37	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z	
Method Category: METALS  Method: 7471A  Sample ID: DUP01-SA5DS-QC-092611	College	ted: 9/26/2			S0	ype: REA	Tribulija		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MERCURY	0.0115	J	0.0066	MDL	0.0943	PQL	mg/Kg	J	Z	
Sample ID: SL-001-SA5DS-SS-0.0-0.5		ted: 9/26/2	011 3:05:0	00 A	nalysis T	ype: REA		,1.,	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
		1	T	1	1	T	1	1 .		

0.0070

MDL

MERCURY

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 10:35:39 AM ADR version 1.4.0.111

0.0133

Page 16 of 30

Ζ

PQL

mg/Kg

0.0997

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253 v2.

eQAPP Name: CDM SSFL 110509

EDD Filename: DE253_v2.						eQAP	P Name	: CDIVI_S	SFL_110509		
Method Category: METALS  Method: 7471A			Ma	trix:	so						
Sample ID: SL-002-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 2:35:0	0 A	nalysis Ty	/pe: REA		i	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
MERCURY	0.0222	J	0.0069	MDL	0.0979	PQL	mg/Kg	J	Z		
Sample ID: SL-028-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 10:50:	:00 A	nalysis Ty	/pe: REA		i	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
MERCURY	0.0095	J	0.0070	MDL	0.0996	PQL	mg/Kg	J	Z		
Sample ID: SL-029-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:10:	:00 A	nalysis Ty	/pe: REA	•		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
MERCURY	0.0076	J	0.0068	MDL	0.0964	PQL	mg/Kg	J	Z		
Sample ID: SL-030-SA5DS-SS-0.0-0.5	Collected: 9/26/2011 11:25:00 Analysis Type: REA Dilution: 1										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
MERCURY	0.0145	J	0.0070	MDL	0.100	PQL	mg/Kg	J	Z		
Sample ID: SL-031-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 11:50:	:00 A	nalvsis T	pe: REA			Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
MERCURY	0.0130	J	0.0070	MDL	0.100	PQL	mg/Kg	J	Z		
Method Category: SVOA  Method: 8081A  Sample ID: DUP01-SA5DS-QC-092611	Collect	ted: 9/26/2			SO Inalysis Ty	ype: RES	-BASE/NE	EUTRAL	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
Chlordane	5.3		0.81	MDL	3.4	PQL	ug/Kg	J	FD		
DELTA-BHC	0.48		0.036	MDL	0.17	PQL	ug/Kg	J	FD		
Sample ID: SL-001-SA3-SS-0.0-0.5	Collec	ted: 9/26/2	011 7:50:0	00 A	nalysis T	ype: RES	-BASE/NE	EUTRAL	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
4,4'-DDE	0.70		0.066	MDL	0.34	PQL	ug/Kg	J	S		
		•			v						

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 10:35:39 AM

ADR version 1.4.0.111

Page 17 of 30

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2. eQAPP Name: CDM_SSFL_110509											
Method Category: SVOA											
Method: 8081A	YOURSESS.	<u> Zaraica</u>	Ma	trix: 🚌	SO.	and the second		Course at the			
Sample ID: SL-001-SA3-SS-0.0-0.5	Collec	ted: 9/26/2	011 7:50:0	00 A	nalysis Ty	ype: RES	-BASE/NE	UTRAL	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
4,4'-DDT	0.91		0.066	MDL	0.34	PQL	ug/Kg	J	\$		
Chlordane	2.4	J	0.80	MDL	3.4	PQL	ug/Kg	J	Z, S		
Sample ID: SL-001-SA5DS-SS-0.0-0.5	Collec	Collected: 9/26/2011 3:05:00 Analysis Type: RES-BASE/NEUTRAL									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
4,4'-DDD	0.066	υ	0.066	MDL	0.34	PQL	ug/Kg	R	Q		
Chlordane	2.0	J	0.81	MDL	3.4	PQL	ug/Kg	J	Z, FD		
DELTA-BHC	0.039	υ	0.039	MDL	0.17	PQL	ug/Kg	UJ	FÐ		
ENDRIN ALDEHYDE	0.43		0.066	MDL	0.34	PQL	ug/Kg	J	Q		
Sample ID: SL-002-SA3-SS-0.0-0.5	Collec	ted: 9/26/2	011 8:15:0	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
Chiordane	1.7	J	0.80	MDL	3.4	PQL	ug/Kg	J	Z		
Sample ID: SL-002-SA5DS-SS-0.0-0.5	Collec	L ted: 9/26/2	011 2:35:0	.n Δ	nalveie Ti	ype: RES	-BASE/NE	UTRAI	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BETA-BHC	0.14	J	0.061	MDL	0.17	PQL	ug/Kg	J	Z		
DELTA-BHC	0.052	J	0.037	MDL	0.17	PQL	ug/Kg	J	Z		
gamma-BHC (Lindane)	0.040	J	0.035	MDL	0.17	PQL	ug/Kg	J	Z		
Sample ID: SL-027-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 9:25:0	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 5		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
4,4'-DDE	1.1	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z		
4,4'-DDT	1.3	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z		
Sample ID: SL-028-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 10:50	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 5		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code		
Chlordane	10	J	4.0	MDL	17	PQL	ug/Kg	J	Z		

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DE253_v2.

Method Calegory 50.004 Method: 8081A

Sample ID: SL-029-SA5DS-SS-0.0-0.5	Collected: 9/26/2011 11:10:00				Analysis Type: RES-BASE/NEUTRAL Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Chlordane	3.3	J	0.83	MDL	3.5	PQL	ug/Kg	J	Z	

Analysis Type: RES-BASE/NEUTRAL Dilution: 1 Collected: 9/26/2011 11:25:00 Sample ID: SL-030-SA5DS-SS-0.0-0.5

<del></del>									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALPHA-BHC	0.090	J	0.035	MDL	0.17	PQL	ug/Kg	j	Z
Chlordane	3.4	J	0.82	MDL	3.5	PQL	ug/Kg	J	Z
ENDOSULFAN I	0.089	J	0.045	MDL	0.17	PQL	ug/Kg	J	Z

Analysis Type: RES-BASE/NEUTRAL Dilution: 1 Sample ID: SL-032-SA5DS-SS-0.0-0.5 Collected: 9/26/2011 12:10:00

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Chlordane	2.6	J	0.82	MDL	3.5	PQL	ug/Kg	J	Z
gamma-BHC (Lindane)	0.057	J	0.035	MDL	0.17	PQL	ug/Kg	J	Z
METHOXYCHLOR	0.81	J	0.35	MDL	1.7	PQL	ug/Kg	J	Z

Method Category: SVOA	
Method: 8082 Matrix: SO	Taran P

Sample ID: DUP01-SA5DS-QC-092611	Collec	ted: 9/26/2	00 A	nalysis T	ype: RES	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Aroclor 5460	7.4		1.0	MDL	3.3	PQL	ug/Kg	J	FD

Sample ID: SL-001-SA3-SS-0.0-0.5 Collected: 9/26/2011 7:50:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	0.53	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z
AROCLOR 1260	1.3	J	0.39	MDL	1.7	PQL	ug/Kg	J	Z
Aroclor 5460	3.0	J	1.0	MDL	3.3	PQL	ug/Kg	J	Z

Sample ID: SL-001-SA5DS-SS-0.0-0.5	Collec	Collected: 9/26/2011 3:05:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Aroclor 5460	2.4	J	1.0	MDL	3.3	PQL	ug/Kg	J	Z, FD

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/6/2012 10:35:39 AM

Page 19 of 30

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.						eQAP	P Name	: CDM_S	SFL_110509
Method Category: SVOA  Method: 8082			Ma	trix:	so				
Sample ID: SL-002-SA3-SS-0.0-0.5	Collec	ted: 9/26/20	011 8:15:0	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	1.3	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z
Sample ID: SL-002-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/20	011 2:35:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Aroclor 5460	3.3	J	1.0	MDL	3.4	PQL	ug/Kg	J	Z
Sample ID: SL-028-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/20	011 10:50	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	0.98	J	0.39	MDL	1.7	PQL	ug/Kg	J	Z
Sample ID: SL-030-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/20	011 11:25	:00 A	nalysis T	ype; RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	1.3	J	0.40	MDL	1.7	PQL	ug/Kg	J	Z
Method Category: SVOA  Method: 8151A  Sample ID: DUP01-SA5DS-QC-092611	Collect	ted: 9/26/20		ntrix:	******	ype: RES	-BASE/NE	EUTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DINOSEB	0.80	U	0.80	MDL	2.4	PQL	ug/Kg	R	L
Sample ID: SL-001-SA3-SS-0.0-0.5	Collec	ted: 9/26/20	011 7:50:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DICHLOROPROP	1.6	J	0.80	MDL	1.7	PQL	ug/Kg	J	Z
DINOSEB	0.80	υ	0.80	MDL	2.4	PQL	ug/Kg	R	L
Sample ID: SL-001-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/20	011 3:05:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code

^{*} denotes a non-reportable result

2,4,5-TP (Silvex)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

0.076

ADR version 1.4.0.111 1/6/2012 10:35:39 AM Page 20 of 30

0.076

MDL

U

PQL

0.17

ug/Kg

R

Q

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

EDD Filename: DE253_V2.						eQAP	P Name	E CDIVI_S	SFL_11050
Method Category: SVOA Method: 8151A			Ma	trix:	SO				
Sample ID: SL-001-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/20	011 3:05:0	00 A	nalysis Ty	/pe: RES		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4-DB	2.0	υ	2.0	MDL	2.0	PQL	ug/Kg	R	Q
DALAPON	4.4	U	4.4	MDL	9.1	PQL	ug/Kg	R	Q
DICAMBA	0.40	U	0.40	MDL	1.2	PQL	ug/Kg	R	Q
DICHLOROPROP	0.81	U	0.81	MDL	1.7	PQL	ug/Kg	R	Q
DINOSEB	0.81	U	0.81	MDL	2.4	PQL	ug/Kg	R	Q, L
MCPA	77	U	77	MDL	250	PQL	ug/Kg	R	Q
MCPP	76	U	76	MDL	250	PQL	ug/Kg	R	Q
Sample ID; SL-002-SA3-SS-0.0-0.5	Collect	ted: 9/26/2	111 8:15:0	)∩ Δι	nalvsis Ti	pe: RES	L		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4-D	2.5	J	1.2	MDL	3.6	PQL	ug/Kg	J	Z
DINOSEB	0.80	Ŭ	0.80	MDL	2.4	PQL	ug/Kg	R	L
Sample ID: SL-002-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	) 111 2·35·(	ο Δ	nalveie Ti	pe: RES	BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DINOSEB	0.81	U	0.81	MDL	2.4	PQL	ug/Kg	R	L
		ted: 9/26/2	044 40:25	.00 4	nalusia Ti	ype: RES	BASE/NE	HTRAI	Dilution: 1
Sample ID: SL-026-SA5DS-SS-0.0-0.5  Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DINOSEB	0.86	J	0.81	MDL	2.4	PQL	ug/Kg	J	Z, L
Sample ID: SL-027-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 9:25:0	00 A	nalvsis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DINOSEB	0.81	U	0.81	MDL	2.4	PQL	ug/Kg	R	L
Sample ID: SL-028-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 10:50	:00 A	nalysis T	ype: RES	-BASE/NE	EUTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DINOSEB	0.80	U	0.80	MDL	2.4	PQL	ug/Kg	R	L
						PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

Method Category: S	VCA		enter de la companya de la companya de la companya de la companya de la companya de la companya de la companya		e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l
Method: 8	151A	<u> Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carrierona de la Carr</u>	Matrix: SO	and the second second	A CONTRACTOR AND A CONTRACTOR

Sample ID: SL-029-SA5DS-SS-0.0-0.5	Collec	Collected: 9/26/2011 11:10:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,4-DB	1.7	J	0.64	MDL	1.8	PQL	ug/Kg	J	Z	
DINOSEB	0.83	U	0.83	MDL	2.5	PQL	ug/Kg	R	L	

Sample ID: SL-030-SA5DS-SS-0.0-0.5	Collected: 9/26/2011 11:25:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1								Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	1.77 (4.75), 1.75	1000000			ora ear a a sea c	21 27 1 38 33 3 26	Account to particular		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DINOSEB	0.82	U	0.82	MDL	2.5	PQL	ug/Kg	R	L

Sample ID: SL-031-SA5DS-SS-0.0-0.5	Collected: 9/26/2011 11:50:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1								Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DINOSEB	0.83	U	0.83	MDL	2.5	PQL	ug/Kg	R	L

Sample ID: SL-032-SA5DS-SS-0.0-0.5	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4,5-T	0.15	J	0.084	MDL	0.17	PQL	ug/Kg	J	Z
DINOSEB	0.82	υ	0.82	MDL	2.5	PQL	ug/Kg	R	L

Method Category: SVOA	rankongg <b>er ta</b> ksus adada at <mark>al</mark> aksus a	
Method: 8270C	Matrix: SO	

Sample ID: DUP01-SA5DS-QC-092611	Collec	Collected: 9/26/2011 3:10:00					Analysis Type: RES-ACID			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	500	PQL	ug/Kg	UJ	L	
BIS(2-ETHYLHEXYL)PHTHALATE	51	J	17	MDL	330	PQL	ug/Kg	J	Z	
PHENOL	18	J	17	MDL	170	PQL	ug/Kg	J	Z, FD	

Sample ID: SL-001-SA3-SS-0.0-0.5	Collec	Collected: 9/26/2011 7:50:00 A				ype: RES	-ACID	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
A CONTRACT TO SERVICE OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE C	1 20 1 2 2		-		. 457 58 39	Υ	T	Company Company	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	500	PQL	ug/Kg	UJ	L	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 10:35:39 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DE253

EDD Filename: DE253_v2. eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA				
Method:	8270C	A STATE OF THE REAL PROPERTY.	Matrix: SO	net etter ettemasjäljälle.	

Sample ID: SL-001-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 3:05:0	00 A	nalysis T	ype: RES	-ACID	L	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	500	PQL	ug/Kg	UJ	L	
BENZIDINE	1200	U	1200	MDL	3300	PQL	ug/Kg	R	Q	
FLUORANTHENE	36	J	17	MDL	170	PQL	ug/Kg	J	Z	
PHENANTHRENE	35	J	17	MDL	170	PQL	ug/Kg	J	Z	
PHENOL	17	U	17	MDL	170	PQL	ug/Kg	UJ	FD	
PYRENE	24	J	17	MDL	170	PQL	ug/Kg	J	Z	

Sample ID: SL-002-SA3-SS-0.0-0.5	Collec	Collected: 9/26/2011 8:15:00					-ACID	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	500	PQL	ug/Kg	UJ	L	
BIS(2-ETHYLHEXYL)PHTHALATE	83	J	17	MDL	330	PQL	ug/Kg	J	Z	

Sample ID: SL-002-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 2:35:0	00 A	nalysis T	ype: RES	-ACID		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	510	PQL	ug/Kg	UJ	L

Sample ID: SL-026-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 10:35	:00 A	nalysis Ty	/pe: RES	-ACID	ı	Dilution: 5
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	8300	U	8300	MDL	25000	PQL	ug/Kg	UJ	L
BENZO(A)PYRENE	1400	j	830	MDL	8300	PQL	ug/Kg	J	Z
BENZO(B)FLUORANTHENE	1400	J	830	MDL	8300	PQL	ug/Kg	J	Z
BENZO(G,H,I)PERYLENE	1100	J	830	MDL	8300	PQL.	ug/Kg	J	Z
CHRYSENE	1500	J	830	MDL	8300	PQL	ug/Kg	J	Z
FLUORANTHENE	1100	J	830	MDL	8300	PQL	ug/Kg	J	Z
PYRENE	1300	J	830	MDL	8300	PQL	ug/Kg	J	Z

Sample ID: SL-027-SA5DS-SS-0.0-0.5	Collected: 9/26/2011 9:25:00 A				nalysis T	/pe: RES	Dilution: 5		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
						1 100 0 0	1 1 1 1 1 1		THE DESIGNATION OF THE PROPERTY OF STREET
4,6-DINITRO-2-METHYLPHENOL	840	U	840	MDL	2500	PQL	ug/Kg	UJ	L

^{*} denotes a non-reportable result

Page 23 of 30

Laboratory: LL

Lab Reporting Batch ID: DE253

EDD Filename: DE253_v2.						eQAP	P Name	: CDM_S	SFL_110509
Method Category: SVCA  Method: 8270C			Ма	trix:	so				
			. 20.30000000			DE0	4010		
Sample ID: SL-028-SA5DS-SS-0.0-0.5	Collect	ed: 9/26/20	)11 10:50 	:00 A	nalysis Ty	/pe: RES-	-AGID	Data	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	500	PQL	ug/Kg	UJ	L
PHENOL	18	J	17	MDL	170	PQL	ug/Kg	J	Z
Sample ID: SL-028-SA7-SB-8.0-9.0	Collect	ted: 9/23/20	011 2:14:0	00 A	nalysis T	/pe: RES	-ACID	1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	180	U	180	MDL	540	PQL	ug/Kg	UJ	L
Sample ID: SL-029-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 11:10	:00 A	nalysis T	/pe: RES	-ACID	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	510	PQL	ug/Kg	บม	L
PHENOL	18	J	17	MDL	170	PQL	ug/Kg	J	Z
Sample ID: SL-030-SA5DS-SS-0.0-0.5	Collect	ted: 9/26/2	011 11:25	:00 A	nalysis T	ype: RES	-ACID	1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	510	PQL	ug/Kg	UJ	L
Sample ID: SL-031-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:50	:00 A	nalysis T	ype: RES	-ACID		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	170	Ų	170	MDL	520	PQL	ug/Kg	UJ	L
BIS(2-ETHYLHEXYL)PHTHALATE	18	J	17	MDL	340	PQL	ug/Kg	J	Z
PHENOL	20	J	17	MDL	170	PQL	ug/Kg	J	Z
Sample ID: SL-032-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 12:10	:00 A	nalysis T	ype: RES	-ACID		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code

4,6-DINITRO-2-METHYLPHENOL

PHENOL

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/6/2012 10:35:39 AM

170

18

L

UJ

510

170

170

17

MDL

MDL

PQL

PQL

ug/Kg

ug/Kg

Laboratory: LL

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

EDD Filename: DE253_v2.

Mathada 9270C CINI Matrix CO	
MICHIOLA DE 102 DO CINI	

Sample ID: DUP01-SA5DS-QC-092611	Collected: 9/26/2011 3:10:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BENZO(B)FLUORANTHENE	1.1	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z, FD		
CHRYSENE	0.75	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z		
Di-n-octylphthalate	6.0	U	6.0	MDL	18	PQL	ug/Kg	UJ	FD		

Sample ID: SL-001-SA3-SS-0.0-0.5	Collec	ted: 9/26/2	011 7:50:	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	5.9	J	5.9	MDL	18	PQL	ug/Kg	J	Z
CHRYSENE	0.97	J	0.33	MDL	1.6	PQL	ug/Kg	J	Z
FLUORANTHENE	1.2	J	0.66	MDL	1.6	PQL	ug/Kg	J	Z
PYRENE	1.1	J	0.66	MDL	1.6	PQL	ug/Kg	J	Z

Sample ID: SL-001-SA5DS-SS-0.0-0.5	Collected: 9/26/2011 3:05:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BENZO(B)FLUORANTHENE	3.2		0.67	MDL	1.7	PQL	ug/Kg	J	FD	
BIS(2-ETHYLHEXYL)PHTHALATE	13	J	6.0	MDL	18	PQL	ug/Kg	J	Z, Q	
CHRYSENE	0.49	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z	
Di-n-octylphthalate	6.9	J	6.0	MDL	18	PQL	ug/Kg	J	Z, FD	

Sample ID: SL-002-SA3-SS-0.0-0.5	Collec	Collected: 9/26/2011 8:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
2-METHYLNAPHTHALENE	0.66	J	0.66	MDL	1.7	PQL	ug/Kg	J	Z		
ANTHRACENE	0.36	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z		
BENZO(A)ANTHRACENE	1.1	J	0.66	MDL	1.7	PQL	ug/Kg	J	Z		
BENZO(G,H,I)PERYLENE	1.0	J	0.66	MDL	1.7	PQL	ug/Kg	J	Z		
BENZO(K)FLUORANTHENE	1.1	J	0.66	MDL	1.7	PQL	ug/Kg	J	Z		
INDENO(1,2,3-CD)PYRENE	0.80	J	0.66	MDL	1.7	PQL	ug/Kg	J	Z		
NAPHTHALENE	1.2	J	0.66	MDL	1.7	PQL	ug/Kg	J	Z		

Sample ID: SL-002-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 2:35:	00	Analysis T	ype: RES	-BASE/NE	UTRAL I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2-METHYLNAPHTHALENE	0.70	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 10:35:39 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

Method: 8270C SIM Matrix: SO
------------------------------

Sample ID: SL-002-SA5DS-SS-0.0-0.5	Collec	Collected: 9/26/2011 2:35:00 Analysis Type: RES-BASE/NEUTRAL Dilution:									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BENZO(A)ANTHRACENE	0.96	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z		
BENZO(G,H,I)PERYLENE	1.2	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z		
Butylbenzylphthalate	7.1	J	6.0	MDL	18	PQL	ug/Kg	J	Z		
Di-n-octylphthalate	11	J	6.0	MDL	18	PQL	ug/Kg	J	Z		
INDENO(1,2,3-CD)PYRENE	0.88	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z		
NAPHTHALENE	1.3	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z		

Sample ID: SL-026-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 10:35	:00 A	nalysis T	<i>ype:</i> RES	-BASE/NE	EUTRAL I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACENAPHTHYLENE	0.48	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z
BIS(2-ETHYLHEXYL)PHTHALATE	9.0	J	6.0	MDL	18	PQL	ug/Kg	J	Z
NAPHTHALENE	0.99	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z

Sample ID: SL-027-SA5DS-SS-0.0-0.5	Collected: 9/26/2011 9:25:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 5								Dilution: 5
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(A)ANTHRACENE	3.9	J	3.3	MDL	8.4	PQL	ug/Kg	J	Z
BIS(2-ETHYLHEXYL)PHTHALATE	33	J	30	MDL	90	PQL	ug/Kg	J	Z
PHENANTHRENE	4.5	J	3.3	MDL	8.4	PQL	ug/Kg	J	Z
PYRENE	7.4	J	3.3	MDL	8.4	PQL	ug/Kg	J	Z

Sample ID: SL-028-SA5DS-SS-0.0-0.5	Collected: 9/26/2011 10:50:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(A)ANTHRACENE	0.80	J	0.66	MDL	1.7	PQL	ug/Kg	J	Z
BENZO(A)PYRENE	1.1	J	0.66	MDL	1.7	PQL	ug/Kg	j	Z
BENZO(K)FLUORANTHENE	0.72	J	0.66	MDL	1.7	PQL	ug/Kg	J	Z
CHRYSENE	1.1	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z
FLUORANTHENE	0.86	J	0.66	MDL	1.7	PQL	ug/Kg	j	Z
PYRENE	0.82	J	0.66	MDL	1.7	PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

EDD Filename: DE253_v2.

Method:

Method Category 51.0

8270C SIM Matrix: SO

Sample ID: SL-029-SA5DS-SS-0.0-0.5	Collec	ted: 9/26/2	011 11:10	:00 A	nalysis T	ype: RES	-BASE/NEUTRAL Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(A)ANTHRACENE	1.3	J	0.69	MDL	1.7	PQL	ug/Kg	J	Z
BENZO(G,H,I)PERYLENE	1.2	J	0.69	MDL	1.7	PQL	ug/Kg	J	Z
BENZO(K)FLUORANTHENE	1.2	J	0.69	MDL	1.7	PQL	ug/Kg	J	Z
BIS(2-ETHYLHEXYL)PHTHALATE	10	J	6.2	MDL	19	PQL	ug/Kg	J	Z
Di-n-octylphthalate	7.5	J	6.2	MDL	19	PQL	ug/Kg	J	Z
INDENO(1.2.3-CD)PYRENE	0.76	1	0.69	MDI	1.7	POL	иа/Ка	J	Z

Collected: 9/26/2011 11:25:00 Analysis Type: RES-BASE/NEUTRAL Sample ID: SL-030-SA5DS-SS-0.0-0.5

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	13	J	6.1	MDL	18	PQL	ug/Kg	J	Z
INDENO(1,2,3-CD)PYRENE	0.94	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
NAPHTHALENE	0.99	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
PHENANTHRENE	1.4	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z

Dilution: 1 Sample ID: SL-032-SA5DS-SS-0.0-0.5 Collected: 9/26/2011 12:10:00 Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1-METHYLNAPHTHALENE	0.84	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
2-METHYLNAPHTHALENE	0.81	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
ANTHRACENE	0.57	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z
BENZO(G,H,i)PERYLENE	1.3	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
Di-n-octylphthalate	9.6	J	6.1	MDL	18	PQL	ug/Kg	J	Z
INDENO(1,2,3-CD)PYRENE	1.4	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
NAPHTHALENE	1.5	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/6/2012 10:35:39 AM

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

EDD Filename: DE253_v2.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
P. P.C. (1904) Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Section 1900 Sec	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
C	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Filename: DE253_v2.		eQAPP Name: CDM_SSFL_
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
I	Internal Standard Estimation	
	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
М	Continuing Tune	
M	Initial Tune	
М	Performance Evaluation Mixture	
М	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE253

EDD Filename: DE253_v2.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

# **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

**DE253** 

#### Method Blank Outlier Report

Lab Reporting Batch ID: DE253

EDD Filename: DE253_v2.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 601 Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P26908EB220703	10/3/2011 7:03:00 AM	CALCIUM IRON PHOSPHORUS TIN	3.28 mg/Kg 3.68 mg/Kg 1.15 mg/Kg 1.39 mg/Kg	SL-028-SA7-SB-8.0-9.0
P27108AB220719	10/7/2011 7:19:00 AM	BORON MANGANESE PHOSPHORUS STRONTIUM TIN	0.527 mg/Kg 0.0430 mg/Kg 1.09 mg/Kg 0.0680 mg/Kg 1.38 mg/Kg	DUP01-SA5DS-QC-092611 SL-001-SA3-SS-0.0-0.5 SL-001-SA5DS-SS-0.0-0.5 SL-002-SA3-SS-0.0-0.5 SL-002-SA5DS-SS-0.0-0.5 SL-026-SA5DS-SS-0.0-0.5 SL-027-SA5DS-SS-0.0-0.5 SL-028-SA5DS-SS-0.0-0.5 SL-029-SA5DS-SS-0.0-0.5 SL-030-SA5DS-SS-0.0-0.5 SL-031-SA5DS-SS-0.0-0.5 SL-031-SA5DS-SS-0.0-0.5
P27108AB221351	10/10/2011 1:51:00 PM	ALUMINUM	8.80 mg/Kg	DUP01-SA5DS-QC-092611 SL-001-SA3-SS-0.0-0.5 SL-001-SA5DS-SS-0.0-0.5 SL-002-SA3-SS-0.0-0.5 SL-002-SA5DS-SS-0.0-0.5 SL-026-SA5DS-SS-0.0-0.5 SL-027-SA5DS-SS-0.0-0.5 SL-028-SA5DS-SS-0.0-0.5 SL-029-SA5DS-SS-0.0-0.5 SL-030-SA5DS-SS-0.0-0.5 SL-030-SA5DS-SS-0.0-0.5 SL-031-SA5DS-SS-0.0-0.5 SL-032-SA5DS-SS-0.0-0.5
P27108AB221731	10/7/2011 5:31:00 PM	CALCIUM IRON MAGNESIUM	7.97 mg/Kg 12.9 mg/Kg 1.96 mg/Kg	DUP01-SA5DS-QC-092611 SL-001-SA3-SS-0.0-0.5 SL-001-SA5DS-SS-0.0-0.5 SL-002-SA3-SS-0.0-0.5 SL-002-SA5DS-SS-0.0-0.5 SL-026-SA5DS-SS-0.0-0.5 SL-027-SA5DS-SS-0.0-0.5 SL-028-SA5DS-SS-0.0-0.5 SL-029-SA5DS-SS-0.0-0.5 SL-030-SA5DS-SS-0.0-0.5 SL-030-SA5DS-SS-0.0-0.5 SL-031-SA5DS-SS-0.0-0.5 SL-031-SA5DS-SS-0.0-0.5
P27708BB220741	10/5/2011 7:41:00 AM	TITANIUM	0.0840 mg/Kg	SL-028-SA7-SB-8.0-9.0

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP01-SA5DS-QC-092611(REA)	TIN	2.90 mg/Kg	2.90U mg/Kg
SL-001-SA3-SS-0.0-0.5(REA)	TIN	3.17 mg/Kg	3.17U mg/Kg
SL-001-SA5DS-SS-0.0-0.5(REA)	TIN	3.00 mg/Kg	3.00U mg/Kg
SL-002-SA3-SS-0.0-0.5(REA)	TIN	2.78 mg/Kg	2.78U mg/Kg
SL-002-SA5DS-SS-0.0-0.5(REA)	TIN	3.06 mg/Kg	3.06U mg/Kg
SL-026-SA5DS-SS-0.0-0.5(REA)	TIN	2.20 mg/Kg	2.20U mg/Kg
SL-027-SA5DS-SS-0.0-0.5(REA)	TIN	2.63 mg/Kg	2.63U mg/Kg
SL-028-SA5DS-SS-0.0-0.5(REA)	TIN	3.05 mg/Kg	3.05U mg/Kg
SL-028-SA7-SB-8.0-9.0(RES)	TIN	2.53 mg/Kg	2.53U mg/Kg
SL-029-SA5DS-SS-0.0-0.5(REA)	TIN	3.12 mg/Kg	3.12U mg/Kg
SL-030-SA5DS-SS-0.0-0.5(REA)	TIN	3.08 mg/Kg	3.08U mg/Kg
SL-031-SA5DS-SS-0.0-0.5(REA)	TIN	3.21 mg/Kg	3.21U mg/Kg

1/6/2012 10:17:01 AM ADR version 1.4.0.111 Page 1 of 2

#### Method Blank Outlier Report

Lab Reporting Batch ID: DE253

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

EDD	Filename:	DE253	v2.
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

Method: 6010I Matrix: SO		THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P	eración aldicator	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte		Modified Final Result
SL-032-SA5DS-SS-0.0-0.5(REA)	TIN	3.07 mg/Kg	3.07U mg/Kg

Method: 6020 Matrix: SO	n na magalanda kan s Magalanda kan sa sa sa sa sa sa sa sa sa sa sa sa sa	Parlier Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Co		
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P26926AB220448A	10/4/2011 4:48:00 AM	LEAD	0.0329 mg/Kg	SL-028-SA7-SB-8.0-9.0

1/6/2012 10:17:01 AM ADR version 1.4.0.111 Page 2 of 2

#### Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE253 Laboratory: LL

EDD Filename: DE253_v2. eQAPP Name: CDM_SSFL_110509

Metrix: SO							riblem i establica estis
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-001-SA5DS-SS-0.0-0.5 MS SL-001-SA5DS-SS-0.0-0.5 MSD (SL-001-SA5DS-SS-0.0-0.5)	2,4-D	229	-	17.00-180.00	114 (35.00)	2,4-D	J (all detects)
SL-001-SA5DS-SS-0.0-0.5 MS SL-001-SA5DS-SS-0.0-0.5 MSD (SL-001-SA5DS-SS-0.0-0.5)	2,4,5-TP (Silvex) 2,4-DB DALAPON DICAMBA DICHLOROPROP DINOSEB MCPA MCPP	0 0 0 0 0 0	0 0 0 0 0 6 0	24.00-141.00 10.00-201.00 10.00-125.00 10.00-190.00 33.00-178.00 10.00-46.00 10.00-213.00 10.00-184.00	200 (50.00) - - 200 (35.00) -	2,4,5-TP (Silvex) 2,4-DB DALAPON DICAMBA DICHLOROPROP DINOSEB MCPA MCPP	J(all detects) R(all non-detects)

Method: 8081A

Mathad, 9454A

Matrix: SO

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-001-SA5DS-SS-0.0-0.5 MS SL-001-SA5DS-SS-0.0-0.5 MSD (SL-001-SA5DS-SS-0.0-0.5)	4,4-DDD ENDRIN ALDEHYDE	0 0	-	16.00-163.00 10.00-148.00	200 (50.00)	4,4'-DDD ENDRIN ALDEHYDE	J(all detects) R(all non-detects)

Method: 6020 Matrix: SO

Street Automatical Contraction and Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contraction Contrac					SOURCE SERVICE AND A SECOND	Militari (iliani al IIII) e e e e e e e e e e e e e e e e e	
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-001-SA5DS-SS-0.0-0.5 MS SL-001-SA5DS-SS-0.0-0.5 MSD (DUP01-SA5DS-QC-092611 SL-001-SA3-SS-0.0-0.5 SL-001-SA5DS-SS-0.0-0.5 SL-002-SA5DS-SS-0.0-0.5 SL-002-SA5DS-SS-0.0-0.5 SL-026-SA5DS-SS-0.0-0.5 SL-028-SA5DS-SS-0.0-0.5 SL-028-SA5DS-SS-0.0-0.5 SL-028-SA5DS-SS-0.0-0.5 SL-028-SA5DS-SS-0.0-0.5 SL-030-SA5DS-SS-0.0-0.5 SL-030-SA5DS-SS-0.0-0.5 SL-031-SA5DS-SS-0.0-0.5 SL-031-SA5DS-SS-0.0-0.5	ARSENIC CADMIUM CHROMIUM COPPER NICKEL SILVER THALLIUM VANADIUM ZINC	187 143 181 131 147 139 134 213	150 143 164 134 143 140 141 202 131	75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00	- - - - - - - -	ARSENIC CADMIUM CHROMIUM COPPER NICKEL SILVER THALLIUM VANADIUM ZINC	J(all detects) Cr, V, Zn No Qual, >4x
SL-001-SA5DS -SS-0.0-0.5 MS (DUP01-SA5DS -QC-092611 SL -001-SA3-SS-0.0-0.5 SL -001-SA5DS -SS-0.0-0.5 SL -002-SA3-SS-0.0-0.5 SL -002-SA5DS -SS-0.0-0.5 SL -026-SA5DS -SS-0.0-0.5 SL -027-SA5DS -SS-0.0-0.5 SL -028-SA5DS -SS-0.0-0.5 SL -029-SA5DS -SS-0.0-0.5 SL -030-SA5DS -SS-0.0-0.5 SL -031-SA5DS -SS-0.0-0.5	LEAD	7	-	75.00-125.00	-	LEAD	No Qual, >4x

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 9:57:26 AM ADR version 1.4.0.111 Page 1 of 4

# Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE253

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Lab i	Cporting	Dateiri	D. D.
EDD	Filename	: DE253	v2.

Method: 6020 Matrix: SO		Exiter.	ij.	and the second			
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-001-SA5DS -SS-0.0-0.5 MS SL-001-SA5DS -SS-0.0-0.5 MSD (DUP01-SA5DS -QC-092611 SL-001-SA3-SS-0.0-0.5 SL-001-SA3-SS-0.0-0.5 SL-002-SA3-SS-0.0-0.5 SL-002-SA3-SS-0.0-0.5 SL-002-SA5DS -SS-0.0-0.5 SL-026-SA5DS -SS-0.0-0.5 SL-028-SA5DS -SS-0.0-0.5 SL-028-SA5DS -SS-0.0-0.5 SL-029-SA5DS -SS-0.0-0.5 SL-029-SA5DS -SS-0.0-0.5 SL-030-SA5DS -SS-0.0-0.5 SL-031-SA5DS -SS-0.0-0.5 SL-031-SA5DS -SS-0.0-0.5	ANTIMONY	54	50	75.00-125.00	-	ANTIMONY	J(all detects) UJ(all non-detects)
SL-001-SA5DS -SS-0.0-0.5 MS SL-001-SA5DS -SS-0.0-0.5 MSD (DUP01-SA5DS -QC-092611 SL-001-SA3-SS-0.0-0.5 SL-001-SA5DS -SS-0.0-0.5 SL-002-SA3-SS-0.0-0.5 SL-002-SA5DS -SS-0.0-0.5 SL-022-SA5DS -SS-0.0-0.5 SL-022-SA5DS -SS-0.0-0.5 SL-029-SA5DS -SS-0.0-0.5 SL-029-SA5DS -SS-0.0-0.5 SL-030-SA5DS -SS-0.0-0.5 SL-031-SA5DS -SS-0.0-0.5 SL-031-SA5DS -SS-0.0-0.5	SELENIUM	137	135	75.00-125.00	-	SELENIUM	J(all detects)
SL-001-SA5DS -SS-0.0-0.5 MS SL-001-SA5DS -SS-0.0-0.5 MSD (DUP01-SA5DS -QC-092611 SL-001-SA3-SS-0.0-0.5 SL-001-SA5DS -SS-0.0-0.5 SL-002-SA3-SS-0.0-0.5 SL-002-SA5DS -SS-0.0-0.5 SL-027-SA5DS -SS-0.0-0.5 SL-027-SA5DS -SS-0.0-0.5 SL-027-SA5DS -SS-0.0-0.5 SL-028-SA5DS -SS-0.0-0.5 SL-029-SA5DS -SS-0.0-0.5 SL-023-SA5DS -SS-0.0-0.5 SL-023-SA5DS -SS-0.0-0.5	MOLYBDENUM	145	147	75.00-125.00		MOLYBDENUM	J(all detects)
SL-001-SA5DS -SS-0.0-0.5 MS SL-001-SA5DS -SS-0.0-0.5 MSD (DUPD1 -SA5DS -QC-092611 SL-001-SA3-SS-0.0-0.5 SL-002-SA3-SS-0.0-0.5 SL-002-SA5DS -SS-0.0-0.5 SL-002-SA5DS -SS-0.0-0.5 SL-026-SA5DS -SS-0.0-0.5 SL-027-SA5DS -SS-0.0-0.5 SL-028-SA5DS -SS-0.0-0.5 SL-028-SA5DS -SS-0.0-0.5 SL-030-SA5DS -SS-0.0-0.5 SL-031-SA5DS -SS-0.0-0.5 SL-031-SA5DS -SS-0.0-0.5 SL-031-SA5DS -SS-0.0-0.5	BARIUM	133	131	75.00-125.00	-	BARIUM	No Qual, >4x

#### Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-001-SA5DS -SS-0.0-0.5 MS SL-001-SA5DS -SS-0.0-0.5 MSD (DUP01 -SA5DS -QC-092611 SL-001-SA3-SS-0.0-0.5 SL-001-SA3-SS-0.0-0.5 SL-002-SA3-SS-0.0-0.5 SL-002-SA5DS -SS-0.0-0.5 SL-025-SA5DS -SS-0.0-0.5 SL-027-SA5DS -SS-0.0-0.5 SL-028-SA5DS -SS-0.0-0.5 SL-028-SA5DS -SS-0.0-0.5 SL-029-SA5DS -SS-0.0-0.5 SL-031-SA5DS -SS-0.0-0.5 SL-031-SA5DS -SS-0.0-0.5 SL-031-SA5DS -SS-0.0-0.5	ALUMINUM CALCIUM IRON MAGNESIUM TITANIUM	948 335 330 144 529	956 259 763 192 548	75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00		ALUMINUM CALCIUM IRON MAGNESIUM TITANIUM	No Qual, >4x

Matrix: SO			e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	roissa.			the season beyond the season beyond the season beyond the season beyond the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season between the season betwee
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-001-SA5DS-SS-0.0-0.5 MS	BIS(2-ETHYLHEXYL)PHTHALAT	197	-	39.00-167.00	-	BIS(2-ETHYLHEXYL)PHTHALA	J(all detects)

Ī	Method: 300.0 Matrix: SO		
			 I

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-001-SA5DS-SS-0.0-0.5 MS (SL-001-SA3-SS-0.0-0.5 SL-001-SA5DS-SS-0.0-0.5 SL-002-SA3-SS-0.0-0.5 SL-002-SA5DS-SS-0.0-0.5 SL-026-SA5DS-SS-0.0-0.5 SL-027-SA5DS-SS-0.0-0.5 SL-028-SA5DS-SS-0.0-0.5 SL-028-SA5DS-SS-0.0-0.5 SL-031-SA5DS-SS-0.0-0.5	FLUORIDE	50	-	80.00-120.00	-	FLUORIDE	J(all detects) UJ(all non-detects)
SL-032-SA5DS-SS-0.0-0.5MS (DUP01-SA5DS-QC-092611 SL-032-SA5DS-SS-0.0-0.5)	FLUORIDE	76	-	80.00-120.00	-	FLUORIDE	J(all detects) UJ(all non-detects)

#### Memori WALE Matrix: SO QC Sample ID RPD (Associated MS MSD %R Affected Flag Samples) Compound %R %R Limits (Limits) Compounds 2,4-DINITROPHENOL SL-001-SA5DS-SS-0.0-0.5 2,4-DINITROPHENOL 20.00-143.00 36 (30.00) J(all detects) BENZOIC ACID 10.00-173.00 34 (30.00) BENZOIC ACID

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

PENTACHLOROPHENOL

(SL-001-SA5DS-SS-0.0-0.5)

1/6/2012 9:57:26 AM ADR version 1.4.0.111 Page 3 of 4

28.00-127.00

39 (30.00)

PENTACHLOROPHENOL

# Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

Method: 8270C Matrix: SO					and the second		
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-001-SA5DS-SS-0.0-0.5 MS SL-001-SA5DS-SS-0.0-0.5 MSD (SL-001-SA5DS-SS-0.0-0.5)	BENZIDINE	0	0	35.00-141.00	•	BENZIDINE	J(all detects) R(all non-detects)

1/6/2012 9:57:26 AM ADR version 1.4.0.111 Page 4 of 4

# Lab Duplicate Outlier Report

Lab Reporting Batch ID: DE253 Laboratory: LL

EDD Filename: DE253_v2. eQAPP Name: CDM_SSFL_110509

Method: 300.0 Matrix: SO				
QC Sample ID				
(Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-032-SA5DS-SS-0.0-0.5DUP (DUP01-SA5DS-QC-092611 SL-032-SA5DS-SS-0.0-0.5)	FLUORIDE	42	20.00	No Qual, OK by Difference
SL-001-SA5DS-SS-0.0-0.5 DUP (SL-001-SA3-SS-0.0-0.5 SL-001-SA5DS-SS-0.0-0.5 SL-002-SA3-SS-0.0-0.5 SL-002-SA5DS-SS-0.0-0.5 SL-026-SA5DS-SS-0.0-0.5 SL-027-SA5DS-SS-0.0-0.5 SL-028-SA5DS-SS-0.0-0.5 SL-029-SA5DS-SS-0.0-0.5 SL-030-SA5DS-SS-0.0-0.5 SL-031-SA5DS-SS-0.0-0.5	FLUORIDE	27	20.00	No Qual, OK by Difference
Method: 6020 Matrix: SO				
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-001-SA5DS-SS-0.0-0.5 DUP (DUP01-SA5DS-QC-092611 SL-001-SA3-SS-0.0-0.5 SL-001-SA5DS-SS-0.0-0.5 SL-002-SA3-SS-0.0-0.5 SL-002-SA5DS-SS-0.0-0.5 SL-026-SA5DS-SS-0.0-0.5 SL-027-SA5DS-SS-0.0-0.5 SL-028-SA5DS-SS-0.0-0.5 SL-029-SA5DS-SS-0.0-0.5 SL-029-SA5DS-SS-0.0-0.5 SL-031-SA5DS-SS-0.0-0.5 SL-031-SA5DS-SS-0.0-0.5	CADMIUM	24	20.00	No Qual, OK by Difference
Method: 7471A Matrix: SO				Topolis shi
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-001-SA5DS-SS-0.0-0.5 DUP (DUP01-SA5DS-QC-092611 SL-001-SA3-SS-0.0-0.5 SL-001-SA5DS-SS-0.0-0.5 SL-002-SA3-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-026-SA5DS-SS-0.0-0.5 SL-027-SA5DS-SS-0.0-0.5 SL-028-SA5DS-SS-0.0-0.5 SL-029-SA5DS-SS-0.0-0.5 SL-030-SA5DS-SS-0.0-0.5 SL-031-SA5DS-SS-0.0-0.5 SL-032-SA5DS-SS-0.0-0.5	MERCURY	200	20.00	No Qual, OK by Difference

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 10:11:43 AM ADR version 1.4.0.111 Page 1 of 1

# Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2. eQAPP Name: CDM_SSFL_110509

QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P12773AQ242124A (DUP01 - SA5DS - QC - 092611 SL - 001 - SA3 - SS - 0.0 - 0.5 SL - 001 - SA5DS - SS - 0.0 - 0.5 SL - 002 - SA3 - SS - 0.0 - 0.5 SL - 002 - SA5DS - SS - 0.0 - 0.5 SL - 002 - SA5DS - SS - 0.0 - 0.5 SL - 024 - SA5DS - SS - 0.0 - 0.5 SL - 027 - SA5DS - SS - 0.0 - 0.5 SL - 028 - SA5DS - SS - 0.0 - 0.5 SL - 029 - SA5DS - SS - 0.0 - 0.5 SL - 030 - SA5DS - SS - 0.0 - 0.5 SL - 031 - SA5DS - SS - 0.0 - 0.5 SL - 031 - SA5DS - SS - 0.0 - 0.5	DINOSEB	9	_	10.00-36.00		DINOSEB	J (all detects) R (all non-detects)

Method: 6020 Matrix: SO				e e			
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
<b>P26926AQ220450A</b> (SL-028-SA7-SB-8.0-9.0)	ANTIMONY	65	-	80.00-120.00	-	ANTIMONY	No Qual, SRM Within QC Limits

Matrix: SO	Danie zastini Kalendrija i pasa	Maria.	-	يني و ديست	ter in the second		
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P26908EQ220707 (SL-028-SA7-SB-8.0-9.0)	ALUMINUM	138	-	80.00-120.00	-	ALUMINUM	No Qual, SRM Within QC Limits
P27108AQ220723 P27108AQ221735 (DUP01 - SA5DS - QC - 092611 SL -001 - SA3 - SS - 0.0 - 0.5 SL -002 - SA5DS - SS - 0.0 - 0.5 SL -002 - SA5DS - SS - 0.0 - 0.5 SL -026 - SA5DS - SS - 0.0 - 0.5 SL -027 - SA5DS - SS - 0.0 - 0.5 SL -028 - SA5DS - SS - 0.0 - 0.5 SL -029 - SA5DS - SS - 0.0 - 0.5 SL -030 - SA5DS - SS - 0.0 - 0.5 SL -031 - SA5DS - SS - 0.0 - 0.5 SL -032 - SA5DS - SS - 0.0 - 0.5 SL -032 - SA5DS - SS - 0.0 - 0.5	ALUMINUM IRON MAGNESIUM	143 140 122	-	80.00-120.00 80.00-120.00 80.00-120.00	-	ALUMINUM IRON MAGNESIUM	No Qual, SRM Within QC Limits

1/6/2012 10:05:32 AM

Method: 6040E

# Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

Method: 8270C Matrix: SO					en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P7LCLCSQ262217 (DUP01 - SA5DS - QC - 092611 SL -001 - SA3 - SS - 0.0 - 0.5 SL -002 - SA3 - SS - 0.0 - 0.5 SL -002 - SA5DS - SS - 0.0 - 0.5 SL -026 - SA5DS - SS - 0.0 - 0.5 SL -026 - SA5DS - SS - 0.0 - 0.5 SL -028 - SA5DS - SS - 0.0 - 0.5 SL -028 - SA5DS - SS - 0.0 - 0.5 SL -028 - SA5DS - SS - 0.0 - 0.5 SL -028 - SA5DS - SS - 0.0 - 0.5 SL -031 - SA5DS - SS - 0.0 - 0.5 SL -031 - SA5DS - SS - 0.0 - 0.5 SL -032 - SA5DS - SS - 0.0 - 0.5	4,6-DINITRO-2-METHYLPHENOL	43	-	46.00-120.00	_	4,6-DINITRO-2-METHYLPHEN	J(all detects) UJ(all non-detects)

#### Surrogate Outlier Report

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

Method: 8081. Matrix: SO		grand day			
Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
SL-001-SA3-SS-0.0 -0.5	DECACHLOROBIPHENYL	123	20.00-120.00	All Target Analytes	J (all detects)
SL-028-SA5DS-SS- 0.0-0.5	DECACHLOROBIPHENYL	145	20.00-120.00	All Target Analytes	No Qual, Diluted Out

Page 1 of 1 1/6/2012 10:08:38 AM

# Field Duplicate RPD Report

Lab Reporting Batch ID: DE253 Laboratory: LL

EDD Filename: DE253_v2. eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO					
	Concentr	ation (%)			
Analyte	SL-001-SA5DS-SS-0.0- 0.5	DUP01-SA5DS-QC- 092611	Sample RPD	eQAPP RPD	Flag
MOISTURE	0.67	0.73	9		No Qualifiers Applied

Method: 300.0 Matrix: SO

Analyte	Concentrati	ion (mg/Kg)				
	SL-001-SA5DS-SS-0.0- 0.5	DUP01-SA5DS-QC- 092611	Sample RPD	eQAPP RPD	Flag	
FLUORIDE	4.6	2.9	45	50.00	No Qualifiers Applied	

Method: 6010B Matrix: SO

	Concentrati	Concentration (mg/Kg)			
Analyte	SL-001-SA5DS-SS-0.0- 0.5	DUP01-SA5DS-QC- 092611	Sample RPD	eQAPP RPD	Flag
ALUMINUM	12200	12200	0	50.00	
BORON	7.49	6.86	9	50.00	
CALCIUM	5160	5090	1	50.00	
IRON	22900	23700	3	50.00	
LITHIUM	16.2	18.2	12	50.00	
MAGNESIUM	5630	5790	3	50.00	
MANGANESE	305	308	1	50.00	No Qualifiers Applied
PHOSPHORUS	878	879	0	50.00	No Qualiners Applied
POTASSIUM	1760	1630	8	50.00	
SODIUM	124	109	13	50.00	
STRONTIUM	22.0	22.4	2	50.00	
TIN	3.00	2.90	3	50.00	
TITANIUM	1240	1160	7	50.00	
Zirconium	12.5	8.12	42	50.00	

Method: 6020 Matrix: SO

	Concentrat	ion (mg/Kg)			
Analyte	SL-001-SA5DS-SS-0.0- 0.5	DUP01-SA5DS-QC- 092611	Sample RPD	eQAPP RPD	Flag
ANTIMONY	0.436	0.430	1	50.00	
ARSENIC	7.36	8.99	20	50.00	
BARIUM	69.4	98.1	34	50.00	
BERYLLIUM	0.401	0.397	1	50.00	
CADMIUM	0.294	0.351	18	50.00	
CHROMIUM	54.1	63.1	15	50.00	
COBALT	7.42	11.7	45	50.00	
COPPER	7.37	8.84	18	50.00	No Qualifiers Applied
LEAD	40.1	48.0	18	50.00	No Qualifiers Applied
MOLYBDENUM	0.757	0.906	18	50.00	
NICKEL	14.0	19.4	32	50.00	
SELENIUM	0.257	0.275	7	50.00	
SILVER	0.0372	0.0541	37	50.00	
THALLIUM	0.172	0.197	14	50.00	
VANADIUM	98.1	118	18	50.00	
ZINC	72.7	82.3	12	50.00	

#### Field Duplicate RPD Report

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2. eQAPP Name: CDM_SSFL_110509

Analyte	Concentrati				
	SL-001-SA5DS-SS-0.0- 0.5	DUP01-SA5DS-QC- 092611	Sample RPD	eQAPP RPD	Flag
MERCURY	0.0133	0.0115	15	50.00	No Qualifiers Applie

Method: 8081A Matrix: SO

	Concentrat	Concentration (ug/Kg)			
Analyte	SL-001-SA5DS-SS-0.0- 0.5	DUP01-SA5DS-QC- 092611	Sample RPD	eQAPP RPD	Flag
4,4'-DDE 4,4'-DDT	0.52 1.2	0.70 1.5 0.51	30 22	50.00 50.00 50.00	No Qualifiers Applied
ENDRIN ALDEHYDE  Chlordane DELTA-BHC	2.0 0.17 U	5.3 0.48	90 200	50.00 50.00	J(all detects) UJ(all non-detects)

Method: 8082 Matrix: SO

Analyte	Concentrat	Concentration (ug/Kg)			
	SL-001-SA5DS-SS-0.0- 0.5	DUP01-SA5DS-QC- 092611	Sample RPD	eQAPP RPD	Flag
AROCLOR 1254 AROCLOR 1260	8.0 7.7	4.9 5.9	48 26	50.00 50.00	No Qualifiers Applied
Aroclor 5460	2.4	7.4	102	50.00	J(all detects)

Method: 8270C SIM Matrix: SO

Analyte	Concentrat	Concentration (ug/Kg)			
	SL-001-SA5DS-SS-0.0- 0.5	DUP01-SA5DS-QC- 092611	Sample RPD	eQAPP RPD	Flag
CHRYSENE	0.49	0.75	42	50.00	No Qualifiers Applied
BENZO(B)FLUORANTHENE Di-n-octylphthalate	3.2 6.9	1.1 18 U	98 200	50.00 50.00	J(all detects) UJ(all non-detects)

Method: 8270C Matrix: SO

	Concentrat	ration (ug/Kg)			
Analyte	SL-001-SA5DS-SS-0.0- 0.5	DUP01-SA5DS-QC- 092611	Sample RPD	eQAPP RPD	Flag
PHENOL	170 U	18	200	50.00	J(all detects) UJ(all non-detects)

Method: 9045M Matrix: SO

	Concentrati	Concentration (pH unit)			
Analyte	SL-001-SA5DS-SS-0.0- 0.5	DUP01-SA5DS-QC- 092611	Sample RPD	eQAPP RPD	Flag
PH	6.04	6.51	7	50.00	No Qualifiers Applied

1/6/2012 10:19:21 AM ADR version 1.4.0.111 Page 2 of 2

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2. eQAPP Name: CDM_SSFL_110509

Method: 6010B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP01-SA5DS-QC-092611	TIN	J	2.90	9.88	PQL	mg/Kg	J (all detects)
SL-001-SA3-SS-0.0-0.5	SODIUM TIN Zirconium	) ) )	87.8 3.17 2.95	98.0 9.80 4.90	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-001-SA5DS-SS-0.0-0.5	TIN	J	3.00	10.1	PQL	mg/Kg	J (all detects)
SL-002-SA3-SS-0.0-0.5	SODIUM TIN Zirconium	J	74.5 2.78 2.40	97.1 9.71 4.85	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-002-SA5DS-SS-0.0-0.5	TIN	J	3.06	10.0	PQL	mg/Kg	J (all detects)
SL-026-SA5DS-SS-0.0-0.5	TIN Zirconium	J	2.20 2.89	9.85 4.92	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-027-SA5DS-SS-0.0-0.5	TIN	J	2.63	9.83	PQL	mg/Kg	J (all detects)
SL-028-SA5DS-SS-0.0-0.5	TIN Zirconium	J	3.05 2.42	9.76 4.88	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-028-SA7-SB-8.0-9.0	TIN Zirconium	J	2.53 0.771	10.6 5.30	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-029-SA5DS-SS-0.0-0.5	TIN Zirconium	J J	3.12 4.39	10.2 5.12	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-030-SA5DS-SS-0.0-0.5	TIN Zirconium	J J	3.08 3.54	10.1 5.06	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-031-SA5DS-SS-0.0-0.5	TIN Zirconium	J	3.21 5.13	10.4 5.18	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-032-SA5DS-SS-0.0-0.5	TIN Zirconium	J	3.07 2.88	10.2 5.11	PQL PQL	mg/Kg mg/Kg	J (all detects)

Medhoda 7 5020

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP01-SA5DS-QC-092611	SELENIUM SILVER	J	0.275 0.0541	0.403 0.101	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-001-SA3-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	J J	0.122 0.145 0.0759	0.196 0.392 0.0980	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-001-SA5DS-SS-0.0-0.5	SELENIUM SILVER	J	0.257 0.0372	0.395 0.0987	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-002-SA3-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	J	0.141 0.132 0.0809	0.198 0.396 0.0990	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-002-SA5DS-SS-0.0-0.5	SELENIUM SILVER	J J	0.294 0.0472	0.405 0.101	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-026-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	J J	0.102 0.154 0.0205	0.199 0.398 0.0994	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-027-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM	J	0.194 0.282	0.198 0.397	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-028-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM	J	0.145 0.144	0.195 0.391	PQL PQL	mg/Kg mg/Kg	J (all detects)

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

Method: 6020

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-028-SA7-SB-8.0-9.0	CADMIUM SELENIUM SILVER	J J	0.0722 0.0969 0.0176	0.103 0.412 0.103	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-029-SA5DS-SS-0.0-0.5	SILVER	J	0.0472	0.101	PQL	mg/Kg	J (all detects)
SL-030-SA5DS-SS-0.0-0.5	ANTIMONY SILVER	J	0.182 0.0488	0.202 0.101	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-031-SA5DS-SS-0.0-0.5	SILVER	J	0.0554	0.101	PQL	mg/Kg	J (all detects)
SL-032-SA5DS-SS-0.0-0.5	SILVER	J	0.0435	0.101	PQL	mg/Kg	J (all detects)

Methods 7199

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-026-SA5DS-SS-0.0-0.5	HEXAVALENT CHROMIUM	J	0.34	1.0	PQL	mg/Kg	J (all detects)
SL-028-SA5DS-SS-0.0-0.5	HEXAVALENT CHROMIUM	J	0.38	1.0	PQL	mg/Kg	J (all detects)
SL-028-SA7-SB-8.0-9.0	HEXAVALENT CHROMIUM	J	0.32	1.1	PQL	mg/Kg	J (all detects)
SL-031-SA5DS-SS-0.0-0.5	HEXAVALENT CHROMIUM	J	0.38	1.0	PQL	mg/Kg	J (all detects)
SL-032-SA5DS-SS-0.0-0.5	HEXAVALENT CHROMIUM	J	0.37	1.0	PQL	mg/Kg	J (all detects)

Method: 7471A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP01-SA5DS-QC-092611	MERCURY	J	0.0115	0.0943	PQL	mg/Kg	J (all detects)
SL-001-SA5DS-SS-0.0-0.5	MERCURY	J	0.0133	0.0997	PQL	mg/Kg	J (all detects)
SL-002-SA5DS-SS-0.0-0.5	MERCURY	J	0.0222	0.0979	PQL	mg/Kg	J (all detects)
SL-028-SA5DS-SS-0.0-0.5	MERCURY	J	0.0095	0.0996	PQL	mg/Kg	J (all detects)
SL-029-SA5DS-SS-0.0-0.5	MERCURY	J	0.0076	0.0964	PQL	mg/Kg	J (all detects)
SL-030-SA5DS-SS-0.0-0.5	MERCURY	J	0.0145	0.100	PQL	mg/Kg	J (all detects)
SL-031-SA5DS-SS-0.0-0.5	MERCURY	J	0.0130	0.100	PQL	mg/Kg	J (all detects)

Melhod: 8084A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-001-SA3-SS-0.0-0.5	Chlordane	J	2.4	3.4	PQL	ug/Kg	J (all detects)
SL-001-SA5DS-SS-0.0-0.5	Chlordane	J	2.0	3.4	PQL	ug/Kg	J (all detects)
SL-002-SA3-SS-0.0-0.5	Chlordane	J	1.7	3.4	PQL	ug/Kg	J (all detects)

Lab Reporting Batch ID: DE253 Laboratory: LL

EDD Filename: DE253_v2. eQAPP Name: CDM_SSFL_110509

Method: 8081A Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-002-SA5DS-SS-0.0-0.5	BETA-BHC DELTA-BHC gamma-BHC (Lindane)	J J	0.14 0.052 0.040	0.17 0.17 0.17	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-027-SA5DS-SS-0.0-0.5	4,4'-DDE 4,4'-DDT	J	1.1 1.3	1.7 1.7	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-028-SA5DS-SS-0.0-0.5	Chlordane	J	10	17	PQL	ug/Kg	J (all detects)
SL-029-SA5DS-SS-0.0-0.5	Chlordane	J	3.3	3.5	PQL	ug/Kg	J (all detects)
SL-030-SA5DS-SS-0.0-0.5	ALPHA-BHC Chiordane ENDOSULFAN I	J	0.090 3.4 0.089	0.17 3.5 0.17	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-032-SA5DS-SS-0.0-0.5	Chlordane gamma-BHC (Lindane) METHOXYCHLOR	J	2.6 0.057 0.81	3.5 0.17 1.7	PQL PQL PQI	ug/Kg ug/Kg	J (all detects)

Method: 8082

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-001-SA3-SS-0.0-0.5	AROCLOR 1254 AROCLOR 1260 Aroclor 5460	J	0.53 1.3 3.0	1.7 1.7 3.3	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-001-SA5DS-SS-0.0-0.5	Aroclor 5460	J	2.4	3.3	PQL	ug/Kg	J (all detects)
SL-002-SA3-SS-0.0-0.5	AROCLOR 1254	J	1.3	1.7	PQL	ug/Kg	J (all detects)
SL-002-SA5DS-SS-0.0-0.5	Aroclor 5460	J	3.3	3.4	PQL	ug/Kg	J (all detects)
SL-028-SA5DS-SS-0.0-0.5	AROCLOR 1260	J	0.98	1.7	PQL	ug/Kg	J (all detects)
SL-030-SA5DS-SS-0.0-0.5	AROCLOR 1260	J	1.3	1.7	PQL	ug/Kg	J (all detects)

Wethod: 8151A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-001-SA3-SS-0.0-0.5	DICHLOROPROP	J	1.6	1.7	PQL	ug/Kg	J (all detects)
SL-002-SA3-SS-0.0-0.5	2,4-D	J	2.5	3.6	PQL	ug/Kg	J (all detects)
SL-026-SA5DS-SS-0.0-0.5	DINOSEB	J	0.86	2.4	PQL	ug/Kg	J (all detects)
SL-028-SA5DS-SS-0.0-0.5	МСРА	J	120	250	PQL	ug/Kg	J (all detects)
SL-029-SA5DS-SS-0.0-0.5	2,4-DB	J	1.7	1.8	PQL	ug/Kg	J (all detects)
SL-032-SA5DS-SS-0.0-0.5	2,4,5-T	J	0.15	0.17	PQL	ug/Kg	J (all detects)

Lab Reporting Batch ID: DE253

Laboratory: LL

EDD Filename: DE253_v2.

eQAPP Name: CDM_SSFL_110509

Method: 8270C

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP01-SA5DS-QC-092611	BIS(2-ETHYLHEXYL)PHTHALATE PHENOL	j	51 18	330 170	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-001-SA5DS-SS-0.0-0.5	FLUORANTHENE PHENANTHRENE PYRENE	7 7	36 35 24	170 170 170	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-002-SA3-SS-0.0-0.5	BIS(2-ETHYLHEXYL)PHTHALATE	J	83	330	PQL	ug/Kg	J (all detects)
SL-026-SA5DS-SS-0.0-0.5	BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE CHRYSENE FLUORANTHENE PYRENE	) ) )	1400 1400 1100 1500 1100 1300	8300 8300 8300 8300 8300 8300	PQL PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-028-SA5DS-SS-0.0-0.5	PHENOL	J	18	170	PQL	ug/Kg	J (all detects)
SL-029-SA5DS-SS-0.0-0.5	PHENOL	J	18	170	PQL	ug/Kg	J (all detects)
SL-031-SA5DS-SS-0.0-0.5	BIS(2-ETHYLHEXYL)PHTHALATE PHENOL	J	18 20	340 170	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-032-SA5DS-SS-0.0-0.5	PHENOL	J	18	170	PQL	ug/Kg	J (all detects)

Method: 8270C SIM

Matrix: SC

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP01-SA5DS-QC-092611	BENZO(B)FLUORANTHENE CHRYSENE	J	1.1 0.75	1.7 1.7	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-001-SA3-SS-0.0-0.5	BIS(2-ETHYLHEXYL)PHTHALATE CHRYSENE FLUORANTHENE PYRENE	J J	5.9 0.97 1.2 1.1	18 1.6 1.6 1.6	PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-001-SA5DS-SS-0.0-0.5	BIS(2-ETHYLHEXYL)PHTHALATE CHRYSENE Di-n-octylphthalate	J	13 0.49 6.9	18 1.7 18	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-002-SA3-SS-0.0-0.5	2-METHYLNAPHTHALENE ANTHRACENE BENZO(A)ANTHRACENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE INDENO(1,2,3-CD)PYRENE NAPHTHALENE	) ) ) )	0.66 0.36 1.1 1.0 1.1 0.80 1.2	1.7 1.7 1.7 1.7 1.7 1.7	PQL PQL PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-002-SA5DS-SS-0.0-0.5	2-METHYLNAPHTHALENE BENZO(A)ANTHRACENE BENZO(G,H,I)PERYLENE Butylbenzylphthalate Di-n-octylphthalate INDENO(1,2,3-CD)PYRENE NAPHTHALENE		0.70 0.96 1.2 7.1 11 0.88 1.3	1.7 1.7 1.7 18 18 1.7	PQL PQL PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-026-SA5DS-SS-0.0-0.5	ACENAPHTHYLENE BIS(2-ETHYLHEXYL)PHTHALATE NAPHTHALENE	J	0.48 9.0 0.99	1.7 18 1.7	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)

Lab Reporting Batch ID: DE253 Laboratory: LL

EDD Filename: DE253_v2. eQAPP Name: CDM_SSFL_110509

Method: 8270C SIM

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-027-SA5DS-SS-0.0-0.5	BENZO(A)ANTHRACENE BIS(2-ETHYLHEXYL)PHTHALATE PHENANTHRENE PYRENE	J J J	3.9 33 4.5 7.4	8.4 90 8.4 8.4	PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-028-SA5DS-SS-0.0-0.5	BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(K)FLUORANTHENE CHRYSENE FLUORANTHENE PYRENE	) ) ) )	0.80 1.1 0.72 1.1 0.86 0.82	1.7 1.7 1.7 1.7 1.7	PQL PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-029-SA5DS-SS-0.0-0.5	BENZO(A)ANTHRACENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BIS(2-ETHYLHEXYL)PHTHALATE Di-n-octylphthalate INDENO(1,2,3-CD)PYRENE	) ) )	1.3 1.2 1.2 10 7.5 0.76	1.7 1.7 1.7 19 19	PQL PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-030-SA5DS-SS-0.0-0.5	BIS(2-ETHYLHEXYL)PHTHALATE INDENO(1,2,3-CD)PYRENE NAPHTHALENE PHENANTHRENE	J J J	13 0.94 0.99 1.4	18 1.7 1.7 1.7	PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-032-SA5DS-SS-0.0-0.5	1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE ANTHRACENE BENZO(G,H,I)PERYLENE Di-n-octylphthalate INDENO(1,2,3-CD)PYRENE NAPHTHALENE		0.84 0.81 0.57 1.3 9.6 1.4	1.7 1.7 1.7 1.7 18 1.7	PQL PQL PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)

1/6/2012 10:17:32 AM ADR version 1.4.0.111 Page 5 of 5

LDC #: 26859W4 VALIDATION COMPLETENESS WORKSHEET

SDG #: DE253 ADR P
Laboratory: Lancaster Laboratories Revie

Date: 17/30/11
Page: 1 of 1
Reviewer: 2nd Reviewer: 4

METHOD: Metals (EPA SW 846 Method 6010B/6020A/7000)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	N	Sampling dates:
11.	ICP/MS Tune	ν,	
III.	Calibration	N	
IV.	Blanks	5w	
V.	ICP Interference Check Sample (ICS) Analysis	N	oh, Mg, Mr, -
VI.	Matrix Spike Analysis	Lund	Al, Ba, ca, G, Fe, 1) 1, V, In 7
VII.	Duplicate Sample Analysis	NÁ	CALHELIX (145)
VIII.	Laboratory Control Samples (LCS)	N Å-	skm
IX.	Internal Standard (ICP-MS)	N	
X.	Furnace Atomic Absorption QC	N	12.0
XI.	ICP Serial Dilution	SW	Ba, G, 1b, N; V, Th Jlug (1-15)
XII.	Sample Result Verification	N	, , , , , , , , , , , , , , , , , , , ,
XIII.	Overall Assessment of Data	N	
XIV.	Field Duplicates		
XV	Field Blanks	N	

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate TB = Trip blank

EB = Equipment blank

Validated Samples:

SL-001-SA3-SS-0.0-0.5	11	SL-032-SA5DS-SS-0.0-0.5	21	St-of	31	
SL-002-SA3-SS-0.0-0.5	12	DUP01-SA5DS-QC-092611	22		32	
SL-002-SA5DS-SS-0.0-0.5	13	SL-001-SA5DS-SS-0.0-0.5MS	23		33	
SL-001-SA5DS-SS-0.0-0.5	14	SL-001-SA5DS-SS-0.0-0.5MSD	24		34	
SL-026-SA5DS-SS-0.0-0.5	15	SL-001-SA5DS-SS-0.0-0.5DUP	25		35	
SL-027-SA5DS-SS-0.0-0.5	167	5L-028-SA7-SB7	9 ₂₆	-910	36	
SL-028-SA5DS-SS-0.0-0.5	17		27		37	
SL-029-SA5DS-SS-0.0-0.5	18		28		38	
SL-030-SA5DS-SS-0.0-0.5	19		29		39	
SL-031-SA5DS-SS-0.0-0.5	20		30		40	
	SL-002-SA3-SS-0.0-0.5 SL-002-SA5DS-SS-0.0-0.5 SL-001-SA5DS-SS-0.0-0.5 SL-026-SA5DS-SS-0.0-0.5 SL-027-SA5DS-SS-0.0-0.5 SL-028-SA5DS-SS-0.0-0.5 SL-029-SA5DS-SS-0.0-0.5	SL-002-SA3-SS-0.0-0.5 12 SL-002-SA5DS-SS-0.0-0.5 13 SL-001-SA5DS-SS-0.0-0.5 14 SL-026-SA5DS-SS-0.0-0.5 15 SL-027-SA5DS-SS-0.0-0.5 16 SL-028-SA5DS-SS-0.0-0.5 17 SL-029-SA5DS-SS-0.0-0.5 18 SL-030-SA5DS-SS-0.0-0.5 19	SL-002-SA3-SS-0.0-0.5       12       DUP01-SA5DS-QC-092611         SL-002-SA5DS-SS-0.0-0.5       13       SL-001-SA5DS-SS-0.0-0.5MS         SL-001-SA5DS-SS-0.0-0.5       14       SL-001-SA5DS-SS-0.0-0.5MSD         SL-026-SA5DS-SS-0.0-0.5       15       SL-001-SA5DS-SS-0.0-0.5DUP         SL-027-SA5DS-SS-0.0-0.5       16       SL-028-SA1-SB         SL-028-SA5DS-SS-0.0-0.5       17         SL-029-SA5DS-SS-0.0-0.5       18         SL-030-SA5DS-SS-0.0-0.5       19	SL-002-SA3-SS-0.0-0.5       12       DUP01-SA5DS-QC-092611       22         SL-002-SA5DS-SS-0.0-0.5       13       SL-001-SA5DS-SS-0.0-0.5MS       23         SL-001-SA5DS-SS-0.0-0.5       14       SL-001-SA5DS-SS-0.0-0.5MSD       24         SL-026-SA5DS-SS-0.0-0.5       15       SL-001-SA5DS-SS-0.0-0.5DUP       25         SL-027-SA5DS-SS-0.0-0.5       16       SL-028-SA1DS-SS-0.0-0.5DUP       26         SL-028-SA5DS-SS-0.0-0.5       17       27         SL-029-SA5DS-SS-0.0-0.5       18       28         SL-030-SA5DS-SS-0.0-0.5       19       29	SL-002-SA3-SS-0.0-0.5       12       DUP01-SA5DS-QC-092611       22         SL-002-SA5DS-SS-0.0-0.5       13       SL-001-SA5DS-SS-0.0-0.5MS       23         SL-001-SA5DS-SS-0.0-0.5       14       SL-001-SA5DS-SS-0.0-0.5MSD       24         SL-026-SA5DS-SS-0.0-0.5       15       SL-001-SA5DS-SS-0.0-0.5DUP       25         SL-027-SA5DS-SS-0.0-0.5       16	SL-002-SA3-SS-0.0-0.5       12       DUP01-SA5DS-QC-092611       22       32         SL-002-SA5DS-SS-0.0-0.5       13       SL-001-SA5DS-SS-0.0-0.5MS       23       33         SL-001-SA5DS-SS-0.0-0.5       14       SL-001-SA5DS-SS-0.0-0.5MSD       24       34         SL-026-SA5DS-SS-0.0-0.5       15       SL-001-SA5DS-SS-0.0-0.5DUP       25       35         SL-027-SA5DS-SS-0.0-0.5       16X       SL-028-SA1-SB       26       9       36         SL-028-SA5DS-SS-0.0-0.5       17       27       37         SL-029-SA5DS-SS-0.0-0.5       18       28       38         SL-030-SA5DS-SS-0.0-0.5       19       29       39

Notes:	+ + 1b.	butch	with	12 xt/	(ser	123	In Ms/Ms,	+14
-	grdi)	pley)			,		7.77	, ,

LDC #: 26859W4

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Page:___ 2nd Reviewer:

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000)

Reason: B Soil preparation factor applied: 100X Associated Samples: 16

Sample	Sample Concentration units, unless otherwise noted: mg/Kg	on units, un	less otherwi	ise noted:	Concentration units, unless otherwise noted: mg/Kg	Υ	ssociated Samples: 16	oles: 1		Reason: B			$\bigcup$	
							•							
Analyte	Analyte Maximum Maximum PB³ ICB/CCB³ (mg/Kg) (ug/L)	Maximum PB³ (ug/L)	Maximum ICB/CCB ^a (ug/L)	Action Limit	16				:					
Zr			7.5	3.75	0.77									
Sample	Sample Concentration units unless otherwise noted: ma/Ka	lun is un	less ofherwi	ise noted:	ma/Ka	Ass	ssociated Samples: 1-6	.t .selc	ې	Reason. B				

:	
	-
5	2.5
·	$\vdash$
2	4
	~
~	2.9
ig n	4
Action Limit	6.4
Ε'n	
Maximum ICB/CCB ^a (ug/L)	12.8
May ICB	
£ 7	
Maximum PB ³ I	
num (4 Kg)	
Maximum PB ^a (mg/Kg)	
rte N	Щ
Analyte	
Ā	Zr

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.



QUALITY ASSURANCE SUMMARY

FORM 5A (MS/MSD)

Level (low/med): LOW MATRIX SPIKE/MATRIX SPIKE DUPLICATE SDG No.: DE253 Matrix: SOIL Level (low/med)

Matrix Spike Duplicate Lab Sample ID: 6419493MSD

Matrix Spike Lab Sample ID: 6419492MS

Background Lab Sample ID: 6419491BKG \$ Solids for Sample: 99.3

Batch Id(s):	. P2	P27108A, P27126A, E	P27111C								
		BKG Sample	MS Sample	MSD Sample	MS Spike	MSD Spike	MS	MSD		Control Li	Limit
Analyte	Mass	Result C	Result C	Result C	Added	Added Units	<b>%</b> R  Q	%R Q	RPD Q		RPD M
Aluminum		12168,5791	14058.4258	14074.8018	199.4157	199.4157 MG/KG	948	926	0	ンペ×	20P
Antimony	121	0.4360	1.0850	1.0320	1.2085	1.1965 MG/KG		N 05	5	75 - 125	20 MS
Arsenic	75	7.3633	11,1259	10.3577		1.9942 MG/KG	187 N	150 N	7	75 - 125	20 MS
- Barium	137	69.4272	82,8399	82.4983	10.0705	9.9708 MG/KG	133	τετ	0	ノイベー	20MS
Beryllium	6	0.4014	1.0512	1.0082	0.8056	0.7977 MG/KG	18	16	7	75 - 125	20 MS
Boron		7.4884	191.7990	194.7903	199.4157	199.4157 MG/KG	92	76	2	84 - 115	20P
Cadmium	111	0.2944	1.7301	1.7158	1.0070	0.9971 MG/KG	3 143 N	143 N	Т	75 - 125	20MS
Calcium		5159.4532	6497.2879	6192.8689	398.8314	398.8314 MG/KG	335	259	2	ノやく	20P
- Chromium	52	54.1635	72.3666	70.5134	10.0705	9.9708 MG/KG		164	3	ンナメー	20MS
Cobalt	59	7.4225	64.0483	63,8928	50.3525	49.8539 MG/KG	112	113	0	75 - 125	20MS
Copper	63	7.3673	20.6042	20.7392	10.0705	9.9708 MG/KG	131 N		T	75 - 125	20MS
Iron		22864.4179	23193.1969	23625.6678	99.7079	99,7079 MG/KG	L	763	2	とそえ	20P
_Lead	208	40.0648	40.2618	43.5524	3.0211	2.9912 MG/KG	7	117	8	<b>→</b>	20MS
Lithium		16.2296	112.4804	112.6878	99.7079	99.7079 MG/KG	76	46	0	82 - 114	20 P
Magnesium		5632.2256	5918.5716	6015.4428	199,4157	199.4157 MG/KG	3 144	192	2	ンゲイ	20 P
-Manganese		305,2860	357,6940	366.4014	49,8539	49.8539 MG/KG	1	123	7	1	20P
Mercury		0.0133B	0.1407	0.1643	0.1623	0.1651 MG/KG		91	15	65 - 135	20 CV
Molybdenum	98	0.7573	15.3938	15.4148	10.0705	9.9708 MG/KG	3 145 N	147 N	0	75 - 125	20 MS
Nickel	09	14.0533	28.8218	28.2971	10.0705		147 N	τ	2	75 - 125	20 MS
Phosphorus		878.3323	980.7474	971.1236	99,7079			66	П		20P
Potassium		1758.4713	2999.8046	3000.9053	997.0786	997.0786 MG/KG		125	0	75 - 125	20 P
Selenium	78	0.2571B	3.0232	2.9553	2.0141	1.9942 MG/KG		135N	77	75 - 125	20 MS
Silver	107	0	14.0262	14.0349	10.0705		3 139 N	140 N	ō	75 - 125	20MS
Sodium		123.9537	1135.3813	1135,9038	997.0786	997.	1	101	0	1	20 P
Strontium		21.9869	119.6634	121.0942	99.7079	. 66	3 98	66	ᆔ	ا ا	20P
Thallium	203	0.1719	. 0.7112	0.7340	0.4028	0.3988 MG/KG	3 134 N	141 N	ო	75 - 125	20MS
Tin		3.0020 B	364,0164	366,1302	398,8314	398.8314 MG/KG	3 91	91	п	80 - 110	20P
Titanium		1242.7865	1769.9142	1788.7978		99.7079 MG/KG	529	548	ı	イルメ	20P
-Vanadium	51	98.0985	119.5972	118,2136	10.0705	9.9708 MG/KG	3 213	202	러		20MS
Zinc	99	72.7248	85.1360	85.7687	10.0705		3 123	131	H	>	20MS
mriuc	43	12.5196	106.5239	106.2347	99,7079		3 94	94	0	75 - 125	20F
	E2!										
METHODS:	3					CONCENT	CONCENTRATION O	OUALIFIERS	  		
						- 1		1			

N = Matrix Spike OOS, * = Duplicate OOS

U= Below MDL, B= Below LOQ CONCENTRATION QUALIFIERS:

FLAGS:

Cold Vapor Atomic Fluorescence

Cold Vapor

11 II ડ Ā

P = ICP Atomic Emission Spectrometer
MS = ICP Mass Spectrometry

# **SAMPLE DELIVERY GROUP**

**DE256** 

# Attachment I

**Sample ID Cross Reference and Data Review Level** 

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
27-Sep-2011	SL-025-SA5DS-SS-0.0-0.5	6421297	N	3050B	6010B	III
27-Sep-2011	SL-025-SA5DS-SS-0.0-0.5	6421297	N	3050B	6020	Ш
27-Sep-2011	SL-025-SA5DS-SS-0.0-0.5	6421297	N	3060A	7199	Ш
27-Sep-2011	SL-025-SA5DS-SS-0.0-0.5	6421297	N	3550B	8081A	III
27-Sep-2011	SL-025-SA5DS-SS-0.0-0.5	6421297	N	3550B	8082	111
27-Sep-2011	SL-025-SA5DS-SS-0.0-0.5	6421297	N	3550B	8151A	Ш
27-Sep-2011	SL-025-SA5DS-SS-0.0-0.5	6421297	N	3550B	8270C	III
27-Sep-2011	SL-025-SA5DS-SS-0.0-0.5	6421297	N	3550B	8270C SIM	Ш
27-Sep-2011	SL-025-SA5DS-SS-0.0-0.5	6421297	N	METHOD	300.0	III
27-Sep-2011	SL-025-SA5DS-SS-0.0-0.5	6421297	N	METHOD	314.0	111
27-Sep-2011	SL-025-SA5DS-SS-0.0-0.5	6421297	N	METHOD	7471A	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	3050B	6010B	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	3050B	6020	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	3060A	7199	Ш
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	3546	1625C	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	3550B	8015B	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	3550B	8015M	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	3550B	8082	Ш
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	3550B	8270C	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	3550B	8270C SIM	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	5035	8015M	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	METHOD	300.0	411
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	METHOD	314.0	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	METHOD	7471A	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	METHOD	8015B	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	METHOD	8015 <b>M</b>	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
27-Sep-2011	SL-103-SA7-SB-4.0-5.0	6421299	N	METHOD	8315A	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	3050B	6010B	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	3050B	6020	Ш
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	3060A	7199	Ш
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	3546	1625C	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	мѕ	3550B	8015B	Ш
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	3550B	8015M	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	3550B	8082	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	3550B	8270C	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	3550B	8270C SIM	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	5035	8015M	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	METHOD	300.0	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	METHOD	314.0	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	METHOD	7471A	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	METHOD	8015B	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	METHOD	8015M	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MS	6421300	MS	METHOD	8315A	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MSD	6421301	MSD	3050B	6010B	Ш
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MSD	6421301	MSD	3050B	6020	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MSD	6421301	MSD	3546	1625C	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MSD	6421301	MSD	3550B	8015B	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MSD	6421301	MSD	3550B	8015M	Ш
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MSD	6421301	MSD	3550B	8082	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MSD	6421301	MSD	3550B	8270C	Ш
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MSD	6421301	MSD	3550B	8270C SIM	Ш
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MSD	6421301	MSD	5035	8015M	#11

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MSD	6421301	MSD	METHOD	7471A	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MSD	6421301	MSD	METHOD	8015B	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MSD	6421301	MSD	METHOD	8015M	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0MSD	6421301	MSD	METHOD	8315A	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0DUP	6421302	DUP	3050B	6010B	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0DUP	6421302	DUP	3050B	6020	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0DUP	6421302	DUP	3060A	7199	111
27-Sep-2011	SL-103-SA7-SB-4.0-5.0DUP	6421302	DUP	METHOD	300.0	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0DUP	6421302	DUP	METHOD	314.0	III
27-Sep-2011	SL-103-SA7-SB-4.0-5.0DUP	6421302	DUP	METHOD	7471A	III
27-Sep-2011	SL-024-SA5DS-SS-0.0-0.5	6421296	N	3050B	6010B	Ш
27-Sep-2011	SL-024-SA5DS-SS-0.0-0.5	6421296	N	3050B	6020	III
27-Sep-2011	SL-024-SA5DS-SS-0.0-0.5	6421296	N	3060A	7199	III
27-Sep-2011	SL-024-SA5DS-SS-0.0-0.5	6421296	N	3550B	8081A	III
27-Sep-2011	SL-024-SA5DS-SS-0.0-0.5	6421296	N	3550B	8082	III
27-Sep-2011	SL-024-SA5DS-SS-0.0-0.5	6421296	N	3550B	8151A	III
27-Sep-2011	SL-024-SA5DS-SS-0.0-0.5	6421296	N	3550B	8270C	III
27-Sep-2011	SL-024-SA5DS-SS-0.0-0.5	6421296	N	3550B	8270C SIM	III
27-Sep-2011	SL-024-SA5DS-SS-0.0-0.5	6421296	N	METHOD	300.0	III
27-Sep-2011	SL-024-SA5DS-SS-0.0-0.5	6421296	N	METHOD	314.0	Ш
27-Sep-2011	SL-024-SA5DS-SS-0.0-0.5	6421296	N	METHOD	7471A	111
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	3050B	6010B	131
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	3050B	6020	III
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	3060A	7199	181
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	3546	1625C	III
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	3550B	8015B	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	3550B	8015M	III
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	3550B	8082	Ш
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	3550B	8270C	Ш
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	3550B	8270C SIM	Ш
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	5035	8015M	Ш
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	METHOD	300.0	Ш
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	METHOD	314.0	Ш
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	METHOD	7471A	Ш
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	METHOD	8015B	Ш
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	METHOD	8015M	Ш
27-Sep-2011	DUP-09-SA7-QC-092711	6421311	FD	METHOD	8315A	Ш
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	3050B	6010B	III
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	3050B	6020	Ш
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	3060A	7199	111
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	3546	1625C	III
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	3550B	8015B	III
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	3550B	8015M	III
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	3550B	8082	III
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	3550B	8270C	III
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	3550B	8270C SIM	Ħ
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	5035	8015M	Ш
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	METHOD	300.0	Ш
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	METHOD	314.0	Ш
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	METHOD	7471A	Ш
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	METHOD	8015B	III
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	METHOD	8015M	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
27-Sep-2011	SL-103-SA7-SB-9.0-10.0	6421305	N	METHOD	8315A	111
27-Sep-2011	SL-023-SA5DS-SS-0.0-0.5	6421295	N	3050B	6010B	111
27-Sep-2011	SL-023-SA5DS-SS-0.0-0.5	6421295	N	3050B	6020	111
27-Sep-2011	SL-023-SA5DS-SS-0.0-0.5	6421295	N	3060A	7199	111
27-Sep-2011	SL-023-SA5DS-SS-0.0-0.5	6421295	N	3550B	8081A	Ш
27-Sep-2011	SL-023-SA5DS-SS-0.0-0.5	6421295	N	3550B	8082	111
27-Sep-2011	SL-023-SA5DS-SS-0.0-0.5	6421295	N	3550B	8151A	111
27-Sep-2011	SL-023-SA5DS-SS-0.0-0.5	6421295	N	3550B	8270C	111
27-Sep-2011	SL-023-SA5DS-SS-0.0-0.5	6421295	N	3550B	8270C SIM	111
27-Sep-2011	SL-023-SA5DS-SS-0.0-0.5	6421295	N	METHOD	300.0	Ш
27-Sep-2011	SL-023-SA5DS-SS-0.0-0.5	6421295	N	METHOD	314.0	III
27-Sep-2011	SL-023-SA5DS-SS-0.0-0.5	6421295	N	METHOD	7471A	Ш
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	3050B	6010B	111
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	3050B	6020	III
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	3060A	7199	Ш
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	3546	1625C	Ш
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	3550B	8015B	Ш
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	3550B	8015M	111
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	3550B	8082	111
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	3550B	8270C	III
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	3550B	8270C SIM	Ш
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	5035	8015M	Ш
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	METHOD	300.0	III
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	METHOD	314.0	Ш
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	METHOD	7471A	111
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	METHOD	8015B	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	METHOD	8015M	
27-Sep-2011	SL-172-SA7-SB-4.0-5.0	6421309	N	METHOD	8315A	III
27-Sep-2011	SL-019-SA5DS-SS-0.0-0.5	6421291	N	3050B	6010B	111
27-Sep-2011	SL-019-SA5DS-SS-0.0-0.5	6421291	N	3050B	6020	III
27-Sep-2011	SL-019-SA5DS-SS-0.0-0.5	6421291	N	3060A	7199	111
27-Sep-2011	SL-019-SA5DS-SS-0.0-0.5	6421291	N	3550B	8081A	Ш
27-Sep-2011	SL-019-SA5DS-SS-0.0-0.5	6421291	N	3550B	8082	111
27-Sep-2011	SL-019-SA5DS-SS-0.0-0.5	6421291	N	3550B	8151A	III
27-Sep-2011	SL-019-SA5DS-SS-0.0-0.5	6421291	N	3550B	8270C	111
27-Sep-2011	SL-019-SA5DS-SS-0.0-0.5	6421291	N	3550B	8270C SIM	111
27-Sep-2011	SL-019-SA5DS-SS-0.0-0.5	6421291	N	METHOD	300.0	111
27-Sep-2011	SL-019-SA5DS-SS-0.0-0.5	6421291	N	METHOD	314.0	111
27-Sep-2011	SL-019-SA5DS-SS-0.0-0.5	6421291	N	METHOD	7471A	Ш
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	3050B	6010B	Ш
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	3050B	6020	Ш
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	3060A	7199	Ш
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	3546	1625C	ill
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	3550B	8015B	III
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	3550B	8015M	Ш
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	3550B	8082	III
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	3550B	8270C	111
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	3550B	8270C SIM	III
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	5035	8015M	111
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	METHOD	300.0	311
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	METHOD	314.0	Ш
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	METHOD	7471A	111

	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	METHOD	8015B	III
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	METHOD	8015M	111
27-Sep-2011	SL-172-SA7-SB-9.0-10.0	6421310	N	METHOD	8315A	111
27-Sep-2011	SL-020-SA5DS-SS-0.0-0.5	6421292	N	3050B	6010B	Ш
27-Sep-2011	SL-020-SA5DS-SS-0.0-0.5	6421292	N	3050B	6020	181
27-Sep-2011	SL-020-SA5DS-SS-0.0-0.5	6421292	N	3060A	7199	111
27-Sep-2011	SL-020-SA5DS-SS-0.0-0.5	6421292	N	3550B	8081A	HI
27-Sep-2011	SL-020-SA5DS-SS-0.0-0.5	6421292	N	3550B	8082	111
27-Sep-2011	SL-020-SA5DS-SS-0.0-0.5	6421292	N	3550B	8151A	Ш
27-Sep-2011	SL-020-SA5DS-SS-0.0-0.5	6421292	N	3550B	8270C	Ш
27-Sep-2011	SL-020-SA5DS-SS-0.0-0.5	6421292	N	3550B	8270C SIM	III
27-Sep-2011	SL-020-SA5DS-SS-0.0-0.5	6421292	N	METHOD	300.0	III
27-Sep-2011	SL-020-SA5DS-SS-0.0-0.5	6421292	N	METHOD	314.0	III
27-Sep-2011	SL-020-SA5DS-SS-0.0-0.5	6421292	N	METHOD	7471A	111
27-Sep-2011	SL-006-SA5DS-SS-0.0-0.5	6421290	N	3050B	6010B	111
27-Sep-2011	SL-006-SA5DS-SS-0.0-0.5	6421290	N	3050B	6020	III
27-Sep-2011	SL-006-SA5DS-SS-0.0-0.5	6421290	N	3060A	7199	Ш
27-Sep-2011	SL-006-SA5DS-SS-0.0-0.5	6421290	N	3550B	8081A	Ш
27-Sep-2011	SL-006-SA5DS-SS-0.0-0.5	6421290	N	3550B	8082	Ш
27-Sep-2011	SL-006-SA5DS-SS-0.0-0.5	6421290	N	3550B	8151A	III
27-Sep-2011	SL-006-SA5DS-SS-0.0-0.5	6421290	N	3550B	8270C	Ш
27-Sep-2011	SL-006-SA5DS-SS-0.0-0.5	6421290	N	3550B	8270C SIM	Ш
27-Sep-2011	SL-006-SA5DS-SS-0.0-0.5	6421290	N	METHOD	300.0	III
27-Sep-2011	SL-006-SA5DS-SS-0.0-0.5	6421290	N	METHOD	314.0	Ш
27-Sep-2011	SL-006-SA5DS-SS-0.0-0.5	6421290	N	METHOD	7471A	Ш
27-Sep-2011	SL-021-SA5DS-SS-0.0-0.5	6421293	N	3050B	6010B	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
27-Sep-2011	SL-021-SA5DS-SS-0.0-0.5	6421293	N	3050B	6020	III
27-Sep-2011	SL-021-SA5DS-SS-0.0-0.5	6421293	N	3060A	7199	111
27-Sep-2011	SL-021-SA5DS-SS-0.0-0.5	6421293	N	3550B	8081A	111
27-Sep-2011	SL-021-SA5DS-SS-0.0-0.5	6421293	N	3550B	8082	III
27-Sep-2011	SL-021-SA5DS-SS-0.0-0.5	6421293	N	3550B	8151A	Ш
27-Sep-2011	SL-021-SA5DS-SS-0.0-0.5	6421293	N	3550B	8270C	Ш
27-Sep-2011	SL-021-SA5DS-SS-0.0-0.5	6421293	N	3550B	8270C SIM	III
27-Sep-2011	SL-021-SA5DS-SS-0.0-0.5	6421293	N	METHOD	300.0	Ш
27-Sep-2011	SL-021-SA5DS-SS-0.0-0.5	6421293	N	METHOD	314.0	III
27-Sep-2011	SL-021-SA5DS-SS-0.0-0.5	6421293	N	METHOD	7471A	Ш
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	3050B	6010B	III
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	3050B	6020	III
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	3060A	7199	III
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	3546	1625C	III
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	3550B	8015B	III
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	3550B	8015M	. III
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	3550B	8082	III
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	3550B	8270C	III
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	3550B	8270C SIM	III
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	METHOD	300.0	Ш
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	METHOD	314.0	Ш
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	METHOD	7471A	III
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	METHOD	8015B	III
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	METHOD	8015M	Ш
27-Sep-2011	SL-104-SA7-SB-4.0-5.0	6421306	N	METHOD	8315A	m
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	3050B	6010B	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	3050B	6020	III
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	3060A	7199	Ш
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	3546	1625C	Ш
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	3550B	8015B	Ш
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	3550B	8015M	Ш
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	3550B	8082	III
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	3550B	8270C	III
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	3550B	8270C SIM	Ш
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	METHOD	300.0	III
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	METHOD	314.0	III
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	METHOD	7471A	III
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	METHOD	8015B	111
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	METHOD	8015M	ill
27-Sep-2011	SL-104-SA7-SB-9.0-10.0	6421307	N	METHOD	8315A	Ш
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	3005A	6010B	111
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	3020A	6020	III
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	3510C	8015B	111
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	3510C	8015M	Ш
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	3510C	8082	Ш
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	3510C	8270C	III
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	3510C	8270C SIM	III
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	3520C	1625C	Ш
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	5030B	8015M	111
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	5030B	8260B	III
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	5030B	8260B SIM	111
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	8330	8330A	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	Gen Prep	300.0	III
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	Gen Prep	314.0	Ш
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	Gen Prep	7199	111
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	Gen Prep	8015B	ŧII
27-Sep-2011	EB-SA7-SB-092711	6421313	ЕВ	Gen Prep	8015M	III
27-Sep-2011	EB-SA7-SB-092711	6421313	ЕВ	METHOD	7470A	III
27-Sep-2011	EB-SA7-SB-092711	6421313	ЕВ	METHOD	8315A	III
27-Sep-2011	EB-SA7-SB-092711	6421313	EB	METHOD	9012B	III
27-Sep-2011	SL-005-SA5DS-SS-0.0-0.5	6421289	N	3050B	6010B	III
27-Sep-2011	SL-005-SA5DS-SS-0.0-0.5	6421289	N	3050B	6020	III
27-Sep-2011	SL-005-SA5DS-SS-0.0-0.5	6421289	N	3060A	7199	III
27-Sep-2011	SL-005-SA5DS-SS-0.0-0.5	6421289	N	3550B	8081A	tII
27-Sep-2011	SL-005-SA5DS-SS-0.0-0.5	6421289	N	3550B	8082	Ш
27-Sep-2011	SL-005-SA5DS-SS-0.0-0.5	6421289	N	3550B	8151A	III
27-Sep-2011	SL-005-SA5DS-SS-0.0-0.5	6421289	N	3550B	8270C	111
27-Sep-2011	SL-005-SA5DS-SS-0.0-0.5	6421289	N	3550B	8270C SIM	III
27-Sep-2011	SL-005-SA5DS-SS-0.0-0.5	6421289	N	METHOD	300.0	H
27-Sep-2011	SL-005-SA5DS-SS-0.0-0.5	6421289	N	METHOD	314.0	HI
27-Sep-2011	SL-005-SA5DS-SS-0.0-0.5	6421289	N	METHOD	7471A	Ш
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5	6421288	N	3050B	6010B	Ш
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5	6421288	N	3050B	6020	111
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5	6421288	N	3060A	7199	Ш
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5	6421288	N	3550B	8081A	111
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5	6421288	N	3550B	8082	111
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5	6421288	N	3550B	8151A	Ш
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5	6421288	N	3550B	8270C	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5	6421288	N	3550B	8270C SIM	III
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5	6421288	N	METHOD	300.0	III
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5	6421288	N	METHOD	314.0	III
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5	6421288	N	METHOD	7471A	III
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5DU	P421288D270805A	DUP	METHOD	314.0	111
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5DU	P421288D271643A	DUP	METHOD	300.0	111
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5MS	P421288R270828A	MS	METHOD	314.0	111
27-Sep-2011	SL-004-SA5DS-SS-0.0-0.5MS	P421288R271655A	MS	METHOD	300.0	III
27-Sep-2011	TB-092711	6421312	ТВ	5030B	8015 <b>M</b>	111
27-Sep-2011	SL-022-SA5DS-SS-0.0-0.5	6421294	N	3050B	6010B	111
27-Sep-2011	SL-022-SA5DS-SS-0.0-0.5	6421294	N	3050B	6020	111
27-Sep-2011	SL-022-SA5DS-SS-0.0-0.5	6421294	N	3060A	7199	111
27-Sep-2011	SL-022-SA5DS-SS-0.0-0.5	6421294	N	3550B	8081A	111
27-Sep-2011	SL-022-SA5DS-SS-0.0-0.5	6421294	N	3550B	8082	Ш
27-Sep-2011	SL-022-SA5DS-SS-0.0-0.5	6421294	N	3550B	8151A	Ш
27-Sep-2011	SL-022-SA5DS-SS-0.0-0.5	6421294	N	3550B	8270C	111
27-Sep-2011	SL-022-SA5DS-SS-0.0-0.5	6421294	N	3550B	8270C SIM	111
27-Sep-2011	SL-022-SA5DS-SS-0.0-0.5	6421294	N	METHOD	300.0	Ш
27-Sep-2011	SL-022-SA5DS-SS-0.0-0.5	6421294	N	METHOD	314.0	III
27-Sep-2011	SL-022-SA5DS-SS-0.0-0.5	6421294	N	METHOD	7471A	Ш
27-Sep-2011	SL-105-SA7-SB-4.0-5.0	6421308	N	3050B	6010B	Ш
27-Sep-2011	SL-105-SA7-SB-4.0-5.0	6421308	N	3050B	6020	Ш
27-Sep-2011	SL-105-SA7-SB-4.0-5.0	6421308	N	3060A	7199	111
27-Sep-2011	SL-105-SA7-SB-4.0-5.0	6421308	N	3546	1625C	111
27-Sep-2011	SL-105-SA7-SB-4.0-5.0	6421308	N	3550B	8015B	111
27-Sep-2011	SL-105-SA7-SB-4.0-5.0	6421308	N	3550B	8015M	Ш

Review Level
III
Ш
Ш
111
911
III
111
H
111
111
111
Ш
Ш
III
Ш
Ш
Ш
Ш
III
Ш

# **Attachment II**

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

Method: 300.0		Žaktini Žaktini	Ma	itrix:	so	ENTER OF			<b>4.4 %.</b> 6
Sample ID: DUP-09-SA7-QC-092711	Collec	ted: 9/27/2	011 8:45:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	2.4		0.84	MDL	1.1	PQL	mg/Kg	J	Q
Nitrate-NO3	0.84	U	0.84	MDL	1.6	PQL	mg/Kg	UJ	FD
Sample ID: SL-004-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 2:15:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	2.0		0.82	MDL	1.0	PQL	mg/Kg	J	Q
Sample ID: SL-005-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 1:50:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
FLUORIDE	1.3		0.82	MDL	1.0	PQL	mg/Kg	J	Q
Sample ID: SL-006-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 11:30	:00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	1.5		0.82	MDL	1.0	PQL	mg/Kg	J	Q
Sample ID: SL-019-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 10:45	:00 A	nalysis T	ype: RES	•		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	1.3		0.81	MDL	1.0	PQL	mg/Kg	J	Q
Sample ID: SL-020-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/20	011 11:10	:00 A	nalysis Tj	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	1.8		0.81	MDL	1.0	PQL	mg/Kg	J	Q
Sample ID: SL-021-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/20	011 11:50	:00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	1.5		0.82	MDL	1.0	PQL	mg/Kg	J	Q

Method Category: GENCHEM

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/16/2012 1:17:02 PM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE256

Laboratory: LL

Page 2 of 33

EDD Filename: PrepDE256_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM		144							100
Method: 300.0	Markins		Ma	itrix:	so	المطالفي			المار المعادد والمسا
Sample ID: SL-022-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 2:40:0	00 A	nalysis T _j	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	0.83	U	0.83	MDL	1.0	PQL	mg/Kg	υJ	Q
Sample ID: SL-023-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 9:15:0	00 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	1.7		0.83	MDL	1.0	PQL	mg/Kg	J	Q
Sample ID: SL-024-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 8:45:0	00 A	nalysis Ty	pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	0.82	υ	0.82	MDL	1.0	PQL	mg/Kg	υJ	Q
Sample ID: SL-025-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 7:30:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	1.4		0.81	MDL	1.0	PQL	mg/Kg	J	Q
Sample ID: SL-038-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 3:00:0	00 A	nalysis T	pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	2.1		0.84	MDL	1.0	PQL	mg/Kg	J	Q
Sample ID: SL-103-SA7-SB-4.0-5.0	Collec	ted: 9/27/2	011 8:40:0	00 A	nalysis T	pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	3.7		0.84	MDL	1.1	PQL	mg/Kg	J	Q
Nitrate-NO3	1.7		0.84	MDL	1.6	PQL	mg/Kg	J	FD
Sample ID: SL-103-SA7-SB-9.0-10.0	Collec	ted: 9/27/2	011 8:55:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	3.0		0.88	MDL	1.1	PQL	mg/Kg	J	Q

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/16/2012 1:17:02 PM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

Sample ID: SL-104-SA7-SB	3-4.0-5.0		Collected	i: 9/27/2011 1	2:35:00	Analysis T	vne: RES		Dilution: 1	
Method:	300.0				Matrix:	so	Člost, spanost	علايط أولك	e deciden	
Method Category:	GENCHE	W			MIR.					

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	2.5		0.84	MDL	1.0	PQL	mg/Kg	J	Q

Sample ID: SL-104-SA7-SB-9.0-10.0	Collected: 9/27/2011 12:45:00				Analysis Ty	/pe: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	3.3		0.86	MDL	1.1	PQL	mg/Kg	J	Q

Sample ID: SL-105-SA7-SB-4.0-5.0	Collec	Collected: 9/27/2011 2:45:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	2.9		0.81	MDL	1.0	PQL	mg/Kg	J	Q
Nitrate-NO3	0.96	J	0.81	MDL	1.5	PQL	ma/Ka	J	7

Sample ID: 5L-172-5A7-5B-4.0-5.0	Collected: 9/2//2011 10:35:00				analysis I	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	2.7		0.88	MDL	1.1	PQL	mg/Kg	J	Q	

Sample ID: SL-172-SA7-SB-9.0-10.0	Collected: 9/27/2011 10:45:00				Analysis Ty	/pe: RES	·	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	3.5		0.87	MDL	11	PQL	mg/Kg	1	0	
LOOKIDE	0.0		0.07	INDL	1.1	FUL	mg/Kg	J	l u	

Method Category: METALS	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
meniou category. Michaed	
	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
Method: 6010B	Matrix: AQ

Sample ID: EB-SA7-SB-092711	Collec	Collected: 9/27/2011 1:00:00 Analysis Type: REA2						Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BORON	0.0039	J	0.0022	MDL	0.0500	PQL	mg/L	J	Z		
STRONTIUM	0.00023	J	0.00022	MDL	0.0050	PQL	mg/L	U	В		

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/16/2012 1:17:02 PM ADR version 1.4.0.111

Page 3 of 33

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

Method Category: METALS		
Method: 6010B	Matrix:	so

Sample ID: DUP-09-SA7-QC-092711  Analyte	Collec	Collected: 9/27/2011 8:45:00 Analysis Type: RES								
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CALCIUM	4210		2.48	MDL	19.8	PQL	mg/Kg	J	E	
SODIUM	81.8	J	5.90	MDL	99.1	PQL	mg/Kg	J	Z	
STRONTIUM	17.9		0.0248	MDL	0.496	PQL	mg/Kg	J	E	
TIN	0.615	J	0.317	MDL	9.91	PQL	mg/Kg	U	В	
Zirconium	1.13	J	0.456	MDL	4.96	PQL	mg/Kg	J	Z	

Sample ID: SL-004-SA5DS-SS-0.0-0.5  Analyte	Collec	Collected: 9/27/2011 2:15:00 Analysis Type: RES						Dilution: 1		
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CALCIUM	3540		2.52	MDL	20.1	PQL	mg/Kg	J	E	
SODIUM	93.6	J	5.99	MDL	101	PQL	mg/Kg	J	Z	
STRONTIUM	20.1		0.0252	MDL	0.504	PQL	mg/Kg	J	E	
TIN	1.04	J	0.322	MDL	10.1	PQL	mg/Kg	U	В	

Analyte	Collec	ted: 9/27/2	2011 1:50:0	0 A	nalysis T	/pe: RES			Dilution: 1
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CALCIUM	3540		2.51	MDL	20.1	PQL	mg/Kg	J	E
SODIUM	91.1	J	5.98	MDL.	101	PQL	mg/Kg	J	Z
STRONTIUM	20.9		0.0251	MDL	0.503	PQL	mg/Kg	J	E
TIN	1.06	J	0.322	MDL	10.1	PQL	mg/Kg	U	В
Zirconium	3.56	J	0.462	MDL	5.03	PQL	mg/Kg	J	Z

Sample ID: SL-006-SA5DS-SS-0.0-0.5  Analyte	Collec	Collected: 9/27/2011 11:30:00 Analysis Type: RES									
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
CALCIUM	3840		2.42	MDL	19.4	PQL	mg/Kg	J	E		
SODIUM	85.9	J	5.77	MDL.	97.0	PQL	mg/Kg	J	Z		
STRONTIUM	24.4		0.0242	MDL	0.485	PQL	mg/Kg	J	E		
TIN	0.816	J	0.310	MDL	9.70	PQL	mg/Kg	U	В		

Sample ID: SL-019-SA5DS-SS-0.0-0.5	Collected: 9/27/2011 10:45:00				Analysis T	ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CALCIUM	3250	•	2.49	MDL	19.9	PQL	mg/Kg	J	E

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE256

EDD Filename: PrepDE256_v1

EQAPP Name: CDM_SSFL_110509

Method Category: METALS

Method: 6010B Matrix: SO

Sample ID: SL-019-SA5DS-SS-0.0-0.5	Collec	Collected: 9/27/2011 10:45:00 Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SODIUM	86.7	J	5.93	MDL	99.7	PQL	mg/Kg	J	Z	
STRONTIUM	20.2		0.0249	MDL	0.499	PQL	mg/Kg	J	E	
TIN	0.959	J	0.319	MDL	9.97	PQL	ma/Ka	U	В	

Sample ID: SL-020-SA5DS-SS-0.0-0.5 Collected: 9/27/2011 11:10:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte Result Qual DL Туре RL Units Qual Code Туре CALCIUM 3440 2.49 MDL 19.9 **PQL** mg/Kg J Е SODIUM 88.1 J MDL 5.92 99.4 **PQL** mg/Kg J Z STRONTIUM 0.0249 mg/Kg 21.4 MDL 0.497 **PQL** J Ε NIT 0.969 J 0.318 MDL U 9.94 **PQL** mg/Kg В

Sample ID: SL-021-SA5DS-SS-0.0-0.5  Analyte	Collec	Collected: 9/27/2011 11:50:00 Analysis Type: RES								
	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
CALCIUM	3510		2.47	MDL	19.7	PQL	mg/Kg	J	E	
SODIUM	91.3	J	5.87	MDL	98.7	PQL	mg/Kg	J	Z	
STRONTIUM	23.6		0.0247	MDL	0.493	PQL	mg/Kg	J	E	
TIN	1.08	J	0.316	MDL	9.87	PQL	mg/Kg	U	В	
Zirconium	4.06	J	0.454	MDL	4.93	PQL	mg/Kg	J	Z	

Sample ID: SL-022-SA5DS-SS-0.0-0.5  Analyte	Collec	Collected: 9/27/2011 2:40:00 Analysis Type: RES							
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CALCIUM	3560		2.52	MDL	20.2	PQL	mg/Kg	J	E
SODIUM	83.9	J	6.00	MDL	101	PQL	mg/Kg	J	Z
STRONTIUM	23.1		0.0252	MDL	0.504	PQL	mg/Kg	J	E
TIN	1.03	J	0.323	MDL	10.1	PQL	ma/Ka	U	В

Sample ID: SL-023-SA5DS-SS-0.0-0.5	Collec	Collected: 9/27/2011 9:15:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
CALCIUM	3610		2.52	MDL	20.2	PQL	mg/Kg	J	E		
SODIUM	98.7	J	6.01	MDL	101	PQL.	mg/Kg	J	Z		
STRONTIUM	21.9		0.0252	MDL	0.505	PQL	mg/Kg	J	E		

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE256

Laboratory: LL

Page 6 of 33

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

Method C	ate	aorv	:	ME	TALS
Method:				601	nr 🗀

Matrix: SO

Sample ID: SL-023-SA5DS-SS-0.0-0.5	Collect	ed: 9/27/20	011 9:15:0	00 A	nalysis Ty	pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TIN	1.04	J	0.323	MDL	10.1	PQL	mg/Kg	U	В

Analysis Type: RES Sample ID: SL-024-SA5DS-SS-0.0-0.5 Collected: 9/27/2011 8:45:00 Dilution: 1 Data Lab Lab DLReview RLReason Analyte Qual Units Result DL Type RL Type Qual Code CALCIUM 4600 2.52 MDL **PQL** 20.1 mg/Kg J Ε STRONTIUM 20.5 0.0252 MDL 0.503 **PQL** mg/Kg Е TIN 0.857 J 0.322 MDL 10.1 PQL mg/Kg U В

Collected: 9/27/2011 7:30:00 Sample ID: SL-025-SA5DS-SS-0.0-0.5 Analysis Type: RES Dilution: 1 Data DL Lab Lab RLReview Reason Result Analyte Qual DL Туре RL Туре Units Qual Code CALCIUM 4700 2.53 MDL 20.2 **PQL** Е mg/Kg SODIUM 98.2 J 6.01 101 PQL MDL mg/Kg STRONTIUM 21.3 0.0253 0.505 J MDL **PQL** mg/Kg Е TIN 1.01 В 0.323 MDL 10.1 PQL mg/Kg U

Sample ID: SL-038-SA5DS-SS-0.0-0.5	Collec	Collected: 9/27/2011 3:00:00 Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CALCIUM	14300		2.47	MDL	19.8	PQL	mg/Kg	J	E	
SODIUM	85.8	J	5.88	MDL	98.8	PQL	mg/Kg	J	Z	
STRONTIUM	41.1		0.0247	MDL	0.494	PQL	mg/Kg	J	E	
TIN	0.592	J	0.316	MDL	9.88	PQL	mg/Kg	U	В	
Zirconium	4.84	J	0.455	MDL	4.94	PQL	mg/Kg	J	Z	

Sample ID: SL-103-SA7-SB-4.0-5.0	Collec	Collected: 9/27/2011 8:40:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CALCIUM	5170		2.57	MDL	20.6	PQL	mg/Kg	J	E
STRONTIUM	26.2		0.0257	MDL	0.514	PQL	mg/Kg	J	E
TIN	0.840	J	0.329	MDL	10.3	PQL	mg/Kg	U	В
Zirconium	1.38	J	0.473	MDL	5.14	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/16/2012 1:17:02 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

Method Category:

Method:

**METALS** 

6010B

Sample ID: SL-103-SA7-SB-9.0-10.0	Collected: 9/27/2011 8:55:00	Analysis Type: RES	Dilution: 1
•			

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CALCIUM	3320		2.65	MDL	21.2	PQL	mg/Kg	J	E
STRONTIUM	14.7		0.0265	MDL	0.529	PQL	mg/Kg	J	E
TIN	0.721	J	0.339	MDL	10.6	PQL	mg/Kg	U	В
Zirconium	0.905	J	0.487	MDL	5.29	PQL	mg/Kg	J	Z

Sample ID: SL-104-SA7-SB-4.0-5.0

Collected: 9/27/2011 12:35:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CALCIUM	3870		2.54	MDL	20.3	PQL	mg/Kg	J	E
SODIUM	82.2	J	6.04	MDL	101	PQL	mg/Kg	J	Z
STRONTIUM	17.4		0.0254	MDL	0.507	PQL	mg/Kg	J	E
TIN	0.751	J	0.325	MDL	10.1	PQL	mg/Kg	U	В
Zirconium	1.40	J	0.467	MDL	5.07	PQL	mg/Kg	J	Z

Sample ID: SL-104-SA7-SB-9.0-10.0

Collected: 9/27/2011 12:45:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CALCIUM	4070		2.65	MDL	21.2	PQL	mg/Kg	J	E
STRONTIUM	18.2		0.0265	MDL	0.531	PQL	mg/Kg	J	E
TIN	0.916	J	0.340	MDL	10.6	PQL	mg/Kg	υ	В
Zirconium	1.06	J	0.488	MDL	5.31	PQL	mg/Kg	J	Z

Sample ID: SL-105-SA7-SB-4.0-5.0

Collected: 9/27/2011 2:45:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CALCIUM	3260		2.56	MDL	20.5	PQL	mg/Kg	J	Е
SODIUM	71.3	J	6.09	MDL	102	PQL	mg/Kg	J	Z
STRONTIUM	14.1		0.0256	MDL	0.511	PQL	mg/Kg	J	E
TIN	1.02	J	0.327	MDL	10.2	PQL	mg/Kg	U	В
Zirconium	0.965	J	0.471	MDL	5.11	PQL	mg/Kg	J	Z

Sample ID: SL-172-SA7-SB-4.0-5.0

Collected: 9/27/2011 10:35:00

Analysis Type: RES

Dilution: 1

Page 7 of 33

									Diracioni,		
	Lab	Lab		DL		RL		Data Review	Reason		
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code		
CALCIUM	7950		2.61	MDL	20.9	PQL	mg/Kg	j	E		

^{*} denotes a non-reportable result

ADR version 1.4.0.111 1/16/2012 1:17:03 PM

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1 eQAPP Name: CDM_SSFL_110509

Method Category: METALS
Method: 6010B

Sample ID: SL-172-SA7-SB-4.0-5.0

Matrix: SC

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
STRONTIUM	43.5		0.0261	MDL	0.521	PQL	mg/Kg	J	Е
TIN	0.895	J	0.334	MDL	10.4	PQL	mg/Kg	υ	В
Zirconium	1.55	J	0.480	MDL	5.21	PQL	mg/Kg	J	Z

Collected: 9/27/2011 10:35:00

Sample ID: SL-172-SA7-SB-9.0-10.0 Collected: 9/27/2011 10:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CALCIUM	3920		2.73	MDL	21.8	PQL	mg/Kg	j	E
STRONTIUM	17.6		0.0273	MDL	0.545	PQL	mg/Kg	J	E
TIN	0.941	J	0.349	MDL	10.9	PQL	mg/Kg	U	В
Zirconium	1.23	J	0.502	MDL	5.45	PQL	mg/Kg	J	Z

Method Category: METALS

6020

Matrix: AQ

Sample ID: EB-SA7-SB-092711

Method:

Collected: 9/27/2011 1:00:00

Analysis Type: REA4

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
LEAD	0.00013	J	0.00008 0	MDL	0.0010	PQL	mg/L	U	В

Method Category: METALS
Method: 6020

Matrix: SO

Sample ID: DUP-09-SA7-QC-092711

Collected: 9/27/2011 8:45:00

Analysis Type: REA

Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.139	J	0.0580	MDL	0.400	PQL	mg/Kg	J	Z

Sample ID: DUP-09-SA7-QC-092711

Collected: 9/27/2011 8:45:00

Analysis Type: RES

Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.0740	U	0.0740	MDL	0.200	PQL	mg/Kg	UJ	Q, FD
CADMIUM	0.0950	J	0.0440	MDL	0.100	PQL	mg/Kg	J	Z
SILVER	0.0142	U	0.0142	MDL	0.100	PQL	mg/Kg	UJ	FD

^{*} denotes a non-reportable result

1/16/2012 1:17:03 PM ADR version 1.4.0.111 Page 8 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

EDD Filelianie. FlepDE230_VI						EWAL	r Maine	. CDIVI_S	SFL_110509
Method Category: METALS Method: 6020		1.0.1 <b>0</b> 0	Ma	trix:	so				
Sample ID: SL-004-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/20	011 2:15:0	00 A	nalysis Ty	pe: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.350	J	0.0584	MDL	0.403	PQL	mg/Kg	J	Z
Sample ID: SL-004-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/2	011 2:15:0	00 A	nalysis Ty	pe: RES		1	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.105	J	0.0745	MDL	0.201	PQL	mg/Kg	J	Z, Q
SILVER	0.0252	J	0.0143	MDL	0.101	PQL	mg/Kg	J	Z
Sample ID: SL-005-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/2	011 1:50:0	00 A	nalysis Ty	/pe: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.244	J	0.0561	MDL	0.387	PQL	mg/Kg	J	Z
Sample ID: SL-005-SA5DS-SS-0.0-0.5	Collect	Collected: 9/27/2011 1:50:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.112	J	0.0715	MDL	0.193	PQL	mg/Kg	J	Z, Q
SILVER	0.0236	J	0.0137	MDL	0.0967	PQL	mg/Kg	J	Z
Sample ID: SL-006-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/2	011 11:30	:00 A	nalysis Ty	ype: REA		ı	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.178	J	0.0585	MDL	0.403	PQL	mg/Kg	J	Z
Sample ID: SL-006-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/2	011 11:30	:00 A	nalysis T	ype: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.134	J	0.0746	MDL	0.202	PQL	mg/Kg	J	Z, Q
SILVER	0.0282	J	0.0143	MDL	0.101	PQL	mg/Kg	J	Z
Sample ID: SL-019-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 10:45	:00 A	nalysis T	ype: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.190	J	0.0584	MDL	0.403	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/16/2012 1:17:03 PM ADR version 1.4.0.111

Page 9 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM SSFL 110509

EDD Filename: PrepDE256_V1						eQAP	r name	e: CDIVI_S	SFL_110509
Method Category: METALS  Method: 6020		A-A	Ma	trix:	so				
Sample ID: SL-019-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 10:45	:00 A	nalysis T	/pe: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.0922	J	0.0745	MDL	0.201	PQL	mg/Kg	J	Z, Q
SILVER	0.0210	J	0.0143	MDL	0.101	PQL	mg/Kg	J	Z
Sample ID: SL-020-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 11:10:	:00 A	nalysis Ty	/pe: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.190	J	0.0588	MDL	0.406	PQL	mg/Kg	J	Z
Sample ID: SL-020-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/2	011 11:10:	:00 A	nalysis Ty	/pe: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.107	J	0.0751	MDL	0.203	PQL	mg/Kg	J	Z, Q
SILVER	0.0708	J	0.0144	MDL	0.101	PQL	mg/Kg	J	Z
Sample ID: SL-021-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/2	011 11:50:	:00 A	nalysis Ty	/pe: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.170	J	0.0572	MDL	0.395	PQL	mg/Kg	J	Z
Sample ID: SL-021-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/2	011 11:50:	:00 A	nalysis Ty	/pe: RES	,		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.100	J	0.0730	MDL	0.197	PQL	mg/Kg	J	Z, Q
SILVER	0.0207	J	0.0140	MDL	0.0987	PQL	mg/Kg	J	Z
Sample ID: SL-022-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/2	011 2:40:0	0 A	nalysis Ty	/pe: REA	•		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.217	J	0.0585	MDL	0.403	PQL	mg/Kg	J	Z
Sample ID: SL-022-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/2	011 2:40:0	0 A	nalysis Ty	/pe: RES	• • • • • • • • • • • • • • • • • • • •	•	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
			en a succession de la companya de la companya de la companya de la companya de la companya de la companya de l	regression and the second	4.000				
ANTIMONY	0.108	J	0.0746	MDL	0.202	PQL	mg/Kg	J	Z, Q

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/16/2012 1:17:03 PM ADR version 1.4.0.111

Page 10 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

Method Category: METALS  Method: 6020	All fair		Ma	trix:	so						
Sample ID: SL-023-SA5DS-SS-0.0-0.5	Collect	ed: 9/27/2	011 9:15:0	0 A	nalysis Ty	pe: REA		1	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
SELENIUM	0.259	J	0.0585	MDL	0.404	PQL	mg/Kg	J	Z		
Sample ID: SL-023-SA5DS-SS-0.0-0.5	Collect	ed: 9/27/20	011 9:15:0	0 A	nalysis Ty	pe: RES			Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ANTIMONY	0.111	J	0.0747	MDL	0.202	PQL	mg/Kg	J	Z, Q		
SILVER	0.0152	J	0.0143	MDL	0.101	PQL	mg/Kg	J	Z		
Sample ID: SL-024-SA5DS-SS-0.0-0.5	Collect	ed: 9/27/2	011 8:45:0	0 A	nalysis Ty	pe: REA		Dilution: 2			
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
SELENIUM	0.170	J	0.0578	MDL	0.399	PQL	mg/Kg	J	Z		
Sample ID: SL-024-SA5DS-SS-0.0-0.5	Collect	ed: 9/27/20	011 8:45:0	0 A	nalysis Ty	pe: RES			Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ANTIMONY	0.119	J	0.0737	MDL	0.199	PQL	mg/Kg	J	Z, Q		
				MDL							
SILVER	0.0169	J	0.0141	MDL	0.0996	PQL	mg/Kg	J	Z		
SILVER  Sample ID: SL-025-SA5DS-SS-0.0-0.5			0.0141	MDL	0.0996				Z Dilution: 2		
		J	0.0141	MDL	0.0996	PQL					
Sample ID: SL-025-SA5DS-SS-0.0-0.5	Collect Lab	J red: 9/27/20 Lab	0.0141 011 7:30:0	MDL 0 A	0.0996	PQL pe: REA	mg/Kg	Data Review	Dilution: 2  Reason		
Sample ID: SL-025-SA5DS-SS-0.0-0.5  Analyte	Lab Result	J ed: 9/27/20 Lab Qual	0.0141 011 7:30:0 DL 0.0564	MDL  O A  DL  Type  MDL	0.0996 nalysis Ty	PQL  **pe: REA  **RL  Type  PQL	mg/Kg  Units	Data Review Qual	Dilution: 2  Reason Code		
Sample ID: SL-025-SA5DS-SS-0.0-0.5  Analyte  SELENIUM	Lab Result	J ed: 9/27/20 Lab Qual J	0.0141 011 7:30:0 DL 0.0564	MDL  O A  DL  Type  MDL	0.0996  nalysis Ty  RL  0.389	PQL  **pe: REA  **RL  Type  PQL	mg/Kg  Units	Data Review Qual	Pilution: 2  Reason Code  Z		
Sample ID: SL-025-SA5DS-SS-0.0-0.5  Analyte SELENIUM  Sample ID: SL-025-SA5DS-SS-0.0-0.5	Lab Result 0.188 Collect	J Lab Qual J red: 9/27/20	0.0141 011 7:30:0 DL 0.0564 011 7:30:0	MDL  DL Type  MDL  O A	0.0996  nalysis Ty  RL  0.389  nalysis Ty	PQL  REA  RL Type  PQL  PQL  RES	mg/Kg  Units  mg/Kg	Data Review Qual J Data Review	Reason Code Z Dilution: 2 Reason		
Sample ID: SL-025-SA5DS-SS-0.0-0.5  Analyte  SELENIUM  Sample ID: SL-025-SA5DS-SS-0.0-0.5  Analyte	Lab Result 0.188 Collect Lab Result	J ed: 9/27/20 Lab Qual J ed: 9/27/20 Lab Qual	0.0141 011 7:30:0 DL 0.0564 011 7:30:0	MDL  O A  DL  Type  MDL  O A  DL  Type	0.0996  nalysis Ty  RL  0.389  nalysis Ty	PQL  REA  RL Type  PQL  rpe: RES  RL Type	mg/Kg  Units  mg/Kg  Units	Data Review Qual J Data Review Qual	Reason Code Z Dilution: 2 Reason Code		
Sample ID: SL-025-SA5DS-SS-0.0-0.5  Analyte  SELENIUM  Sample ID: SL-025-SA5DS-SS-0.0-0.5  Analyte  ANTIMONY	Lab Result  0.188  Collect Lab Result  0.133  0.0162	J Red: 9/27/20 Lab Qual J Red: 9/27/20 Lab Qual J	0.0141 011 7:30:0  DL 0.0564 011 7:30:0  DL 0.0719 0.0138	MDL  DL Type MDL  DL Type MDL  MDL  MDL  MDL  MDL	0.0996  nalysis Ty  RL  0.389  nalysis Ty  RL  0.194  0.0972	PQL  REA  RL Type  PQL  PQL  RES  RL Type  PQL	mg/Kg  Units mg/Kg  Units mg/Kg	Data Review Qual  J  Data Review Qual  J	Reason Code Z Dilution: 2 Reason Code Z, Q		
Sample ID: SL-025-SA5DS-SS-0.0-0.5  Analyte SELENIUM  Sample ID: SL-025-SA5DS-SS-0.0-0.5  Analyte ANTIMONY SILVER	Lab Result  0.188  Collect Lab Result  0.133  0.0162	J Red: 9/27/20 Lab Qual J Red: 9/27/20 Lab Qual J	0.0141 011 7:30:0  DL 0.0564 011 7:30:0  DL 0.0719 0.0138	MDL  DL Type MDL  DL Type MDL  MDL  MDL  MDL  MDL	0.0996  nalysis Ty  RL  0.389  nalysis Ty  RL  0.194  0.0972	PQL  REA  RL Type  PQL  PE: RES  RL Type  PQL  PQL  PQL	mg/Kg  Units mg/Kg  Units mg/Kg	Data Review Qual  J  Data Review Qual  J	Pollution: 2  Reason Code  Z  Dilution: 2  Reason Code  Z, Q Z		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/16/2012 1:17:03 PM ADR version 1.4.0.111

Page 11 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

Method Category: METALS	A LINE WATER		
Method: 6020	Matrix:	SO	والمسائلة

Sample ID: SL-038-5A5D5-55-0.0-0.5	Collect	ea: 9/2//2	Dilution: 2						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.122	J	0.0746	MDL	0.202	PQL	mg/Kg	J	Z, Q
SILVER	0.0234	J	0.0143	MDL	0.101	PQL	mg/Kg	J	Z

Sample ID: SL-103-SA7-SB-4.0-5.0	Collect	ted: 9/27/20	011 8:40:0	00 A	nalysis Ty	/pe: REA		Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	0.160	J	0.0608	MDL	0.419	PQL	mg/Kg	J	Z	

Sample ID: SL-103-SA7-SB-4.0-5.0	Collec	ted: 9/27/2	011 8:40:0	10 A	nalysis Ty	ype: RES	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.0944	J	0.0776	MDL	0.210	PQL	mg/Kg	J	Z, Q, FD
CADMIUM	0.0906	J	0.0461	MDL	0.105	PQL	mg/Kg	J	Z
SILVER	0.0234	J	0.0149	MDL	0.105	PQL	mg/Kg	J	Z, FD

Sample ID: SL-103-SA7-SB-9.0-10.0	Collect	ted: 9/27/2	011 8:55:0	00 🔏	Analysis T	ype: REA		Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
						- 11				
SELENIUM	0.113	J	0.0632	MDL	0.436	PQL	mg/Kg	J	Z	

Sample ID: SL-103-SA7-SB-9.0-10.0	Collec	ted: 9/27/2	:011 8:55:0	00 A	nalysis T	ype: RES	i		Dilution: 2		
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ANTIMONY	0.0807	U	0.0807	MDL	0.218	PQL	mg/Kg	UJ	Q		
CADMIUM	0.0962	J	0.0480	MDL	0.109	PQL	mg/Kg	J	Z		
SILVER	0.0182	J	0.0155	MDL	0.109	PQL	mg/Kg	J	Z		

Sample ID: SL-104-SA7-SB-4.0-5.0	Collect	ted: 9/27/2	011 12:35	:00 A	nalysis Ty	Dilution: 2			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.135	J	0.0588	MDL	0.406	PQL	mg/Kg	J	Z

Sample ID: SL-104-SA7-SB-4.0-5.0	Collect	ed: 9/27/20	011 12:35	:00 A	nalysis Ty	pe: RES	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
		27 - 15 - 34 PO MARCH 1 - 1	STATE OF STREET						
ANTIMONY	0.0751	U	0.0751	MDL	0.203	PQL	mg/Kg	UJ	Q

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/16/2012 1:17:03 PM

ADR version 1.4.0.111

Page 12 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256 v1

eQAPP Name: CDM SSEL 110509

EDD Filename: PrepDE256_v1						eQAP	P Name	e: CDM_S	SFL_110509	
Method Category: METALS Method: 6020		鐵鐵。	Ma	atrix:	so					
Sample ID: SL-104-SA7-SB-4.0-5.0	Collec	ted: 9/27/2	011 12:35	:00 <i>A</i>	nalysis T	ype: RES	i	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CADMIUM	0.0978	J	0.0446	MDL	0.101	PQL	mg/Kg	J	Z	
SILVER	0.0200	J	0.0144	MDL	0.101	PQL	mg/Kg	J	Z	
Sample ID: SL-104-SA7-SB-9.0-10.0	Collec	ted: 9/27/2	011 12:45	:00 A	nalysis T	ype: REA			Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	0.101	J	0.0610	MDL	0.420	PQL	mg/Kg	J	Z	
Sample ID: SL-104-SA7-SB-9.0-10.0	Collec	ted: 9/27/2	011 12:45	:00 A	nalysis T	ype: RES			Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.0778	υ	0.0778	MDL	0.210	PQL	mg/Kg	UJ	Q	
CADMIUM	0.102	J	0.0462	MDL	0.105	PQL	mg/Kg	J	Z	
SILVER	0.0221	J	0.0149	MDL	0.105	PQL	mg/Kg	J	Z	
Sample ID: SL-105-SA7-SB-4.0-5.0	Collec	ted: 9/27/2	011 2:45:0	00 A	nalysis Ty	ype: REA			Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	0.142	J	0.0599	MDL	0.413	PQL	mg/Kg	J	Z	
Sample ID: SL-105-SA7-SB-4.0-5.0	Collec	ted: 9/27/2	011 2:45:0	10 Δ	nalveie Ti	ype: RES	J		Dilution: 2	
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.0764	U	0.0764	MDL	0.207	PQL	mg/Kg	บม	Q	
CADMIUM	0.0921	J	0.0455	MDL	0.103	PQL	mg/Kg	J	Z	
SILVER	0.0154	J	0.0147	MDL	0.103	PQL	mg/Kg	J	Z	
Sample ID: SL-172-SA7-SB-4.0-5.0	Collec	ted: 9/27/2	011 10:35	:00 A	nalysis Ty	ype: REA		i	Dilution: 2	
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	0.160	J	0.0623	MDL	0.430	PQL	mg/Kg	J	Z	
Sample ID: SL-172-SA7-SB-4.0-5.0	Collect	ted: 9/27/2	011 10:35:	:00 A	nalvsis Tu	pe: RES			Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1										
ANTIMONY	0.377	ĺ	0.0795	MDL	0.215	PQL	mg/Kg	J	Q	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/16/2012 1:17:03 PM ADR version 1.4.0.111 Page 13 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

Method Category:	METALS				ELIPACETIC
Method:	6020	Matrix:	so	article and	والمتناه والمتناه

Sample ID: SL-172-SA7-SB-4.0-5.0	Collect	ea: 9/2//2	U11 10:35	00 A	nalysis I	vpe: RES	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SILVER	0.0248	j	0.0152	MDL	0.107	PQL	mg/Kg	J	Z

Sample ID: SL-172-SA7-SB-9.0-10.0	Collect	ed: 9/27/20	011 10:45:	00 A		Dilution: 2			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
			I		I		T		
SELENIUM	0.126	j	0.0620	MDL	0.428	PQL	mg/Kg	J	Z

Sample ID: SL-172-SA7-SB-9.0-10.0	Collect	ted: 9/27/2	011 10:45	:00 A	nalysis Ty	ype: RES		Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.0791	U	0.0791	MDL	0.214	PQL	mg/Kg	UJ	Q	
SILVER	0.0224	J	0.0152	MDL	0.107	PQL	mg/Kg	J	Z	

Sample ID: SL-004-SA5DS-SS-0.0-0.5	Collect	led: 9/27/20		Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
		,							
HEXAVALENT CHROMIUM	0.97	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z

Sample ID: SL-005-SA5DS-SS-0.0-0.5	Collec	Collected: 9/27/2011 1:50:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
HEXAVALENT CHROMIUM	0.92	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z		

Sample ID: SL-021-SA5DS-SS-0.0-0.5	Collect	ed: 9/27/20	:00 A	nalysis Ty	/pe: RES	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
					1.000	T			
HEXAVALENT CHROMIUM	0.65	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z

Sample ID: SL-022-SA5DS-SS-0.0-0.5	Collect	Analysis Ty	<i>rpe:</i> RES		Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.56	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/16/2012 1:17:03 PM

ADR version 1.4.0.111

Page 14 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1						eQAP	P Name	e: CDM_S	SFL_110509
Method Category: METALS									
Method: 7199			Ma	trix:	so	uses.	die.	a salahan	
Sample ID: SL-024-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 8:45:0	10 A	Analysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.67	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z
Sample ID: SL-025-SA5DS-SS-0.0-0.5	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.86	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z
Method Category: METALS									A. Bair
Method: 7470A		被执。	Ma	trix:	AQ	Local P		<b>A</b> A.	
Sample ID: EB-SA7-SB-092711	Collec	ted: 9/27/2	011 1:00:0	0 A	analysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.000045	J	0.00002	MDL	0.00020	PQL	mg/L	υ	В, В

Method Category:	TETALS	
Method:	471A <i>Matrix:</i> SO	现得的人。

Sample ID: DUP-09-SA7-QC-092711	Collected: 9/27/2011 8:45:00				Analysis Ty	ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0079	J	0.0071	MDL	0.101	PQL	mg/Kg	ΟΊ	F, FD

Sample ID: SL-004-SA5DS-SS-0.0-0.5	Collec	tea: 9/2//2	)U A	inalysis i	ype: KES	Dilution: 1			
	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Type	RL	Туре	Units	Qual	Code
MERCURY	0.0103	ı	0.0071	MDI	0 101	POI	ma/Ka	T i	7

Sample ID: SL-005-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/2	011 1:50:0	00 A	nalysis Ty	/pe: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0074	J	0.0066	MDL	0.0945	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE256 Laboratory: LL

EDD Filename: PrepDE256_v1 eQAPP Name: CDM_SSFL_110509

Method Category: METALS												
Wethod: 7471A			Mé	itrix:	so				الأساسة بطع			
Sample ID: SL-006-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 11:30	:00 A	lnalysis T	ype: RES	<b>.</b>		Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
MERCURY	0.0109	J	0.0068	MDL	0.0963	PQL	mg/Kg	J	Z			
Sample ID: SL-019-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 10:45	:00 <i>A</i>	nalysis T	/pe: RES		·-	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
MERCURY	0.0135	J	0.0070	MDL	0.0991	PQL	mg/Kg	J	Z			
ample ID: SL-020-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 11:10	:00 A	nalysis Ty	/pe: RES			Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
MERCURY	0.0088	J	0.0067	MDL	0.0959	PQL	mg/Kg	J	Z			
cample ID: SL-021-SA5DS-SS-0.0-0.5	Collect	Collected: 9/27/2011 11:50:00 Analysis Type: RES										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
MERCURY	0.0115	J	0.0068	MDL	0.0972	PQL	mg/Kg	J	Z			
ample ID: SL-022-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/2	011 2:40:0	0 A	nalysis Ty	pe: RES			Dilution: 1			
\ <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
MERCURY	0.0193	J	0.0070	MDL	0.0997	PQL	mg/Kg	J	Z			
ample ID: SL-023-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/2	011 9:15:0	0 A	nalysis Ty	pe: RES	-		Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
MERCURY	0.0118	J	0.0068	MDL	0.0967	PQL	mg/Kg	J	Z			
ample ID: SL-024-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/2	011 8:45:0	0 A	nalysis Ty	pe: RES			Dilution: 1			
<i><b>Inalyte</b></i>	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
MERCURY	0.0098	J	0.0070	MDL	0.100	PQL	mg/Kg	J	Z			
ample ID: SL-025-SA5DS-SS-0.0-0.5	Collect	ed: 9/27/20	011 7:30:0	0 A	nalysis Ty	pe: RES			Dilution: 1			
ınalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
a.yee												

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/16/2012 1:17:03 PM ADR version 1.4.0.111 Page 16 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-038-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	:011 3:00:0	0 A	nalysis Ty	/pe: RES		D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0877	J	0.0069	MDL	0.0977	PQL	mg/Kg	J	Z
Sample ID: SL-103-SA7-SB-4.0-5.0	Collec	ted: 9/27/2	011 8:40:0	0 A	nalysis Ty	pe: RES		D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0071	U	0.0071	MDL	0.101	PQL	mg/Kg	UJ	FD

Sample ID: SL-172-SA7-SB-4.0-5.0	Collec	Collected: 9/27/2011 10:35:00 Analysis Type: RE						RES Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code		
						7.1					
MERCURY	0.0079	J	0.0074	MDL	0.105	PQL	ma/Ka	lυ	F		

Sample ID: SL-172-SA7-SB-9.0-10.0	Collec	Collected: 9/27/2011 10:45:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0490	J	0.0074	MDL	0.105	PQL	mg/Kg	J	Z

Method Category:	SVOA			12.00		<b>A</b> 5075 (1)
Method:	1625C		Matrix: A	Q	قر الكام بعلم	Labor 176 Es

Sample ID: EB-SA7-SB-092711	Collect	Collected: 9/27/2011 1:00:00				Analysis Type: RES-BASE/NEUTRAL Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
N-NITROSODIMETHYLAMINE	3.23		0.532	MDL	1.06	PQL	ng/L	UJ	B, S		

Method Category: SVOA	· · · · · · · · · · · · · · · · · · ·	70 FBB 45-1
4.0	and the same of the same of the same of the same of the same of the same of the same of the same of the same of	
Method: 8015	Matrix: SO	LANGE - 28 KM

Sample ID: DUP-09-SA7-QC-092711	Collec	Collected: 9/27/2011 8:45:00 Analysis Type: REA2							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C15-C20)	2.1	U	2.1	MDL	6.2	PQL	mg/Kg	UJ	FD
EFH (C21-C30)	17		2.1	MDL	6.2	PQL	mg/Kg	J	FD
EFH (C30-C40)	60		2.1	MDL	6.2	PQL	mg/Kg	J	FD

^{*} denotes a non-reportable result

Method Category:

**METALS** 

1/16/2012 1:17:03 PM ADR version 1.4.0.111 Page 17 of 33

Lab Reporting Batch ID: DE256 Laboratory: LL

EDD Filename: PrepDE256_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA
Method:	8015M Matrix: SO

Sample ID: SL-103-SA7-SB-4.0-5.0	Collec	Collected: 9/27/2011 8:40:00				ype: REA	١	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DIETHYLENE GLYCOL	5.2	U	5.2	MDL	10	PQL	mg/Kg	UJ	Q	
ETHYLENE GLYCOL	5.2	U	5.2	MDL	10	PQL	mg/Kg	UJ	Q	
Propylene glycol	5.2	υ	5.2	MDL	10	PQL	ma/Ka	UJ	0	

Sample ID. SE-103-3A1-3B-4.0-3.0	Conec	Conected: 5/2/12011 6:40:00 Analysis Type: REAZ								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
EFH (C15-C20)	0.60	J	0.42	MDL	1.3	PQL	mg/Kg	j	Z, FD	
EFH (C21-C30)	8.7		0.42	MDL	1.3	PQL	mg/Kg	J	Q, Q, Q, FD	
EFH (C30-C40)	24		0.42	MDL	1.3	PQL	mg/Kg	J	FD	

Sample ID: SL-103-SA7-SB-9.0-10.0	Collect	ted: 9/27/20	011 8:55:0	00 .	Analysis Ty	ype: REA	2		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C15-C20)	0.44	J	0.44	MDL	1.3	PQL	mg/Kg	j	Z

Sample ID: SL-104-SA7-SB-4.0-5.0	Collec	ted: 9/27/20	011 12:35	:00 A	nalysis Ty	/pe: REA			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C15-C20)	0.53	J	0.42	MDL	1.3	PQL	mg/Kg	J	Z

Sample ID: SL-105-SA7-SB-4.0-5.0	Collec	ted: 9/27/2	011 2:45:0	00 A	nalysis T	ype: REA	2		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C15-C20)	0.45	J	0.41	MDL	1.2	PQL	mg/Kg	J	Z

Method Category:	SVOA
Method:	8081A Matrix: SO

Sample ID: SL-006-SA5DS-SS-0.0-0.5  Analyte	Collec	Collected: 9/27/2011 11:30:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1								
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
4,4'-DDE	1.0		0.067	MDL	0.35	PQL	ug/Kg	J	S	
4,4'-DDT	0.63		0.067	MDL	0.35	PQL	ug/Kg	J	S	
Chlordane	3.8		0.81	MDL	3.5	PQL	ug/Kg	J	S	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/16/2012 1:17:03 PM ADR version 1.4.0.111

Page 18 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA		
Method: 8081A	Matrix:	SO

Sample ID: SL-019-SA5DS-SS-0.0-0.5	Collected: 9/27/2011 10:45:00 Analysis Type: RES-BASE/NEUTRAL Dilution:								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDE	0.23	J	0.067	MDL	0.34	PQL	ug/Kg	J	Z
ENDRIN ALDEHYDE	0.086	J	0.067	MDL	0.34	PQL	ug/Kg	J	Z

Sample ID: SL-020-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/20	011 11:10	:00	Analysis Ty	pe: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Chlordane	2.9	J	0.81	MDL	3.4	PQL	ug/Kg	J	Z

Sample ID: SL-021-SA5DS-SS-0.0-0.5	Collected: 9/27/2011 11:50:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Chlordane	1.6	J	0.81	MDL	3.4	PQL	ug/Kg	J	Z
TOXAPHENE	2.6	J	2.2	MDL	6.7	PQL	ug/Kg	J	Z

Sample ID: SL-022-SA5DS-SS-0.0-0.5	Collected: 9/27/2011 2:40:00 Analysis Type: RES-BASE/NEUTRAL Dilution:								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DELTA-BHC	0.046	J	0.036	MDL	0.17	PQL	ug/Kg	J	Z
ENDRIN KETONE	0.097	J	0.067	MDL	0.34	PQL	ug/Kg	J	Z

Sample ID: SL-023-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 9:15:0	00 A	Analysis Type: RES-BASE/NEUTRAL Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
4,4'-DDD	0.067	U	0.067	MDL	0.35	PQL	ug/Kg	UJ	S	
4,4'-DDE	0.25	J	0.067	MDL	0.35	PQL	ug/Kg	J	Z, S	
4,4'-DDT	0.38		0.067	MDL	0.35	PQL	ug/Kg	J	S	
ALDRIN	0.067	U	0.067	MDL	0.17	PQL	ug/Kg	UJ	S	
ALPHA-BHC	0.035	U	0.035	MDL	0.17	PQL	ug/Kg	UJ	S	
вета-внс	0.061	U	0.061	MDL	0.17	PQL	ug/Kg	UJ	S	
Chlordane	1.8	J	0.82	MDL	3.5	PQL	ug/Kg	J	Z, S	
DELTA-BHC	0.037	U	0.037	MDL	0.17	PQL	ug/Kg	UJ	S	
DIELDRIN	0.067	U	0.067	MDL	0.35	PQL	ug/Kg	UJ	S	
ENDOSULFAN I	0.045	U	0.045	MDL	0.17	PQL	ug/Kg	UJ	S	
ENDOSULFAN II	0.067	U	0.067	MDL	0.35	PQL	ug/Kg	UJ	S	
ENDOSULFAN SULFATE	0.067	U	0.067	MDL	0.35	PQL	ug/Kg	UJ	S	

^{*} denotes a non-reportable result

1/16/2012 1:17:03 PM ADR version 1.4.0.111 Page 19 of 33

Lab Reporting Batch ID: DE256 Laboratory: LL

EDD Filename: PrepDE256_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 8081A Matrix:

Sample ID: SL-023-SA5DS-SS-0.0-0.5 Collected: 9/27/2011 9:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ENDRIN	0.067	υ	0.067	MDL	0.35	PQL	ug/Kg	υJ	S		
ENDRIN ALDEHYDE	0.075	U	0.075	MDL	0.35	PQL	ug/Kg	UJ	S		
ENDRIN KETONE	0.067	U	0.067	MDL	0.35	PQL	ug/Kg	UJ	S		
gamma-BHC (Lindane)	0.035	U	0.035	MDL	0.17	PQL	ug/Kg	UJ	S		
HEPTACHLOR	0.061	U	0.061	MDL	0.17	PQL	ug/Kg	UJ	S		
HEPTACHLOR EPOXIDE	0.035	U	0.035	MDL	0.17	PQL	ug/Kg	UJ	S		
METHOXYCHLOR	0.35	U	0.35	MDL	1.7	PQL	ug/Kg	UJ	S		
MIREX	0.067	U	0.067	MDL	0.35	PQL	ug/Kg	UJ	S		
TOXAPHENE	2.2	U	2.2	MDL	6.7	PQL	ug/Kg	UJ	S		

Sample ID: SL-025-SA5DS-SS-0.0-0.5 Collected: 9/27/2011 7:30:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BETA-BHC	0.079	J	0.061	MDL	0.17	PQL	ug/Kg	J	Z
Chlordane	2.5	J	0.81	MDL	3.5	PQL	ug/Kg	J	Z

Sample ID: SL-038-SA5DS-SS-0.0-0.5 Collected: 9/27/2011 3:00:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Chlordane	1.1	J	0.82	MDL	3.5	PQL	ug/Kg	J	Z

Method Category: SVOA Method: 8082 Matrix: SO

Sample ID: DUP-09-SA7-QC-092711 Collected: 9/27/2011 8:45:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	0.41	U	0.41	MDL	1.8	PQL	ug/Kg	บม	FD

Sample ID: SL-004-SA5DS-SS-0.0-0.5 Collected: 9/27/2011 2:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	0.51	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z
AROCLOR 1260	0.67	J	0.40	MDL	1.7	PQL	ug/Kg	J	Z
Aroclor 5460	1.2	J	1.0	MDL	3.4	PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/16/2012 1:17:03 PM ADR version 1.4.0.111

Page 20 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA		
Method: 8082	Matrix: SO	Bearing in A.S. L. Marine

Sample ID: SL-006-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 11:30	:00	Analysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	1.2	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z
AROCLOR 1260	1.0	J	0.40	MDL	1.7	PQL	ug/Kg	J	Z
Aroclor 5460	1.9	J	1.0	MDL	3.4	PQL	ug/Kg	J	Z

Sample ID: SL-019-SA5DS-SS-0.0-0.5	Collect	ted: 9/27/20	011 10:45	:00 🗚	Analysis Ty	pe: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	0.52	J	0.39	MDL	1.7	PQL	ug/Kg	J	Z

Sample ID: SL-020-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/20	011 11:10	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	1.2	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z
AROCLOR 1260	0.87	J	0.40	MDL	1.7	PQL	ug/Kg	J	Z
Aroclor 5460	2.0	J	1.0	MDL	3.3	PQL	ug/Kg	J	Z

Sample ID: SL-021-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 11:50	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	0.89	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z
AROCLOR 1260	0.71	J	0.40	MDL	1.7	PQL	ug/Kg	J	Z
Aroclor 5460	1.6	J	1.0	MDL	3.3	PQL	ug/Kg	J	Z

Sample ID: SL-022-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 2:40:	00 <i>A</i>	nalysis T	ype: RES	-BASE/NE	UTRAL I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	1.2	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z, S
AROCLOR 1260	0.97	J	0.40	MDL	1.7	PQL	ug/Kg	j	Z, S
Aroclor 5460	2.0	J	1.0	MDL	3.4	PQL	ug/Kg	j	Z, S

Sample ID: SL-023-SA5DS-SS-0.0-0.5	Collected: 9/27/2011 9:15:00 Analysis Type: RES-BASE/NEUTRAL Dilu										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
AROCLOR 1254	0.64	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z, S		
AROCLOR 1260	0.75	J	0.40	MDL	1.7	PQL	ug/Kg	J	Z, S		

^{*} denotes a non-reportable result

1/16/2012 1:17:03 PM ADR version 1.4.0.111 Page 21 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM SSFL 110509

EDD Fliefiame: PrepbE256_VI						eQAP	'P Name	:: CDIVI_S	SFL_110509
Method Category: SVOA Method: 8082		ener et	Ma	itrix:	so		A.S.		
Sample ID: SL-023-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 9:15:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Aroclor 5460	1.6	J	1.0	MDL	3.4	PQL	ug/Kg	J	Z, S
Sample ID: SL-024-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 8:45:0	00 A	nalysis T	pe: RES	BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	0.89	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z
Aroclor 5460	1.3	J	1.0	MDL	3.3	PQL	ug/Kg	J	Z
Sample ID: SL-025-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 7:30:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Aroclor 5460	1.3	J	1.0	MDL	3.3	PQL	ug/Kg	J	Z
Sample ID: SL-038-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/2	011 3:00:0	00 A	nalysis T	/pe: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1242	0.72	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z
Sample ID: SL-103-SA7-SB-4.0-5.0	Collec	ted: 9/27/2	011 8:40:0	00 A	nalysis Ty	/pe: RES	BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	0.47	J	0.41	MDL	1.8	PQL	ug/Kg	J	Z, S, FD
Sample ID: SL-104-SA7-SB-4.0-5.0	Collect	ted: 9/27/2	011 12:35	:00 A	nalysis T	/pe: RES	BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	0.90	J	0.40	MDL	1.8	PQL	ug/Kg	J	Z
Sample ID: SL-104-SA7-SB-9.0-10.0	Collec	ted: 9/27/20	011 12:45	:00 A	nalysis Ty	/pe: RES	BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	0.47	J	0.41	MDL	1.8	PQL	ug/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/16/2012 1:17:03 PM ADR version 1.4.0.111

Page 22 of 33

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

	30V					88	8888	æ		×		88	w			×			888	86		200	84		888	m	ø		*8	94	880	м	
В.	٧.	gree	•	з,	•	-	ж.		s.	20.	900		-	3"	**	m	w	9	w	щ	w		332	×	æ	*	x	w	r	da	Z	А	
П																															2		

Sample ID: SL-105-SA7-SB-4.0-5.0

Matrix:

Collected: 9/27/2011 2:45:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	0.75	J	0.40	MDL	1.7	PQL	ug/Kg	J	Z

Sample ID: SL-172-SA7-SB-4.0-5.0

Collected: 9/27/2011 10:35:00

Analysis Type: RES-BASE/NEUTRAL

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	0.76	J	0.42	MDL	1.8	PQL	ug/Kg	J	Z

Method Category:

Method:

2,4-D

SVOA 8151A

Matrix:

MDL

Sample ID: SL-006-SA5DS-SS-0.0-0.5	Collec	ted: 9/27/20	011 11:30	:00 🔏	Inalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL	RL	RL Type	Unito	Data Review	Reason
Analyte	Result	Quai	<i>UL</i>	Type	KL	rype	Units	Qual	Code

Sample ID: SL-021-SA5DS-SS-0.0-0.5

2.0

Collected: 9/27/2011 11:50:00

1.2

Analysis Type: RES

PQL

ug/Kg

3.7

Dilution: 1

Z

•	T	r	<del></del>		1	1			
·	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Type	RL	Type	Units	Qual	Code
· many co	resure	- Guar		турс	, <u>//</u>	Type	Omes	Quai	Code
2,4,5-TP (Silvex)	0.13	J	0.076	MDL	0.17	PQL	ug/Kg	J	Z

Sample ID: SL-038-SA5DS-SS-0.0-0.5

Collected: 9/27/2011 3:00:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4,5-TP (Silvex)	0.090	J	0.077	MDL	0.17	PQL	ug/Kg	J	Z
DICAMBA	0.61	J	0.41	MDL	1.2	PQL	ug/Kg	J	Z
DICHLOROPROP	1.6	J	0.82	MDL	1.7	PQL	ug/Kg	J	Z
DINOSEB	0.82	U	0.82	MDL	2.5	PQL	ug/Kg	R	L

Method Category:

Method:

SVOA

8270C

Matrix: AQ

Sample ID: EB-SA7-SB-092711

Collected: 9/27/2011 1:00:00

Analysis Type: RES-ACID

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZOIC ACID	7	U	7	MDL	17	PQL	ug/L	UJ	E

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/16/2012 1:17:03 PM

ADR version 1.4.0.111

Page 23 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 8270C

Matrix:

Method Category:

Method:

SVOA 8270C

Matrix:

Sample ID: DUP-09-SA7-QC-092711

Collected:	9/27/2011	8:45:00
------------	-----------	---------

SO

Sample ID: DUP-09-SA7-QC-092711	Collected: 9/27/2011 8:45:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Di-n-butylphthalate	35	J	17	MDL	170	PQL	ug/Kg	J	Z

Sample ID: SL-005-SA5DS-SS-0.0-0.5

Collected: 9/27/2011 1:50:00

Analysis Type: RES-BASE/NEUTRAL

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	19	J	17	MDL	340	PQL	ug/Kg	J	Z

Sample ID: SL-006-SA5DS-SS-0.0-0.5

Collected: 9/27/2011 11:30:00

Analysis Type: RES-BASE/NEUTRAL

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	51	J	17	MDL	340	PQL	ug/Kg	J	Z

Sample ID: SL-024-SA5DS-SS-0.0-0.5

Collected: 9/27/2011 8:45:00

Analysis Type: RES-BASE/NEUTRAL

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	18	J	17	MDL	340	PQL	ug/Kg	J	Z

Sample ID: SL-103-SA7-SB-4.0-5.0

Collected: 9/27/2011 8:40:00

Analysis Type: RES-BASE/NEUTRAL

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZIDINE	1200	U	1200	MDL	3400	PQL	ug/Kg	ΟJ	Q
BENZOIC ACID	170	U	170	MDL	520	PQL	ug/Kg	R	Q

Method Category:

Method:

SVOA

8270C SIM

Matrix: AQ

Sample ID: EB-SA7-SB-092711

Collected: 9/27/2011 1:00:00

Analysis Type: RES-BASE/NEUTRAL

Dilution: 4

Jampie ID. ED-OAT-OD-OSET 11	Conec	ieu. Siziiz	011 1.00.0	, A	iiaiyəiə i	ype. ILL	-DAOLINE	.UIIVAL	Dilution. 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.13	J	0.055	MDL	1.1	PQL	ug/L	J	Z
Diethylphthalate	0.36	J	0.055	MDL	1.1	PQL	ug/L	J	Z
Di-n-butylphthalate	0.79	J	0.055	MDL	1.1	PQL	ug/L	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/16/2012 1:17:03 PM

ADR version 1.4.0.111

Page 24 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 8270C SIM Matrix: AQ

Sample ID: EB-SA7-SB-092711 Collected: 9/27/2011 1:00:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Di-n-octylphthalate	0.11	J	0.055	MDL	1.1	PQL	ug/L	J	Z

Method Category: SVOA Method: 8270C SIM Matrix: SO

Sample ID: DUP-09-SA7-QC-092711 Collected: 9/27/2011 8:45:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(A)ANTHRACENE	0.76	J	0.69	MDL	1.7	PQL	ug/Kg	J	Z, FD
BENZO(A)PYRENE	1.0	J	0.69	MDL	1.7	PQL	ug/Kg	J	Z, FD
BENZO(G,H,I)PERYLENE	1.0	J	0.69	MDL	1.7	PQL	ug/Kg	J	Z, FD
BIS(2-ETHYLHEXYL)PHTHALATE	6.2	U	6.2	MDL	19	PQL	ug/Kg	UJ	FD
CHRYSENE	1.5	J	0.35	MDL	1.7	PQL	ug/Kg	J	Z, FD
FLUORANTHENE	1.0	J	0.69	MDL	1.7	PQL	ug/Kg	J	Z, FD
PYRENE	1.5	J	0.69	MDL	1.7	PQL	ug/Kg	J	Z, FD

Sample ID: SL-004-SA5DS-SS-0.0-0.5 Collected: 9/27/2011 2:15:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1-METHYLNAPHTHALENE	0.78	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
2-METHYLNAPHTHALENE	1.2	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
BENZO(A)ANTHRACENE	0.81	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
BENZO(A)PYRENE	1.6	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
BENZO(G,H,I)PERYLENE	1.1	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
BIS(2-ETHYLHEXYL)PHTHALATE	12	J	6.0	MDL	18	PQL	ug/Kg	J	Z
INDENO(1,2,3-CD)PYRENE	1.1	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z

Sample ID: SL-005-SA5DS-SS-0.0-0.5 Collected: 9/27/2011 1:50:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(A)ANTHRACENE	0.76	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
BENZO(A)PYRENE	1.0	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
CHRYSENE	1.4	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z
NAPHTHALENE	0.71	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
PHENANTHRENE	1.1	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

1/16/2012 1:17:03 PM ADR version 1.4.0.111 Page 25 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

Method Category:

Method:

SVOA

8270C SIM

Matrix: SO

MDL

ample 10: 5L-006-5A5D5-55-0.0-0.5	Collect	Collected: 9/2/1/2011 11:30:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1-METHYLNAPHTHALENE	1.2	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z	
BENZO(A)ANTHRACENE	0.78	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z	
BENZO(A)PYRENE	1.2	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z	

0.68

Sample ID: SL-019-SA5DS-SS-0.0-0.5

BENZO(G,H,I)PERYLENE

Collected: 9/27/2011 10:45:00

0.73

Analysis Type: RES-BASE/NEUTRAL

ug/Kg

**PQL** 

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(B)FLUORANTHENE	1.4	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z
CHRYSENE	0.36	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z

Sample ID: SL-020-SA5DS-SS-0.0-0.5

Collected: 9/27/2011 11:10:00

Analysis Type: RES-BASE/NEUTRAL

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(A)ANTHRACENE	0.76	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z
BENZO(A)PYRENE	1.1	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z
BENZO(G,H,I)PERYLENE	0.71	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z
BIS(2-ETHYLHEXYL)PHTHALATE	16	j	6.1	MDL	18	PQL	ug/Kg	J	Z
Butylbenzylphthalate	6.6	J	6.1	MDL	18	PQL	ug/Kg	J	Z
NAPHTHALENE	1.0	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z
PHENANTHRENE	1.0	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z
PYRENE	1.6	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z

Sample ID: SL-021-SA5DS-SS-0.0-0.5

Collected: 9/27/2011 11:50:00

Analysis Type: RES-BASE/NEUTRAL

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	7.1	J	6.1	MDL	18	PQL	ug/Kg	J	Z
CHRYSENE	0.93	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z
FLUORANTHENE	0.98	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z
PHENANTHRENE	0.76	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z
PYRENE	0.86	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/16/2012 1:17:03 PM ADR version 1.4.0.111 Page 26 of 33

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE256

EDD Filename: PrepDE256_v1

EQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 8270C SIM Matrix: SO

Sample ID: SL-022-SA5DS-SS-0.0-0.5  Analyte	Collec	ted: 9/27/2	011 2:40:0	00 A	Analysis Type: RES-BASE/NEUTRAL Dilution: 1						
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BENZO(A)ANTHRACENE	1.1	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z		
BENZO(G,H,I)PERYLENE	1.1	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z		
Butylbenzylphthalate	10	J	6.1	MDL	18	PQL	ug/Kg	J	Z		
INDENO(1,2,3-CD)PYRENE	0.89	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z		
NAPHTHALENE	0.87	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z		

Sample ID: SL-023-SA5DS-SS-0.0-0.5  Analyte	Collec	Collected: 9/27/2011 9:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution								
	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
BENZO(A)ANTHRACENE	1.5	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z	
BENZO(K)FLUORANTHENE	0.90	J	0.68	MDL	1.7	PQL	ug/Kg	J	Z	
BIS(2-ETHYLHEXYL)PHTHALATE	6.6	J	6.1	MDL	18	PQL	ug/Kg	J	Z	
CHRYSENE	1.6	J	0.34	MDL	1.7	PQL	ug/Kg	· J	Z	

Sample ID: SL-024-SA5DS-SS-0.0-0.5	Collec	Collected: 9/27/2011 8:45:00 Analysis Type: RES-BASE/NEUTRAL Dilution:								
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2-METHYLNAPHTHALENE	0.71	j	0.67	MDL	1.7	PQL	ug/Kg	J	Z	
BENZO(A)PYRENE	0.79	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z	
BENZO(G,H,I)PERYLENE	1.0	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z	
CHRYSENE	1.4	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z	
INDENO(1,2,3-CD)PYRENE	0.70	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z	
NAPHTHALENE	1.6	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z	
PHENANTHRENE	1.3	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z	
PYRENE	1.5	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z	

Sample ID: SL-025-SA5DS-SS-0.0-0.5  Analyte	Collec	Collected: 9/27/2011 7:30:00					Analysis Type: RES-BASE/NEUTRAL Dilution: 1					
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
BENZO(A)ANTHRACENE	1.1	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z			
BENZO(A)PYRENE	1.5	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z			
BENZO(G,H,I)PERYLENE	1.4	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z			
Butylbenzylphthalate	6.6	J	6.1	MDL	18	PQL	ug/Kg	J	Z			
INDENO(1,2,3-CD)PYRENE	1.1	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z			
NAPHTHALENE	0.74	J	0.67	MDL	1.7	PQL	ug/Kg	j	Z			

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE256

EDD Filename: PrepDE256_v1

EQAPP Name: CDM SSFL 110509

Method Category: SVOA

Method: 8270C SIM Matrix: SO

Sample ID: SL-025-SA5DS-SS-0.0-0.5	Collected: 9/27/2011 7:30:00				Analysis Type: RES-BASE/NEUTRAL Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
PHENANTHRENE	1.5	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z	

Sample ID: SL-038-SA5DS-SS-0.0-0.5 Collected: 9/27/2011 3:00:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1 Data Lab Lab DLRLReview Reason Result Analyte Qual DL RL Type Units Type Qual Code BIS(2-ETHYLHEXYL)PHTHALATE 11 .1 6.2 MDL **PQL** 19 ug/Kg J Z CHRYSENE 0.78 J 0.34 MDL 1.7 PQL J ug/Kg Ζ FLUORANTHENE 0.92 J 0.69 MDL 1.7 PQL J Ζ ug/Kg PYRENE 0.89 0.69 MDL 1.7 **PQL** ug/Kg J Z

Sample ID: SL-103-SA7-SB-4.0-5.0 Collected: 9/27/2011 8:40:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1 Data Lab Lab DL RL Review Reason Analyte Result Qual DL Туре RL Туре Units Qual Code BENZO(A)ANTHRACENE 0.69 U 0.69 MDL 1.7 **PQL** UJ FD ug/Kg BENZO(A)PYRENE 0.69 U 0.69 MDL 1.7 **PQL** UJ ug/Kg FD BENZO(G,H,I)PERYLENE 0.69 U 0.69 MDL 1.7 **PQL** UJ FD ug/Kg BIS(2-ETHYLHEXYL)PHTHALATE 55 6.2 MDL **PQL** 19 ug/Kg J Q, FD CHRYSENE 0.48 J 0.35 MDL 1.7 PQL ug/Kg J Z, FD FLUORANTHENE U 0.69 0.69 MDL 1.7 **PQL** UJ ug/Kg FD PYRENE 0.69 U 0.69 MDL 1.7 UJ **PQL** ug/Kg FD

Sample ID: SL-103-SA7-SB-9.0-10.0	Collect	Analysis Type: RES-BASE/NEUTRAL Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(B)FLUORANTHENE	0.91	J	0.72	MDL	1.8	PQL	ug/Kg	J	Z

Sample ID: SL-104-SA7-SB-4.0-5.0 Collected: 9/27/2011 12:35:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1 Data Lab Lab DLRLReview Reason Analyte Result Qual DL Type RL Units Qual Type Code BENZO(A)PYRENE 0.75 J 0.69 MDL PQL Z 1.7 J ug/Kg BENZO(B)FLUORANTHENE 1.2 J 0.69 MDL 1.7 PQL ug/Kg J Ζ BIS(2-ETHYLHEXYL)PHTHALATE 6.3 J 6.2 MDL 19 PQL J ug/Kg Z CHRYSENE 0.76 J 0.35 MDL **PQL** J 1.7 ug/Kg Ζ **PYRENE** 0.98 J 0.69 MDL 1.7 PQL J Z ug/Kg

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE256 Laboratory: LL

EDD Filename: PrepDE256_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA	ar Bullian Co.	
Method:	8270C SIM	Matrix: SO	2. 对数数数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据数据

Sample ID: SL-104-SA7-SB-9.0-10.0	Collect	ted: 9/27/2	011 12:45	:00	Analysis Ty	/pe: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(B)FLUORANTHENE	0.72	J	0.70	MDL	1.7	PQL	ug/Kg	J	Z

Sample ID: SL-105-SA7-SB-4.0-5.0	Collec	ted: 9/27/2	011 2:45:0	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	JTRAL Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code				
BENZO(G,H,I)PERYLENE	0.87	j	0.69	MDL	1.7	PQL	ug/Kg	J	Z				
CHRYSENE	1.5	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z				

Sample ID: SL-172-SA7-SB-4.0-5.0	Collect	tea: 9/2//2	J11 10:35	:00 /	Analysis T	ype: RES	-BASE/NE	NEUTRAL Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code				
BENZO(B)FLUORANTHENE	1.2	J	0.72	MDL	1.8	PQL	ug/Kg	J	Z				
CHRYSENE	0.50	J	0.36	MDL	1.8	PQL	ug/Kg	J	Z				

Sample ID: SL-172-SA7-SB-9.0-10.0	Collect	ted: 9/27/20	011 10:45	:00	Analysis Ty	pe: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(B)FLUORANTHENE	0.74	J	0.73	MDL	1.8	PQL	ug/Kg	J	Z

Method Category: SVOA Method: 8330A Matrix: AQ
---------------------------------------------------

Sample ID: EB-SA7-SB-092711	Collec	ted: 9/27/2	011 1:00:0	00 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
Total	0.40	11	0.40	MDI	0.60	I BOI		111		

Method Category:	VOA	100			140040 Bad
memod category.		100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 100 at 10			
Mathadi	9260B		77-4-1-1	Commence of the second	and the second second
Method:	020UD	Live sub-diene despekte gewone bei	Matrix: AQ		أوريان أوما الابتيانات بلتات

Sample ID: EB-SA7-SB-092711	Collect	ted: 9/27/2	011 1:00:0	00 🗡	Inalysis Ty	/pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
METHYLENE CHLORIDE	3	J	2	MDL	5	PQL	ug/L	J	Z	

^{*} denotes a non-reportable result

1/16/2012 1:17:03 PM ADR version 1.4.0.111 Page 29 of 33

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE256 EDD Filename: PrepDE256_v1

Laboratory: LL eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
C	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
Н	Preservation
н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
Ī	Internal Standard Estimation
I	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
M	Initial Tune
M	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

# Lab Reporting Batch ID: DE256 EDD Filename: PrepDE256_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
z	Reporting Limit > Project Maximum Contamination Limit
z	Reporting Limit Trace Value
· · · · · · · · · · · · · · · · · · ·	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/16/2012 1:17:03 PM ADR version 1.4.0.111

^{*} denotes a non-reportable result

# **Enclosure** I

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

**DE256** 

# Field Duplicate RPD Report

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256_v1

eQAPP Name: CDM_SSFL_110509

Meth	7070	46		
111			40	
Matr	iyv	SC	)	
1/1-11				

	Concentr	ation (%)			
Analyte	SL-103-SA7-SB-4.0-5.0	DUP-09-SA7-QC- 092711	Sample RPD	eQAPP RPD	Flag
MOISTURE	4.6	3.9	16		No Qualifiers Applied

Method: 300.0 Matrix: SO

	Concentration	Concentration (mg/Kg)			
Analyte	SL-103-SA7-SB-4.0-5.0	DUP-09-SA7-QC- 092711	Sample RPD	eQAPP RPD	Flag
FLUORIDE	3.7	2.4	43	50.00	No Qualifiers Applied
Nitrate-NO3	1.7	1.6 U	200	50.00	J(all detects) UJ(all non-detects)

Method: 6010B

Matrix: SO

	Concentration (mg/Kg)				
Analyte	SL-103-SA7-SB-4.0-5.0	DUP-09-SA7-QC- 092711	Sample RPD	eQAPP RPD	Flag
ALUMINUM	13700	14100	3	50.00	
BORON	6.93	6.69	4	50.00	
CALCIUM	5170	4210	20	50.00	
IRON	18300	18700	2	50.00	
LITHIUM	23.5	24.0	2	50.00	
MAGNESIUM	4200	4320	3	50.00	
MANGANESE	259	255	2	50.00	N. O. Pr. A. P. I
PHOSPHORUS	356	378	6	50.00	No Qualifiers Applied
POTASSIUM	2670	2720	2	50.00	1
SODIUM	103	81.8	23	50.00	
STRONTIUM	26.2	17.9	38	50.00	
TIN	0.840	0.615	31	50.00	
TITANIUM	1050	1140	8	50.00	
Zirconium	1.38	1.13	20	50.00	

Method: 6020 Matrix: SO

	Concentration (mg/Kg)				
Analyte	SL-103-SA7-SB-4.0-5.0	DUP-09-SA7-QC- 092711	Sample RPD	eQAPP RPD	Flag
ARSENIC	3.85	3.84	0	50.00	
BARIUM	76.5	76.0	1	50.00	
BERYLLIUM	0.500	0.425	16	50.00	
CADMIUM	0.0906	0.0950	5	50.00	
CHROMIUM	15.1	14.4	5	50.00	
COBALT	4.75	4.59	3	50.00	
COPPER	7.14	7.00	2	50.00	No Ovelitions Amelian
LEAD	4.80	4.51	6	50.00	No Qualifiers Applied
MOLYBDENUM	0.615	0.445	32	50.00	
NICKEL	9.34	9.02	3	50.00	
SELENIUM	0.160	0.139	14	50.00	
THALLIUM	0.240	0.258	7	50.00	
VANADIUM	30.5	31.5	3	50.00	
ZINC	52.9	50.8	4	50.00	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/16/2012 1:23:15 PM ADR version 1.4.0.111 Page 1 of 2

#### Field Duplicate RPD Report

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: PrepDE256 v1

eQAPP Name: CDM SSEL 110509

EDD Filename: PrepDE256_v1			eQAPP	Name: Cl	DM_SSFL_110509
Method: 6020					100
Matrix: SO	MARIN COLUMN	All Laurence (No. 1)	a ana Ata	Land b	A COLUMN TO
ANTIMONY	0.0944	0.200 U	200	50.00	J(all detects)

Wallix. 30						
ANTIMONY SILVER	0.0944 0.0234	0.200 U 0.100 U	200 200	50.00 50.00	J(all detects) UJ(all non-detects)	
Method: 7471A					St. Latt. Co.	
Matrix: SO	Plicini kanakerikeri	الأولاد الأكامانيسة	. 41	Alternative Control	30 4 32 34	

	Concentrati	on (mg/Kg)				
Analyte	SL-103-SA7-SB-4.0-5.0	DUP-09-SA7-QC- 092711	Sample RPD	eQAPP RPD	Flag	
MERCURY	0.101 U	0.0079	200	50.00	J(all detects) UJ(all non-detects)	

l i		DUP-09-SA7-QC-	Sample	eQAPP	
	Concentration (mg/Kg)				

EFH (C15-C20) 0.60 6.2 U 200 50.00 J(all detects) EFH (C21-C30) 8.7 17 65 50.00 UJ(all non-detects) EFH (C30-C40) 24 60 86 50.00

 Concentration (ug/Kg)
 DUP-09-SA7-QC Sample RPD
 Flag

Method: 8082

AROCLOR 1260

# Method: 8270C SIM Matrix: SO

1.8 U

200

50.00

J(all detects)

0.47

	Concentration (ug/Kg)				
Analyte	SL-103-SA7-SB-4.0-5.0	DUP-09-SA7-QC- 092711	Sample RPD	eQAPP RPD	Flag
BENZO(B)FLUORANTHENE	2.1	2.4	13	50.00	No Qualifiers Applied
BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(G,H,I)PERYLENE BIS(2-ETHYLHEXYL)PHTHALATE CHRYSENE FLUORANTHENE PYRENE	1.7 U 1.7 U 1.7 U 55 0.48 1.7 U 1.7 U	0.76 1.0 1.0 19 U 1.5 1.0	200 200 200 200 103 200 200	50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)

# Method: 9045M Matrix: SO

	Concentration (pH unit)				
Analyte	SL-103-SA7-SB-4.0-5.0	DUP-09-SA7-QC- 092711	Sample RPD	eQAPP RPD	Flag
РН	8.37	8.32	1	50.00	No Qualifiers Applied

1/16/2012 1:23:15 PM ADR version 1.4.0.111 Page 2 of 2

# Method Blank Outlier Report

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: DE256_v1.

eQAPP Name: CDM_SSFL_110509

Method: 162! Matrix: AQ	and the same of the same of			
Method Blank Sample ID	Analysis Date	Analyte	· Result	Associated Samples
PLKWA26B261601	10/3/2011 4:01:00 PM	N-NITROSODIMETHYLAMINE	1.47 ng/L	EB-SA7-SB-092711

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA7-SB-092711(RES)	N-NITROSODIMETHYLAMINE	3.23 ng/L	3.23U ng/L

Method: 6010B Matrix: AQ				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P27848CB222339	10/9/2011 11:39:00 PM	STRONTIUM	0.00022 mg/L	EB-SA7-SB-092711

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA7-SB-092711(REA2)	STRONTIUM	0.00023 mg/L	0.00023U mg/L

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P27208AB220108	10/11/2011 1:08:00 AM	ALUMINUM	8.39 mg/Kg	DUP-09-SA7-QC-092711 SL-004-SA5DS-SS-0.0-0.5 SL-005-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-020-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-025-SA5DS-SS-0.0-0.5 SL-025-SA5DS-SS-0.0-0.5 SL-038-SA5DS-SS-0.0-0.5 SL-103-SA7-SB-4.0-5.0 SL-104-SA7-SB-9.0-10.0 SL-104-SA7-SB-9.0-10.0 SL-105-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0 SL-172-SA7-SB-9.0-10.0

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/9/2012 12:56:23 PM ADR version 1.4.0.111

# Method Blank Outlier Report

Lab Reporting Batch ID: DE256

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

EDD Filename: DE256_v1.

Method: 6010B Matrix: SO					
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples	
P27208AB220759	10/10/2011 7:59:00 AM	CALCIUM MANGANESE PHOSPHORUS STRONTIUM TIN	7.16 mg/Kg 0.0466 mg/Kg 1.24 mg/Kg 0.0262 mg/Kg 1.35 mg/Kg	DUP-09-SA7-QC-092711 SL-004-SA5DS-SS-0.0-0.5 SL-005-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-029-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-038-SA5DS-SS-0.0-0.5 SL-038-SA5DS-SS-0.0-0.5 SL-103-SA7-SB-4.0-5.0 SL-104-SA7-SB-4.0-5.0 SL-104-SA7-SB-4.0-5.0 SL-105-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0	

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP-09-SA7-QC-092711(RES)	TIN	0.615 mg/Kg	0.615U mg/Kg
SL-004-SA5DS-SS-0.0-0.5(RES)	TIN	1.04 mg/Kg	1.04U mg/Kg
SL-005-SA5DS-SS-0.0-0.5(RES)	TIN	1.06 mg/Kg	1.06U mg/Kg
SL-006-SA5DS-SS-0.0-0.5(RES)	TIN	0.816 mg/Kg	0.816U mg/Kg
SL-019-SA5DS-SS-0.0-0.5(RES)	TIN	0.959 mg/Kg	0.959U mg/Kg
SL-020-SA5DS-SS-0.0-0.5(RES)	TIN	0.969 mg/Kg	0.969U mg/Kg
SL-021-SA5DS-SS-0.0-0.5(RES)	TIN	1.08 mg/Kg	1.08U mg/Kg
SL-022-SA5DS-SS-0.0-0.5(RES)	TIN	1.03 mg/Kg	1.03U mg/Kg
SL-023-SA5DS-SS-0.0-0.5(RES)	TIN	1.04 mg/Kg	1.04U mg/Kg
SL-024-SA5DS-SS-0.0-0.5(RES)	TIN	0.857 mg/Kg	0.857U mg/Kg
SL-025-SA5DS-SS-0.0-0.5(RES)	TIN	1.01 mg/Kg	1.01U mg/Kg
SL-038-SA5DS-SS-0.0-0.5(RES)	TIN	0.592 mg/Kg	0.592U mg/Kg
SL-103-SA7-SB-4.0-5.0(RES)	TIN	0.840 mg/Kg	0.840U mg/Kg
SL-103-SA7-SB-9.0-10.0(RES)	TIN	0.721 mg/Kg	0.721U mg/Kg
SL-104-SA7-SB-4.0-5.0(RES)	TIN	0.751 mg/Kg	0.751U mg/Kg
SL-104-SA7-SB-9.0-10.0(RES)	TIN	0.916 mg/Kg	0.916U mg/Kg
SL-105-SA7-SB-4.0-5.0(RES)	TIN	1.02 mg/Kg	1.02U mg/Kg
SL-172-SA7-SB-4.0-5.0(RES)	TIN	0.895 mg/Kg	0.895U mg/Kg
SL-172-SA7-SB-9.0-10.0(RES)	TIN	0.941 mg/Kg	0.941U mg/Kg

# Method Blank Outlier Report

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: DE256_v1.

eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO						
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples		
P27226AB222155A	9/29/2011 9:55:00 PM	COPPER LEAD	0.0875 mg/Kg 0.0645 mg/Kg	DUP-09-SA7-QC-092711 SL-004-SA5DS-SS-0.0-0.5 SL-005-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-020-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-038-SA5DS-SS-0.0-0.5 SL-038-SA5DS-SS-0.0-0.5 SL-103-SA7-SB-4.0-5.0 SL-104-SA7-SB-4.0-5.0 SL-104-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0		

Method: 7470A Matrix: AQ				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P27813AB220856	10/6/2011 8:56:00 AM	MERCURY	0.000042 mg/L	EB-SA7-SB-092711

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA7-SB-092711(RES)	MERCURY	0.000045 mg/L	0.000045U mg/L

Method: 8151A Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P78786AB241039A	10/7/2011 10:39:00 AM	МСРР	130 ug/Kg	SL-004-SA5DS-SS-0.0-0.5 SL-005-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-020-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5
P83832AB241715A	10/12/2011 5:15:00 PM	2,4,5-T	0.10 ug/Kg	SL-038-SA5DS-SS-0.0-0.5

1/9/2012 12:56:23 PM ADR version 1.4.0.111 Page 3 of 3

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: DE256_v1. eQAPP Nam

eQAPP Name: CDM_SSFL_110509

Method: 8015M Matrix: SO								
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag	
SL-103-SA7-SB-4.0-5.0MS SL-103-SA7-SB-4.0-5.0MSD (SL-103-SA7-SB-4.0-5.0)	DIETHYLENE GLYCOL ETHYLENE GLYCOL Propylene glycol	12 49 55	16 55 59	59.00-109.00 63.00-107.00 63.00-107.00	28 (20.00) - -	DIETHYLENE GLYCOL ETHYLENE GLYCOL Propylene glycol	J (all detects) UJ (all non-detects)	
SL-103-SA7-SB-4.0-5.0MS SL-103-SA7-SB-4.0-5.0MSD (SL-103-SA7-SB-4.0-5.0)	EFH (C21-C30) EFH (C30-C40)	-50 -175	35 -220	49.00-123.00 49.00-123.00	22 (20.00)	EFH (C21-C30) EFH (C30-C40)	J(all detects) R(all non-detects) EFH (Cust-Au),	

Method: 6020 Matrix: SO

		· · · · · · · ·				en a la la la la la la la la la la la la l	- seed on state and of the
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-103-SA7-SB-4.0-5.0MS SL-103-SA7-SB-4.0-5.0MSD (DUP-09-SA7-QC-092711 SL-004-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-020-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-025-SA5DS-SS-0.0-0.5 SL-025-SA5DS-SS-0.0-0.5 SL-103-SA7-SB-9.0-10.0 SL-103-SA7-SB-9.0-10.0 SL-104-SA7-SB-4.0-5.0 SL-104-SA7-SB-4.0-5.0 SL-1172-SA7-SB-4.0-5.0 SL-172-SA7-SB-9.0-10.0)	ANTIMONY	35	30	75.00-125.00		ANTIMONY	J(all detects) UJ(all non-detects)
SL-103-SA7-SB-4.0-5.0MSD (DUP-09-SA7-QC-092711 SL-004-SA5DS-SS-0.0-0.5 SL-005-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-020-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-038-SA5DS-SS-0.0-0.5 SL-103-SA7-SB-4.0-5.0 SL-103-SA7-SB-4.0-5.0 SL-103-SA7-SB-9.0-10.0 SL-104-SA7-SB-9.0-10.0 SL-105-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0	BARIUM	-	154	75.00-125.00	-	BARIUM	No Qual, >4x

1/9/2012 12:44:04 PM

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: DE256_v1.

eQAPP Name: CDM_SSFL_110509

Method: 6010B Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-103-SA7-SB-4.0-5.0MS SL-103-SA7-SB-4.0-5.0MSD (DUP-09-SA7-QC-092711 SL-004-SA50S-SS-0.0-0.5 SL-005-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-020-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-025-SA5DS-SS-0.0-0.5 SL-038-SA5DS-SS-0.0-0.5 SL-103-SA7-SB-4.0-5.0 SL-103-SA7-SB-9.0-10.0 SL-104-SA7-SB-4.0-5.0 SL-1104-SA7-SB-4.0-5.0 SL-1172-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0	ALUMINUM MAGNESIUM	361	988 279	75.00-125.00 75.00-125.00		ALUMINUM MAGNESIUM	No Qual, >4x
SL-103-SA7-SB-4.0-5.0MS SL-103-SA7-SB-4.0-5.0MSD (DUP-09-SA7-QC-092711 SL-004-SA5DS-SS-0.0-0.5 SL-005-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-020-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-025-SA5DS-SS-0.0-0.5 SL-103-SA7-SB-9.0-10.0 SL-103-SA7-SB-9.0-10.0 SL-104-SA7-SB-4.0-5.0 SL-105-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0	CALCIUM	-278 -889	-149 837	75.00-125.00 75.00-125.00	-	CALCIUM IRON	No Qual, >4x
SL-103-SA7-SB-4.0-5.0MS (DUP-09-SA7-QC-092711 SL-004-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-020-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-038-SA5DS-SS-0.0-0.5 SL-103-SA7-SB-4.0-5.0 SL-103-SA7-SB-4.0-5.0 SL-104-SA7-SB-4.0-5.0 SL-105-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0	MANGANESE	54	-	75.00-125.00	-	MANGANESE	No Qual, >4x

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: DE256_v1.

eQAPP Name: CDM_SSFL_110509

Method: 300.0 Matrix: SO				en ere			
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-004-SA5DS -SS-0.0-0.5MS (SL-004-SA5DS -SS-0.0-0.5 SL-005-SA5DS -SS-0.0-0.5 SL-006-SA5DS -SS-0.0-0.5 SL-019-SA5DS -SS-0.0-0.5 SL-020-SA5DS -SS-0.0-0.5 SL-020-SA5DS -SS-0.0-0.5 SL-021-SA5DS -SS-0.0-0.5 SL-023-SA5DS -SS-0.0-0.5 SL-023-SA5DS -SS-0.0-0.5 SL-024-SA5DS -SS-0.0-0.5 SL-024-SA5DS -SS-0.0-0.5 SL-025-SA5DS -SS-0.0-0.5	FLUORIDE	44	-	80.00-120.00	-	FLUORIDE	J(all detects) UJ(all non-detects)
SL-103-SA7-SB-4.0-5.0MS (DUP-09-SA7-QC-092711 SL-038-SA5DS-SS-0.0-0.5 SL-103-SA7-SB-4.0-5.0 SL-103-SA7-SB-9.0-10.0 SL-104-SA7-SB-4.0-5.0 SL-104-SA7-SB-9.0-10.0 SL-105-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0 SL-172-SA7-SB-9.0-10.0)	FLUORIDE	61	-	80.00-120.00	-	FLUORIDE	J(all detects) UJ(all non-detects)

Method: 8270C

Matrix: SO

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-103-SA7-SB-4.0-5.0MSD (SL-103-SA7-SB-4.0-5.0)	2,4-DINITROPHENOL 3,3'-DICHLOROBENZIDINE 4-CHLOROANILINE	-	- - -	20.00-143.00 28.00-109.00 23.00-95.00	56 (30.00) 43 (30.00) 42 (30.00)	2,4-DINITROPHENOL 3,3'-DICHLOROBENZIDINE 4-CHLOROANILINE	J(all detects)
SL-103-SA7-SB-4.0-5.0MSD (SL-103-SA7-SB-4.0-5.0)	BENZOIC ACID	-	0	10.00-173.00	200 (30.00)	BENZOIC ACID	J(all detects) R(all non-detects)
SL-103-SA7-SB-4.0-5.0MS SL-103-SA7-SB-4.0-5.0MSD (SL-103-SA7-SB-4.0-5.0)	BENZIDINE	21	25	35.00-141.00	-	BENZIDINE	J(all detects) UJ(all non-detects)

Method: 8270C SIM

Matrix: SO

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-103-SA7-SB-4.0-5.0MSD (SL-103-SA7-SB-4.0-5.0)	N-NITROSODIMETHYLAMINE	-	277	48.00-113.00	105 (30.00)	N-NITROSODIMETHYLAMINE	J(all detects)
SL-103-SA7-SB-4.0-5.0MS SL-103-SA7-SB-4.0-5.0MSD (SL-103-SA7-SB-4.0-5.0)	BIS(2-ETHYLHEXYL)PHTHALAT	-27	-39	39.00-167.00	-	BIS(2-ETHYLHEXYL)PHTHALA	J(all detects) R(all non-detects)

1/9/2012 12:44:05 PM ADR version 1.4.0.111 Page 3 of 4

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: DE256_v1. eQAPP Name: CDM_SSFL_110509

Method: 1625C Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-103-SA7-SB-4.0-5.0MS (SL-103-SA7-SB-4.0-5.0)	N-NITROSODIMETHYLAMINE	134	-	70.00-130.00	-	N-NITROSODIMETHYLAMINE	J(all detects)

Samples)	Compound	%R	%R	Limits	(Limits)	Compounds	Flag
SL-103-SA7-SB-4.0-5.0MS (SL-103-SA7-SB-4.0-5.0)	N-NITROSODIMETHYLAMINE	134	-	70.00-130.00	-	N-NITROSODIMETHYLAMINE	J(all detects)
Method: 6010B	A Professional Control					N. Jing Herring a	and the site of
Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-103-SA7-SB-4.0-5.0MS SL-103-SA7-SB-4.0-5.0MSD (DUP-09-SA7-QC-092711 SL-004-SA5DS-SS-0.0-0.5 SL-005-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-020-SA5DS-SS-0.0-0.5	TITANIUM	205	230	75.00-125.00	-	TITANIUM	
SL -022-SASDS -SS-0.0-0.5 SL -023-SA5DS -SS-0.0-0.5 SL -024-SA5DS -SS-0.0-0.5 SL -025-SA5DS -SS-0.0-0.5 SL -038-SA5DS -SS-0.0-0.5 SL -103-SA7-SB-4.0-5.0							No Qual, >4x

SL -103-SA7-SB-9.0-10.0 SL -104-SA7-SB-4.0-5.0 SL -104-SA7-SB-9.0-10.0 SL -105-SA7-SB-4.0-5.0 SL -172-SA7-SB-4.0-5.0 SL -172-SA7-SB-9.0-10.0)

1/9/2012 12:44:05 PM ADR version 1.4.0.111 Page 4 of 4

#### Lab Duplicate Outlier Report

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: DE256_v1.

eQAPP Name: CDM_SSFL_110509

Method: 300.0 Matrix: SO			Annual	
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-103-SA7-SB-4.0-5.0DUP (DUP-09-SA7-QC-092711 SL -038-SA5DS-SS-0.0-0.5 SL -103-SA7-SB-4.0-5.0 SL -103-SA7-SB-9.0-10.0 SL -104-SA7-SB-4.0-5.0 SL -104-SA7-SB-9.0-10.0 SL -105-SA7-SB-4.0-5.0 SL -172-SA7-SB-4.0-5.0 SL -172-SA7-SB-9.0-10.0)	Nitrate-NO3	28	20.00	No Qual, OK by Difference
Method: 6010B Matrix: SO				
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-103-SA7-SB-4.0-5.0DUP (DUP-09-SA7-QC-092711 SL-004-SA5DS-SS-0.0-0.5 SL-005-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-025-SA5DS-SS-0.0-0.5 SL-104-SA7-SB-4.0-5.0 SL-103-SA7-SB-4.0-5.0 SL-104-SA7-SB-4.0-5.0 SL-104-SA7-SB-4.0-5.0 SL-1172-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0	CALCIUM STRONTIUM Zirconium	38 47 42	20.00 20.00 20.00	J(all detects) UJ(all non-detects)  Zr,  No Qual, OK by Difference

#### Lab Duplicate Outlier Report

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: DE256_v1.

eQAPP Name: CDM_SSFL_110509

Analyte   SO   Sample   ID   (Associated Sample   ID)   Analyte   Sample   RPD   RPD   Flag					
(Associated Sample ID)  Analyte  Analyte  Sample RPD  RPD  Flag  SL-103-SA7-SB-4.0-5.0DUP DUP-09-SA7-QC-092711 MOLYBDENUM SSL-004-SA5DS-SS-0.0-0.5 SL-004-SA5DS-SS-0.0-0.5 SL-005-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-025-SA5DS-SS-0.0-0.5 025-SA5DS-0.0-0.5 SL-025-SA5DS-0.0-0.5 SL-025-SA5DS	Method: 6020 Matrix: SO			567 J. 109	
DUP-09-SA7-QC-092711	(Associated	Analyte			Flag
	(DUP-09-SA7-QC-092711 SL -004-SA5DS-SS-0.0-0.5 SL -005-SA5DS-SS-0.0-0.5 SL -006-SA5DS-SS-0.0-0.5 SL -019-SA5DS-SS-0.0-0.5 SL -020-SA5DS-SS-0.0-0.5 SL -021-SA5DS-SS-0.0-0.5 SL -022-SA5DS-SS-0.0-0.5 SL -023-SA5DS-SS-0.0-0.5 SL -024-SA5DS-SS-0.0-0.5 SL -025-SA5DS-SS-0.0-0.5 SL -038-SA5DS-SS-0.0-0.5 SL -103-SA7-SB-4.0-5.0 SL -103-SA7-SB-4.0-5.0 SL -104-SA7-SB-4.0-5.0 SL -104-SA7-SB-4.0-5.0 SL -105-SA7-SB-4.0-5.0	MOLYBDENUM	38	20.00	No Qual,
000 4 15	Method: 7199 Matrix: SO				

QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
. ,				, jug
SL-103-SA7-SB-4.0-5.0DUP	HEXAVALENT CHROMIUM	200	20.00	
(DUP-09-SA7-QC-092711				
SL -004-SA5DS-SS-0.0-0.5				
SL -005-SA5DS-SS-0.0-0.5				
SL -006-SA5DS-SS-0.0-0.5				
SL -019-SA5DS -SS-0.0-0.5		•		
SL -020-SA5DS-SS-0.0-0.5				
SL -021-SA5DS -SS-0.0-0.5				No Qual,
SL -022-SA5DS -SS-0.0-0.5				OK by Difference
SL -023-SA5DS-SS-0.0-0.5				,
SL -024-SA5DS-SS-0.0-0.5				
SL -025-SA5DS-SS-0.0-0.5				
SL -038-SA5DS-SS-0.0-0.5				
SL -103-SA7-SB-4.0-5.0				
SL -103-SA7-SB-9.0-10.0				
SL -104-SA7-SB-4.0-5.0				
SL -104-SA7-SB-9.0-10.0				
SL -105-SA7-SB-4.0-5.0				
SL -172-SA7-SB-4.0-5.0				
SL -172-SA7-SB-9.0-10.0)				

1/9/2012 12:53:03 PM ADR version 1.4.0.111 Page 2 of 2

#### Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: DE256_v1. eQAPP Name: CDM_SSFL_110509

EDD Filename: DE256_v1. eQAPP Name: CDM_SSFL_110509							
Method: 8330A Matrix: AQ							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P12766AQ241326A P12766AY241408A (EB-SA7-SB-092711)	Tetryl	71	67	72.00-141.00	-	Tetryl	J (all detects) UJ (all non-detects)
Method: 8270C Matrix: AQ							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P6WCLCSQ261423 (EB-SA7-SB-092711)	BIS(2-CHLOROETHYL) ETHER NITROBENZENE	109 111	-	77.00-108.00 75.00-109.00	-	BIS(2-CHLOROETHYL) ETHER NITROBENZENE	J(all detects)
P6WCLCSY261448 (EB-SA7-SB-092711)	BENZOIC ACID	-	-	10.00-69.00	82 (30.00)	BENZOIC ACID	J(all detects) UJ(all non-detects)
Method: 8081A Matrix: SO							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P12799AQ242322A (SL-004-SA5DS -SS-0.0-0.5 SL -005-SA5DS -SS-0.0-0.5 SL -006-SA5DS -SS-0.0-0.5 SL -019-SA5DS -SS-0.0-0.5 SL -020-SA5DS -SS-0.0-0.5 SL -021-SA5DS -SS-0.0-0.5 SL -022-SA5DS -SS-0.0-0.5 SL -023-SA5DS -SS-0.0-0.5 SL -023-SA5DS -SS-0.0-0.5 SL -023-SA5DS -SS-0.0-0.5 SL -025-SA5DS -SS-0.0-0.5 SL -025-SA5DS -SS-0.0-0.5	METHOXYCHLOR	130	-	59.00-125.00	•	METHOXYCHLOR	J(all detects)
Method: 8151A Matrix: SO							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P12832AQ241743A (SL-038-SA5DS-SS-0.0-0.5)	DINOSEB	8	-	10.00-36.00	-	DINOSEB	J(all detects) R(all non-detects)

Page 1 of 2

#### Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: DE256_v1.

eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO				100 kg			I. Elli
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P27226AQ222158A (DUP-09-SA7-QC-092711 SL-004-SA5DS-SS-0.0-0.5 SL-005-SA5DS-SS-0.0-0.5 SL-005-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-020-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-025-SA5DS-SS-0.0-0.5 SL-038-SA5DS-SS-0.0-0.5 SL-103-SA7-SB-4.0-5.0 SL-103-SA7-SB-4.0-5.0 SL-104-SA7-SB-4.0-5.0 SL-1172-SA7-SB-4.0-5.0 SL-1172-SA7-SB-4.0-5.0	ANTIMONY	62		80.00-120.00	-	ANTIMONY	No Qual, SRM within QC limits

## Method: 6010B Matrix: SO QC Sample ID (Associated Samples) LCS LCSD %R RPD Affected (Limits) P27208AQ220112 Compound %R %R Limits (Limits) P27208AQ220112 ALUMINUM 143 - 80.00-120.00 - ALUMINUM

(Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P27208AQ220112 (DUP-09-SA7-QC-092711 SL-004-SA5DS-SS-0.0-0.5 SL-005-SA5DS-SS-0.0-0.5 SL-006-SA5DS-SS-0.0-0.5 SL-019-SA5DS-SS-0.0-0.5 SL-020-SA5DS-SS-0.0-0.5 SL-021-SA5DS-SS-0.0-0.5 SL-022-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-023-SA5DS-SS-0.0-0.5 SL-024-SA5DS-SS-0.0-0.5 SL-038-SA5DS-SS-0.0-0.5 SL-103-SA7-SB-9.0-10.0 SL-104-SA7-SB-4.0-5.0 SL-104-SA7-SB-4.0-5.0 SL-1172-SA7-SB-4.0-5.0 SL-172-SA7-SB-4.0-5.0	ALUMINUM	143	-	80.00-120.00	-	ALUMINUM	No Qual, SRM within QC limits

1/9/2012 12:50:17 PM ADR version 1.4.0.111 Page 2 of 2

#### Surrogate Outlier Report

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: DE256_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1629 Matrix: AQ	5C				
Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
EB-SA7-SB- 092711	N-Nitrosodimethylamine-d6	277	50.00-150.00	All Target Analytes	J (all detects)

Method: 8081A Matrix: SO

Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
SL-006-SA5DS-SS- 0.0-0.5	DECACHLOROBIPHENYL	127	20.00-120.00	All Target Analytes	J(all detects)
SL-023-SA5DS-SS- 0.0-0.5	TETRACHLORO-M-XYLENE	46	50.00-130.00	All Target Analytes	J(all detects) UJ(all non-detects)

Method: 8082 Matrix: SO

Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
SL-022-SA5DS-SS- 0.0-0.5	DECACHLOROBIPHENYL	123	45.00-120.00	All Target Analytes	J(all detects)
SL-023-SA5DS-SS- 0.0-0.5	DECACHLOROBIPHENYL TETRACHLORO-M-XYLENE	155 154	45.00-120.00 53.00-139.00	All Target Analytes	J(all detects)
SL-103-SA7-SB-4.0 -5.0	DECACHLOROBIPHENYL TETRACHLORO-M-XYLENE	135 152	45.00-120.00 53.00-139.00	All Target Analytes	J(all detects)

Lab Reporting Batch ID: DE256 Laboratory: LL

EDD Filename: DE256_v1. eQAPP Name: CDM_SSFL_110509

Method: 6010B	AND THE RESERVE THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH			100			Make I AL
Matrix: AQ		A trail	4.4.5	برد کالایان	eran a	أانت	ing a said and a said
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA7-SB-092711	BORON STRONTIUM	j	0.0039 0.00023	0.0500 0.0050	PQL PQL	mg/L mg/L	J (all detects)
Method: 6020 Matrix: AQ							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA7-SB-092711	LEAD	J	0.00013	0.0010	PQL	mg/L	J (all detects)
Method: 7470A Matrix: AQ		M.					
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA7-SB-092711	MERCURY	J	0.000045	0.00020	PQL	mg/L	J (all detects)
Method: 8260B Matrix: AQ							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA7-SB-092711	METHYLENE CHLORIDE	J	3	5	PQL	ug/L	J (all detects)
Method: 8270C SIM Matrix: AQ					ia W Maria Wa		
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA7-SB-092711	BIS(2-ETHYLHEXYL)PHTHALATE Diethylphthalate Di-n-butylphthalate Di-n-octylphthalate	J J J	0.13 0.36 0.79 0.11	1.1 1.1 1.1 1.1	PQL PQL PQL PQL	ug/L ug/L ug/L ug/L	J (all detects)
Method: 300.0 Matrix: SO				30	a III		
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-105-SA7-SB-4.0-5.0	Nitrate-NO3	J	0.96	1.5	PQL	mg/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/9/2012 12:56:35 PM ADR version 1.4.0.111 Page 1 of 8

Lab Reporting Batch ID: DE256 Laboratory: LL

EDD Filename: DE256_v1. eQAPP Name: CDM_SSFL_110509

#### Method: 6010B Matrix: SO Lab Reporting RL SampleID Analyte Limit Qual Result Type Units Flag DUP-09-SA7-QC-092711 SODIUM 81.8 99.1 **PQL** mg/Kg TIN **PQL** J 0.615 9.91 mg/Kg J (all detects) Zirconium J 1.13 4.96 **PQL** mg/Kg SL-004-SA5DS-SS-0.0-0.5 SODIUM J 93.6 101 **PQL** mg/Kg J (all detects) TIN J 1.04 10.1 **PQL** mg/Kg SL-005-SA5DS-SS-0.0-0.5 SODIUM J 91.1 101 PQL mg/Kg TIN J 1.06 10.1 PQL mg/Kg J (all detects) Zirconium J 3.56 5.03 **PQL** mg/Kg SL-006-SA5DS-SS-0.0-0.5 SODIUM J mg/Kg 85.9 97.0 **PQL** J (all detects) TIN .1 0.816 9.70 **PQL** mg/Kg SL-019-SA5DS-SS-0.0-0.5 SODIUM J 86.7 99.7 **PQL** mg/Kg J (all detects) TIN mg/Kg J 0.959 9.97 **PQL** SL-020-SA5DS-SS-0.0-0.5 SODIUM 99.4 J 88.1 **PQL** mg/Kg J (all detects) TIN J 0.969 9.94 mg/Kg **PQL** SL-021-SA5DS-SS-0.0-0.5 SODIUM J 91.3 98.7 **PQL** mg/Kg TIN j **PQL** 1.08 9.87 mg/Kg J (all detects) Zirconium mg/Kg J 4.06 4.93 **PQL** SL-022-SA5DS-SS-0.0-0.5 SODIUM J 83.9 101 PQL mg/Kg J (all detects) TIN 1.03 10.1 **PQL** mg/Kg SL-023-SA5DS-SS-0.0-0.5 SODIUM J 98.7 101 **PQL** mg/Kg J (all detects) TIN 1.04 10.1 **PQL** mg/Kg SL-024-SA5DS-SS-0.0-0.5 TIN J 0.857 10.1 PQL mg/Kg J (all detects) SL-025-SA5DS-SS-0.0-0.5 SODIUM J 98.2 101 **PQL** mg/Kg J (all detects) TIN J. 1.01 10.1 **PQL** mg/Kg SL-038-SA5DS-SS-0.0-0.5 SODIUM J 85.8 98.8 **PQL** mg/Kg TIN J 0.592 9.88 **PQL** mg/Kg J (all detects) Zirconium PQL J 4.84 4.94 mg/Kg SL-103-SA7-SB-4.0-5.0 TIN J 0.840 10.3 PQL mg/Kg J (all detects) Zirconium J **PQL** 1.38 5.14 mg/Kg SL-103-SA7-SB-9.0-10.0 TIN J 0.721 10.6 PQL mg/Kg J (all detects) Zirconium J 0.905 5.29 **PQL** mg/Kg SL-104-SA7-SB-4.0-5.0 SODIUM J 82.2 101 **PQL** mg/Kg J 0.751 10.1 PQL mg/Kg J (all detects) Zirconium J **PQL** 1.40 5.07 mg/Kg SL-104-SA7-SB-9.0-10.0 TIN J 0.916 10.6 **PQL** mg/Kg J (all detects) Zirconium J 1.06 PQL mg/Kg 5.31 SL-105-SA7-SB-4.0-5.0 SODIUM J 71.3 102 **PQL** mg/Kg TIN **PQL** J. 10.2 1.02 mg/Kg J (all detects) Zirconium J 0.965 5.11 **PQL** mg/Kg SL-172-SA7-SB-4.0-5.0 TIN J 0.895 10.4 PQL mg/Kg J (all detects) Zirconium J 1.55 5.21 PQL mg/Kg SL-172-SA7-SB-9.0-10.0 TIN J 0.941 10.9 **PQL** mg/Kg J (all detects) Zirconium **PQL** 1.23 5.45 mg/Kg

Lab Reporting Batch ID: DE256 Laboratory: LL

EDD Filename: DE256_v1. eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO	

Matrix: SO		21.25					<u>Esta andrifunda de</u>
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP-09-SA7-QC-092711	CADMIUM SELENIUM	J	0.0950 0.139	0.100 0.400	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-004-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	J	0.105 0.350 0.0252	0.201 0.403 0.101	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-005-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM SILVER		0.112 0.244 0.0236	0.193 0.387 0.0967	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-006-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	)	0.134 0.178 0.0282	0.202 0.403 0.101	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-019-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	J J	0.0922 0.190 0.0210	0.201 0.403 0.101	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-020-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	J	0.107 0.190 0.0708	0.203 0.406 0.101	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-021-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	j j	0.100 0.170 0.0207	0.197 0.395 0.0987	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-022-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	J J	0.108 0.217 0.0204	0.202 0.403 0.101	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-023-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	J J	0.111 0.259 0.0152	0.202 0.404 0.101	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-024-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	J J	0.119 0.170 0.0169	0.199 0.399 0.0996	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-025-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	J J J	0.133 0.188 0.0162	0.194 0.389 0.0972	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-038-SA5DS-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	J J J	0.122 0.292 0.0234	0.202 0.403 0.101	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-103-SA7-SB-4.0-5.0	ANTIMONY CADMIUM SELENIUM SILVER	J J J	0.0944 0.0906 0.160 0.0234	0.210 0.105 0.419 0.105	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
SL-103-SA7-SB-9.0-10.0	CADMIUM SELENIUM SILVER	J	0.0962 0.113 0.0182	0.109 0.436 0.109	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-104-SA7-SB-4.0-5.0	CADMIUM SELENIUM SILVER	J J	0.0978 0.135 0.0200	0.101 0.406 0.101	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-104-SA7-SB-9.0-10.0	CADMIUM SELENIUM SILVER	J J	0.102 0.101 0.0221	0.105 0.420 0.105	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/9/2012 12:56:35 PM ADR version 1.4.0.111 Page 3 of 8

Lab Reporting Batch ID: DE256

EDD Filename: DE256_v1. eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Wet	100F	6	020
Mati	ix:	S	O

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-105-SA7-SB-4.0-5.0	CADMIUM SELENIUM SILVER	J	0.0921 0.142 0.0154	0.103 0.413 0.103	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-172-SA7-SB-4.0-5.0	SELENIUM SILVER	J J	0.160 0.0248	0.430 0.107	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-172-SA7-SB-9.0-10.0	SELENIUM SILVER	J	0.126 0.0224	0.428 0.107	PQL PQL	mg/Kg mg/Kg	J (all detects)

Method: 7199 Matrix: SO

Lab Reporting RLSampleID Analyte Result Limit Qual Type Units Flag SL-004-SA5DS-SS-0.0-0.5 HEXAVALENT CHROMIUM 0.97 **PQL** J (all detects) 1.0 mg/Kg SL-005-SA5DS-SS-0.0-0.5 HEXAVALENT CHROMIUM J 0.92 1.0 **PQL** J (all detects) mg/Kg SL-021-SA5DS-SS-0.0-0.5 HEXAVALENT CHROMIUM J 0.65 1.0 **PQL** mg/Kg J (all detects) SL-022-SA5DS-SS-0.0-0.5 HEXAVALENT CHROMIUM J 0.56 1.0 PQL J (all detects) mg/Kg SL-024-SA5DS-SS-0.0-0.5 HEXAVALENT CHROMIUM J 0.67 1.0 **PQL** mg/Kg J (all detects) SL-025-SA5DS-SS-0.0-0.5 HEXAVALENT CHROMIUM J 0.86 1.0 **PQL** mg/Kg J (all detects)

Method: 7471A Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP-09-SA7-QC-092711	MERCURY	J	0.0079	0.101	PQL	mg/Kg	J (all detects)
SL-004-SA5DS-SS-0.0-0.5	MERCURY	J	0.0103	0.101	PQL	mg/Kg	J (all detects)
SL-005-SA5DS-SS-0.0-0.5	MERCURY	J	0.0074	0.0945	PQL	mg/Kg	J (all detects)
SL-006-SA5DS-SS-0.0-0.5	MERCURY	J	0.0109	0.0963	PQL	mg/Kg	J (all detects)
SL-019-SA5DS-SS-0.0-0.5	MERCURY	J	0.0135	0.0991	PQL	mg/Kg	J (all detects)
SL-020-SA5DS-SS-0.0-0.5	MERCURY	J	0.0088	0.0959	PQL	mg/Kg	J (all detects)
SL-021-SA5DS-SS-0.0-0.5	MERCURY	J	0.0115	0.0972	PQL	mg/Kg	J (all detects)
SL-022-SA5DS-SS-0.0-0.5	MERCURY	J	0.0193	0.0997	PQL	mg/Kg	J (all detects)
SL-023-SA5DS-SS-0.0-0.5	MERCURY	J	0.0118	0.0967	PQL	mg/Kg	J (all detects)
SL-024-SA5DS-SS-0.0-0.5	MERCURY	j	0.0098	0.100	PQL	mg/Kg	J (all detects)
SL-025-SA5DS-SS-0.0-0.5	MERCURY	J	0.0098	0.0963	PQL	mg/Kg	J (all detects)
SL-038-SA5DS-SS-0.0-0.5	MERCURY	J	0.0877	0.0977	PQL	mg/Kg	J (all detects)
SL-172-SA7-SB-4.0-5.0	MERCURY	J	0.0079	0.105	PQL	mg/Kg	J (all detects)
SL-172-SA7-SB-9.0-10.0	MERCURY	J	0.0490	0.105	PQL	mg/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/9/2012 12:56:35 PM

ADR version 1.4.0.111

Lab Reporting Batch ID: DE256 Laboratory: LL

EDD Filename: DE256_v1. eQAPP Name: CDM_SSFL_110509

Method: 7471A

Matrix: SO

		Lab	1	Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag

Method: 8015M

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-103-SA7-SB-4.0-5.0	EFH (C15-C20)	J	0.60	1.3	PQL	mg/Kg	J (all detects)
SL-103-SA7-SB-9.0-10.0	EFH (C15-C20)	J	0.44	1.3	PQL	mg/Kg	J (all detects)
SL-104-SA7-SB-4.0-5.0	EFH (C15-C20)	J	0.53	1.3	PQL	mg/Kg	J (all detects)
SL-105-SA7-SB-4.0-5.0	EFH (C15-C20)	J	0.45	1.2	PQL	mg/Kg	J (all detects)

Method: 8081A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-019-SA5DS-SS-0.0-0.5	4,4'-DDE ENDRIN ALDEHYDE	J	0.23 0.086	0.34 0.34	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-020-SA5DS-SS-0.0-0.5	Chlordane	J	2.9	3.4	PQL	ug/Kg	J (all detects)
SL-021-SA5DS-SS-0.0-0.5	Chlordane TOXAPHENE	J	1.6 2.6	3.4 6.7	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-022-SA5DS-SS-0.0-0.5	DELTA-BHC ENDRIN KETONE	J	0.046 0.097	0.17 0.34	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-023-SA5DS-SS-0.0-0.5	4,4'-DDE Chlordane	J	0.25 1.8	0.35 3.5	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-025-SA5DS-SS-0.0-0.5	BETA-BHC Chlordane	J	0.079 2.5	0.17 3.5	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-038-SA5DS-SS-0.0-0.5	Chlordane	J	1.1	3.5	PQL	ug/Kg	J (all detects)

Method: 8082

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-004-SA5DS-SS-0.0-0.5	AROCLOR 1254 AROCLOR 1260 Aroclor 5460	J	0.51 0.67 1.2	1.7 1.7 3.4	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-006-SA5DS-SS-0.0-0.5	AROCLOR 1254 AROCLOR 1260 Aroclor 5460	J J	1.2 1.0 1.9	1.7 1.7 3.4	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-019-SA5DS-SS-0.0-0.5	AROCLOR 1260	J	0.52	1.7	PQL	ug/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/9/2012 12:56:35 PM ADR version 1.4.0.111 Page 5 of 8

Lab Reporting Batch ID: DE256 Laboratory: LL

EDD Filename: DE256_v1. eQAPP Name: CDM_SSFL_110509

#### Method: 8082 Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-020-SA5DS-SS-0.0-0.5	AROCLOR 1254 AROCLOR 1260 Aroclor 5460	J	1.2 0.87 2.0	1.7 1.7 3.3	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-021-SA5DS-SS-0.0-0.5	AROCLOR 1254 AROCLOR 1260 Aroclor 5460	J	0.89 0.71 1.6	1.7 1.7 3.3	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-022-SA5DS-SS-0.0-0.5	AROCLOR 1254 AROCLOR 1260 Aroclor 5460	J	1.2 0.97 2.0	1.7 1.7 3.4	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-023-SA5DS-SS-0.0-0.5	AROCLOR 1254 AROCLOR 1260 Aroclor 5460	J	0.64 0.75 1.6	1.7 1.7 3.4	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-024-SA5DS-SS-0.0-0.5	AROCLOR 1254 Aroclor 5460	J	0.89 1.3	1.7 3.3	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-025-SA5DS-SS-0.0-0.5	Aroclor 5460	J	1.3	3.3	PQL	ug/Kg	J (all detects)
SL-038-SA5DS-SS-0.0-0.5	AROCLOR 1242	J	0.72	1.7	PQL	ug/Kg	J (all detects)
SL-103-SA7-SB-4.0-5.0	AROCLOR 1260	J	0.47	1.8	PQL	ug/Kg	J (all detects)
SL-104-SA7-SB-4.0-5.0	AROCLOR 1260	j	0.90	1.8	PQL	ug/Kg	J (all detects)
SL-104-SA7-SB-9.0-10.0	AROCLOR 1260	J	0.47	1.8	PQL	ug/Kg	J (all detects)
SL-105-SA7-SB-4.0-5.0	AROCLOR 1260	J	0.75	1.7	PQL	ug/Kg	J (all detects)
SL-172-SA7-SB-4.0-5.0	AROCLOR 1260	J	0.76	1.8	PQL	ug/Kg	J (all detects)

Method: 8151A

SO

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-006-SA5DS-SS-0.0-0.5	2,4-D	J	2.0	3.7	PQL	ug/Kg	J (all detects)
SL-021-SA5DS-SS-0.0-0.5	2,4,5-TP (Silvex)	J	0.13	0.17	PQL	ug/Kg	J (all detects)
SL-038-SA5DS-SS-0.0-0.5	2,4,5-TP (Silvex) DICAMBA DICHLOROPROP	J	0.090 0.61 1.6	0.17 1.2 1.7	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)

Method: 8270C

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP-09-SA7-QC-092711	Di-n-butylphthalate	J	35	170	PQL	ug/Kg	J (all detects)
SL-005-SA5DS-SS-0.0-0.5	BIS(2-ETHYLHEXYL)PHTHALATE	J	19	340	PQL	ug/Kg	J (all detects)
SL-006-SA5DS-SS-0.0-0.5	BIS(2-ETHYLHEXYL)PHTHALATE	J	51	340	PQL	ug/Kg	J (all detects)
SL-024-SA5DS-SS-0.0-0.5	BIS(2-ETHYLHEXYL)PHTHALATE	J	18	340	PQL	ug/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/9/2012 12:56:35 PM ADR version 1.4.0.111 Page 6 of 8

Lab Reporting Batch ID: DE256

Laboratory: LL

EDD Filename: DE256_v1.

eQAPP Name: CDM_SSFL_110509

Method: 8270C SIM

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP-09-SA7-QC-092711	BENZO(A)ANTHRACENE	J	0.76	1.7	PQL	ug/Kg	3
	BENZO(A)PYRENE	j	1.0	1.7	PQL	ug/Kg	
	BENZO(G,H,I)PERYLENE	J	1.0	1.7	PQL	ug/Kg	
	CHRYSENE	J	1.5	1.7	PQL	ug/Kg	J (all detects)
	FLUORANTHENE	J	1.0	1.7	PQL	ug/Kg	
	PYRENE	J	1.5	1.7	PQL	ug/Kg	
SL-004-SA5DS-SS-0.0-0.5	1-METHYLNAPHTHALENE	J	0.78	1.7	PQL	ug/Kg	
	2-METHYLNAPHTHALENE	J	1.2	1.7	PQL	ug/Kg	
	BENZO(A)ANTHRACENE	J	0.81	1.7	PQL	ug/Kg	
	BENZO(A)PYRENE	J	1.6	1.7	PQL	ug/Kg	J (all detects)
	BENZO(G,H,I)PERYLENE BIS(2-ETHYLHEXYL)PHTHALATE	J	1.1 12	1.7	PQL	ug/Kg	
	INDENO(1,2,3-CD)PYRENE	j	1.1	18	PQL PQL	ug/Kg ug/Kg	
SL-005-SA5DS-SS-0.0-0.5				-			
SL-005-3A5DS-3S-0.0-0.5	BENZO(A)ANTHRACENE BENZO(A)PYRENE	J	0.76 1.0	1.7	PQL PQL	ug/Kg	
	CHRYSENE	J	1.4	1.7	PQL	ug/Kg ug/Kg	J (all detects)
	NAPHTHALENE	j	0.71	1.7	PQL	ug/Kg   ug/Kg	J (all detects)
	PHENANTHRENE	j	1.1	1.7	PQL	ug/Kg ug/Kg	
SL-006-SA5DS-SS-0.0-0.5	1-METHYLNAPHTHALENE	J	1.2	1.7	PQL	ua/Ka	
	BENZO(A)ANTHRACENE	ij	0.78	1.7	PQL	ug/Kg	
	BENZO(A)PYRENE	j j	1.2	1.7	PQL	ug/Kg	J (all detects)
	BENZO(G,H,I)PERYLENE	j	0.73	1.7	PQL	ug/Kg	
SL-019-SA5DS-SS-0.0-0.5	BENZO(B)FLUORANTHENE	J	1.4	1.7	PQL	ug/Kg	
	CHRYSENE	J	0.36	1.7	PQL	ug/Kg	J (all detects)
SL-020-SA5DS-SS-0.0-0.5	BENZO(A)ANTHRACENE	J	0.76	1.7	PQL	ug/Kg	
	BENZO(A)PYRENE	J	1.1	1.7	PQL	ug/Kg	
	BENZO(G,H,I)PERYLENE	J	0.71	1.7	PQL	ug/Kg	
	BIS(2-ETHYLHEXYL)PHTHALATE	J	16	18	PQL	ug/Kg	J (all detects)
	Butylbenzylphthalate	1	6.6	18	PQL	ug/Kg	o (an acteota)
	NAPHTHALENE PHENANTHRENE	J	1.0	1.7	PQL	ug/Kg	
	PYRENE	J	1.0 1.6	1.7	PQL PQL	ug/Kg	
SL-021-SA5DS-SS-0.0-0.5						ug/Kg	P-1
3L-021-3A3D3-33-0.0-0.3	BIS(2-ETHYLHEXYL)PHTHALATE CHRYSENE	J	7.1	18	PQL	ug/Kg	
	FLUORANTHENE	J	0.93 0.98	1.7	PQL	ug/Kg	1 (-11 -1-11-)
	PHENANTHRENE	j	0.96	1.7	PQL PQL	ug/Kg ug/Kg	J (all detects)
	PYRENE	j	0.76	1.7	PQL	ug/Kg ug/Kg	
SL-022-SA5DS-SS-0.0-0.5	BENZO(A)ANTHRACENE	J	1.1	1.7	PQL	ug/Kg	
01 011 0/1000 00 0.0-0.0	BENZO(G,H,I)PERYLENE	j	1.1	1.7	PQL	ug/Kg ug/Kg	
	Butylbenzylphthalate	j	10	18	PQL	ug/Kg ug/Kg	J (all detects)
	INDENO(1,2,3-CD)PYRENE	j	0.89	1.7	PQL	ug/Kg	o (un dotooto)
	NAPHTHALENE	Ĵ	0.87	1.7	PQL	ug/Kg	
SL-023-SA5DS-SS-0.0-0.5	BENZO(A)ANTHRACENE	J	1.5	1.7	PQL	ug/Kg	
	BENZO(K)FLUORANTHENE	j	0.90	1.7	PQL	ug/Kg	17 11 1 7 7 1 2
	BIS(2-ETHYLHEXYL)PHTHALATE	J	6.6	18	PQL	ug/Kg	J (all detects)
	CHRYSENE	J	1.6	1.7	PQL	ug/Kg	

Lab Reporting Batch ID: DE256 Laboratory: LL

EDD Filename: DE256_v1. eQAPP Name: CDM_SSFL_110509

#### Method: 8270C SIM

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-024-SA5DS-SS-0.0-0.5	2-METHYLNAPHTHALENE BENZO(A)PYRENE BENZO(G,H,I)PERYLENE CHRYSENE INDENO(1,2,3-CD)PYRENE NAPHTHALENE PHENANTHRENE PYRENE	) ) )	0.71 0.79 1.0 1.4 0.70 1.6 1.3 1.5	1.7 1.7 1.7 1.7 1.7 1.7 1.7	PQL PQL PQL PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-025-SA5DS-SS-0.0-0.5	BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(G,H,I)PERYLENE Butylbenzylphthalate INDENO(1,2,3-CD)PYRENE NAPHTHALENE PHENANTHRENE	) ) )	1.1 1.5 1.4 6.6 1.1 0.74 1.5	1.7 1.7 1.7 18 1.7 1.7	PQL PQL PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-038-SA5DS-SS-0.0-0.5	BIS(2-ETHYLHEXYL)PHTHALATE CHRYSENE FLUORANTHENE PYRENE	j j	11 0.78 0.92 0.89	19 1.7 1.7 1.7	PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-103-SA7-SB-4.0-5.0	CHRYSENE	J	0.48	1.7	PQL	ug/Kg	J (all detects)
SL-103-SA7-SB-9.0-10.0	BENZO(B)FLUORANTHENE	J	0.91	1.8	PQL	ug/Kg	J (all detects)
SL-104-SA7-SB-4.0-5.0	BENZO(A)PYRENE BENZO(B)FLUORANTHENE BIS(2-ETHYLHEXYL)PHTHALATE CHRYSENE PYRENE	J J J	0.75 1.2 6.3 0.76 0.98	1.7 1.7 19 1.7 1.7	PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-104-SA7-SB-9.0-10.0	BENZO(B)FLUORANTHENE	J	0.72	1.7	PQL	ug/Kg	J (all detects)
SL-105-SA7-SB-4.0-5.0	BENZO(G,H,I)PERYLENE CHRYSENE	J J	0.87 1.5	1.7 1.7	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-172-SA7-SB-4.0-5.0	BENZO(B)FLUORANTHENE CHRYSENE	J J	1.2 0.50	1.8 1.8	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-172-SA7-SB-9.0-10.0	BENZO(B)FLUORANTHENE	J	0.74	1.8	PQL	ug/Kg	J (all detects)

LDC #: 26859Z4	VALIDATION COMPLETENESS WORKSHEET	Date: 1/4/11
SDG #: <u>DE256</u>	ADR	Page: 1 of <i>)</i>
Laboratory: Lancaster Laborat	Reviewer:	
METHOD: Metals (EPA SW 8	46 Method 6010B/6020A/7000)	2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Technical holding times	N	Sampling dates:
II.	ICP/MS Tune	N.	
111.	Calibration	N	
IV.	Blanks	SiV	
V.	ICP Interference Check Sample (ICS) Analysis	N	
VI.	Matrix Spike Analysis	N Sv	Al, Ba, Ca, Fe, Ma, Mn. Ti, 74X
VII.	Duplicate Sample Analysis	NSW	Sb, Mo Se, Fr CSX
VIII.	Laboratory Control Samples (LCS)	N A	
IX.	Internal Standard (ICP-MS)	N	
X.	Furnace Atomic Absorption QC	N	
XI.	ICP Serial Dilution	A	
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	N	
XIV.	Field Duplicates	_	
χV	Field Blanks	5~	EB=20

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate

FB = Field blank

D = Duplicate TB = Trip blank

EB = Equipment blank

#### Validated Samples:

r	<u> </u>	<del></del>	1		<u> </u>		
1_	SL-004-SA5DS-SS-0.0-0.5	11	SL-038-SA5DS-SS-0.0-0.5	21	SL-103-SA7-SB-4.0-5.0MS	31	
2	SL-005-SA5DS-SS-0.0-0.5	12	SL-103-SA7-SB-4.0-5.0	22	SL-103-SA7-SB-4.0-5.0MSD	32	
3	SL-006-SA5DS-SS-0.0-0.5	13	SL-103-SA7-SB-9.0-10.0	23	SL-103-SA7-SB-4.0-5.0DUP	33	
4	SL-019-SA5DS-SS-0.0-0.5	14	SL-104-SA7-SB-4.0-5.0	24		34	
5	SL-020-SA5DS-SS-0.0-0.5	15	SL-104-SA7-SB-9.0-10.0	25		35	
6	SL-021-SA5DS-SS-0.0-0.5	16_	SL-105-SA7-SB-4.0-5.0	26		36	
7	SL-022-SA5DS-SS-0.0-0.5	17	SL-172-SA7-SB-4.0-5.0	27		37	
8	SL-023-SA5DS-SS-0.0-0.5	18	SL-172-SA7-SB-9.0-10.0	28		38	
9	SL-024-SA5DS-SS-0.0-0.5	19	DUP-09-SA7-QC-092711	29		39	
10	SL-025-SA5DS-SS-0.0-0.5	20	EB-SA7-SB-092711	30		40	

Notes:					
	, ,				

LDC #: 26859Z4

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

2nd Reviewer:

Page: Reviewer:

> Reason: B Soil preparation factor applied: 100X Associated Samples: All AQ METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) 20 Sample Concentration units, unless otherwise noted: ug/L Action Limit Maximum ICB/CCB^a (ng/L) Maximum PB³ (ug/L)

0.045 0.13

0.305 0.18

0.061 0.036

Maximum PB^a (mg/Kg)

Analyte

amples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed in unlified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

5924
268
#:
2
믁

# VALIDATION FINDINGS WORKSHEET Field Blanks

Page: \ of_

2nd Reviewer:

Reviewer:

**ЩЕТНОD:** Trace Metals (EPA SW846 6010В/6020/7000)

Were field blanks identified in this SDG? MN N/A

Were target analytes detected in the field blanks? ØN N/A

Associated sample units: mg/Kg Blank units: ug/L Sampling date:

Reason Code: F Al Soil O Associated Samples: Sampling date: 9/27/11 Soil factor applied 100X, Hg:167X Field blank type: (circle one) Field Blank / Rinsate / Other:

12-19

0.0079 9 0.0079 1 96000 0.0098 9049 ф ф Sample Identification 210.0 9 0.0000 S 0.014 4004 9499 0.037575 Action Level 0.115 0.065 1.95 Blank ID 0.045 0.13 0.23 3.9 20 Analyte В 롼 స ω

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with analyte concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".



QUALITY ASSURANCE SUMMARY FORM 5A (MS/MSD)

MATRIX SPIKE/MATRIX SPIKE DUPLICATE DE256

Level (low/med): LOW SDG No.: DE2 Matrix: SOIL

Matrix Spike Duplicate Lab Sample ID: 6421301MSD Matrix Spike Lab Sample ID: 6421300MS P27208A, P27226A, P27211A, P28408B Background Lab Sample ID: 6421299BKG % Solids for Sample: 95,4 Batch Id(s):

		0 0 0 0 0	-						_		
	_1	bre Dre	ore	MSD Sample	MS Spike	MSD Spike	MS	MSD		Control L	Limit
o	Мавв	Result C	Result C	Result	C Added	Added Units	8 % ਨ	<u>ਹ</u> ਬੁਝ	RPD Q	상8	RPD M
Aluminum		13667.8290	14417.2510	15679.3002	207.5679	203.5375 MG/KG	361	886	89	イタイ	20P
Antimony	121	0.0944 B	0.5289	0.4602	1.2454	1.2095 MG/KG	G 35 N	30 N	14	75 - 125	20 MS
Arsenic	75	3.8470	5.9800	5.9708	2.0757	2.0158MG/KG	G 103	105	0	75 - 125	20MS
Barium	137	76.5199	88.4862	92.0618	10.3784	10.0790 MG/KG	G 115	154	4	744	20MS
Beryllium	<u>0</u>	0.5000	1.2116	1.1883	0.8303	0.8063 MG/KG	98	85	77	75 - 125	20 MS
Boron		6.9275	201.0389	203.4785	207.5679	203.5375 MG/KG	94	97	급	84 - 115	20P
Cadmium	111	0.0906 B	1.1460	1.0817	1.0378	1.0079MG/KG	-	86	9	75 - 125	20MS
Calcium		5169.9973	4015.4742	4565,1981	415.1358	407.0750 MG/KG	G -278	-149	13	747	20P
Chromium	52	15.1321	24.4307	23.5043	10.3784	10.0790 MG/KG	06	83	4	75 - 125	20MS
Cobalt	59	4.7526	53.2204	51.1006	51.8920	50.		92	4	75 - 125	20MS
Copper	63	7.1447	17.5914	16.0881	10.3784	10.0790 MG/KG	101	89	6	75 - 125	20MS
Iron		18270.9705	17348.3218	19123.2257	103.7840	101.7687 MG/KG	G - 889	837	10	747	20P
Lead	208		7.9955	7,6681	3.1135	3.0237 MG/KG	3 103	95	4	75 - 125	ZOMS
Lithium		23.5346	124.3716	126,1719	103.7840	101.7687 MG/KG	76 5	101	ਜ	82 - 114	20P
Magnesium		4198.1502	4405.2546	4765.9431	207.5679	203.5375 MG/KG	100	279	8	ノや人	20P
Manganese		258.6437	286.4323	308.4387	51.8920	50.8844 MG/KG	54	86	7	727	20日
Mercury		0.0073 U	0.1725	0.1734	0.1691	0.1741 MG/KG	G 102	100	Н	65 - 135	20CV
Molybdenum	98	0.6149	10.1750	9.8532	10.3784	10.0790 MG/KG	G 92	92	М	75 - 125	20MS
Nickel	9	9.3354	20.0033	18.7409	10.3784	10.0790 MG/KG	-	93	7	- 12	20MS
Phosphorus		355.8628	434,1688	449.1126	103.7840	101.7687 MG/KG	G 75	92	М	1	20P
Potassium		2674.5468	3778.4513	3942.8457	1037,8396	1017.6874 MG/KG	3 106	125	4	75 - 125	20P
Selenium	78	0.1604 B	2.1006	2.1005	2.0757	2.0158 MG/KG	G 93	96	0	75 - 125	20MS
Silver	107	0.0234 B	10.1874	9.7867	10.3784	10.0790 MG/KG	86 5	26	4	75 - 125	20MS
Sodium	1	103.0881	1021.7407	1043.8348	1037.8396	1017.6874 MG/KG	68	92	7	75 - 125	20P
Strontium		26.1572	115.0310	117.7230	103,7840	101.7687 MG/KG	98	06	2	75 - 115	20P
Thallium	203	0.2400	0.6557	0.6152	0.4151	0.4032 MG/KG	100	93	9	75 - 125	20MS
Tin		0.8396B	360.8755	359,7861	415,1358	407.0750 MG/KG	G 87	88	o	80 - 110	20P
Titanium		1054.7817	1261.5163	1293.9919	100.7902	103.7840 MG/KG	G 205	230	М	メみく	20F
Vanadium	21	30.5241	39.9568	39.3888	10.3784	10.0790MG/KG	G 91	88	П	75 - 125	20 MS
Zinc	99	52.8931	64.5744	61.2603	10,3784	10.0790MG/KG	G 113	83	S		20MS
Zirconium 🗽	5.52	1.3812B	101.3886	101.2283	103.7840	101.7687 MG/KG	96	98	0	81 - 110	20月
lie ča-	E2:										

METHODS:

Cold Vapor Atomic Fluorescence Cold Vapor 11 C.V. STHODS: #P P = ICP Atomic Emission Spectrometer MS = ICB, Mass Spectrometry

U= Below MDL, B= Below LOQ CONCENTRATION QUALIFIERS:

FLAGS:

* = Duplicate 00S N = Matrix Spike 00S,



QUALITY ASSURANCE SUMMARY

FORM 6 DUPLICATES

SDG No.: DE256

Matrix: SOIL

Level (low/med): LOW

Duplicate Lab Sample ID: 6421302DUP

% Solids for Sample: 95.4

Background Lab Sample ID: 6421299BKG

% Solids for Duplicate: 95.2

Batch ID(s): P27208A, P27226A, P27211A, P28408B

Concentration Units: MG/KG

	1	Control		-					T
Analyte	Mass	Limit	Samples (S)	C	Duplicate (D)	C	RPD	Q	ŀ
Aluminum			13667.8290		13449.743	7	2		P
Antimony	121		0.0944	В	0.0766	υ	200		MS
Arsenic	75		3,8470		3.777	7	2		MS
Barium	137		76.5199		80.0140	1	4		MS
Beryllium	9	0.1	0.5000		0.4692	2	6		MS
Boron		5.1	6.9275		6.5463	7	6		P
Cadmium	111		0.0906	В	. 0.0789	В	14		MS
Calcium			5169.9973		3501.8141	. -	38	*	P
Chromium	52		15.1321		14.1345	5	7		MS
Cobalt	59		4.7526		4.8218		1		MS
Copper	63		7.1447		6.7682		5		MS
Iron			18270.9705		18669.9141	1	2	<b></b> -	P
Lead	208		4.7966		4.4971		6		MS
Lithium			23.5346		25.1479		7	_	P
Magnesium			4198.1502		4437.6590		6		P
Manganese			258.6437		247.6088	_	4		P
Mercury			0.0073	υ	0.0074	U			CV
Molybdenum	98	0.1	0.6149		0.4203		-38		MS
Nickel	60		9.3354	$\exists$	9.1565		2		MS
Phosphorus			355.8628		329.2214		8		P
Potassium			2674.5468		2874.8075	-	7		P
Selenium	78		0.1604	в	0.1048		22	_	MS
Silver	107		0.0234	В	0.0240		3	-	MS
Sodium		102.8	103.0881	T	95.8538		7		P
Strontium			26.1572		16.1571		47	*	P
Thallium	203	0.1	0.2400		0.2234		7		MS
Tin			0.8396	В	0.7877		6		P
Titanium			1054.7817	十	1070.9829		2		P
Vanadium	51		30.5241	+	29.1240		5		MS
Zinc	66		52.8931	十	55.2473		4		MS
Zirconium			1.3812	B	2.1193		42	$\overline{}$	P

NOTE:

An asterisk (*) in column "Q" indicates poor duplicate precision (RPD > 20% OR  $|\langle S \rangle|$  - (D)| > LOQ for values < 5x LOQ).

The data are considered to be valid because the laboratory control sample is within the control limits. See the Laboratory Control Sample.

DE256 5728

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CV = Cold Vapor

AF = Cold Vapor Atomic Fluorescence

CONCENTRATION QUALIFIERS:

U= Below MDL

B= Below LOQ

FLAGS:

* = Duplicate Out of Spec

or 17

#### **SAMPLE DELIVERY GROUP**

**DE257** 

#### Attachment I

Sample ID Cross Reference and Data Review Level

Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Sep-2011	SL-008-SA5DS-SS-0.0-0.5	6422530	N	3050B	6010B	III
28-Sep-2011	SL-008-SA5DS-SS-0.0-0.5	6422530	N	3050B	6020	111
28-Sep-2011	SL-008-SA5DS-SS-0.0-0.5	6422530	N	3550B	8081A	. 111
28-Sep-2011	SL-008-SA5DS-SS-0.0-0.5	6422530	Ν	3550B	8082	111
28-Sep-2011	SL-008-SA5DS-SS-0.0-0.5	6422530	N	3550B	815 <b>1</b> A	III
28-Sep-2011	SL-008-SA5DS-SS-0.0-0.5	6422530	N	3550B	8270C	111
28-Sep-2011	SL-008-SA5DS-SS-0.0-0.5	6422530	N	3550B	8270C SIM	111
28-Sep-2011	SL-008-SA5DS-SS-0.0-0.5	6422530	N	Gen Prep	7199	Ш
28-Sep-2011	SL-008-SA5DS-SS-0.0-0.5	6422530	N	METHOD	300.0	111
28-Sep-2011	SL-008-SA5DS-SS-0.0-0.5	6422530	N	METHOD	314.0	Ш
28-Sep-2011	SL-008-SA5DS-SS-0.0-0.5	6422530	N	METHOD	6850	111
28-Sep-2011	SL-008-SA5DS-SS-0.0-0.5	6422530	N	METHOD	7471A	111
28-Sep-2011	SL-007-SA5DS-SS-0.0-0.5	6422529	N	3050B	6010B	Ш
28-Sep-2011	SL-007-SA5DS-SS-0.0-0.5	6422529	N	3050B	6020	HJ
28-Sep-2011	SL-007-SA5DS-SS-0.0-0.5	6422529	N	3550B	8081A	III
28-Sep-2011	SL-007-SA5DS-SS-0.0-0.5	6422529	N	3550B	8082	JH
28-Sep-2011	SL-007-SA5DS-SS-0.0-0.5	6422529	N	3550B	815 <b>1</b> A	III
28-Sep-2011	SL-007-SA5DS-SS-0.0-0.5	6422529	N	3550B	8270C	III
28-Sep-2011	SL-007-SA5DS-SS-0.0-0.5	6422529	N	3550B	8270C SIM	HII
28-Sep-2011	SL-007-SA5DS-SS-0.0-0.5	6422529	N	Gen Prep	7199	HI
28-Sep-2011	SL-007-SA5DS-SS-0.0-0.5	6422529	N	METHOD	300.0	III
28-Sep-2011	SL-007-SA5DS-SS-0.0-0.5	6422529	N	METHOD	314.0	III
28-Sep-2011	SL-007-SA5DS-SS-0.0-0.5	6422529	N	METHOD	7471A	111
28-Sep-2011	SL-010-SA5DS-SS-0.0-0.5	6422532	N	3050B	6010B	111
28-Sep-2011	SL-010-SA5DS-SS-0.0-0.5	6422532	N	3050B	6020	III
28-Sep-2011	SL-010-SA5DS-SS-0.0-0.5	6422532	N	3550B	8081A	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Sep-2011	SL-010-SA5DS-SS-0.0-0.5	6422532	N	3550B	8082	111
28-Sep-2011	SL-010-SA5DS-SS-0.0-0.5	6422532	N	3550B	8151A	111
28-Sep-2011	SL-010-SA5DS-SS-0.0-0.5	6422532	N	3550B	8270C	Ш
28-Sep-2011	SL-010-SA5DS-SS-0.0-0.5	6422532	N	3550B	8270C SIM	IB
28-Sep-2011	SL-010-SA5DS-SS-0.0-0.5	6422532	N	Gen Prep	7199	IR
28-Sep-2011	SL-010-SA5DS-SS-0.0-0.5	6422532	N	METHOD	300.0	Ш
28-Sep-2011	SL-010-SA5DS-SS-0.0-0.5	6422532	N	METHOD	314.0	Ш
28-Sep-2011	SL-010-SA5DS-SS-0.0-0.5	6422532	N	METHOD	7471A	111
28-Sep-2011	SL-017-SA5DS-SS-0.0-0.5	6422537	N	3050B	6010B	Ш
28-Sep-2011	SL-017-SA5DS-SS-0.0-0.5	6422537	N	3050B	6020	HI
28-Sep-2011	SL-017-SA5DS-SS-0.0-0.5	6422537	N	3550B	8081A	III
28-Sep-2011	SL-017-SA5DS-SS-0.0-0.5	6422537	N	3550B	8082	111
28-Sep-2011	SL-017-SA5DS-SS-0.0-0.5	6422537	N	3550B	8151A	Ш
28-Sep-2011	SL-017-SA5DS-SS-0.0-0.5	6422537	N	3550B	8270C	III
28-Sep-2011	SL-017-SA5DS-SS-0.0-0.5	6422537	N	3550B	8270C SIM	III
28-Sep-2011	SL-017-SA5DS-SS-0.0-0.5	6422537	N	Gen Prep	7199	Ш
28-Sep-2011	SL-017-SA5DS-SS-0.0-0.5	6422537	N	METHOD	300.0	111
28-Sep-2011	SL-017-SA5DS-SS-0.0-0.5	6422537	N	METHOD	314.0	Ш
28-Sep-2011	SL-017-SA5DS-SS-0.0-0.5	6422537	N	METHOD	7471A	III
28-Sep-2011	SL-016-SA5DS-SS-0.0-0.5	6422536	N	3050B	6010B	Ш
28-Sep-2011	SL-016-SA5DS-SS-0.0-0.5	6422536	N	3050B	6020	111
28-Sep-2011	SL-016-SA5DS-SS-0.0-0.5	6422536	N	3550B	8081A	111
28-Sep-2011	SL-016-SA5DS-SS-0.0-0.5	6422536	N	3550B	8082	Ш
28-Sep-2011	SL-016-SA5DS-SS-0.0-0.5	6422536	N	3550B	8151A	Ш
28-Sep-2011	SL-016-SA5DS-SS-0.0-0.5	6422536	N	3550B	8270C	Ш
28-Sep-2011	SL-016-SA5DS-SS-0.0-0.5	6422536	N	3550B	8270C SIM	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Sep-2011	SL-016-SA5DS-SS-0.0-0.5	6422536	N	Gen Prep	7199	III
28-Sep-2011	SL-016-SA5DS-SS-0.0-0.5	6422536	N	METHOD	300.0	111
28-Sep-2011	SL-016-SA5DS-SS-0.0-0.5	6422536	N	METHOD	314.0	Ш
28-Sep-2011	SL-016-SA5DS-SS-0.0-0.5	6422536	N	METHOD	7471A	Ш
28-Sep-2011	SL-106-SA7-SB-15.5	6422525	N	5035	8015M	111
28-Sep-2011	SL-106-SA7-SB-15.5	6422525	N	5035	8260B	III
28-Sep-2011	SL-106-SA7-SB-15.5	6422525	N	5035	8260B SIM	111
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	3050B	6010B	m
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	3050B	6020	Ш
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	3546	1625C	Ш
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	3550B	8015B	111
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	3550B	8015M	Ш
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	3550B	8082	111
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	3550B	8270C	tti
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	3550B	8270C SIM	Ш
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	5035	8015M	111
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	Gen Prep	7199	Ш
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	METHOD	300.0	III
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	METHOD	314.0	III
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	METHOD	7471A	m
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	METHOD	8015B	Ш
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	METHOD	8015M	Ш
28-Sep-2011	SL-106-SA7-SB-19.0-20.0	6422527	N	METHOD	8315A	Ш
28-Sep-2011	SL-009-SA5DS-SS-0.0-0.5	6422531	N	3050B	6010B	111
28-Sep-2011	SL-009-SA5DS-SS-0.0-0.5	6422531	N	3050B	6020	111
28-Sep-2011	SL-009-SA5DS-SS-0.0-0.5	6422531	N	3550B	8081A	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Sep-2011	SL-009-SA5DS-SS-0.0-0.5	6422531	N	3550B	8082	111
28-Sep-2011	SL-009-SA5DS-SS-0.0-0.5	6422531	N	3550B	8151A	III
28-Sep-2011	SL-009-SA5DS-SS-0.0-0.5	6422531	N	3550B	8270C	III
28-Sep-2011	SL-009-SA5DS-SS-0.0-0.5	6422531	N	3550B	8270C SIM	111
28-Sep-2011	SL-009-SA5DS-SS-0.0-0.5	6422531	N	Gen Prep	7199	111
28-Sep-2011	SL-009-SA5DS-SS-0.0-0.5	6422531	N	METHOD	300.0	Ш
28-Sep-2011	SL-009-SA5DS-SS-0.0-0.5	6422531	N	METHOD	314.0	Ш
28-Sep-2011	SL-009-SA5DS-SS-0.0-0.5	6422531	N	METHOD	7471A	III
28-Sep-2011	SL-014-SA5DS-SS-0.0-0.5	6422534	N	3050B	6010B	Ш
28-Sep-2011	SL-014-SA5DS-SS-0.0-0.5	6422534	N	3050B	6020	III
28-Sep-2011	SL-014-SA5DS-SS-0.0-0.5	6422534	N	3550B	8081A	m
28-Sep-2011	SL-014-SA5DS-SS-0.0-0.5	6422534	N	3550B	8082	111
28-Sep-2011	SL-014-SA5DS-SS-0.0-0.5	6422534	N	3550B	8151A	Ш
28-Sep-2011	SL-014-SA5DS-SS-0.0-0.5	6422534	N	3550B	8270C	III
28-Sep-2011	SL-014-SA5DS-SS-0.0-0.5	6422534	N	3550B	8270C SIM	m
28-Sep-2011	SL-014-SA5DS-SS-0.0-0.5	6422534	N	Gen Prep	7199	111
28-Sep-2011	SL-014-SA5DS-SS-0.0-0.5	6422534	N	METHOD	300.0	111
28-Sep-2011	SL-014-SA5DS-SS-0.0-0.5	6422534	N	METHOD	314.0	III
28-Sep-2011	SL-014-SA5DS-SS-0.0-0.5	6422534	N	METHOD	7471A	III
28-Sep-2011	SL-015-SA5DS-SS-0.0-0.5	6422535	N	3050B	6010B	III
28-Sep-2011	SL-015-SA5DS-SS-0.0-0.5	6422535	N	3050B	6020	111
28-Sep-2011	SL-015-SA5DS-SS-0.0-0.5	6422535	N	3550B	8081A	Ш
28-Sep-2011	SL-015-SA5DS-SS-0.0-0.5	6422535	N	3550B	8082	111
28-Sep-2011	SL-015-SA5DS-SS-0.0-0.5	6422535	N	3550B	8151A	III
28-Sep-2011	SL-015-SA5DS-SS-0.0-0.5	6422535	N	3550B	8270C	111
28-Sep-2011	SL-015-SA5DS-SS-0.0-0.5	6422535	N	3550B	8270C SIM	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
. 28-Sep-2011	SL-015-SA5DS-SS-0.0-0.5	6422535	N	Gen Prep	7199	III
28-Sep-2011	SL-015-SA5DS-SS-0.0-0.5	6422535	N	METHOD	300.0	111
28-Sep-2011	SL-015-SA5DS-SS-0.0-0.5	6422535	N	METHOD	314.0	IH
28-Sep-2011	SL-015-SA5DS-SS-0.0-0.5	6422535	N	METHOD	6850	111
28-Sep-2011	SL-015-SA5DS-SS-0.0-0.5	6422535	N	METHOD	7471A	Ш
28-Sep-2011	SL-013-SA5DS-SS-0.0-0.5	6422533	N	3050B	6010B	111
28-Sep-2011	SL-013-SA5DS-SS-0.0-0.5	6422533	N	3050B	6020	111
28-Sep-2011	SL-013-SA5DS-SS-0.0-0.5	6422533	N	3550B	8081A	III
28-Sep-2011	SL-013-SA5DS-SS-0.0-0.5	6422533	N	3550B	8082	III
28-Sep-2011	SL-013-SA5DS-SS-0.0-0.5	6422533	N	3550B	815 <b>1</b> A	!11
28-Sep-2011	SL-013-SA5DS-SS-0.0-0.5	6422533	N	3550B	8270C	Ш
28-Sep-2011	SL-013-SA5DS-SS-0.0-0.5	6422533	N	3550B	8270C SIM	Ш
28-Sep-2011	SL-013-SA5DS-SS-0.0-0.5	6422533	N	Gen Prep	7199	Ш
28-Sep-2011	SL-013-SA5DS-SS-0.0-0.5	6422533	N	METHOD	300.0	111
28-Sep-2011	SL-013-SA5DS-SS-0.0-0.5	6422533	N	METHOD	314.0	III
28-Sep-2011	SL-013-SA5DS-SS-0.0-0.5	6422533	N	METHOD	7471A	III
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	3050B	6010B	III
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	3050B	6020	111
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	3546	1625C	Ш
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	3550B	8015B	m
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	3550B	8015M	III
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	3550B	8082	III
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	3550B	8270C	III
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	3550B	8270C SIM	III
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	5035	8015M	Ш
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	Gen Prep	7199	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	METHOD	300.0	ili .
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	METHOD	314.0	III
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	METHOD	7471A	111
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	METHOD	8015B	111
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	METHOD	8015M	Ш
28-Sep-2011	SL-106-SA7-SB-4.0-5.0	6422523	N	METHOD	8315A	H
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	3050B	6010B	tH
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	3050B	6020	Ш
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	3546	1625C	Ш
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	3550B	8015B	111
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	3550B	8015M	111
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	3550B	8082	111
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	3550B	8270C	III
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	3550B	8270C SIM	III
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	5035	8015M	111
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	Gen Prep	7199	III
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	METHOD	300.0	III
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	METHOD	314.0	Ш
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	METHOD	7471A	Ш
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	METHOD	8015B	Ш
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	METHOD	8015M	Ш
28-Sep-2011	SL-106-SA7-SB-9.0-10.0	6422524	N	METHOD	8315A	111
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	3050B	6010B	111
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	3050B	6020	111
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	3546	1625C	111
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	3550B	8015B	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	3550B	8015M	III Feasi
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	3550B	8082	 III
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	3550B	8270C	 Ni
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	3550B	8270C SIM	III
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	5035	8015M	 III
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	Gen Prep	7199	111
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	METHOD	300.0	III
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	METHOD	314.0	III
28-Sep-2011	SL-106-SA7-SB-16.5-17.5					
•		6422526	N	METHOD	7471A	III 
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	METHOD	8015B	III 
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	METHOD	8015M	111
28-Sep-2011	SL-106-SA7-SB-16.5-17.5	6422526	N	METHOD	8315A	111
28-Sep-2011	EB-SA5DS-SS-092811	6422547	EB	3005A	6010B	III
28-Sep-2011	EB-SA5DS-SS-092811	6422547	EB	3020A	6020	111
28-Sep-2011	EB-SA5DS-SS-092811	6422547	EB	3510C	8081A	Ш
28-Sep-2011	EB-SA5DS-SS-092811	6422547	EB	3510C	8082	III
28-Sep-2011	EB-SA5DS-SS-092811	6422547	EB	3510C	8270C	111
28-Sep-2011	EB-\$A5D\$-\$\$-092811	6422547	EB	3510C	8270C SIM	111
28-Sep-2011	EB-SA5DS-SS-092811	6422547	EB	Gen Prep	300.0	III
28-Sep-2011	EB-SA5DS-SS-092811	6422547	EB	Gen Prep	314.0	III
28-Sep-2011	EB-SA5DS-SS-092811	6422547	EB	Gen Prep	7199	III
28-Sep-2011	EB-SA5DS-SS-092811	6422547	EB	METHOD	7470A	tii
28-Sep-2011	EB-SA5DS-SS-092811	6422547	EB	METHOD	8151A	Ш
28-Sep-2011	SL-033-SA5DS-SS-0.0-0.5	6422538	N	3050B	6010B	111
28-Sep-2011	SL-033-SA5DS-SS-0.0-0.5	6422538	N	3050B	6020	111
28-Sep-2011	SL-033-SA5DS-SS-0.0-0.5	6422538	N	3550B	8081A	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Sep-2011	SL-033-SA5DS-SS-0.0-0.5	6422538	N	3550B	8082	III
28-Sep-2011	SL-033-SA5DS-SS-0.0-0.5	6422538	N	3550B	8151A	111
28-Sep-2011	SL-033-SA5DS-SS-0.0-0.5	6422538	N	3550B	8270C	III
28-Sep-2011	SL-033-SA5DS-SS-0.0-0.5	6422538	N	3550B	8270C SIM	Ш
28-Sep-2011	SL-033-SA5DS-SS-0.0-0.5	6422538	N	Gen Prep	7199	Ш
28-Sep-2011	SL-033-SA5DS-SS-0.0-0.5	6422538	N	METHOD	300.0	Ш
28-Sep-2011	SL-033-SA5DS-SS-0.0-0.5	6422538	N	METHOD	314.0	111
28-Sep-2011	SL-033-SA5DS-SS-0.0-0.5	6422538	N	METHOD	7471A	III
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5	6422539	N	3050B	6010B	III
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5	6422539	N	3050B	6020	ш
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5	6422539	N	3550B	8081A	III
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5	6422539	N	3550B	8082	HI
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5	6422539	N	3550B	8151A	III
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5	6422539	N	3550B	8270C	Ш
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5	6422539	N	3550B	8270C SIM	III
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5	6422539	N	Gen Prep	7199	III
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5	6422539	N	METHOD	300.0	111
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5	6422539	N	METHOD	314.0	III
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5	6422539	N	METHOD	7471A	Ш
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5MS	6422540	MS	3050B	6010B	111
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5MS	6422540	MS	3050B	6020	111
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5MS	6422540	MS	3550B	8081A	III
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5MS	6422540	MS	3550B	8082	III
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5MS	6422540	MS	3550B	8151A	Ш
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5MS	6422540	MS	3550B	8270C	111
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5MS	6422540	MS	3550B	8270C SIM	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5MS	6422540	MS	Gen Prep	7199	111
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5MS	6422540	MS	METHOD	300.0	III
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5MS	6422540	MS	METHOD	314.0	Ш
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5MS	6422540	MS	METHOD	7471A	111
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5DU	6422542	DUP	3050B	6010B	H
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5DU	6422542	DUP	3050B	6020	Ш
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5DU	6422542	DUP	Gen Prep	7199	III
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5DU	6422542	DUP	METHOD	300.0	111
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5DU	6422542	DUP	METHOD	314.0	111
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5DU	6422542	DUP	METHOD	7471A	111
28-Sep-2011	DUP-02-SA5DS-QC-092811	6422546	FD	3050B	6010B	HI
28-Sep-2011	DUP-02-SA5DS-QC-092811	6422546	FD	3050B	6020	111
28-Sep-2011	DUP-02-SA5DS-QC-092811	6422546	FD	3550B	8081A	111
28-Sep-2011	DUP-02-SA5DS-QC-092811	6422546	FD	3550B	8082	111
28-Sep-2011	DUP-02-SA5DS-QC-092811	6422546	FD	3550B	<b>81</b> 51A	111
28-Sep-2011	DUP-02-SA5DS-QC-092811	6422546	FD	3550B	8270C	m
28-Sep-2011	DUP-02-SA5DS-QC-092811	6422546	FD	3550B	8270C SIM	Ш
28-Sep-2011	DUP-02-SA5DS-QC-092811	6422546	FD	Gen Prep	7199	III
28-Sep-2011	DUP-02-SA5DS-QC-092811	6422546	FD	METHOD	300.0	111
28-Sep-2011	DUP-02-SA5DS-QC-092811	6422546	FD	METHOD	314.0	111
28-Sep-2011	DUP-02-SA5DS-QC-092811	6422546	FD	METHOD	7471A	III
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	3050B	601 <b>0</b> B	Ш
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	3050B	6020	III
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	3546	1625C	111
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	3550B	8015B	111
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	3550B	8015M	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	3550B	8082	III
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	3550B	8270C	III
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	3550B	8270C SIM	Ш
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	5035	8015M	111
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	Gen Prep	7199	III
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	METHOD	300.0	111
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	METHOD	314.0	m
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	METHOD	6850	III
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	METHOD	7471A	Ш
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	METHOD	8015B	111
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	METHOD	8015M	III
28-Sep-2011	SL-103-SA7-SB-18.0-19.0	6422522	N	METHOD	8315A	Ш
28-Sep-2011	TB-092711	6422528	TB	5030B	8015M	111
28-Sep-2011	TB-092711	6422528	ТВ	5030B	8260B	111
28-Sep-2011	TB-092711	6422528	ТВ	5030B	8260B SIM	III
28-Sep-2011	SL-103-SA7-SB-18.0-19.0DU	P422522D270032A	DUP	METHOD	300.0	Ш
28-Sep-2011	SL-103-SA7-SB-18.0-19.0DU	P422522D272022A	DUP	METHOD	314.0	III
28-Sep-2011	SL-103-SA7-SB-18.0-19.0MS	P422522R270045A	MS	METHOD	300.0	111
28-Sep-2011	SL-103-SA7-SB-18.0-19.0MS	P422522R272045A	MS	METHOD	314.0	HI
28-Sep-2011	SL-040-SA5DS-SS-0.0-0.5	6422545	N	3050B	6010B	III
28-Sep-2011	SL-040-SA5DS-SS-0.0-0.5	6422545	N	3050B	6020	III
28-Sep-2011	SL-040-SA5DS-SS-0.0-0.5	6422545	N	3550B	8081A	181
28-Sep-2011	SL-040-SA5DS-SS-0.0-0.5	6422545	N	3550B	8082	111
28-Sep-2011	SL-040-SA5DS-SS-0.0-0.5	6422545	N	3550B	8151A	Ш
28-Sep-2011	SL-040-SA5DS-SS-0.0-0.5	6422545	N	3550B	8270C	111
28-Sep-2011	SL-040-SA5DS-SS-0.0-0.5	6422545	N	3550B	8270C SIM	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Sep-2011	SL-040-SA5DS-SS-0.0-0.5	6422545	N	Gen Prep	7199	101
28-Sep-2011	SL-040-SA5DS-SS-0.0-0.5	6422545	N	METHOD	300.0	111
28-Sep-2011	SL-040-SA5DS-SS-0.0-0.5	6422545	N	METHOD	314.0	111
28-Sep-2011	SL-040-SA5DS-SS-0.0-0.5	6422545	N	METHOD	6850	HI
28-Sep-2011	SL-040-SA5DS-SS-0.0-0.5	6422545	N	METHOD	7471A	111

#### **Attachment II**

### **Overall Data Qualification Summary**

Lab Reporting Batch ID: DE257 Laboratory: LL

EDD Filename: PrepDE257_v1 eQAPP Name: CDM_SSFL_110509

Method Category: 💛 GENCHEM 🧎 🧓	an erakan da		ne dine.		an ina mada	rio de milio esp Til de milio esp	113623310003	in a laboration	Madalasi kalenda k	
Method: 300.0			Má	atrix:	SO					
Sample ID: SL-007-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 8:00:0	00 A	nalysis T	ype: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	0.81	υ	0.81	MDL	1.0	PQL	mg/Kg	UJ	Q	
Sample ID: SL-008-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 7:30:0	00 A	nalysis T	ype: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	1.1		0.81	MDL	1.0	PQL	mg/Kg	J	Q	
Sample ID: SL-009-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/20	011 9:50:0	00 A	nalysis T	ype: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	0.81	U	0.81	MDL	1.0	PQL	mg/Kg	UJ	Q	
Sample ID: SL-010-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/20	011 8:20:0	00 A.	nalysis T	ype: RES	<b>,</b>		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	0.81	U	0.81	MDL	1.0	PQL	mg/Kg	UJ	Q	
Sample ID: SL-013-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/20	011 11:00	:00 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	0.93	J	0.81	MDL	1.0	PQL	mg/Kg	J	Z, Q	
Sample ID: SL-103-SA7-SB-18.0-19.0	Collect	ted: 9/28/20	011 2:30:0	00 A	nalysis Ty	ype: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	2.8		0.87	MDL	1.1	PQL	mg/Kg	J	Q	
Sample ID: SL-106-SA7-SB-16.5-17.5	Collect	ted: 9/28/20	)11 12:45	:00 A	nalysis T	ype: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	4,2		0.86	MDL	1.1	PQL	mg/Kg	J	Q	
		1								
Sample ID: SL-106-SA7-SB-19.0-20.0		ted: 9/28/20	)11 9:50:0	00 A	nalysis T	ype: RES		,	Dilution: 1	
		ted: 9/28/20 Lab Qual	011 9:50:0	DL Type	nalysis Ty	ype: RES RL Type	Units	Data Review Qual	Dilution: 1 Reason Code	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:37 AM ADR version 1.4.0.111 Page 1 of 35

Lab Reporting Batch ID: DE257

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

EDD Filename: PrepDE257_v1

lethod	Categoi	<b>v</b> :	GENC	нем

Method: 300.0 Matrix: SO

Sample ID: SL-106-SA7-SB-4.0-5.0	Collec	Collected: 9/28/2011 12:15:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	2.0		0.83	MDL	1.0	PQL	mg/Kg	J	Q
Nitrate-NO3	1.1	J	0.83	MDL.	1.6	PQL	ma/Ka	J	7

Sample ID: SL-106-SA7-SB-9.0-10.0 Collected: 9/28/2011 12:30:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	2.1		0.87	MDL	1.1	PQL	mg/Kg	J	Q

Method Category: METALS Method: 6010B

6010B Matrix: AQ

Sample ID: EB-SA5DS-SS-092811	Collec	Collected: 9/28/2011 1:00:00 Analysis Type: REA2						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BORON	0.0025	J	0.0022	MDL	0.0500	PQL	mg/L	J	Z	
PHOSPHORUS	0.0105	J	0.0047	MDL	0.100	PQL	mg/L	υ	В	

Method Category: METALS

Method: 6010B Matrix: SO

Sample ID: DUP-02-SA5DS-QC-092811	Collected: 9/28/2011 1:55:00	Analysis Type: RES	Dilution: 1
		, mary old Typer The	Diration 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	99.2	J	6.12	MDL	103	PQL	mg/Kg	J	Z
TIN	2.82	J	0.329	MDL	10.3	PQL	mg/Kg	Ü	В
Zirconium	4.15	J	0.473	MDL	5.15	PQL	mg/Kg	J	Z

 Sample ID: SL-007-SA5DS-SS-0.0-0.5
 Collected: 9/28/2011 8:00:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	87.7	J	5.98	MDL	101	PQL	mg/Kg	J	Z
TIN	2.67	J	0.322	MDL	10.1	PQL	mg/Kg	υ	В

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:37 AM

ADR version 1.4,0.111

Page 2 of 35

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE257

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

EDD Filename: PrepDE257_v1

Method Catego	ory: METALS	APERNATURAS SAMESTANDAS MANYSAMENTES	al dame of the		
Method:	6010B	Matrix:	so		s in the same of the particle desired and the
Sample ID: SL-008	-SA5DS-SS-0.0-0.5	Collected: 9/28/2011 7:30:00	Analysis Tyna	RES	Dilution: 4

Sample ID: 3L-000-3A3D3-33-0.0-0.3	Collec	tea: 9/26/2	013 7:30:0	JU A	naiysis i	ype: K⊏S	,	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BORON	4.38	J	0.360	MDL	5.00	PQL	mg/Kg	J	Z	
SODIUM	69.5	J	5.95	MDL	99.9	PQL	mg/Kg	J	Z	
TIN	2.57	J	0.320	MDL	9.99	PQL	mg/Kg	U	В	
Zirconium	0.970	J	0.460	MDL	5.00	PQL	mg/Kg	J	Z	

Sample ID: SL-009-SA5DS-SS-0.0-0.5	Collec	Collected: 9/28/2011 9:50:00					Analysis Type: RES			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code	
SODIUM	88.4	J	6.04	MDL	102	PQL	mg/Kg	J	Z	
TIN	2.78	J	0.325	MDL	10.2	PQL	mg/Kg	U	В	

Sample ID: SL-010-SA5DS-SS-0.0-0.5	Collec	Collected: 9/28/2011 8:20:00 Analysis Type: RES							Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
SODIUM	91.2	J	5.97	MDL	100	PQL	mg/Kg	J	Z			
TIN	2.63	J	0.321	MDL	10.0	PQL	mg/Kg	U	В			

Sample ID: SL-013-SA5DS-SS-0.0-0.5	Collec	Collected: 9/28/2011 11:00:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SODIUM	85.1	J	6.02	MDL	101	PQL	mg/Kg	J	Z	
TIN	2.52	J	0.324	MDL	10.1	PQL	mg/Kg	U	В	
Zirconium	3.72	J	0.466	MDL	5.06	PQL	mg/Kg	J	z	

Sample ID: SL-014-SA5DS-SS-0.0-0.5	Collec	Collected: 9/28/2011 10:05:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code		
SODIUM	93.6	J	5.92	MDL	99.5	PQL	mg/Kg	J	Z		
TIN	2.71	J	0.319	MDL	9.95	PQL	mg/Kg	υ	В		
Zirconium	2.65	J	0.458	MDL	4.98	PQL	mg/Kg	J	Z		

Sample ID: SL-015-SA5DS-SS-0.0-0.5	Collec	:00 _	Analysis T	ype: RES	Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	84.7	J	5.87	MDL	98.7	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111

1/12/2012 11:50:37 AM

Lab Reporting Batch ID: DE257

EDD Filename: PrepDE257_v1

EQAPP Name: CDM_SSFL_110509

Method Category	METALS			<b>高温</b>						
Method:	6010B			Ma	atrix:	so				maser i di era săn selt servici
Sample ID: SL-015-SA	.5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 10:45	:00	Analysis T	ype: RES	i		Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TIN		2.74	J	0.316	MDL	9.87	PQL	mg/Kg	U	В
Sample ID: SL-016-SA	5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 9:15:0	00 /	nalysis T	ype: RES			Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM		80.5	J	6.13	MDL	103	PQL	mg/Kg	J	Z
TIN		2.71	J	0.330	MDL	10.3	PQL	mg/Kg	U	В
Zirconium		4.97	J	0.474	MDL	5.15	PQL	mg/Kg	J	Z
Sample ID: SL-017-SA	5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 8:35:0	00 4	nalysis T	ype: RES			Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
SODIUM		97.7	J	5.93	MDL	99.7	PQL	mg/Kg	J	Z
TIN		2.83	J	0.319	MDL	9.97	PQL	mg/Kg	U	В
Sample ID: SL-033-SA	5DS-SS-0.0-0.5	Collec	Dilution: 1							
Analyte		Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
TIN	<u> </u>	2.66	J	0.332	MDL	10.4	PQL	mg/Kg	υ	В
Zirconium		3.67	J	0.477	MDL	5.18	PQL	mg/Kg	J	Z
Sample ID: SL-034-SA	5DS-SS-0.0-0.5	Collect	ted: 9/28/2	011 1:45:0	00 🗚	nalysis Ty	/pe: RES			Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM		100	J	6.14	MDL	103	PQL	mg/Kg	J	Z
TIN		2.95	J	0.330	MDL	10.3	PQL	mg/Kg	Ü	В
Zirconium		4.78	J	0.474	MDL	5.16	PQL	mg/Kg	J	Z
Sample ID: SL-040-SA	5DS-SS-0.0-0.5	Collect	ted: 9/28/2	011 3:05:0	00 4	nalysis T	/pe: RES			Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM		83.6	J	5.97	MDL	100	PQL	mg/Kg	J	Z
TIN		2.42	J	0.321	MDL	10.0	PQL	mg/Kg	U	В
Zirconium		3.49	J	0.461	MDL	5.02	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:37 AM ADR version 1.4.0.111 Page 4 of 35

Lab Reporting Batch ID: DE257

Laboratory: LL

EDD Filename: PrepDE257_v1						eQAP	P Name	e: CDM_S	SFL_110509
Method Category: METALS	<b>OPERATOR OF A PER</b>	in the same							
Method: 6010B			Ma	atrix:	so				, 600 - 100 (600) ( ) ( ) ( )
Sample ID: SL-103-SA7-SB-18.0-19.0	Collec	ted: 9/28/2	011 2:30:0	00 A ∣	inalysis Tj ∣	ype: RES		· · · · · · · · · · · · · · · · · · ·	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TIN	2.67	J	0.338	MDL	10.6	PQL	mg/Kg	υ	В
Zirconium	1.67	J	0.486	MDL	5.28	PQL	mg/Kg	J	Z
Sample ID: SL-106-SA7-SB-16.5-17.5	Collec	ted: 9/28/2	011 12:45	:00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TIN	2.89	J	0.339	MDL	10.6	PQL	mg/Kg	U	В
Zirconium	1.46	J	0.488	MDL	5.30	PQL	mg/Kg	J	Z
Sample ID: SL-106-SA7-SB-19.0-20.0	Collec	ted: 9/28/2	011 9:50:0	)0 A	nalysis T	/pe: RES		1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TIN	2.77	J	0.333	MDL	10.4	PQL	mg/Kg	υ	В
Zirconium	1.26	J	0.479	MDL	5.20	PQL	mg/Kg	J	Z
Sample ID: SL-106-SA7-SB-4.0-5.0	Collec	ted: 9/28/20	011 12:15	:00 A	nalysis Ty	pe: RES		1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TIN	2.55	J	0.322	MDL	10.1	PQL	mg/Kg	U	В
Zirconium	0.809	J	0.463	MDL	5.04	PQL	mg/Kg	J	Z
Sample ID: SL-106-SA7-SB-9.0-10.0	Collec	ted: 9/28/20	011 12:30:	:00 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	4.42	J	0.378	MDL	5.25	PQL	mg/Kg	J	Z
TIN	2.78	J	0.336	MDL	10.5	PQL	mg/Kg	U	В
Zirconium	1.01	J	0.483	MDL	5.25	PQL	mg/Kg	J	Z

Sample ID: EB-SA5DS-SS-092811	Collect	ted: 9/28/2	011 1:00:0	00 A		ype: REA	4	ı	Dilution: 1
	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Type	RL	Туре	Units	Qual	Code

0.00020

Matrix:

MDL

AQ

0.00050

PQL

mg/L

Z

Method:

CADMIUM

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

0.00022

6020

1/12/2012 11:50:37 AM ADR version 1.4.0.111 Page 5 of 35

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE257

Laboratory: LL

COARD Name: CDM SSEL 110500

EDD Filename: PrepDE257_v1						eQAP	P Name	e: CDM_S	SFL_110509
Method Category: METALS			i Visi Zazi					March 10	
Method: 6020			Ma	itrix:	so				al lan de lan sasi y bar antisa, sisi
Sample ID: DUP-02-SA5DS-QC-092811	Collec	ted: 9/28/2	011 1:55:0	00 4	nalvsis T	ype: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.267	J	0.0580	MDL	0.400	PQL	mg/Kg	J	Z
Sample ID: DUP-02-SA5DS-QC-092811	Collec	ted: 9/28/2	011 1:55:0	00 A	nalysis T	ype: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.543	<u> </u>	0.0500	MDL	0.100	PQL	mg/Kg	J	Q
Sample ID: DUP-02-SA5DS-QC-092811	Collec	ted: 9/28/2	011 1:55:0	00 A	nalysis Ty	ype: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.330		0.0740	MDL	0.200	PQL	mg/Kg	J	Q
ARSENIC	7.53		0.0800	MDL	0.400	PQL	mg/Kg	J	Q
CADMIUM	0.277		0.0440	MDL	0.100	PQL	mg/Kg	J	Q
CHROMIUM	40.4		0.120	MDL	0.400	PQL	mg/Kg	J	Q
COBALT	14.2		0.0200	MDL	0.100	PQL	mg/Kg	J	Q
COPPER	21.8		0.0800	MDL	0.400	PQL	mg/Kg	J	Q
LEAD	12.7		0.0102	MDL	0.200	PQL	mg/Kg	J	Q
NICKEL	28.0		0.100	MDL	0.400	PQL	mg/Kg	J	Q
SILVER	0.0420	J	0.0142	MDL	0.100	PQL	mg/Kg	J	Z, Q
THALLIUM	0.448		0.0300	MDL	0.100	PQL	mg/Kg	J	Q
Sample ID: SL-007-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/2	011 8:00:0	0 A	nalysis Ty	/pe: REA		i	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.204	J	0.0566	MDL	0.390	PQL	mg/Kg	J	Z
Sample ID: SL-007-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/2	011 8:00:0	0 A	nalysis Ty	/pe: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.705		0.0488	MDL	0.0976	PQL	mg/Kg	J	Q
Sample ID: SL-007-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/2	011 8:00:0	0 A	nalysis Ty	/pe: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	····	<del></del> I				r			

0.0722

MDL

0.195

PQL

mg/Kg

ANTIMONY

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/12/2012 11:50:37 AM ADR version 1.4.0.111

0.271

Page 6 of 35

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE257

EDD Filename: PrepDE257_v1

eQAPP Name: CDM_SSFL_110509

Method Category:	METALS	arak andarah 10 menengan persahai desah basa				À	
Method:	6020		Matrix:	so	 		

ample ID: SL-007-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	:011 8:00:0	00 A	nalysis Ty	pe: RES	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	6.01		0.0781	MDL	0.390	PQL	mg/Kg	J	Q
CADMIUM	0.203	<u> </u>	0.0430	MDL	0.0976	PQL	mg/Kg	J	Q
СНКОМІЛМ	37.6		0.117	MDL	0.390	PQL	mg/Kg	J	Q
COBALT	6.77		0.0195	MDL	0.0976	PQL	mg/Kg	J	Q
COPPER	7.44		0.0781	MDL	0.390	PQL	mg/Kg	J	Q
LEAD	14.2		0.010	MDL	0.195	PQL	mg/Kg	J	Q
NICKEL	12.7		0.0976	MDL	0.390	PQL	mg/Kg	J	Q
SILVER	0.0242	J	0.0139	MDL	0.0976	PQL	mg/Kg	J	Z, Q
THALLIUM	0.184		0.0293	MDL	0.0976	PQL	mg/Kg	J	Q

Sample ID: SL-008-SA5DS-SS-0.0-0.5	Collect	Collected: 9/28/2011 7:30:00 Analysis Type: REA							Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
SELENIUM	0.0809		0.0574	MDI	0.396	POL	ma/Ka		7	7	

Sample ID: SL-008-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/2	00 /	Analysis Ty	/pe: REA	Dilution: 2			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
			***********		, ii , i , i , i , i , i , i , i , i ,		100 1 7 7	,	Application and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec
MOLYBDENUM	0.439	•	0.0495	MDL	0.0990	PQL	mg/Kg	J	Q

Sample ID: SL-008-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 7:30:0	00 A	nalysis Ty	pe: RES	1	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.105	J	0.0732	MDL	0.198	PQL	mg/Kg	J	Z, Q	
ARSENIC	4.51		0.0792	MDL	0.396	PQL	mg/Kg	J	Q	
CADMIUM	0.125		0.0435	MDL	0.0990	PQL	mg/Kg	J	Q	
СНКОМІЛИ	16.6		0.119	MDL	0.396	PQL	mg/Kg	J	Q	
COBALT	6.13		0.0198	MDL	0.0990	PQL	mg/Kg	J	Q	
COPPER	7.88		0.0792	MDL	0.396	PQL	mg/Kg	J	Q	
LEAD	5.33		0.0101	MDL	0.198	PQL	mg/Kg	J	Q	
NICKEL	12.0		0.0990	MDL	0.396	PQL	mg/Kg	J	Q	
SILVER	0.0787	J	0.0141	MDL	0.0990	PQL	mg/Kg	J	Z, Q	
THALLIUM	0.284		0.0297	MDL	0.0990	PQL	mg/Kg	J	Q	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:37 AM ADR version 1.4.0.111 Page 7 of 35

Laboratory: LL
EDD Filename: PrepDE257 v1

EDD Filename: PrepDE257 v1

EQAPP Name: CDM SSFI 110509

EDD Filename: PrepDE257_v1						eQAF	P Name	e: CDM_S	SFL_110509
Method Category: METALS									
Method: 6020			Ma	itrix:	so			4 2	
Sample ID: SL-009-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 9:50:0	00 A	nalysis T	ype: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.222	J	0.0577	MDL	0.398	PQL	mg/Kg	J	Z
Sample ID: SL-009-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 9:50:0	00 A	nalysis T	ype: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.696		0.0498	MDL	0.0995	PQL	mg/Kg	J	Q
Sample ID: SL-009-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 9:50:0	00 A	nalysis Ty	/pe: RES	;		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.294		0.0737	MDL	0.199	PQL	mg/Kg	J	Q
ARSENIC	6.31		0.0796	MDL	0.398	PQL	mg/Kg	J	Q
CADMIUM	0.221		0.0438	MDL	0.0995	PQL	mg/Kg	J	Q
СНКОМІИМ	38.3		0.119	MDL	0.398	PQL	mg/Kg	J	Q
COBALT	7.48		0.0199	MDL	0.0995	PQL	mg/Kg	J	Q
COPPER	8.34		0.0796	MDL	0.398	PQL	mg/Kg	J	Q
LEAD	14.8		0.0102	MDL	0.199	PQL	mg/Kg	J	Q
NICKEL	13.4		0.0995	MDL	0.398	PQL	mg/Kg	J	Q
SILVER	0.0309	J	0.0141	MDL	0.0995	PQL	mg/Kg	J	Z, Q
THALLIUM	0.216		0.0299	MDL	0.0995	PQL	mg/Kg	J	Q
Sample ID: SL-010-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 8:20:0	00 A	nalysis Ty	/pe: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.252	J	0.0577	MDL	0.398	PQL	mg/Kg	J	Z
Sample ID: SL-010-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 8:20:0	0 A	nalysis Ty	/pe: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.792		0.0497	MDL	0.0994	PQL	mg/Kg	J	Q
Sample ID: SL-010-SA5DS-SS-0.0-0.5		l ted: 9/28/2	I		<u>.</u>	pe: RES	1	<u> </u>	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
							<del>,</del>		

^{*} denotes a non-reportable result

ANTIMONY

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

0.307

1/12/2012 11:50:37 AM ADR version 1.4.0.111 Page 8 of 35

0.0736

MDL

0.199

PQL

mg/Kg

Q

Lab Reporting Batch ID: DE257

EDD Filename: PrepDE257_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method Category:	METALS			
Method:	6020	Matrix:	SO	

Sample ID: SL-010-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 8:20:0	10 A	nalysis Ty	pe: RES	e: RES Dilution:				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ARSENIC	7.13		0.0795	MDL	0.398	PQL	mg/Kg	J	Q		
CADMIUM	0.297		0.0437	MDL	0.0994	PQL	mg/Kg	J	Q		
CHROMIUM	46.2		0.119	MDL	0.398	PQL	mg/Kg	J	Q		
COBALT	9.03		0.0199	MDL	0.0994	PQL	mg/Kg	J	Q		
COPPER	9.76		0.0795	MDL	0.398	PQL	mg/Kg	J	Q		
LEAD	18.9		0.0101	MDL	0.199	PQL	mg/Kg	J	Q		
NICKEL	15.9		0.0994	MDL	0.398	PQL	mg/Kg	J	Q		
SILVER	0.0320	J	0.0141	MDL	0.0994	PQL	mg/Kg	J	Z, Q		
THALLIUM	0.248		0.0298	MDL	0.0994	PQL	mg/Kg	J	Q		

Sample ID: SL-013-SA5DS-SS-0.0-0.5		ted: 9/28/2	2011 11:00	:00	nalysis T	ype: REA	١	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	0.217	J	0.0581	MDL	0.401	PQL	mg/Kg	J	Z	

Sample ID: SL-013-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/2	011 11:00	:00 🔏	Inalysis T	ype: REA	2	Dilution; 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL_	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.839		0.0501	MDL	0.100	PQL	mg/Kg	J	Q

Sample ID: SL-013-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 11:00	:00 A	nalysis Ty	/pe: RES		ı	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.229		0.0742	MDL	0.200	PQL	mg/Kg	J	Q
ARSENIC	5.71		0.0802	MDL	0.401	PQL	mg/Kg	J	Q
CADMIUM	0.240		0.0441	MDL	0.100	PQL	mg/Kg	J	Q
СНКОМІИМ	37.9		0.120	MDL	0.401	PQL	mg/Kg	J	Q
COBALT	7.23		0.0200	MDL	0.100	PQL	mg/Kg	J	Q
COPPER	8.80		0.0802	MDL	0.401	PQL	mg/Kg	J	Q
LEAD	14.2		0.0102	MDL	0.200	PQL	mg/Kg	J	Q
NICKEL	14.0		0.100	MDL	0.401	PQL	mg/Kg	J	Q
SILVER	0.0405	J	0.0142	MDL	0.100	PQL	mg/Kg	J	Z, Q
THALLIUM	0.210		0.0301	MDL	0.100	PQL	mg/Kg	J	Q

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:37 AM ADR version 1.4.0.111 Page 9 of 35

Lab Reporting Batch ID: DE257

Laboratory: LL

EDD Filename: PrepDE257_v1						eQAF	P Name	e: CDM_S	SFL_110509
Method Category: METALS Method: 6020				rutha thailteair.	so		S. a. a. b.		organica (pravide de 172
Sample ID: SL-014-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 10:05	:00 A	nalysis T	ype: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.216	J	0.0583	MDL	0.402	PQL	mg/Kg	J	Z
Sample ID: SL-014-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 10:05	:00 A	nalysis T	ype: REA	.2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.685		0.0503	MDL	0.101	PQL	mg/Kg	J	Q
Sample ID: SL-014-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 10:05	:00 A	nalysis T	ype: RES	1		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.242		0.0744	MDL	0.201	PQL	mg/Kg	J	Q
ARSENIC	4.58		0.0804	MDL	0.402	PQL	mg/Kg	J	Q
CADMIUM	0.210		0.0442	MDL	0.101	PQL	mg/Kg	J	Q
CHROMIUM	31.3		0.121	MDL	0.402	PQL	mg/Kg	J	Q
COBALT	5.97		0.0201	MDL	0.101	PQL	mg/Kg	J	Q
COPPER	7.35		0.0804	MDL	0.402	PQL	mg/Kg	J	Q
LEAD	11.9		0.0103	MDL	0.201	PQL	mg/Kg	J	Q
NICKEL	11.6		0.101	MDL	0.402	PQL	mg/Kg	J	Q
SILVER	0.0258	J	0.0143	MDL	0.101	PQL	mg/Kg	J	Z, Q
THALLIUM	0.186		0.0302	MDL	0.101	PQL	mg/Kg	J	Q
Sample ID: SL-015-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 10:45	:00 A	nalysis T _j	ype: REA		i	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.241	J	0.0573	MDL	0.395	PQL	mg/Kg	J	Z
Sample ID: SL-015-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/2	011 10:45	:00 A	nalysis Ty	/pe: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.779		0.0494	MDL	0.0987	PQL	mg/Kg	J	Q
Sample ID: SL-015-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/2	011 10:45	:00 A	nalysis Ty	/pe: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.305		0.0731	MDL	0.197	PQL	mg/Kg	J	Q

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:37 AM ADR version 1.4.0.111 Page 10 of 35

Lab Reporting Batch ID: DE257

EDD Filename: PrepDE257_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method Catego	ory: METALS	n principal di propositi de la companio de la companio de la companio de la companio de la companio de la comp	
Method:	6020	Matrix: SO	

Sample ID: SL-015-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 10:45	:00 A	nalysis Ty	/pe: RES		Dilution: 2					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code				
ARSENIC	6.25		0.0790	MDL	0.395	PQL	mg/Kg	J	Q				
CADMIUM	0.279		0.0434	MDL	0.0987	PQL	mg/Kg	J	q				
CHROMIUM	39.8		0.118	MDL	0.395	PQL	mg/Kg	J	Q				
COBALT	8.50		0.0197	MDL	0.0987	PQL	mg/Kg	J	Q				
COPPER	9.03		0.0790	MDL	0.395	PQL	mg/Kg	J	Q				
LEAD	11.6		0.0101	MDL	0.197	PQL	mg/Kg	J	Q				
NICKEL	15.5		0.0987	MDL	0.395	PQL	mg/Kg	J	Q				
SILVER	0.0297	J	0.0140	MDL	0.0987	PQL	mg/Kg	J	Z, Q				
THALLIUM	0.233		0.0296	MDL	0.0987	PQL	mg/Kg	J	Q				

Sample ID: SL-016-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/2		00 A	nalysis T	pe: REA		Data	Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	

Analyte SELENIUM	0.220	Qual	0.0604	Type   MDL	0.416	Type PQL	Units mg/Kg	Qual	Code
Sample ID: SL-016-SA5DS-SS-0.0-0.5		ed: 9/28/2	1	L		/pe: REA		L	Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.726		0.0521	MDL	0.104	PQL	mg/Kg	L	Q

Sample ID: SL-016-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 9:15:0	10 A	nalysis Ty	/pe: RES		1	Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.287		0.0770	MDL	0.208	PQL	mg/Kg	J	Q	
ARSENIC	5.99		0.0833	MDL	0.416	PQL	mg/Kg	J	Q	
CADMIUM	0.286		0.0458	MDL	0.104	PQL	mg/Kg	J	Q	
СНКОМІИМ	38.1		0.125	MDL	0.416	PQL	mg/Kg	J	Q	
COBALT	8.95		0.0208	MDL	0.104	PQL	mg/Kg	J	Q	
COPPER	9.83		0.0833	MDL	0.416	PQL	mg/Kg	J	Q	
LEAD	13.3		0.0106	MDL	0.208	PQL	mg/Kg	J	Q	
NICKEL	15.7		0.104	MDL	0.416	PQL	mg/Kg	J	Q	
SILVER	0.0328	J	0.0148	MDL	0.104	PQL	mg/Kg	J	Z, Q	
THALLIUM	0.245		0.0312	MDL	0.104	PQL	mg/Kg	J	Q	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:37 AM ADR version 1.4.0.111 Page 11 of 35

Laboratory: LL

EDD Filename: PrenDE257 v1

EDD Filename: PrepDE257_v1								_	SFL_110509
Method Category: METALS				ler i cuite					A TO THE SE
Method: 6020			Ma	trix:	so				in in a di co infantan infanian
Sample ID: SL-017-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 8:35:0	)0 A	nalysis T	ype: REA	<b>L</b>		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.253	J	0.0584	MDL	0.403	PQL	mg/Kg	J	Z
Sample ID: SL-017-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 8:35:0	)0 A	nalysis T	pe: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.808		0.0504	MDL	0.101	PQL	mg/Kg	J	Q
Sample ID: SL-017-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 8:35:0	00 A	nalysis T	/pe: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.328		0.0745	MDL	0.201	PQL	mg/Kg	J	Q
ARSENIC	6.84		0.0806	MDL	0.403	PQL	mg/Kg	J	Q
CADMIUM	0.338		0.0443	MDL	0.101	PQL	mg/Kg	Ţ	Q
СНКОМІИМ	43.4		0.121	MDL	0.403	PQL	mg/Kg	J	Q
COBALT	10.6		0.0201	MDL	0.101	PQL	mg/Kg	J	Q
COPPER	10.5		0.0806	MDL	0.403	PQL	mg/Kg	J	Q
LEAD	30.0		0.0103	MDL	0.201	PQL	mg/Kg	J	Q
NICKEL	17.8		0.101	MDL	0.403	PQL	mg/Kg	J	Q
SILVER	0.0461	J	0.0143	MDL	0.101	PQL	mg/Kg	J	Z, Q
THALLIUM	0.245		0.0302	MDL	0.101	PQL	mg/Kg	J	Q
Sample ID: SL-033-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/2	011 1:25:0	0 A	nalysis Ty	/pe: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.194	J	0.0595	MDL	0.411	PQL	mg/Kg	J	Z
Sample ID: SL-033-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/2	011 1:25:0	10 A	nalysis Ty	/pe: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.646		0.0513	MDL	0.103	PQL	mg/Kg	J	Q
Sample ID: SL-033-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/20	011 1:25:0	10 A	nalysis Ty	/pe: RES	1	1	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.340		0.0760	MDL	0.205	PQL	mg/Kg	J	Q
·		·	·	·	·	·	<del></del>	L	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:37 AM ADR version 1.4.0.111 Page 12 of 35

Lab Reporting Batch ID: DE257

EDD Filename: PrepDE257_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method Category:	METALS			
Method:	6020	Matrix:	so	

Sample ID: SL-033-SA5DS-SS-0.0-0.5  Analyte	Collec	ted: 9/28/2	2011 1:25:0	0 A	Analysis Type: RES			Dilution: 2		
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	8.25		0.0821	MDL	0.411	PQL	mg/Kg	J	Q	
CADMIUM	0.304		0.0452	MDL	0.103	PQL	mg/Kg	J	Q	
СНКОМІИМ	42.4		0.123	MDL	0.411	PQL	mg/Kg	J	Q	
COBALT	15.0		0.0205	MDL	0.103	PQL	mg/Kg	J	Q	
COPPER	20.5		0.0821	MDL	0.411	PQL	mg/Kg	J	Q	
LEAD	12.4		0.0105	MDL	0.205	PQL	mg/Kg	J	Q	
NICKEL	28.7		0.103	MDL	0.411	PQL	mg/Kg	J	Q	
SILVER	0.0371	J	0.0146	MDL	0.103	PQL	mg/Kg	J	Z, Q	
THALLIUM	0.448		0.0308	MDL	0.103	PQL	mg/Kg	J	Q	

Sample ID: SL-034-SA5DS-SS-0.0-0.5	Collec	Collected: 9/28/2011 1:45:00					1	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	0.272	J	0.0598	MDL	0.413	PQL	mg/Kg	J	Z	_

Sample ID: SL-034-SA5DS-SS-0.0-0.5	Collec	Collected: 9/28/2011 1:45:00				ype: REA	2	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MOLYBDENUM	0.548		0.0516	MDL	0.103	PQL	mg/Kg	J	Q	

Sample ID: SL-034-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	2011 1:45:0	00 A	nalysis Ty	pe: RES		Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.392	T	0.0763	MDL	0.206	PQL	mg/Kg	J	Q	
ARSENIC	7.40	Ì	0.0825	MDL	0.413	PQL	mg/Kg	J	Q	
CADMIUM	0.304		0.0454	MDL	0.103	PQL	mg/Kg	J	Q	
CHROMIUM	40.0		0.124	MDL	0.413	PQL	mg/Kg	J	Q	
COBALT	13.9		0.0206	MDL	0.103	PQL	mg/Kg	J	Q	
COPPER	21.6		0.0825	MDL	0.413	PQL	mg/Kg	J	Q	
LEAD	12.4		0.0105	MDL	0.206	PQL	mg/Kg	J	Q	
NICKEL	27.8		0.103	MDL	0.413	PQL	mg/Kg	J	Q	
SILVER	0.0485	J	0.0146	MDL	0.103	PQL	mg/Kg	J	Z, Q	
THALLIUM	0.432		0.0309	MDL	0.103	PQL	mg/Kg	J	Q	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:37 AM ADR version 1.4.0.111 Page 13 of 35

Lab Reporting Batch ID: DE257 Laboratory: LL

EDD Filename: PrepDE257_v1 eQAPP Name: CDM_SSFL_110509

EDD Filename: PrepDE25/_V1						eQAF	'P Name	e: CDM_S	SFL_11050
Method Category: METALS	iver cilebration is c								
Wethod: 6020			IVIE	itrix:	so				
Sample ID: SL-040-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 3:05:0	00 A	nalysis T	ype: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.188	J	0.0588	MDL	0.405	PQL	mg/Kg	J	Z
Sample ID: SL-040-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 3:05:0	00 A	nalysis T	pe: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.762		0.0507	MDL	0.101	PQL	mg/Kg	J	Q
Sample ID: SL-040-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 3:05:0	00 A	nalysis T	pe: RES	-		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.258		0.0750	MDL	0.203	PQL	mg/Kg	J	Q
ARSENIC	5.98	<b></b>	0.0811	MDL	0.405	PQL	mg/Kg	J	Q
CADMIUM	0.217		0.0446	MDL	0.101	PQL	mg/Kg	J	Q
CHROMIUM	33.2		0.122	MDL	0.405	PQL	mg/Kg	J	Q
COBALT	9.83		0.0203	MDL	0.101	PQL	mg/Kg	j	Q
COPPER	10.9		0.0811	MDL	0.405	PQL	mg/Kg	J	Q
.EAD	14.1		0.0103	MDL	0.203	PQL	mg/Kg	J	Q
NICKEL	17.7		0.101	MDL	0.405	PQL	mg/Kg	J	Q
SILVER	0.0289	J	0.0144	MDL	0.101	PQL	mg/Kg	J	Z, Q
THALLIUM	0.273		0.0304	MDL	0.101	PQL	mg/Kg	J	Q
Sample ID: SL-103-SA7-SB-18.0-19.0	Collect	ted: 9/28/2	011 2:30:0	10 A	nalysis Ty	/pe: REA		4	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.204	J	0.0619	MDL	0.427	PQL	mg/Kg	J	Z
Sample ID: SL-103-SA7-SB-18.0-19.0	Collect	ted: 9/28/2	011 2:30:0	10 A	nalysis T	/pe: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.483		0.0533	MDL	0.107	PQL	mg/Kg	J	Q
Sample ID: SL-103-SA7-SB-18.0-19.0	<u> </u>	led: 9/28/2		L		/pe: RES			
ample 10. 3E-103-3A(-3E-10.0-18.0	Collect	eu. arzorz	011 2:30:0	ν А	naiysis ij	pe. KES		Data	Dilution: 2
	1	l	i		I	I	I	Pala	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.133	J	0.0790	MDL	0.213	PQL	mg/Kg	J	Z, Q

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:38 AM ADR version 1.4.0.111 Page 14 of 35

Lab Reporting Batch ID: DE257 Laboratory: LL EDD Filename: PrepDE257_v1 eQAPP Name: CDM_SSFL_110509

CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF Method Category: METALS Method: 6020 Matrix: SO

Sample ID: SL-103-SA7-SB-18.0-19.0	Collec	Collected: 9/28/2011 2:30:00 Analysis						Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	5.12		0.0854	MDL	0.427	PQL	mg/Kg	J	Q
CADMIUM	0.118		0.0469	MDL	0.107	PQL	mg/Kg	J	Q
CHROMIUM	17.2		0.128	MDL	0.427	PQL	mg/Kg	J	Q
COBALT	5.93		0.0213	MDL	0.107	PQL	mg/Kg	J	Q
COPPER	8.28		0.0854	MDL	0.427	PQL	mg/Kg	J	Q
LEAD	5.34		0.0109	MDL	0.213	PQL	mg/Kg	J	Q
NICKEL	11.5		0.107	MDL	0.427	PQL	mg/Kg	J	Q
SILVER	0.0267	J	0.0151	MDL	0.107	PQL	mg/Kg	J	Z, Q
THALLIUM	0.254		0.0320	MDL	0.107	PQL	mg/Kg	J	Q

Sample ID: SL-106-SA7-SB-16.5-17.5 Collected: 9/28/2011 12:45:00 Analysis Type: REA Dilution: 2 Data Lab Lab DLRLReason Review Analyte Result Qual DL RLUnits Qual Code Type Type

0.0621

MDL

0.428

**PQL** 

J

Z

mg/Kg Sample ID; SL-106-SA7-SB-16.5-17.5 Collected: 9/28/2011 12:45:00 Analysis Type: REA2 Dilution: 2

0.210

			<u></u>						
	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
MOLYBDENUM	0.909		0.0535	MDL	0.107	PQL	mg/Kg	J	Q

Sample ID: SL-106-SA7-SB-16.5-17.5 Collected: 9/28/2011 12:45:00 Analysis Type: RES Dilution: 2 Data Lab DL. Review Lab RLReason Analyte Result Qual DL RLUnits Qual Туре Type Code ANTIMONY 0.347 0.0792 MDL 0.214 PQL mg/Kg J Q ARSENIC 10.5 0.0856 MDL 0.428 **PQL** J mg/Kg Q CADMIUM 0.183 0.0471 MDL 0.107 PQL mg/Kg J Q CHROMIUM 31.6 0.128 MDL 0.428 **PQL** mg/Kg J Q COBALT 9.55 0.0214 MDL 0.107 **PQL** mg/Kg J Q COPPER 0.0856 MDL 0.428 PQL 15.9 mg/Kg J Q LEAD 16.3 0.0109 MDL 0.214 PQL J mg/Kg Q NICKEL 19.5 MDL PQL J 0.107 0.428 mg/Kg Q SILVER 0.0434 0.0152 MDL 0.107 **PQL** mg/Kg J Z, Q THALLIUM **PQL** 0.414 0.0321 MDL 0.107 J mg/Kg Q

SELENIUM

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE257

Laboratory: LL

CARD No. 2004 COST (40070)

EDD Filename: PrepDE257_v1								_	SFL_110509	
Method Category: METALS					is it is a first	n e	i indigensii			
Method: 6020					SO			·	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	
Sample ID: SL-106-SA7-SB-19.0-20.0	Collec	ted: 9/28/2				ype: REA			Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	0.213	J	0.0609	MDL	0.420	PQL	mg/Kg	J	Z	
Sample ID: SL-106-SA7-SB-19.0-20.0	Collected: 9/28/2011 9:50:00 Analysis Type: REA2									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MOLYBDENUM	4.43		0.0525	MDL	0.105	PQL	mg/Kg	J	Q	
Sample ID: SL-106-SA7-SB-19.0-20.0	Collec	ted: 9/28/2	011 9:50:0	00 A	nalysis T	ype: RES			Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.143	J	0.0778	MDL	0.210	PQL	mg/Kg	J	Z, Q	
ARSENIC	5.25		0.0841	MDL	0.420	PQL	mg/Kg	J	Q	
CADMIUM	0.186		0.0462	MDL	0.105	PQL	mg/Kg	J	Q	
CHROMIUM	28.1		0.126	MDL	0.420	PQL	mg/Kg	J	Q	
COBALT	6.42		0.0210	MDL	0.105	PQL	mg/Kg	J	Q	
COPPER	9.86		0.0841	MDL	0.420	PQL	mg/Kg	J	Q	
LEAD	6.75		0.0107	MDL	0.210	PQL	mg/Kg	J	Q	
NICKEL	13.8		0.105	MDL	0.420	PQL	mg/Kg	J	Q	
SILVER	0.0200	J	0.0149	MDL	0.105	PQL	mg/Kg	J	Z, Q	
THALLIUM	0.311		0.0315	MDL	0.105	PQL	mg/Kg	J	Q	
Sample ID: SL-106-SA7-SB-4.0-5.0	Collec	ted: 9/28/2	011 12:15:	:00 A	nalysis Ty	/pe: REA		ı	Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	0.131	J	0.0579	MDL	0.399	PQL	mg/Kg	J	Z	
Sample ID: SL-106-SA7-SB-4.0-5.0	Collec	ted: 9/28/20	011 12:15	00 A	nalysis Ty	/pe: REA	2		Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MOLYBDENUM	0.511		0.0499	MDL	0.0997	PQL	mg/Kg	J	Q	
Sample ID: SL-106-SA7-SB-4.0-5.0	Collect	ted: 9/28/20	011 12:15:	00 A	nalysis Ty	pe: RES			Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	

^{*} denotes a non-reportable result

ANTIMONY

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

0.0932

1/12/2012 11:50:38 AM ADR version 1.4.0.111 Page 16 of 35

0.0738

MDL

0.199

mg/Kg

Z, Q

Lab Reporting Batch ID: DE257

Laboratory: LL

EDD Filename: PrepDE257_v1 eQAPP Name: CDM_SSFL_110509

Method Category.	METALS	en summer de la la company de complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la complete de la comple	S 20 4 70
Method:	6020	Matrix: SO	

Sample ID: SL-106-SA7-SB-4.0-5.0	Collec	ted: 9/28/2	:011 12:15	:00 A	nalysis Ty	pe: RES		Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ARSENIC	4.57		0.0798	MDL	0.399	PQL	mg/Kg	J	Q	
CADMIUM	0.109		0.0439	MDL	0.0997	PQL	mg/Kg	j	Q	
CHROMIUM	16.3		0.120	MDL	0.399	PQL	mg/Kg	J	Q	
COBALT	5.67		0.0199	MDL	0.0997	PQL	mg/Kg	J	Q	
COPPER	7.35		0.0798	MDL	0.399	PQL	mg/Kg	J	Q	
LEAD	5.54		0.0102	MDL	0.199	PQL	mg/Kg	J	Q	
NICKEL	11.0		0.0997	MDL	0.399	PQL	mg/Kg	J	Q	
SILVER	0.0241	J	0.0142	MDL	0.0997	PQL	mg/Kg	J	Z, Q	
THALLIUM	0.270		0.0299	MDL	0.0997	PQL	mg/Kg	J	Q	

Sample ID: SL-106-SA7-SB-9.0-10.0	Collected: 9/28/2011 12:30:00	Analysis Type: REA	Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.160	J	0.0615	MDL	0.424	PQL	mg/Kg	j	Z

Sample ID: SL-106-SA7-SB-9.0-10.0	Collec		011 12:30:	nalysis T	/pe: REA	2	I	Dilution: 2	
		l					Data	_	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
MOLYBDENUM	0.529		0.0531	MDL	0.106	PQL	mg/Kg	J	Q

Sample ID: SL-106-SA7-SB-9.0-10.0	Collected: 9/28/2011 12:30:00	Analysis Type: RES	Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.127	J	0.0785	MDL	0.212	PQL	mg/Kg	J	Z, Q
ARSENIC	4.88		0.0849	MDL	0.424	PQL	mg/Kg	J	Q
CADMIUM	0.160		0.0467	MDL	0.106	PQL	mg/Kg	J	Q
CHROMIUM	16.5		0.127	MDL	0.424	PQL	mg/Kg	J	Q
COBALT	6.43		0.0212	MDL	0.106	PQL	mg/Kg	J	Q
COPPER	7.93		0.0849	MDL	0.424	PQL	mg/Kg	J	Q
LEAD	5.51		0.0108	MDL	0.212	PQL	mg/Kg	J	Q
NICKEL	12.7		0.106	MDL	0.424	PQL	mg/Kg	J	Q
THALLIUM	0.277		0.0318	MDL	0.106	PQL	mg/Kg	J	Q

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:38 AM ADR version 1.4.0.111 Page 17 of 35

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE257

EDD Filename: PrepDE257_v1

EQAPP Name: CDM_SSFL_110509

. –				Care to the second					
Method Category: METALS									
Wethod: 7199			IVI &	itrix:	so				
Sample ID: DUP-02-SA5DS-QC-092811	Collec	ted: 9/28/2	011 1:55:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	1.0		0.20	MDL	1.0	PQL	mg/Kg	J	FD
Sample ID: SL-008-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	) 011 7:30:0	00 A	nalysis T	ype: RES	•		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.48	J	0.20	MDL	0.99	PQL	mg/Kg	J	Z
Sample ID: SL-009-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 9:50:0	00 A	nalysis T	ype: RES		•	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.68	J	0.20	MDL	0.99	PQL	mg/Kg	J	Z
Sample ID: SL-010-SA5DS-SS-0,0-0.5	Collec	ted: 9/28/2	011 8:20:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.21	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z
Sample ID: SL-014-SA5DS-SS-0.0-0.5	Collected: 9/28/2011 10:05:00 Analysis Type: RES							Dilution: 1	
Analyte	Lab Result	Lab Quai	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.53	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z
Sample ID: SL-016-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/20	011 9:15:0	0 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.73	J	0.19	MDL	0.97	PQL	mg/Kg	J	Z
Sample ID: SL-034-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/20	011 1:45:0	10 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.21	Ų	0.21	MDL	1.0	PQL	mg/Kg	IJ	FD
Sample ID: SL-103-SA7-SB-18.0-19.0	Collect	ted: 9/28/20	011 2:30:0	10 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.23	J	0.22	MDL	1.1	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:38 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DE257 Laboratory: LL

EDD Filename: PrepDE257_v1	eQAPP Name: CDM_SSFL_110509
----------------------------	-----------------------------

			IVIa	trix:	SO				
Sample ID: SL-106-SA7-SB-16.5-17.5	Collec	ted: 9/28/2	011 12:45:	00 A	nalysis T	/pe: RES		D	ilution: 10
A <i>nalyte</i>	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code

Method Catego	ory: METALS	terika ini dinaman dilahada da da dinampi da arti dinambi di dan di di dinambi di dan di dan di dan di dan di d
Method:	7470A	Matrix: AQ
•		

Sample ID: EB-SA5DS-SS-092811	Collec	ted: 9/28/2	2011 1:00:0	0 4	Analysis Ty	rpe: RES		i	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.000045	J	0.00002	MDL	0.00020	PQL	mg/L	υ	B, B

Method Categor		
Method:	7471A	Matrix: SO

Sample ID: SL-007-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 8:00:0	00 🗡	nalysis T	ype: RES		Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code		
MERCURY	0.0121	J	0.0069	MDL	0.0981	PQL	mg/Kg	U	F		

Sample ID: SL-009-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/2	2011 9:50:0	00 4	nalysis T	ype: RES	;		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0105		0.0069	MDI	0.0983	POL	ma/Ka	11	F

Sample ID: SL-010-SA5DS-SS-0.0-0.5	Collect	led: 9/28/2	011 8:20:0	30 A	nalysis T	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	recourt	1 4444.		1.720		. , , , , ,	00	1 Guur	
MERCURY	0.0133	J	0.0067	MDL	0.0947	PQL	mg/Kg	U	F

Sample ID: SL-013-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 11:00	:00 A	Inalysis Ty	rpe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
The sub-section was to a the state of the sub-section and	resure	_ Guai		Jype	1 1/2	Type	Omes	Quai	Code
MERCURY	0.0081	J	0.0070	MDL	0.0997	PQL	mg/Kg	U	F

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE257

EDD Filename: PrepDE257_v1

eQAPP Name: CDM_SSFL_110509

Method Category: METALS	tinata i risang							CASAL PLANE	
Method: 7471A			Ma	etrix:	so				
Sample ID: SL-014-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 10:05	:00 <i>A</i>	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0114	J	0.0071	MDL	0.101	PQL	mg/Kg	U	F
Sample ID: SL-015-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 10:45	:00 <i>A</i>	nalysis Ty	pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0472	J	0.0070	MDL	0.0991	PQL	mg/Kg	J	Z
Sample ID: SL-017-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 8:35:0	00 A	nalysis Ty	, /pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0238	J	0.0069	MDL	0.0978	PQL	mg/Kg	U	F
Sample ID: SL-106-SA7-SB-16.5-17.5	Collec	ted: 9/28/2	011 12:45:	:00 A	nalysis Ty	/pe: RES			Dilution: 1
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0143	J	0.0072	MDL	0.102	PQL	mg/Kg	J	Z
Sample ID: SL-106-SA7-SB-19.0-20.0	Collec	ted: 9/28/2	011 9:50:0	10 A	nalysis Ty	/pe: RES	•		Dilution: 1
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0073	J	0.0072	MDL	0.102	PQL	mg/Kg	J	Z
Sample ID: SL-106-SA7-SB-9.0-10.0	Collec	ted: 9/28/2	011 12:30:	00 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
typing to the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of the first transport of transport of transport of transport	0.0073	J	0.0072	MDL	0.102	PQL	mg/Kg	J	Z

Method: 6850		Matrix: SO							
Sample ID: SL-040-SA5DS-SS-0.0-0.5 Analyte	Collec	Collected: 9/28/2011 3:05:00 Analysis Type: RES							
	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
PERCHI ORATE	23	1 1	21	MDI	5.4	BOI	unika	T	7

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:38 AM ADR version 1.4.0.111 Page 20 of 35

Lab Reporting Batch ID: DE257

Laboratory: LL

EDD Filename: PrepDE257_v1

eQAPP Name: CDM_SSFL_110509

	2-SA5DS-QC-092811	muun		 
Method:	8081A	Matrix:	SO	- xu. t.u.z., -leget last tradit all vidia.
Method Catego	iry: SVOA	Entered to a result of a section of		

Sample ID: DUP-02-SA5DS-QC-092811 Analyte	Collec	ted: 9/28/2	011 1:55:0	00 A	nalysis T	ype: RES	-BASE/NE	EUTRAL Dilution: 1						
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code					
4,4'-DDE	0.36	T	0.068	MDL	0.35	PQL	ug/Kg	J	FD					
4,4'-DDT	0.46		0.068	MDL	0.35	PQL	ug/Kg	J	FD					
BETA-BHC	0.13	J	0.062	MDL	0.17	PQL	ug/Kg	J	Z, FD					
Chlordane	1.9	J	0.83	MDL	3.5	PQL	ug/Kg	J	Z, FD					
ENDRIN ALDEHYDE	0.13	J	0.068	MDL	0.35	PQL	ug/Kg	J	Z, FD					
gamma-BHC (Lindane)	0.035	U	0.035	MDL	0.17	PQL	ug/Kg	UJ	FD					

Sample ID: SL-007-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 8:00:0	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL [	Vilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDE	0.78		0.067	MDL	0.34	PQL	ug/Kg	J	s
4,4'-DDT	0.64		0.067	MDL	0.34	PQL	ug/Kg	J	S
Chlordane	1.9	J	0.81	MDL	3.4	PQL	ug/Kg	J	Z, S

Sample ID: SL-008-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 7:30:0	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL I	Dilution: 1
Analyte	Lab Result	Lab Qual	DI.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Chlordane	1.9	J	0.81	MDL	3.4	PQL	ug/Kg	J	Z
DELTA-BHC	0.038	J	0.037	MDL	0.17	PQL	ug/Kg	J	Z

Sample ID: SL-009-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 9:50:0	10 A	nalysis T	ype: RES	-BASE/NE	UTRAL E	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
4,4'-DDE	0.31	J	0.067	MDL	0.34	PQL	ug/Kg	J	Z	
Chlordane	2.0	J	0.81	MDL	3.4	PQL	ug/Kg	J	Z	
DELTA-BHC	0.071	J	0.036	MDL	0.17	PQL	ug/Kg	J	Z	
ENDRIN ALDEHYDE	0.089	J	0.067	MDL	0.34	PQL	ug/Kg	J	Z	

Sample ID: SL-010-SA5DS-SS-0.0-0.5 Analyte	Collec	ted; 9/28/2	011 8:20:0	00 A	Analysis Type: RES-BASE/NEUTRAL Dilution: 1					
	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
ВЕТА-ВНС	0.078	J	0.061	MDL	0.17	PQL	ug/Kg	J	Z	
Chlordane	3.0	J	0.81	MDL	3.4	PQL	ug/Kg	J	Z	
DELTA-BHC	0.061	j	0.036	MDL	0.17	PQL	ug/Kg	J	Z	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:38 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DE257 Laboratory: LL

EDD Filename: PrepDE257_v1						eQAP	P Name	: CDM_S	SSFL_110509
Method Category: SVOA				SMILL					7.EV.
Method: 8081A	, ,		Ma	atrix:	so				A minus ett i stræte de
Sample ID: SL-013-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 11:00	:00 A	nalysis Ty	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Chlordane	1.7	J	0.82	MDL	3.5	PQL	ug/Kg	J	Z
Sample ID: SL-014-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 10:05	:00 <i>A</i>	nalysis T	pe: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Chlordane	1.7	J	0.81	MDL	3.4	PQL	ug/Kg	J	Z
Sample ID: SL-015-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 10:45	:00 A	nalysis Ty	/pe: RE\$	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDE	0.24	J	0.068	MDL	0.35	PQL	ug/Kg	J	Z
4,4'-DDT	0.31	J	0.068	MDL	0.35	PQL	ug/Kg	J	Z
Chlordane	1.8	J	0.82	MDL	3.5	PQL	ug/Kg	J	Z
Sample ID: SL-016-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/2	011 9:15:0	00 A	nalysis Ty	/pe: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL.	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALPHA-BHC	0.076	J	0.036	MDL	0.17	PQL	ug/Kg	J	Z

Analyte	Lab Result	Lab Qual	DL.	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALPHA-BHC	0.076	J	0.036	MDL	0.17	PQL	ug/Kg	J	Z
Chlordane	2.5	J	0.84	MDL	3.6	PQL	ug/Kg	J	Z
HEPTACHLOR	0.077	J	0.063	MDL	0.17	PQL	ug/Kg	J	Z

Collec	ted: 9/28/2	011 8:35:0	00 A	Analysis Type: RES-BASE/NEUTRAL Dilution: 1					
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
0.067	U	0.067	MDL	0.35	PQL	ug/Kg	UJ	S	
2.2		0.067	MDL	0.35	PQL	ug/Kg	J	S	
2.9		0.067	MDL	0.35	PQL	ug/Kg	J	S	
0.067	U	0.067	MDL	0.17	PQL	ug/Kg	UJ	S	
0.035	U	0.035	MDL	0.17	PQL	ug/Kg	บม	S	
0.061	U	0.061	MDL	0.17	PQL	ug/Kg	UJ	S	
4.4		0.81	MDL	3.5	PQL	ug/Kg	J	S	
0.048	υ	0.048	MDL	0.17	PQL	ug/Kg	UJ	S	
0.23	υ	0.23	MDL	0.35	PQL	ug/Kg	IJ	S	
0.071	U	0.071	MDL	0.17	PQL	ug/Kg	เกา	S	
0.26	U	0.26	MDL	0.35	PQL	ug/Kg	ŲĴ	S	
	Lab Result  0.067  2.2  2.9  0.067  0.035  0.061  4.4  0.048  0.23  0.071	Lab Result         Lab Qual           0.067         U           2.2         U           2.9         U           0.067         U           0.035         U           0.061         U           4.4         U           0.23         U           0.071         U	Lab Result         Lab Qual         DL           0.067         U         0.067           2.2         0.067           2.9         0.067           0.067         U         0.067           0.035         U         0.035           0.061         U         0.061           4.4         0.81         0.048           0.23         U         0.23           0.071         U         0.071	Lab Result         Lab Qual         DL DL Type           0.067         U         0.067         MDL           2.2         0.067         MDL           2.9         0.067         MDL           0.067         U         0.067         MDL           0.035         U         0.035         MDL           0.061         U         0.061         MDL           4.4         0.81         MDL           0.048         U         0.048         MDL           0.23         U         0.23         MDL           0.071         U         0.071         MDL	Lab Result         Lab Qual         DL DL         Type         RL           0.067         U         0.067         MDL         0.35           2.2         0.067         MDL         0.35           2.9         0.067         MDL         0.35           0.067         U         0.067         MDL         0.17           0.035         U         0.035         MDL         0.17           0.061         U         0.061         MDL         0.17           4.4         0.81         MDL         3.5           0.048         U         0.048         MDL         0.17           0.23         U         0.23         MDL         0.35           0.071         U         0.071         MDL         0.17	Lab Result         Lab Qual         DL DL DL Type         RL RL Type         RL Type           0.067         U         0.067         MDL MDL         0.35         PQL           2.2         0.067         MDL MDL         0.35         PQL           2.9         0.067         MDL MDL         0.17         PQL           0.067         U         0.067         MDL MDL         0.17         PQL           0.035         U         0.035         MDL MDL         0.17         PQL           0.061         U         0.061         MDL MDL         0.17         PQL           4.4         0.81         MDL MDL         0.17         PQL           0.048         U         0.048 MDL         0.17         PQL           0.23         U         0.23 MDL         0.35 MDL         PQL           0.071         U         0.071 MDL         0.17         PQL	Lab Result         Lab Qual         DL Type         RL Type         RL Type         Units           0.067         U         0.067         MDL 0.35         PQL ug/Kg           2.2         0.067         MDL 0.35         PQL ug/Kg           2.9         0.067         MDL 0.35         PQL ug/Kg           0.067         U 0.067         MDL 0.17         PQL ug/Kg           0.035         U 0.035         MDL 0.17         PQL ug/Kg           0.061         U 0.061         MDL 0.17         PQL ug/Kg           4.4         0.81         MDL 3.5         PQL ug/Kg           0.048         U 0.048         MDL 0.17         PQL ug/Kg           0.23         U 0.23         MDL 0.35         PQL ug/Kg           0.071         U 0.071         MDL 0.35         PQL ug/Kg	Lab Result         Lab Qual         DL Type         RL Type         RL Type         Lujks         Data Review Qual           0.067         U         0.067         MDL         0.35         PQL         ug/kg         UJ           2.2         0.067         MDL         0.35         PQL         ug/kg         J           2.9         0.067         MDL         0.35         PQL         ug/kg         UJ           0.067         U         0.067         MDL         0.17         PQL         ug/kg         UJ           0.035         U         0.035         MDL         0.17         PQL         ug/kg         UJ           0.061         U         0.061         MDL         0.17         PQL         ug/kg         UJ           4.4         0.81         MDL         3.5         PQL         ug/kg         UJ           0.048         U         0.048         MDL         0.17         PQL         ug/kg         UJ           0.23         U         0.23         MDL         0.35         PQL         ug/kg         UJ           0.071         U         0.071         MDL         0.17         PQL         ug/kg         UJ	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/12/2012 11:50:38 AM Page 22 of 35

Lab Reporting Batch ID: DE257

EDD Filename: PrepDE257_v1

EQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 8081A Matrix: SO

Collec	ted: 9/28/2	011 8:35:0	00 A	Analysis Type: RES-BASE/NEUTRAL Dilution: 1					
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
0.067	υ	0.067	MDL	0.35	PQL	ug/Kg	UJ	s	
0.13	U	0.13	MDL	0.35	PQL	ug/Kg	ΟJ	s	
0.99		0.067	MDL	0.35	PQL	ug/Kg	J	S	
0.067	U	0.067	MDL	0.35	PQL	ug/Kg	กำ	S	
0.035	U	0.035	MDL	0.17	PQL	ug/Kg	UJ	S	
0.061	υ	0.061	MDL	0.17	PQL	ug/Kg	UJ	S	
0.081	U	0.081	MDL	0.17	PQL	ug/Kg	UJ	S	
0.35	U	0.35	MDL	1.7	PQL	ug/Kg	UJ	S	
0.26	U	0.26	MDL	0.35	PQL	ug/Kg	UJ	S	
18	U	18	MDL	18	PQL	ug/Kg	UJ	S	
	Lab Result  0.067  0.13  0.99  0.067  0.035  0.061  0.081  0.35  0.26	Lab Result         Lab Qual           0.067         U           0.13         U           0.99         U           0.067         U           0.035         U           0.061         U           0.081         U           0.26         U	Lab Result         Lab Qual         DL           0.067         U         0.067           0.13         U         0.13           0.99         0.067           0.067         U         0.067           0.035         U         0.035           0.061         U         0.061           0.081         U         0.081           0.26         U         0.26	Lab Result         Lab Qual         DL Type           0.067         U 0.067         MDL           0.13         U 0.13         MDL           0.99         0.067         MDL           0.035         U 0.067         MDL           0.035         U 0.035         MDL           0.081         U 0.081         MDL           0.35         U 0.35         MDL           0.081         U 0.26         MDL	Lab Result         Lab Qual         DL Type         RL           0.067         U 0.067         MDL 0.35           0.13         U 0.13         MDL 0.35           0.99         0.067         MDL 0.35           0.067         U 0.067         MDL 0.35           0.035         U 0.035         MDL 0.17           0.061         U 0.061         MDL 0.17           0.081         U 0.081         MDL 0.17           0.35         U 0.35         MDL 1.7           0.26         U 0.26         MDL 0.35	Lab Result         Lab Qual         DL DL Type         RL Type         RL Type           0.067         U 0.067         MDL 0.35         PQL           0.13         U 0.13         MDL 0.35         PQL           0.99         0.067         MDL 0.35         PQL           0.067         U 0.067         MDL 0.35         PQL           0.035         U 0.035         MDL 0.17         PQL           0.061         U 0.061         MDL 0.17         PQL           0.081         U 0.081         MDL 0.17         PQL           0.35         U 0.35         MDL 1.7         PQL           0.26         U 0.26         MDL 0.35         PQL	Lab Result         Lab Qual         DL Type         RL Type         RL Type         Units           0.067         U 0.067         MDL 0.35         PQL ug/Kg           0.13         U 0.13         MDL 0.35         PQL ug/Kg           0.99         0.067         MDL 0.35         PQL ug/Kg           0.067         U 0.067         MDL 0.35         PQL ug/Kg           0.035         U 0.035         MDL 0.17         PQL ug/Kg           0.061         U 0.061         MDL 0.17         PQL ug/Kg           0.081         U 0.081         MDL 0.17         PQL ug/Kg           0.35         U 0.35         MDL 1.7         PQL ug/Kg           0.26         U 0.26         MDL 0.35         PQL ug/Kg	Lab Result         Lab Qual         DL Type         RL Type         RL Type         RL Units         Data Review Qual           0.067         U 0.067         MDL 0.35         PQL ug/Kg         UJ           0.13         U 0.13         MDL 0.35         PQL ug/Kg         UJ           0.99         0.067         MDL 0.35         PQL ug/Kg         UJ           0.067         U 0.067         MDL 0.35         PQL ug/Kg         UJ           0.035         U 0.035         MDL 0.17         PQL ug/Kg         UJ           0.061         U 0.061         MDL 0.17         PQL ug/Kg         UJ           0.081         U 0.081         MDL 0.17         PQL ug/Kg         UJ           0.35         U 0.35         MDL 1.7         PQL ug/Kg         UJ           0.26         U 0.26         MDL 0.35         PQL ug/Kg         UJ	

Sample ID: SL-034-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 1:45:0	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDE	0.10	J	0.069	MDL	0.35	PQL	ug/Kg	J	Z, FD
4,4'-DDT	0.22	J	0.069	MDL	0.35	PQL	ug/Kg	J	Z, FD
BETA-BHC	0.062	U	0.062	MDL	0.17	PQL	ug/Kg	UJ	FD
Chlordane	0.90	J	0.83	MDL	3.5	PQL	ug/Kg	J	Z, FD
ENDRIN ALDEHYDE	0.069	U	0.069	MDL	0.35	PQL	ug/Kg	UJ	FD

Sample ID: 5L-040-SA5D5-SS-0.0-0.5	Collec	Collected: 9/28/2011 3:05:00 Analysis Type: RES-BASE/NEUTRAL Dilution:									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
вета-внс	0.081	J	0.061	MDL	0.17	PQL	ug/Kg	J	Z		
gamma-BHC (Lindane)	0.053	J	0.034	MDL	0.17	PQL	ug/Kg	J	Z		

0.035

MDL

0.17

PQL

ug/Kg

Z, FD

0.038

Method Category:	SVOA			
Method:	8082	Matrix:	so	

Sample ID: DUP-02-SASDS-QC-092811	Collected: 9/28/2011 1:55:00 Analysis Type: RES-BASE/NEUTRAL D								Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	0.62	J	0.34	MDL	1.8	PQL	ug/Kg	J	Z, FD

^{*} denotes a non-reportable result

gamma-BHC (Lindane)

Completion of MAC CAEDO CC OA A C

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/12/2012 11:50:38 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DE257

EDD Filename: PrepDE257 v1

EQAPP Name: CDM SSFL 110509

EDD Filename: PrepDE257_v1						eQAF	'P Name	e: CDM_	SSFL_110509
Method Category: SVOA Method: 8082					so				
Sample ID: SL-007-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 8:00:	00 A	nalysis T	ype: RES	-BASE/NE	EUTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	1.2	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z
AROCLOR 1260	1.5	J	0.39	MDL	1.7	PQL	ug/Kg	J	Z
Sample ID: SL-008-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 7:30:	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	1.6	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z
Aroclor 5460	3.1	J	1.0	MDL	3.3	PQL	ug/Kg	J	Z
Sample ID: SL-009-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 9:50:0	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	2.0		0.34	MDL	1.7	PQL	ug/Kg	J	s
AROCLOR 1260	1.8		0.40	MDL	1.7	PQL	ug/Kg	J	S
Aroclor 5460	3.5		1.0	MDL	3.4	PQL	ug/Kg	J	S
Sample ID: SL-010-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 8:20:0	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	1.2	J	0.40	MDL	1.7	PQL	ug/Kg	J	Z
Aroclor 5460	3.1	J	1.0	MDL	3.3	PQL	ид/Кд	J	Z
Sample ID: SL-013-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	011 11:00	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	1.2	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z, S
Aroclor 5460	1.9	J	1.0	MDL	3.4	PQL	ug/Kg	J	Z, S
Sample ID: SL-014-SA5DS-SS-0.0-0.5	Collect	ted: 9/28/2	011 10:05	:00 A	nalysis Ty	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	0.92	J	0.33	MDL	1.7	PQL	ug/Kg	J	Z
AROCLOR 1260	0.92	J	0.39	MDL	1.7	PQL	ug/Kg	J	Z
Aroclor 5460	2.4	J	1.0	MDL	3.3	PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 11:50:38 AM ADR version 1.4.0.111 Page 24 of 35