Lab Reporting Batch ID: DE240

EDD Filename: DE240_v1. eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method: 1625C

SO

Matrix:

Lab Reporting RLSampleID Analyte Qual Result Limit Units Туре Flag SL-210-SA6-SB-9.0-10.0 N-NITROSODIMETHYLAMINE 34.5 36.6 **PQL** ng/Kg J (all detects)

Method: 6010E

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP15-SA6-QC-090911	TIN	J	2.99	10.0	PQL	mg/Kg	J (all detects)
SL-001-SA6-SB-0.0-1.0	TIN	J	3.18	10.1	PQL	mg/Kg	J (all detects)
SL-210-SA6-SB-4.0-5.0	SODIUM TIN Zirconium	J J	89.2 2.86 3.55	106 10.6 5.29	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-210-SA6-SB-9.0-10.0	TIN Zirconium	J	3.40 2.74	10.8 5.40	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-217-SA6-SB-4.0-5.0	TIN	J	3.52	12.0	PQL	mg/Kg	J (all detects)
SL-217-SA6-SB-7.5-8.5	TIN Zirconium	J	3.37 2.77	10.9 5.46	PQL PQL	mg/Kg mg/Kg	J (all detects)

Method: 6020

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP15-SA6-QC-090911	ANTIMONY SELENIUM SILVER	J J	0.111 0.211 0.0180	0.202 0.404 0.101	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-001-SA6-SB-0.0-1.0	ANTIMONY SELENIUM SILVER	J	0.133 0.223 0.0276	0.204 0.408 0.102	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-210-SA6-SB-4.0-5.0	ANTIMONY SELENIUM SILVER	J	0.0872 0.182 0.0472	0.216 0.432 0.108	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-210-SA6-SB-9.0-10.0	SILVER	J	0.0420	0.106	PQL	mg/Kg	J (all detects)
SL-217-SA6-SB-4.0-5.0	ANTIMONY SELENIUM SILVER	J	0.160 0.262 0.0659	0.233 0.466 0.116	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-217-SA6-SB-7.5-8.5	ANTIMONY SELENIUM SILVER	J	0.0810 0.0991 0.0370	0.210 0.420 0.105	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)

Method: 7199

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP15-SA6-QC-090911	HEXAVALENT CHROMIUM	J	0.34	1.0	PQL	mg/Kg	J (all detects)
SL-001-SA6-SB-0.0-1.0	HEXAVALENT CHROMIUM	J	0.76	1.1	PQL	mg/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 8:46:43 AM ADR version 1.4.0.111 Page 1 of 3

Lab Reporting Batch ID: DE240

Laboratory: LL

EDD Filename: DE240_v1.

eQAPP Name: CDM_SSFL_110509

Method: 7199	art many life.			100
Matrix: SO			ani i Kamarati La	Likes

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-210-SA6-SB-4.0-5.0	HEXAVALENT CHROMIUM	J	0.47	1.1	PQL	mg/Kg	J (all detects)
SL-210-SA6-SB-9.0-10.0	HEXAVALENT CHROMIUM	J	0.45	1.1	PQL	mg/Kg	J (all detects)
SL-217-SA6-SB-4.0-5.0	HEXAVALENT CHROMIUM	J	0.42	1.2	PQL	mg/Kg	J (all detects)
SL-217-SA6-SB-7.5-8.5	HEXAVALENT CHROMIUM	J	0.42	1.1	PQL	mg/Kg	J (all detects)

Method: 7471A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-217-SA6-SB-4.0-5.0	MERCURY	J	0.0326	0.115	PQL	mg/Kg	J (all detects)
SL-217-SA6-SB-7.5-8.5	MERCURY	J	0.0147	0.104	PQL	mg/Kg	J (all detects)

Method: 8015B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-217-SA6-SB-4.0-5.0	ETHANOL	J	140	610	PQL	ug/Kg	J (all detects)

Method: 8015M

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-210-SA6-SB-4.0-5.0	EFH (C15-C20)	J	0.93	1.3	PQL	mg/Kg	J (all detects)
SL-210-SA6-SB-9.0-10.0	EFH (C21-C30)	J	1.1	1.3	PQL	mg/Kg	J (all detects)
SL-217-SA6-SB-7.5-8.5	EFH (C30-C40)	J	0.89	1.3	PQL	mg/Kg	J (all detects)

Method: 8082

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP15-SA6-QC-090911	Aroclor 5460	J	2.6	3.5	PQL	ug/Kg	J (all detects)
SL-210-SA6-SB-4.0-5.0	AROCLOR 1254 AROCLOR 1260	J	0.64 0.76	1.9 1.9	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-217-SA6-SB-4.0-5.0	AROCLOR 1260 Aroclor 5460	J	1.5 1.9	2.0 4.0	PQL PQL	ug/Kg ug/Kg	J (all detects)

Lab Reporting Batch ID: DE240

Laboratory: LL

EDD Filename: DE240_v1.

eQAPP Name: CDM_SSFL_110509

Method: 8270C Matrix: SO							ar talah
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-217-SA6-SB-4.0-5.0	BIS(2-ETHYLHEXYL)PHTHALATE	J	100	400	POL	ua/Ka	.l (all detects)

Method: 8270C SIM

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-217-SA6-SB-4.0-5.0	1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE ACENAPHTHYLENE BENZO(B)FLUORANTHENE CHRYSENE FLUORANTHENE FLUORANTHENE FLUORENE NAPHTHALENE	J J J	1.0 1.1 0.55 1.2 1.4 1.1 1.4 0.90	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)

1/6/2012 8:46:43 AM ADR version 1.4.0.111 Page 3 of 3

SDG#	:26859J4 :DE240 tory:_Lancaster Laborato		IDATIO	N COMP	LETI ADF		ss v	VORKS	HEET	,	Date:
METH	OD: Metals (EPA SW 84	46 Meti	nod 6010E	3/6020A/70	000)					4	2nd Reviewer:
The sa	mples listed below were	reviev	ed for ea	ch of the fo	ollowir	ng valid	datio	n areas. \	/alidation	n findings	are noted in attached
validati	ion findings worksheets.										
	Validation	Area							Comme	nts	
I.	Technical holding times			N	Sampl	ling date	es:				
II.	ICP/MS Tune			\sim							
111.	Calibration		=- =	7	4						
IV.	Blanks			5V~							
V.	ICP Interference Check Sam	nple (ICS) Analysis	N	,						
VI.	Matrix Spike Analysis			N 5V	/						
VII.	Duplicate Sample Analysis	=		A	5	b, W	100	Ag	4TX	Noth	<u>ل</u>
VIII.	Laboratory Control Samples	(LCS)		ΝA	9	RNI		U		•	
IX.	Internal Standard (ICP-MS)		·-	N							
Х.	Furnace Atomic Absorption	QC		N							
XI.	ICP Serial Dilution			SN	Cy	<u>^</u>	<u>V , \</u>	JMJ			
XII.	Sample Result Verification			N							
XIII.	Overall Assessment of Data			N							
XIV.	Field Duplicates										
xv	Field Blanks			7							
Note: Validated	A = Acceptable N = Not provided/applicable SW = See worksheet d Samples:		R = Rin	o compounds sate eld blank	detect	ted	٦	O = Duplicat IB = Trip bla EB = Equipn	ank		
1 SL	001-SA6-SB-0.0-1.0	11				21	<u> </u>			31	
	-210-SA6-SB-4.0-5.0	12				22				32	
	-210-SA6-SB-9.0-10.0	13				23				33	
	-217-SA6-SB-4.0-5.0	14				24				34	
	217-SA6-SB-7.5-7.8	15				25				35	
	JP15-SA6-QC-090911	16				26				36	
7 SL	-001-SA6-SB-0.0-1.0MS	17				27				37	
8 SL	001-SA6-SB-0.0-1.0MSD	18				28				38	
9 SL	-001-SA6-SB-0.0-1.0DUP	19				29				39	

29

30

10

Notes:_

LDC #: 26859J4

Analyte

Be 뤈

Sp

VALIDATION FINDINGS WORKSHEET

2nd Reviewer: Page: ____ Reviewer: ____ Reason: B Soil preparation factor applied: 200X, Hg: 167X Associated Samples: All except Hg:1 0.11 9 PB/ICB/CCB QUALIFIED SAMPLES 0.081 ß 0.16 0.087 0 METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) 0.13 Sample Concentration units, unless otherwise noted: mg/Kg Action Limit 0.0267 0.32 0.062 Maximum ICB/CCB^a 0.032 (ng/L) 0.062 0.32 Maximum PB³ (ug/L) Maximum (mg/Kg)

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

0.11

0.11

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QUALITY ASSURANCE SUMMARY FORM SA (MS/MSD)

SDG No.: DE240 Matrix: SOIL

Level (low/med): LOW

Matrix Spike Duplicate Lab Sample ID: 6401590MSD Matrix Spike Lab Sample ID: 6401589MS Background Lab Sample 1D: 6401588BKG \$ Solids for Sample: 96.0

Batch Id(s):	P2:	P25526A,		P25908D							
	1	ple	MS Sample	MSD Sample	MS Spike	MSD Spike	MS	MSD		Control L	Limit
Analyte	Mass	Result C	Result C	Result C	Added	Added Units	&R 0	*R Q	RPD Q	8.	RPD M
Aluminum		23245.3610	27664,3352	27894.8500	204.2484	208.3333 MG/KG	2164	2232	п	×4×	20P
Antimony	121	0.1326B	0.4040	0.4671	1.2255	1.2255 MG/KG	22 N	27 N	14	75 - 125	20MS
Arsenic	75	5.2635	7.1691	6.9669	2.0425	2.0425 MG/KG	93	83	т	75 - 125	20MS
Barium	137	99.0809	112.5000	118.0964	10.2124	10.2124 MG/KG	131	186	r)	メナト	20 MS
Beryllium	6	0.7100	1.3907	1.4097	0.8170	0.8170 MG/KG	83	98	н	75 - 125	20 MS
Boron		13.9320	213.1883	217.4333	204.2484	208.3333 MG/KG	98	98	23	84 - 115	20P
Cadmium	111	0.2712	1.2071	1.2020	1.0212	1.0212 MG/KG	92	91	0	75 - 125	20MS
Calcium		51706,0852	57947.2937	51859.0490	408.4967	416.6667 MG/KG	1528	37	11	イゲイ	20P
Chromium	52	27.3693	36.8873	36.6830	10.2124	10.2124 MG/KG	66	91	н	15-125	20MS
Cobalt	59	8,4824	61.1520	60.9886	51.0621	51.0621 MG/KG	103	103	0	- 12	20MS
Copper	63	14.0523	24.7753	26.2663	10.2124	10.2124 MG/KG	105	120	9	1	20 MS
Iron		27104.5449	27461.4532	27949.5427	102.1242	104.1667 MG/KG	349	811	2	1	20 P
Lead	208	7.6573	11.1520	10.9293	3.0637	3.0637 MG/KG	114	107	22	75 - 125	20 MS
Lithium		29.1121	145.9252	146,3875	102.1242	104.1667 MG/KG	114	113	0	82 - 114	20P
Magnesium		6997.5991	7899.3740	7821.4469	204,2484	208.3333 MG/KG	442	395	1	メナト	20 P
Manganese			381.9986	366,7146	51.0621	52.0833 MG/KG	133	101	4	1	20P
Mercury		0.0073 U	0.1613	0.1625	0.1720	0.1666 MG/KG	94	86	гH	65 - 135	20CV
Molybdenum	98	0.3962	9.6977	9.7712	10.2124	10.2124 MG/KG	91	92		1	20 MS
Nickel	9	16.8152	27.3080	27,9820	10.2124	10.2124 MG/KG	103	109	2	75 - 125	20MS
Phosphorus		529,5914	674.4291	668.2615	102,1242	104.1667MG/KG	142	133	r-I	レダイ	20P
Potassium		4487,4110	6348.6479	6356.4677	1021.2418	1041.6667 MG/KG	182	179	0	1.	20P
Selenium	78		2,1507	2.1671	2.0425	2.0425MG/KG	94	95	rt	75 - 125	20MS
Silver	107	0.0276B	10.0286	10.2492	10.2124	10.2124 MG/KG	98	100	2	75 - 125	20MS
Sodium		193.2757	1242.4592	1251,2219	1021.2418	1041.6667 MG/KG	103	102	П	75 - 125	20P
Strontium		105.3509	216,3062	210.8604	102.1242	104.1667 MG/KG	109	101	m	1	20P
Thallum	203		0.7218	0.7304	0.4085	0.4085MG/KG	102	104	17	75 - 125	20 MS
1111		3,1847B	378.4283	385.8385	408.4967	416,6667 MG/KG	92	92	2	80 - 110	20 P
Titanium		1419.4434	1719,6895	1712.5235	100.1603	102.1242 MG/KG	300	287	0	747	20P
Vanadıum	21	53.4926	64.0931	67.8513	10.2124	10.2124 MG/KG	104	141	9		20MS
Zinc	99	68.7908	77.6961	83.7623	10.2124	10.2124 MG/KG	87	147	8	>	20 MS
Zirconium		5.6988	98.1087	100.8458	102.1242	104.1667 MG/KG	06	91	m	75 - 125	20P
Į.	1274 1274	Sh = poot so	スナツーない	_0							
METHODS:	73					CONCENTE	OMPTHAN	CONCENTRACTION OTHER			Γ
F = ICP	Atom	P = ICP Atomic Emission Spectrometer	CV E	Cold Vapor		U= Be]	Below MDL,	B= Below LOO	LOO		
5 ± 1 ± 2 ± 2 ± 2 ± 2 ± 2 ± 2 ± 2 ± 2 ± 2	H Mass	s Spectrometry	AF =	Cold Vapor Atom	Atomic Fluorescence	FLAGS			ľ		· · · · · ·
	-3					N = Ma	atrix Sp	- Matrix Spike OOS,	Q #	= Duplicate 00S	800

SAMPLE DELIVERY GROUP

DE241

Attachment I

Sample ID Cross Reference and Data Review Level

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
12-Sep-2011	TB-091211	6404356	ТВ	5030B	8015M	111
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	3050B	6010B	Ш
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	3050B	6020	111
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	3060A	7199	III
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	3550B	8015B	111
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	3550B	8015 M	111
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	3550B	8082	111
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	3550B	8270C	111
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	3550B	8270C SIM	HI
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	5035	8015M	111
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	METHOD	300.0	III
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	METHOD	314.0	III
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	METHOD	7471A	III
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	METHOD	8015B	111
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404352	N	METHOD	8015M	111
12-Sep-2011	SL-051-SA6-SB-3.5-4.5MSD	P404352M260920	MSD	3550B	8270C SIM	Ш
12-Sep-2011	SL-051-SA6-SB-3.5-4.5MS	P404352R260846	MS	3550B	8270C SIM	HI
12-Sep-2011	SL-235-SA6-SB-4.0-5.0	6404355	N	3050B	6010B	HI
12-Sep-2011	SL-235-SA6-SB-4.0-5.0	6404355	N	3050B	6020	III
12-Sep-2011	SL-235-SA6-SB-4.0-5.0	6404355	N	3060A	7199	Ш
12-Sep-2011	SL-235-SA6-SB-4.0-5.0	6404355	N	3550B	8082	Ш
12-Sep-2011	SL-235-SA6-SB-4.0-5.0	6404355	N	3550B	8270C	Ш
12-Sep-2011	SL-235-SA6-SB-4.0-5.0	6404355	N	3550B	8270C SIM	Ш
12-Sep-2011	SL-235-SA6-SB-4.0-5.0	6404355	N	METHOD	300.0	Ш
12-Sep-2011	SL-235-SA6-SB-4.0-5.0	6404355	N	METHOD	314.0	III
12-Sep-2011	SL-235-SA6-SB-4.0-5.0	6404355	N	METHOD	6850	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
12-Sep-2011	SL-235-SA6-SB-4.0-5.0	6404355	N	METHOD	7471A	III
12-Sep-2011	SL-235-SA6-SB-4.0-5.0MSD	P404355M241600A	MSD	METHOD	6850	111
12-Sep-2011	SL-235-SA6-SB-4.0-5.0MS	P404355R241547A	MS	METHOD	6850	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	3050B	6010B	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	3050B	6020	III
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	3060A	7199	III
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	3550B	8015B	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	3550B	8015M	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	3550B	8082	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	3550B	8270C	111
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	3550B	8270C SIM	1(1
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	5035	8015M	111
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	METHOD	300.0	111
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	METHOD	314.0	HI
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	METHOD	7471A	111
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	METHOD	8015B	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404351	N	METHOD	8015M	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0DUP	P404351D220900	DUP	METHOD	7471A	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0DUP	P404351D220902A	DUP	3050B	6020	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0DUP	P404351D220902B	DUP	3050B	6020	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0DUP	P404351D220902C	DUP	3050B	6020	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0DUP	P404351D220902D	DUP	3050B	6020	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0DUP	P404351D221326	DUP	3050B	6010B	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0DUP	P404351D270223A	DUP	METHOD	314.0	111
12-Sep-2011	SL-050-SA6-SB-1.0-2.0DUP	P404351D272154A	DUP	3060A	7199	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MSD	P404351M220902	MSD	METHOD	7471A	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MSD	P404351M220908A	MSD	3050B	6020	III
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MSD	P404351M220908B	MSD	3050B	6020	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MSD	P404351M220908C	MSD	3050B	6020	III
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MSD	P404351M220908D	MSD	3050B	6020	III
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MSD	P404351M221334	MSD	3050B	6010B	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MSD	P404351M241727A	MSD	3550B	8082	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MSD	P404351M260720	MSD	3550B	8270C	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MS	P404351R220901	MS	METHOD	7471A	111
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MS	P404351R220905A	MS	3050B	6020	III
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MS	P404351R220905B	MS	3050B	6020	111
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MS	P404351R220905C	MS	3050B	6020	III
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MS	P404351R220905D	MS	3050B	6020	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MS	P404351R221330	MS	3050B	6010B	III
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MS	P404351R241708A	MS	3550B	8082	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MS	P404351R260656	MS	3550B	8270C	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MS	P404351R270246A	MS	METHOD	314.0	Ш
12-Sep-2011	SL-050-SA6-SB-1.0-2.0MS	P404351R271002A	MS	3060A	7199	III
12-Sep-2011	SL-269-SA6-SB-1.5-2.5	6404354	N	3050B	6010B	Ш
12-Sep-2011	SL-269-SA6-SB-1.5-2.5	6404354	N	3050B	6020	111
12-Sep-2011	SL-269-SA6-SB-1.5-2.5	6404354	N	3060A	7199	Ш
12-Sep-2011	SL-269-SA6-SB-1.5-2.5	6404354	N	3546	1625C	Ш
12-Sep-2011	SL-269-SA6-SB-1.5-2.5	6404354	N	3550B	8015B	III
12-Sep-2011	SL-269-SA6-SB-1.5-2.5	6404354	N	3550B	8015M	III
12-Sep-2011	SL-269-SA6-SB-1.5-2.5	6404354	N	3550B	8082	III
12-Sep-2011	SL-269-SA6-SB-1.5-2.5	6404354	N	3550B	8270C	III
12-Sep-2011	SL-269-SA6-SB-1.5-2.5	6404354	N	3550B	8270C SIM	Ш

Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
SL-269-SA6-SB-1.5-2.5	6404354	N	5035	8015 M	111
SL-269-SA6-SB-1.5-2.5	6404354	N	8330	8330A	111
SL-269-SA6-SB-1.5-2.5	6404354	N	METHOD	300.0	111
SL-269-SA6-SB-1.5-2.5	6404354	N	METHOD	314.0	111
SL-269-SA6-SB-1.5-2.5	6404354	N	METHOD	7471A	111
SL-269-SA6-SB-1.5-2.5	6404354	N	METHOD	8015B	111
SL-269-SA6-SB-1.5-2.5	6404354	N	METHOD	8015M	III
SL-269-SA6-SB-1.5-2.5	6404354	N	METHOD	8315A	HI
SL-269-SA6-SB-1.5-2.5	6404354	N	METHOD	9012B	Ш
SL-269-SA6-SB-1.5-2.5MSD	P404354M241918A	MSD	METHOD	8315A	III
SL-269-SA6-SB-1.5-2.5MS	P404354R241909A	MS	METHOD	8315A	111
SL-055-SA6-SB-2.0-3.0	6404353	N	3050B	6010B	111
SL-055-SA6-SB-2.0-3.0	6404353	N	3050B	6020	Ш
SL-055-SA6-SB-2.0-3.0	6404353	N	3060A	7199	Ш
SL-055-SA6-SB-2.0-3.0	6404353	N	3550B	8082	III
SL-055-SA6-SB-2.0-3.0	6404353	N	3550B	8270C	Ш
SL-055-SA6-SB-2.0-3.0	6404353	N	3550B	8270C SIM	Ш
SL-055-SA6-SB-2.0-3.0	6404353	N	5035	8015M	111
SL-055-SA6-SB-2.0-3.0	6404353	N	METHOD	300.0	111
SL-055-SA6-SB-2.0-3.0	6404353	N	METHOD	314.0	Ш
SL-055-SA6-SB-2.0-3.0	6404353	N	METHOD	7471A	Ш
	SL-269-SA6-SB-1.5-2.5 SL-269-SA6-SB-1.5-2.5MSD SL-269-SA6-SB-1.5-2.5MSD SL-055-SA6-SB-2.0-3.0 SL-055-SA6-SB-2.0-3.0 SL-055-SA6-SB-2.0-3.0 SL-055-SA6-SB-2.0-3.0 SL-055-SA6-SB-2.0-3.0 SL-055-SA6-SB-2.0-3.0 SL-055-SA6-SB-2.0-3.0 SL-055-SA6-SB-2.0-3.0 SL-055-SA6-SB-2.0-3.0	SL-269-SA6-SB-1.5-2.5 6404354 SL-269-SA6-SB-1.5-2.5MSD P404354M241918A SL-269-SA6-SB-1.5-2.5MSS P404354R241909A SL-055-SA6-SB-2.0-3.0 6404353 SL-055-SA6-SB-2.0-3.0 6404353	Field Sample ID Lab Sample ID Type SL-269-SA6-SB-1.5-2.5 6404354 N SL-269-SA6-SB-1.5-2.5 6404353 N SL-269-SA6-SB-2.0-3.0 6404353 N SL-055-SA6-SB-2.0-3.0 6404353 N SL-055-SA6-SB-2.0-3.0 6404353 N	Field Sample ID Lab Sample ID Type Method SL-269-SA6-SB-1.5-2.5 6404354 N 5035 SL-269-SA6-SB-1.5-2.5 6404354 N 8330 SL-269-SA6-SB-1.5-2.5 6404354 N METHOD SL-269-SA6-SB-1.5-2.5 6404353 N 3050B SL-055-SA6-SB-2.0-3.0 6404353 N 3050B SL-055-SA6	Field Sample ID Lab Sample ID Type Method Method SL-269-SA6-SB-1.5-2.5 6404354 N 5035 8015M SL-269-SA6-SB-1.5-2.5 6404354 N 8330 8330A SL-269-SA6-SB-1.5-2.5 6404354 N METHOD 300.0 SL-269-SA6-SB-1.5-2.5 6404354 N METHOD 7471A SL-269-SA6-SB-1.5-2.5 6404354 N METHOD 8015B SL-269-SA6-SB-1.5-2.5 6404354 N METHOD 8015M SL-269-SA6-SB-1.5-2.5 6404354 N METHOD 8315A SL-269-SA6-SB-1.5-2.5 6404353 N 305

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DE241 Laboratory: LL

EDD Filename: DE241_v1. eQAPP Name: CDM_SSFL_110509

Method: 6010B	Matrix:	SO	

Sample ID: SL-050-SA6-SB-1.0-2.0	Collec	tea: 9/12/2	017 10:10	:00 A	naiysis i j	/pe: K⊏S		,	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	3.52	J	0.357	MDL	4.96	PQL	mg/Kg	J	Z
SODIUM	71.2	J	5.90	MDL	99.1	PQL	mg/Kg	J	Z
TIN	3.00	J	0.317	MDL	9.91	PQL	mg/Kg	U	В
Zirconium	2.26	J	0.456	MDL	4.96	PQL	mg/Kg	J	Z

Sample ID: SL-051-SA6-SB-3.5-4.5	Collec	ted: 9/12/2	011 8:30:0	00 A	nalysis T	ype: RES	;	E	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	2.15	J	0.367	MDL	5.10	PQL	mg/Kg	U	В
SODIUM	73.8	J	6.07	MDL	102	PQL	mg/Kg	J	Z
TIN	2.89	J	0.327	MDL	10.2	PQL	mg/Kg	U	В
Zirconium	2.68	J	0.470	MDL	5.10	PQL	ma/Ka	J	Z

Sample ID: SL-055-SA6-SB-2.0-3.0	Collec	ted: 9/12/2	011 11:40	:00 A	nalysis T	ype: REA	.2	ı	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SODIUM	88.3	J	5.94	MDL	99.9	PQL	mg/Kg	J	Z	

Sample ID: SL-055-SA6-SB-2.0-3.0	Collec	ted: 9/12/2	011 11:40	:00	Analysis T	ype: RES		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	3.49	J	0.360	MDL	4.99	PQL	mg/Kg	J	Z
TIN	3.09	J	0.320	MDL	9.99	PQL	mg/Kg	U	В
Zirconium	2.35	J	0.459	MDL	4.99	PQL	mg/Kg	J	Z

Sample ID: SL-235-SA6-SB-4.0-5.0	Collec	ted: 9/12/2	011 9:01:0	00 A	nalysis T	ype: RES		i	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	2.72	J	0.393	MDL	5.46	PQL	mg/Kg	U	В
TIN	3.00	J	0.349	MDL	10.9	PQL	mg/Kg	U	В
Zirconium	4.42	J	0.502	MDL	5.46	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE241

Method:

EDD Filename: DE241 v1.

6010B

Laboratory: LL

eQAPP Name: CDM_SSFL_110509 Method Category: WETALS

Matrix:

SO

Sample ID: SL-269-SA6-SB-1.5-2.5	Collec	ted: 9/12/2	011 10:46	:00 A	nalysis T	ype: REA	.2	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
SODIUM	70.0	T .i	6.05	MDI	102	PQL	ma/Ka	J	7

Sample ID: SL-269-SA6-SB-1.5-2.5 Dilution: 1 Collected: 9/12/2011 10:46:00 Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	1.35			MDL					В
TIN	3.15	J	0.326	MDL	10.2	PQL	mg/Kg	U	В
Zirconium	1.75	J	0.468	MDL	5.09	PQL	mg/Kg	J	Z

Method: SO Matrix: SO

mple ID: SL-050-SA6-SB-1.0-2.0	Collect	ed: 9/12/20	011 10:10	:00 🗡	Inalysis T	ype: REA			Dilution: 2	
nalvte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	

0.0592 0.408 PQL SELENIUM 0.270 mg/Kg Z, Q

Sample ID: SL-050-SA6-SB-1.0-2.0 Collected: 9/12/2011 10:10:00 Analysis Type: REA2 Dilution: 2 Data Lab DLRLReview Reason Lab Code Analyte Result Qual DLType RLType Units Qual PQL Q MOLYBDENUM 0.944 0.0510 MDL 0.102 mg/Kg J

Sample ID: SL-050-SA6-SB-1.0-2.0 Collected: 9/12/2011 10:10:00 Analysis Type: REA3 Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
A Marie Commanda Commanda Communication (Communication Communication Com	Service (1990) (1994) (1994) (1994) (1994)	-3-1-5-V	T		2000,000,000	1	- AV 2.563 - 15	1 (200 a) a 2 (2) (1) (2 (2) (2) (2)	N. A. (1985) 80308 (11 - 18 N. 1900) 8130 (1 1 1 1 1 1 1
BARIUM	111		0.108	MDL	0.408	PQL	mg/Kg	J	Α

Dilution: 2 Sample ID: SL-050-SA6-SB-1.0-2.0 Collected: 9/12/2011 10:10:00 Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.248		0.0755	MDL	0.204	PQL	mg/Kg	J	Q
BERYLLIUM	0.826		0.0163	MDL	0.102	PQL	mg/Kg	J	Q
CADMIUM	0.157		0.0449	MDL	0.102	PQL	mg/Kg	J	Q
СНКОМІИМ	23.3		0.122	MDL	0.408	PQL	mg/Kg	J	Q
COBALT	7.68		0.0204	MDL	0.102	PQL	mg/Kg	J	Q, A

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/6/2012 10:27:24 AM

Page 2 of 12

Lab Reporting Batch ID: DE241

EDD Filename: DE241_v1. eQAPP Name: CDM_SSFL_110509

Laboratory: LL

	Method Category: Method:	METALS 6020	Matrix: SO	
--	-----------------------------	----------------	------------	--

Sample ID: SL-050-SA6-SB-1.0-2.0	Collec	ted: 9/12/2	011 10:10:	00 A	nalysis T	/pe: RES	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COPPER	10.1		0.0817	MDL	0.408	PQL	mg/Kg	J	Q
LEAD	7.00		0.0104	MDL	0.204	PQL	mg/Kg	J	Q, A
NICKEL	15.3		0.102	MDL	0.408	PQL	mg/Kg	J	Q
SILVER	0.0610	J	0.0145	MDL	0.102	PQL	mg/Kg	J	Z, Q
THALLIUM	0.437		0.0306	MDL	0.102	PQL	mg/Kg	J	Q
ZINC	76.2		0.572	MDL	3.06	PQL	mg/Kg	J	Α

Sample ID: SL-051-SA6-SB-3.5-4.5	Collect	ted: 9/12/2	011 8:30:0	00 A	nalysis T	ype: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.259	J	0.0592	MDL	0.408	PQL	mg/Kg	J	Z, Q

Sample ID: SL-051-SA6-SB-3.5-4.5	Collec	ted: 9/12/2	011 8:30:0	00 📝	Analysis T	ype: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	A STANDARD OF THE STANDARD OF	and the second second	200		1. 1. 450 (1985)	7. 1919/2010 (2.00° (J.SYAN I.)	51 - 11.0 km/s 20 km/s	www.actegorian	10 Table 201, 452, 331, 4, 8, 8,889, 201, 201,
MOLYBDENUM	0.688		0.0510	MDL	0.102	PQL	mg/Kg	J	Q

Sample ID: SL-051-SA6-SB-3.5-4.5	Collect	ted: 9/12/20	011 8:30:0	00 A	nalysis Ty	/pe: REA	3	i	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	The section with a real	12 Carlo 1881	a a governor	145 155 000 000 000 000	4		and the second of		100 C C C C C C C C C C C C C C C C C C
BARIUM	61.1		0.108	MDL	0.408	PQL	mg/Kg	J	Α

Sample ID: SL-051-SA6-SB-3.5-4.5	Collec	ted: 9/12/2	011 8:30:0	0 A	nalysis Ty	pe: RES	Dilution: 2		
Analyte ANTIMONY	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.127	J	0.0755	MDL	0.204	PQL	mg/Kg	J	Z, Q
BERYLLIUM	0.681		0.0163	MDL	0.102	PQL	mg/Kg	J	Q
СНКОМІЛМ	15.7		0.122	MDL	0.408	PQL	mg/Kg	J	Q
COBALT	5.66		0.0204	MDL	0.102	PQL	mg/Kg	J	Q, A
COPPER	5.94		0.0817	MDL	0.408	PQL	mg/Kg	J	Q
LEAD	4.66		0.0104	MDL	0.204	PQL	mg/Kg	J	Q, A
NICKEL	11.3		0.102	MDL	0.408	PQL	mg/Kg	J	Q
SILVER	0.0479	J	0.0145	MDL	0.102	PQL	mg/Kg	J	Z, Q
THALLIUM	0.280		0.0306	MDL	0.102	PQL	mg/Kg	J	Q
ZINC	50.6		0.572	MDL	3.06	PQL	mg/Kg	J	Α

^{*} denotes a non-reportable result

1/6/2012 10:27:24 AM ADR version 1.4.0.111 Page 3 of 12

Lab Reporting Batch ID: DE241

EDD Filename: DE241_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

									
Method Category: METALS Method: 6020					so				100
Method: 6020	<u>Lucification</u>	a to visit a line.	Ma	trix:		lian (hitta a	State	a a a a a a a a a a a a a a a a a a a	
Sample ID: SL-055-SA6-SB-2.0-3.0	Collect	ted: 9/12/2	011 11:40:	:00 A	nalysis Ty	/pe: REA		1	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.202	J	0.0585	MDL	0.403	PQL	mg/Kg	J	Z, Q
Sample ID: SL-055-SA6-SB-2.0-3.0	Collect	ted: 9/12/2	011 11:40:	00 A	nalysis Ty	/pe: REA	2	i	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.705		0.0504	MDL	0.101	PQL	mg/Kg	J	Q
Sample ID: SL-055-SA6-SB-2.0-3.0	Collect	ted: 9/12/2	011 11:40:	00 A	nalysis Ty	/pe: REA	3		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	101		0.107	MDL	0.403	PQL	mg/Kg	J	А
Sample ID: SL-055-SA6-SB-2.0-3.0	Collect	ted: 9/12/2	011 11:40:	:00 A	nalysis Ty	/pe: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.115	J	0.0746	MDL	0.202	PQL	mg/Kg	J	Z, Q
BERYLLIUM	0.655		0.0161	MDL	0.101	PQL	mg/Kg	J	Q
CADMIUM	0.210		0.0444	MDL	0.101	PQL	mg/Kg	J	Q
CHROMIUM	17.0		0.121	MDL	0.403	PQL	mg/Kg	J	Q
COBALT	5.60		0.0202	MDL	0.101	PQL	mg/Kg	J	Q, A
COPPER	8.02		0.0807	MDL	0.403	PQL	mg/Kg	J	Q
LEAD	6.98		0.0103	MDL	0.202	PQL	mg/Kg	J	Q, A
NICKEL	12.6		0.101	MDL	0.403	PQL	mg/Kg	J	Q
								1	
SILVER	0.0486	J	0.0143	MDL	0.101	PQL	mg/Kg	J	Z, Q
SILVER THALLIUM	0.0486 0.305	J	0.0143	MDL MDL	0.101 0.101	PQL PQL	mg/Kg mg/Kg	J	Z, Q Q

Collected: 9/12/2011 9:01:00

DL

0.0609

Lab

Qual

Lab

Result

0.193

Analysis Type: REA

RL

0.420

RL

Туре

PQL

Units

mg/Kg

DL

Туре

MDL

Sample ID: SL-235-SA6-SB-4.0-5.0

Analyte

SELENIUM

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 10:27:24 AM ADR version 1.4.0.111

Dilution: 2

Reason

Code

Z, Q

Data

Review

Qual

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE241

EDD Filename: DE241_v1. eQAPP Name: CDM_SSFL_110509

EDD Fliellaille. DE241_VI.						eQAF	P Name	E. CDIVI_S	SFL_110509
Method Category: METALS Method: 6020			Ma	itrix:	so				
Sample ID: SL-235-SA6-SB-4.0-5.0	Collec	ted: 9/12/2	011 9:01:0	00 A	nalysis Ty	pe: REA	2	1	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.944		0.0525	MDL	0.105	PQL	mg/Kg	J	Q
Sample ID: SL-235-SA6-SB-4.0-5.0	Collec	ted: 9/12/2	011 9:01:0	00 A	nalvsis Tv	/pe: REA	3		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	125		0.111	MDL	0.420	PQL	mg/Kg	J	А
Sample ID: SL-235-SA6-SB-4.0-5.0	Collec	ted: 9/12/2	011 9:01:0	00 A	nalysis Ty	/pe: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.311	Prop Standard	0.0777	MDL	0.210	PQL	mg/Kg	J	Q
BERYLLIUM	1.28		0.0168	MDL	0.105	PQL	mg/Kg	J	Q
CADMIUM	0.181		0.0462	MDL	0.105	PQL	mg/Kg	J	Q
CHROMIUM	39.3		0.126	MDL	0.420	PQL	mg/Kg	J	Q
COBALT	12.7		0.0210	MDL	0.105	PQL	mg/Kg	J	Q, A
COPPER	20.2		0.0840	MDL	0.420	PQL	mg/Kg	J	Q
LEAD	11.9		0.0107	MDL	0.210	PQL	mg/Kg	J	Q, A
NICKEL	29.5		0.105	MDL	0.420	PQL	mg/Kg	J	Q
SILVER	0.222		0.0149	MDL	0.105	PQL	mg/Kg	J	Q
THALLIUM	0.442		0.0315	MDL	0.105	PQL	mg/Kg	J	Q
ZINC	92.2		0.588	MDL	3.15	PQL	mg/Kg	J	Α
Sample ID: SL-269-SA6-SB-1.5-2.5	Collec	ted: 9/12/2	011 10:46:	:00 A	nalysis Ty	/pe: REA		ı	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.309	J	0.0579	MDL	0.399	PQL	mg/Kg	J	Z, Q
Sample ID: SL-269-SA6-SB-1.5-2.5	Collect	ted: 9/12/2) 011 10:46:	:00 A	nalvsis Tı	/pe: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
)	1	1	i	I	1 1	

0.0499

MDL

0.0998

PQL

mg/Kg

MOLYBDENUM

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 10:27:24 AM ADR version 1.4.0.111

0.647

Q

Laboratory: LL

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE241

EDD Filename: DE241_v1. eQAPP Name: CDM_SSFL_110509

Method: Matrix: SO Matrix: SO Matrix: SO Dilution: 2	Jampie ID. 01-200-0A0-0B-1.	1.0-2.0	Conec	Tea. SITE/E	711 10.40.00	Analysis	Type. NEAU	Data	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Method: 6020 Matrix: SO	Sample ID: SL-269-SA6-SB-1.	1.5-2.5	Collec	ted: 9/12/20			Type: REA3	I	Dilution:

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	70.9		0.106	MDL	0.399	PQL	mg/Kg	J	Α

Sample ID: SL-269-SA6-SB-1.5-2.5 Collected: 9/12/2011 10:46:00 Analysis Type: RES Dilution: 2

oumpic ib. of 200 one ob it 2.0	Conce	tou. Or ILIL	011 10140		inary ord i y	pcu			5114ti 011. Z
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.178	J	0.0738	MDL	0.200	PQL	mg/Kg	J	Z, Q
BERYLLIUM	0.708		0.0160	MDL	0.0998	PQL	mg/Kg	j	Q
CADMIUM	0.0546	j	0.0439	MDL	0.0998	PQL	mg/Kg	J	Z, Q
CHROMIUM	21.9		0.120	MDL	0.399	PQL	mg/Kg	J	Q
COBALT	7.18		0.0200	MDL	0.0998	PQL	mg/Kg	J	Q, A
COPPER	6.82		0.0798	MDL	0.399	PQL	mg/Kg	J	Q
LEAD	4.29		0.0102	MDL	0.200	PQL	mg/Kg	J	Q, A
NICKEL	13.1		0.0998	MDL	0.399	PQL	mg/Kg	J	Q
SILVER	0.0376	J	0.0142	MDL	0.0998	PQL	mg/Kg	J	Z, Q
THALLIUM	0.313		0.0299	MDL	0.0998	PQL	mg/Kg	J	Q
ZINC	66.6		0.559	MDL	2.99	PQL	mg/Kg	J	А

	Method Category: METALS Method: 7199 Matrix: SO	
--	--	--

Collected: 9/12/2011 10:10:00 Analysis Type: RES Dilution: 1 Sample ID: SL-050-SA6-SB-1.0-2.0 Data DLRLLab Lab Review Reason Result DLRLUnits Code Qual Type Type Qual Analyte

 HEXAVALENT CHROMIUM
 0.79
 J
 0.21
 MDL
 1.0
 PQL
 mg/Kg
 J
 Z

 Sample ID: SL-235-SA6-SB-4.0-5.0
 Collected: 9/12/2011 9:01:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.70	J	0.22	MDL	1.1	PQL	mg/Kg	J	Z

Sample ID: SL-269-SA6-SB-1.5-2.5	Collec	ted: 9/12/2	011 10:46	:00 A	nalysis T	ype: RES	,	i	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEYAVALENT CHROMILIM	0.49		0.21	MDI	1 40	POL	ma/Ka		7

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 10:27:24 AM ADR version 1.4.0.111

Laboratory: LL

Lab Reporting Batch ID: DE241

EDD Filename: DE241 v1.

Laboratory: LL

eQAPP Name: CDM SSFL 110509

EDD Filename: DE241_v1.						eQAP	P Name	: CDM_S	SFL_110509
Method Category: METALS Method: 7471A			Ma	trix:	so				
Sample ID: SL-050-SA6-SB-1.0-2.0	Collec	ted: 9/12/2	011 10:10:	:00 A	nalysis Ty	/pe: RES			Dilution: 1
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0171	J	0.0072	MDL	0.103	PQL	mg/Kg	U	В, В
Sample ID: SL-051-SA6-SB-3.5-4.5	Collec	ted: 9/12/2	011 8:30:0	00 A	nalysis Ty	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0186	J	0.0071	MDL	0.102	PQL	mg/Kg	υ	В, В
Sample ID: SL-055-SA6-SB-2.0-3.0	Collec	ted: 9/12/2	011 11:40:	:00 A	nalysis Ty	pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0128	J	0.0068	MDL	0.0973	PQL	mg/Kg	U	B, B
Sample ID: SL-235-SA6-SB-4.0-5.0	Collec	ted: 9/12/2	011 9:01:0	00 A	nalysis T _j	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0111	J	0.0076	MDL	0.108	PQL	mg/Kg	υ	B, B
Sample ID: SL-269-SA6-SB-1.5-2.5	Collec	ted: 9/12/2	011 10:46	:00 A	nalvsis Tı	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0073	J	0.0072	MDL	0.102	PQL	mg/Kg	υ	B, B
Wethod Category: SVOA Wethod: 8015M		***	Ma	ıtrix:	SO				
Sample ID: SL-050-SA6-SB-1.0-2.0	Collec	ted: 9/12/2	011 10:10	:00 A	nalysis Ty	ype: RES		1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C8-C11)	0.64	J	0.41	MDL	1.2	PQL	mg/Kg	J	Z
Sample ID: SL-269-SA6-SB-1.5-2.5	Collec	ted: 9/12/2	011 10:46	:00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C30-C40)	0.81	j	0.41	MDL	1.2	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE241

EDD Filename: DE241_v1.

Method Category: SVOA

Method: 8082

Matrix: SO

Sample ID: SL-050-SA6-SB-1.0-2.0	Collec	ted: 9/12/2	011 10:10	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	0.87	J	0.34	MDL	1.8	PQL	ug/Kg	J	Z
AROCLOR 1260	0.65	J	0.40	MDL	1.8	PQL	ug/Kg	J	Z
Araclar 5460	3.2		1.0	MDI	3.4	POL	ua/Ka		7

Sample ID: SL-051-SA6-SB-3.5-4.5	Collec	ted: 9/12/2	011 8:30:	00 A	Inalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	tak mara kali da sasar aya aya aya aya ay	. *************	100		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	19809 3 NOOS 7244 -	100000000000000000000000000000000000000	- 385 AUGUST 1887 AUGUST 1	and a segment of the second
Aroclor 5460	2.4	J	1.0	MDL	3.4	PQL	ug/Kg	J	Z

Sample ID: SL-055-SA6-SB-2.0-3.0	Collect	ted: 9/12/2	011 11:40	:00	Analysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Aroclor 5460	1.4	J	1.0	MDL	3.4	PQL	ug/Kg	J	Z

Method: 8270C System Matrix: SO	Method Category: SVOA Method: 8270C Matrix: SO	
---------------------------------	---	--

Sample ID: SL-050-SA6-SB-1.0-2.0	Collec	Collected: 9/12/2011 10:10:00 Analysis Type: RES-ACID								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,4-DINITROPHENOL	340	U	340	MDL	1000	PQL	ug/Kg	UJ	Q	
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	520	PQL	ug/Kg	UJ	L	
BENZIDINE	1200	U	1200	MDL	3400	PQL	ug/Kg	R	Q	
BENZOIC ACID	170	U	170	MDL	520	PQL	ua/Ka	UJ	L	

Sample ID: SL-051-SA6-SB-3.5-4.5	Collec	Collected: 9/12/2011 8:30:00 Analysis						Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	520	PQL	ug/Kg	UJ	L
BENZOIC ACID	170	U	170	MDL	520	PQL	ug/Kg	UJ	L
BIS(2-ETHYLHEXYL)PHTHALATE	160	J	17	MDL	340	PQL	ug/Kg	J	Z

Page 8 of 12

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE241

EDD Filename: DE241_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

	_	
	SAULTH ALLEY	
The Control of the Co	Access to the second	
Welfide Circuity. SVUA		
A CALL CALL CALL CALL CALL CALL CALL CA		
Method: P270C Metrics CO		
wethod: 8270C watrix: 50		
	EXX.107.00	

Sample ID: SL-055-SA6-SB-2.0-3.0	Collec	Collected: 9/12/2011 11:40:00 Analysis Type: RES-ACID								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	510	PQL	ug/Kg	UJ	L	
BENZOIC ACID	170	U	170	MDL	510	PQL	ug/Kg	UJ	L	
BIS(2-ETHYLHEXYL)PHTHALATE	69	J	17	MDL	340	PQL	ug/Kg	J	Z	

Sample ID: SL-235-SA6-SB-4.0-5.0	Collect	Collected: 9/12/2011 9:01:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	180	U	180	MDL	550	PQL	ug/Kg	UJ	L
BENZOIC ACID	180	υ	180	MDL	550	PQL	ug/Kg	UJ	L

Sample ID: SL-269-SA6-SB-1.5-2.5	Collec	Collected: 9/12/2011 10:46:00 Ana					-ACID	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	510	PQL	ug/Kg	UJ	L
BENZOIC ACID	170	U	170	MDL	510	PQL	ug/Kg	UJ	L

Method Category: SVOA ^N	
Method: 8270C SIM Matrix: SO	1946

Sample ID: SL-050-SA6-SB-1.0-2.0	Collec	Collected: 9/12/2011 10:10:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHRYSENE	0.49	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z

Sample ID: SL-055-SA6-SB-2.0-3.0	Collected: 9/12/2011 11:40:00 Analysis Type: RES-BASE/NEUTRAL Dilution:								Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
		TOR VIEW TO THE	Part of the con-			April 11 (197)	PROPERTY OF A POST	DOMESTIC AND A STATE OF THE PARTY OF THE PAR	GO CHAICHEANN CONTRACTORS
CHRYSENE	0.58	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE241 EDD Filename: DE241_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE241

EDD Filename: DE241_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
i .	Internal Standard Estimation
I	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
M	Initial Tune
M	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE241

Laboratory: LL

EDD Filename: DE241_v1. eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DE241

Method Blank Outlier Report

Lab Reporting Batch ID: DE241 Laboratory: LL

EDD Filename: DE241_v1. eQAPP Name: CDM_SSFL_110509

Method: 6010B Matrix: SO						
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples		
P25708CB221307	9/22/2011 1:07:00 PM	BORON CALCIUM MANGANESE PHOSPHORUS STRONTIUM TIN	0.683 mg/Kg 11.1 mg/Kg 0.0780 mg/Kg 0.876 mg/Kg 0.0590 mg/Kg 1.70 mg/Kg	SL-050-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-235-SA6-SB-4.0-5.0 SL-269-SA6-SB-1.5-2.5		

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-050-SA6-SB-1.0-2.0(RES)	TIN	3.00 mg/Kg	3.00U mg/Kg
SL-051-SA6-SB-3.5-4.5(RES)	BORON	2.15 mg/Kg	2.15U mg/Kg
SL-051-SA6-SB-3.5-4.5(RES)	TIN	2.89 mg/Kg	2.89U mg/Kg
SL-055-SA6-SB-2.0-3.0(RES)	TIN	3.09 mg/Kg	3.09U mg/Kg
SL-235-SA6-SB-4.0-5.0(RES)	BORON	2.72 mg/Kg	2.72U mg/Kg
SL-235-SA6-SB-4.0-5.0(RES)	TIN	3.00 mg/Kg	3.00U mg/Kg
SL-269-SA6-SB-1.5-2.5(RES)	BORON	1.35 mg/Kg	1.35U mg/Kg
SL-269-SA6-SB-1.5-2.5(RES)	TIN	3.15 mg/Kg	3.15U mg/Kg

Method: 747° Matrix: SO	eriya Eriya Alaman			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
25711BB220853	9/16/2011 8:53:00 AM	MERCURY	0.0072 mg/Kg	SL-050-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-235-SA6-SB-4.0-5.0 SL-269-SA6-SB-1.5-2.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-050-SA6-SB-1.0-2.0(RES)	MERCURY	0.0171 mg/Kg	0.0171U mg/Kg	
SL-051-SA6-SB-3.5-4.5(RES)	MERCURY	0.0186 mg/Kg	0.0186U mg/Kg	
SL-055-SA6-SB-2.0-3.0(RES)	MERCURY	0.0128 mg/Kg	0.0128U mg/Kg	
SL-235-SA6-SB-4.0-5.0(RES)	MERCURY	0.0111 mg/Kg	0.0111U mg/Kg	
SL-269-SA6-SB-1.5-2.5(RES)	MERCURY	0.0073 mg/Kg	0.0073U mg/Kg	

1/6/2012 9:35:42 AM ADR version 1.4.0.111 Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE241

Laboratory: LL

EDD Filename: DE241_v1.

eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-050-SA6-SB-1.0-2.0MS SL-050-SA6-SB-1.0-2.0MSD (SL-050-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-235-SA6-SB-4.0-5.0 SL-269-SA6-SB-1.5-2.5)	BERYLLIUM CADMIUM CHROMIUM COBALT COPPER LEAD NICKEL SILVER THALLIUM	134 - 128 - - - 131	135 149 131 142 144 153 149 144 136	75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00	- - - - - - - -	BERYLLIUM CADMIUM CHROMIUM COBALT COPPER LEAD NICKEL SILVER THALLIUM	J (all detects)
SL-050-SA6-SB-1.0-2.0MS SL-050-SA6-SB-1.0-2.0MSD (SL-050-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-235-SA6-SB-4.0-5.0 SL-269-SA6-SB-1.5-2.5)	ANTIMONY ARSENIC VANADIUM ZINC	66 30 73 41	70 - 134 134	75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00		ANTIMONY ARSENIC VANADIUM ZINC	J(all detects) UJ(all non-detects) As, V, Zn, No Qual, >4x
SL-050-SA6-SB-1.0-2.0MSD (SL-050-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-235-SA6-SB-4.0-5.0 SL-269-SA6-SB-1.5-2.5)	SELENIUM	-	145	75.00-125.00	-	SELENIUM	J(all detects)
SL-050-SA6-SB-1.0-2.0MS SL-050-SA6-SB-1.0-2.0MSD (SL-050-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-235-SA6-SB-4.0-5.0 SL-269-SA6-SB-1.5-2.5)	MOLYBDENUM	135	147	75.00-125.00	-	MOLYBDENUM	J(all detects)
SL-050-SA6-SB-1.0-2.0MS SL-050-SA6-SB-1.0-2.0MSD (SL-050-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-235-SA6-SB-4.0-5.0 SL-269-SA6-SB-1.5-2.5)	BARIUM	34	178	75.00-125.00	-	BARIUM	No Qual, ≻4x

Method: 6010B Matrix: SO

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-050-SA6-SB-1.0-2.0MS SL-050-SA6-SB-1.0-2.0MSD (SL-050-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-235-SA6-SB-4.0-5.0 SL-269-SA6-SB-1.5-2.5)	ALUMINUM CALCIUM TITANIUM	1087 152 266	846 141 245	75.00-125.00 75.00-125.00 75.00-125.00	- - -	ALUMINUM CALCIUM TITANIUM	No Qual,>4x
SL-050-SA6-SB-1.0-2.0MS SL-050-SA6-SB-1.0-2.0MSD (SL-050-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-235-SA6-SB-4.0-5.0 SL-235-SA6-SB-1.5-2.5)	IRON	726	-208	75.00-125.00	-	IRON	No Qual, >4x

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE241

Laboratory: LL

EDD Filename: DE241_v1. eQAPP Name: CDM_SSFL_110509

Method: 6010B Matrix: SO								
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag	
SL-050-SA6-SB-1.0-2.0MS SL-050-SA6-SB-1.0-2.0MSD (SL-050-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-235-SA6-SB-4.0-5.0 SL-235-SA6-SB-1.5-2.5)	MAGNESIUM MANGANESE	229	73 74	75.00-125.00 75.00-125.00	-	MAGNESIUM MANGANESE	No Qual, >4x	

Method: 8270C Matrix: SO										
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag			
SL-050-SA6-SB-1.0-2.0MSD (SL-050-SA6-SB-1.0-2.0)	4,6-DINITRO-2-METHYLPHENOL	-	-	11.00-126.00	31 (30.00)	4,6-DINITRO-2-METHYLPHEN	J(all detects)			
SL-050-SA6-SB-1.0-2.0MS SL-050-SA6-SB-1.0-2.0MSD (SL-050-SA6-SB-1.0-2.0)	BENZIDINE	0	0	35.00-141.00	-	BENZIDINE	J(all detects) R(all non-detects)			
SL-050-SA6-SB-1.0-2.0MS SL-050-SA6-SB-1.0-2.0MSD (SL-050-SA6-SB-1.0-2.0)	2,4-DINITROPHENOL	13	-	20.00-143.00	43 (30.00)	2,4-DINITROPHENOL	J(all detects) UJ(all non-detects)			

1/6/2012 9:50:50 AM ADR version 1.4.0.111 Page 2 of 2

Lab Duplicate Outlier Report

Lab Reporting Batch ID: DE241

Laboratory: LL

EDD Filename: DE241_v1.

eQAPP Name: CDM_SSFL_110509

Method: 7199 Matrix: SO				
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-050-SA6-SB-1.0-2.0DUP (SL-050-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-235-SA6-SB-4.0-5.0 SL-269-SA6-SB-1.5-2.5)	HEXAVALENT CHROMIUM	36	20.00	No Qual, OK by Difference

1/6/2012 9:56:50 AM ADR version 1.4.0.111 Page 1 of 1

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE241

Laboratory: LL

EDD Filename: DE241_v1.

eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO				Property (
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P25726AQ220852A (SL-050-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-235-SA6-SB-4.0-5.0 SL-269-SA6-SB-1.5-2.5)	VANADIUM	121	-	80.00-120.00		VANADIUM	No Qual, SRM within Limits

للإلية	2381	16	4	w	83		a 9
	1976	86	30		-	7	

QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P25708CQ221311	ALUMINUM	149	T -	80.00-120,00	-	ALUMINUM	
P25708CQ221634	IRON	141	-	80.00-120.00	-	IRON	
SL-050-SA6-SB-1.0-2.0	MAGNESIUM	126	_	80.00-120.00	-	MAGNESIUM	
SL -051-SA6-SB-3.5-4.5		İ					No Qual.
SL -055-SA6-SB-2.0-3.0							SRM within Limits
SL -235-SA6-SB-4.0-5.0	· ·			1			
SL -269-SA6-SB-1.5-2.5)							

Method: 8270C

ř	ю	
ĺ	r	
7	и	
į	4	
Ļ		
1		
1	m	
á		
Π	r	
١,	w	
ï	88	
ř		
ŝ		
ğ	æ	
÷	×	
	4	
ſ	8	
ŧ	,,,	
ĺ	•	

QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P8LALCSQ260158 (SL-050-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-235-SA6-SB-4.0-5.0 SL-269-SA6-SB-1.5-2.5)	4,6-DINITRO-2-METHYLPHENOL BENZOIC ACID	39 57	-	46.00-120.00 62.00-113.00	-	4,6-DINITRO-2-METHYLPHEN BENZOIC ACID	J(all detects) UJ(all non-detects)

Lab Reporting Batch ID: DE241 Laboratory: LL

EDD Filename: DE241_v1. eQAPP Name: CDM_SSFL_110509

Wethod: 5010E

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-050-SA6-SB-1.0-2.0	BORON SODIUM TIN Zirconium]]]	3.52 71.2 3.00 2.26	4.96 99.1 9.91 4.96	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
SL-051-SA6-SB-3.5-4.5	BORON SODIUM TIN Zirconium)))	2.15 73.8 2.89 2.68	5.10 102 10.2 5.10	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
SL-055-SA6-SB-2.0-3.0	BORON SODIUM TIN Zirconium)))	3.49 88.3 3.09 2.35	4.99 99.9 9.99 4.99	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
SL-235-SA6-SB-4.0-5.0	BORON TIN Zirconium	j	2.72 3.00 4.42	5.46 10.9 5.46	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-269-SA6-SB-1.5-2.5	BORON SODIUM TIN Zirconium))	1.35 70.0 3.15 1.75	5.09 102 10.2 5.09	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)

Method 5020

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-050-SA6-SB-1.0-2.0	SELENIUM SILVER	J	0.270 0.0610	0.408 0.102	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-051-SA6-SB-3.5-4.5	ANTIMONY SELENIUM SILVER	J	0.127 0.259 0.0479	0.204 0.408 0.102	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-055-SA6-SB-2.0-3.0	ANTIMONY SELENIUM SILVER	J J	0.115 0.202 0.0486	0.202 0.403 0.101	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-235-SA6-SB-4.0-5.0	SELENIUM	J	0.193	0.420	PQL	mg/Kg	J (ali detects)
SL-269-SA6-SB-1.5-2.5	ANTIMONY CADMIUM SELENIUM SILVER)))	0.178 0.0546 0.309 0.0376	0.200 0.0998 0.399 0.0998	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)

Method: 7199

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-050-SA6-SB-1.0-2.0	HEXAVALENT CHROMIUM	J	0.79	1.0	PQL	mg/Kg	J (all detects)
SL-235-SA6-SB-4.0-5.0	HEXAVALENT CHROMIUM	J	0.70	1.1	PQL	mg/Kg	J (all detects)
SL-269-SA6-SB-1.5-2.5	HEXAVALENT CHROMIUM	J	0.49	1.0	PQL	mg/Kg	J (all detects)

ADR version 1.4.0.111 Page 1 of 2 1/6/2012 9:35:53 AM

Lab Reporting Batch ID: DE241 Laboratory: LL

EDD Filename: DE241_v1. eQAPP Name: CDM_SSFL_110509

	All Accounts to the second		
Francisco & 3 800			

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-050-SA6-SB-1.0-2.0	MERCURY	J	0.0171	0.103	PQL	mg/Kg	J (all detects)
SL-051-SA6-SB-3.5-4.5	MERCURY	J	0.0186	0.102	PQL	mg/Kg	J (all detects)
SL-055-SA6-SB-2.0-3.0	MERCURY	J	0.0128	0.0973	PQL	mg/Kg	J (all detects)
SL-235-SA6-SB-4.0-5.0	MERCURY	J	0.0111	0.108	PQL	mg/Kg	J (all detects)
SL-269-SA6-SB-1.5-2.5	MERCURY	J	0.0073	0.102	PQL	mg/Kg	J (all detects)

Method: 8015M

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-050-SA6-SB-1.0-2.0	EFH (C8-C11)	J	0.64	1.2	PQL	mg/Kg	J (all detects)
SL-269-SA6-SB-1.5-2.5	EFH (C30-C40)	J	0.81	1.2	PQL	mg/Kg	J (all detects)

Method: 8082

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-050-SA6-SB-1.0-2.0	AROCLOR 1254 AROCLOR 1260 Aroclor 5460	J J	0.87 0.65 3.2	1.8 1.8 3.4	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-051-SA6-SB-3.5-4.5	Aroclor 5460	J	2.4	3.4	PQL	ug/Kg	J (all detects)
SL-055-SA6-SB-2.0-3.0	Aroclor 5460	J	1.4	3.4	PQL	ug/Kg	J (all detects)

Methods 1270C

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-051-SA6-SB-3.5-4.5	BIS(2-ETHYLHEXYL)PHTHALATE	J	160	340	PQL	ug/Kg	J (all detects)
SL-055-SA6-SB-2.0-3.0	BIS(2-ETHYLHEXYL)PHTHALATE	J	69	340	PQL	ug/Kg	J (all detects)

Method: 8270C SIM

Matrix: SC

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-050-SA6-SB-1.0-2.0	CHRYSENE	J	0.49	1.7	PQL	ug/Kg	J (all detects)
SL-055-SA6-SB-2.0-3.0	CHRYSENE	J	0.58	1.7	PQL	ug/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 9:35:53 AM ADR version 1.4.0.111 Page 2 of 2

SDG	#: <u>26859K4</u> #: <u>DE241</u> atory: <u>Lancaster Laborato</u>		_IDATIO	N COMP	PLETEN ADR	ES	S WORKSHEET		Date: () / 7 / N Page:of Reviewer:
METI	HOD: Metals (EPA SW 84	6 Me	thod 6010E	3/6020A/70	000)			2	nd Reviewer:
Γhe s						/alid	ation areas. Validation find	lings	are noted in attached
	Validation A	Area					Comments		
	Technical holding times		,	N	Sampling	dates	s:		
В.	ICP/MS Tune			ν,					
III.	Calibration			\sim					
IV.	Blanks			5~					
V.	ICP Interference Check Sam	ple (IC	S) Analysis	N					
VI.	Matrix Spike Analysis			4W	Al, A	5. B	a, Ca, Fe, Mg, Mn,	Tr. 1	V, 7, 74X No
VII.	Duplicate Sample Analysis			N		•	· , , , , , , , , , , , , , , , , , , ,	. ,	
VIII.	Laboratory Control Samples	(LCS)		ΝA	SYL	1			
IX.	Internal Standard (ICP-MS)			N	, ,				
X.	Furnace Atomic Absorption (QC		N					
XI.	ICP Serial Dilution			5W	Ba,	Co	=, Pb Zn J/n-	r/A	
XII.	Sample Result Verification			N				,,	
XIII.	Overall Assessment of Data			N					
XIV.	Field Duplicates			μ,					
ΧV	Field Blanks			V					
Note: /alida	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:		R = Rin	o compounds sate eld blank	s detected		D = Duplicate TB = Trip blank EB = Equipment blank		
1 :	SL-050-SA6-SB-1.0-2.0	11				21		31	
2	SL-051-SA6-SB-3.5-4.5	12				22		32	
3 :	SL-055-SA6-SB-2.0-3.0	13				23		33	
4	SL-269-SA6-SB-1.5-2.5	14				24		34	
5 ;	SL-235-SA6-SB-4.0-5.0	15				25		35	
6	# 145	16				26		36	
7	1 M 5D	17				27		37	
8	V yup	18				28		38	
9		19				29		39	
10		20				30		40	

Notes:__

LDC #: 26859K4

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: mg/Kg

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES

Soil preparation factor applied: Hg*2; 2-5 Associated Samples: Hg*1: 1, Hg*2; 2-5

2nd Reviewer:

Page:_ Reviewer:_

Reason: B

Analyte Maximum Maximum PB³ ICB/CCB³ (mg/Kg) (ug/L) (ug/L)	Maximum ICB/CCB ^a (ug/L)	Action Limit	7-	2	က	4	2			
0.051	0.051	0.0426	0.017							
0.031	0.031	 0.0259		0.019	0.013	0.0073	0.011			

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QUALITY ASSURANCE SUMMARY FORM 5A (MS/MSD)

DE241 SOIL SDG No.: Matrix:

Level (low/med): LOW

Matrix Spike Lab Sample ID: 6404351MS Matrix Spike Duplicate Lab Sample ID: 6404351M5D Sample: 97.0 P25708C, P25726A, P25711B Background Lab Sample ID: 6404351BKG \$ Solids for Sample: 97.0

Batch Id(s);	. P2	P25708C, P25726A,	P25711B						:		
		BKG Sample	MS Sample	MSD Sample	MS Spike	MSD Spike	MS	MSD		Control L:	Limit .
Analyte	Mass	Result C	Result C	Result C	Added	Added Units	8R Q	\$R Q	RPD Q	8R	RPD M
Aluminum (13729.2883	15948.8007	15456.9776	204.1441	204.1441 MG/KG	180T	846	3		20P
Antimony	121	0.2476	1.0459	1.1017	1.2129	1.2129 MG/KG	N 99	N 07	22	75 - 125	20MS
Arsenic	75	10,8462	11.4574	13,1615	2.0214	2.0214 MG/KG	0ε	115	14		20MS
Barium	137	110.7686	114.2308	128,8053	101.01	10.1071 MG/KG	34	178	12		20MS
Beryllium	9	0.8264	1.7091	1.9200	0.8086	0.8086MG/KG	601	135 N	12	75 - 125	20 MS
Boron		3.5210 B	198.5781	197.9167	204.1441	204.1441 MG/KG	96	56	0	84 - 115	20P
Cadmium	111	0.1568	1.5094	1.6620	1.0107	1.0107 MG/KG	134 N	149 N	10	75 - 125	20 MS
Calcium		2523.9175	3142.7284	3100.3542	408.2882	408.2882 MG/KG	152	141	1		20 P
Chromium	52	23.2928	33.2120	36.5676	10.101	10.1071 MG/KG	86	NTET	10	75 - 125	20 MS
Cobalt	59	7.6840	72.3469	79.6644	50.5357	50.5357 MG/KG	128 N	N 241	OΤ	75 - 125	20 MS
Copper	63	10.0561	22.3368	24,5603	10.101	10.1071 MG/KG	122	144 N	6	75 - 125	20MS
Iron		19354,3200	20095,0934	19142.2139	102,0721	102.0721 MG/KG	726	-208	5		20F
Lead	208	7,0001	10.4508	11.6414	3.0321	3.0321 MG/KG	114	N 621	11	75 - 125	20MS
Lithium		28.8352	127.9249	126.6245	102,0721	102.0721 MG/KG	6	96	1	82 - 114	20P
Magnesium		4181.0329	4647.5452	4329,6652	204.1441	204.1441 MG/KG	229	73	7		20P
Manganese		300.2686	354,3085	337.8493	51.0360	51.0360 MG/KG	901	7.4	5		20P
Mercury		0.0171B	0.1768	0.1867	0.1668	0.1682 MG/KG	96	TOT	5	65 - 135	20 CV
Molybdenum	98	0.9438	14.5543	15.8156	10.101	10.1071 MG/KG	135 N	147 N	8	75 - 125	20MS
Nickel	09	15.3373	27.2286	30.4427	10.101	10.1071 MG/KG	118	149 N	11	75 - 125	20MS
Phosphorus		381.1638	493,8379	496.8521	102.0721	102.0721 MG/KG	110	113	1	75 - 125	20 F
Potassium		3017.8509	4242.1241	3946.3101	1020.7206	1020.7206MG/KG	120	16	7	75 - 125	20P
Selenium	78	0.2701B	2.8037	3.2080	2.0214	2.0214 MG/KG	125	145 N	13	75 - 125	20MS
Silver	107		13.3111	14.6655	10.101	10.1071 MG/KG	131 N	144 N	10	75 - 125	20 MS
Sodium		71,2351B	1044.8137	1041.5209	1020.7206	1020.7206MG/KG		95	0	75 - 125	20P
Strontium		16,3025	115.7456	114,3534	102.0721	102.0721 MG/KG	16	96	П	75 - 115	20P
Thallium	203	0.4375	0.8539	0.9887	0.4043	0.4043 MG/KG	103	N 9ET	1.5	75 - 125	20 MS
Tin		3,0036B	378.0749	385.5844	408,2882	408.2882 MG/KG	26	76	2	80 - 110	20P
Titanium		1173.2266	1445.1842	1422.8407	102.0721	102.0721 MG/KG	266	245	2		20P
Vanadium	51		53.5274	59.6523	10.1071	10.1071 MG/KG	73	134	11		20MS
Zinc	99	76.2478	80.3719	89.7514	10.101	10.1071 MG/KG	41	134	11		20MS
Zirconium	T.	2,2591 B	85.8967	80.3777	102.0721	102.0721 MG/KG	82	77	7	75 - 125	20P

METHODS: 1

CV = Cold Vapor AF = Cold Vapor

= Cold Vapor Atomic Fluorescence

U= Below MDL, B= Below LOQ CONCENTRATION QUALIFIERS: FLAGS:

N = Matrix Spike OOS, * = Duplicate OOS

FORM 9

SERIAL DILUTIONS

SDG No.: DE241

Matrix: SOIL

Level (low/med): LOW

Background Lab Sample ID: 6404351BKG

Batch ID(s): P25708C, P25726A

Concentration Units: UG/L

Serial Dilution Lab Sample ID: 6404351L

	1 1	Initial Sample		Serial Dilution				Г
Analyte	Mass	Result (I)	C	Result (S)	C	% Diff.	Q	М
Aluminum		138501.0600		137731.4000		1	Γ	P
Antimony	121	1.2130		1.8500	U	100		MS
Arsenic	75	53.1300		47.6150		10		MS
Barium	137	542.6000		477.0500		12	Е	MS
Beryllium	9	4.0480		3.6625		10	Г	MS
Boron		35.5200	В	53.8000	В	51		P
Cadmium	111	0.7683		1.1000	Ū	100		MS
Calcium		25461.2800		25351.7500		0	<u> </u>	P
Chromium	52	114.1000		111.5500		2		MS
Cobalt	59	37.6400		32.6950		13	E	MS
Copper	63	49.2600		45.6500		7		MS
Iron		195246.3800		187209.6500		4		P
Lead	208	34.2900		30.2950		12	E	MS
Lithium		290.8900		280.6500		4		P
Magnesium		42178.2600		41548.0000		1		P
Manganese		3029.1100		3090.3000		2		P
Molybdenum	98	4.6230		4.3675		6		MS
Nickel	60	75.1300		68.6500		9		MS
Phosphorus		3845.1800		3779.0000		2	_	P
Potassium		30444.0800		29515.6000		3		₽
Selenium	78	1.3230	₿	1.4500	σ	100		MS
Silver	107	0.2988	В	0.3550	ש	100		MS
Sodium		718.6200	В	652.1000	В	9	•	P
Strontium		164.4600		167.6000		2		₽
Thallium	203	2.1430		1.9635	В	8		MS
Tin		30.3000	В	32.5500	В	7		Р
Titanium		11835.5100		11934.5000		ı		P
Vanadium	51	226.0000	\neg	217.2500		4		MS
Zinc	66	373.5000	\neg	334.0000	ヿ	11		MS
Zirconium		22.7900	В	27.9000	В	22		P

NOTE: An E in column Q indicates the presence of a chemical or physical interference in the matrix when the % difference is greater than 10%. This applies only when (I) is greater than or equal to 50x MDL for ICP, 100x MDL for ICP-MS (6020), 50x MDL for ICP-MS (200.8), or 25x MDL for GFAA.

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CONCENTRATION QUALIFIERS:

DEZ41 2127

U= Below MDL

B= Below LOQ

FLAGS:

E = Matrix Effects exist as proven by Serial Dilution or Spiked Dilution

SAMPLE DELIVERY GROUP

DE260

Attachment I

Sample ID Cross Reference and Data Review Level

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
03-Oct-2011	TB-100311	6427657	ТВ	3520C	1625C	111
03-Oct-2011	TB-100311	6427658	ТВ	3546	1625C	m
03-Oct-2011	TB-100311	6427659	ТВ	5030B	8015M	111
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	3050B	6010B	HI
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	3050B	6020	ш
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	3060A	7199	Ш
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	3546	1625C	Ш
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	3550B	8015B	Ш
03-Oct-2011	SL-064-SA6-SB-4,0-5.0	6427654	N	3550B	8015M	III
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	3550B	8082	III
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	3550B	8270C	Ш
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	3550B	8270C SIM	III
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	5035	8015M	Ш
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N .	8330	8330A	Ш
03-Oct-2011	\$L-064-\$A6-\$B-4.0-5.0	6427654	N	METHOD	300.0	111
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	METHOD	314.0	111
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	METHOD	7471A	111
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	METHOD	8015B	III
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	METHOD	8015M	III
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	METHOD	8315A	III
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427654	N	METHOD	9012B	111
03-Oct-2011	EB-SA6-SB-100311	6427656	EB	3520C	1625C	Ш
03-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	3050B	6010B	III
03-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	3050B	6020	Ш
03-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	3060A	7199	III
03-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	3546	1625C	111

	Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
0	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	3550B	8015B	III
0	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	3550B	8015 M	III
0	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	3550B	8082	III
0	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	3550B	8270C	III
0	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	3550B	8270C SIM	III
0:	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	5035	8015M	181
0:	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	8330	8330A	111
0:	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	METHOD	300.0	III
0:	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	METHOD	314.0	Ш
0:	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	METHOD	7471A	111
0	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	METHOD	8015B	111
00	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	METHOD	8015M	111
03	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	METHOD	8315A	111
03	3-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427655	N	METHOD	9012B	III

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DE260

eQAPP Name: CDM_SSFL 110509 EDD Filename: DE260 v1.

Metriod Categ	ory: WETALS	ege jaujuraliininen	Ging His goo	Policial Control of the C		and the superior distribution	
Method:	6010B			Matrīx:	SO		
Sample ID: SL-064	4-SA6-SB-4.0-5.0	Collec	ted: 10/3/2	011 3:30:00	Analysis Type: R	ES	Dilution: 1
•					, ,,		

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	2.64	J	0.367	MDL	5.09	PQL	mg/Kg	J	Z
POTASSIUM	2570		11.5	MDL	50.9	PQL	mg/Kg	J	Q
SODIUM	72.5	J	6.06	MDL	102	PQL	mg/Kg	J	Z
TIN	2.23	J	0.326	MDL	10.2	PQL	mg/Kg	U	В
Zirconium	1.33	J	0.468	MDL	5.09	PQL	mg/Kg	J	Z

Sample ID: SL-064-SA6-SB-9.0-10.0 Collected: 10/3/2011 4:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	3.27	J	0.400	MDL	5.56	PQL	mg/Kg	J	Z
POTASSIUM	2180		12.6	MDL	55.6	PQL	mg/Kg	J	Q
TIN	2.45	j	0.356	MDL	11.1	PQL	mg/Kg	υ	В
Zirconium	1.43	J	0.511	MDL	5.56	PQL	mg/Kg	J	Z

Method Categ Method:	ony: □ □ MEHAUS > ← S. 6020	Matrix:		testis Piplins Pagnissops on Dash, Asin et p
Sample ID: SL-064	I-SA6-SB-4.0-5.0	Collected: 10/3/2011 3:30:00	Analysis Type: REA	Dilution: 2

	+ + + + + + + + + + + + + + + + + + + +				, ,	1			
	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	<u>DL</u>	Туре	RL	Туре	Units	Qual	Code
SELENIUM	0.147	J	0.0596	MDL	0.411	PQL	mg/Kg	J	Z

Sample ID: SL-064-SA6-SB-4.0-5.0 Collected: 10/3/2011 3:30:00 Analysis Type: REA2 Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.641		0.0514	MDL	0.103	PQL	mg/Kg	J	Q

Sample ID: SL-064-SA6-SB-4.0-5.0 Collected: 10/3/2011 3:30:00 Analysis Type: REA3 Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	73.5		0.109	MDL	0.411	PQL	mg/Kg	J	Α

Laboratory: LL

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE260 Laboratory: LL

EDD Filename: DE260_v1. eQAPP Name: CDM_SSFL_110509

								01.0000
				arestas	septetrapide		1981 (1904) 1981 (1904)	ija ekuistan tuoruunin Luoruu irrigia merek
Collec	ted: 10/3/2	011 3:30:0	00 A	nalysis T	ype: REA	4		Dilution: 2
Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
8.03		0.0831	MDL	0.415	PQL	mg/Kg	J	Q
Collec	ted: 10/3/2	011 3:30:0	00 A	nalvsis T	vpe: RES		J	Dilution: 2
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.0761	U	0.0761	MDL	0.206	PQL	mg/Kg	UJ	Q
5.18		0.0823	MDL	0.411	PQL	mg/Kg	J	Q, E
0.108		0.0452	MDL	0.103	PQL	mg/Kg	J	Q
17.5		0.123	MDL	0.411	PQL	mg/Kg	J	Q
6.04		0.0206	MDL	0.103	PQL	mg/Kg	J	Q, A
5.53		0.0105	MDL	0.206	PQL	mg/Kg	J	А
11.0		0.103	MDL	0.411	PQL	mg/Kg	J	Q
0.0428	J	0.0146	MDL	0.103	PQL	mg/Kg	IJ	B, Q
0.338		0.0308	MDL	0.103	PQL	mg/Kg	J	Q
33.8		0.0226	MDL	0.103	PQL	mg/Kg	J	E
Collec	ted: 10/3/2	011 4:00:0	00 A	nalysis Ty	ype: REA			Dilution: 2
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.159	J	0.0632	MDL	0.436	PQL	mg/Kg	J	Z
Collec	ted: 10/3/2	011 4:00:0	00 A	nalysis T	ype: REA	2		Dilution: 2
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1.08		0.0545	MDL	0.109	PQL	mg/Kg	J	Q
Collec	ted: 10/3/2	011 4:00:0	00 A	nalysis Ty	ype: REA	3		Dilution: 2
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
76.8		0.116	MDL	0.436	PQL	mg/Kg	J	Α
Collec	ted: 10/3/2	011 4:00:0	00 A	nalysis Ty	pe: REA	4		Dilution: 2
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
7.68		0.0907	MDL	0.454	PQL	mg/Kg	J	Q
	Lab Result 8.03 Collect Lab Result 0.0761 5.18 0.108 17.5 6.04 5.53 11.0 0.0428 0.338 33.8 Collect Lab Result 0.159 Collect Lab Result 1.08 Collect Lab Result 1.08 Collect Lab Result 76.8 Collect Lab Result Result Collect Lab Result Collect C	Collected: 10/3/2	Collected: 10/3/2011 3:30:00 Lab Result Qual DL	Collected: 10/3/2011 3:30:00	Collected: 10/3/2011 3:30:00 Analysis Town	Collected: 10/3/2011 3:30:00 Analysis Type: REA	Collected: 10/3/2011 3:30:00	Collected: 10/3/2011 3:30:00 Analysis Type: REA4

Page 2 of 8

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 11:11:00 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Laboratory: LL Lab Reporting Batch ID: DE260

eQAPP Name: CDM_SSFL_110509 EDD Filename: DE260_v1.

		88 - 19 - 17 - 17 - 17 - 17 - 17 - 17 - 17		7'
Validate de la colora dela colora de la colora dela colora de la colora dela colora de la colora de la colora de la colora dela color		a an action to see the contract of the contrac	analas (ilian marana anti-orda per Guida de Anti-orda de Anti-orda de Anti-orda de Anti-orda de Anti-orda de A	de la filonomia de la filonomi
	and the second s	Could be a second or the second of the secon	and the second second second second	
Mathada 6020	The second of the second section of the second section of the second second second second section sect	Matrix: SO		ACCOMPANIES.
neurou: 6020		Maurx. 30		

Sample ID: SL-064-SA6-SB-9.0-10.0	Collec	ted: 10/3/2	2011 4:00:0	ю А	nalysis Ty	rpe: RES		Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.0807	U	0.0807	MDL	0.218	PQL	mg/Kg	UJ	Q	
ARSENIC	5.14		0.0872	MDL	0.436	PQL	mg/Kg	J	Q, E	
CADMIUM	0.0798	J	0.0480	MDL	0.109	PQL	mg/Kg	J	Z, Q	
CHROMIUM	19.1		0.131	MDL	0.436	PQL	mg/Kg	J	Q	
COBALT	5.35		0.0218	MDL	0.109	PQL	mg/Kg	J	Q, A	
LEAD	6.35		0.0111	MDL	0.218	PQL	mg/Kg	J	Α	
NICKEL	11.6		0.109	MDL	0.436	PQL	mg/Kg	J	Q	
SILVER	0.0502	J	0.0155	MDL	0.109	PQL	mg/Kg	UJ	B, Q	
THALLIUM	0.263		0.0327	MDL	0.109	PQL	mg/Kg	J	Q	
VANADIUM	39.5		0.0240	MDL	0.109	PQL	mg/Kg	J	E	

गिर्वाताना ६ जाय	OTY: METALS		w.
Method:	7199	Matrix: SO	

Sample ID: SL-064-SA6-SB-4.0-5.0	Collec	ted: 10/3/2	011 3:30:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.68	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z

TIETO TOTAL CONTROLL	4.44	_			,,,,		133		_
Sample ID: SL-064-SA6-SB-9.0-10.0	Collect	ted: 10/3/20	011 4:00:0	00 A		pe: RES			Dilution: 1
								Data	
	Lab	Lab		DL		RL	ł	Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Type	Units	Qual	Code

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.28	J	0.22	MDL	1.1	PQL	mg/Kg	j	Z

Method Category: NETALS Method: 7471A	Matrix:	SO	
Sample ID: SL-064-SA6-SB-4.0-5.0	Collected: 10/3/2011 3:30:00	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0154	J	0.0071	MDL	0.101	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE260

Laboratory: LL

EDD Filename: DE260_v1.

eQAPP Name: CDM_SSFL_110509

វីមេរ៉ូវិទូទៀត គឺជាខេត្ត	or, Metales									edirile di Secti
Method:	7471A			Ма	itrix:	so				trii Xili Habilbiid
Sample ID: SL-064	-SA6-SB-9.0-10.0	Collec	ted: 10/3/2	011 4:00:0	00 A	nalysis T	ype: RES	i	D	ilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY		0.0194	J	0.0080	MDL	0.113	PQL	mg/Kg	J	Z

Method:	1625C	errosse of his twin translation in the	at a france secretary field	Ma	ıtrix:	AQ				
Sample ID: EB-SA	A6-SB-100311	Collec	ted: 10/3/2	011 3:30:0	10 A	nalysis T	vpe: RES	-BASE/NE	UTRAL I	Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
N-NITROSODIMET	THYLAMINE	2.62		0.478	MDL	0.957	PQL	ng/L	J	S

រមេរ៉ុំត្រី ទីដូច្នេចប្រ	, s∨o; _\		an in the second of the
Method:	8082	Matrix: SO	

Sample ID: SL-064-SA6-SB-4.0-5.0 Collected: 10/3/2011 3:30:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	2.5		0.40	MDL	1.8	PQL	ug/Kg	J	S
Aroclor 5460	1.2	J	1.0	MDL	3.4	PQL	ug/Kg	J	Z, S

Sample ID: SL-064-SA6-SB-9.0-10.0	Collected: 10/3/2011 4:00	, ,,	: RES-BASE/NEUTRAL	Dilution: 1
			Data	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
AROCLOR 1260	0.70	J	0.44	MDL	1.9	PQL	ug/Kg	J	Z	

	y svoa				
Method:	8270C	en i i i i i i i i i i i i i i i i i i i	Matrix: S	0	

Sample ID: SL-064-SA6-SB-9.0-10.0	Collect	tea: 10/3/20)11 4:00:0)O A	inalysis ij	/pe: KES	-BASE/NE	UIKAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	30	j	19	MDL	370	PQL	ug/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 11:11:00 AM ADR version 1.4.0.111

Page 4 of 8

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE260 Laboratory: LL

EDD Filename: DE260_v1. eQAPP Name: CDM_SSFL_110509

Method Catego	y: SVOA	
Method:	8270C SIM	Matrix: SO

Sample ID: SL-064-SA6-SB-9.0-10.0	Collec	Collected: 10/3/2011 4:00:00 Analy				nalysis Type: RES-BASE/NEUTRAL Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTHRACENE	1.1	J	0.38	MDL	1.9	PQL	ug/Kg	J	Z
BENZO(A)ANTHRACENE	0.87	J	0.75	MDL	1.9	PQL	ug/Kg	J	Z
CHRYSENE	0.81	J	0.38	MDL	1.9	PQL	ug/Kg	J	Z
FLUORANTHENE	0.98	J	0.75	MDL	1.9	PQL	ug/Kg	J	Z
PHENANTHRENE	1.1	J	0.75	MDL	1.9	PQL	ug/Kg	J	Z
PYRENE	0.76	J	0.75	MDL	1.9	PQL	ug/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 11:11:00 AM ADR version 1.4.0.111 Page 5 of 8

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE260 EDD Filename: DE260_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Duplicate Sample Count > 1 Illogical Fraction	Reason Code	Description
Illogical Fraction Laboratory Control Sample Count = 0 Laboratory Control Sample Count > 1 Laboratory Triplicate Precision Matrix Spike Sample Count = 0 Matrix Spike Sample Count = 0 Matrix Spike Sample Count = 0 Method Blank Sample Count = 0 Method Blank Sample Count > 1 Percent Moisture # Professional Judgment A ICP Serial Dilution B Calibration Blank Contamination B Method Blank Contamination C Continuing Calibration Verification Correlation Coefficient C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Verification Percent Difference Upper Rejection C Initial Calibration Verification Percent Difference Upper Rejection C Initial Calibration Verification Percent Difference Upper Rejection C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection Laboratory Duplicate Precision		
Laboratory Control Sample Count = 0 Laboratory Control Sample Count > 1 Laboratory Triplicate Precision Matrix Spike Sample Count = 0 Matrix Spike Sample Count = 0 Matrix Spike Sample Count > 1 Method Blank Sample Count > 1 Method Blank Sample Count > 1 Percent Molsture *# Professional Judgment A ICP Serial Dilution B Calibration Blank Contamination B Method Blank Contamination C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Percent Difference Lower Rejection Laboratory Control Precision E Laboratory Duplicate Precision		Duplicate Sample Count > 1
Laboratory Control Sample Count > 1 Laboratory Triplicate Precision Matrix Spike Sample Count = 0 Matrix Spike Sample Count > 1 Method Blank Sample Count > 1 Method Blank Sample Count > 1 Percent Molsture # Professional Judgment A ICP Serial Dilution B Calibration Blank Contamination B Method Blank Contamination C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Verification Percent Difference Upper Rejection C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision		Illogical Fraction
Laboratory Triplicate Precision Matrix Spike Sample Count = 0 Matrix Spike Sample Count > 1 Method Blank Sample Count > 1 Method Blank Sample Count > 1 Percent Moisture ** Professional Judgment A ICP Serial Ditution B Calibration Blank Contamination B Method Blank Contamination C Continuing Calibration Verification Correlation Coefficient C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Continuing Calibration Verification Percent Difference Upper Rejection C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Verification Percent Difference Upper Rejection C Initial Calibration Verification Coefficient C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Rejection Laboratory Duplicate Precision		Laboratory Control Sample Count = 0
Matrix Spike Sample Count = 0 Matrix Spike Sample Count > 1 Method Blank Sample Count = 0 Method Blank Sample Count > 1 Percent Moisture Professional Judgment A ICP Serial Ditution B Calibration Blank Contamination B Method Blank Contamination C Continuing Calibration Verification Correlation Coefficient C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Continuing Calibration Verification Percent Difference Upper Rejection C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Rejection C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision		Laboratory Control Sample Count > 1
Matrix Spike Sample Count > 1 Method Blank Sample Count > 0 Method Blank Sample Count > 1 Percent Moisture		Laboratory Triplicate Precision
Method Blank Sample Count > 1 Percent Moisture Professional Judgment A ICP Serial Dilution B Calibration Blank Contamination B Method Blank Contamination C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Verification Percent Difference Upper Rejection C Initial Calibration Verification Percent Difference Upper Rejection C Initial Calibration Verification Percent Difference Upper Rejection C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Duplicate Precision		Matrix Spike Sample Count = 0
Method Blank Sample Count > 1 Percent Moisture Professional Judgment A ICP Serial Dilution B Calibration Blank Contamination B Method Blank Contamination C Continuing Calibration Verification Correlation Coefficient C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Upper Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Duplicate Precision		Matrix Spike Sample Count > 1
Percent Moisture Professional Judgment A ICP Serial Dilution B Calibration Blank Contamination B Method Blank Contamination C Continuing Calibration Verification Correlation Coefficient C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Lower Rejection C Continuing Calibration Verification Percent Difference Upper Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision		Method Blank Sample Count = 0
# Professional Judgment A ICP Serial Dilution B Calibration Blank Contamination B Method Blank Contamination C Continuing Calibration Verification Correlation Coefficient C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Lower Rejection C Continuing Calibration Verification Percent Difference Upper Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision		Method Blank Sample Count > 1
A ICP Serial Dilution B Calibration Blank Contamination B Method Blank Contamination C Continuing Calibration Verification Correlation Coefficient C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Lower Rejection C Continuing Calibration Verification Percent Difference Upper Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision		Percent Moisture
B Calibration Blank Contamination C Continuing Calibration Verification Correlation Coefficient C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Lower Rejection C Continuing Calibration Verification Percent Difference Upper Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	*#	Professional Judgment
B Method Blank Contamination C Continuing Calibration Verification Correlation Coefficient C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Lower Rejection C Continuing Calibration Verification Percent Difference Upper Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	A	ICP Serial Dilution
C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Lower Rejection C Continuing Calibration Verification Percent Difference Upper Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	В	Calibration Blank Contamination
C Continuing Calibration Verification Percent Difference Lower Estimation C Continuing Calibration Verification Percent Difference Lower Rejection C Continuing Calibration Verification Percent Difference Upper Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	В	Method Blank Contamination
C Continuing Calibration Verification Percent Difference Lower Rejection C Continuing Calibration Verification Percent Difference Upper Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	С	Continuing Calibration Verification Correlation Coefficient
C Continuing Calibration Verification Percent Difference Upper Estimation C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	С	Continuing Calibration Verification Percent Difference Lower Estimation
C Continuing Calibration Verification Percent Difference Upper Rejection C Initial Calibration Correlation Coefficient C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	С	Continuing Calibration Verification Percent Difference Lower Rejection
C Initial Calibration Correlation Coefficient C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	C	Continuing Calibration Verification Percent Difference Upper Estimation
C Initial Calibration Percent Relative Standard Deviation C Initial Calibration Verification Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	С	Continuing Calibration Verification Percent Difference Upper Rejection
C Initial Calibration Verification Correlation Coefficient C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	С	Initial Calibration Correlation Coefficient
C Initial Calibration Verification Percent Difference Lower Estimation C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	С	Initial Calibration Percent Relative Standard Deviation
C Initial Calibration Verification Percent Difference Lower Rejection C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	С	Initial Calibration Verification Correlation Coefficient
C Initial Calibration Verification Percent Difference Upper Estimation C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	С	Initial Calibration Verification Percent Difference Lower Estimation
C Initial Calibration Verification Percent Difference Upper Rejection E Laboratory Control Precision E Laboratory Duplicate Precision	С	Initial Calibration Verification Percent Difference Lower Rejection
E Laboratory Control Precision E Laboratory Duplicate Precision	С	Initial Calibration Verification Percent Difference Upper Estimation
E Laboratory Duplicate Precision	С	Initial Calibration Verification Percent Difference Upper Rejection
	E	Laboratory Control Precision
E Matrix Spike Precision	E	Laboratory Duplicate Precision
·· · · · · · · · · · · · · · · · · · ·	E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE260 Laboratory: LL

EDD Filename: DE260_v1.

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
Ī	Internal Standard Estimation
1	Internal Standard Rejection
L	Laboratory Control Precision
Ĺ	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
Ĺ	Laboratory Control Spike Upper Rejection
М	Continuing Tune
М	Initial Tune
М	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

eQAPP Name: CDM_SSFL_110509

Lab Reporting Batch ID: DE260

Laboratory: LL

EDD Filename: DE260_v1. eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DE260

Method Blank Outlier Report

Lab Reporting Batch ID: DE260

Laboratory: LL

EDD Filename: DE260_v1.

eQAPP Name: CDM_SSFL_110509

<i>Matrix:</i> SO			avioni supplication	nenojski potrikalitype terrik
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P27808DB221629	10/12/2011 4:29:00 PM	ALUMINUM CALCIUM IRON MAGNESIUM MANGANESE PHOSPHORUS STRONTIUM TIN	14.0 mg/Kg 13.0 mg/Kg 7.03 mg/Kg 5.37 mg/Kg 0.0762 mg/Kg 1.34 mg/Kg 0.0535 mg/Kg 1.32 mg/Kg	SL-064-SA6-SB-4.0-5.0 SL-064-SA6-SB-9.0-10.0
P28608BB221042	10/14/2011 10:42:00 AM	TITANIUM	0,0860 mg/Kg	SL-064-SA6-SB-4.0-5.0 SL-064-SA6-SB-9.0-10.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-064-SA6-SB-4.0-5.0(RES)	TIN	2.23 mg/Kg	2.23U mg/Kg
SL-064-SA6-SB-9.0-10.0(RES)	TIN	2.45 mg/Kg	2.45U mg/Kg

Method: 6020 Matrix: SO	Merkullularin. Kulampikatik kecambin			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P27826AB220430A	10/7/2011 4:30:00 AM	LEAD SILVER	0.121 mg/Kg 0.0360 mg/Kg	SL-064-SA6-SB-4.0-5.0 SL-064-SA6-SB-9.0-10.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-064-\$A6-\$B-4.0-5.0(RES)	SILVER	0.0428 mg/Kg	0.0428U mg/Kg
SL-064-SA6-SB-9.0-10.0(RES)	SILVER	0.0502 mg/Kg	0.0502U mg/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 10:55:01 AM

ADR version 1.4.0.111 Page 1 of 1

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE260

Laboratory: LL

EDD Filename: DE260_v1.

eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO	e se sa sa tropa de mandena matematica	Partition of the second		A THE STATE OF THE			
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P27826AQ220409A (SL-064-SA6-SB-4.0-5.0 SL -064-SA6-SB-9.0-10.0)	ANTIMONY	76	-	80.00-120.00	-	ANTIMONY	No Qual, SRM within Limits

Method: 8270C Matrix: SO							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P5LELCSQ260717 (SL-064-SA6-SB-4.0-5.0 SL -064-SA6-SB-9.0-10.0)	2,4,5-TRICHLOROPHENOL	109	-	76.00-107.00	-	2,4,5-TRICHLOROPHENOL	J(ati detects)

Surrogate Outlier Report

Lab Reporting Batch ID: DE260 Laboratory: LL

EDD Filename: DE260_v1. eQAPP Name: CDM_SSFL_110509

Method: 162: Matrix: AQ	56			in is the difference of the second state of the second second second second second second second second second Second second	namensuusiesen akundus
Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
EB-SA6-SB- 100311	N-Nitrosodimethylamine-d6	257	50.00-150.00	All Target Analytes	J (all detects)

Method: 8082

Matrix: SO

Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
SL-064-SA6-SB-4.0 -5.0	DECACHLOROBIPHENYL	219	45.00-120.00	All Target Analytes	J(all detects)

1/6/2012 11:00:57 AM ADR version 1.4.0.111 Page 1 of 1

Reporting Limit Outliers

Lab Reporting Batch ID: DE260

Laboratory: LL EDD Filename: DE260_v1. eQAPP Name: CDM_SSFL_110509

Method: 6010B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-064-SA6-SB-4.0-5.0	BORON	J	2.64	5.09	PQL	mg/Kg	
	SODIUM	J	72.5	102	PQL	mg/Kg	J (all detects)
	TIN	J	2.23	10.2	PQL	mg/Kg	J (an detects)
	Zirconium	J	1.33	5.09	PQL	mg/Kg	
SL-064-SA6-SB-9.0-10.0	BORON	J	3.27	5.56	PQL	mg/Kg	
	TIN	J	2.45	11,1	PQL	mg/Kg	J (all detects)
	Zirconium	L	1.43	5.56	PQL	mg/Kg	·

ស្រីឡាក្រាស (ភូមិវេល

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-064-SA6-SB-4.0-5.0	SELENIUM SILVER	J	0.147 0.0428	0.411 0.103	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-064-SA6-SB-9.0-10.0	CADMIUM SELENIUM SILVER	J	0.0798 0.159 0.0502	0.109 0.436 0.109	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)

Methods, 7 (99)

SO Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-064-SA6-SB-4.0-5.0	HEXAVALENT CHROMIUM	J	0.68	1.0	PQL	mg/Kg	J (all detects)
SL-064-SA6-SB-9.0-10.0	HEXAVALENT CHROMIUM	J	0.28	1.1	PQL	mg/Kg	J (all detects)

Method: 7471A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-064-SA6-SB-4.0-5.0	MERCURY	J	0.0154	0.101	PQL	mg/Kg	J (all detects)
SL-064-SA6-SB-9.0-10.0	MERCURY	J	0.0194	0.113	PQL	mg/Kg	J (all detects)

ปฏิเกิดเลือน 8062 เ

Matrix: SD

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-064-SA6-SB-4.0-5.0	Aroclor 5460	J	1.2	3.4	PQL	ug/Kg	J (all detects)
SL-064-SA6-SB-9.0-10.0	AROCLOR 1260	J	0.70	1.9	PQL	ug/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/6/2012 10:55:10 AM

Reporting Limit Outliers

Lab Reporting Batch ID: DE260

Laboratory: LL

EDD Filename: DE260_v1. eQAPP Name: CDM_SSFL_110509

NG that	#:P27/116	d, se diventalis				di se Prike (or		
Matrix:	SO			. Bartin Househiller stalt	An Charles of State (
			***			1_		

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
Cumpicis	7 II A T T T T T T T T T T T T T T T T T	400.	71000.0		.,,,,,		
SL-064-SA6-SB-9.0-10.0	BIS(2-ETHYLHEXYL)PHTHALATE	J	30	370	PQL	ug/Kg	J (all detects)

Mediacis 382706 SIM

Matrix: SC

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-064-SA6-SB-9.0-10.0	ANTHRACENE BENZO(A)ANTHRACENE CHRYSENE FLUORANTHENE PHENANTHRENE PYRENE	J J J	1.1 0.87 0.81 0.98 1.1 0.76	1.9 1.9 1.9 1.9 1.9	PQL PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)

1/6/2012 10:55:10 AM ADR version 1.4.0.111 Page 2 of 2

LDC # SDG # Labora				N COMF	PLETEN ADR	IESS	WORKSH	EET	Date: 1/0 Page: _(_o Reviewer: 2nd Reviewer:	4/1 *f
METH	OD: Metals (EPA SW 84	46 Me	thod 6010E	3/6020A/7	000)				Zila Novieweli.	=
The sa	amples listed below were ion findings worksheets.	revie	wed for ea	ch of the f	ollowing v	/alida	tion areas. Va	lidation findin	gs are noted in attac	che
	T		 	1						
	<u>Validation</u>	<u>Area</u>	···		<u> </u> 		C	<u>comments</u>		
1.	Technical holding times			N,	Sampling	dates:			····	
II.	ICP/MS Tune			 	<u> </u>					
111.	Calibration		 	~~				. (.0		
IV.	Blanks			A	V ₀	gu	<u> 시 /~ 구</u>	us/us		
<u>V.</u>	ICP Interference Check Sam	ple (IC	S) Analysis	N						
VI.	Matrix Spike Analysis			4 ₇₄	1 50	<u>۷ ب</u>	EX6	·		
VII.	Duplicate Sample Analysis			5,44	1 A3,	<u> Xu</u>	,V Ju	<u> </u>		
VIII.	Laboratory Control Samples	(LCS)	_	N	445	\				
IX.	Internal Standard (ICP-MS)			N		1	 		V	
X.	Furnace Atomic Absorption	2 C		N						
XI.	ICP Serial Dilution			4W	Ba	Co	, pb J/	<u>~</u>]	·	
XII.	Sample Result Verification			N						
XIII.	Overall Assessment of Data			N						
XIV.	Field Duplicates			Ν.						
XV	Field Blanks			i)					**	
Note: /alidate	A = Acceptable N = Not provided/applicable SW = See worksheet d Samples:		R = Rins	o compounds sate eld blank	s detected		D = Duplicate TB = Trip blanl EB = Equipme	k nt blank		
1 S	064-SA6-SB-4,0-5.0	11				21		3.	1	
2 S	064-SA6-SB-9.0-10.0	12				22		32	2	
3		13				23		33	3	
4		14			,	24		34		
5		15				25		35		
6		16				26		36		
7		17				27		37	<u>".</u>	

Notes:_

QUALITY ASSURANCE SUMMARY FORM 5A (MS/MSD)

MATRIX SPIKE/MATRIX SPIKE DUPLICATE **DE258** SDG No.; DE2: Matrix: SOIL

Level (low/med): LOW

Matrix Spike Duplicate Lab Sample ID: 6423858MSD Matrix Spike Lab Sample ID: 6423857MS Background Lab Sample ID: 6423856BKG % Solids for Sample:

P27808D P27826A P27811B P28608B Batch Id(s):

Batch Id(s):	. P2	P27808D, P27826A,	P27811B, P28608B											
		BKG Sample	MS Sample	MSD Sample	MS Spike	MSD Spike		MS	MSD		Ç	Control Li	Limit	
Analyte	Mass	Result C	Result	Result C	Added	Added Units	L	\$ R Q	% 보	O RPD	0	%R	RPD M	
Aluminum		17858.0186	22300,3030	23324.8282	206.8252	204.7775 MG/KG	L	2148	2670		4		20P	
Antimony	121	0.2064	0.5299	0.6505	1.2048	1.2166MG/KG		27 N	37	z	7	5 - 125	20MS	. S.
Arsenic	75		10.6164	11.0428	2.0080	2.0277 MG/KG		191 N	210	Z	4	5 - 12	20 MS	- T
Barium	137	93,1525	113.3924	125.6362	10,0401	10.1385 MG/KG		202	320	ı	0		20MS	3
Beryllium	v	0.6560	1,5582	1.5978	0.8032	0.8111 MG/KG	Ĺ	112	116	_	37	5 - 125	20MS	
Boron		11.1645	223,4374	218.6962	206.8252	204.7775 MG/KG		103	101			١.	20 P	-
Cadmium	111	0.3001	1.4231	1.6258	1.0040	1.0138 MG/KG		112	131	z		75 - 125	20MS	4
Calcium		144449.7527	155159.0900	148171.7315	413.6505	409.5549 MG/KG		589	909	_			20p	-
Chromium	52	29.9288	46,7666	51.0169	10,0401	10,1385 MG/KG	L	169 N	208	z	97	ري د	20MS	3
Cobalt	59	9.6012	64.7985	75.0654	50.2003	50.6925 MG/KG		110	129	z	15 79	1	20MS	<u>,</u>
Copper	 	18.7927	31 8471	35 7280	10.0401	10.1385MG/KG		130 N	167	1 2	╁	H	ZUMS	ک د
Iron		20924.6378	21719.1727	21613.1314	103.4126	102.3887 MG/KG			672	\vdash			20 P	
Lead	208	20.7636	24,3973	28,5297	3.0120	3.0415 MG/KG		121	255	ı.	9.		20MS	
Lithium		18.4627	122,8925	123.0897	103.4126	102.3887 MG/KG		101	102		0 8	82 - 114	20P	
Magnesium		6096.2884	6407, 6267	6695,9311	206.8252	204.7775MG/KG		151	293		4		20P	
Manganese		278.1615	392,4602	335,8524	51.7063	51.1944 MG/KG		221	113	-	9		20P	
Mercury		0.0184B	0.1771	0.1746	0.1719	0.1632 MG/KG	<u>8</u>	92	96		1	5 - 135	20 CV	1.1
Molybdenum	98	0.3220	11.9959	13.8755	10.0401	10,1385 MG/KG		116	134	Z		75 - 125	20MS	***
Nickel	9	17.0509	30.7226	35.2008	10,0401	10.1385 MG/KG		136 N	179	Z	14 7	5 - 125	20MS	_
Phosphorus		451.9694	554.2875	561.3790	103.4126	102.3887 MG/KG	KG	66	107		_ 		20E	- I
Potassium		3129,6641	4662,5305	4882.3103	1034.1262	1023.8873 MG/KG		148 N	171	×		75 - 125	205	Ž
Selenium	78	1	2.2450	2.4920	2.0080	2.0277 MG/KG	KG	66	110		10 7	5 - 125	20 MS	,
Silver	107	0,0229B	11.1083	12.8536	10.0401	10.1385MG/KG		110	127	Z	15 7	75 - 125	20MS	4
Sodium		120,5463	1145.3826	1132,5709	1034.1262	1023.8873 MG/KG	KG	99	66	L	1 7	75 - 125	20P	
Strontium		155.8316	252,2285	244.8186	103.4126	102.3887 MG/KG	KG	93	87		3	75 - 115	20P	7
Thallium	203	0.2567	0.7472	0.8413	0.4016	0.4055 MG/KG	KG	122	144	Z Z	7	75 - 125	20MS	7
Tin		1.9382 B	335,1375	327.8016	413,6505	409.5549 MG/KG	KG	81	80		2 8	80 - 110	20P	
Titanium		832.4328	1152,5961	1129.9658	102,3887	99.		313	299		2		20P	
Vanadium	21	51	76,0635	80.4996	10.0401	10.1385 MG/KG	KG	243	285		9		20 MS	
Zinc	99	55.0926	0879,63	73.4027	10.0401	10.1385 MG/KG	KG	145	181	_	ಬ		20MS	
Zirconium _r	ĥ	3.4044 B	102.522	101.6802	103.4126	102.3887 MG/KG	KG	96	96	_	1 8.	81 - 110	20P	
žia i	ž.													

AF = Cold Vapor Atomic Fluorescence CV = Cold Vapor METHODS: the Part of the Mass Spectrometer C
MS = ICR Mass Spectrometer C

U= Below MDL, B= Below LOQ CONCENTRATION QUALIFIERS: FLAGS: N = Matrix Spike OOS, * = Duplicate OOS

40= port Spika 8670

Level (low/med): LOW FORM 5A(MS/MSD)
MATRIX SPIKE/MATRIX SPIKE DUPLICATE
SDG No.: DE258
Matrix: SOIL Level (low/med)

Background Lab Sample ID: 6423870BKG	Matrix Spike Lab Sample ID: 6423870MS	Matrix Spike Duplicate Lab Sample ID: 6423870MSD
s borrus for sample; 95.0 Batch Id(s): P28026A		

Batch Id(s): P28026A	201112 P28	3026A										
	Ш	Sample MS	Sample	MSD Sample	MS Spike	MSD Spike		MS	MSD	Con	Control Limit	it
Analyte Ma	Mass	Result C Result	c c	Regult C	Added	Added	Units	%R Ω	&R Q RPD	Ø		Σ
copper	63	1798	18.1827	16.9659	10.0579	10.1556MG/KG	MG/KG	Ö	117	<u> </u>	25	20MS (1
DEZE					•							-
METHODS: 30 P = ICP,A	Atomi	c Emission Spectrometer	CV =	Cold Vapor		<u>8</u>	NCENTRA U= Belo	TION OF W MDE,	CONCENTRATION QUALIFIERS: U= Below MDL, B= Below LOQ	ČOJ		
d⊕1 = sw	Mass	MS = IGP Mass Spectrometry	AF =	Cold Vapor Atom	Vapor Atomic Fluorescence	<u>H</u>	FLAGS:					
6							N = Mac	rix Spi	N = Matrix Spike OOS, *		= Duplicate 008	က္က

FORM 6

DUPLICATES

SDG No.: DE258

Matrix: SOIL

Level (low/med): LOW

Duplicate Lab Sample ID: 6423859DUP

% Solids for Sample: 96.7

Background Lab Sample ID: 6423856BKG

% Solids for Duplicate: 96.7

Batch ID(s): P27808D, P27826A, P27811B, P28608B

Concentration Units: MG/KG

Analyte	Mass	Control Limit	Samples (S)	c	Duplicate (D)	C	RPD	Q	M	
Aluminum	14035	Daniac	17858,0186		18271.4323	<u> </u>	2	Ψ.	P	1
Antimony	121	0.2	0.2064		0.2325	-	12	\vdash	MŞ	,
Arsenic	75		6.7867	┝╌┼	9.1520		30	*	MS	7/25
Barium	137		93.1525	\vdash	111.0691	-	18		MS	′ ′
Beryllium	9		0.6560	-	0.7943	├	19		MS	1
Boron		5,1	11.1645	\vdash	10.9478		2		P	1
Cadmium	111	0.1	0.3001		0.3639	-	19		MS	1
Calcium			144449.7527		138710.8176		4		P	j
Chromium	52		29.9288		35.0609		16		MS	, '
Cobalt	59		9.6012		9.4821		1		MS	
Copper	63		18.7927		23.6855		23	<u> </u>	MS	JA
Iron			20924.6378		24569.3700		16		Р	
Lead	208		20.7636		23.8247		14		MS	
Lithium	ĺ		18.4627		18.3289	Г	1		P	
Magnesium			6096.2884		6123.6775	\vdash	0		P	
Manganese			278.1615		312.9554		12		P	
lercury			0.0184	В	0.0131	В	34		cv	
Molybdenum	98	0.1	0.3220		0.4552		34		MS	45X
Nickel	60		17.0509		20.4240		18		MS	- / 1
Phosphorus			451.9694		459.9704		2		₽	
Potassium			3129.6641		3148.4160		1		P	
Selenium	78		0.2524	В	0.3035	В	18		MS	
Silver	107		0.0229	В	0.0176	В	26		MS	
Sodium		102.4	120.5463		112.0794		7		₽	
Strontium			155.8316		154.3215		1		P	
hallium	203	0.1	0.2567		0.3128		20		MS	
<u> Fin</u>			1.9382	В	1.9459	В	0		P	_
ritanium			832.4328		843.8091		1		P]
/anadium	51		51.6252		64.9113		23	*	MS	JIU I
Zinc	66		55.0926		67.0591		20		MS	-, ,
Zirconium			3.4044	B	4.1902	В	21		P	

NOTE:

An asterisk (*) in column "Q" indicates poor duplicate precision (RPD > 20% OR |(S) - (D)| > LOQ for values < 5x LOQ).

The data are considered to be valid because the laboratory control sample is within the control limits. See the Laboratory Control Sample.

DE258 3469

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CV = Cold Vapor

AF = Cold Vapor Atomic Fluorescence

CONCENTRATION QUALIFIERS:

U= Below MDL

B= Below LOQ

FLAGS:

* = Duplicate Out of Spec

FORM 6

DUPLICATES

SDG No.: DE258

Matrix: SOIL

Level (low/med): LOW

Background Lab Sample ID: 6423870BKG

% Solids for Duplicate: 95.6

Batch ID(s): P28026A

Concentration Units: MG/KG

Duplicate Lab Sample ID: 6423870DUP % Solids for Sample: 95.6

% Solids for Sample: 95.6

Analyte	Mass	Control Limit	Samples (S)	c	Duplicate	(D) (RPD		М
Copper	63			798		5.3399	5	Ľ	MS

NOTE:

An asterisk (*) in column "Q" indicates poor duplicate precision (RPD > 20% OR

|(S) - (D)| > LOQ for values < 5x LOQ).

The data are considered to be valid because the laboratory control sample is within the control limits. See the Laboratory Control Sample.

DE258 3428

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CV = Cold Vapor

AF = Cold Vapor Atomic Fluorescence

CONCENTRATION QUALIFIERS:

U = Below MDL

B = Below LOQ

FLAGS:

* = Duplicate Out of Spec

SAMPLE DELIVERY GROUP

DE261

Attachment I

Sample ID Cross Reference and Data Review Level

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
04-0ct-2011	TB-100411	6429934	ТВ	3520C	1625C	111
04-Oct-2011	TB-100411	6429935	ТВ	3546	1625C	III
04-Oct-2011	TB-100411	6429936	ТВ	5030B	8015M	III
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	3050B	6010B	Ш
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	3050B	6020	111
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	3060A	7199	III
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	3546	1625C	111
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	3550B	8015B	ŧII
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	3550B	8015M	[1]
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	3550B	8082	1!1
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	3550B	8270C	111,
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	3550B	8270C SIM	111
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	5035	8015M	111
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	8330	8330A	111
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	METHOD	300.0	III
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	METHOD	314.0	111
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	METHOD	7471A	111
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	METHOD	8015B	111
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	METHOD	8015M	111
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	METHOD	8315A	111
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429928	N	METHOD	9012B	111
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	3050B	6010B	111
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	3050B	6020	FIII
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	3060A	7199	111
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	3546	1625C	. 111
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	3550B	8015B	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	3550B	8015M	III
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	3550B	8082	111
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	3550B	8270C	III
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	3550B	8270C SIM	Ш
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	5035	8015M	111
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	8330	8330A	111
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	METHOD	300.0	111
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	METHOD	314.0	Ш
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	METHOD	7471A	Ш
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	METHOD	8015B	Ш
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	METHOD	8015M	m
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	METHOD	8315A	III
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429929	N	METHOD	9012B	Ш
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	3050B	6010B	111
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	3050B	6020	Ш
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	3060A	7199	m
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	3550B	8015B	111
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	3550B	8015M	III
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	3550B	8082	111
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	3550B	8270C	Ш
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	3550B	8270C SIM	111
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	5035	8015M	III
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	METHOD	300.0	111
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	METHOD	314.0	III
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	METHOD	7471A	III
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	METHOD	8015B	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429932	N	METHOD	8015M	III
04-Oct-2011	SL-225-SA6-SB-3.0-4.0DUP	P429932D270442B	DUP	METHOD	300.0	III
04-Oct-2011	SL-225-SA6-SB-3.0-4.0DUP	P429932D271929B	DUP	METHOD	314.0	III
04-Oct-2011	SL-225-SA6-SB-3.0-4.0MS	P429932R270519B	MS	METHOD	300.0	III
04-Oct-2011	SL-225-SA6-SB-3.0-4.0MS	P429932R272015B	MS	METHOD	314.0	III
04-Oct-2011	SL-007-SA6-SB-1.0-2.0	6429927	N	3050B	6010B	HI
04-Oct-2011	SL-007-SA6-SB-1.0-2.0	6429927	N	3050B	6020	!!!
04-Oct-2011	SL-007-SA6-SB-1.0-2.0	6429927	N	3060A	7199	III
04-Oct-2011	SL-007-SA6-SB-1.0-2.0	6429927	N	3550B	8082	III
04-Oct-2011	SL-007-SA6-SB-1.0-2.0	6429927	N	3550B	8270C	111
04-Oct-2011	SL-007-SA6-SB-1.0-2.0	6429927	N	3550B	8270C SIM	111
04-Oct-2011	SL-007-SA6-SB-1.0-2.0	6429927	N	METHOD	300.0	III
04-Oct-2011	SL-007-SA6-SB-1.0-2.0	6429927	N	METHOD	314.0	III
04-Oct-2011	SL-007-SA6-SB-1.0-2.0	6429927	N	METHOD	6850	111
04-Oct-2011	SL-007-SA6-SB-1.0-2.0	6429927	N	METHOD	7471A	111
04-Oct-2011	SL-007-SA6-SB-1.0-2.0MSD	P429927M242138A	M\$D	METHOD	6850	III
04-Oct-2011	SL-007-SA6-SB-1.0-2.0MS	P429927R242125A	MS	METHOD	6850	III
04-Oct-2011	EB-SA6-SB-100411	6429933	EB	3520C	1625C	Ħ
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	3050B	6010B	111
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	3050B	6020	III
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	3060A	7199	111
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	3546	1625C	III
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	3550B	8015B	III
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	3550B	8015M	111
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	3550B	8082	101
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	3550B	8270C	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	3550B	8270C SIM	111
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	5035	8015M	111
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	8330	8330A	111
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	METHOD	300.0	111
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	METHOD	314.0	111
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	METHOD	7471A	111
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	METHOD	8015B	111
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	METHOD	8015M	111
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	METHOD	8315A	111
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429931	N	METHOD	9012B	111
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	3050B	6010B	Ш
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	3050B	6020	111
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	3060A	7199	111
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	3546	1625C	IfI
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	3550B	8015B	III
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	3550B	8015M	111
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	3550B	8082	111
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	3550B	8270C	111
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	3550B	8270C SIM	111
04-Oct-2011	\$L-191-\$A6-\$B-0.0-1.0	6429930	N	5035	8015M	111
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	8330	8330A	III
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	METHOD	300.0	111
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	METHOD	314.0	III
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	METHOD	7471A	III
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	METHOD	8015B	. 111
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	METHOD	8015M	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	METHOD	8315A	111
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429930	N	METHOD	9012B	III

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DE261

Laboratory: LL

EDD Filename: DE261_v1.

eQAPP Name: CDM_SSFL_110509

Method Category GENCHEM Method: 300.0	Matrix: SO	

Sample ID: SL-191-SA6-SB-0.0-1.0	Collected: 10/4/2011 3:15:00 Analysis Ty					/pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	0.90	J	0.82	MDL	1.0	PQL	mg/Kg	J	Z	٦

Sample ID: SL-225-SA6-SB-3.0-4.0 Collected: 10/4/2011 10:00:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte Result Qual DL Туре RL Туре Units Qual Code FLUORIDE 0.93 0.86 MDL **PQL** mg/Kg Z, Q

Weinod Galeg	ery: METALS	
Method:	6010B	Matrix: SO

Sample ID: SL-007-SA6-SB-1.0-2.0 Collected: 10/4/2011 11:50:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte Result Qual DLТуре RL Type Units Qual Code BORON 1.24 0.379 MDL 5.27 **PQL** mg/Kg U POTASSIUM J 2920 11.9 MDL 52.7 **PQL** mg/Kg Q SODIUM **PQL** Z 73.3 6.27 MDL 105 mg/Kg MDL TIN 2.96 J 0.337 10.5 PQL mg/Kg U В

0.485

MDL

5.27

PQL

mg/Kg

J

Ζ

J

2.77

Sample ID: SL-037-SA6-SB-4.0-5.0 Analyte	Collec	Collected: 10/4/2011 8:25:00 Analysis Type: RES							
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	1.84	J	0.362	MDL	5.02	PQL	mg/Kg	J	Z
POTASSIUM	1340		11.4	MDL	50.2	PQL	mg/Kg	J	Q
SODIUM	88.5	J	5.98	MDL.	100	PQL	mg/Kg	J	Z
TIN	2.61	J	0.322	MDL	10.0	PQL	mg/Kg	U	В
Zirconium	2.72	J	0.462	MDI.	5.02	POL	ma/Ka	أرا	7

Sample ID: SL-037-SA6-SB-9.0-10.0 Analyte	Collec	Collected: 10/4/2011 9:05:00 Analysis Type: RES							
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	1.45	J	0.404	MDL	5.61	PQL	mg/Kg	u	В
POTASSIUM	1160		12.7	MDL	56.1	PQL	mg/Kg	J	Q
TIN	2.99	J	0.359	MDL	11.2	PQL	mg/Kg	U	В
Zirconium	2.95	J	0.516	MDL	5.61	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 11:50:48 AM

Zirconium

ADR version 1.4.0.111

Page 1 of 11

Lab Reporting Batch ID: DE261

EDD Filename: DE261_v1. eQAPP Name: CDM_SSFL_110509

	001100	adiadiaa in manifest in the same in the sa							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	2.00	J	0.355	MDL	4.93	PQL	mg/Kg	J	Z
POTASSIUM	2590		11.1	MDL	49.3	PQL	mg/Kg	J	Q
TIN	2.60	J	0.315	MDL	9.86	PQL	mg/Kg	υ	В
Zirconium	3.01	J	0.453	MDL	4.93	PQL	mg/Kg	J	Z

Sample ID: SL-206-SA6-SB-4.0-5.0 Collected: 10/4/2011 3:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	0.558	J	0.370	MDL	5.14	PQL	mg/Kg	υ	В
POTASSIUM	1800		11.6	MDL	51.4	PQL	mg/Kg	J	Q
SODIUM	83.7	J	6.11	MDL	103	PQL	mg/Kg	J	Z
TIN	3.01	J	0.329	MDL	10.3	PQL	mg/Kg	υ	В
Zirconium	3.05	J	0.473	MDL	5.14	PQL	mg/Kg	J	Z

Sample ID: SL-225-SA6-SB-3.0-4.0 Collected: 10/4/2011 10:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	1.63	J	0.382	MDL	5.31	PQL	mg/Kg	U	В
POTASSIUM	2600		12.0	MDL	53.1	PQL	mg/Kg	J	Q
SODIUM	100	J	6.32	MDL	106	PQL	mg/Kg	J	Z
TIN	2.90	J	0.340	MDL	10.6	PQL	mg/Kg	U	В
Zirconium	3.33	J	0.489	MDL	5.31	PQL	mg/Kg	J	Z

Method Category:	METALS		
welliou.	5020	Matrix: SO	

Sample ID: SL-007-SA6-SB-1.0-2.0 Collected: 10/4/2011 11:50:00 Analysis Type: REA Dilution: 2

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.0613	J	0.0605	MDL	0.417	PQL	mg/Kg	J	Z

Sample ID: SL-007-SA6-SB-1.0-2.0 Collected: 10/4/2011 11:50:00 Analysis Type: REA3 Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	72.1		0.111	MDL	0.417	PQL	mg/Kg	J	Α

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 11:50:48 AM ADR version 1.4.0.111

Page 2 of 11

Laboratory: LL

Lab Reporting Batch ID: DE261

Laboratory: LL

Page 3 of 11

EDD Filename: DE261_v1.

eQAPP Name: CDM_SSFL_110509

Analyte	Conec	Dilation. 2							
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.101	J	0.0772	MDL	0.209	PQL	mg/Kg	UJ	B, Q
CADMIUM	0.0585	J	0.0459	MDL	0.104	PQL	mg/Kg	J	Z, Q
COBALT	4.47		0.0209	MDL	0.104	PQL	mg/Kg	J	Q, A
COPPER	5.37	,	0.0834	MDL	0.417	PQL	mg/Kg	J	Q, A
LEAD	3.51		0.0106	MDL	0.209	PQL	mg/Kg	J	А
NICKEL	8.49		0.104	MDL	0.417	PQL	mg/Kg	J	Α
THALLIUM	0.222		0.0313	MDL	0.104	PQL	mg/Kg	J	Q
ZINC	54.1		0.584	MDL	3.13	PQL	mg/Kg	J	Α

Sample ID: SL-037-SA6-SB-4.0-5.0	Collec	ted: 10/4/2	011 8:25:0	00 A	nalysis T	vpe: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.106	J	0.0583	MDL	0.402	PQL	mg/Kg	J	Z

Sample ID: SL-037-SA6-SB-4.0-5.0	Collect	ted: 10/4/2	011 8:25:0	00 A	nalysis T	ype: REA	.3	Dilution: 2	Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BARIUM	52.1		0.107	MDL	0.402	PQL	mg/Kg	J	А	

Sample ID: SL-037-SA6-SB-4.0-5.0 Analyte	Collec	ted: 10/4/2	011 8:25:0	10 A	nalysis T _j	/pe: RES		Dilution: 2	
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.103	J	0.0744	MDL.	0.201	PQL	mg/Kg	UJ	B, Q
COBALT	5.03		0.0201	MDL	0.100	PQL	mg/Kg	J	Q, A
COPPER	4.00		0.0804	MDL	0.402	PQL	mg/Kg	j	Q, A
LEAD	4.39		0.0102	MDL	0.201	PQL	mg/Kg	J	Α
NICKEL	7.58		0.100	MDL	0.402	PQL	mg/Kg	J	Α
SILVER	0.0330	J	0.0143	MDL	0.100	PQL	mg/Kg	J	Z, Q
THALLIUM	0.210	<u> </u>	0.0301	MDL	0.100	PQL	mg/Kg	J	Q
ZINC	37.1		0.563	MDL	3.01	PQL	mg/Kg	J	А

Sample ID: SL-037-SA6-SB-9.0-10.0	Collect	ted: 10/4/2	011 9:05:0	10 A	nalysis Ty	/pe: REA		Dilution: 2			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
SELENIUM	0.0771	J	0.0657	MDL	0.453	PQL	mg/Kg	J	Z		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 11:50:48 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DE261 Laboratory: LL

EDD Filename: DE261_v1. eQAPP Name: CDM_SSFL_110509									
Method Category, METALS Method: 6020			Ma	ingerende trix:	so			an tang ika da	biji pa Siatucis (Cirilicali
Sample ID: SL-037-SA6-SB-9.0-10.0	Collec	ted: 10/4/2	011 9:05:0	00 A	nalysis T	ype: REA	3	j	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	77.5		0.120	MDL	0.453	PQL	mg/Kg	J	A
Sample ID: SL-037-SA6-SB-9.0-10.0	Collec	ted: 10/4/2	011 9:05:0	00 A	nalysis T	ype: RES	•		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.144	J	0.0838	MDL	0.227	PQL	mg/Kg	UJ	B, Q
COBALT	3.45		0.0227	MDL	0.113	PQL	mg/Kg	J	Q, A
COPPER	6.59		0.0906	MDL	0.453	PQL	mg/Kg	J	Q, A
LEAD	5.16		0.0116	MDL	0.227	PQL	mg/Kg	J	Α
NICKEL	8.57		0.113	MDL	0.453	PQL	mg/Kg	J	Α
SILVER	0.0467	J	0.0161	MDL	0.113	PQL	mg/Kg	J	Z, Q
THALLIUM	0.251		0.0340	MDL	0.113	PQL	mg/Kg	J	Q
ZINC	39.2		0.634	MDL	3.40	PQL	mg/Kg	J	А
Sample ID: SL-191-SA6-SB-0.0-1.0	Collec	ted: 10/4/2	011 3:15:0	0 A	nalysis Ty	ype: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.0608	J	0.0577	MDL	0.398	PQL	mg/Kg	J	Z
Sample ID: SL-191-SA6-SB-0.0-1.0	Collec	ted: 10/4/2	011 3:15:0	0 A	nalysis Ty	ype: REA	3	i	Dilution: 2
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	117		0.106	MDL	0.398	PQL	mg/Kg	J	Α
Sample ID: SL-191-SA6-SB-0.0-1.0	Collec	ted: 10/4/2	011 3:15:0	0 A	nalysis T _j	ype: RES			Dilution: 2
Anglido	Lab	Lab	2	DL Type	ום	RL Type	Unite	Data Review	Reason

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
ANTIMONY	0.259		0.0737	MDL	0.199	PQL	mg/Kg	UJ	B, Q
CADMIUM	0.223		0.0438	MDL	0.0995	PQL	mg/Kg	J	Q
COBALT	6.19		0.0199	MDL	0.0995	PQL	mg/Kg	J	Q, A
COPPER	12.6		0.0796	MDL	0.398	PQL	mg/Kg	J	Q, A
LEAD	10.8		0.0102	MDL	0.199	PQL	mg/Kg	J	А
NICKEL	14.0		0.0995	MDL	0.398	PQL	mg/Kg	J	Α
SILVER	0.0948	J	0.0141	MDL	0.0995	PQL	mg/Kg	J	Z, Q
THALLIUM	0.234		0.0299	MDL	0.0995	PQL	mg/Kg	J	Q

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

ADR version 1.4.0.111 1/6/2012 11:50:48 AM Page 4 of 11

Lab Reporting Batch ID: DE261 Laboratory: LL

EDD Filename: DE261_v1. eQAPP Name: CDM_SSFL_110509

Matrix:

SO

Sample ID: SL-191-SA6-SB-0.0-1.0	Collec	ted: 10/4/2	011 3:15:0	00 A	nalysis T	ype: RES			Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ZINC	62.0		0.557	MDL	2.99	PQL	mg/Kg	J	А	
Sample ID: SL-206-SA6-SB-4.0-5.0	Collec	ted: 10/4/2	011 3:00:0	00 A	nalysis T	ype: REA	3		Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BARIUM	97.3		0.110	MDL	0.415	PQL	mg/Kg	J	А	
Sample ID: SL-206-SA6-SB-4.0-5.0	Collected: 10/4/2011 3:00:00 Analysis Type: RES Dilution: 2									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.132	J	0.0768	MDL	0.207	PQL	mg/Kg	UJ	B, Q	
COBALT	6.00		0.0207	MDL	0.104	PQL	mg/Kg	J	Q, A	
COPPER	6.49		0.0830	MDL	0.415	PQL	mg/Kg	J	Q, A	
EAD	4.99		0.0106	MDL	0.207	PQL	mg/Kg	J	Α	
NICKEL	10.3		0.104	MDL	0.415	PQL.	mg/Kg	J	А	
SILVER	0.0261	J	0.0147	MDL	0.104	PQL	mg/Kg	J	Ż, Q	
THALLIUM	0.267		0.0311	MDL	0.104	PQL	mg/Kg	J	Q	
ZINC	61.4		0.581	MDL	3.11	PQL	mg/Kg	J	Α	
Sample ID: SL-225-SA6-SB-3.0-4.0	Collect	ted: 10/4/2	011 10:00:	:00 A	nalysis T <u>j</u>	/pe: REA			Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
SELENIUM	0.138	J	0.0622	MDL	0.429	PQL	mg/Kg	J	Z	
Sample ID: SL-225-SA6-SB-3.0-4.0	Collect	ted: 10/4/2	011 10:00:	:00 A	nalysis Ty	/pe: REA	3		Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
BARIUM	134		0.114	MDL	0.429	PQL	mg/Kg	J	А	
Sample ID: SL-225-SA6-SB-3.0-4.0	Collect	ted: 10/4/2	011 10:00:	:00 A	nalysis Ty	/pe: RES			Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.157	J	0.0794	MDL	0.215	PQL	mg/Kg	UJ	B, Q	
CADMIUM	0.128		0.0472	MDL	0.107	PQL	mg/Kg	J	Q	
	1	<u> </u>	1			1	1			

0.0215

MDL

0.107

PQL

mg/Kg

Q, A

Page 5 of 11

COBALT

Weinog Calegory. METALS

6020

Method:

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

8.81

1/6/2012 11:50:48 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE261 Laboratory: LL

EDD Filename: DE261_v1. eQAPP Name: CDM_SSFL_110509

Vethod Category,	The state of the s		Ma	trix:	SO		asa sa sa sa sa						
Sample ID: SL-225-SA6-SB-3.0-4.0	Collect	ted: 10/4/2	011 10:00:	00 A	nalysis Ty	/pe: RES		I	Dilution: 2				
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code				
COPPER	11.9		0.0858	MDL	0.429	PQL	mg/Kg	J	Q, A				
EAD	8.34		0.0109	MDL	0.215	PQL	mg/Kg	J	Α				
IICKEL	18.9		0.107	MDL	0.429	PQL	mg/Kg	J	Α				
SILVER	0.0489	J	0.0152	MDL	0.107	PQL	mg/Kg	J	Z, Q				
'HALLIUM	0.343		0.0322	MDL	0.107	PQL	mg/Kg	J	Q				
ZINC	76.0		0.601	MDL	3.22	PQL	mg/Kg	J	Α				

Method Category: TWE⊺ALS:								rad espara sat	togsagege et a.
Method: 7199				atrix:					Allender House of Co.
Sample ID: SL-037-SA6-SB-4.0-5.0	Collec	ted: 10/4/2	011 8:25:0	00 A	nalysis T	ype: RES		1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.41	J	0.21	MDL	1.1	PQL	mg/Kg	J	Z
Sample ID: SL-037-SA6-SB-9.0-10.0	Collec	ted: 10/4/2	011 9:05:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.27	J	0.23	MDL	1.2	PQL	mg/Kg	J	Z
Sample ID: SL-225-SA6-SB-3.0-4.0	Collec	ted: 10/4/2	011 10:00	:00 A	nalysis T	ype: RES			Dilution: 1
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.21	J	0.21	MDL	1.0	PQL	mg/Kg	J	Z

Method Category METALS		agameen good old alamaa laggin	
Method: 7471A	Matrix:	SO	WWW.Telskierome.Necketskieskieskieskieskieskieskieskieskieskie
Sample ID: SL-007-SA6-SB-1.0-2.0	Collected: 10/4/2011 11:50:00	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0112	J	0.0072	MDL	0.102	PQL	mg/Kg	Ų	В

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 11:50:48 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE261

Laboratory: LL

EDD Filename: DE261_v1.

eQAPP Name: CDM_SSFL_110509

ownianie das Portuison	Contract of the feet	15 + 150+ 25 +	r . results			National Wilder		
er of male and process to the co		иналия Ма		dad ba	415.7162 Visite	official subsection of the sub	è di Pago al 152	
Collec	tod: 10/4/2				mer RES			Dilution: 1
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.0105	J	0.0073	MDL	0.103	PQL	mg/Kg	U	В
Collec	ted: 10/4/2	011 9:05:0	0 A	nalysis Ty	ype: RES			Dilution: 1
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.0107	J	0.0077	MDL	0.109	PQL	mg/Kg	U	В
Collec	ted: 10/4/2	:011 3:15:0	0 A	nalysis Ty	ype: RES			Dilution: 1
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.0347	J	0.0069	MDL	0.0986	PQL	mg/Kg	U	В
		dalahat			ALE STATES			2 () 1 H1, 32 (
	Spared Sixte				envioles de	a Nasana		
•		Ma	trix:	AQ				
Collec	ted: 10/4/2	011 2:00:0	0 A	nalysis Ty	/pe: RES	-BASE/NE	UTRAL	Dilution: 1
1	ľ						Data	
	Collect Lab Result 0.0105 Collect Lab Result 0.0107 Collect Lab Result 0.0347	Lab Result Qual 0.0105 J Collected: 10/4/2 Lab Lab Result Qual 0.0107 J Collected: 10/4/2 Lab Lab Result Qual 0.0347 J	Collected: 10/4/2011 8:25:0 Lab	Collected: 10/4/2011 8:25:00 A	Collected: 10/4/2011 8:25:00 Analysis Ty Lab	Collected: 10/4/2011 8:25:00 Analysis Type: RES	Collected: 10/4/2011 8:25:00 Analysis Type: RES	Collected: 10/4/2011 8:25:00 Analysis Type: RES

Method Category:	FSVOA		instructural	Kinggapi penghangan kisi mang	
Method:	8015M	Matrix:	SO		

0.478

MDL

0.955

PQL

2.24

Sample ID: SL-037-SA6-SB-9.0-10.0	Collec	ted: 10/4/2	011 9:05:0	00 A	Analysis Ty	ype: REA	.2	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
EFH (C15-C20)	0.55	J	0.46	MDL	1.4	PQL	mg/Kg	J	Z		

Sample ID: SL-206-SA6-SB-4.0-5.0	Collec	ted: 10/4/2	011 3:00:0)O A	nalysis T	ype: REA	.2	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C15-C20)	0.76	J	0.42	MDL	1.3	PQL	mg/Kg	J	Z

N-NITROSODIMETHYLAMINE

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 11:50:48 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE261

Laboratory: LL

Z

EDD Filename: DE261_v1.

EFH (C21-C30)

eQAPP Name: CDM SSFL 110509

Sample ID: SL-225-SA6-SB-3.0-4.0	C	llected: 10/4/2	011 10·00·0	nn 4,	alveie Ti	pe: REA	2	,	Dilution: 1	
				7,	iarysis r		<u>-</u>	Data	onadon. 1	

Nethra Calego	y. SVOA				ageneral en en e	
Method:	8270C	The Transition of Section (1997) and the Section of Section (1997).	Matrix: S	io		

1.0

0.44

MDL

PQL

mg/Kg

1.3

Sample ID: SL-037-SA6-SB-4.0-5.0 Collected: 10/4/2011 8:25:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1 Data DLReview Lab Lab RLReason Analyte Result Qual DL RL Units Qual Туре Type Code BIS(2-ETHYLHEXYL)PHTHALATE 19 MDL 340 **PQL** ug/Kg

Analysis Type: RES-BASE/NEUTRAL Collected: 10/4/2011 3:15:00 Sample ID: SL-191-SA6-SB-0.0-1.0 Dilution: 1 Data Lab Lab DLRLReview Reason Analyte DL RL Result Type Units Qual Qual Type Code BIS(2-ETHYLHEXYL)PHTHALATE 190 MDL Ζ 17 330 **PQL** ug/Kg

Method Calego	ory and SVOA consultation			
Method:	8270C SIM	Matrix: SO	ing de la company de la co	

Sample ID: SL-037-SA6-SB-4.0-5.0 Collected: 10/4/2011 8:25:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHRYSENE	0.41	j	0.34	MDL	1.7	PQL	ug/Kg	J	Z
NAPHTHALENE	0.77	J	0.69	MDL	1.7	PQL	ug/Kg	J	Z

Sample ID: SL-191-SA6-SB-0.0-1.0 Collected: 10/4/2011 3:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ACENAPHTHYLENE	0.42	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z
ANTHRACENE	0.74	J	0.34	MDL	1.7	PQL	ug/Kg	J	Z
DIBENZO(A,H)ANTHRACENE	1.6	J	0.67	MDL.	1.7	PQL	ug/Kg	J	Z
NAPHTHALENE	0.78	J	0.67	MDL	1.7	PQL	ug/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 11:50:48 AM ADR version 1.4.0.111

Page 8 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE261 EDD Filename: DE261_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
h	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
<u></u>	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
Ē	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE261

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Filename: DE261_v1.		eQAPP Name: CDM_SSFL
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
H	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
н	Sampling to Extraction Estimation	
н	Sampling to Extraction Rejection	
н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
н	Temperature Estimation	
Н	Temperature Rejection	
t	Internal Standard Estimation	
I	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
М	Continuing Tune	
M	Initial Tune	
М	Performance Evaluation Mixture	
М	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE261

EDD Filename: DE261_v1.

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure !

Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DE261

Method Blank Outlier Report

Lab Reporting Batch ID: DE261

EDD Filename: DE261_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method Blank				Associated	
Sample ID	Analysis Date	Analyte	Result	Samples	
P27908DB222239	10/16/2011 10:39:00 PM	BORON	0,360 mg/Kg	SL-007-SA6-SB-1.0-2.0	
		CALCIUM	10.1 mg/Kg	SL-037-SA6-SB-4.0-5.0	
		PHOSPHORUS	1.26 mg/Kg	SL-037-SA6-SB-9.0-10.0	
		STRONTIUM	0.0420 mg/Kg	SL-191-SA6-SB-0.0-1.0	
		TIN	1.39 mg/Kg	SL-206-SA6-SB-4.0-5.0	
				SL-225-SA6-SB-3.0-4.0	

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-007-SA6-SB-1.0-2.0(RES)	BORON	1.24 mg/Kg	1.24U mg/Kg
SL-007-SA6-SB-1.0-2.0(RES)	TIN	2.96 mg/Kg	2.96U mg/Kg
SL-037-SA6-SB-4.0-5.0(RES)	TIN	2.61 mg/Kg	2.61U mg/Kg
SL-037-SA6-SB-9.0-10.0(RES)	BORON	1.45 mg/Kg	1.45U mg/Kg
SL-037-SA6-SB-9.0-10.0(RES)	TIN	2.99 mg/Kg	2.99U mg/Kg
SL-191-SA6-SB-0.0-1.0(RES)	TIN	2.60 mg/Kg	2,60U mg/Kg
SL-206-SA6-SB-4.0-5.0(RES)	BORON	0.558 mg/Kg	0.558U mg/Kg
SL-206-SA6-SB-4.0-5.0(RES)	TIN	3,01 mg/Kg	3.01U mg/Kg
SL-225-SA6-SB-3.0-4.0(RES)	BORON	1.63 mg/Kg	1.63U mg/Kg
SL-225-SA6-SB-3.0-4.0(RES)	TIN	2.90 mg/Kg	2.90U mg/Kg

ADR version 1.4.0.111 Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE261

Laboratory: LL

EDD Filename: DE261_v1.

eQAPP Name: CDM_SSFL_110509

Method: 300.0 Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-225-SA6-SB-3.0-4.0MS (SL-225-SA6-SB-3.0-4.0)	FLUORIDE	49	-	80.00-120.00	-	FLUORIDE	J (all detects) UJ (all non-detects)

1/6/2012 11:25:56 AM ADR version 1.4.0.111 Page 1 of 1

Lab Duplicate Outlier Report

Lab Reporting Batch ID: DE261 Laboratory: LL

EDD Filename: DE261_v1. eQAPP Name: CDM_SSFL_110509

Method: 300:0 Matrix: SO				
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-225-SA6-SB-3.0-4.0DUP (SL-225-SA6-SB-3.0-4.0)	FLUORIDE	42	20.00	No Qual, OK by Difference

1/6/2012 11:41:30 AM ADR version 1.4.0.111 Page 1 of 1

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE261 Laboratory: LL

EDD Filename: DE261_v1. eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO								
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag	
P27926BQ220650A (SL-007-SA6-SB-1.0-2.0 SL-037-SA6-SB-4.0-5.0 SL-037-SA6-SB-9.0-10.0 SL-191-SA6-SB-0.0-1.0 SL-206-SA6-SB-4.0-5.0 SL-225-SA6-SB-3.0-4.0)	ANTIMONY	124	-	80.00-120.00	•	ANTIMONY	No Qual, SRM within Limits	

Metriod: 8270C Matrix: SO				Alvaşı iş idile ild.	ng ng mga kales		
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
PSLELCSQ260717 (SL-007-SA6-SB-1.0-2.0 SL -037-SA6-SB-4.0-5.0 SL -037-SA6-SB-9.0-10.0 SL -191-SA6-SB-0.0-1.0 SL -206-SA6-SB-4.0-5.0 SL -225-SA6-SB-3.0-4.0)	2,4,5-TRICHLOROPHENOL	109	-	76.00-107.00	-	2,4,5-TRICHLOROPHENOL	J(all detects)

1/6/2012 11:40:19 AM ADR version 1.4.0.111 Page 1 of 1

Surrogate Outlier Report

Lab Reporting Batch ID: DE261

Laboratory: LL

EDD Filename: DE261_v1.

eQAPP Name: CDM_SSFL_110509

Method; 162 Matrix: AQ					
Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
EB-SA6-SB- 100411	N-Nitrosodimethylamine-d6	381	50.00-150.00	All Target Analytes	J (all detects)

Weiffod: 1625C Matrix: SO									
Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag				
SL-037-SA6-SB-4.0 -5.0	N-Nitrosodimethylamine-d6	153	50.00-150.00	All Target Analytes	No Qual, Diluted Out				
SL-037-SA6-SB-9.0 -10.0	N-Nitrosodimethylamine-d6	155	50.00-150.00	All Target Analytes	J(all detects)				
SL-191-SA6-SB-0.0 -1.0	N-Nitrosodimethylamine-d6	169	50.00-150.00	All Target Analytes	J(all detects)				

Reporting Limit Outliers

Lab Reporting Batch ID: DE261 Laboratory: LL

EDD Filename: DE261_v1. eQAPP Name: CDM_SSFL_110509

	271111				Elektionen Cr	rantosti uržinaskih	rini Malakatata (Malaka)
		distribution and the	adila sakibuat		Calculate and the first street and an arrange	The second second	Market Control
	Samakari iya 1	hajath ná haiteichea		(000,000,000,000,000,000,000,000,000,00			And Chairman Colored
Matrix:	SO						

SampleiD	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-191-SA6-SB-0.0-1.0	FLUORIDE	J	0.90	1.0	PQL	mg/Kg	J (all detects)
SL-225-SA6-SB-3.0-4.0	FLUORIDE	J	0.93	1.1	PQL	mg/Kg	J (all detects)

Method: 6010B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-007-SA6-SB-1.0-2.0	BORON SODIUM TIN Zirconium)))	1.24 73.3 2.96 2.77	5.27 105 10.5 5.27	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
SL-037-SA6-SB-4.0-5.0	BORON SODIUM TIN Zirconium		1.84 88.5 2.61 2.72	5.02 100 10.0 5.02	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
SL-037-SA6-SB-9.0-10.0	BORON TIN Zirconium	7 6	1.45 2.99 2.95	5.61 11.2 5.61	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-191-SA6-SB-0.0-1.0	BORON TIN Zirconium) J	2.00 2.60 3.01	4.93 9.86 4.93	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-206-SA6-SB-4.0-5.0	BORON SODIUM TIN Zirconium)))	0.558 83.7 3.01 3.05	5.14 103 10.3 5.14	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
SL-225-SA6-SB-3.0-4.0	BORON SODIUM TIN Zirconium	j	1.63 100 2.90 3.33	5.31 106 10.6 5.31	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)

Method: 5020 Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-007-SA6-SB-1.0-2.0	ANTIMONY CADMIUM SELENIUM	J J	0.101 0.0585 0.0613	0.209 0.104 0.417	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-037-SA6-SB-4.0-5.0	ANTIMONY SELENIUM SILVER	J J	0.103 0.106 0.0330	0.201 0.402 0.100	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-037-SA6-SB-9.0-10.0	ANTIMONY SELENIUM SILVER	J J	0.144 0.0771 0.0467	0.227 0.453 0.113	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-191-SA6-SB-0.0-1.0	SELENIUM SILVER	J	0.0608 0.0948	0.398 0.0995	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-206-SA6-SB-4.0-5.0	ANTIMONY SILVER	J	0.132 0.0261	0.207 0.104	PQL PQL	mg/Kg mg/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 11:27:02 AM ADR version 1.4.0.111 Page 1 of 3

Reporting Limit Outliers

Lab Reporting Batch ID: DE261 Laboratory: LL

EDD Filename: DE261_v1. eQAPP Name: CDM_SSFL_110509

MDiajorei:	5020			ren (Volumer 45	
Matrix:	SO		Lawson College		

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-225-SA6-SB-3.0-4.0	ANTIMONY SELENIUM SILVER	J J J	0.157 0.138 0.0489	0.215 0.429 0.107	PQL PQL PQL	mg/Kg mg/Kg ma/Ka	J (all detects)

iliaineae anisee

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-037-SA6-SB-4.0-5.0	HEXAVALENT CHROMIUM	J	0.41	1.1	PQL	mg/Kg	J (all detects)
SL-037-SA6-SB-9.0-10.0	HEXAVALENT CHROMIUM	J	0.27	1.2	PQL	mg/Kg	J (all detects)
SL-225-SA6-SB-3.0-4.0	HEXAVALENT CHROMIUM	J	0.21	1.0	PQL	mg/Kg	J (all detects)

Method: 7471A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-007-SA6-SB-1.0-2.0	MERCURY	J	0.0112	0.102	PQL	mg/Kg	J (all detects)
SL-037-SA6-SB-4.0-5.0	MERCURY	J	0.0105	0.103	PQL	mg/Kg	J (all detects)
SL-037-SA6-SB-9.0-10.0	MERCURY	J	0.0107	0.109	PQL	mg/Kg	J (all detects)
SL-191-SA6-SB-0.0-1.0	MERCURY	J	0.0347	0.0986	PQL	mg/Kg	J (all detects)

Wethod : 8015เท

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-037-SA6-SB-9.0-10.0	EFH (C15-C20)	J	0.55	1.4	PQL	mg/Kg	J (all detects)
SL-206-SA6-SB-4.0-5.0	EFH (C15-C20)	J	0.76	1.3	PQL	mg/Kg	J (all detects)
SL-225-SA6-SB-3.0-4.0	EFH (C21-C30)	J	1.0	1.3	PQL	mg/Kg	J (all detects)

Mainorn siverus

Matrix: 50

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-037-SA6-SB-4.0-5.0	BIS(2-ETHYLHEXYL)PHTHALATE	J	19	340	PQL	ug/Kg	J (all detects)
SL-191-SA6-SB-0.0-1.0	BIS(2-ETHYLHEXYL)PHTHALATE	J	190	330	PQL	ug/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 11:27:02 AM ADR version 1.4.0.111 Page 2 of 3

Reporting Limit Outliers

Lab Reporting Batch ID: DE261 Laboratory: LL

EDD Filename: DE261_v1. eQAPP Name: CDM_SSFL_110509

Method: 8270C SIN Matrix: SO					Saliga (ES)	Suid (Tobasia	
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-037-SA6-SB-4.0-5.0	CHRYSENE NAPHTHALENE	J	0.41 0.77	1.7 1.7	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-191-SA6-SB-0.0-1.0	ACENAPHTHYLENE ANTHRACENE DIBENZO(A,H)ANTHRACENE NAPHTHALENE	J	0.42 0.74 1.6 0.78	1.7 1.7 1.7 1.7	PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)

SD(Lab	C#: <u>26864E4</u> G#: <u>DE261</u> oratory: <u>Lancaster Laborate</u> THOD: Metals (EPA SW 84	<u>ories</u>	-		ADR	NES	S WORKSHEET	2	Date: 1/4/1 Page: lof / Reviewer: with the control of the control
The valid	samples listed below were dation findings worksheets.	revie	wed for ea	ch of the fo	ollowing	valid	ation areas. Validatio	on findings	are noted in attached
	Validation	Area		·			Comm	ents	
<u>I</u> .	. Technical holding times			N	Sampling	dates	s:		
11	I. ICP/MS Tune			μ		 			
II:	I. Calibration			'n,					******. *
١٧	/. Blanks			Sw					
V	/. ICP Interference Check San	nple (IC	S) Analysis	N					
٧	Matrix Spike Analysis	,		N5W	10%	% ≻			
VI	II. Duplicate Sample Analysis			ΝĄ	١ .				
VI	II. Laboratory Control Samples	(LCS)		N A	5/21	Λ			
ΙX	K. Internal Standard (ICP-MS)			N		1			
Х	K. Furnace Atomic Absorption	QC		N				·	
X	I. ICP Serial Dilution			54	Ba,	Co	, cu, Pb Ni,	3h J	147
ΧI	II. Sample Result Verification			N	<i>'</i>	•		.,	,
XII	II. Overall Assessment of Data			N					
ΧIV	V. Field Duplicates			N					
χ	V Field Blanks			IJ	·		•		·
Note:			R = Rin:	o compounds sate eld blank	detected	<u> </u>	D = Duplicate TB = Trip blank EB = Equipment blan	k	
1	SL-007-SA6-SB-1.0-2.0	11		· · · · · · · · · · · · · · · · · · ·		21		31	
2	SL-037-SA6-SB-4.0-5.0	12				22		32	
3	SL-037-SA6-SB-9.0-10.0	13				23	,	33	
4	SL-191-SA6-SB-0.0-1.0	14				24		34	
5	SL-206-SA6-SB-4.0-5.0	15				25		35	
		1							,
6	SL-225-SA6-SB-3.0-4.0	16				26	····	36	
7	 	17				27		37	

8	18	28	38
9	19	29	39
10	20	30	40
Notes:			

VALIDATION FINDINGS WORKSHEET	PB/ICB/CCB QUALIFIED SAMPLES
LDC #: 26864E4	

Reviewer:__ Page:

> Sample Concentrat METHOD: Trace m

L'evidwel.	2nd Reviewer:	 	
ביי	2nd Re		
		ı: B	
ادِ	Soil preparation factor applied: Sb:200X, Hg: 167X	Reason: B	တ
ביייים בייים הישלאלים לילים לי	oplied: Sb:2	All	ro.
	ion factor at	samples:	4
	Soil preparat	Associated Samples:	ო
		+	2
	1B/6020/70	: mg/Kg	, -
	thod 6010	vise noted	Action Limit
	3W 864 Me	less otherw	Maximum ICB/CCB* (ug/L)
	D: Trace metals (EPA SW 864 Method 6010B/6020/7000)	oncentration units, unless otherwise noted: mg/	Maximum Maximum Maximum PB* ICB/CCB* (ug/L) (ug/L)
	Trace me	Concentration	Maximum PB* (mg/Kg)
	_	\sim 1	

0.16

0.13

0.26

0.14 0.011

0.10 0.011

0.10 0.011

0.30 0.035

0.30 0.042

되 හි

Analyte

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

QUALITY ASSURANCE SUMMARY FORM 5A (MS/MSD)

MATRIX SPIKE/MATRIX SPIKE DUPLICATE SDG No.: DE262 Matrix: SOIL

Level (low/med): LOW

Matrix Spike Duplicate Lab Sample ID: 6430030MSD Matrix Spike Lab Sample ID: 6430029MS Background Lab Sample ID: 6430028BKG

& Solids for	ည်း	91.7				-						
Batch Id(s):	P2	P27926B,		Men Cample	MS Snike	MSD Spike	MS	MSD		Control L	Limit	
	1		MS Sampre	s۱۶			&R O	8R Q	RPD Q	28	RPD M	
Analyte	Mass	Regult	, (7100	03000	15	គ	1457	2	3	20P	1
Aluminum		23997.5577	28040.6932	•	213.0200	1 2957 MG/KG	44 N	47 N	9	75 - 125	20MS	N N
Antimony	121	0.2690	0.8248	*	7175	2 1594MG/KG	σ α	123	80	75 - 125	20MS	
Arsenic	75	7.2145	9.1074	" ;	• 1	10 7972 MG/KG	36	103	Ľ	747	20 MS	
Barium	137	146.7488	150.8931	157.8344			6	109	9	75 - 125	20MS	
Beryllium	Q.	1.0514	1.8761	1.9951	عاد	י בי	86	9.5	2	84 - 115	20P	+
Boron		2.9326B	214.2987	209.0858	215.9431	.012	101	128 N	10	- 12	20MS	3
Cadmium	111	0.0910B	1.3717	1.4742		0000	137		0	707	20P	
Calcium		2316.4047	2900.4168	2900.5204		431.5582	26	103	4	75 - 125	20 MS	-
Chromium	52	29.	39.1102	40.5109	10.5875	TO: /3/6	200	127 N	L.	75 - 125	20MS	かんけ
Cobalt	59	9	73.7102	77,8259	52.9375	Ì	2011		4	75 - 125	20MS	Ż
Copper	63	τ	23.9913	25.0926	10.5875		770		ŭ	77.6	20P	
Tron		25723.3175	26754.2669	25160.2827	106.9130	레	7 0	4 10 5	, 4	75- 75	20 MS	
Tead	208	8.0270	11,3922	12.0820	3.1763		700	200	5 -	4114	auc	
Lithium		27.8434	139,1095	138.2079	107.9715	107	103	707	j (79) C	3 00	
W. Cook		5855,5071	6416.2967	6034,2551	213.8260	215	262	2 2	0		2 0 0	
Magricone		353 2298	377.9997	380,1851	53.9858	2	46	20	7	,	2000	
Maligailebe	_	_	1798	0.1757	0.1762	0.1766 MG/KG	ტ ტ	91	7	7	2002	
Mercury			0.4.0	14 8487	10. 5875	[125	m	75 - 125	20 MS	
Molybdenum	98		14.1210	באספים בר	10 5875			123	9	75 - 125	20MS	
Nickel	60		31,0002	32,9904	100 001			93	4	75 - 125	20P	-,
Phosphorus		183.7503	294.3196	483.8/34	1010.37.53			130 N	F	75 - 125	20E	斉
Potassium		2083.5514	3441.9038	3488.5043	*CT/ 8/0T	6/01	100	1 2 2	F	75 - 125	SOMS	
Selenium	78		2.2530	2.5244	2.117	A TOTAL OF		129 N	9	1	20MS	
Silver	107		13.2068	14.0298	1020 7174	-	1	95	-	- 12	20 P	
Sodium		130.0458	1163.4387	1154.3475	#CT/ 6/0T	1	2 6	95	1	[2	20P	,
Strontium		21.7493	126.2673		107.9715	O -1		12.5	α	1	20MS	7
Thallium	203	0.3795	0.8745		0.4235			1 0		0 - 11	_))
T-L			405.7624	398.5165	431.8862			25.0	¥ F	113	200	
Thiranium		1393.0646	1663.9613	-	107.9715	7	7	7/7	- 1	\ \ \ \	SMOC	 -
Vanadium	51	59,0801	67.1671		10.5875			707	, -	70.6	20MS	-
Zinc	99		81,8626		힑	01	2 6	7 00	F C	011-12	╀	_
Zirconium	1		110.3825	109,8913	107.9715	107.9715MG/ KG		96	5	1		7
	1											

CV = Cold Vapor METHODS: N P = ICP Atomic Emission Spectrometer C MS = ICM Mass Spectrometry

AF = Cold Vapor Atomic Fluorescence

FLAGS:

U= Below MDL, B= Below LOQ CONCENTRATION QUALIFIERS:

N = Matrix Spike OOS, * = Duplicate OOS

SAMPLE DELIVERY GROUP

DE262

Attachment I

Sample ID Cross Reference and Data Review Level

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
05-Oct-2011	TB-100511	6430037	ТВ	3520C	1625C	111
05-Oct-2011	TB-100511	6430038	ТВ	3546	1625C	Ш
05-Oct-2011	TB-100511	6430039	ТВ	5030B	8015M	111
05-Oct-2011	SL-301-SA6-SB-4.0-5.0	6430034	N	3050B	6010B	Ш
05-Oct-2011	SL-301-SA6-SB-4.0-5.0	6430034	N	3050B	6020	III
05-Oct-2011	SL-301-SA6-SB-4.0-5.0	6430034	N	3060A	7199	111
05-Oct-2011	SL-301-SA6-SB-4.0-5.0	6430034	N	3550B	8082	111
05-Oct-2011	SL-301-SA6-SB-4.0-5.0	6430034	N	3550B	8270C	III
05-Oct-2011	SL-301-SA6-SB-4.0-5.0	6430034	N	3550B	8270C SIM	III
05-Oct-2011	SL-301-SA6-SB-4.0-5.0	6430034	N	METHOD	300.0	111
05-Oct-2011	SL-301-SA6-SB-4.0-5.0	6430034	N	METHOD	314.0	Ш
05-Oct-2011	SL-301-SA6-SB-4.0-5.0	6430034	N	METHOD	7471A	Hi
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	3050B	6010B	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	3050B	6020	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	3060A	7199	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	3546	1625C	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	3550B	8015B	H
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	3550B	8015M	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	3550B	8082	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	3550B	8270C	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	3550B	8270C SIM	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	5035	8015M	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	8330	8330A	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N :	METHOD	300.0	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	METHOD	314.0	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	METHOD	7471A	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	METHOD	8015B	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	METHOD	8015M	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	METHOD	8315A	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0	6430028	N	METHOD	9012B	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	3050B	6010B	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	3050B	6020	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	3060A	7199	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	3546	1625C	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	3550B	8015B	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	3550B	8015M	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	3550B	8082	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	3550B	8270C	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	3550B	8270C SIM	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	5035	8015M	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	8330	8330A	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	METHOD	300.0	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	METHOD	314.0	HI
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	METHOD	7471A	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	METHOD	8015B	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	METHOD	8015M	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	METHOD	8315A	HI
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MS	6430029	MS	METHOD	9012B	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	3050B	6010B	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	3050B	6020	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	3546	1625C	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	3550B	8015B	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	3550B	8015M	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	3550B	8082	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	3550B	8270C	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	3550B	8270C SIM	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	5035	8015M	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	8330	8330A	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	METHOD	7 <u>4</u> 71A	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	METHOD	8015B	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	METHOD	8015M	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0MSD	6430030	MSD	METHOD	8315A	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0DUP	6430031	DUP	3050B	6010B	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0DUP	6430031	DUP	3050B	6020	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0DUP	6430031	DUP	3060A	7199	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0DUP	6430031	DUP	METHOD	300.0	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0DUP	6430031	DUP	METHOD	314.0	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0DUP	6430031	DUP	METHOD	7471A	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0DUP	6430031	DUP	METHOD	9012B	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0RLMS	6430032	N	3550B	8015B	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0RLMS	6430032	N	3550B	8015M	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0RLMS	6430032	N	3550B	8082	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0RLMS	6430032	N	8330	8330A	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0RLMS	6430032	N	METHOD	8015B	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0RLMS	6430032	N	METHOD	8315A	!!!
05-Oct-2011	SL-319-SA6-SB-4.0-5.0RLLC	6430033	N	3550B	8015B	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0RLLC	6430033	N	3550B	8015M	Ш
05-Oct-2011	SL-319-SA6-SB-4.0-5.0RLLC	6430033	N	3550B	8082	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
05-Oct-2011	SL-319-SA6-SB-4.0-5.0RLLC	6430033	N	8330	8330A	III
05-Oct-2011	SL-319-SA6-SB-4.0-5.0RLLC	6430033	N	METHOD	8015B	111
05-Oct-2011	SL-319-SA6-SB-4.0-5.0RLLC	6430033	N	METHOD	8315A	Ш
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	3050B	6010B	III
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	3050B	6020	III
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	3060A	7199	III
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	3546	1625C	111
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	3550B	8015B	III
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	3550B	8015M	Ш
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	3550B	8082	111
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	3550B	8270C	III
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	3550B	8270C SIM	Ш
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	5035	8015M	111
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	8330	8330A	Ш
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	METHOD	300.0	Ш
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	METHOD	314.0	III
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	METHOD	7471A	Ш
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	METHOD	8015B	Ш
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	METHOD	8015M	111
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	METHOD	8315A	Ш
05-Oct-2011	DUP16-SA6-QC-100511	6430035	FD	METHOD	9012B	III
05-Oct-2011	EB-SA6-SB-100511	6430040	EΒ	3005A	6010B	III
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	3020A	6020	Ш
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	3510C	8015B	Ш
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	3510C	8015M	Ш
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	3510C	8082	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	3510C	8270C	III
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	3510C	8270C SIM	III
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	3520C	1625C	HI
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	5030B	8015M	III
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	5030B	8260B	111
05-Oct-2011	EB-SA6-SB-100511	6430040	ЕВ	5030B	8260B SIM	III
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	8330	8330A	Ш
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	Gen Prep	300.0	Ш
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	Gen Prep	314.0	Ш
05-Oct-2011	EB-SA6-SB-100511	6430040	EΒ	Gen Prep	7199	III
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	Gen Prep	8015B	111
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	Gen Prep	8015M	Ш
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	Gen Prep	9012B	Ш
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	METHOD	7470A	111
05-Oct-2011	EB-SA6-SB-100511	6430040	EB	METHOD	8315A	Ш
05-Oct-2011	EB-SA6-SB-100511MSD	P430040M321723A	MSD	Gen Prep	8015M	111
05-Oct-2011	EB-SA6-SB-100511MS	P430040R321710A	MS	Gen Prep	8015M	III
05-Oct-2011	EB-SA6-SB-100511	6430036	EB	3520C	1625C	111

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DE262 Laboratory: LL

EDD Filename: DE262_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 300.0 Matrix: SO	

Sample ID: DUP16-SA6-QC-100511	Collec	Collected: 10/5/2011 10:35:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	1.7		0.86	MDL.	1.1	PQL	mg/Kg	J	Q

Sample ID: SL-301-SA6-SB-4.0-5.0	Collected: 10/5/2011 8:25:00				nalysis Ty	ype: RES	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	3.4		0.87	MDL	1.1	PQL	mg/Kg	J	Q	

Sample ID: SL-319-SA6-SB-4.0-5.0	Collect	Collected: 10/5/2011 10:15:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
FLUORIDE	1.5		0.86	MDL	1.1	PQL	mg/Kg	J	Q		
Nitrate-NO3	1.3	J	0.86	MDL	1.6	PQL	mg/Kg	J	Z		

Method Category:	METALS
Method:	6010B Matrix: AQ

Sample ID: EB-SA6-SB-100511	Collected: 10/5/2011 2:00:00				nalysis Ty	/pe: REA	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Tuno	Units	Data Review Qual	Reason Code
Analyte	Nesuit	Quai		rype	<u> </u>	Туре	OIIIIS	Quai	Code
STRONTIUM	0.00030	J	0.00022	MDL	0.0050	PQL	mg/L	U	В

Method Category: METALS		To the sample of the same of t
The second secon		The first and the second of th
Method: 6010B	Matrix:	SO THE PROPERTY OF THE PROPERT

Sample ID: DUP16-SA6-QC-100511	Collec	Collected: 10/5/2011 10:35:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	1.79	J	0.382	MDL	5.31	PQL	mg/Kg	U	В
POTASSIUM	2180		12.0	MDL	53.1	PQL	mg/Kg	J	Q
TIN	3.06	J	0.340	MDL	10.6	PQL	mg/Kg	U	В
Zirconium	4.45	J	0.488	MDL	5.31	PQL.	mg/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE262

Laboratory: LL

EDD Filename: DE262_v1.

eQAPP Name: CDM_SSFL_110509

Method Category	METALS	···
Method:	S010B Matrix: SO	
mediod.	Mauix. SQ	e communication is

Sample ID: SL-301-SA6-SB-4.0-5.0	Collec	Collected: 10/5/2011 8:25:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	1.55	J	0.378	MDL	5.25	PQL	mg/Kg	U	В
POTASSIUM	1500		11.9	MDL	52.5	PQL	mg/Kg	J	Q
TIN	2.85	J	0.336	MDL	10.5	PQL	mg/Kg	U	В
Zirconium	3.93	J	0.483	MDL	5.25	PQL	mg/Kg	J	Z

ample ID: SL-319-SA6-SB-4.0-5.0	Collec	Collected: 10/5/2011 10:15:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	2.93	J	0.385	MDL	5.35	PQL	mg/Kg	J	Z
POTASSIUM	2080		12.1	MDL	53.5	PQL	mg/Kg	J	Q
TIN	2.95	J	0.342	MDL	10.7	PQL	mg/Kg	U	В
Zirconium	3.86	j	0.492	MDL	5.35	PQL	mg/Kg	J	Z

Method Category: METALS Method: 6020 Matrix: SO
--

Sample ID: DUP16-SA6-QC-100511	Collect	Collected: 10/5/2011 10:35:00					Analysis Type: REA				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
SELENIUM	0.0686	J	0.0621	MDL	0.429	PQL	mg/Kg	J	Z		

Sample ID: DUP16-SA6-QC-100511	Collected: 10/5/2011 10:35:00				Inalysis T	ype: REA	.3	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BARIUM	112		0.114	MDL	0.429	PQL	mg/Kg	J	Α	35.4

Sample ID: DUP16-SA6-QC-100511	Collec	ted: 10/5/2	011 10:35	:00 A	nalysis Ty	/pe: RES	i	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.180	J	0.0793	MDL	0.214	PQL	mg/Kg	UJ	Q, B	
CADMIUM	0.0778	J	0.0471	MDL	0.107	PQL	mg/Kg	J	Z, Q	
COBALT	8.31		0.0214	MDL	0.107	PQL	mg/Kg	J	Q, A	
COPPER	9.33		0.0857	MDL	0.429	PQL	mg/Kg	J	Q, A	
LEAD	6.38		0.0109	MDL	0.214	PQL	mg/Kg	J	Α	
NICKEL	14.8		0.107	MDL	0.429	PQL	mg/Kg	J	Α	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 1:50:35 PM

ADR version 1.4.0.111

Page 2 of 12

Lab Reporting Batch ID: DE262

Laboratory: LL

Page 3 of 12

EDD Filename: DE262_v1.

eQAPP Name: CDM_SSFL_110509

Method Category:	METALS	ing Marking and Marketin	Addis de Chi de La	
Method:	6020	Matrix:	SO THE STATE OF	

Sample ID: DUP16-SA6-QC-100511	Collec	Collected: 10/5/2011 10:35:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SILVER	0.117		0.0152	MDL	0.107	PQL	mg/Kg	J	Q
THALLIUM	0.312		0.0321	MDL	0.107	PQL	mg/Kg	j	Q
ZINC	67.8		0.600	MDL	3.21	PQL	mg/Kg	J	Α

Sample ID: SL-301-SA6-SB-4.0-5.0	Collect	ted: 10/5/2	011 8:25:0	0 A	nalysis Ty	ype: REA	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.106	J	0.0621	MDL	0.429	PQL	mg/Kg	J	Z

Sample ID: SL-301-SA6-SB-4.0-5.0	Collec	Collected: 10/5/2011 8:25:00				ype: REA	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
		ATTENET HILL (AVEILUA)		100000000000000000000000000000000000000	lonesterd lateral right, st.		o Charlesta Maria	er an ar selektroperin kij kijih	uning sauce seem as some sile, highly
BARIUM .	112		0.114	MDL	0.429	PQL	mg/Kg	J	Α

Sample ID: SL-301-SA6-SB-4.0-5.0	Collec	ted: 10/5/2	011 8:25:0	0 A	nalysis T	/pe: RES		Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.173	J	0.0793	MDL	0.214	PQL	mg/Kg	UJ	Q, B	
CADMIUM	0.0709	J	0.0471	MDL	0.107	PQL	mg/Kg	J	Z, Q	
COBALT	10.5		0.0214	MDL	0.107	PQL	mg/Kg	J	Q, A	
COPPER	8.09		0.0857	MDL	0.429	PQL	mg/Kg	J	Q, A	
LEAD	7.65		0.0109	MDL	0.214	PQL	mg/Kg	J	Α	
NICKEL	16.8		0.107	MDL	0.429	PQL	mg/Kg	J	Α	
SILVER	0.0739	J	0.0152	MDL	0.107	PQL	mg/Kg	J	Z, Q	
THALLIUM	0.284		0.0321	MDL	0.107	PQL	mg/Kg	J	Q	
ZINC	58.3		0.600	MDL	3.21	PQL	mg/Kg	J	Α	

Sample ID: SL-319-SA6-SB-4.0-5.0	Collect	.00 A	Analysis Type: REA				Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.0908	J	0.0620	MDL	0.428	PQL	mg/Kg	J	Z

1/6/2012 1:50:35 PM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE262

EDD Filename: DE262_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

	5.0 Colle	ected: 10/5/2011 10:15:00	Analysis Type: REA3	Dilution: 2
Method Category: ME Method: 602	TALS 20	Matrix:	so	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	147		0.113	MDL	0.428	PQL	mg/Kg	J	Α

Sample ID: SL-319-SA6-SB-4.0-5.0 Collected: 10/5/2011 10:15:00 Analysis Type: RES Dilution: 2 Data Lab Lab DL RLReview Reason Analyte Result Qual DL Туре RL Туре Units Qual Code ANTIMONY 0.269 0.0791 MDL 0.214 PQL mg/Kg IJ Q, B CADMIUM 0.0910 J 0.0470 MDL 0.107 Z, Q **PQL** mg/Kg J COBALT 9.38 0.0214 MDL 0.107 PQL mg/Kg J Q, A COPPER 11.5 0.0855 MDL 0.428 **PQL** J Q, A mg/Kg LEAD 8.03 0.0109 MDL 0.214 PQL mg/Kg J Α NICKEL 19.7 0.107 MDL 0.428 PQL J mg/Kg Α SILVER 0.129 0.0152 MDL 0.107 PQL mg/Kg J Q THALLIUM 0.380 0.0321 MDL 0.107 PQL J mg/Kg Q ZINC 75.5 0.599 MDL 3.21 **PQL** mg/Kg Α

Method Category: METALS Method: 7199	Matrix: SO
Method:	Matrix. 30

Sample ID: DUP16-SA6-QC-100511	Collec	Collected: 10/5/2011 10:35:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.49	J	0.22	MDL	1.1	PQL	ma/Ka	J	7 FD

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.49	J	0.22	MDL	1.1	PQL	mg/Kg	J	Z, FD
Sample ID: SL-301-SA6-SB-4.0-5.0	Collect	ted: 10/5/2	011 8:25:0	00 4	Analysis T	ype: RES	i		Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.24	J	0.21	MDL	1.0	PQL	mg/Kg	J	Z

Sample ID: SL-319-SA6-SB-4.0-5.0	Collected: 10/5/2011 10:15:00				Analysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
HEXAVALENT CHROMIUM	0.22	J	0.21	MDL	1.0	PQL	mg/Kg	J	Z, FD	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 1:50:35 PM

ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE262

Laboratory: LL

EDD Filename: DE262_v1.

eQAPP Name: CDM SSFL 110509

—		_	_
Method Category: METALS Method: 7470A	Matrix: AQ		

Sample ID: EB-SA6-SB-100511 Collected: 10/5/2011 2:00:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRL Review Reason DL RL Analyte Result Qual Туре Туре Units Qual Code 0.00002 MERCURY 0.000056 MDL 0.00020 PQL U mg/L B, B

Sample ID: DUP16-SA6-QC-100511	Collected: 10/5/2011 10:35:00				Analysis Ty	/pe: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0102	J	0.0074	MDL	0.106	PQL	mg/Kg	U	B, F

Sample ID: SL-301-SA6-SB-4.0-5.0	Collec	Collected: 10/5/2011 8:25:00				ype: RES		Dilution: 1		
Analyto	Lab Result	Lab Qual	DL	DL	RL	RL Tymo	Units	Data Review	Reason	
Analyte	Resuit	Quai	DL	Type	KL	Type	Units	Qual	Code	
MERCURY	0.0198	J	0.0075	MDL	0.106	PQL	mg/Kg	U	B, F	

Sample ID: SL-319-SA6-SB-4.0-5.0	Collec	Collected: 10/5/2011 10:15:00				ype: RES	i	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MERCURY	0.0152	J	0.0073	MDL	0.104	PQL	mg/Kg	U	B, F	22

Mathed Category SVOA	
Method Category. SVCA	and a Marine and a programmer of the contract
Method: 1625C	Matrix: AO

Sample ID: EB-SA6-SB-100511	Collected: 10/5/2011 2:00:00				Analysis Ty	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
		3217WERR - 01010 - 480	56.000000000000000000000000000000000000			200000000000000000000000000000000000000	usui jania sinami	Consumation tendency (Not)	
N-NITROSODIMETHYLAMINE	2.69		0.491	MDL	0.982	PQL	ng/L	J	S

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 1:50:35 PM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE262

Laboratory: LL

EDD Filename: DE262_v1. eQAPP Name: CDM_SSFL_110509

Sample ID: EB-SA6-SB-100511	Collec	Collected: 10/5/2011 2:00:00					Analysis Type: REA			
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ETHYLENE GLYCOL	20	U	20	MDL	200	PQL	mg/L	UJ	Q	
Propylene glycol	20	U	20	MDL	200	PQL	mg/L	UJ	Q	

Method Category: SVOA Method: 8015M Matrix: SO

Sample ID: DUP16-SA6-QC-100511	Collected: 10/5/2011 10:35:00				Analysis T	ype: REA	2	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code	
EFH (C30-C40)	11		0.44	MDL	1.3	PQL	mg/Kg	J	FD	

Sample ID: SL-319-SA6-SB-4.0-5.0	Collec	Collected: 10/5/2011 10:15:00 Analysis Type: REA2						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
EFH (C21-C30)	1.9		0.44	MDL	1.3	PQL	mg/Kg	J	Q	
EFH (C30-C40)	5.9		0.44	MDL	1.3	PQL	ma/Ka	J	Q. FD	

Sample ID: SL-319-SA6-SB-4.0-5.0	Collec	Collected: 10/5/2011 10:15:00					Analysis Type: RES			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
DIETHYLENE GLYCOL	5.5	U	5.5	MDL	11	PQL	mg/Kg	UJ	Q	
ETHYLENE GLYCOL	5.5	U	5.5	MDL	11	PQL	mg/Kg	UJ	Q	
Propylene glycol	5.5	U	5.5	MDL	11	PQL	mg/Kg	UJ	Q	

Method Category: SVOA	
Methou: AQ	

Sample ID: EB-SA6-SB-100511 Analyte	Collec	Collected: 10/5/2011 2:00:00					Analysis Type: RES-BASE/NEUTRAL Dilution: 1					
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
AROCLOR 1016	0.099	U	0.099	MDL	0.50	PQL	ug/L	UJ	E			
AROCLOR 1221	0.099	U	0.099	MDL	0.50	PQL	ug/L	UJ	E			
AROCLOR 1232	0.20	υ	0.20	MDL	0.50	PQL	ug/L	UJ	E			
AROCLOR 1242	0.099	U	0.099	MDL.	0.50	PQL	ug/L	UJ	E			
AROCLOR 1248	0.099	U	0.099	MDL	0.50	PQL	ug/L	UJ	Е			

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 1:50:35 PM ADR version 1.4.0.111 Page 6 of 12

Lab Reporting Batch ID: DE262

Laboratory: LL

EDD Filename: DE262_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 8082 Matrix:	AQ
---	----

Sample ID: EB-SA6-SB-100511 Analyte	Collec	Collected: 10/5/2011 2:00:00					Analysis Type: RES-BASE/NEUTRAL Dilution:				
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
AROCLOR 1254	0.099	U	0.099	MDL	0.50	PQL	ug/L	UJ	E		
AROCLOR 1260	0.15	U	0.15	MDL	0.50	PQL	ug/L	UJ	E		
Aroclor 1262	0.20	U	0.20	MDL	0.50	PQL	ug/L	UJ	E		
Aroclor 1268	0.16	U	0.16	MDL	0.50	PQL	ug/L	UJ	E		

Method Category: SVOA Method: 8082 Matrix: SO	
motion. Induity. CO	N. C.

Sample ID: DUP16-SA6-QC-100511	Collec	ted: 10/5/2	011 10:35	:00 A	Analysis Type: RES-BASE/NEUTRAL Dilution: 1					
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
AROCLOR 1254	0.36	U	0.36	MDL	1.9	PQL	ug/Kg	บม	FD	
AROCLOR 1260	0.43	U	0.43	MDL	1.9	PQL	ug/Kg	UJ	FD	

Sample ID: SL-319-SA6-SB-4.0-5.0	Collec	Collected: 10/5/2011 10:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
AROCLOR 1254	0.55	J	0.36	MDL	1.9	PQL	ug/Kg	J	Z, FD	
AROCLOR 1260	1.0	J	0.43	MDL	1.9	PQL	ug/Kg	J	Z, FD	

Sample ID: SL-319-SA6-SB-4.0-5.0RLLCS	Collec	Collected: 10/5/2011 10:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
AROCLOR 1016	2.0		0.33	MDL	1.7	PQL	ug/Kg	J	S	
AROCLOR 1260	2.1		0.39	MDL	1.7	PQL	ug/Kg	J	S	

Sample ID: SL-319-SA6-SB-4.0-5.0RLMS	Collec	Collected: 10/5/2011 10:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution:							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	2.1		0.36	MDL	1.8	PQL	ug/Kg	j	S
AROCLOR 1260	2.4		0.42	MDL	1.8	PQL	ug/Kg	J	S

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 1:50:35 PM ADR version 1.4.0.111

012 1:50:35 PM ADR version 1.4.0.111 Page 7 of 12

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE262

Laboratory: LL

EDD Filename: DE262_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 8270C Matrix:

Sample ID: SL-319-SA6-SB-4.0-5.0 Collected: 10/5/2011 10:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZIDINE	1300	U	1300	MDL	3600	PQL	ug/Kg	R	Q
BIS(2-ETHYLHEXYL)PHTHALATE	28	J	18	MDL	360	PQL	ug/Kg	J	Z

Method Category: SVOA Method: 8270C SIM Matrix: AQ

Sample ID: EB-SA6-SB-100511

Collected: 10/5/2011 2:00:00

Analysis Type: RES-BASE/NEUTRAL

SO

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.11	J	0.048	MDL	0.95	PQL	ug/L	J	Z
Diethylphthalate	0.26	J	0.048	MDL	0.95	PQL	ug/L	J	Z
Di-n-butylphthalate	0.70	J	0.048	MDL	0.95	PQL	ug/L	J	Z
NAPHTHALENE	0.034	J	0.029	MDL	0.048	PQL	ug/L	J	Z

Method Category SVOA 8270C SIM Method: Matrix: SO

Sample ID: DUP16-SA6-QC-100511 Collected: 10/5/2011 10:35:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

									•	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BENZO(B)FLUORANTHENE	0.72	U	0.72	MDL	1.8	PQL	ug/Kg	UJ	FD	
BENZO(G,H,I)PERYLENE	0.72	U	0.72	MDL	1.8	PQL	ug/Kg	UJ	FD	
BENZO(K)FLUORANTHENE	0.72	U	0.72	MDL	1.8	PQL	ug/Kg	UJ	FD	
CHRYSENE	0.36	U	0.36	MDL	1.8	PQL	ug/Kg	UJ	FD	
FLUORANTHENE	0.72	U	0.72	MDL	1.8	PQL	ug/Kg	UJ	FD	
PHENANTHRENE	0.72	U	0.72	MDL	1.8	PQL	ug/Kg	UJ	FD	
PYRENE	0.72	U	0.72	MDL	1.8	PQL	ug/Kg	UJ	FD	

Sample ID: SL-301-SA6-SB-4.0-5.0 Collected: 10/5/2011 8:25:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(K)FLUORANTHENE	1.7	J	0.71	MDL	1.8	PQL	ug/Kg	J	Z
CHRYSENE	0.69	J	0.35	MDL	1.8	PQL	ug/Kg	j	Z
FLUORANTHENE	0.88	J	0.71	MDL	1.8	PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 1:50:35 PM

ADR version 1.4.0.111

Page 8 of 12

Lab Reporting Batch ID: DE262

EDD Filename: DE262_v1. eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method Category: SVOA Method: 8270C SIM Matrix: SO

Sample ID: SL-319-SA6-SB-4.0-5.0 Collected: 10/5/2011 10:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution:

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(B)FLUORANTHENE	1.1	J	0.72	MDL	1.8	PQL	ug/Kg	J	Z, FD
BENZO(G,H,I)PERYLENE	0.74	J	0.72	MDL	1.8	PQL	ug/Kg	J	Z, FD
BENZO(K)FLUORANTHENE	0.92	J	0.72	MDL	1.8	PQL	ug/Kg	J	Z, FD
CHRYSENE	1.4	J	0.36	MDL	1.8	PQL	ug/Kg	J	Z, FD
FLUORANTHENE	2.6		0.72	MDL	1.8	PQL	ug/Kg	J	FD
PHENANTHRENE	0.96	J	0.72	MDL	1.8	PQL	ug/Kg	J	Z, FD
PYRENE	1.9		0.72	MDL	1.8	PQL	ug/Kg	J	FD

Method Category: SVOA Method: 8330A Matrix: SO

Sample ID: SL-319-SA6-SB-4.0-5.0	Collected: 10/5/2011 10:15:00	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitroglycerin	870	U	870	MDL	2600	PQL	ug/Kg	UJ	Q
PETN	870	U	870	MDL	2600	PQL	ug/Kg	UJ	Q

* denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DE262 EDD Filename: DE262_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
Transport of the state of the s	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Page 10 of 12

Lab Reporting Batch ID: DE262 Laboratory: LL

EDD Filename: DE262_v1. eQAPP Name: CDM_SSFL_110509

nename. DLZUZ_vi	•	EWAPP Name, CDM_SSPL
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
l	Internal Standard Estimation	
1	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
М	Continuing Tune	
М	Initial Tune	
M	Performance Evaluation Mixture	
M	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	
	management of the second of th	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE262

EDD Filename: DE262_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/6/2012 1:50:35 PM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Enclosure I

Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DE262

Method Blank Outlier Report

Lab Reporting Batch ID: DE262

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DE262_v1.

Method: 601 Matrix: AQ	0B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P28448IB220323	10/14/2011 3:23:00 AM	STRONTIUM	0.00035 mg/l	EB-SA6-SB-100511

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-100511(REA)	STRONTIUM	0.00030 mg/L	0.00030U mg/L

Method: 6010B Matrix: SO							
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples			
P27908DB222239	10/16/2011 10:39:00 PM	BORON CALCIUM PHOSPHORUS STRONTIUM TIN	0.360 mg/Kg 10.1 mg/Kg 1.26 mg/Kg 0.0420 mg/Kg 1.39 mg/Kg	DUP16-SA6-QC-100511 SL-301-SA6-SB-4.0-5.0 SL-319-SA6-SB-4.0-5.0			

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP16-SA6-QC-100511(RES)	BORON	1.79 mg/Kg	1.79U mg/Kg
DUP16-SA6-QC-100511(RES)	TIN	3.06 mg/Kg	3.06U mg/Kg
SL-301-SA6-SB-4.0-5.0(RES)	BORON	1.55 mg/Kg	1.55U mg/Kg
SL-301-SA6-SB-4.0-5.0(RES)	TIN	2.85 mg/Kg	2.85U mg/Kg
SL-319-SA6-SB-4.0-5.0(RES)	TIN	2.95 mg/Kg	2.95U mg/Kg

Method: 7470 Matrix: AQ		Tail with the		
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P28313EB221002	10/11/2011 10:02:00 AM	MERCURY	0.000063 mg/L	EB-SA6-SB-100511

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-100511(RES)	MERCURY	0.000056 mg/L	0.000056U mg/L

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 1:01:59 PM ADR version 1.4.0.111 Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Outlier Report

Laboratory: LL EDD Filename: DE262_v1. Laboratory: LD eQAPP Name: CDM SSFL 110509

EDD Filename: DE262			eQAPP Name: CDN	/I_SSFL_110509			
Method: 8015M Matrix: AQ				d Carried			
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
EB-SA6-SB-100511MS EB-SA6-SB-100511MSD (EB-SA6-SB-100511)	ETHYLENE GLYCOL Propylene glycol	74 65	-	89.00-125.00 91.00-128.00	40 (20.00) 47 (20.00)	ETHYLENE GLYCOL Propylene glycol	J(all detects) UJ(all non-detects)
Method: 8015M Matrix: SO				i jur a	H		
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-319-SA6-SB-4.0-5.0MS SL-319-SA6-SB-4.0-5.0MSD (SL-319-SA6-SB-4.0-5.0)	DIETHYLENE GLYCOL ETHYLENE GLYCOL Propylene glycol	28 58 61	34 61 -	59.00-109.00 63.00-107.00 63.00-107.00	-	DIETHYLENE GLYCOL ETHYLENE GLYCOL Propylene glycol	J (all detects) UJ (all non-detects)
Method: 8330A Matrix: SO		fig. 1	ika je s		in A. Inc		
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-319-SA6-SB-4.0-5.0MSD (SL-319-SA6-SB-4.0-5.0)	Nitroglycerin PETN	-	76 79	80.00-120.00 80.00-121.00	-	Nitroglycerin PETN	J(all detects) UJ(all non-detects)
Method: 8015M Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-319-SA6-SB-4.0-5.0MS SL-319-SA6-SB-4.0-5.0MSD (SL-319-SA6-SB-4.0-5.0)	EFH (C21-C30) EFH (C30-C40)	- 171	135 251	49.00-123.00 49.00-123.00	-	EFH (C21-C30) EFH (C30-C40)	J(all detects)
Method: 6020 Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-319-SA6-SB-4.0-5.0MSD (DUP16-SA6-QC-100511 SL -301-SA6-SB-4.0-5.0 SL -319-SA6-SB-4.0-5.0)	CADMIUM COBALT COPPER SILVER THALLIUM	-	128 127 126 129 131	75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00	— — — — — — — — — — — — — — — — — — —	CADMIUM COBALT COPPER SILVER THALLIUM	J(all detects)
SL-319-SA6-SB-4.0-5.0MS SL-319-SA6-SB-4.0-5.0MSD (DUP16-SA6-QC-100511 SL-301-SA6-SB-4.0-5.0 SL-319-SA6-SB-4.0-5.0)	ANTIMONY ZINC	44 60	47	75.00-125.00 75.00-125.00	- -	ANTIMONY ZINC	J(all detects) UJ(all non-detects) Zn, No Qual, >4x

1/6/2012 1:39:10 PM ADR version 1.4.0.111 Page 1 of 3

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE262

Laboratory: LL

EDD Filename: DE262_v1. eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
L-319-SA6-SB-4.0-5.0MS DUP16-SA6-QC-100511 L-301-SA6-SB-4.0-5.0 L-319-SA6-SB-4.0-5.0)	BARIUM	39	-	75.00-125.00	-	BARIUM	No Qual, >4x

Matrix:	so	

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-319-SA6-SB-4.0-5.0MS SL-319-SA6-SB-4.0-5.0MSD (DUP16-SA6-QC-100511 SL-301-SA6-SB-4.0-5.0 SL-319-SA6-SB-4.0-5.0)	CALCIUM POTASSIUM TITANIUM	135 126 251	135 130 271	75.00-125.00 75.00-125.00 75.00-125.00	-	CALCIUM POTASSIUM TITANIUM	J(all detects) Ca, Ti, No Qual, >4x
SL-319-SA6-SB-4.0-5.0MS SL-319-SA6-SB-4.0-5.0MSD (DUP16-SA6-QC-100511 SL-301-SA6-SB-4.0-5.0 SL-319-SA6-SB-4.0-5.0)	MANGANESE	46	50	75.00-125.00	-	MANGANESE	No Qual, >4x

Method: 8270C Matrix: SO

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-319-SA6-SB-4.0-5.0MS SL-319-SA6-SB-4.0-5.0MSD (SL-319-SA6-SB-4.0-5.0)	BIS(2-CHLOROETHOXY)METHA ISOPHORONE	105 106	- 106	75.00-104.00 73.00-102.00	-	BIS(2-CHLOROETHOXY)METH ISOPHORONE	J(all detects)
SL-319-SA6-SB-4.0-5.0MS SL-319-SA6-SB-4.0-5.0MSD (SL-319-SA6-SB-4.0-5.0)	BENZIDINE	0	0	35.00-141.00	-	BENZIDINE	J(all detects) R(all non-detects)

Met) (6)	. 8	74	(1)(0	S	W
			30			
Mati	rix:	S	О			

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-319-SA6-SB-4.0-5.0MSD (SL-319-SA6-SB-4.0-5.0)	BIS(2-ETHYLHEXYL)PHTHALAT	-	195	39.00-167.00	44 (30.00)	BIS(2-ETHYLHEXYL)PHTHALA	J(all detects)

1/6/2012 1:39:10 PM ADR version 1.4.0.111 Page 2 of 3

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE262

Laboratory: LL

EDD Filename: DE262_v1.

eQAPP Name: CDM_SSFL_110509

Method: 300.0 Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL -319-SA6-SB-4.0-5.0MS (DUP16-SA6-QC-100511 SL -301-SA6-SB-4.0-5.0 SL -319-SA6-SB-4.0-5.0)	FLUORIDE	43	-	80.00-120.00	-	FLUORIDE	J(all detects) UJ(all non-detects)

Method: 6010B Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-319-SA6-SB-4.0-5.0MS SL-319-SA6-SB-4.0-5.0MSD (DUP16-SA6-QC-100511 SL -301-SA6-SB-4.0-5.0 SL -319-SA6-SB-4.0-5.0)	ALUMINUM MAGNESIUM	1891 262	1457	75.00-125.00 75.00-125.00	-	ALUMINUM MAGNESIUM	No Qual, >4x
SL-319-SA6-SB-4.0-5.0MS SL-319-SA6-SB-4.0-5.0MSD (DUP16-SA6-QC-100511 SL -301-SA6-SB-4.0-5.0 SL -319-SA6-SB-4.0-5.0)	IRON	964	-521	75.00-125.00	-	IRON	No Qual, >4x

1/6/2012 1:39:10 PM

Lab Duplicate Outlier Report

Lab Reporting Batch ID: DE262

Laboratory: LL

EDD Filename: DE262_v1. eQAPP Name: CDM_SSFL_110509

Method: 6010B Matrix: SO		di diriy.		
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-319-SA6-SB-4.0-5.0DUP (DUP16-SA6-QC-100511 SL-301-SA6-SB-4.0-5.0 SL-319-SA6-SB-4.0-5.0)	Zirconium	29	20.00	No Qual, OK by Difference
Method: 6020 Matrix: SO			ji jeri	
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-319-SA6-SB-4.0-5.0DUP (DUP16-SA6-QC-100511 SL-301-SA6-SB-4.0-5.0 SL-319-SA6-SB-4.0-5.0)	ANTIMONY	37	20.00	No Qual, OK by Difference
Method: 7199 Matrix: SO	A first the factor of the fact	Milerant		
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-319-SA6-SB-4.0-5.0DUP (DUP16-SA6-QC-100511 SL-301-SA6-SB-4.0-5.0 SL-319-SA6-SB-4.0-5.0)	HEXAVALENT CHROMIUM	200	20.00	No Qual, OK by Difference
Method: 7471A Matrix: SO			saltai	
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-319-SA6-SB-4.0-5.0DUP (DUP16-SA6-QC-100511 SL-301-SA6-SB-4.0-5.0 SL-319-SA6-SB-4.0-5.0)	MERCURY	35	20.00	No Qual, OK by Difference

1/6/2012 1:36:01 PM ADR version 1.4.0.111 Page 1 of 1

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE262 Laboratory: LL

EDD Filename: DE262_v1. eQAPP Name: CDM_SSFL_110509

EDD Filename: DE26	02_V1.		eQAPP Name: CDM_SSFL_110509					
Method: 8082 Matrix: AQ				vi.				
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag	
P12858AY241027A (EB-SA6-SB-100511)	AROCLOR 1016 AROCLOR 1260	-	-	51.00-128.00 56.00-135.00	47 (30.00) 54 (30.00)	AROCLOR 1016, 1221, 1232, 1242,1248, 1254, 1260, 1262, 1268	J (all detects) UJ (all non-detects)	
Method: 6020 Matrix: SO			k oz					
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag	
P27926BQ220650A (DUP16 -SA6-QC-100511 SL -301-SA6-SB-4.0-5.0 SL -319-SA6-SB-4.0-5.0)	ANTIMONY	124	-	80.00-120.00	-	ANTIMONY	No Qual, SRM within Limits	
Method: 8270C Matrix: SO								
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag	
P5LELCSQ260717 (DUP16 -SA6-QC-100511 SL -301-SA6-SB-4.0-5.0 SL -319-SA6-SB-4.0-5.0)	2,4,5-TRICHLOROPHENOL	109	-	76.00-107.00		2,4,5-TRICHLOROPHENOL	J(all detects)	

1/6/2012 1:28:09 PM ADR version 1.4.0.111 Page 1 of 1

Surrogate Outlier Report

Lab Reporting Batch ID: DE262

Laboratory: LL

EDD Filename: DE262_v1.

eQAPP Name: CDM_SSFL_110509

Method: 162: Matrix: AQ	5 C				
Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
EB-SA6-SB- 100511	N-Nitrosodimethylamine-d6 N-Nitrosodimethylamine-d6	336 323	50.00-150.00 50.00-150.00	All Target Analytes	J (all detects)

Metnoa: 8082 Matrix: SO

Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
SL-301-SA6-SB-4.0 -5.0	DECACHLOROBIPHENYL	122	45.00-120.00	All Target Analytes	J(all detects)
SL-319-SA6-SB-4.0 -5.0RLLCS	DECACHLOROBIPHENYL	128	45.00-120.00	All Target Analytes	J(all detects)
SL-319-SA6-SB-4.0 -5.0RLMS	DECACHLOROBIPHENYL	122	45.00-120.00	All Target Analytes	J(all detects)

Method: 8270C SIM

Matri		S	

Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
SL-301-SA6-SB-4.0 -5.0	Terphenyl-d14	150	45.00-135.00	No Affected Compounds	J(all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/6/2012 12:59:15 PM ADR version 1.4.0.111 Page 1 of 1

Field Duplicate RPD Report

Lab Reporting Batch ID: DE262

Laboratory: LL

EDD Filename: DE262_v1.

eQAPP Name: CDM_SSFL_110509

Sample eQAPP
Analyte SL-319-SA6-SB-4.0-5.0 DUP16-SA6-QC-100511 RPD RPD Flag

Method: 3000

Matrix: SO

	Concentrat	tion (mg/Kg)			
Analyte	SL-319-SA6-SB-4.0-5.0	DUP16-SA6-QC-100511	Sample RPD	eQAPP RPD	Flag
FLUORIDE Nitrate-NO3	1.5 1.3	1.7 1.8	12 32	50.00	No Qualifiers Applied

Method: 6010B

Matrix: SO

	Concentrat	ion (mg/Kg)			
Analyte	SL-319-SA6-SB-4.0-5.0	DUP16-SA6-QC-100511	Sample RPD	eQAPP RPD	Flag
ALUMINUM	24000	23100	4	50.00	
BORON	2.93	1.79	48	50.00	
CALCIUM	2320	2370	2	50.00	
IRON	25700	24800	4	50.00	
LITHIUM	27.8	28.3	2	50.00	
MAGNESIUM	5860	5580	5	50.00	
MANGANESE	353	363	3	50.00	Na Ovalisa - A liad
PHOSPHORUS	184	179	3	50.00	No Qualifiers Applied
POTASSIUM	2080	2180	5	50.00	
SODIUM	130	125	4	50.00	
STRONTIUM	21.7	22.8	5	50.00	1
TIN	2.95	3.06	4	50.00	
TITANIUM	1390	1450	4	50.00	
Zirconium	3.86	4.45	14	50.00	

Method: 6020 Matrix: SO

	Concentrat	ion (mg/Kg)			
Analyte	SL-319-SA6-SB-4.0-5.0	DUP16-SA6-QC-100511	Sample RPD	eQAPP RPD	Flag
ANTIMONY	0.269	0.180	40	50.00	
ARSENIC	7.21	5.98	19	50.00	
BARIUM	147	112	27	50.00	
BERYLLIUM	1.05	0.749	33	50.00	
CADMIUM	0.0910	0.0778	16	50.00	
CHROMIUM	29.4	23.0	24	50.00	
COBALT	9.38	8.31	12	50.00	
COPPER	11.5	9.33	21	50.00	No Ovelifiam Applical
LEAD	8.03	6.38	23	50.00	No Qualifiers Applied
MOLYBDENUM	1.04	0.798	26	50.00	
NICKEL	19.7	14.8	28	50.00	
SELENIUM	0.0908	0.0686	28	50.00	
SILVER	0.129	0.117	10	50.00	
THALLIUM	0.380	0.312	20	50.00	
VANADIUM	59.1	45.9	25	50.00	
ZINC	75.5	67.8	11	50.00	

1/6/2012 1:00:00 PM

Field Duplicate RPD Report

Lab Reporting Batch ID: DE262 Laboratory: LL

EDD Filename: DE262_v1. eQAPP Name: CDM_SSFL_110509

Analyte	Concentra	Concentration (mg/Kg)			
	SL-319-SA6-SB-4.0-5.0	DUP16-SA6-QC-100511	Sample RPD	eQAPP RPD	Flag
IEXAVALENT CHROMIUM	0.22	0.49	76	50.00	J(all detects)

Analyte	Concentra	Concentration (mg/Kg)			
	SL-319-SA6-SB-4.0-5.0	DUP16-SA6-QC-100511	Sample RPD	eQAPP RPD	Flag
MERCURY	0.0152	0.0102	39	50.00	No Qualifiers Applied

Method: 8015M

Method: 8082

Weiness Willesin

Method: 9045M

Analyte	Concentra	tion (mg/Kg)		eQAPP RPD	Flag
	SL-319-SA6-SB-4.0-5.0	DUP16-SA6-QC-100511	Sample RPD		
EFH (C21-C30)	1.9	2.9	42	50.00	No Qualifiers Applied
EFH (C30-C40)	5.9	11	60	50.00	J(all detects)

Matrix: SO	and the state of t	مال كالألاف بالمحالات ال	State of the last		
Analyte	Concentra	Concentration (ug/Kg)			
	SL-319-SA6-SB-4.0-5.0	DUP16-SA6-QC-100511	Sample RPD	eQAPP RPD	Flag
AROCLOR 1254 AROCLOR 1260	0.55 1.0	1.9 U 1.9 U	200 200	50.00 50.00	J(all detects) UJ(all non-detects)

Analyte	Concentra	tion (ug/Kg)			
	SL-319-SA6-SB-4.0-5.0	DUP16-SA6-QC-100511	Sample RPD	eQAPP RPD	Flag
BENZO(B)FLUORANTHENE	1.1	1.8 U	200	50.00	
BENZO(G,H,I)PERYLENE	0.74	1.8 U	200	50.00	
BENZO(K)FLUORANTHENE	0.92	1.8 U	200	50.00	I/all datasts
CHRYSÈŃE	1.4	1.8 U	200	50.00	J(all detects)
FLUORANTHENE	2.6	1.8 U	200	50.00	UJ(all non-detects
PHENANTHRENE	0.96	1.8 U	200	50.00	
PYRENE	1.9	1.8 U	200	50.00	

	Concentrat	Concentration (pH unit)			
Analyte	SL-319-SA6-SB-4.0-5.0	DUP16-SA6-QC-100511	Sample RPD	eQAPP RPD	Flag
'H	6.47	6.38	1	50.00	No Qualifiers Applied

1/6/2012 1:00:00 PM ADR version 1.4.0.111 Page 2 of 2

Reporting Limit Outliers

Lab Reporting Batch ID: DE262

Laboratory: LL

FDD Filename: DF262 v1

EDD Filename: DE262_v1. eQAPP Name: CDM_SSFL_110509							
Method: 6010B Matrix: AQ			ta di di Garanta				
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-100511	STRONTIUM	J	0.00030	0.0050	PQL	mg/L	J (all detects)
Method: 7470A Matrix: AQ							Maria b
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-100511	MERCURY	J	0.000056	0.00020	PQL	mg/L	J (all detects)
Method: 8270C SIM Matrix: AQ				Till Ladin			
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-100511	BIS(2-ETHYLHEXYL)PHTHALATE Diethylphthalate Di-n-butylphthalate NAPHTHALENE	J J J	0.11 0.26 0.70 0.034	0.95 0.95 0.95 0.048	PQL PQL PQL PQL	ug/L ug/L ug/L ug/L	J (all detects)
Method: 300,0 Matrix: SO		96				Lilius	
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-319-SA6-SB-4.0-5.0	Nitrate-NO3	J	1.3	1.6	PQL	mg/Kg	J (all detects)
Method: 6010B Matrix: SO		i and	A. Same				
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP16-SA6-QC-100511	BORON TIN Zirconium	J J	1.79 3.06 4.45	5.31 10.6 5.31	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-301-SA6-SB-4.0-5.0	BORON TIN Zirconium	J J	1.55 2.85 3.93	5.25 10.5 5.25	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-319-SA6-SB-4.0-5.0	BORON TIN Zirconium	J	2.93 2.95 3.86	5.35 10.7 5.35	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)

1/6/2012 1:26:01 PM ADR version 1.4.0.111 Page 1 of 3

Reporting Limit Outliers

Lab Reporting Batch ID: DE262 Laboratory: LL

EDD Filename: DE262_v1. eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP16-SA6-QC-100511	ANTIMONY CADMIUM SELENIUM	J	0.180 0.0778 0.0686	0.214 0.107 0.429	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-301-SA6-SB-4.0-5.0	ANTIMONY CADMIUM SELENIUM SILVER	J	0.173 0.0709 0.106 0.0739	0.214 0.107 0.429 0.107	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
SL-319-SA6-SB-4.0-5.0	CADMIUM SELENIUM	J	0.0910 0.0908	0.107 0.428	PQL PQL	mg/Kg mg/Kg	J (all detects)

Method: 7199

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP16-SA6-QC-100511	HEXAVALENT CHROMIUM	J	0.49	1.1	PQL	mg/Kg	J (all detects)
SL-301-SA6-SB-4.0-5.0	HEXAVALENT CHROMIUM	J	0.24	1.0	PQL	mg/Kg	J (all detects)
SL-319-SA6-SB-4.0-5.0	HEXAVALENT CHROMIUM	J	0.22	1.0	PQL	mg/Kg	J (all detects)

Method: 7471A Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP16-SA6-QC-100511	MERCURY	J	0.0102	0.106	PQL	mg/Kg	J (all detects)
SL-301-SA6-SB-4.0-5.0	MERCURY	J	0.0198	0.106	PQL	mg/Kg	J (all detects)
SL-319-SA6-SB-4.0-5.0	MERCURY	J	0.0152	0.104	PQL	mg/Kg	J (all detects)

Method: 8082

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-319-SA6-SB-4.0-5.0	AROCLOR 1254 AROCLOR 1260	J	0.55 1.0	1.9	PQL PQL	ug/Kg ug/Kg	J (all detects)

Method: 8270C Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-319-SA6-SB-4.0-5.0	BIS(2-ETHYLHEXYL)PHTHALATE	J	28	360	PQL	ug/Kg	J (all detects)

Reporting Limit Outliers

Lab Reporting Batch ID: DE262

Laboratory: LL

EDD Filename: DE262_v1.

eQAPP Name: CDM_SSFL_110509

Method: 8270C SIM	1.指漢
Matrix: SO	

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-301-SA6-SB-4.0-5.0	BENZO(K)FLUORANTHENE	J	1.7	1.8	PQL	ug/Kg	
	CHRYSENE	J	0.69	1.8	PQL	ug/Kg	J (all detects)
	FLUORANTHENE	J	0.88	1.8	PQL	ug/Kg	, ,
SL-319-SA6-SB-4.0-5.0	BENZO(B)FLUORANTHENE	J	1.1	1.8	PQL	ug/Kg	
	BENZO(G,H,I)PERYLENE	J	0.74	1.8	PQL	ug/Kg	
	BENZO(K)FLUORANTHENE	J	0.92	1.8	PQL	ug/Kg	J (all detects)
	CHRYSENE	J	1.4	1.8	PQL	ug/Kg	,,
	PHENANTHRENE	J	0.96	1.8	PQL	ug/Kg	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

METH The sa		ories 16 Me	– ethod 6010 !	3/6020A/7	ADR 000)		SS WORKSHEE		Date: Page: of Page:
	Validation /	Area					Com	ments	
l	Technical holding times			N	Sampling	date	es:		
11.	ICP/MS Tune			N					
111.	Calibration			ν					
IV.	Blanks			5~					
V.	ICP Interference Check Sam	ple (IC	S) Analysis	N					
VI.	Matrix Spike Analysis			SW	Al it	, s	Ca, Fe, Mg,	MITI	. th 74x
VII.	Duplicate Sample Analysis			NA	44,	Ha	20 LTX)
VIII.	Laboratory Control Samples	(LCS)		N		4	7		
IX.	Internal Standard (ICP-MS)			N					
X.	Furnace Atomic Absorption C	QC .		N					
XI.	ICP Serial Dilution			SIN	Ba,	Co	, Cu, Pb, Ni	in J	147
XII.	Sample Result Verification			N	<i>'</i>		71-7	ή	, 3
XIII.	Overall Assessment of Data			N					
XIV.	Field Duplicates								
XV	Field Blanks			5~	ZB.	-1			
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet d Samples:		R = Rin:	o compounds sate eld blank		i	D = Duplicate TB = Trip blank EB = Equipment bla	ank	
1 SI	040 040 00 40 50		ľ			0.4			
	L-319-SA6-SB-4.0-5.0	11				21		31	
2 SI	L-301-SA6-SB-4.0-5.0	12				22		32	

	CL 240 CAC CD 40 F 0		24		
⊬	SL-319-SA6-SB-4.0-5.0	11	21	31	
2	SL-301-SA6-SB-4.0-5.0	12	22	32	
3	DUP16-SA6-QC-100511	13	23	33	
4	EB-SA6-SB-100511	14	24	34	
5	SL-319-SA6-SB-4.0-5.0MS	15	25	35	
6	SL-319-SA6-SB-4.0-5.0MSD	16	26	36	
7	SL-319-SA6-SB-4.0-5.0DUP	17	27	37	
8		18	28	38	
9		19	29	39	
10		20	30	40	

Notes:		 		
			 -	

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000) Sample Concentration units, unless otherwise noted: ug/L) Method 6010B/6020/7000 Analyte Maximum PB² Limit (ug/L) 4 Hq 0.063 0.315 0.056 Sample Concentration units, unless otherwise noted: mg/Kq	als (EPA SW 864 Met a units, unless otherw ys and unless other	34 Metho			PB/I(/ICB/CCB QUA	CB/CCB QUALIFIED SAMPLES		
Analyte Maximum Maximu	kimum Max PBª ICB	otherwise	d 6010B/ noted:	'6020/7000) ug/L	Soil pre Associa	oreparation factor applied:_ciated Samples:_All AQ_	Soil preparation factor applied: 100X Associated Samples: All AQ	Reason: B	Znd Keviewer: —
Analyte Maximum May PB ^a (mg/Kg) (t	kimum Max PB ^a ICB								
Hg Sample Concentration ur	(ng/L) (u		Action Limit	4					
Sample Concentration ur		0.063	0.315	0.056					
	its, unless (otherwise	e noted:	mg/Kg	Asso	Associated Samples: All Soi	: All 501)	Reason: B	
Analyte Maximum Max PB³ (mg/Kg) (t	Maximum May PB³ ICB (ug/L) (t	Maximum ICB/CCB ^a (ug/L)	Action Limit	-	2	ю			
		0:30	0.30	0.27	0.17	0.18			
Ha		0.042	0.035	0.015	0.020	0.010			

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

26923A4	10200
÷	
Ĉ	5
ē	ì

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: of Reviewer: A

METHOD: Trace Metals (EPA SW846 6010B/6020/7000)

Y N N/A Were field blanks identified in this SDG?

Y N N/A Were target analytes detected in the field blanks?

Blank units: ug/L Associated sample units: mg/Kg Sampling date: 10/05/11 Soil factor applied 100X, Hg:167X

All Soil Associated Samples: Field blank type: (circle one) Field Blank / Rinsate / Other: Sampling date:

Reason Code: F

Sample Identification	ומוו וע	4 Action 1 2 3	0.056 0.04876 0.015 0.020 0.010		0.30	
		Actior	0.0467	0.0	0.45	;
Blank ID	i King	4	0.058	0.000	0.30	25.5
Analyto	Allalyte			LTI LTI	υ	7

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with analyte concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QUALITY ASSURANCE SUMMARY FORM 5A (MS/MSD)

DE262 SDG No.:

Level (low/med): LOW Matrix: SOIL Matrix Spike Duplicate Lab Sample ID: 6430030MSD Matrix Spike Lab Sample ID: 6430029MS Background Lab Sample ID: 6430028BKG % Solids for Sample: 91.7

214.2987 1.3717 2900.4168 39.1102 73.7102 23.9913 26754.2669 21.3922 11.3922 139.1095 6416.2967 0.1798 14.1216	_	2.9326 B 0.0910 B 2316.4047 29.3797 9.3827 11.5060 25723.3175 8.0270 27.8434 5855.5071 353.2298 0.0152 B 1.0356 11.0356 19.6656 0.0152 B 0.0152 B
283.8734 3488.5043 2.5244 14.0298 1154.3475 124.3767 0.9435 398.5165 1686.1991 70.5918 85.3623 109.8913	2530 2. 2068 14. 4387 1154. 2673 124. 8745 0. 7624 398. 9613 1686. 1671 70. 8626 85. 3825 109. CV = Cold Var	13.2068 14. 1163.4387 1154. 126.2673 124. 0.8745 0. 0.8745 398. 1663.9613 1686. 67.1671 70. 81.8626 85. B 110.3825 109. Pectrometer CV = Cold Vap.
	2530 2068 4387 2673 7624 .9613 .9626 .3825 .3825 .3825	0.1293 13.2068 130.0458 1163.4387 21.7493 126.2673 0.3795 0.8745 2.9455B 405.7624 1393.0646 1663.9613 59.0801 67.1671 75.4806 81.8626 3.8638 B 110.3825 3.8638 B 110.3825

SAMPLE DELIVERY GROUP

DE263

Attachment I

Sample ID Cross Reference and Data Review Level

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
06-Oct-2011	TB-100611	6431143	ТВ	3520C	1625C	III
06-Oct-2011	TB-100611	6431144	ТВ	3546	1625C	III
06-Oct-2011	TB-100611	6431145	ТВ	5030B	8015M	101
06-Oct-2011	SL-229-SA6-SS-0.0-0.5	6431133	N	3050B	6010B	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5	6431133	N	3050B	6020	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5	6431133	N	3060A	7199	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5	6431133	N	3550B	8081A	Ш
06-Oct-2011	SL-229-SA6-SS-0.0-0.5	6431133	N	3550B	8082	Ш
06-Oct-2011	SL-229-SA6-SS-0.0-0.5	6431133	N	3550B	8151A	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5	6431133	N	3550B	8270C	HI
06-Oct-2011	SL-229-SA6-SS-0.0-0.5	6431133	N	3550B	8270C SIM	HI
06-Oct-2011	SL-229-SA6-SS-0.0-0.5	6431133	N	METHOD	300.0	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5	6431133	N	METHOD	314.0	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5	6431133	N	METHOD	7471A	Ш
06-Oct-2011	SL-229-SA6-SS-0.0-0.5DUP	P431133D220308	DUP	3050B	6010B	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5DUP	P431133D220733	DUP	3050B	601 0 B	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5DUP	P431133D220817	DUP	METHOD	7471A	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5DUP	P431133D220848A	DUP	3050B	6020	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5DUP	P431133D220848B	DUP	3050B	6020	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5DUP	P431133D220848C	DUP	3050B	6020	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5DUP	P431133D220848D	DUP	3050B	6020	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5DUP	P431133D221202	DUP	3050B	6010B	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MSD	P431133M220316	MSD	3050B	601 0 B	HI
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MSD	P431133M220741	MSD	3050B	601 0 B	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MSD	P431133M220819	MSD	METHOD	7471A	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MSD	P431133M220854A	MSD	3050B	6020	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MSD	P431133M220854B	MSD	3050B	6020	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MSD	P431133M220854C	MSD	3050B	6020	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MSD	P431133M220854D	MSD	3050B	6020	Ш
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MSD	P431133M221211	MSD	3050B	6010B	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MSD	P431133M241711A	MSD	3550B	8151A	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MSD	P431133M241929A	MSD	3550B	8081A	101
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MSD	P431133M260309	MSD	3550B	8270C	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MS	P431133R220312	MS	3050B	6010B	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MS	P431133R220737	MS	3050B	6010B	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MS	P431133R220818	MS	METHOD	7471A	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MS	P431133R220851A	MS	3050B	6020	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MS	P431133R220851B	MS	3050B	6020	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MS	P431133R220851C	MS	3050B	6020	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MS	P431133R220851D	MS	3050B	6020	III
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MS	P431133R221206	MS	3050B	6010B	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MS	P431133R241643A	MS	3550B	8151A	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MS	P431133R241915A	MS	3550B	8081A	111
06-Oct-2011	SL-229-SA6-SS-0.0-0.5MS	P431133R260244	MS	3550B	8270C	III
06-Oct-2011	SL-229-SA6-SB-2.0-3.0	6431138	N	3050B	6010B	III
06-Oct-2011	SL-229-SA6-SB-2.0-3.0	6431138	N	3050B	6020	Ш
06-Oct-2011	SL-229-SA6-SB-2.0-3.0	6431138	N	3060A	7199	111
06-Oct-2011	SL-229-SA6-SB-2.0-3.0	6431138	N	3550B	8082	III
06-Oct-2011	SL-229-SA6-SB-2.0-3.0	6431138	N	3550B	8270C	111
06-Oct-2011	SL-229-SA6-SB-2.0-3.0	6431138	N	3550B	8270C SIM	111
06-Oct-2011	SL-229-SA6-SB-2.0-3.0	6431138	N	METHOD	300.0	111
06-Oct-2011	SL-229-SA6-SB-2.0-3.0	6431138	N	METHOD	314.0	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
06-Oct-2011	SL-229-SA6-SB-2.0-3.0	6431138	N	METHOD	7471A	H
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	3050B	6010B	III
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	3050B	6020	III
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	3060A	7199	111
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	3546	1625C	III
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	3550B	8015B	111
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	3550B	8015M	111
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	3550B	8081A	Ш
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	3550B	8082	III
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	3550B	8151A	111
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	3550B	8270C	111
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	3550B	8270C SIM	III
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	8330	8330A	Ш
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	METHOD	300.0	(II
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	METHOD	314.0	111
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	METHOD	7471A	III
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	METHOD	8015B	Ш
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	METHOD	8015M	III
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	METHOD	8315A	Ш
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431134	N	METHOD	9012B	Ш
06-Oct-2011	SL-230-SA6-SS-0.0-0.5MSD	P431134M262100	MSD	3550B	8270C SIM	III
06-Oct-2011	SL-230-SA6-SS-0.0-0.5MSD	P431134M322231A	MSD	METHOD	8015B	Ш
06-Oct-2011	SL-230-SA6-SS-0.0-0.5MS	P431134R262028	MS	3550B	8270C SIM	ш
06-Oct-2011	SL-230-SA6-SS-0.0-0.5MS	P431134R322215A	MS	METHOD	8015B	111
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	3050B	6010B	Ш
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	3050B	6020	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	3060A	7199	III
06-Oct-2011	SL-268-SA6-SB-4.0-5,0	6431141	N	3546	1625C	Ш
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	3550B	8015B	111
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	3550B	8015M	III
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	3550B	8082	III
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	3550B	8270C	III
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	3550B	8270C SIM	III
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	5035	8015M	111
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	8330	8330A	111
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	METHOD	300.0	111
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	METHOD	314.0	111
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	METHOD	7471A	III
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	METHOD	8015B	Ш
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	METHOD	8015M	111
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	METHOD	8315A	111
06-Oct-2011	SL-268-SA6-SB-4.0-5.0	6431141	N	METHOD	9012B	III
06-Oct-2011	SL-268-SA6-SB-4.0-5.0DUP	P431141D270232A	DUP	METHOD	314.0	111
06-Oct-2011	SL-268-SA6-SB-4.0-5.0MS	P431141R270255A	MS	METHOD	314.0	III
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	3050B	6010B	III
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	3050B	6020	IH
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	3060A	7199	111
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	3546	1625C	111
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	3550B	8015B	Ш
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	3550B	8015M	III
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	3550B	8082	111
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	3550B	8270C	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	3550B	8270C SIM	III
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	5035	8015M	161
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	8330	8330A	111
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	METHOD	300.0	Ш
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	METHOD	314.0	Ш
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	METHOD	7471A	Ш
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	METHOD	8015B	111
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	METHOD	8015M	111
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	METHOD	8315A	III
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431139	N	METHOD	9012B	III
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	3050B	6010B	111
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	3050B	6020	III
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	306 0 A	7199	tii
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	3546	1625C	Ш
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	3550B	8015B	III
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	3550B	8015M	III
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	3550B	8082	111
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	3550B	8270C	(II
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	3550B	8270C SIM	Ш
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	5035	8015M	111
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	8330	8330A	Ш
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	METHOD	300.0	Ш
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	METHOD	314.0	III
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	METHOD	7471A	Ш
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	METHOD	8015B	111
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	METHOD	8015M	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	METHOD	8315A	ni .
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431140	N	METHOD	9012B	III
06-Oct-2011	SL-254-SA6-SB-2.5-3.5DUP	P431140D272022A	DUP	METHOD	9012B	111
06-Oct-2011	SL-254-SA6-SB-2.5-3.5MS	P431140R272023A	MS	METHOD	9012B	Ш
06-Oct-2011	SL-234-SA6-SS-0.0-0.5	6431135	N	3050B	6010B	Ш
06-Oct-2011	SL-234-SA6-SS-0.0-0.5	6431135	N	3050B	6020	III
06-Oct-2011	SL-234-SA6-SS-0.0-0.5	6431135	N	3060A	7199	Ш
06-Oct-2011	SL-234-SA6-SS-0.0-0.5	6431135	N	3550B	8081A	m
06-Oct-2011	SL-234-SA6-SS-0.0-0.5	6431135	N	3550B	8082	III
06-Oct-2011	SL-234-SA6-SS-0.0-0.5	6431135	N	3550B	8151A	Ш
06-Oct-2011	SL-234-SA6-SS-0.0-0.5	6431135	N	3550B	8270C	III
06-Oct-2011	SL-234-SA6-SS-0.0-0.5	6431135	N	3550B	8270C SIM	Ш
06-Oct-2011	SL-234-SA6-SS-0.0-0.5	6431135	N	METHOD	300.0	III
06-Oct-2011	SL-234-SA6-SS-0.0-0.5	6431135	N	METHOD	314.0	Ш
06-Oct-2011	SL-234-SA6-SS-0.0-0.5	6431135	N	METHOD	7471A	III
06-Oct-2011	SL-234-SA6-SS-0.0-0.5MSD	P431135M241429A	MSD	3550B	8082	Ш
06-Oct-2011	SL-234-SA6-SS-0.0-0.5MS	P431135R241411A	MS	3550B	8082	111
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	3005A	6010B	m
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	3020A	6020	Ш
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	3510C	8015B	III
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	3510C	8015M	III
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	3510C	8081A	III
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	3510C	8082	III
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	3510C	8270C	111
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	3510C	8270C SIM	Ш
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	3520C	1625C	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	5030B	8015M	III
06-Oct-2011	EB-SA6-SB-100611	6431146	EΒ	5030B	8260B	III
06-Oct-2011	EB-SA6-SB-100611	6431146	ЕВ	503 0 B	8260B SIM	Ш
06-Oct-2011	EB-SA6-SB-100611	6431146	ЕВ	8330	8330A	111
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	Gen Prep	300.0	111
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	Gen Prep	314.0	Ш
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	Gen Prep	7199	[]]
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	Gen Prep	8015B	Ш
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	Gen Prep	8015M	111
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	METHOD	7470A	111
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	METHOD	8151A	111
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	METHOD	8315A	111
06-Oct-2011	EB-SA6-SB-100611	6431146	EB	METHOD	9012B	111
06-Oct-2011	EB-SA6-SB-100611MSD	P431146M320220A	MSD	Gen Prep	8015B	Ш
06-Oct-2011	EB-SA6-SB-100611MS	P431146R320204A	MS	Gen Prep	8015B	111
06-Oct-2011	EB-SA6-SB-100611	6431142	EB	3520C	1625C	111
06-Oct-2011	SL-232-SA6-SS-0.0-0.5	6431136	N	3050B	6010B	Ш
06-Oct-2011	SL-232-SA6-SS-0.0-0.5	6431136	N	3050B	6020	111
06-Oct-2011	SL-232-SA6-SS-0.0-0.5	6431136	N	3060A	7199	111
06-Oct-2011	SL-232-SA6-SS-0.0-0.5	6431136	N	3550B	8081A	III
06-Oct-2011	SL-232-SA6-SS-0.0-0.5	6431136	N	3550B	8082	111
06-Oct-2011	SL-232-SA6-SS-0.0-0.5	6431136	N	3550B	8151A	111
06-Oct-2011	SL-232-SA6-SS-0.0-0.5	6431136	N	3550B	8270C	111
06-Oct-2011	SL-232-SA6-SS-0.0-0.5	6431136	N	3550B	8270C SIM	111
06-Oct-2011	SL-232-SA6-SS-0.0-0.5	6431136	N	METHOD	300.0	m
06-Oct-2011	SL-232-SA6-SS-0.0-0.5	6431136	N	METHOD	314.0	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
06-Oct-2011	SL-232-SA6-SS-0.0-0.5	6431136	N	METHOD	7471A	III
06-Oct-2011	SL-232-SA6-SS-0.0-0.5DUP	P431136D270644A	DUP	METHOD	300.0	Ш
06-Oct-2011	SL-232-SA6-SS-0.0-0.5MS	P431136R270657A	MS	METHOD	300.0	Ш
06-Oct-2011	SL-232-SA6-SB-2.5-3.5	6431137	N	3050B	6010B	111
06-Oct-2011	SL-232-SA6-SB-2.5-3.5	6431137	N	3050B	6020	111
06-Oct-2011	SL-232-SA6-SB-2.5-3.5	6431137	N	3060A	7199	Ш
06-Oct-2011	SL-232-SA6-SB-2.5-3.5	6431137	N	3550B	8082	111
06-Oct-2011	SL-232-SA6-SB-2.5-3.5	6431137	N	3550B	8270C	III
06-Oct-2011	SL-232-SA6-SB-2.5-3.5	6431137	N	3550B	8270C SIM	III
06-Oct-2011	SL-232-SA6-SB-2.5-3.5	6431137	N	METHOD	300.0	111
06-Oct-2011	SL-232-SA6-SB-2.5-3.5	6431137	N	METHOD	314.0	111
06-Oct-2011	SL-232-SA6-SB-2.5-3.5	6431137	N	METHOD	7471A	111

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DE263 Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 300.0			0.0.5						(Mary Selection)
Method: 300.0			IVI	itrix:	SO				
Sample ID: SL-229-SA6-SB-2.0-3.0	Collect	ted: 10/6/2	011 9:00:0	00 A	nalysis T	ype: RES	1	1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	1.6]	0.83	MDL	1.0	PQL	mg/Kg	J	Q
Sample ID: SL-229-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 8:30:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	0.84	U	0.84	MDL	1.1	PQL	mg/Kg	UJ	Q
Sample ID: SL-230-SA6-SB-4.0-5.0	Collect	ted: 10/6/2	011 10:45	:00 A	nalysis Ty	pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	1.3		0.83	MDL	1.0	PQL	mg/Kg	J	Q
Sample ID: SL-230-SA6-SS-0.0-0.5	Collect	ted: 10/6/2	011 10:25	:00 A	nalysis Ty	pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	0.84	U	0.84	MDL	1.0	PQL	mg/Kg	UJ	Q
Sample ID: SL-232-SA6-SB-2.5-3.5	Collect	ted: 10/6/2	011 3:30:0	00 A	nalysis Ty	/pe: RES	•		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	0.86	U	0.86	MDL	1.1	PQL	mg/Kg	UJ	Q
Sample ID: SL-232-SA6-SS-0.0-0.5	Collect	ed: 10/6/2	011 3:00:0	0 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	1.2		0.89	MDL	1.1	PQL	mg/Kg	J	Q
Sample ID: SL-234-SA6-SS-0.0-0.5	Collect	ed: 10/6/20	011 12:15	:00 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	0.89	U	0.89	MDL	1.1	PQL	mg/Kg	UJ	Q
Sample ID: SL-254-SA6-SB-2.5-3.5	Collect	ed: 10/6/20) 111 12:10:	:00 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	0.83	U	0.83	MDL	1.0	PQL	mg/Kg	UJ	Q

Page 1 of 25

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 3:05:16 PM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE263

Laboratory: LL

Page 2 of 25

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM		all knowed and the	n den negarija (18 daga ka 18 daga ka 18 daga ka	
Method:	300.0	Matrix:	so		

Sample ID: SL-268-SA6-SB-4.0-5.0	Collec	Collected: 10/6/2011 10:30:00					Analysis Type: RES			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
FLUORIDE	2.6		0.84	MDL	1.0	PQL	mg/Kg	J	Q	
Nitrate-NO3	0.92	J	0.84	MDL	1.6	PQL	mg/Kg	J	Z	

Method Category	METALS	
Method:	6010B	Matrix: AQ

Sample ID: EB-SA6-SB-100611	Collect	ted: 10/6/2	011 2:00:0	10 A	nalysis Ty	/pe: REA		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PHOSPHORUS	0.0068	J	0.0047	MDL	0.100	PQL	mg/L	U	В

Method Category:	METALS	
Method:	6010B	Matrix: SO

Sample ID: SL-229-SA6-SB-2.0-3.0	Collec	ted: 10/6/2	011 9:00:0	00 A	nalysis Ty	ype: REA	.2	1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	17700		2.61	MDL	20.0	PQL	mg/Kg	J	E

Sample ID: SL-229-SA6-SB-2.0-3.0	Collect	led: 10/6/2	011 9:00:0	00	Analysis Ty	/pe: REA	3		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	13400		6.28	MDL	20.8	PQL	mg/Kg	J	E

Sample ID: SL-229-SA6-SB-2.0-3.0	Collec	ted: 10/6/2	011 9:00:0	0 A	nalysis Ty	/pe: RES	i	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MANGANESE	194		0.0367	MDL	0.509	PQL	mg/Kg	J	Ε	
PHOSPHORUS	347		0.356	MDL	10.2	PQL	mg/Kg	J	Q	
POTASSIUM	2710		11.5	MDL	50.9	PQL	mg/Kg	J	Q	
SODIUM	85.6	J	6.06	MDL	102	PQL	mg/Kg	J	Z	
STRONTIUM	17.5		0.0255	MDL	0.509	PQL	mg/Kg	J	Ę	
TIN	2.38	J	0.326	MDL	10.2	PQL	mg/Kg	U	В	
Zirconium	1.92	J	0.468	MDL	5.09	PQL	mg/Kg	J	Z	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/23/2012 3:05:16 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DE263

Laboratory: LL

Page 3 of 25

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method Category: METALS	enakuistonskuudu		rio Challa	Majora de	en evel të	A 95 Buil			
Method: 6010B			Ma	atrix:	so	: "			gen til me med gass.
Sample ID: SL-229-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 8:30:0	00 A	nalysis T	ype: REA	.2		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
IRON	17500		2.75	MDL	21.1	PQL	mg/Kg	J	E
Sample ID: SL-229-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 8:30:0	00 A	nalysis T	ype: REA	3	.,,	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	7110		6.26	MDL	20.7	PQL	mg/Kg	J	E
Sample ID: SL-229-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 8:30:0	00 A	nalysis T	pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MANGANESE	246		0.0373	MDL	0.518	PQL	mg/Kg	J	E
PHOSPHORUS	304		0.362	MDL	10.4	PQL	mg/Kg	J	Q
POTASSIUM	1920		11.7	MDL	51.8	PQL	mg/Kg	J	Q
SODIUM	98.9	J	6.16	MDL	104	PQL	mg/Kg	J	Z
STRONTIUM	13.3		0.0259	MDL	0.518	PQL	mg/Kg	J	E
TIN	2.13	J	0.331	MDL	10.4	PQL	mg/Kg	U	В
Zirconium	1.98	J	0.476	MDL	5.18	PQL	mg/Kg	J	Z
Sample ID: SL-230-SA6-SB-4.0-5.0	Collec	ted: 10/6/2	011 10:45	:00 A	nalysis T	pe: REA	2		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	18500		2.67	MDL	20.4	PQL	mg/Kg	J	E
Sample ID: SL-230-SA6-SB-4.0-5.0	Collect	ted: 10/6/2	011 10:45:	:00 A	nalysis T	/pe: REA	3		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	10000		6.18	MDL	20.4	PQL	mg/Kg	J	E
Sample ID: SL-230-SA6-SB-4.0-5.0	Collect	ted: 10/6/2	011 10:45:	:00 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MANGANESE	161		0.0364	MDL	0.506	PQL	mg/Kg	J	E
PHOSPHORUS	325		0.354	MDL	10.1	PQL	mg/Kg	J	Q
POTASSIUM	2640		11.4	MDL	50.6	PQL	mg/Kg	J	Q
SODIUM	75.5	J	6.02	MDL	101	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 3:05:16 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

EDD Filename: DE263_v1						eQAF	P Name	e: CDM_S	SFL_110509
Method Category: METALS	arsaningan akawa	PSWARE		in consti			dela de	100	
Method: 6010B			Ma	trix:	so	; · · · ·			Strate and training of the
Sample ID: SL-230-SA6-SB-4.0-5.0	Collec	ted: 10/6/2	011 10:45	:00 <i>A</i>	nalysis Ty	ype: RES	i		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
STRONTIUM	10.0		0.0253	MDL	0.506	PQL	mg/Kg	J	E
TIN	2.29	J	0.324	MDL	10.1	PQL	mg/Kg	υ	В
Zirconium	1.42	J	0.466	MDL	5.06	PQL	mg/Kg	J	Z
Sample ID: SL-230-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 10:25	:00 A	nalysis Ty	/pe: REA	.2		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
IRON	14800		2.76	MDL	21.2	PQL	mg/Kg	J	E
Sample ID: SL-230-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 10:25	:00 A	nalysis Ty	/pe: REA	3		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	10300		6.34	MDL	20.9	PQL	mg/Kg	J	E
Sample ID: SL-230-SA6-SS-0.0-0.5	Collect	ted: 10/6/2	011 10:25:	00 A	nalysis Ty	/pe: RES	•	ı.	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
MANGANESE	212	7 17 1	0.0373	MDL	0.519	PQL	mg/Kg	J	Ë
PHOSPHORUS	284		0.363	MDL	10.4	PQL	mg/Kg	J	Q
POTASSIUM	2250		11.7	MDL	51.9	PQL	mg/Kg	J	Q
SODIUM	88.4	J	6.17	MDL	104	PQL	mg/Kg	J	Z
STRONTIUM	14.9		0.0259	MDL	0.519	PQL	mg/Kg	J	Е
TIN	2.88	J	0.332	MDL	10.4	PQL	mg/Kg	U	В
Zirconium	2.01	J	0.477	MDL	5.19	PQL	mg/Kg	J	Z
Sample ID: SL-232-SA6-SB-2.5-3.5	Collect	ed: 10/6/2	011 3:30:0	0 A	nalysis Ty	/pe: REA	2	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	26000		2.78	MDL	21.3	PQL	mg/Kg	J	E
Sample ID: SL-232-SA6-SB-2.5-3.5	Collect	ed: 10/6/2	 011 3:30:0	0 A	nalysis Ty	<u> </u>		11 	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Quai	Reason Code

6.38

MDL

21.1

mg/Kg

Page 4 of 25

ALUMINUM

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 3:05:16 PM ADR version 1.4.0.111

26100

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method Category: METALS	elletti elletistike (bel			ericent.					
Method: 6010B			Ma	trix:	so				
Sample ID: SL-232-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 3:30:0	00 A	nalysis T	/pe: RES		i	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MANGANESE	451	T	0.0380	MDL	0.528	PQL	mg/Kg	J	E
PHOSPHORUS	231		0.369	MDL	10.6	PQL	mg/Kg	J	Q
POTASSIUM	1900		11.9	MDL	52.8	PQL	mg/Kg	J	Q
SODIUM	95.5	J	6.28	MDL	106	PQL	mg/Kg	J	Z
STRONTIUM	25.8		0.0264	MDL	0.528	PQL	mg/Kg	J	E
TIN	2.67	J	0.338	MDL	10.6	PQL	mg/Kg	U	В
Zirconium	3.19	J	0.485	MDL	5.28	PQL	mg/Kg	J	Z
Sample ID: SL-232-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 3:00:0	0 A	nalysis T	/pe: REA	2		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
RON	22400	1	2.96	MDL	22.7	PQL	mg/Kg	J	E
Sample ID: SL-232-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 3:00:0	in 4	nalucie T	pe: REA		ļi	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	19600		6.65	MDL	22.0	PQL	mg/Kg	J	E
Sample ID: SL-232-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 3:00:0	ю А	nalysis Ty	pe: RES		<u></u>	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MANGANESE	317		0.0392	MDL	0.544	PQL	mg/Kg	J	E
PHOSPHORUS	375		0.381	MDL	10.9	PQL	mg/Kg	J	Q
POTASSIUM	4000		12.3	MDL	54.4	PQL	mg/Kg	J	Q
SODIUM	70.0	J	6.48	MDL	109	PQL	mg/Kg	J	Z
STRONTIUM	23.0		0.0272	MDL	0.544	PQL	mg/Kg	J	E
ΓΙΝ	2.58	J	0.348	MDL	10.9	PQL	mg/Kg	U	В
Zirconium	1.52	J	0.501	MDL	5.44	PQL	mg/Kg	J	Z
Sample ID: SL-234-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 12:15:	00 A	nalysis Ty	pe: REA	2		Dilution: 1
		Γ	T		Ī			Data	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/23/2012 3:05:16 PM

Page 5 of 25

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

LDD I hename, DL203_VI								_	92L_11030
Method Category: METALS Method: 6010B		hardak di			so		1,47.1		
								·	
Sample ID: SL-234-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 12:15	i:00 A	Inalysis T	ype: REA	13	· · · · · · · · · · · · · · · · · · ·	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	16600		6.68	MDL	22.1	PQL	mg/Kg	J	E
Sample ID: SL-234-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 12:15	:00 A	nalysis T	ype: RES	;	-1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	Di Type	RL	RL Type	Units	Data Review Qual	Reason Code
MANGANESE	369		0.0401	MDL	0.557	PQL	mg/Kg	J	Е
PHOSPHORUS	521	<u> </u>	0.390	MDL	11.1	PQL	mg/Kg	J	Q
POTASSIUM	4600		12.6	MDL	55.7	PQL	mg/Kg	J	Q
SODIUM	72.4	J	6.63	MDL	111	PQL	mg/Kg	J	Z
STRONTIUM	24.2		0.0279	MDL	0.557	PQL	mg/Kg	J	E
ΓΙΝ	2.74	J	0.357	MDL	11.1	PQL	mg/Kg	U	В
Zirconium	2.27	J	0.513	MDL	5.57	PQL	mg/Kg	J	Z
Sample ID: SL-254-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 12:10	:00 A	nalysis T	pe: REA	2	•	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	24100		2.65	MDL	20.3	PQL	mg/Kg	J	E
Sample ID: SL-254-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 12:10	:00 A	nalysis T	/pe: REA	3		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ALUMINUM	17100		6.15	MDL	20.3	PQL	mg/Kg	J	E
Sample ID: SL-254-SA6-SB-2.5-3.5	Collect	ted: 10/6/2	011 12:10	:00 A	nalysis T	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MANGANESE	316		0.0366	MDL	0.508	PQL	mg/Kg	J	E
PHOSPHORUS	563		0.356	MDL	10.2	PQL	mg/Kg	J	Q
POTASSIUM	2820		11.5	MDL	50.8	PQL	mg/Kg	J	Q
		1	1	i			1	1	

SODIUM

Zirconium

TIN

STRONTIUM

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/23/2012 3:05:16 PM ADR version 1.4.0.111

89.4

18.2

2.48

1.30

J

J

6.04

0.0254

0.325

0.467

MDL

MDL

MDL

MDL

102

0.508

10.2

5.08

PQL

PQL

PQL

PQL

mg/Kg

mg/Kg

mg/Kg

mg/Kg

J

U

J

Page 6 of 25

Z

Ε

В

Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE263

Laboratory: LL

Eds Roporting Baton IS: BE200								_	aboratory.
EDD Filename: DE263_v1						eQAF	PP Name	e: CDM_S	SSFL_11050
Method Category: METALS		and the Late				la de la dec			
Method: 6010B			Ma	atrix:	SO		reder comity and		
Sample ID: SL-268-SA6-SB-4.0-5.0	Collec	ted: 10/6/2	2011 10:30	:00 🗚	Inalysis T	ype: REA	12	1	Dilution: 1
	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
RON	21700		2.68	MDL	20.5	PQL	mg/Kg	J	E
ample ID: SL-268-SA6-SB-4.0-5.0	Collec	ted: 10/6/2	 2011 10:30	:00 A	nalysis T	ype: REA	.3	- 	Dilution: 1
					T			Data	
a makata	Lab	Lab	51	DL.	-	RL		Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
ALUMINUM	16900		6.14	MDL	20.3	PQL	mg/Kg	J	Е
ample ID: SL-268-SA6-SB-4.0-5.0	Collec	ted: 10/6/2	011 10:30	:00 A	nalysis T	ype: RES			Dilution: 1
		l						Data	_
<i>nalyte</i>	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Review Qual	Reason Code
MANGANESE	333	<u> </u>	0.0373	MDL	0.518	PQL	mg/Kg	J	E
HOSPHORUS	287		0.362	MDL	10.4	PQL	mg/Kg	J	Q
OTASSIUM	2710	 	11.7	MDL	51.8	PQL	mg/Kg	J	Q
ODIUM	74.2	J	6.16	MDL	104	PQL	mg/Kg	J	Z
TRONTIUM	17.3	"	0.0259	MDL	0.518	PQL	mg/Kg	J	E
'IN	2.46	J	0.331	MDL	10.4	PQL	mg/Kg	U	В
irconium	2.07	J	0.476	MDL	5.18	PQL	mg/Kg	J	z
		1	1			1	55		
Nethod Category: METALS									
Method: 6020			Ma	trix:	so				
ample ID: SL-229-SA6-SB-2.0-3.0	Collec	ted: 10/6/2	011 9:00:0	00 A	nalysis T	ype: REA	· T		Dilution: 2
	Lab	Lab		DL.		RL		Data Review	Reason
nalyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
ELENIUM	0.219	J	0.0585	MDL	0.403	PQL	mg/Kg	J	Z, Q
ample ID: SL-229-SA6-SB-2.0-3.0	Collec	ted: 10/6/2	011 9:00:0	00 A	nalysis T	ype: REA	2		Dilution: 2
				_				Data	
<i>Inalyte</i>	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review	Reason Code
MOLYBDENUM	0.631	_ Quai	0.0504	MDL	0.101	PQL	mg/Kg	Qual	Q, E, E
			.1	l	L	1		L	
ample ID: SL-229-SA6-SB-2.0-3.0	Collec	ted: 10/6/2	011 9:00:0	iu A	nalysis Ty	ype: REA	3 	1	Dilution: 2
	Lab	Lab		DL		RL		Data Review	Reason
Inalita	Pocult	Qual	DI	Tuno	DI	Tuno	Unite	Qual	Codo

^{*} denotes a non-reportable result

Analyte

BARIUM

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Result

101

Qual

DL

0.107

Туре

MDL

RL

0.403

Type

PQL

Units

mg/Kg

Qual

1/23/2012 3:05:16 PM ADR version 1.4.0.111

Code

E, E, A

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method Category: METALS	STACION SIGNATURA	ينتوهاظ						用 图 4	
Method: 6020			Ma	itrix:	so				
Sample ID: SL-229-SA6-SB-2.0-3.0	Collec	ted: 10/6/2	:011 9:00:0	00 A	nalysis T	ype: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.182	J	0.0746	MDL	0.202	PQL	mg/Kg	J	Z, Q, E
ARSENIC	5.64		0.0807	MDL	0.403	PQL	mg/Kg	J	Q, E
BERYLLIUM	0.606		0.0161	MDL	0.101	PQL	mg/Kg	J	Q, E
CADMIUM	0.214		0.0444	MDL	0.101	PQL	mg/Kg	J	Q, E
СНКОМІИМ	21.7		0.121	MDL	0.403	PQL	mg/Kg	J	Q, E, E, A
COBALT	6.37		0.0202	MDL	0.101	PQL	mg/Kg	J	Q, E
COPPER	14.3		0.0807	MDL	0.403	PQL	mg/Kg	J	Q, E, E
LEAD	11.7		0.0103	MDL	0.202	PQL	mg/Kg	J	Q, E, E
NICKEL	16.4		0.101	MDL	0.403	PQL	mg/Kg	J	Q, E, E
SILVER	0.202		0.0143	MDL	0.101	PQL	mg/Kg	J	Q, E
THALLIUM	0.279		0.0302	MDL	0.101	PQL	mg/Kg	J	Q, E
VANADIUM	40.0		0.0222	MDL	0.101	PQL	mg/Kg	J	Q, E, E, A
ZINC	79.0		0.565	MDL	3.02	PQL	mg/Kg	J	E, E
Sample ID: SL-229-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 8:30:0	00 A	nalysis T	/pe: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.0739	J	0.0600	MDL	0.414	PQL	mg/Kg	J	Z, Q
Sample ID: SL-229-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 8:30:0	10 4	nalvsis Ti	/pe: REA	1		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.308		0.0518	MDL	0.104	PQL	mg/Kg	J	Q, E, E
Sample ID: SL-229-SA6-SS-0.0-0.5	Collect	ted: 10/6/2	011 8:30:0	10 A	nalysis Ty	/pe: REA	3		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	50.6		0.110	MDL	0.414	PQL	mg/Kg	J	E, E, A
Sample ID: SL-229-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 8:30:0	10 A	naivsis Tv	/pe: RES	1	<u> </u>	Dilution; 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.160	J	0.0766	MDL	0.207	PQL	mg/Kg	J	Z, Q, E
ARSENIC	3.63		0.0828	MDL	0.414	PQL	mg/Kg	į.	Q, E
BERYLLIUM	0.377		0.0166	MDL	0.104	PQL	mg/Kg	J	Q, E

ADR version 1.4.0.111

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 3:05:16 PM

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE263

Laboratory: LL

Page 9 of 25

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method Category: METALS	diana di pangalan di	<u>Valada ka k</u>			e de la la	有限有效		a receip	S 15-11-11-17 (F)
Method: 6020			Ma	itrix:	so		A 4 1 1, 1738	11 11 11 11 11 11	The state of the s
Sample ID: SL-229-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 8:30:0)0 A	nalysis T	ype: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CADMIUM	0.127		0.0455	MDL	0.104	PQL	mg/Kg	J	Q, E
CHROMIUM	13.2		0.124	MDL	0.414	PQL	mg/Kg	J	Q, E, E, A
COBALT	4.15		0.0207	MDL	0.104	PQL	mg/Kg	J	Q, E
COPPER	6.13		0.0828	MDL	0.414	PQL	mg/Kg	J	Q, E, E
LEAD	8.58		0.0106	MDL	0.207	PQL	mg/Kg	J	Q, E, E
NICKEL	8.59		0.104	MDL	0.414	PQL	mg/Kg	J	Q, E, E
SILVER	0.0801	J	0.0147	MDL	0.104	PQL	mg/Kg	J	Z, Q, E
THALLIUM	0.155		0.0311	MDL	0.104	PQL	mg/Kg	J	Q, E
VANADIUM	23.4		0.0228	MDL	0.104	PQL	mg/Kg	J	Q, E, E, A
ZINC	51.6		0.580	MDL	3.11	PQL	mg/Kg	J	Ë, E
Sample ID: SL-230-SA6-SB-4.0-5.0	Collec	ted: 10/6/2	011 10:45	:00 <i>A</i>	naivsis T	pe: REA		<u> </u>	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.118	J	0.0593	MDL	0.409	PQL	mg/Kg	J	Z, Q
Sample ID: SL-230-SA6-SB-4.0-5.0	Collec	ted: 10/6/2	011 10:45:	:00 A	nalvsis Ti	/pe: REA	2	1	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.528		0.0511	MDL	0.102	PQL	mg/Kg	J	Q, E, E
Sample ID: SL-230-SA6-SB-4.0-5.0	Collect	ted: 10/6/2	011 10:45:	:00 A	nalysis Ty	/pe: REA	3		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	52.8		0.108	MDL	0.409	PQL	mg/Kg	J	E, E, A
Sample ID: SL-230-SA6-SB-4.0-5.0	Collect	ted: 10/6/2	011 10:45:	:00 A	nalysis Ty	/pe: RES		-	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.123	J	0.0757	MDL	0.204	PQL	mg/Kg	J	Z, Q, E
ARSENIC	5.58		0.0818	MDL	0.409	PQL	mg/Kg	J	Q, E
BERYLLIUM	0.440		0.0164	MDL	0.102	PQL	mg/Kg	J	Q, E
CADMIUM	0.126		0.0450	MDL	0.102	PQL	mg/Kg	J	Q, E
CHROMIUM	15.1		0.123	MDL	0.409	PQL	mg/Kg	J	Q, E, E, A
COBALT	4.73		0.0204	MDL	0.102	PQL	mg/Kg	J	Q, E

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 3:05:16 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method Category: METALS			i di di di di				4.4		
Method: 6020			Ma	trix:	so				e inglisme a tradition and exemply an
Sample ID: SL-230-SA6-SB-4.0-5.0	Collec	ted: 10/6/2	011 10:45	:00 A	nalysis T	ype: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COPPER	10.2		0.0818	MDL	0.409	PQL	mg/Kg	J	Q, E, E
LEAD	5.79		0.0104	MDL	0.204	PQL	mg/Kg	J	Q, E, E
NICKEL	12.6		0.102	MDL	0.409	PQL	mg/Kg	J	Q, E, E
SILVER	0.491		0.0145	MDL	0.102	PQL	mg/Kg	J	Q, E
THALLIUM	0.215		0.0307	MDL	0.102	PQL	mg/Kg	J	Q, E
VANADIUM ·	29.1		0.0225	MDL	0.102	PQL	mg/Kg	J	Q, E, E, A
ZINC	61.2		0.572	MDL	3.07	PQL	mg/Kg	J	E, E
Sample ID: SL-230-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 10:25	:00 A	nalysis Ty	/pe: REA	·	<u>'</u>	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.221	J	0.0614	MDL	0.423	PQL	mg/Kg	J	Z, Q
Sample ID: SL-230-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 10:25	:00 A	nalysis Ty	/pe: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.923		0.0529	MDL	0.106	PQL	mg/Kg	J	Q, E, E
Sample ID: SL-230-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	1 011 10:25:	nn 4	nalvsis Tv	/pe: REA		l	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	88.8		0.112	MDL	0.423	PQL	mg/Kg	J	E, E, A
Sample ID: SL-230-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 10:25:	00 A	nalysis Ty	/pe: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.211	J	0.0783	MDL	0.212	PQL	mg/Kg	J	Z, Q, E
ARSENIC	5.85		0.0846	MDL	0.423	PQL	mg/Kg	J	Q, E
BERYLLIUM	0.563		0.0169	MDL	0.106	PQL	mg/Kg	J	Q, E
CADMIUM	0.758		0.0465	MDL	0.106	PQL	mg/Kg	J	Q, E
CHROMIUM	23.7		0.127	MDL	0.423	PQL	mg/Kg	J	Q, E, E, A
COBALT	6.74		0.0212	MDL	0.106	PQL	mg/Kg	J	Q, E
					0.400	PQL	malka	J	Q, E, E
COPPER	18.4	i	0.0846	MDL	0.423	PUL	mg/Kg	3	∞ , ∟, ∟
COPPER LEAD	18.4 19.4		0.0846	MDL	0.423	PQL	mg/Kg	J	Q, E, E

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 3:05:16 PM ADR version 1.4.0.111 Page 10 of 25

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method Category: METALS	Casada Sara								
Method: 6020			Ma	itrix:	so				t den begette Han glaberhing
Sample ID: SL-230-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 10:25	:00 🔏	nalysis T	ype: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SILVER	9.47		0.0150	MDL	0.106	PQL	mg/Kg	J	Q, E
THALLIUM	0.224		0.0317	MDL	0.106	PQL	mg/Kg	J	Q, E
VANADIUM	31.4		0.0233	MDL	0.106	PQL	mg/Kg	J	Q, E, E, A
ZINC	104		0.592	MDL	3.17	PQL	mg/Kg	J	E, E
Sample ID: SL-232-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 3:30:0	00 A	nalysis T	ype: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.226	J	0.0618	MDL	0.426	PQL	mg/Kg	J	Z, Q
Sample ID: SL-232-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 3:30:0)O A	nalysis T	pe: REA	2	4	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	1.33		0.0533	MDL	0.107	PQL	mg/Kg	J	Q, E, E
Sample ID: SL-232-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 3:30:0	10 A	nalysis Ty	/pe: REA	3	<u> </u>	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL.	RL Type	Units	Data Review Qual	Reason Code
BARIUM	117		0.113	MDL	0.426	PQL	mg/Kg	J	E, E, A
Sample ID: SL-232-SA6-SB-2.5-3.5	Collect	ted: 10/6/2	011 3:30:0	0 A	nalysis Ty	/pe: RES	'		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.220		0.0789	MDL	0.213	PQL	mg/Kg	J	Q, E
ARSENIC	10.6		0.0853	MDL	0.426	PQL	mg/Kg	J	Q, E
BERYLLIUM	1.16		0.0171	MDL	0.107	PQL	mg/Kg	j	Q, E
CADMIUM	0.0469	U	0.0469	MDL	0.107	PQL	mg/Kg	UJ	Ë
CHROMIUM	31.2		0.128	MDL	0.426	PQL	mg/Kg	J	Q, E, E, A
COBALT	8.10		0.0213	MDL	0.107	PQL	mg/Kg	J	Q, E
COPPER	14.2		0.0853	MDL	0.426	PQL	mg/Kg	J	Q, E, E
LEAD	8.98		0.0109	MDL	0.213	PQL	mg/Kg	J	Q, E, E
NICKEL	19.5		0.107	MDL	0.426	PQL	mg/Kg	J	Q, E, E
SILVER	0.113		0.0151	MDL	0.107	PQL	mg/Kg	J	Q, E
	1			_					

^{*} denotes a non-reportable result

THALLIUM

VANADIUM

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

0.348

59.2

1/23/2012 3:05:16 PM ADR version 1.4.0.111 Page 11 of 25

0.0320

0.0234

MDL

MDL

0.107

0.107

PQL

PQL

mg/Kg

mg/Kg

J

Q, E

Q, E, E, A

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

EDD I Heriamo: DEZO	_ * '						COLTI	1 IVAIIIV	ODIII_0	O1 E_1100
Method Category:	METALS	Nakarikal Indigesiy		a a a a						2.60-4-15
Method:	6020			Ma	trix:	so				
Sample ID: SL-232-SA6-SB	-2.5-3.5	Collec	ted: 10/6/2	:011 3:30:0	00 A	nalysis T	ype: RES	;	1	Dilution: 2
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ZINC	1	62.3		0.597	MDL	3.20	PQL	mg/Kg	J	E, E
Sample ID: SL-232-SA6-SS	-0.0-0.5	Collec	ted: 10/6/2	011 3:00:0	00 A	nalysis T	ype: REA			Dilution: 2
Analyte		Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM		0.219	J	0.0638	MDL	0.440	PQL	mg/Kg	J	Z, Q
Sample ID: SL-232-SA6-SS	-0.0-0.5	Collec	ted: 10/6/2	011 3:00:0	10 A	nalysis T	/pe: REA	2	I	Dilution: 2
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM		1.00	T	0.0550	MDL	0.110	PQL	mg/Kg	J	Q, E, E
Sample ID: SL-232-SA6-SS	-0.0-0.5	Collec	ted: 10/6/2	011 3:00:0	10 A	nalysis T	/pe: REA	.3		Dilution: 2
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM		165		0.117	MDL	0.440	PQL	mg/Kg	J	E, E, A
Sample ID: SL-232-SA6-SS	-0.0-0.5	Collec	ted: 10/6/2	011 3:00:0	0 A	nalysis Ty	/pe: RES		ı	Dilution: 2
			T						Data	

ample ID: SL-232-SA6-SS-0.0-0.5	Collec	tea: 10/6/2	011 3:00:0	U A	Analysis Type: KES				Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ANTIMONY	0.239		0.0814	MDL	0.220	PQL	mg/Kg	J	Q, E		
ARSENIC	8.71		0.0880	MDL	0.440	PQL	mg/Kg	J	Q, E		
BERYLLIUM	0.988		0.0176	MDL	0.110	PQL	mg/Kg	J	Q, E		
CADMIUM	0.257		0.0484	MDL	0.110	PQL	mg/Kg	J	Q, E		
CHROMIUM	28.6		0.132	MDL	0.440	PQL	mg/Kg	J	Q, E, E, A		
COBALT	10.4		0.0220	MDL	0.110	PQL	mg/Kg	J	Q, E		
COPPER	15.1		0.0880	MDL	0.440	PQL	mg/Kg	J	Q, E, E		
LEAD	11.7		0.0112	MDL	0.220	PQL	mg/Kg	J	Q, E, E		
NICKEL	23.3		0.110	MDL	0.440	PQL	mg/Kg	J	Q, E, E		
SILVER	0.0725	J	0.0156	MDL	0.110	PQL	mg/Kg	J	Z, Q, E		
THALLIUM	0.381		0.0330	MDL	0.110	PQL	mg/Kg	J	Q, E		
VANADIUM	56.6		0.0242	MDL	0.110	PQL	mg/Kg	J	Q, E, E, A		
ZINC	82.2		0.616	MDL	3.30	PQL	mg/Kg	J	E, E		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 3:05:16 PM ADR version 1.4.0.111 Page 12 of 25

Lab Reporting Batch ID: DE263

Laboratory: LL

Page 13 of 25

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

,						· · ·		050	
Method Category: METALS Method: 6020		alton ni brigo	in a transit time.	* **** ********************************	SO	e de la composition della comp			
Sample ID: SL-234-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 12:15	:00 A	nalysis T	ype: REA	.		Dilution: 2
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.154	J	0.0628	MDL	0.433	PQL	mg/Kg	J	Z, Q
Sample ID: SL-234-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 12:15	:00 A	nalysis T	ype: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.951	1	0.0541	MDL	0.108	PQL	mg/Kg	J	Q, E, E
Sample ID: SL-234-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 12:15	:00 A	nalysis T	ype: REA	3		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	164	T T	0.115	MDL	0.433	PQL	mg/Kg	J	E, E, A
Sample ID: SL-234-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 12:15	:00 A	nalvsis T	/pe: RES	•		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.258		0.0801	MDL	0.217	PQL	mg/Kg	J	Q, E
ARSENIC	7.67		0.0866	MDL	0.433	PQL	mg/Kg	J	Q, E
BERYLLIUM	0.855		0.0173	MDL	0.108	PQL	mg/Kg	J	Q, E
CADMIUM	0.338		0.0476	MDL	0.108	PQL	mg/Kg	J	Q, E
CHROMIUM	28.8		0.130	MDL	0.433	PQL	mg/Kg	J	Q, E, E, A
COBALT	9.94		0.0217	MDL	0.108	PQL	mg/Kg	J	Q, E
COPPER	16.4		0.0866	MDL	0.433	PQL	mg/Kg	J	Q, E, E
LEAD	20.3		0.0110	MDL	0.217	PQL	mg/Kg	J	Q, E, E
NICKEL	22.4		0.108	MDL	0.433	PQL	mg/Kg	J	Q, E, E
SILVER	0.154		0.0154	MDL	0.108	PQL	mg/Kg	J	Q, E
THALLIUM	0.364		0.0325	MDL	0.108	PQL	mg/Kg	J	Q, E
VANADIUM	53.8		0.0238	MDL	0.108	PQL	mg/Kg	J	Q, E, E, A
ZINC	101		0.606	MDL	3.25	PQL	mg/Kg	J	E, E
Sample ID: SL-254-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 12:10:	:00 A	nalysis Ty	/pe: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.319	J	0.0595	MDL	0.410	PQL	mg/Kg	J	Z, Q
		·	L	i	4			l	·

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 3:05:17 PM ADR version 1.4.0.111

^{*} denotes a non-reportable result

EDD THEHAME. BEZOO_TT						••••		J. ODC	SFE_11030
Method Category: METALS Method: 6020		SULLEGE OF			so		111111		
Sample ID: SL-254-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 12:10	:00 <i>A</i>	nalysis T	ype: REA	.2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.691		0.0513	MDL	0.103	PQL	mg/Kg	J	Q, E, E
Sample ID: SL-254-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 12:10	:00 A	nalysis Ty	ype: REA	.3		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	108		0.109	MDL	0.410	PQL	mg/Kg	J	E, E, A
Sample ID: SL-254-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 12:10	:00 A	nalysis Ty	/pe: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.129	J	0.0759	MDL	0.205	PQL	mg/Kg	J	Z, Q, E
ARSENIC	7.92		0.0821	MDL	0.410	PQL	mg/Kg	J	Q, E
BERYLLIUM	0.789		0.0164	MDL	0.103	PQL	mg/Kg	J	Q, E
CADMIUM	0.140		0.0451	MDL	0.103	PQL	mg/Kg	J	Q, E
CHROMIUM	26.2		0.123	MDL	0.410	PQL	mg/Kg	J	Q, E, E, A
COBALT	9.65		0.0205	MDL	0.103	PQL	mg/Kg	J	Q, E
COPPER	12.5		0.0821	MDL	0.410	PQL	mg/Kg	J	Q, E, E
.EAD	7.71		0.0105	MDL	0.205	PQL	mg/Kg	J	Q, E, E
NICKEL	17.2		0.103	MDL	0.410	PQL	mg/Kg	J	Q, E, E
SILVER	0.0710	J	0.0146	MDL	0.103	PQL	mg/Kg	J	Z, Q, E
THALLIUM	0.369		0.0308	MDL	0.103	PQL	mg/Kg	J	Q, E
/ANADIUM	51.7		0.0226	MDL	0.103	PQL	mg/Kg	J	Q, E, E, A
ZINC	78.2		0.575	MDL	3.08	PQL	mg/Kg	J	E, E
Sample ID: SL-268-SA6-SB-4.0-5.0	Collec	ted: 10/6/2	011 10:30:	:00 A	nalysis Ty	pe: REA			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.206	J	0.0589	MDL	0.406	PQL	mg/Kg	J	Z, Q
Sample ID: SL-268-SA6-SB-4.0-5.0	Collect	ted: 10/6/2	011 10:30:	00 A	nalysis Ty	pe: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	1.20	I	0.0508	MDL	0.102	PQL	mg/Kg	J	Q, E, E

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 3:05:17 PM

ADR version 1.4.0.111

Page 14 of 25

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method:	6020			Ma	trix:	so				
Sample ID: SL-268-Si	A6-SB-4.0-5.0	Collec	ted: 10/6/2	011 10:30	:00 A	nalysis Ty	/pe: REA	.3	D	ilution: 2
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM		98.4		0.108	MDL	0.406	PQL	mg/Kg	J	E, E, A

Sample ID: SL-268-SA6-SB-4.0-5.0	Collec	ted: 10/6/2	011 10:30	:00 A	nalysis Ty	/pe: RES		,	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.154	J	0.0752	MDL	0.203	PQL	mg/Kg	J	Z, Q, E
ARSENIC	7.19		0.0812	MDL	0.406	PQL	mg/Kg	J	Q, E
BERYLLIUM	0.714		0.0162	MDL	0.102	PQL	mg/Kg	J	Q, E
CADMIUM	0.118		0.0447	MDL	0.102	PQL	mg/Kg	J	Q, E
CHROMIUM	22.5		0.122	MDL	0.406	PQL	mg/Kg	J	Q, E, E, A
COBALT	7.62		0.0203	MDL	0.102	PQL	mg/Kg	J	Q, E
COPPER	10.1		0.0812	MDL	0.406	PQL	mg/Kg	J	Q, E, E
LEAD	6.47		0.0104	MDL	0.203	PQL	mg/Kg	J	Q, E, E
NICKEL	17.9		0.102	MDL	0.406	PQL	mg/Kg	J	Q, E, E
SILVER	0.101	J	0.0144	MDL	0.102	PQL	mg/Kg	J	Z, Q, E
THALLIUM	0.299		0.0305	MDL	0.102	PQL	mg/Kg	J	Q, E
VANADIUM	45.1		0.0223	MDL	0.102	PQL	mg/Kg	J	Q, E, E, A
ZINC	65.8		0.569	MDL	3.05	PQL	mg/Kg	j	E, E

Method Category	: METALS	
Method:	7199	Matrix: SO

Sample ID: SL-229-SA6-SB-2.0-3.0	Collec	ted: 10/6/2	011 9:00:0	00 🗚	Analysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.29	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z

Sample ID: SL-229-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 8:30:0	00	Analysis Ty	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.32	J	0.21	MDL	1.0	PQL	mg/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/23/2012 3:05:17 PM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

EDD I HEHAITIC. DEZOO_VI						COLTI	1 Maille	. ODIII_C	001 E_1 1030.
Method Category: METALS	a de la compa			la de la compansión de la	rollede visa				di di igezhidek
Method: 7199			Ma	trix:	so				
Sample ID: SL-230-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 10:25	:00 🗚	Analysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.52	J	0.21	MDL	1.1	PQL	mg/Kg	J	Z
Sample ID: SL-232-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 3:30:0	10 4	\ \nalysis T _j	/pe: RES	<u> </u>	····	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.66	J	0.22	MDL	1.1	PQL	mg/Kg	J	Z
Sample ID: SL-254-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 12:10:	:00 🚜	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.24	J	0.21	MDL	1.0	PQL	mg/Kg	J	Z
Sample ID: SL-268-SA6-SB-4.0-5.0	Collec	ted: 10/6/2	011 10:30:	00 4	\nalysis Ty	pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.45	J	0.21	MDL	1.1	PQL	mg/Kg	J	Z
Method Category: METALS		6 × 8 × 8 × 8 × 8 × 8				AN ALCONOMY.		eschalitationis	
Wethod: 7470A			Ma	trix:	AQ				
ample ID: EB-SA6-SB-100611	Collec	ted: 10/6/2	011 2:00:0	0 4	nalysis Ty	pe: RES		,	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.000058	J	0.00002	MDL	0.00020	PQL	mg/L	υ	В, В

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.000058	J	0.00002 6	MDL	0.00020	PQL	mg/L	υ	8, B

Method:	7471A			Ma	trix:	so				
Sample ID: SL-229	-SA6-SB-2.0-3.0	Collec	ted: 10/6/2	2011 9:00:0	00 A	nalysis Ty	pe: RES			ilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY		0.0125	J	0.0068	MDL	0.0973	PQL	mg/Kg	υ	B, F

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/23/2012 3:05:17 PM Page 16 of 25

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

LDD i licitatile. DL205_Vi						EGM	r maine	s. ODIM_C	3-E_110509
Method Category: METALS Method: 7471A			es, 12 ⁶ 115 See 115 Se 115 S	mese vi amán i	so			erior respect	
Sample ID: SL-230-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 10:25	:00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0441	J	0.0072	MDL	0.103	PQL	mg/Kg	υ	F
Sample ID: SL-232-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 3:30:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0122	J	0.0074	MDL	0.105	PQL	mg/Kg	U	B, F
Sample ID: SL-232-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 3:00:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0127	J	0.0078	MDL	0.111	PQL	mg/Kg	U	B, F
Sample ID: SL-234-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 12:15	:00 A	nalysis T	pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0159	J	0.0075	MDL	0.106	PQL	mg/Kg	U	B, F
Sample ID: SL-254-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 12:10:	:00 A	nalysis T	pe: RES		' 	Dilution: 1
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0137	J	0.0071	MDL	0.100	PQL	mg/Kg	υ	B, F
Sample ID: SL-268-SA6-SB-4.0-5.0	Collect	ted: 10/6/2	011 10:30:	:00 A	nalysis Ty	/pe: RES	•		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0675	J	0.0072	MDL	0.102	PQL	mg/Kg	J	Z
Method Category: SVOA Wethod: 1625C			Ma	trix:	AQ				
Sample ID: EB-SA6-SB-100611	Collect	ted: 10/6/2	011 2:00:0	00 A	nalysis Ty	/pe: RES	-BASE/NE	т	Dilution: 1
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	A CONTRACTOR AND ADDRESS OF THE PARTY OF THE	1155 166 20 A 350 1 A			TOTAL OF STREET PERSONS	and moreoval and to the	orac in porta 350 Miles	ALCOHOLD COM COLUMN	ers - cercinos Parispas is anti- repo

N-NITROSODIMETHYLAMINE

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1.05

1/23/2012 3:05:17 PM

ADR version 1.4.0.111

0.476

MDL

0.952

PQL

ng/L

s

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Vethod Catego	ry: SVOA	er en elsenet, beite	اللافلاق والأ		rd out					
Method:	8015M			Ma	itrix:	so		- #3 - S	1 13 18-11	Kili lana Tabu
Sample ID: SL-268-	SA6-SB-4.0-5.0	Collec	ted: 10/6/2	011 10:30	:00 A	nalysis T	ype: REA		1	Dilution: 1
A <i>nalyt</i> e		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C15-C20)		0.61	J	0.42	MDL	1.3	PQL	mg/Kg	J	Z

Method:	8081A			Me	trix:	so				• .
Sample ID: SL-229	-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 8:30:0	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DELTA-BHC		0.12	J	0.038	MDL	0.18	PQL	ug/Kg	J	

Method Category: SVOA

Sample ID: SL-232-SA6-SS-0.0-0.5 Collected: 10/6/2011 3:00:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1 Data Lab Lab DL RL Review Reason Analyte Result Qual DL Туре RL Туре Units Qual Code 4,4'-DDD 0.075 U 0.075 MDL 0.39 PQL ug/Kg ŲJ S 4,4'-DDE 0.075 0.075 MDL 0.39 PQL UJ U ug/Kg s 4,4'-DDT 0.075 U 0.075 MDL 0.39 PQL UJ S ug/Kg ALDRIN 0.075 U s 0.075 MDL 0.19 PQL ug/Kg UJ ALPHA-BHC 0.039 U 0.039 MDL 0.19 **PQL** UJ S ug/Kg BETA-BHC 0.068 U 0.068 MDL. 0.19 PQL ug/Kg UJ S U Chlordane 0.91 0.91 MDL UJ 3.9 PQL ug/Kg s U DELTA-BHC 0.041 0.041 MDL 0.19 **PQL** UJ s ug/Kg DIELDRIN 0.075 PQL U 0.075 MDL 0.39 IJ ug/Kg S ENDOSULFAN I U 0.050 0.050 MDL 0.19 PQL ug/Kg UJ s ENDOSULFAN II 0.075 U 0.075 MDL 0.39 **PQL** ug/Kg UJ s ENDOSULFAN SULFATE 0.075 U 0.075 MDL 0.39 PQL IJ s ug/Kg 0.075 ENDRIN U 0.075 MDL 0.39 PQL IJ s ug/Kg υ **ENDRIN ALDEHYDE** UJ 0.075 0.075 MDL 0.39 PQL ug/Kg S ENDRIN KETONE υ 0.075 0.075 MDL 0.39 PQL UJ s ug/Kg IJ gamma-BHC (Lindane) 0.039 U 0.039 MDL 0.19 **PQL** ug/Kg S HEPTACHLOR 0.068 U 0.068 MDL 0.19 POL UЛ s ug/Kg HEPTACHLOR EPOXIDE 0.039 U s 0.039 MDL 0.19 **PQL** ug/Kg IJ METHOXYCHLOR 0.39 U 0.39 MDL 1.9 PQL ug/Kg UJ s MIREX 0.075 U 0.075 MDL 0.39 PQL ug/Kg IJ S TOXAPHENE IJ 2.5 2.5 MDL 7.5 PQL ug/Kg S

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/23/2012 3:05:17 PM ADR version 1.4.0.111 Page 18 of 25

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-234-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 12:15	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDD	0.074	U	0.074	MDL	0.38	PQL	ug/Kg	UJ	s
4,4'-DDE	0.074	U	0.074	MDL	0.38	PQL	ug/Kg	UJ	s
4,4'-DDT	0.074	U	0.074	MDL	0.38	PQL	ug/Kg	UJ	S
ALDRIN	0.074	U	0.074	MDL	0.19	PQL	ug/Kg	UJ	S
ALPHA-BHC	0.057	J	0.038	MDL	0.19	PQL	ug/Kg	J	Z, S
BETA-BHC	0.068	υ	0.068	MDL	0.19	PQL	ug/Kg	บม	S
Chlordane	0.90	U	0.90	MDL	3.8	PQL	ug/Kg	ΟĴ	S
DELTA-BHC	0.041	U	0.041	MDL	0.19	PQL	ug/Kg	ΟĴ	\$
DIELDRIN	0.074	U	0.074	MDL	0.38	PQL	ug/Kg	UJ	s
ENDOSULFAN I	0.050	U	0.050	MDL	0.19	PQL	ug/Kg	UJ	\$
ENDOSULFAN II	0.074	U	0.074	MDL	0.38	PQL	ug/Kg	UJ	s
ENDOSULFAN SULFATE	0.074	U	0.074	MDL	0.38	PQL	ug/Kg	กา	S
ENDRIN	0.074	Ų	0.074	MDL	0.38	PQL	ug/Kg	UJ	S
ENDRIN ALDEHYDE	0.096	J	0.074	MDL	0.38	PQL	ug/Kg	J	Z, S
ENDRIN KETONE	0.074	υ	0.074	MDL	0.38	PQL	ug/Kg	UJ	S
gamma-BHC (Lindane)	0.038	U	0.038	MDL	0.19	PQL	ug/Kg	บม	S
HEPTACHLOR	0.068	U	0.068	MDL	0.19	PQL	ug/Kg	UJ	S
HEPTACHLOR EPOXIDE	0.038	U	0.038	MDL	0.19	PQL	ug/Kg	กา	S
METHOXYCHLOR	0.38	U	0.38	MDL	1.9	PQL	ug/Kg	UJ	s
MIREX	0.074	U	0.074	MDL	0.38	PQL	ug/Kg	UJ	s
TOXAPHENE	2.5	Ü	2.5	MDL	7.4	PQL	ug/Kg	UJ	s

Method Categor	y: SVOA	
Method:	8082	Matrix: AQ

Sample ID: EB-SA6-SB-100611	Collec	ted: 10/6/2	011 2:00:0	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL [Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1016	0.10	U	0.10	MDL	0.51	PQL	ug/L	UJ	E
AROCLOR 1221	0.10	U	0.10	MDL	0.51	PQL	ug/L	UJ	E
AROCLOR 1232	0.20	U	0.20	MDL	0.51	PQL	ug/L	UJ	Е
AROCLOR 1242	0.10	U	0.10	MDL	0.51	PQL	ug/L	UJ	Е
AROCLOR 1248	0.10	U	0.10	MDL	0.51	PQL	ug/L	UJ	E
AROCLOR 1254	0.10	U	0.10	MDL	0.51	PQL	ug/L	UJ	E

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 3:05:17 PM

ADR version 1.4.0.111

Lab Reporting Batch ID: DE263

Method Category: SVOA

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method: 8082			Ma	atrix:	AQ				
Sample ID: EB-SA6-SB-100611	Collec	ted: 10/6/2	011 2:00:	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	0.15	υ	0.15	MDL	0.51	PQL	ug/L	เกา	E
Aroclor 1262	0.20	U	0.20	MDL	0.51	PQL	ug/L	บม	E
Aroclor 1268	0.16	U	0.16	MDL	0.51	PQL	ug/L	UJ	Ε
Method Category: SVOA	landi vine ile propini								Arac Singularies
Method: 8082			Má	atrix:	so				
Sample ID: SL-230-SA6-SB-4.0-5.0	Collec	ted: 10/6/2	011 10:45	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ROCLOR 1260	1.6	J	0.40	MDL	1.8	PQL	ug/Kg	J	Z
Aroclor 5460	1.8	J	1.0	MDL	3.4	PQL	ug/Kg	J	Z
ample ID: SL-234-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 12:15	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	0.93	J	0.37	MDL	1.9	PQL	ug/Kg	J	Z
ample ID: SL-254-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 12:10	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
<i>Inalyte</i>	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	1.1	J	0.40	MDL	1.8	PQL	ug/Kg	J	Z
ample ID: SL-268-SA6-SB-4.0-5.0	Collec	ted: 10/6/2	011 10:30	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	0.51	J	0.34	MDL	1.8	PQL	ug/Kg	J	Z

0.41

MDL

1.8

PQL

ug/Kg

AROCLOR 1260

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/23/2012 3:05:17 PM ADR version 1.4.0.111

0.72

Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

EDD Filename: DE263_v1	and the second second			notice recovers		EWAL	r Maille	_	SFL_11050
Method Category: SVOA	de catalogia sing si bani paktika jeji ti								
Method: 8151A			Ma	itrix:	so				
Sample ID: SL-229-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 8:30:0	00 A	nalysis T	ype: RES		i	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DALAPON	4.7	U	4.7	MDL	9.6	PQL	ug/Kg	R	Q
DINOSEB	0.85	U	0.85	MDL	2.6	PQL	ug/Kg	UJ	Q
Sample ID: SL-230-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 10:25	:00 A	nalysis T	ype: RES		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4-D	1.3	J	1.3	MDL	3.8	PQL	ug/Kg	J	Z
DICAMBA	0.57	J	0.43	MDL	1.3	PQL	ug/Kg	J	Z
Sample ID: SL-232-SA6-SS-0.0-0.5	Collect	ted: 10/6/2	011 3:00:0	00 A	nalysis T	ype: RES		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4-D	1.6	J	1.4	MDL	4.1	PQL	ug/Kg	J	Z
DICAMBA	0.50	J	0.45	MDL	1.4	PQL	ug/Kg	J	Z
Sample ID: SL-234-SA6-SS-0.0-0.5	Collect	ted: 10/6/2	011 12:15	:00 A	nalysis T	ype: RES		1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4-D	2.2	J	1.3	MDL	4.0	PQL	ug/Kg	J	Z

Method Category:	SVCA	the design of the control of the con	
Method:	8270C	Matrix:	so

Sample ID: SL-229-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 8:30:0	00 A	Inalysis T	ype: RES		1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
3,5-Dimethylphenol	36	U	36	MDL	180	PQL	ug/Kg	R	Q
BENZIDINE	1200	U	1200	MDL	3600	PQL	ug/Kg	R	Q

Sample ID: SL-230-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 10:25	:00	Analysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(G,H,I)PERYLENE	20	J	18	MDL	180	PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 3:05:17 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DE263

eQAPP Name: CDM_SSFL 110509

Laboratory: LL

EDD Filename: DE263_v1

Method Category: SVOA

Method: 8270C <u>Matrix: SO</u>

Sample ID: SL-232-SA6-SB-2.5-3.5 Collected: 10/6/2011 3:30:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	34	J	18	MDL	360	PQL	ug/Kg	J	Z

Sample ID: SL-234-SA6-SS-0.0-0.5 Collected: 10/6/2011 12:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	38	J	19	MDL	380	PQL	ug/Kg	J	Z

Method Category: SVOA

Method: 8270C SIM Matrix: AQ

Sample ID: EB-SA6-SB-100611 Collected: 10/6/2011 2:00:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	0.13	J	0.048	MDL	0.95	PQL	ug/L	J	Z
Diethylphthalate	0.15	J	0.048	MDL	0.95	PQL	ug/L	J	Z
Di-n-butylphthalate	0.30	J	0.048	MDL	0.95	PQL	ug/L	J	Z
NAPHTHALENE	0.033	J	0.029	MDL	0.048	PQL	ug/L	J	Z

Method Category: SVOA

Method: 8270C SIM Matrix: SO

Sample ID: SL-229-SA6-SB-2.0-3.0 Collected: 10/6/2011 9:00:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(A)PYRENE	1.3	J	0.69	MDL	1.7	PQL	ug/Kg	J	Z
BENZO(G,H,I)PERYLENE	1.1	J	0.69	MDL	1,7	PQL	ug/Kg	J	Z
BIS(2-ETHYLHEXYL)PHTHALATE	18	J	6.2	MDL	19	PQL	ug/Kg	U	В
INDENO(1,2,3-CD)PYRENE	0.77	J	0.69	MDL	1.7	PQL	ug/Kg	J	Z
PHENANTHRENE	1.0	J	0.69	MDL	1.7	PQL	ug/Kg	J	Z

Sample ID: SL-229-SA6-SS-0.0-0.5 Collected: 10/6/2011 8:30:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 5

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(B)FLUORANTHENE	6.7	J	3.6	MDL	8.9	PQL	ug/Kg	J	Z
BIS(2-ETHYLHEXYL)PHTHALATE	34	J	32	MDL	96	PQL	ug/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 3:05:17 PM ADR version 1.4.0.111 Page 22 of 25

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method:	8270C SIM			Ma	atrix:	SO				
Sample ID: SL-229-	SA6-SS-0.0-0.5	Collec	ted: 10/6/20	011 8:30:0	00 A	nalysis T	ype: RES	-BASE/NE	UTRAL [ilution: 5
Analyte		Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
OUDVOENE		1.9	J	1,8	MDL	8.9	PQL	ug/Kg	J	Z
CHRYSENE		1.0	l	.,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			- 3 - 3		
CHRYSENE Sample ID: SL-230-	SA6-SB-4.0-5.0		lted: 10/6/20			nalysis T	J	-BASE/NE	UTRAL E	ilution: 1
	SA6-SB-4.0-5.0		1			nalysis T	J		Data Review Qual	Pilution: 1 Reason Code
Sample ID: SL-230-		Collec Lab	ted: 10/6/20	011 10:45	:00 Ai		ype: RES	-BASE/NE	Data Review	Reason
Sample ID: SL-230- Analyte	ITHENE	Collec Lab Result	Lab Qual	011 10:45 DL	:00 Ai DL. Type	RL	ype: RES RL Type	-BASE/NE	Data Review Qual	Reason Code

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTHRACENE	3.7	J	1.8	MDL	8.9	PQL	ug/Kg	J	Z
INDENO(1,2,3-CD)PYRENE	8.2	J	3.5	MDL	8.9	PQL	ug/Kg	J	Z

Sample ID: SL-232-SA6-SS-0.0-0.5	Collected: 10/6/2011 3:00:00 Analysis Type; RES-BASE/NEUTRAL Dilution: 1								Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
BENZO(B)FLUORANTHENE	1.7	J	0.76	MDL	1.9	PQL	ug/Kg	J	Z
BIS(2-ETHYLHEXYL)PHTHALATE	39		6.8	MDL	20	PQL	ug/Kg	υ	В
CHRYSENE	0.38	J	0.38	MDL	1.9	PQL	ug/Kg	J	Z

Sample ID: SL-234-SA6-SS-0.0-0.5	Collec	ted: 10/6/2	011 12:15	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL L	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(A)PYRENE	0.92	J	0.75	MDL	1.9	PQL	ug/Kg	J	Z
BENZO(G,H,I)PERYLENE	0.77	J	0.75	MDL	1.9	PQL	ug/Kg	J	Z
CHRYSENE	1.6	J	0.37	MDL	1.9	PQL	ug/Kg	j	Z
FLUORANTHENE	1.8	J	0.75	MDL	1.9	PQL	ug/Kg	J	Z
FLUORENE	0.79	J	0.75	MDL	1.9	PQL	ug/Kg	J	Z
NAPHTHALENE	0.82	J	0.75	MDL	1.9	PQL	ug/Kg	J	Z
PHENANTHRENE	1.3	J	0.75	MDL	1.9	PQL	ug/Kg	J	Z
PYRENE	1.6	J	0.75	MDL	1.9	PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

Page 23 of 25

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-254-SA6-SB-2.5-3.5	Collec	ted: 10/6/2	011 12:10	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
BENZO(B)FLUORANTHENE	0.93	J	0.69	MDL	1.7	PQL	ug/Kg	J	Z
BIS(2-ETHYLHEXYL)PHTHALATE	12	J	6.2	MDL	19	PQL	ug/Kg	U	В
Butylbenzylphthalate	8.2	J	6.2	MDL	19	PQL	ug/Kg	J	Z
CHRYSENE	0.38	J	0.34	MDL	1.7	PQL	ua/Ka	J	Z

Sample ID: 5L-200-SA0-5B-4.0-5.0	Collec	tea: 10/6/2	011 10:30	:00 A	inalysis i	ype: KES	-BASE/NE	OTRAL I	Jilution: 5
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	33	J	31	MDL	94	PQL	ug/Kg	U	В
CHRYSENE	2.1	j	1.7	MDL	8.7	PQL	ug/Kg	J	Z

Method Category:	VOA		
Method:	8015B	Matrix:	SO

Sample ID: SL-230-SA6-SS-0.0-0.5	Collected: 10/6/2011 10:25:00			:00 A	Analysis Type: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ETHANOL	110	U	110	MDL	530	PQL	ug/Kg	UJ	Q

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE263 EDD Filename: DE263_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision
F	Equipment Blank Contamination
L	Laboratory Control Precision
L	Laboratory Control Spike Upper Estimation
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Upper Estimation
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DE263

Method Blank Outlier Report

Lab Reporting Batch ID: DE263 Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method: 6010 Matrix: AQ	E			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P28448IB220323	10/14/2011 3:23:00 AM	STRONTIUM	0.00035 mg/L	EB-SA6-SB-100611

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P28308AB220247	10/19/2011 2:47:00 AM	CALCIUM MANGANESE PHOSPHORUS STRONTIUM TIN	8.18 mg/Kg 0.0400 mg/Kg 1.24 mg/Kg 0.0440 mg/Kg 1.46 mg/Kg	SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-254-SA6-SB-2.5-3.5 SL-268-SA6-SB-4.0-5.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-229-SA6-SB-2.0-3.0(RES)	TIN	2.38 mg/Kg	2.38U mg/Kg
SL-229-SA6-SS-0.0-0.5(RES)	TIN	2.13 mg/Kg	2.13U mg/Kg
SL-230-SA6-SB-4.0-5.0(RES)	TIN	2.29 mg/Kg	2.29U mg/Kg
SL-230-SA6-SS-0.0-0.5(RES)	TIN	2.88 mg/Kg	2.88U mg/Kg
SL-232-SA6-SB-2.5-3.5(RES)	TIN	2.67 mg/Kg	2.67U mg/Kg
SL-232-SA6-SS-0.0-0.5(RES)	TIN	2.58 mg/Kg	2.58U mg/Kg
SL-234-SA6-SS-0.0-0.5(RES)	TIN	2.74 mg/Kg	2.74U mg/Kg
SL-254-SA6-SB-2.5-3.5(RES)	TIN	2.48 mg/Kg	2.48U mg/Kg
SL-268-\$A6-\$B-4.0-5.0(RE\$)	TIN	2.46 mg/Kg	2.46U mg/Kg

Method: 7470A Matrix: AQ				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P28313EB221002	10/11/2011 10:02:00 AM	MERCURY	0.000063 mg/L	EB-SA6-SB-100611

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-100611(RES)	MERCURY	0.000058 mg/L	0.000058U mg/L

Method Blank Outlier Report

Lab Reporting Batch ID: DE263 Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method: 8270C SIM Matrix: SO										
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples						
PLKLB28B261854	10/14/2011 6:54:00 PM	BIS(2-ETHYLHEXYL)PHTHALATE	13 ug/Kg	SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-254-SA6-SB-2.5-3.5 SL-268-SA6-SB-4.0-5.0						

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-229-SA6-SB-2.0-3.0(RES)	BIS(2-ETHYLHEXYL)PHTHALATE	18 ug/Kg	19U ug/Kg
SL-229-SA6-SS-0.0-0.5(RES)	BIS(2-ETHYLHEXYL)PHTHALATE	34 ug/Kg	96U ug/Kg
SL-230-SA6-SB-4.0-5.0(RES)	BIS(2-ETHYLHEXYL)PHTHALATE	9.6 ug/Kg	19U ug/Kg
SL-232-SA6-SS-0.0-0.5(RES)	BIS(2-ETHYLHEXYL)PHTHALATE	39 ug/Kg	39U ug/Kg
SL-254-SA6-SB-2.5-3.5(RES)	BIS(2-ETHYLHEXYL)PHTHALATE	12 ug/Kg	19U ug/Kg
SL-268-SA6-SB-4.0-5.0(RES)	BIS(2-ETHYLHEXYL)PHTHALATE	33 ug/Kg	94U ug/Kg

Page 2 of 2

Lab Reporting Batch ID: DE263

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method: 8015B Matrix: SO	n 165, No W. World, off of the second						
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-230-SA6-SS-0.0-0.5MS SL-230-SA6-SS-0.0-0.5MSD (SL-230-SA6-SS-0.0-0.5)	ETHANOL	42	43	48.00-130,00	-	ETHANOL	J (all detects) UJ (all non-detects)

Method: 8151A Matrix: SO										
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag			
SL-229-SA6-SS-0.0-0.5MSD SL-229-SA6-SS-0.0-0.5)	2,4-DB	-	-	10.00-201.00	60 (50.00)	2,4-DB	J(all detects)			
SL-229-SA6-SS-0.0-0.5MSD SL-229-SA6-SS-0.0-0.5)	DALAPON	-	0	10.00-125.00	200 (50.00)	DALAPON	J(all detects) R(all non-detects)			
SL-229-SA6-SS-0.0-0.5MS SL-229-SA6-SS-0.0-0.5MSD (SL-229-SA6-SS-0.0-0.5)	DINOSEB	8	8	10.00-46.00	•	DINOSEB	J(all detects) UJ(all non-detects)			

Method: 6020	e santoni en sacionata de la compania de la compani						
Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-229-SA6-SS-0.0-0.5MS SL-229-SA6-SS-0.0-0.5MSD (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SB-2.0-3.0 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SB-4.0-5.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-244-SA6-SB-2.5-3.5 SL-254-SA6-SB-2.5-3.5	ARSENIC COBALT	235 158	178 131	75.00-125.00 75.00-125.00	-	ARSENIC COBALT	J(all detects)
SL-229-SA6-SS-0.0-0.5MS SL-229-SA6-SS-0.0-0.5MSD (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SB-2.0-3.0 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SS-0.0-0.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-254-SA6-SS-0.0-0.5 SL-254-SA6-SS-0.0-0.5 SL-254-SA6-SS-0.0-0.5	ANTIMONY BERYLLIUM CADMIUM CHROMIUM COPPER LEAD NICKEL SILVER THALLIUM VANADIUM ZINC	168 162 258 189 299 243 151 174 257 441	69 - 129 136 134 184 141 - - 161 217	75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00	25 (20.00) 22 (20.00) 38 (20.00) 26 (20.00) 23 (20.00) 38 (20.00) 22 (20.00) 28 (20.00) 23 (20.00) 23 (20.00) 28 (20.00)	ANTIMONY BERYLLIUM CADMIUM CHROMIUM COPPER LEAD NICKEL SILVER THALLIUM VANADIUM ZINC	J(all detects) UJ(all non-detects) Zn, No Qual %R, >4x
SL-229-SA6-SS-0.0-0.5MS SL-229-SA6-SS-0.0-0.5MSD (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SS-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-254-SA6-SB-2.5-3.5 SL-254-SA6-SB-2.5-3.5	SELENIUM	144	128	75.00-125.00	-	SELENIUM	J(all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 2:20:16 PM ADR version 1.4.0.111 Page 1 of 4

Lab Reporting Batch ID: DE263 Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO		*****	的 型影				
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-229-SA6-SS-0.0-0.5MS SL-229-SA6-SS-0.0-0.5MSD (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SB-2.0-3.0 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SB-2.5-3.5 SL-234-SA6-SS-0.0-0.5 SL-254-SA6-SB-2.5-3.5 SL-254-SA6-SB-2.5-3.5	MOLYBDENUM	157	-	75.00-125.00	26 (20.00)	MOLYBDENUM	J(all detects) UJ(all non-detects)
SL-229-SA6-SS-0.0-0.5MS SL-229-SA6-SS-0.0-0.5MSD (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SB-2.5-3.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SS-0.0-0.5 SL-232-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SB-2.5-3.5 SL-268-SA6-SB-2.5-3.5	BARIUM	416	220	75.00-125.00	25 (20.00)	BARIUM	J(all detects) UJ(all non-detects) No Qual %R, >4x

Method: 6010B Matrix: SO

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-229-SA6-SS-0.0-0.5MS SL-229-SA6-SS-0.0-0.5MSD (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SS-4.0-5.0	POTASSIUM TITANIUM	135 257	147 268	75.00-125.00 75.00-125.00		POTASSIUM TITANIUM	
SL -230-SA6-SS-0.0-0.5 SL -232-SA6-SB-2.5-3.5 SL -232-SA6-SS-0.0-0.5 SL -234-SA6-SS-0.0-0.5							J(all detects)
SL -254-SA6-SB-2.5-3.5 SL -268-SA6-SB-4.0-5.0)							Ti, No Qual, >4x
SL-229-SA6-SS-0.0-0.5MS SL-229-SA6-SS-0.0-0.5MSD (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SB-2.0-3.0 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SB-2.5-3.5 SL-234-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-254-SA6-SB-2.5-3.5 SL-254-SA6-SB-2.5-3.5	MANGANESE	16	66	75.00-125.00	-	MANGANESE	No Qual, >4x
SL-229-SA6-SS-0.0-0.5MS (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SS-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-254-SA6-SB-2.5-3.5 SL-254-SA6-SB-2.5-3.5	PHOSPHORUS	72	-	75.00-125.00	-	PHOSPHORUS	J(all detects) UJ(all non-detects)

1/23/2012 2:20:16 PM ADR version 1.4.0.111 Page 2 of 4

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method: 8270C Matrix: SO									
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag		
SL-229-SA6-SS-0.0-0.5MSD (SL-229-SA6-SS-0.0-0.5)	BIS(2-CHLOROETHOXY)METHA ISOPHORONE	-	107 109	75.00-104.00 73.00-102.00	-	BIS(2-CHLOROETHOXY)METH ISOPHORONE	J(all detects)		
SL-229-SA6-SS-0.0-0.5MS SL-229-SA6-SS-0.0-0.5MSD (SL-229-SA6-SS-0.0-0.5)	3,5-Dimethylphenol BENZIDINE	0	0	71,00-127,00 35.00-141.00	-	3,5-Dimethylphenol BENZIDINE	J(all detects) R(all non-detects)		

Method: 8270C SIM

Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-230-SA6-SS-0.0-0.5MS SL-230-SA6-SS-0.0-0.5MSD (SL-230-SA6-SS-0.0-0.5)	BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE Butylbenzylphthalate	- - 177	-	43.00-155.00 57.00-153.00 57.00-173.00	55 (30.00) 44 (30.00)	BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE Butylbenzylphthalate	No Qual, Diluted Out
SL-230-SA6-SS-0.0-0.5MS SL-230-SA6-SS-0.0-0.5MSD (SL-230-SA6-SS-0.0-0.5)	Diethylphthalate Dimethylphthalate	0	0	70.00-136.00 74.00-118.00	200 (30.00)	Diethylphthalate Dimethylphthalate	No Qual, Diluted Out
SL-230-SA6-SS-0.0-0.5MS SL-230-SA6-SS-0.0-0.5MSD (SL-230-SA6-SS-0.0-0.5)	BENZO(A)ANTHRACENE BENZO(A)PYRENE CHRYSENE FLUORANTHENE PYRENE	48 57 37 1 6	176 - 162 178 178	59.00-128.00 58.00-142.00 48.00-134.00 26.00-166.00 15.00-153.00	78 (30.00) 57 (30.00) 75 (30.00) 87 (30.00) 85 (30.00)	BENZO(A)ANTHRACENE BENZO(A)PYRENE CHRYSENE FLUORANTHENE PYRENE	No Qual, Diluted Out

Method: 300.0 Matrix: SO									
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag		
SL-232-SA6-SS-0.0-0.5MS (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SS-2.0-0.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.3-0.5	FLUORIDE	48	-	80.00-120.00	_	FLUORIDE	J(all detects) UJ(all non-detects)		

1/23/2012 2:20:16 PM ADR version 1.4.0.111 Page 3 of 4

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method: 6010B Matrix: SO							ous particular and province and an extension of the control of the
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-229-SA6-SS-0.0-0.5MS SL-229-SA6-SS-0.0-0.5MSD (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SB-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-254-SA6-SS-0.0-0.5 SL-254-SA6-SB-4.0-5.0	IRON MAGNESIUM	-2605 -35	-2803 -83	75.00-125.00 75.00-125.00	- -	IRON MAGNESIUM	No Qual, >4x
SL-229-SA6-SS-0.0-0.5MS SL-229-SA6-SS-0.0-0.5MSD (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SB-2.0-3.0 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SB-2.5-3.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0	ALUMINUM	1357	1385	75.00-125.00	-	ALUMINUM	No Qual, >4x

Lab Duplicate Outlier Report

Lab Reporting Batch ID: DE263 Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

EDD 1 licitatiic. DE200_V1			COCAL I HUII	ie. CDM_031 L_110303
Method: 300.0 Matrix: SO				
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-232-SA6-SS-0.0-0.5DUP (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-254-SA6-SB-2.5-3.5 SL-268-SA6-SB-4.0-5.0)	FLUORIDE	200	20.00	No Qual, OK by Difference
Method: 6010B Matrix: SO				
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-229-SA6-SS-0.0-0.5DUP (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-254-SA6-SS-2.5-3.5	ALUMINUM IRON MANGANESE SODIUM STRONTIUM Zirconium	23 22 39 52 28 26	20.00 20.00 20.00 20.00 20.00 20.00 20.00	J(all detects) UJ(all non-detects) Na, Zr, No Qual,
SL -268-SA6-SB-4.0-5.0) Method: 6020 Matrix: SO				OK by Difference
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-229-SA6-SS-0.0-0.5DUP (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-254-SA6-SB-2.5-3.5 SL-268-SA6-SB-4.0-5.0)	ANTIMONY ARSENIC BARIUM BERYLLIUM CADMIUM CHROMIUM COBALT COPPER LEAD MOLYBDENUM NICKEL SELENIUM VANADIUM ZINC	30 54 43 30 73 49 91 43 41 0.2985 mg/kg 51 22 38 44	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 0.208 mg/kg 20.00 20.00 20.00 20.00	J(all detects) UJ(all non-detects) Be, Cd, Se, No Qual, OK by Difference

Lab Duplicate Outlier Report

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method: 7471A Matrix: SO		letal activity but the		en e
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-229-SA6-SS-0.0-0.5DUP (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-254-SA6-SB-2.5-3.5 SL-268-SA6-SB-4.0-5.0)	MERCURY	200	20.00	No Qual, OK by Difference

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE263 Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method: 8082 Matrix: AQ			e popular				kan para dia mpikatana kan para dia pa Para dia para dia pa
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P12858AY241027A (EB-SA6-SB-100611)	AROCLOR 1016 AROCLOR 1260	-	-	51.00-128.00 56.00-135,00	47 (30.00) 54 (30.00)	AROCLOR 1016, 1221, 1232 AROCLOR 1260, 1242, 1248, 1254, 1262, 1268	J (all detects) UJ (all non-detects)

Method: 8081A Matrix: SO									
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag		
P12863AQ241831A (SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5)	METHOXYCHLOR	139	-	59.00-125.00	-	METHOXYCHLOR	J(all detects)		

Method: 6020 Matrix: SO								
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag	
P28326AQ220839A (SL-229-SA6-SB-2.0-3.0 SL-229-SA6-SS-0.0-0.5 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-234-SA6-SB-2.5-3.5 SL-254-SA6-SB-2.5-3.5 SL-268-SA6-SB-4.0-5.0)	ANTIMONY	132	-	80.00-120.00	-	ANTIMONY	No Qual, SRM within QC Limits	

Page 1 of 1

Surrogate Outlier Report

Lab Reporting Batch ID: DE263 Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 162! <i>Matrix:</i> AQ	5C				
Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
EB-SA6-SB- 100611	N-Nitrosodimethylamine-d6 N-Nitrosodimethylamine-d6	255 258	50.00-150.00 50.00-150.00	All Target Analytes	J (all detects)

<i>Matrix:</i> SO	es i en mas menen braek riktikasi militik	nice or unification services and an analysis of services	interview communication		
Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
SL-230-SA6-SS-0.0 N-	Nitrosodimethylamine-d6	171	50.00-150.00	All Target Analytes	J(all detects)

Metrix: SO										
Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag					
SL-232-SA6-SS-0.0 -0.5	TETRACHLORO-M-XYLENE	41	50.00-130.00	All Target Analytes	J(all detects) UJ(all non-detects)					
SL-234-SA6-SS-0.0 -0.5	DECACHLOROBIPHENYL TETRACHLORO-M-XYLENE	11 10	20.00-120.00 50.00-130.00	All Target Analytes	J(all detects) UJ(all non-detects)					

Page 1 of 1

Reporting Limit Outliers

Lab Reporting Batch ID: DE263

EDD Filename: DE263_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

	₽.,	,	: 3	-	_	~	т.	SV.	~ .	C.E	
	1	=		81	# 1	т.			•12	и з	 8
			,		•				-	4.3	

Matrix: AQ

SampleID		Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-100611	PHOSPHORUS	J	0.0068	0.100	PQL	mg/L	J (all detects)

Metriod: 7470A

Matrix: AC

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-100611	MERCURY	J	0.000058	0.00020	PQL	mg/L	J (all detects)

Method: 8270C SIM

Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-100611	BIS(2-ETHYLHEXYL)PHTHALATE	J	0.13	0.95	PQL	ug/L	
	Diethylphthalate	J	0.15	0.95	PQL	ug/L	J (all detects)
	Di-n-butylphthalate	J	0.30	0.95	PQL	ug/L	J (all delects)
	NAPHTHALENE	J	0.033	0.048	PQL	ug/L	

Method: 300.0

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-268-SA6-SB-4.0-5.0	Nitrate-NO3	J	0.92	1.6	PQL	mg/Kg	J (all detects)

Method: 6010B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-229-SA6-SB-2.0-3.0	SODIUM TIN Zirconium	J	85.6 2.38 1.92	102 10.2 5.09	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-229-SA6-SS-0.0-0.5	SODIUM TIN Zirconium	J	98.9 2.13 1.98	104 10.4 5.18	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-230-SA6-SB-4.0-5.0	SODIUM TIN Zirconium	J	75.5 2.29 1.42	101 10.1 5.06	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-230-SA6-SS-0.0-0.5	SODIUM TIN Zirconium	J	88.4 2.88 2.01	104 10.4 5.19	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-232-SA6-SB-2.5-3.5	SODIUM TIN Zirconium	J	95.5 2.67 3.19	106 10.6 5.28	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-232-SA6-SS-0.0-0.5	SODIUM TIN Zirconium	J	70.0 2.58 1.52	109 10.9 5.44	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area iV Collocated Soil Sampling

Reporting Limit Outliers

Lab Reporting Batch ID: DE263

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method: 7471A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-229-SA6-SB-2.0-3.0	MERCURY	J	0.0125	0.0973	PQL	mg/Kg	J (all detects)
SL-230-SA6-SS-0.0-0.5	MERCURY	j	0.0441	0.103	PQL	mg/Kg	J (all detects)
SL-232-SA6-SB-2.5-3.5	MERCURY	J	0.0122	0.105	PQL	mg/Kg	J (all detects)
SL-232-SA6-SS-0.0-0.5	MERCURY	J	0.0127	0.111	PQL	mg/Kg	J (all detects)
SL-234-SA6-SS-0.0-0.5	MERCURY	J	0.0159	0.106	PQL	mg/Kg	J (all detects)
SL-254-SA6-SB-2.5-3.5	MERCURY	j	0.0137	0.100	PQL	mg/Kg	J (all detects)
SL-268-SA6-SB-4.0-5.0	MERCURY	J	0.0675	0.102	PQL	mg/Kg	J (all detects)

Method: 8015M

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-268-SA6-SB-4.0-5.0	EFH (C15-C20)	J	0.61	1.3	PQL	mg/Kg	

Method: 8081A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-229-SA6-SS-0.0-0.5	DELTA-BHC	J	0.12	0.18	PQL	ug/Kg	J (all detects)
SL-234-SA6-SS-0.0-0.5	ALPHA-BHC ENDRIN ALDEHYDE	J	0.057 0.096	0.19 0.38	PQL PQL	ug/Kg ug/Kg	J (all detects)

Method: 8082

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-230-SA6-SB-4.0-5.0	AROCLOR 1260 Aroclor 5460	J	1.6 1.8	1.8 3.4	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-234-SA6-SS-0.0-0.5	AROCLOR 1254	J	0.93	1.9	PQL	ug/Kg	J (all detects)
SL-254-SA6-SB-2.5-3.5	AROCLOR 1260	J	1.1	1.8	PQL	ug/Kg	J (all detects)
SL-268-SA6-SB-4.0-5.0	AROCLOR 1254 AROCLOR 1260	J	0.51 0.72	1.8 1.8	PQL PQL	ug/Kg ug/Kg	J (all detects)

Method: 8151A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-230-SA6-SS-0.0-0.5	2,4-D DICAMBA	J	1.3 0.57	3.8 1.3	PQL PQL	ug/Kg ug/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/23/2012 12:36:36 PM ADR version 1.4.0.111 Page 3 of 4

Reporting Limit Outliers

Lab Reporting Batch ID: DE263

erine din karajula Manifesta (Karajula)

Laboratory: LL

EDD Filename: DE263_v1 eQAPP Name: CDM_SSFL_110509

Method: 8151A

Matrix: so

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-232-SA6-SS-0.0-0.5	2,4-D DICAMBA	J	1.6 0.50	4.1 1.4	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-234-SA6-SS-0.0-0.5	2,4-D	J	2.2	4.0	PQL	ug/Kg	J (all detects)

Method: 8270C

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-230-SA6-SS-0.0-0.5	BENZO(G,H,i)PERYLENE	J	20	180	PQL	ug/Kg	J (all detects)
SL-232-SA6-SB-2.5-3.5	BIS(2-ETHYLHEXYL)PHTHALATE	J	34	360	PQL	ug/Kg	J (all detects)
SL-234-SA6-SS-0.0-0.5	BIS(2-ETHYLHEXYL)PHTHALATE	J	38	380	PQL	ug/Kg	J (all detects)

Method: 8270C SIM

Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-229-SA6-SB-2.0-3.0	BENZO(A)PYRENE BENZO(G,H,I)PERYLENE	J	1.3 1.1	1.7 1.7	PQL PQL	ug/Kg ug/Kg	
	BIS(2-ETHYLHEXYL)PHTHALATE INDENO(1,2,3-CD)PYRENE PHENANTHRENE	J	18 0.77 1.0	19 1.7 1.7	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-229-SA6-SS-0.0-0.5	BENZO(B)FLUORANTHENE BIS(2-ETHYLHEXYL)PHTHALATE CHRYSENE	J J	6.7 34 1.9	8.9 96 8.9	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-230-SA6-SB-4.0-5.0	BENZO(B)FLUORANTHENE BIS(2-ETHYLHEXYL)PHTHALATE CHRYSENE	J J	1.4 9.6 0.41	1.7 19 1.7	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-230-SA6-SS-0.0-0.5	ANTHRACENE INDENO(1,2,3-CD)PYRENE	J	3.7 8.2	8.9 8.9	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-232-SA6-SS-0.0-0.5	BENZO(B)FLUORANTHENE CHRYSENE	J	1.7 0.38	1.9 1.9	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-234-SA6-SS-0.0-0.5	BENZO(A)PYRENE BENZO(G,H,I)PERYLENE CHRYSENE FLUORANTHENE FLUORENE NAPHTHALENE PHENANTHRENE PYRENE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.92 0.77 1.6 1.8 0.79 0.82 1.3 1.6	1.9 1.9 1.9 1.9 1.9 1.9 1.9	PQL PQL PQL PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-254-SA6-SB-2.5-3.5	BENZO(B)FLUORANTHENE BIS(2-ETHYLHEXYL)PHTHALATE Butylbenzylphthalate CHRYSENE	J	0.93 12 8.2 0.38	1.7 19 19 1.7	PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-268-SA6-SB-4.0-5.0	BIS(2-ETHYLHEXYL)PHTHALATE CHRYSENE	J	33 2.1	94 8.7	PQL PQL	ug/Kg ug/Kg	J (all detects)

		/ALIDATIO	N COMP	PLETENESS WO	RKSHEET	Date: 1 - 20-1
	:DE263			ADR		Page: \cdot of \cdot Reviewer: \cdot
Labora	atory: <u>Lancaster Laboratorie</u>	es_				Reviewer: 2nd Reviewer: \
METH	OD: Metals (EPA SW 846	Method 6010	B/6020A/7	000)		Zilu Keviewer
	·					
The sa	amples listed below were re ion findings worksheets.	viewed for ea	ich of the f	ollowing validation ar	eas. Validation finding	is are noted in attached
vallaat	ion inalings worksheets.					
	Validation Ar	ea			Comments	
I.	Technical holding times		N	Sampling dates:	, com that is the	
II.	ICP/MS Tune		-			
III.	Calibration					
IV.	Blanks		SW			· · · · · · · · · · · · · · · · · · ·
V.	ICP Interference Check Sample	(ICS) Analysis	N	, ART	Pout	>RPDate
VI.	Matrix Spike Analysis		N	MSD(AliBa,	Fe, Ma, M, Ti, Z	2n74X)
VII.	Duplicate Sample Analysis		SW	DVP	ر د در ر	\
VIII.	Laboratory Control Samples (LC	S)	MP.	450		
IX.	Internal Standard (ICP-MS)		N	, ,		
X.	Furnace Atomic Absorption QC		N			
XI.	ICP Serial Dilution		SW			
XII.	Sample Result Verification		N			*******
XIII.	Overall Assessment of Data		N			
XIV.	Field Duplicates		_			
χv	Field Blanks	<u>.</u>	SW	68-10		
Note:	A = Acceptable N = Not provided/applicable SW = See worksheet	R = Rin	o compound sate eld blank	TB =	Duplicate Trip blank Equipment blank	
/alidated	d Samples: Soil (wax	er				
1 SL	229-SA6-SS-0.0-0.5 1 ⁻	1 (M) N	15	21	31	
2 SL	-230-SA6-SS-0.0-0.5 12	2 7 7	<u>150</u>	22	32	
3 SL	-234-SA6-SS-0.0-0.5)ÚÓ	23	33	
4 SL	-232-SA6-SS-0.0-0.5	.	•	24	34	

SL-232-SA6-SB-2.5-3.5

SL-229-SA6-SB-2.0-3.0

SL-230-SA6-SB-4.0-5.0

SL-254-SA6-SB-2.5-3.5

SL-268-SA6-SB-4.0-5.0

10 EB-SA6-SB-100611

Notes:_

LDC #: 26979A4

VALIDATION FINDINGS WORKSHEET PB/ICB/CCB QUALIFIED SAMPLES METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000)

Soil preparation factor applied: 100x, Hg; 167x Associated Samples: All Water

Reason: B

2nd Reviewer: Reviewer:

Sample	Sample Concentration units, unless otherwise noted: ug/L	on units, un	less otherw	rise note	oted: ug/L Associated Samples: All Water	717 104 104 104 104 104 104 104 104 104 104
Analyte	Analyte Maximum Maximum Maximum Action PB* PB* ICB/CCB* Limit (mg/Kg) (ug/L)	Maximum PB* (ug/L)	Maximum Action ICB/CCB* Limit (ug/L)	Action Limit	on 10	
Hg			0.063	0.315	15 0.058	
Ь			1.8	6	9.8	
Sample	Concentrati	on units, un	less otherw	ise note	Sample Concentration units, unless otherwise noted: mg/Kg Associated Samples: All Soil	

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U".

Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

0.014

0.012

0.012

0.013

0.016

0.04

0.042 (ng/L)

뫈

∞

ဖ

က

Analyte Maximum Maximum Maximum Action PB* ICB/CCB* Limit

(ng/L)

(mg/Kg)

LDC #: 26979A4

VALIDATION FINDINGS WORKSHEET

Field Blanks

2nd Reviewer:

METHOD: Trace Metals (EPA SW846 6010B/7000)

Were field blanks identified in this SDG? Y)N N/A N N/A

Were target analytes detected in the field blanks?

Associated sample units: mg/Kg 10/6/11 Blank units:

__100x; Hg=167x Soil factor applied _ Sampling date:_

Associated Samples: All Sediment Field blank type: (circle one) Field Blank / Rinsate / Other:

Reason: F

0.014 ∞ Sample Identification 0.012 ဖ 0.012 ß 0.013 4 0.016 0.044 2 0.04843 Action Level 0.75 3.4 Blank ID 0.058 1.5 6.8 9 Analyte В 문 Δ.

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: Samples with analyte concentrations within five times the associated field blank concentration are listed above, these sample results were qualified as not detected, "U".

QUALITY ASSURANCE SUMMARY

FORM 6
DUPLICATES

SDG No.: DE263

Matrix: SOIL

Level (low/med): LOW

Duplicate Lab Sample ID: 6431133DUP

% Solids for Sample: 93.8

Batch ID(s): P29308D, P28326A, P28308A, P29208D, P28311A

Concentration Units: MG/KG

% Solids for Duplicate: 93.8

Background Lab Sample ID: 6431133BKG

		Control	-						Τ
Analyte	Mass	Limit	Samples (S)	С	Duplicate (D)	C	RPD	Q	
Aluminum			7106.3324		8917.8674		23	*	
Antimony	121	0.2	0.1600	В	0.2165		30		T
Arsenic	75		3.6268		6,2972		54	*	T
Barium	137		50.5931		78.6635		43	*	T
Cosyllitum /	9	0.1	0.3765		0.5092		30	*	ľ
Boron			0.3726	U	0.3726	ט			٦
	111	0.1	0.1267		0.2739		73	*	T
Calcium			1618,7675		1718.8451		6		T
Chromium	52		13.2320		21.7153		49	*	1
Cobalt	59		4.1526		11.1205		91	*	7
Copper	63		6.1337		9.5038		43	*	1
Iron			17543.0799		14062.8227		22	*	1
Lead	208		8.5826		12.9671		41	*	1
Lithium			14.8716		16.9075		13		1
Magnesium			3472.5348		3099.4743		11		1
Manganese	1 1		245.7366		364.8995	1	39	*	†
	1		0.0075	ט	0.0103	В	200		1
Molybdenum	98	0.1	0.3076		0.6061		65	*	1
Nickel	60		8.5888	\neg	14.4327		51	*	Ţ
Phosphorus	T		304.2830		348.1804		13		T
Potassium			1916.5214		2236.3291	П	15	•	†
Celendan -	78		0.0739	В	0.0926	В	22		Ţ
Silver	107		0.0801	В	0.0759	В	5		1
edium A			98.9308	В	58.1593	В	52		1
Strontium			13.3428		10.1010		28	*	1
Thallium	203	0.1	0.1551	\neg	0.1878		19		fi
<u> Fin</u>	ļ.		2.1343	в	2.1757		2		1:
Fitanium			642.1388	\neg	722.4719		12		1
Vanadium	51		23.4128	\neg	34.3635		38	*	1
Zinc	66		51.6488	\neg	80.5680	_	44	*	1
ிர்களும்புரு 🤿			1.9759	B	1.5246	-	26	_	ī

NOTE: An asterisk (*) in column "Q" indicates poor duplicate precision (RPD > 20% OR |(S) - (D)| > LOQ for values < 5x LOQ}.

The data are considered to be valid because the laboratory control sample is within the control limits. See the Laboratory Control Sample.

+ Mo-out by difference: 0.7985(40.208) :J/J

DEZ63: 5624

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CV = Cold Vapor

AF = Cold Vapor Atomic Fluorescence

CONCENTRATION QUALIFIERS:

U= Below MDL

B= Below LOQ

FLAGS:

* = Duplicate Out of Spec

QUALITY ASSURANCE SUMMARY

FORM 9

SERIAL DILUTIONS SDG No.: DE263

Matrix: SOIL

Level (low/med): LOW

Background Lab Sample ID: 6431133BKG Serial Dilution Lab Sample ID: 6431133L Batch ID(s): P29308D, P28326A, P28308A, P29208D

Concentration Units: UG/L

	•	Initial Sample		Serial Dilution		_	Π	Τ
Analyte	Mass	Result (I)	C	Result (S)	_C	% Diff.	Q	<u>l</u> N
Aluminum		68657.1200		65506.2000	T	5		P
Antimony	121	0.7728	В	1.8500	U	100		M.
Arsenic	75	17.5200		16.3750		7		M
ordoni)	137	244.4000		272.1500	Г	11	E	M
Beryllium	9	1.8190		2.0150	В	11	-	M.
Boron		3.6000	Ū	18.0000	Ū		T	Р
Cadmium	111	0.6122		1.1000	U,	100		MS
Calcium		15639.5600		15536.6500		1		P
nearly m	52	63.9200		72.0500		13	Ε	MS
Cobalt	59	20.0600		21.5600		7		MS
Copper	63	29.6300		32.4400		9		MS
Iron		166199.6300		165876.7000		0		P
Lead	208	41.4600		44.8500		8		MS
Lithium		143.6800		151.1500		5		P
Magnesium		32898.1000	·	34149.5500		4		ъ
Manganese		2374.1600		2427.9000		2		P
Molybdenum	98	1.4860		1.6905	В	14		MS
Nickel	60	41.4900		45.5500		10		MS
Phosphorus		2939.8000		2881.3500		2		P
Potassium		18516.2800		18839.3000		2		Ъ
Selenium	78	0.3570	В	1.4500	Ū	100		MS
Silver	107	0.3868	В	0.6025	В	56		MS
Sodium		955.8100	В	683.9500	В	28		P
Strontium		128.9100		123.1000	丁	5		P
Thallium	203	0.7493		0.7500	ט	100		MS
Tin		20.6200	В	17.9000	в	13		P
Titanium		6203.9600		6378.5000		3		P
relfun	51	113.1000	T	129.6500	寸	15	E	MS
Zinc	66	249.5000	Ī	270.6000		, 8		MS
Zirconium		19.0900	В	38.6500	в	102	$\overline{}$	P

NOTE: An E in column Q indicates the presence of a chemical or physical interference in the matrix when the % difference is greater than 10%. This applies only when (I) is greater than or equal to 50x MDL for ICP, 100x MDL for ICP-MS (6020), 50x MDL for ICP-MS (200.8), or 25x MDL for GFAA.

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CONCENTRATION QUALIFIERS:

DE263 5624

U≃ Below MDL

B= Below LOQ

FLAGS:

E = Matrix Effects exist as proven by Serial Dilution or Spiked Dilution

SAMPLE DELIVERY GROUP

DE266

Attachment I

Sample ID Cross Reference and Data Review Level

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
11-Oct-2011	TB-101111	6434478	ТВ	3520C	1625C	111
11-Oct-2011	TB-101111	6434479	ТВ	3546	1625C	III
11-Oct-2011	TB-101111	6434480	ТВ	5030B	8015M	III
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	3050B	6010B	Ш
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	3050B	6020	111
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	3060A	7199	Ш
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	3546	1625C	Ш
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	3550B	8015B	111
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	3550B	8015M	III
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	3550B	8082	Ш
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	3550B	8270C	111
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	3550B	8270C SIM	111
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	5035	8015M	111
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	8330	8330A	111
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	METHOD	300.0	Ш
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	METHOD	314.0	III
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	METHOD	7471A	111
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	METHOD	8015B	Ш
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	METHOD	8015M	111
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468	N	METHOD	8315A	111
11-Oct-2011	SL-265-SA6-SB-4.0-5.0	6434468 ´	N	METHOD	9012B	111
11-Oct-2011	SL-265-SA6-SB-4.0-5.0DUP	P434468D270158A	DUP	METHOD	314.0	Ш
11-Oct-2011	SL-265-SA6-SB-4.0-5.0MSD	P434468M322139A	MSD	METHOD	8015B	III
11-Oct-2011	SL-265-SA6-SB-4.0-5.0MS	P434468R270221A	MS	METHOD	314.0	111
11-Oct-2011	SL-265-SA6-SB-4.0-5.0MS	P434468R322123A	MS	METHOD	8015B	III
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	3050B	6010B	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	3050B	6020	111
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	3060A	7199	Ш
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	3546	1625C	III
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	3550B	8015B	Ш
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	3550B	8015M	Ш
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	3550B	8082	111
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	3550B	8270C	III
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	3550B	8270C SIM	III
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	5035	8015M	111
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	8330	8330A	III
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	METHOD	300.0	Ш
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	METHOD	314.0	111
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	METHOD	7471A	III
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	METHOD	8015B	Ш
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	METHOD	8015M	111
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	METHOD	8315A	Ш
11-Oct-2011	SL-167-SA7-SB-0.5-1.5	6434475	N	METHOD	9012B	III
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	3050B	6010B	III
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	3050B	6020	Ш
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	3060A	7199	Ш
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	3546	1625C	111
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	3550B	8015B	III
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	3550B	8015M	Ш
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	3550B	8082	Ш
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	3550B	8270C	Ш
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	3550B	8270C SIM	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	5035	8015M	111
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	8330	8330A	III
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	METHOD	300.0	III
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	METHOD	314.0	Ш
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	METHOD	7471A	Ш
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	METHOD	8015B	Ш
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	METHOD	8015M	Ш
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	METHOD	8315A	III
11-Oct-2011	SL-166-SA7-SB-1.0-2.0	6434474	N	METHOD	9012B	111
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	3050B	6010B	111
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	3050B	6020	Ш
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	3060A	7199	Ш
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	3546	1625C	Ш
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	3550B	8015B	Ш
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	3550B	8015M	Ш
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	3550B	8082	Ш
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	3550B	8270C	Ш
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	3550B	8270C SIM	IH
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	8330	8330A	Ш
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	METHOD	300.0	Ш
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	METHOD	314.0	Ш
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	METHOD	7471A	111
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	METHOD	8015B	Ш
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	METHOD	8015M	!!!
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N	METHOD	8315A	111
11-Oct-2011	SL-162-SA7-SB-0.0-1.0	6434473	N .	METHOD	9012B	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	3050B	6010B	111
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	3050B	6020	Ш
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	3060A	7199	Ш
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	3550B	8015B	Ш
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	3550B	8015M	Ш
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	3550B	8082	111
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	3550B	8270C	III
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	3550B	8270C SIM	Ш
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	5035	8015M	111
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	METHOD	300.0	Ш
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	METHOD	314.0	Ш
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	METHOD	7471A	Ш
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	METHOD	8015B	Ш
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	METHOD	8015M	Ш
11-Oct-2011	SL-147-SA7-SB-1.0-2.0	6434469	N	METHOD	9012B	Ш
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	3050B	6010B	111
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	3050B	6020	Ш
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	3060A	7199	Ш
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	3546	1625C	111
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	3550B	8015B	Ш
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	3550B	8015M	III
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	3550B	8082	III
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	3550B	8270C	111
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	3550B	8270C SIM	HII
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	5035	8015M	111
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	8330	8330A	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	METHOD	300.0	111
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	METHOD	314.0	Ш
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	METHOD	7471A	Ш
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	METHOD	8015B	Ш
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	METHOD	8015M	Ш
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	METHOD	8315A	111
11-Oct-2011	SL-155-SA7-SB-1.5-2.5	6434470	N	METHOD	9012B	!!!
11-Oct-2011	SL-155-SA7-SB-1.5-2.5MSD	P434470M320200A	MSD	METHOD	8015M	Ш
11-Oct-2011	SL-155-SA7-SB-1.5-2.5MS	P434470R320147A	MS	METHOD	8015M	Ш
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	3050B	6010B	111
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	3050B	6020	III
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	3060A	7199	Ш
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	3546	1625C	Ш
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	3550B	8015B	III
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	3550B	8015M	III
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	3550B	8082	Ш
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	3550B	8270C	III
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	3550B	8270C SIM	Ш
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	5035	8015M	Ш
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	8330	8330A	III
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	METHOD	300.0	III
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	METHOD	314.0	111
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	METHOD	7471A	ш
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	METHOD	8015B	III
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	METHOD	8015M	111
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	METHOD	8315A	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
11-Oct-2011	SL-168-SA7-SB-0.5-1.5	6434476	N	METHOD	9012B	Ш
11-Oct-2011	EB-SA7-SB-101111	6434477	EB	3520C	1625C	Ш
11-Oct-2011	SL-009-SA3-SB-4.0-5.0	6434471	N	3050B	6010B	Ш
11-Oct-2011	SL-009-SA3-SB-4.0-5.0	6434471	N	3050B	6020	Ш
11-Oct-2011	SL-009-SA3-SB-4.0-5.0	6434471	N	3060A	7199	Ш
11-Oct-2011	SL-009-SA3-SB-4.0-5.0	6434471	N	3550B	8082	Ш
11-Oct-2011	SL-009-SA3-SB-4.0-5.0	6434471	N	3550B	8270C	Ш
11-Oct-2011	SL-009-SA3-SB-4.0-5.0	6434471	N	3550B	8270C SIM	Ш
11-Oct-2011	SL-009-SA3-SB-4.0-5.0	6434471	N	METHOD	300.0	Ш
11-Oct-2011	SL-009-SA3-SB-4.0-5.0	6434471	N	METHOD	314.0	Ш
11-Oct-2011	SL-009-SA3-SB-4.0-5.0	6434471	N	METHOD	7471A	Ш
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	3050B	6010B	Ш
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	3050B	6020	III
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	3060A	7199	111
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	3546	1625C	Ш
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	3550B	8015B	111
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	3550B	8015M	111
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	3550B	8082	Ш
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	3550B	8270C	111
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	3550B	8270C SIM	Ш
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	5035	8015M	111
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	8330	8330A	111
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	METHOD	300.0	111
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	METHOD	314.0	111
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	METHOD	7471A	Ш
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	METHOD	8015B	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	METHOD	8015M	111
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	METHOD	8315A	Ш
11-Oct-2011	SL-049-SA7-SB-4.0-5.0	6434472	N	METHOD	9012B	III
11-Oct-2011	SL-049-SA7-SB-4.0-5.0DUP	P434472D272036B	DUP	METHOD	9012B	Ш
11-Oct-2011	SL-049-SA7-SB-4.0-5.0MS	P434472R272037B	MS	METHOD	9012B	Ш

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DE266

EDD Filename: DE266_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM	i i ji ji	a de la companya de		h I	i ili		id da de		
Nethod: 300.0			Ma	atrix:	so			e zinden is	didi.
ample ID: SL-049-SA7-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:25	:00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
litrate-NO3	0.92	J	0.83	MDL	1.6	PQL	mg/Kg	J	Z
ample ID: SL-155-SA7-SB-1.5-2.5	Collec	ted: 10/11/	2011 12:3	2:00 A	nalysis T	ype: RES		1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrate-NO3	1.3	J	0.85	MDL	1.6	PQL	mg/Kg	J	Z
Sample ID: SL-162-SA7-SB-0.0-1.0	Collec	ted: 10/11/	2011 11:1	5:00 A	nalysis T	ype: RES		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Vitrate-NO3	0.95	J	0.85	MDL	1.6	PQL	mg/Kg	J	Z
Sample ID: SL-166-SA7-SB-1.0-2.0	Collec	ted: 10/11/	2011 10:4	0:00 A	nalysis T	ype: RES		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrate-NO3	0.95	J	0.83	MDL	1.6	PQL	mg/Kg	J	Z
ample ID: SL-167-SA7-SB-0.5-1.5	Collec	ted: 10/11/	2011 9:25	:00 A	nalysis T	ype: RES		1	Dilution: 1
nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Nitrate-NO3	1.2	J	0.84	MDL	1.6	PQL	mg/Kg	J	Z
ample ID: SL-168-SA7-SB-0.5-1.5	Collec	ted: 10/11/	2011 1:45	:00 A	nalysis T	ype: RES	· · · · · · · · · · · · · · · · · · ·		Dilution: 1
nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Vitrate-NO3	1.1	J	0.83	MDL	1.5	PQL	mg/Kg	J	Z
Wethod Category: METALS Wethod: 6010B Sample ID: SL-009-SA3-SB-4.0-5.0	Collec	ted: 10/11/			SO nalysis T	ype: REA			Dilution: 1
								Data	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab

Result

19800

2920

1/12/2012 9:08:57 AM

Analyte

POTASSIUM

IRON

ADR version 1.4.0.111

DL

2.80

12.1

Lab

Qual

DL

Туре

MDL

MDL

RL.

21.5

53.6

RL

Туре

PQL

PQL

Review

Qual

J

J

Units

mg/Kg

mg/Kg

Reason

Code

Е

Q

Laboratory: LL

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE266

EDD Filename: DE266_v1.

Laboratory: LL

eQAPP Name: CDM SSFL 110509

EDD Filename: DE206_V1.						eQAF	'P Name	3: CDM_2	SFL_11050
Method Category: METALS Method: 6010B	ill kis		Ma	atrix:	so				
Sample ID: SL-009-SA3-SB-4.0-5.0	Collec	:ted: 10/11/	/2011 3:05	:00 A	nalysis T	ype: REA		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TIN	4.24	J	0.343	MDL	10.7	PQL	mg/Kg	U	В
Sample ID: SL-009-SA3-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:05	:00 A	nalysis T	vpe: RES	}	1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Zirconium	1.82	J	0.493	MDL	5.36	PQL	mg/Kg	J	Z
Sample ID: SL-049-SA7-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:25	:00 A	nalysis T	ype: REA	١	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	20000		2.61	MDL	20.0	PQL	mg/Kg	J	E
POTASSIUM	2670		11.3	MDL	50.0	PQL	mg/Kg	j	Q
TIN	2.80	J	0.320	MDL	10.0	PQL	mg/Kg	U	В
Sample ID: SL-049-SA7-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:25	:00 <i>A</i>	nalysis T	ype: RES	}	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	77.8	J	5.95	MDL	100	PQL	mg/Kg	J	Z
Zirconium	1.83	J	0.460	MDL	5.00	PQL	mg/Kg	J	Z
Sample ID: SL-147-SA7-SB-1.0-2.0	Collec	ted: 10/11/	2011 11:2	2:00 A	nalysis T	ype: REA		I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	18500		2.70	MDL	20.7	PQL	mg/Kg	J	E
POTASSIUM	2180		11.7	MDL	51.8	PQL	mg/Kg	J	Q
TIN	2.81	J	0.332	MDL	10.4	PQL	mg/Kg	υ	В
Sample ID: SL-147-SA7-SB-1.0-2.0	Collec	ted: 10/11/	2011 11:2	2:00 A	nalysis T	ype: RES	i		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	69.6	J	6.17	MDL	104	PQL	mg/Kg	J	Z
		1	T	ř .		1	T	T	

0.477

MDL

5.18

PQL

mg/Kg

Zirconium

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/12/2012 9:08:57 AM ADR version 1.4.0.111

1.56

Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE266 Laboratory: LL

EDD Filename: DE266_v1. eQAPP Name: CDM_SSFL_110509

	the many states and the contract of the contra
Method: 6010B	Matrix: SO

Sample ID: SL-155-SA7-SB-1.5-2.5	Collect	tea: 10/11/	2011 12:3	2:00 A	nalysis T	ype: REA			Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
IRON	23200		2.61	MDL	20.0	PQL	mg/Kg	J	Е		
POTASSIUM	3360		11.3	MDL	50.1	PQL	mg/Kg	J	Q		
TIN	2.87	J	0.321	MDL	10.0	PQL	mg/Kg	U	В		

Sample ID: SL-155-SA7-SB-1.5-2.5	Collec	Collected: 10/11/2011 12:32:00 Analysis Type: RES						Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code		
SODIUM	82.9	J	5.96	MDL	100	PQL	mg/Kg	J	Z		
Zirconium	1.85	J	0.461	MDL	5.01	PQL	mg/Kg	J	Z		

Sample ID: SL-162-SA7-SB-0.0-1.0	Collec	Collected: 10/11/2011 11:15:00 Analysis Type: REA							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	19100		2.73	MDL	20.9	PQL	mg/Kg	J	Е
POTASSIUM	3120		11.8	MDL	52.3	PQL	mg/Kg	J	Q
TIN	2.93	J	0.335	MDL	10.5	PQL	mg/Kg	U	В

Sample ID: SL-162-SA7-SB-0.0-1.0	Collec	Collected: 10/11/2011 11:15:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
SODIUM	64.3	J	6.23	MDL	105	PQL	mg/Kg	J	Z		
Zirconium	1.88	J	0.481	MDL	5.23	PQL	mg/Kg	J	Z		

Sample ID: SL-166-SA7-SB-1.0-2.0	Collec	Collected: 10/11/2011 10:40:00 Analysis Type: REA							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
IRON	19400		2.70	MDL	20.7	PQL	mg/Kg	J	E		
POTASSIUM	3040		11.7	MDL	51.7	PQL	mg/Kg	J	Q		
TIN	2.86	J	0.331	MDL	10.3	PQL	mg/Kg	υ	В		

Sample ID: SL-166-SA7-SB-1.0-2.0	Collect	ted: 10/11/	2011 10:4	0:00 A	nalysis T	ype: RES		E	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SODIUM	72.2	J	6.16	MDL	103	PQL	mg/Kg	J	Z
Zirconium	1.89	J	0.476	MDL	5.17	PQL	mg/Kg	j	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE266

EDD Filename: DE266_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method Category: METALS	Elia Jersey is but		
Method: 6010B	Matrix:	SO	A Constitution of
Sample ID: SL-167-SA7-SB-0.5-1.5	Collected: 10/11/2011 9:25:00	Analysis Type: REA	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL	RL	RL Turns		Data Review	Reason	
IRON	19900		2.69	MDL	20.6	Type PQL	Units mg/Kg	Qual 	Code E	
POTASSIUM	2990		11.7	MDL	51.6	PQL	mg/Kg	J	Q	
TIN	2.95	J	0.330	MDL	10.3	PQL	mg/Kg	U	В	

Sample ID: SL-167-SA7-SB-0.5-1	.5 Collec	ted: 10/11/	2011 9:25	:00 A	nalysis T	ype: RES		Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
SODIUM	64.9	J	6.14	MDL	103	PQL	mg/Kg	J	Z		
Zirconium	1.89	J	0.475	MDL	5.16	PQL	mg/Kg	J	Z		

Sample ID: SL-168-SA7-SB-0.5-1.5 Analyte	Collec	ted: 10/11/	2011 1:45	:00 A	nalysis T	ype: REA	L.	1	Dilution: 1
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
IRON	19100		2.64	MDL	20.2	PQL	mg/Kg	J	E
POTASSIUM	2930		11.4	MDL	50.5	PQL	mg/Kg	j	Q
TIN	2.82	J	0.323	MDL	10.1	PQL	mg/Kg	U	В

Sample ID: SL-168-SA7-SB-0.5-1.5	Collec	ted: 10/11	2011 1:45	:00 A	nalysis T	ype: RES		Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
SODIUM	63.1	J	6.01	MDL	101	PQL	mg/Kg	J	Z		
Zirconium	1.85	J	0.465	MDL	5.05	PQL	mg/Kg	J	Z		

Sample ID: SL-265-SA6-SB-4.0-5.0	Collec	ted: 10/11/	2011 8:47	:00 A	nalysis T	ype: REA		ı	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
IRON	20900		2.80	MDL	21.4	PQL	mg/Kg	J	E	
POTASSIUM	2260		12.1	MDL	53.6	PQL	mg/Kg	J	Q	
TIN	3.02	J	0.343	MDL	10.7	PQL	mg/Kg	U	В	

Sample ID: SL-265-SA6-SB-4.0-5.0	Collect	ted: 10/11/	2011 8:47	:00 🔏	ınalysis Tı	/pe: RES		1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Zirconium	2.90	J	0.493	MDL	5.36	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE266

Laboratory: LL

EDD Filename: DE266_v1.						eQAF	PP Name	e: CDM_S	SFL_110509
Method Category: METALS Method: 6020			Ma	trix:	so			highlet	
Sample ID: SL-009-SA3-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:05	:00 A	nalysis T	ype: REA		I	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.100	J	0.0622	MDL	0.429	PQL	mg/Kg	J	Z
Sample ID: SL-009-SA3-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:05	:00 A	nalysis T	ype: REA	.2	1	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.932		0.0536	MDL	0.107	PQL	mg/Kg	j	E
Sample ID: SL-009-SA3-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:05	:00 A	nalysis T	pe: RES		1	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.298		0.0794	MDL	0.215	PQL	mg/Kg	J	Q
ARSENIC	9.87		0.0858	MDL	0.429	PQL	mg/Kg	J	E
COBALT	6.33		0.0215	MDL	0.107	PQL	mg/Kg	J	Q, E
COPPER	42.8		0.0858	MDL	0.429	PQL	mg/Kg	J	Q, E
NICKEL	23.9		0.107	MDL	0.429	PQL	mg/Kg	J	Q
SILVER	0.217		0.0152	MDL	0.107	PQL	mg/Kg	J	Q
Sample ID: SL-049-SA7-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:25	:00 <i>A</i>	nalysis T	pe: REA		i	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.140	J	0.0598	MDL	0.412	PQL	mg/Kg	J	Z
Sample ID: SL-049-SA7-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:25	:00 A	nalysis T	/pe: REA	2		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.432		0.0515	MDL	0.103	PQL	mg/Kg	J	E
Sample ID: SL-049-SA7-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:25:	:00 A	nalysis Ty	/pe: RES		1	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.142	J	0.0762	MDL	0.206	PQL	mg/Kg	J	Z, Q
ARSENIC	4.77		0.0824	MDL	0.412	PQL	mg/Kg	J	E
COBALT	6.87		0.0206	MDL	0.103	PQL	mg/Kg	J	Q, E
COPPER	8.41		0.0824	MDL	0.412	PQL	mg/Kg	J	Q, E
NICKEL	14.2		0.103	MDL	0.412	PQL	mg/Kg	J	Q

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 9:08:58 AM ADR version 1.4.0.111 Page 5 of 19

Laboratory: LL EDD Filename: DE266 v1. EQAPP Name: CDM SSFI 110509

EDD Filename: DE266_v1.						eQAF	P Name	e: CDM_SSFL_11050						
Method Category: METALS Method: 6020			Ma	ntrix:	so									
Sample ID: SL-049-SA7-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:25	:00 A	nalysis Ty	ype: RES	1	1	Dilution: 2					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code					
SILVER	0.0173	J	0.0146	MDL	0.103	PQL	mg/Kg	J	Z, Q					
Sample ID: SL-147-SA7-SB-1.0-2.0	Collec	ted: 10/11/	2011 11:2	2:00 A	nalysis Ty	ype: REA			Dilution: 2					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code					
SELENIUM	0.185	J	0.0595	MDL	0.410	PQL	mg/Kg	J	Z					
Sample ID: SL-147-SA7-SB-1.0-2.0	Collec	ted: 10/11/	2011 11:2:	2:00 A	nalysis Ty	/pe: REA	2		Dilution: 2					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code					
MOLYBDENUM	0.286	and the metachers	0.0513	MDL	0.103	PQL	mg/Kg	j	E					
Sample ID: SL-147-SA7-SB-1.0-2.0	Collec	ted: 10/11/	2011 11:2:	2:00 A	nalysis Ty	/pe: RES		ı	Dilution: 2					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code					
ANTIMONY	0.152	J	0.0759	MDL	0.205	PQL	mg/Kg	J	Z, Q					
ARSENIC	4.03		0.0821	MDL	0.410	PQL	mg/Kg	J	Е					
COBALT	5.87		0.0205	MDL	0.103	PQL	mg/Kg	J	Q, E					
COPPER	5.78		0.0821	MDL	0.410	PQL	mg/Kg	J	Q, E					
NICKEL	7.57		0.103	MDL	0.410	PQL	mg/Kg	J	Q					
Sample ID: SL-155-SA7-SB-1.5-2.5	Collect	ted: 10/11/	2011 12:3	2:00 A	nalysis Ty	pe: REA		1	Dilution: 2					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code					
SELENIUM	0.216	J	0.0581	MDL	0.401	PQL	mg/Kg	J	Z					
ample ID: SL-155-SA7-SB-1.5-2.5	Collect	ted: 10/11/2	2011 12:32	2:00 A	nalysis Ty	/pe: REA	2	ı	Dilution: 2					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code					
MOLYBDENUM	0.728		0.0501	MDL	0.100	PQL	mg/Kg	J	E					
ample ID: SL-155-SA7-SB-1.5-2.5	Collect	ted: 10/11/2	2011 12:32	2:00 A	nalysis Ty	pe: RES	*		Dilution: 2					
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code					
ANTIMONY	0.146	J	0.0741	MDL	0.200	PQL	mg/Kg	J	Z, Q					
ARSENIC	5.28		0.0801	MDL	0.401	PQL	mg/Kg	J	E					

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 9:08:58 AM ADR version 1.4.0.111 Page 6 of 19

Lab Reporting Batch ID: DE266

Laboratory: LL

EDD Filename: DE266_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: METALS Method: 6020	Matrix:	SO	
Sample ID: SL-155-SA7-SB-1.5-2.5	Collected: 10/11/2011 12:32:00	Analysis Type: RES	Dilution: 2

ample 10. 0L-135-3A1-3B-1.5-2.3	Collec	teu. 10/11	2011 12.3	2.00 A	ilalysis i	pe: KES			Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
COBALT	9.38		0.0200	MDL	0.100	PQL	mg/Kg	J	Q, E		
COPPER	10.7		0.0801	MDL	0.401	PQL	mg/Kg	J	Q, E		
NICKEL	19.8		0.100	MDL	0.401	PQL	mg/Kg	J	Q		
SILVER	0.0252	J	0.0142	MDL	0.100	PQL	mg/Kg	J	Z, Q		

Sample ID: SL-162-SA7-SB-0.0-1.0	Collec	ted: 10/11	/2011 11:1	5:00 A	nalysis T	ype: REA	١		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.121	J	0.0595	MDL	0.411	PQL	mg/Kg	J	Z

Sample ID: SL-162-SA7-SB-0.0-1.0 Analyte	Lab Result	Lab Qual	DL	5:00 A DL Type	RL	/pe: REA RL Type	2 Units	Data Review Qual	Dilution: 2 Reason Code
MOLYBDENUM	0.424		0.0513	MDL	0.103	PQL	mg/Kg	J	E

Sample ID: SL-162-SA7-SB-0.0-1.0	Collec	ted: 10/11.	/2011 11:1:	5:00 A	nalysis Ty	/pe: RES		I.	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.135	J	0.0759	MDL	0.205	PQL	mg/Kg	J	Z, Q
ARSENIC	4.37		0.0821	MDL	0.411	PQL	mg/Kg	J	E
COBALT	6.40		0.0205	MDL	0.103	PQL	mg/Kg	J	Q, E
COPPER	8.65		0.0821	MDL	0.411	PQL	mg/Kg	J	Q, E
NICKEL	12.9		0.103	MDL	0.411	PQL	mg/Kg	J	Q
SILVER	0.0222	J	0.0146	MDL	0.103	PQL	mg/Kg	J	Z, Q

Sample ID: SL-166-SA7-SB-1.0-2.0	Collec	ted: 10/11/	2011 10:4	0:00 A	nalysis Ty	ype: REA		i	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.112	J	0.0600	MDL	0.414	PQL	mg/Kg	J	Z

Sample ID: SL-166-SA7-SB-1.0-2.0	Collect	ted: 10/11/	2011 10:4	0:00	Analysis Ty	/pe: REA	2	ı	Dilution: 2
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.408		0.0517	MDL	0.103	PQL	mg/Kg	J	E

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DE266

Laboratory: LL

Page 8 of 19

EDD Filename: DE266_v1.

eQAPP Name: CDM_SSFL_110509

Method Category:	METALS		and the second s	
1(1/1 c) (4 1 a) a Language (4 1 a)	6020	يتنافيا للدند بالأطافات فيج	Matrix: SO	

Sample ID: SL-166-SA7-SB-1.0-2.0	Collec	Collected: 10/11/2011 10:40:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.168	J	0.0766	MDL	0.207	PQL	mg/Kg	j	Z, Q	
ARSENIC	4.64		0.0828	MDL	0.414	PQL	mg/Kg	J	E	
COBALT	6.26		0.0207	MDL	0.103	PQL	mg/Kg	J	Q, E	
COPPER	8.59		0.0828	MDL	0.414	PQL	mg/Kg	J	Q, E	
NICKEL	12.7		0.103	MDL	0.414	PQL	mg/Kg	J	Q	
SILVER	0.0263	J	0.0147	MDL	0.103	PQL	mg/Kg	J	Z, Q	

Sample ID: SL-167-SA7-SB-0.5-1.5	Collect	ted: 10/11/	2011 9:25	00 A	nalysis Ty	/pe: REA		ı	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.101	J	0.0593	MDL	0.409	PQL	mg/Kg	J	Z

Sample ID: SL-167-SA7-SB-0.5-1.5	Collect	ted: 10/11/	2011 9:25	:00	Analysis T	ype: REA	2		Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MOLYBDENUM	0.434		0.0511	MDL	0.102	PQL	mg/Kg	J	Е	1

Sample ID: SL-167-SA7-SB-0.5-1.5	Collec	ted: 10/11	/2011 9:25	:00 A	nalysis Ty	/pe: RES	i		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.163	J	0.0756	MDL	0.204	PQL	mg/Kg	J	Z, Q
ARSENIC	4.78		0.0818	MDL	0.409	PQL	mg/Kg	J	E
COBALT	6.74		0.0204	MDL	0.102	PQL	mg/Kg	J	Q, E
COPPER	8.76		0.0818	MDL	0.409	PQL	mg/Kg	J	Q, E
NICKEL	13.4		0.102	MDL	0.409	PQL	mg/Kg	J	Q
SILVER	0.0378	J	0.0145	MDL	0.102	PQL.	mg/Kg	J	Z, Q

Sample ID: SL-168-SA7-SB-0.5-1.5	Collec	ted: 10/11	/2011 1:45	:00 A	nalysis Ty	/pe: REA	L	1	Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.0808	J	0.0592	MDL	0.408	PQL	mg/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 9:08:58 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE266

Laboratory: LL

EDD Filename: DE266_v1. eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO		METALS 6020		Matrix: SC			
-------------------------	--	----------------	--	------------	--	--	--

Sample ID: SL-168-SA7-SB-0.5-1.5	Collec	ted: 10/11/	2011 1:45	:00	Analysis Ty	Dilution: 2			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.320		0.0510	MDL	0.102	PQL	mg/Kg	J	E

Sample ID: SL-168-SA7-SB-0.5-1.5	Collec	Collected: 10/11/2011 1:45:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.0933	J	0.0755	MDL	0.204	PQL	mg/Kg	J	Z, Q	
ARSENIC	3.49		0.0816	MDL	0.408	PQL	mg/Kg	J	E	
COBALT	5.04		0.0204	MDL	0.102	PQL	mg/Kg	J	Q, E	
COPPER	6.34		0.0816	MDL	0.408	PQL	mg/Kg	J	Q, E	
NICKEL	9.62		0.102	MDL	0.408	PQL	mg/Kg	J	Q	
SILVER	0.0234	J	0.0145	MDL	0.102	PQL	mg/Kg	J	Z, Q	

Sample ID: SL-265-SA6-SB-4.0-5.0	Collec	ted: 10/11/	2011 8:47	:00	Analysis Type: REA Dilution				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.0999	J	0.0621	MDL	0.429	PQL	mg/Kg	J	Z

Sample ID: SL-265-SA6-SB-4.0-5.0	Collec	ted: 10/11/	2011 8:47	:00 A	nalysis T	ype: REA	2		Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MOLYBDENUM	0.500		0.0536	MDL	0.107	PQL	mg/Kg	J	E	1

Sample ID: SL-265-SA6-SB-4.0-5.0	Collec	Collected: 10/11/2011 8:47:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.182	J	0.0793	MDL	0.214	PQL	mg/Kg	J	Z, Q	
ARSENIC	5.19		0.0857	MDL	0.429	PQL	mg/Kg	J	Ē	
CADMIUM	0.103	J	0.0471	MDL	0.107	PQL	mg/Kg	J	Z	
COBALT	5.62		0.0214	MDL	0.107	PQL	mg/Kg	J	Q, E	
COPPER	8.96		0.0857	MDL	0.429	PQL	mg/Kg	J	Q, E	
NICKEL	14.8		0.107	MDL	0.429	PQL	mg/Kg	J	Q	
SILVER	0.0402	J	0.0152	MDL	0.107	PQL	mg/Kg	J	Z, Q	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE266

Method Category: METALS

Laboratory: LL

EDD Filename: DE266_v1.

eQAPP Name: CDM_SSFL_110509

Method: 7199	الريا فالفائد		Ma	atrix:	so		and the second	والمقادية	High
Sample ID: SL-009-SA3-SB-4.0-5.0	Collec	ted: 10/11	/2011 3:05	:00 🗚	Analysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.27	J	0.21	MDL	1.1	PQL	mg/Kg	J	Z
Sample ID: SL-049-SA7-SB-4.0-5.0	Collec	ted: 10/11	/2011 3:25	:00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.64	J	0.20	MDL	1.0	PQL	mg/Kg	J	Z
Sample ID: SL-155-SA7-SB-1.5-2.5	Collec	ted: 10/11/	2011 12:3	2:00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.22	J	0.21	MDL	1.1	PQL	mg/Kg	J	Z
Sample ID: SL-162-SA7-SB-0.0-1.0	Collected: 10/11/2011 11:15:00 Analysis Type: RES Dilution: 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.27	J	0.21	MDL	1.1	PQL	mg/Kg	J	Z
Method Category: METALS Method: 7471A			Ma	trix:	SO	ti seesi y			
Sample ID: SL-009-SA3-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:05	:00 A	nalysis T	ype: RES	1		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0712	J	0.0077	MDL	0.109	PQL	mg/Kg	J	Z
Sample ID: SL-049-SA7-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:25	:00 A	nalysis T	pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0087	J	0.0070	MDL	0.0988	PQL	mg/Kg	J	Z
Sample ID: SL-155-SA7-SB-1.5-2.5	Collec	ted: 10/11/	2011 12:3:	2:00 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 9:08:58 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DE266

Laboratory: LL

EDD Filename: DE266_v1.

eQAPP Name: CDM_SSFL_110509

			edAl I Maille. ODIM_551 E_11050						
Method Category: METALS									
Method: 7471A	والمراسية والمساولة	er was week	Ma	trix:	so	الاستعال			
Sample ID: SL-162-SA7-SB-0.0-1.0	Collec	ted: 10/11	/2011 11:1:	5:00 <i>A</i>	nalysis Ty	/pe: RES	;		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0085	J	0.0073	MDL	0.104	PQL	mg/Kg	J	Z
Sample ID: SL-166-SA7-SB-1.0-2.0	Collec	ted: 10/11	/2011 10:4	D:00 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MERCURY	0.0099	J	0.0072	MDL	0.102	PQL	mg/Kg	J	Z

Method Category: SV	OA		
Method: 16	25C	Matrix: AQ	的物。《本红山》 ,美國談

Sample ID: EB-SA7-SB-101111	Collect	ted: 10/11/	2011 2:30	:00 A	00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
N-NITROSODIMETHYLAMINE	3.07	Phorosophia (i.e. Pyrod	0.483	MDL	0.965	PQL	ng/L	UJ	B, S, T			

Sample ID: TB-101111	Collect	ted: 10/11/	2011 8:00	00:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
N-NITROSODIMETHYLAMINE	1.16	100.1111.000	0.499	MDL	0.997	PQL	ng/L	UJ	B, S		

Method Category:	SVOA
	《大學····································
Method:	1625C Matrix: SO

Sample ID: SL-155-SA7-SB-1.5-2.5	Collec	ted: 10/11/	2011 12:3	2:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	Kuru e se sparvijano 771 m.s.s.s		Patrick Street Hills		K B I K D I I I DAN B D I I II I I I I I I I I I		ee a esk raynay dankii iiti	U KARA A SA	(2.6.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
N-NITROSODIMETHYLAMINE	22.2	J	17.2	MDL	34.4	PQL	ng/Kg	J	Z

N-NITROSODIMETHYLAMINE	22.2	J	17.2	MDL	34.4	PQL	ng/Kg	J	Z
Mothed Cotonomy SNOA									
Method: 8015M	and the second			trix:	so		Land Hall		and the second

Sample ID: SL-049-SA7-SB-4.0-5.0	Collect	:00 A	ype: RES		Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C15-C20)	1.0	J	0.42	MDL	1.2	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 9:08:58 AM ADR version 1.4.0.111 Page 11 of 19

Lab Reporting Batch ID: DE266

Laboratory: LL

EDD Filename: DE266_v1. eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 8015M Matrix: SO	Sample ID: SL-155-SA7-SB-1.5-2.5	Collected: 10/11/2011 12:32:00	Analysis Type: REA	Dilution: 1
	Method Category: SVOA Method: 8015M	Matrix:	so	

Analyte			Dilation.						
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DIETHYLENE GLYCOL	5.2	U	5.2	MDL	10	PQL	mg/Kg	UJ	Q
ETHYLENE GLYCOL	5.2	U	5.2	MDL	10	PQL	mg/Kg	UJ	Q
Propylene glycol	5.2	U	5.2	MDL	10	PQL	mg/Kg	UJ	Q

Sample ID: SL-155-SA7-SB-1.5-2.5	Collect	ed: 10/11/	2011 12:3	2:00 A	nalysis T	ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C30-C40)	1.0	J	0.42	MDL	1.3	PQL	mg/Kg	J	Z

Sample ID: 5L-167-5A7-5B-0.5-1.5	Collec	Collected: 10/11/2011 9:25:00 Analysis Type: REA2							Dilution: 26.04		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
GASOLINE RANGE ORGANICS (C5-C12)	0.9	J	0.2	MDL	1.1	PQL	mg/Kg	J	Z		

Sample ID: SL-265-SA6-SB-4.0-5.0	Collec	ted: 10/11/	2011 8:47	:00 🔏	Analysis T	ype: REA	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ETHYLENE GLYCOL	5.5	J	5.5	MDL	11	PQL	mg/Kg	J	Z

Method Category: SVOA Method: 8082 Matrix: SO
--

Sample ID: SL-162-SA7-SB-0.0-1.0	Collec	Collected: 10/11/2011 11:15:00 Analysis Type: RES-BASE/NEUTRAL Dilut								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
AROCLOR 1260	1.3	J	0.41	MDL	1.8	PQL	ug/Kg	J	Z	

Analyte	Lab Result	ted: 10/11/ Lab Qual		DL Type	Analysis T	RES RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1248	0.48	J	0.35	MDL	1.8	PQL	ug/Kg	J	Z
Aroclor 5460	2.0	J	1.1	MDL	3.5	PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE266

EDD Filename: DE266_v1

Laboratory: LL

EDD Filename: DE266_v1.						eQAP	P Name	e: CDM_S	SFL_110509
Method Category: SVOA Method: 8082		Mag	Ma	atrix;	SO				
Sample ID: SL-168-SA7-SB-0.5-1.5	Collec	ted: 10/11/	2011 1:45	i:00 <i>A</i>	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Aroclor 5460	2.1	J	1.0	MDL	3.4	PQL	ug/Kg	J	Z
Sample ID: SL-265-SA6-SB-4.0-5.0	Collec	ted: 10/11/	2011 8:47	:00 <i>A</i>	nalysis T	ype: RES	-BASE/NE	EUTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	0.89	J	0.36	MDL	1.9	PQL	ug/Kg	J	Z
Method Category: SVOA Method: 8270C				atrix:	S0		Alle		
Sample ID: SL-009-SA3-SB-4.0-5.0	Collec	ted: 10/11/:	2011 3:05	:00 <i>A</i>	nalysis T	ype: RES	-ACID	Data	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	180	U	180	MDL	550	PQL	ug/Kg	UJ	L
Sample ID: SL-049-SA7-SB-4.0-5.0	Collec	ted: 10/11/2	2011 3:25	:00 A	nalysis T	ype: RES	-ACID		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	510	PQL	ug/Kg	υJ	L
Sample ID: SL-147-SA7-SB-1.0-2.0	Collec	ted: 10/11/:	2011 11:2	2:00 A	nalysis T	ype: RES	-ACID		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	180	U	180	MDL	530	PQL	ug/Kg	ΟΊ	L
Sample ID: SL-155-SA7-SB-1.5-2.5	Collec	ted: 10/11/2	2011 12:3	2:00 A	nalysis T	pe: RES	-ACID		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	520	PQL	ug/Kg	UJ	L
Sample ID: SL-162-SA7-SB-0.0-1.0	Collec	ted: 10/11/2	2011 11:1	5:00 A	nalysis T	/pe: RES	-ACID		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	180	U	180	MDL	530	PQL	ug/Kg	υJ	L

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 9:08:58 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DE266

Laboratory: LL

EDD Filename: DE266_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 8270C

Matrix: SO

Sample ID: SL-166-SA7-SB-1.0-2.0	Collec	ted: 10/11/	2011 10:4	0:00 A	nalysis T	ype: RES	-ACID	I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	510	PQL	ug/Kg	UJ	L
BENZO(A)ANTHRACENE	27	J	17	MDL	170	PQL	ug/Kg	J	Z
BENZO(A)PYRENE	25	J	17	MDL	170	PQL	ug/Kg	J	Z
BENZO(B)FLUORANTHENE	35	J	17	MDL	170	PQL	ug/Kg	J	Z
BENZO(G,H,I)PERYLENE	18	J	17	MDL	170	PQL	ug/Kg	J	Z
BENZO(K)FLUORANTHENE	19	J	17	MDL	170	PQL	ug/Kg	J	Z
CHRYSENE	30	J	17	MDL	170	PQL	ug/Kg	J	Z
FLUORANTHENE	55	J	17	MDL	170	PQL	ug/Kg	J	Z
INDENO(1,2,3-CD)PYRENE	18	J	17	MDL	170	PQL	ug/Kg	J	Z
PHENANTHRENE	27	J	17	MDL	170	PQL	ug/Kg	J	Z
PYRENE	44	J	17	MDL	170	PQL	ug/Kg	J	Z

Sample ID: SL-167-SA7-SB-0.5-1.5

Collected: 10/11/2011 9:25:00

Analysis Type: RES-ACID

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	520	PQL	ug/Kg	UJ	L
ACENAPHTHENE	57	J	17	MDL	170	PQL	ug/Kg	J	Z
BIS(2-ETHYLHEXYL)PHTHALATE	24	J	17	MDL	350	PQL	ug/Kg	J	Z
DIBENZOFURAN	53	J	17	MDL	170	PQL	ug/Kg	J	Z
FLUORENE	58	J	17	MDL	170	PQL	ug/Kg	J	Z
PHENOL	19	J	17	MDL	170	PQL	ug/Kg	J	Z

Sample ID: SL-168-SA7-SB-0.5-1.5

Collected: 10/11/2011 1:45:00

Analysis Type: RES-ACID

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	170	U	170	MDL	520	PQL	ug/Kg	บม	L
BENZO(A)ANTHRACENE	38	J	17	MDL	170	PQL	ug/Kg	J	Z
BENZO(A)PYRENE	49	J	17	MDL	170	PQL	ug/Kg	J	Z
BENZO(B)FLUORANTHENE	65	J	17	MDL	170	PQL	ug/Kg	J	Z
BENZO(G,H,I)PERYLENE	47	J	17	MDL	170	PQL	ug/Kg	J	Z
BENZO(K)FLUORANTHENE	27	J	17	MDL	170	PQL.	ug/Kg	J	Z
BIS(2-ETHYLHEXYL)PHTHALATE	30	J	17	MDL	340	PQL	ug/Kg	J	Z
CHRYSENE	45	J	17	MDL	170	PQL	ug/Kg	J	Z
FLUORANTHENE	94	J	17	MDL	170	PQL	ug/Kg	J	Z
INDENO(1,2,3-CD)PYRENE	40	J	17	MDL	170	PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 9:08:58 AM ADR version 1.4.0.111 Page 14 of 19

Lab Reporting Batch ID: DE266

Laboratory: LL

EDD Filename: DE266_v1.

eQAPP Name: CDM_SSFL_110509

Method: 8270C Matrix: SO	

Sample ID: SL-168-SA7-SB-0.5-1.5	Collec	ted: 10/11/	2011 1:45	5:00 A	Analysis T	ype: RES	-BASE/NE	UTRAL /	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PHENANTHRENE	49	J	17	MDL	170	PQL	ug/Kg	J	Z
PYRENE	80	J	17	MDL	170	PQL	ug/Kg	J	Z

Sample ID: SL-265-SA6-SB-4.0-5.0	Collec	ted: 10/11/	2011 8:47	':00 A	Analysis T	ype: RES	-ACID		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,6-DINITRO-2-METHYLPHENOL	180	υ	180	MDL	540	PQL	ug/Kg	UJ	L

Method Category:	SVOA
Method:	8270C SIM Matrix: SO

Sample ID: SL-009-SA3-SB-4.0-5.0	Collected: 10/11/2011 3:05:00 Analysis Type: RES-BASE/NEUTRAL Dil								Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	9.0	J	6.6	MDL	20	PQL	ug/Kg	J	Z

Sample ID: SL-049-SA7-SB-4.0-5.0	Collec	ted: 10/11/	2011 3:25	:00	Analysis T	ype: RES	BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHRYSENE	1.2	J	0.35	MDL	1.7	PQL	ug/Kg	J	Z
		T	1						

NOTED MATERIAL CONTRACTOR OF THE	0.000			Code
1.7	PQL	ug/Kg	J	Z
1.7	PQL	ug/Kg	J	Z
	1.7	1.7 PQL	1.7 PQL ug/Kg	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	13	J	6.4	MDL	19	PQL	ug/Kg	J	Z
NAPHTHALENE	0.79	J	0.71	MDL	1.8	PQL	ug/Kg	J	Z

Sample ID: SL-155-SA7-SB-1.5-2.5	Collec	ted: 10/11/	2011 12:3	2:00	Analysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	15	J	6.3	MDL	19	PQL	ug/Kg	J	Z

1/12/2012 9:08:58 AM ADR version 1.4.0.111 Page 15 of 19

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE266

Laboratory: LL

Z

EDD Filename: DE266_v1.

ANTHRACENE

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 8270C SIM Matrix: SO	
---	--

Sample ID: SL-162-SA7-SB-0.0-1.0	Collec	Collected: 10/11/2011 11:15:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 5									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BENZO(A)ANTHRACENE	6.2	J	3.5	MDL	8.8	PQL	ug/Kg	J	Z		
BENZO(A)PYRENE	7.6	J	3.5	MDL	8.8	PQL	ug/Kg	J	Z		
BENZO(G,H,I)PERYLENE	4.2	J	3.5	MDL	8.8	PQL	ug/Kg	J	Z		
BIS(2-ETHYLHEXYL)PHTHALATE	78	J	32	MDL	95	PQL	ug/Kg	J	Z		
Butylbenzylphthalate	58	J	32	MDL	95	PQL	ug/Kg	J	Z		
CHRYSENE	6.9	J	1.8	MDL	8.8	PQL	ug/Kg	J	Z		
INDENO(1,2,3-CD)PYRENE	3.8	J	3.5	MDL	8.8	PQL	ug/Kg	J	Z		
PHENANTHRENE	5.2	J	3.5	MDL	8.8	PQL	ug/Kg	J	Z		

Sample ID: SL-166-SA7-SB-1.0-2.0	Collec	ted: 10/11/2	2011 10:4	0:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL	Dilution: 5
								Data	
	Lab	Lab		DL		RL		Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code

1.7

MDL

8.7

PQL

ug/Kg

2.9

Sample ID: SL-265-SA6-SB-4.0-5.0	Collec	Collected: 10/11/2011 8:47:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BIS(2-ETHYLHEXYL)PHTHALATE	6.7	J	6.6	MDL	20	PQL	ug/Kg	J	Z	
CHRYSENE	0.72	J	0.36	MDL	1.8	PQL	ug/Kg	J	Z	

Method Category: VOA Method: 8015B Matrix: SO
--

Sample ID: SL-265-SA6-SB-4.0-5.0	Collected: 10/11/2011 8:47:00 Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ETHANOL	110	U	110	MDL	550	PQL	ug/Kg	บJ	Q

Page 16 of 19

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE266 EDD Filename: DE266_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
egistan og en en som og av en og en	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE266

EDD Filename: DE266_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

noname. DE	200_*1.	eQAFF Name. CDM_33FL
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
I	Internal Standard Estimation	
1	Internal Standard Rejection	
L.	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
М	Continuing Tune	
М	Initial Tune	
М	Performance Evaluation Mixture	
M	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

1/12/2012 9:08:58 AM ADR version 1.4.0.111 Page 18 of 19

Lab Reporting Batch ID: DE266

EDD Filename: DE266_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DE266

Method Blank Outlier Report

Lab Reporting Batch ID: DE266 Laboratory: LL

EDD Filename: DE266_v1. eQAPP Name: CDM_SSFL_110509

Method: 162 Matrix: AQ	5C			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
PLKWH28B261523	10/17/2011 3:23:00 PM	N-NITROSODIMETHYLAMINE	1.14 ng/L	EB-SA7-SB-101111 TB-101111

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA7-SB-101111(RES)	N-NITROSODIMETHYLAMINE	3.07 ng/L	3.07U ng/L
TB-101111(RES)	N-NITROSODIMETHYLAMINE	1.16 ng/L	1.16U ng/L

Method: 6010 Matrix: SO	0B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P28508AB220113	10/20/2011 1:13:00 AM	BORON PHOSPHORUS STRONTIUM	0.599 mg/Kg 1.39 mg/Kg 0.0750 mg/Kg	SL-009-SA3-SB-4.0-5.0 SL-049-SA7-SB-4.0-5.0 SL-147-SA7-SB-1.0-2.0 SL-155-SA7-SB-1.5-2.5 SL-162-SA7-SB-0.0-1.0 SL-166-SA7-SB-0.5-1.5 SL-168-SA7-SB-0.5-1.5 SL-265-SA6-SB-4.0-5.0
P28508AB220332	10/21/2011 3:32:00 AM	CALCIUM IRON MAGNESIUM TIN	13.1 mg/Kg 2.73 mg/Kg 0.891 mg/Kg 1.44 mg/Kg	SL-009-SA3-SB-4.0-5.0 SL-049-SA7-SB-4.0-5.0 SL-147-SA7-SB-1.0-2.0 SL-155-SA7-SB-1.5-2.5 SL-162-SA7-SB-0.0-1.0 SL-166-SA7-SB-1.0-2.0 SL-167-SA7-SB-0.5-1.5 SL-168-SA7-SB-0.5-1.5 SL-265-SA6-SB-4.0-5.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-009-SA3-SB-4.0-5.0(REA)	TIN	4.24 mg/Kg	4.24U mg/Kg
SL-049-SA7-SB-4.0-5.0(REA)	TIN	2.80 mg/Kg	2.80U mg/Kg
SL-147-SA7-SB-1.0-2.0(REA)	TIN	2.81 mg/Kg	2.81U mg/Kg
SL-155-SA7-SB-1.5-2.5(REA)	TIN	2.87 mg/Kg	2.87U mg/Kg
SL-162-SA7-SB-0.0-1.0(REA)	TIN	2.93 mg/Kg	2.93U mg/Kg
SL-166-SA7-SB-1.0-2.0(REA)	TIN	2.86 mg/Kg	2.86U mg/Kg
SL-167-SA7-SB-0.5-1.5(REA)	TIN	2.95 mg/Kg	2.95U mg/Kg
SL-168-SA7-SB-0.5-1.5(REA)	TIN	2.82 mg/Kg	2.82U mg/Kg
SL-265-SA6-SB-4.0-5.0(REA)	TIN	3.02 mg/Kg	3.02U mg/Kg

1/12/2012 8:37:19 AM ADR version 1.4.0.111 Page 1 of 1

Trip Blank Outlier Report

Lab Reporting Batch ID: DE266

Laboratory: LL

EDD Filename: DE266_v1.

eQAPP Name: CDM_SSFL_110509

Nethod: 1625C Natrix: AQ				
Trip Blank Sample ID	Collected Date	Analyte	Result	Associated Samples
B-101111(RES)	10/11/2011 8:00:00 AM	N-NITROSODIMETHYLAMINE	1.16 ng/L	EB-SA7-SB-101111 SL-009-SA3-SB-4.0-5.0 SL-049-SA7-SB-4.0-5.0 SL-147-SA7-SB-1.0-2.0 SL-155-SA7-SB-1.5-2.5 SL-162-SA7-SB-0.0-1.0 SL-166-SA7-SB-0.5-1.5 SL-168-SA7-SB-0.5-1.5 SL-265-SA6-SB-4.0-5.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA7-SB-101111(RES)	N-NITROSODIMETHYLAMINE	3.07 ng/L	3.07U ng/L

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/12/2012 8:37:27 AM ADR version 1.4.0.111 Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE266

EDD Filename: DE266_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 8015B Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-265-SA6-SB-4.0-5.0MSD (SL-265-SA6-SB-4.0-5.0)	Isopropanol METHANOL	-	-	12.00-149.00 43.00-138.00		Isopropanol METHANOL	J (all detects)
SL-265-SA6-SB-4.0-5.0MS SL-265-SA6-SB-4.0-5.0MSD (SL-265-SA6-SB-4.0-5.0)	ETHANOL	43	-	48.00-130.00	48 (20.00)	ETHANOL	J(all detects) UJ(all non-detects)

SL-265-SA6-SB-4.0-5.0MSD (SL-265-SA6-SB-4.0-5.0)							UJ(all non-detects)
Method: 8015M Matrix: SO				Comments Continued to the Continued to t			
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-155-SA7-SB-1.5-2.5MS SL-155-SA7-SB-1.5-2.5MSD (SL-155-SA7-SB-1.5-2.5)	DIETHYLENE GLYCOL ETHYLENE GLYCOL Propylene glycol	9 43 52	8 42 50	59.00-109.00 63.00-107.00 63.00-107.00	-	DIETHYLENE GLYCOL ETHYLENE GLYCOL Propylene glycol	J(ail detects) UJ(ail non-detects)

1/12/2012 8:36:54 AM ADR version 1.4.0.111 Page 1 of 1

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE266

Laboratory: LL

EDD Filename: DE266_v1. eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P28526AQ220817A (SL-009-SA3-SB-4.0-5.0 SL-049-SA7-SB-4.0-5.0 SL-147-SA7-SB-1.0-2.0 SL-155-SA7-SB-1.5-2.5 SL-162-SA7-SB-0.0-1.0 SL-166-SA7-SB-1.0-2.0 SL-167-SA7-SB-0.5-1.5 SL-168-SA7-SB-0.5-1.5 SL-265-SA6-SB-4.0-5.0)	ANTIMONY	139	-	80.00-120.00	-	ANTIMONY	No Qual, SRM within QC Limits

Method: 8270C Matrix: SO			Zang M				ter million
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P0LELCSQ260920 (SL-009-SA3-SB-4.0-5.0 SL-049-SA7-SB-4.0-5.0 SL-147-SA7-SB-1.0-2.0 SL-155-SA7-SB-1.5-2.5 SL-162-SA7-SB-0.0-1.0 SL-166-SA7-SB-1.0-2.0 SL-168-SA7-SB-0.5-1.5 SL-168-SA7-SB-0.5-1.5 SL-265-SA6-SB-4.0-5.0)	2-METHYLPHENOL BENZYL ALCOHOL BIS(2-CHLOROETHYL) ETHER N-NITROSO-DI-N-PROPYLAMIN	116 113 107 109	-	66.00-110.00 68.00-111.00 70.00-104.00 63.00-107.00	- - - -	2-METHYLPHENOL BENZYL ALCOHOL BIS(2-CHLOROETHYL) ETHER N-NITROSO-DI-N-PROPYLAMI	J(all detects)
P0LELCSQ260920 (SL-009-SA3-SB-4.0-5.0 SL-049-SA7-SB-4.0-5.0 SL-147-SA7-SB-1.0-2.0 SL-155-SA7-SB-1.5-2.5 SL-162-SA7-SB-0.0-1.0 SL-166-SA7-SB-0.5-1.5 SL-168-SA7-SB-0.5-1.5 SL-265-SA6-SB-4.0-5.0)	4,6-DINITRO-2-METHYLPHENOL	41	_	46.00-120.00	-	4,6-DINITRO-2-METHYLPHEN	J(all detects) UJ(all non-detects)

1/12/2012 8:51:37 AM ADR version 1.4.0.111 Page 1 of 1

Surrogate Outlier Report

Lab Reporting Batch ID: DE266

Laboratory: LL

EDD Filename: DE266_v1.

eQAPP Name: CDM_SSFL_110509

Method: 162! Matrix: AQ					Property of the second
Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
EB-SA7-SB- 101111	N-Nitrosodimethylamine-d6	320	50.00-150.00	All Target Analytes	J (all detects)
TB-101111	N-Nitrosodimethylamine-d6	171	50.00-150.00	All Target Analytes	J(all detects)

1/12/2012 8:37:09 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DE266

EDD Filename: DE266 v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

11/1	200	8 8	3745	

SO

Matrix:

	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-155-SA7-SB-1.5-2.5	N-NITROSODIMETHYLAMINE	J	22.2	34.4	PQL	na/Ka	J (all detects)

Method: 300.0

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-049-SA7-SB-4.0-5.0	Nitrate-NO3	J	0.92	1.6	PQL	mg/Kg	J (all detects)
SL-155-SA7-SB-1.5-2.5	Nitrate-NO3	J	1.3	1.6	PQL	mg/Kg	J (all detects)
SL-162-SA7-SB-0.0-1.0	Nitrate-NO3	J	0.95	1.6	PQL	mg/Kg	J (all detects)
SL-166-SA7-SB-1.0-2.0	Nitrate-NO3	J	0.95	1.6	PQL	mg/Kg	J (all detects)
SL-167-SA7-SB-0.5-1.5	Nitrate-NO3	J	1.2	1.6	PQL	mg/Kg	J (all detects)
SL-168-SA7-SB-0.5-1.5	Nitrate-NO3	J	1.1	1.5	PQL	mg/Kg	J (all detects)

Method: 6010B

Matrix: so Reporting Lab RLSampleID Analyte Qual Result Limit Type Units Flag SL-009-SA3-SB-4.0-5.0 TIN 4.24 10.7 **PQL** mg/Kg J (all detects) Zirconium J 1.82 5.36 **PQL** mg/Kg SL-049-SA7-SB-4.0-5.0 SODIUM 77.8 J 100 **PQL** mg/Kg TIN J 2.80 **PQL** 10.0 mg/Kg J (all detects) mg/Kg Zirconium J 1.83 5.00 **PQL** SL-147-SA7-SB-1.0-2.0 SODIUM J 69.6 104 **PQL** mg/Kg TIN 2.81 **PQL** J 10.4 mg/Kg J (all detects) Zirconium J 1.56 5.18 **PQL** mg/Kg SL-155-SA7-SB-1.5-2.5 SODIUM J 82.9 100 PQL mg/Kg TIN J 2.87 10.0 **PQL** mg/Kg J (all detects) PQL Zirconium J 1.85 5.01 mg/Kg SL-162-SA7-SB-0.0-1.0 SODIUM J 64.3 105 **PQL** mg/Kg TIN **PQL** J 2.93 10.5 mg/Kg J (all detects) Zirconium J 1.88 5.23 **PQL** mg/Kg SL-166-SA7-SB-1.0-2.0 SODIUM J 72.2 103 **PQL** mg/Kg TIN J 2.86 10.3 **PQL** mg/Kg J (all detects) mg/Kg Zirconium J 1.89 5.17 **PQL** SL-167-SA7-SB-0.5-1.5 SODIUM J 64.9 103 PQL mg/Kg TIN 2.95 PQL J 10.3 mg/Kg J (all detects) Zirconium PQL J 1.89 5.16 mg/Kg SL-168-SA7-SB-0.5-1.5 SODIUM J 63.1 101 PQL mg/Kg TIN J 2.82 10.1 **PQL** J (all detects) mg/Kg Zirconium J 1.85 5.05 **PQL** mg/Kg SL-265-SA6-SB-4.0-5.0 TIN J 3.02 10.7 PQL mg/Kg J (all detects) Zirconium 2.90 5.36 **PQL** mg/Kg

Lab Reporting Batch ID: DE266

Laboratory: LL EDD Filename: DE266_v1. eQAPP Name: CDM_SSFL_110509

Method: 6020 so Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-009-SA3-SB-4.0-5.0	SELENIUM	J	0.100	0.429	PQL	mg/Kg	J (all detects)
SL-049-SA7-SB-4.0-5.0	ANTIMONY SELENIUM SILVER	J J	0.142 0.140 0.0173	0.206 0.412 0.103	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-147-SA7-SB-1.0-2.0	ANTIMONY SELENIUM	J	0.152 0.185	0.205 0.410	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-155-SA7-SB-1.5-2.5	ANTIMONY SELENIUM SILVER	J	0.146 0.216 0.0252	0.200 0.401 0.100	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-162-SA7-SB-0.0-1.0	ANTIMONY SELENIUM SILVER	J	0.135 0.121 0.0222	0.205 0.411 0.103	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-166-SA7-SB-1.0-2.0	ANTIMONY SELENIUM SILVER	J J	0.168 0.112 0.0263	0.207 0.414 0.103	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-167-SA7-SB-0.5-1.5	ANTIMONY SELENIUM SILVER	J J	0.163 0.101 0.0378	0.204 0.409 0.102	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-168-SA7-SB-0.5-1.5	ANTIMONY SELENIUM SILVER	J J	0.0933 0.0808 0.0234	0.204 0.408 0.102	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-265-SA6-SB-4.0-5.0	ANTIMONY CADMIUM SELENIUM SILVER	J J J	0.182 0.103 0.0999 0.0402	0.214 0.107 0.429 0.107	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)

Method: 7199 Matrix: so

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-009-SA3-SB-4.0-5.0	HEXAVALENT CHROMIUM	J	0.27	1.1	PQL	mg/Kg	J (all detects)
SL-049-SA7-SB-4.0-5.0	HEXAVALENT CHROMIUM	J	0.64	1.0	PQL	mg/Kg	J (all detects)
SL-155-SA7-SB-1.5-2.5	HEXAVALENT CHROMIUM	J	0.22	1.1	PQL	mg/Kg	J (all detects)
SL-162-SA7-SB-0.0-1.0	HEXAVALENT CHROMIUM	J	0.27	1.1	PQL	mg/Kg	J (all detects)

Method: 7471A SO Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-009-SA3-SB-4.0-5.0	MERCURY	J	0.0712	0.109	PQL	mg/Kg	J (all detects)
SL-049-SA7-SB-4.0-5.0	MERCURY	J	0.0087	0.0988	PQL	mg/Kg	J (all detects)
SL-155-SA7-SB-1.5-2.5	MERCURY	J	0.0073	0.0992	PQL	mg/Kg	J (all detects)
SL-162-SA7-SB-0.0-1.0	MERCURY	J	0.0085	0.104	PQL	mg/Kg	J (all detects)
SL-166-SA7-SB-1.0-2.0	MERCURY	J	0.0099	0.102	PQL	mg/Kg	J (all detects)

Lab Reporting Batch ID: DE266

EDD Filename: DE266_v1. eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method: 8015M Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-049-SA7-SB-4.0-5.0	EFH (C15-C20)	J	1.0	1.2	PQL	mg/Kg	J (all detects)
SL-155-SA7-SB-1.5-2.5	EFH (C30-C40)	J	1.0	1.3	PQL	mg/Kg	J (all detects)
SL-167-SA7-SB-0.5-1.5	GASOLINE RANGE ORGANICS (C5-C12)	J	0.9	1.1	PQL	mg/Kg	J (all detects)
SL-265-SA6-SB-4.0-5.0	ETHYLENE GLYCOL	J	5.5	11	PQL	mg/Kg	J (all detects)

Method: 8082 Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-162-SA7-SB-0.0-1.0	AROCLOR 1260	J	1.3	1.8	PQL	ug/Kg	J (all detects)
SL-167-SA7-SB-0.5-1.5	AROCLOR 1248 Aroclor 5460	J	0.48 2.0	1.8 3.5	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-168-SA7-SB-0.5-1.5	Aroclor 5460	J	2.1	3.4	PQL	ug/Kg	J (all detects)
SL-265-SA6-SB-4.0-5.0	AROCLOR 1254	J	0.89	1.9	PQL	ug/Kg	J (all detects)

Method: 8270C Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-166-SA7-SB-1.0-2.0	BENZO(A)ANTHRACENE	J	27	170	PQL	ug/Kg	
	BENZO(A)PYRENE	J	25	170	PQL	ug/Kg	
	BENZO(B)FLUORANTHENE	J	35	170	PQL	ug/Kg	
	BENZO(G,H,I)PERYLENE	J	18	170	PQL	ug/Kg	
	BENZO(K)FLUORANTHENE	J	19	170	PQL	ug/Kg	I (all data ata)
	CHRYSENE	J	30	170	PQL	ug/Kg	J (all detects)
	FLUORANTHENE	J	55	170	PQL	ug/Kg	
	INDENO(1,2,3-CD)PYRENE	J	18	170	PQL	ug/Kg	
	PHENANTHRENE	J	27	170	PQL	ug/Kg	
	PYRENE	J	44	170	PQL	ug/Kg	
SL-167-SA7-SB-0.5-1.5	ACENAPHTHENE	J	57	170	PQL	ug/Kg	
	BIS(2-ETHYLHEXYL)PHTHALATE	J	24	350	PQL	ug/Kg	
	DIBENZOFURAN	J	53	170	PQL	ug/Kg	J (all detects)
1	FLUORENE	J	58	170	PQL	ug/Kg	
	PHENOL	J	19	170	PQL	ug/Kg	
SL-168-SA7-SB-0.5-1.5	BENZO(A)ANTHRACENE	J	38	170	PQL	ug/Kg	
	BENZO(A)PYRENE	J	49	170	PQL	ug/Kg	
	BENZO(B)FLUORANTHENE	J	65	170	PQL	ug/Kg	
	BENZO(G,H,I)PERYLENE	J	47	170	PQL	ug/Kg	
	BENZO(K)FLUORANTHENE	J	27	170	PQL	ug/Kg	
	BIS(2-ETHYLHEXYL)PHTHALATE	J	30	340	PQL	ug/Kg	J (all detects)
	CHRYSENE	J	45	170	PQL	ug/Kg	
	FLUORANTHENE	J	94	170	PQL	ug/Kg	
	INDENO(1,2,3-CD)PYRENE	J	40	170	PQL	ug/Kg	
	PHENANTHRENE	J	49	170	PQL	ug/Kg	
	PYRENE	J	80	170	PQL	ug/Kg	

Lab Reporting Batch ID: DE266

EDD Filename: DE266_v1. eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method: 8270C SIM

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-009-SA3-SB-4.0-5.0	BIS(2-ETHYLHEXYL)PHTHALATE	J	9.0	20	PQL	ug/Kg	J (all detects)
SL-049-SA7-SB-4.0-5.0	CHRYSENE PYRENE	J	1.2 0.75	1.7 1.7	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-147-SA7-SB-1.0-2.0	BIS(2-ETHYLHEXYL)PHTHALATE NAPHTHALENE	J	13 0.79	19 1.8	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-155-SA7-SB-1.5-2.5	BIS(2-ETHYLHEXYL)PHTHALATE	J	15	19	PQL	ug/Kg	J (all detects)
SL-162-SA7-SB-0.0-1.0	BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(G,H,I)PERYLENE BIS(2-ETHYLHEXYL)PHTHALATE Butylbenzylphthalate CHRYSENE INDENO(1,2,3-CD)PYRENE PHENANTHRENE]]]]	6.2 7.6 4.2 78 58 6.9 3.8 5.2	8.8 8.8 95 95 8.8 8.8 8.8	PQL PQL PQL PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-166-SA7-SB-1.0-2.0	ANTHRACENE	J	2.9	8.7	PQL	ug/Kg	J (all detects)
SL-265-SA6-SB-4.0-5.0	BIS(2-ETHYLHEXYL)PHTHALATE CHRYSENE	J	6.7 0.72	20 1.8	PQL PQL	ug/Kg ug/Kg	J (all detects)

LDC #: 269	923C4 VA	ALIDATION COMPLETENESS WORKSHEET
SDG #: DE	266	ADR

Laboratory: Lancaster Laboratories

METHOD: Metals (EPA SW 846 Method 6010B/6020A/7000)

Reviewer: 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
l.	Technical holding times	N	Sampling dates:
II.	ICP/MS Tune	h	
111.	Calibration	ν	
IV.	Blanks	A	No gard by 2013/act
V.	ICP Interference Check Sample (ICS) Analysis	N	
VI.	Matrix Spike Analysis	SIN	245
VII.	Duplicate Sample Analysis	5 m	
VIII.	Laboratory Control Samples (LCS)	NA	SRM
IX.	Internal Standard (ICP-MS)	N	
X.	Furnace Atomic Absorption QC	N	
XI.	ICP Serial Dilution	AN	
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	N	
XIV.	Field Duplicates	N	
ΧV	Field Blanks	N	

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank EB = Equipment blank

Validated Samples:

$\overline{}$		- I I I I			
1_	SL-265-SA6-SB-4.0-5.0	11	21	31	
2	SL-147-SA7-SB-1.0-2.0	12	22	32	
3	SL-155-SA7-SB-1.5-2.5	13	23	33	
4	SL-009-SA7-SB-4.0-5.0	14	24	34	
5	SL-049-SA7-SB-4.0-5.0	15	25	35	
6	SL-162-SA7-SB-0.0-1.0	16	26	36	
7	SL-166-SA7-SB-1.0-2.0	17	27	37	
8	SL-167-SA7-SB-0.5-1.5	18	28	38	
9	SL-168-SA7-SB-0.5-1.5	19	29	39	
10		20	30	40	

Notes:		

SAMPLE DELIVERY GROUP

DE290

Attachment I

Sample ID Cross Reference and Data Review Level

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	3050B	6010B	111
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	3050B	6020	III
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	3060A	7199	111
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	3550B	8015B	Iti
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	3550B	8015M	111
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	3550B	8081A	111
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	3550B	8082	111
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	3550B	8151A	III
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	3550B	8270C	Ш
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	3550B	8270C SIM	III
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	METHOD	300.0	III
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	METHOD	314.0	111
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	METHOD	7471A	111
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	METHOD	8015B	111
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	METHOD	8015M	UI
29-Nov-2011	SL-285-SA6-SS-0.0-0.5	6487625	N	METHOD	9012B	III
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	3050B	6010B	111
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	3050B	6020	111
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	3060A	7199	111
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	3546	1625C	111
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	3550B	8015B	III
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	3550B	8015M	III
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	3550B	8082	111
29-Nov-2011	SL-285-SA6-SB-4,0-5.0	6487626	N	3550B	8270C	Ш
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	3550B	8270C SIM	III
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	5035	8015M	iii

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	5035	8260B	111
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	5035	8260B SIM	III
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	8330	8330A	Ш
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	METHOD	300.0	Ш
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	METHOD	314.0	111
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	METHOD	7471A	111
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	METHOD	8015B	Ш
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	METHOD	8015M	Ш
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	METHOD	8315A	111
29-Nov-2011	SL-285-SA6-SB-4.0-5.0	6487626	N	METHOD	9012B	Ш
29-Nov-2011	SL-285-SA6-SB-4.0-5.0MSD	P487626M240125A	MSD	8330	8330A	111
29-Nov-2011	SL-285-SA6-SB-4.0-5.0MSD	P487626M241736A	MSD	METHOD	8315A	111
29-Nov-2011	SL-285-SA6-SB-4.0-5.0MSD	P487626M261437	MSD	3546	1625C	111
29-Nov-2011	SL-285-SA6-SB-4.0-5.0MS	P487626R240043A	MS	8330	8330A	Ш
29-Nov-2011	SL-285-SA6-SB-4.0-5.0MS	P487626R241727A	MS	METHOD	8315A	III
29-Nov-2011	SL-285-SA6-SB-4.0-5.0MS	P487626R261418	MS	3546	1625C	Ш
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	3050B	6010B	III
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	3050B	6020	III
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	3060A	7199	111
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	3546	1625C	10
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	3550B	8015B	111
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	3550B	8015 M	10
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	3550B	8082	111
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	3550B	8270C	111
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	3550B	8270C SIM	111
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	5035	8015M	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	5035	8260B	111
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	5035	8260B SIM	111
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	8330	8330A	Ш
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	METHOD	300.0	111
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	METHOD	314.0	111
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	METHOD	7471A	111
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	METHOD	8015B	III
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	METHOD	8015M	III
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	METHOD	8315A	111
29-Nov-2011	SL-285-SA6-SB-6.0-7.0	6487627	N	METHOD	9012B	111
29-Nov-2011	SL-285-SA6-SB-6.0-7.0DUP	P487627D220405	DUP	3050B	6010B	111
29-Nov-2011	SL-285-SA6-SB-6.0-7.0MSD	P487627M220414	MSD	3050B	6010B	101
29-Nov-2011	SL-285-SA6-SB-6.0-7.0MS	P487627R220409	MS	3050B	6010B	111
30-Nov-2011	TB-113011	6487646	ТВ	3546	1625C	III
30-Nov-2011	TB-113011	6487647	ТВ	3520C	1625C	111
30-Nov-2011	TB-113011	6487648	ТВ	5030B	8015M	111
30-Nov-2011	TB-113011	6487648	ТВ	5030B	8260B	Ш
30-Nov-2011	TB-113011	6487648	ВТ	5030B	8260B SIM	III
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	3050B	6010B	III
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	3050B	6020	111
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	3060A	7199	113
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	3550B	8015B	III
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	3550B	8015M	HI
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	3550B	8081A	Ш
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	3550B	8082	111
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	3550B	8151A	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	3550B	8270C	III
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	METHOD	300.0	111
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	METHOD	314.0	III
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	METHOD	7471A	III
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	METHOD	8015B	Ш
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	METHOD	8015M	Ш
30-Nov-2011	SL-284-SA6-SS-0.0-0.5	6487640	N	METHOD	9012B	III
30-Nov-2011	SL-284-SA6-SS-0.0-0.5DUP	P487640D270958B	DUP	METHOD	300.0	111
30-Nov-2011	SL-284-SA6-SS-0.0-0.5DUP	P487640D271829B	DUP	METHOD	9012B	111
30-Nov-2011	SL-284-SA6-SS-0.0-0.5MSD	P487640M241515A	M\$D	3550B	8082	111
30-Nov-2011	SL-284-SA6-SS-0.0-0.5MS	P487640R241456A	MS	3550B	8082	III
30-Nov-2011	SL-284-SA6-SS-0.0-0.5MS	P487640R271011B	MS	METHOD	300.0	Ш
30-Nov-2011	SL-284-SA6-SS-0.0-0.5MS	P487640R271830B	MS	METHOD	9012B	III
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	3050B	6010B	III
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	3050B	6020	III
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	3060A	7199	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	3550B	8015B	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	3550B	8015M	ш
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	3550B	8081A	Ш
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	3550B	8082	ш
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	3550B	8151A	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	3550B	8270C	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	METHOD	300.0	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	METHOD	314.0	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	METHOD	7471A	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	METHOD	8015B	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	METHOD	8015M	(II)
30-Nov-2011	SL-283-SA6-SS-0.0-0.5	6487630	N	METHOD	9012B	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	3050B	6010B	Ш
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	3050B	6020	III
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	3060A	7199	III
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	3550B	8015B	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	3550B	8015M	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	3550B	8081A	Ш
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	3550B	8082	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	3550B	8151A	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	3550B	8270C	Ш
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	METHOD	300.0	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	METHOD	314.0	III .
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	METHOD	7471A	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	METHOD	8015B	Ш
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	METHOD	8015M	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	6487631	MS	METHOD	9012B	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MSD	6487632	MSD	3050B	6010B	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MSD	6487632	MSD	3050B	6020	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MSD	6487632	MSD	3550B	8015B	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MSD	6487632	MSD	3550B	8015 M	III
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MSD	6487632	MSD	3550B	8081A	III
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MSD	6487632	MSD	3550B	8082	III
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MSD	6487632	MSD	3550B	8151A	Ш
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MSD	6487632	MSD	3550B	8270C	HI
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MSD	6487632	MSD	METHOD	7471A	Ш

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MSD	6487632	MSD	METHOD	8015B	IH
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MSD	6487632	MSD	METHOD	8015M	101
30-Nov-2011	SL-283-SA6-SS-0.0-0.5DUP	6487633	DUP	3050B	6010B	Ш
30-Nov-2011	SL-283-SA6-SS-0.0-0.5DUP	6487633	DUP	3050B	6020	III
30-Nov-2011	SL-283-SA6-SS-0.0-0.5DUP	6487633	DUP	3060A	7199	III
30-Nov-2011	SL-283-SA6-SS-0.0-0.5DUP	6487633	DUP	METHOD	300.0	III
30-Nov-2011	SL-283-SA6-SS-0.0-0.5DUP	6487633	DUP	METHOD	314.0	III
30-Nov-2011	SL-283-SA6-SS-0.0-0.5DUP	6487633	DUP	METHOD	7471A	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5DUP	6487633	DUP	METHOD	9012B	111
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MSD	P487630M260855	MSD	3550B	8270C SIM	III
30-Nov-2011	SL-283-SA6-SS-0.0-0.5MS	P487630R260824	MS	3550B	8270C SIM	iii
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	3050B	601 0B	111
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	3050B	6020	111
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	3060A	7199	Ш
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	3550B	8015B	111
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	3550B	8015M	III
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	3550B	8082	III
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	3550B	8270C	III
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	3550B	8270C SIM	111
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	5035	8015M	III
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	METHOD	300.0	III
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	METHOD	314.0	Ш
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	METHOD	7471A	Ш
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	METHOD	8015B	Ш
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	METHOD	8015M	lti
30-Nov-2011	SL-284-SA6-SB-4.0-5.0	6487641	N	METHOD	9012B	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
30-Nov-2011	SL-284-SA6-SB-4.0-5.0DUP	P487641D272050B	DUP	METHOD	314.0	III
30-Nov-2011	SL-284-SA6-SB-4.0-5.0MS	P487641R272138B	MS	METHOD	314.0	111
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	3050B	6010B	!!!
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	3050B	6020	III
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	3060A	7199	Ш
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	3550B	8015B	111
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	3550B	8015M	III
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	3550B	8082	HI
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	3550B	8270C	Ш
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	3550B	8270C SIM	111
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	5035	8015M	Ш
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	METHOD	300.0	till
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	METHOD	314.0	III
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	METHOD	7471A	101
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	METHOD	8015B	Ш
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	METHOD	8015M	Ш
30-Nov-2011	SL-284-SA6-SB-9.0-10.0	6487642	N	METHOD	9012B	111
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	3050B	6010B	III
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	3050B	6020	111
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	3060A	7199	111
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	3550B	8015B	III
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	3550B	8015M	Ш
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	3550B	8082	111
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	3550B	8270C	Ш
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	3550B	8270C SIM	Ш
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	5035	8015M	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	METHOD	300.0	111
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	METHOD	314.0	III
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	METHOD	7471A	Ш
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	METHOD	8015B	111
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	METHOD	8015M	Ш
30-Nov-2011	SL-284-SA6-SB-14.0-15.0	6487643	N	METHOD	9012B	Ш
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	3050B	6010B	Ш
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	3050B	6020	ili
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	3060A	7199	111
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	3550B	8015B	Ш
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	3550B	8015M	188
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	3550B	8082	III
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	3550B	8270C	tii
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	3550B	8270C SIM	111
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	5035	8015M	ŧII
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	METHOD	300.0	111
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	METHOD	314.0	III
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	METHOD	7471A	III
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	METHOD	8015B	III
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	METHOD	8015M	III
30-Nov-2011	SL-284-SA6-SB-15.5-16.5	6487644	N	METHOD	9012B	III
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	3050B	6010B	III
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	3050B	6020	1!!
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	3060A	7199	111
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	3550B	8015B	Ш
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	3550B	8015M	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	3550B	8081A	III
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	3550B	8082	III
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	3550B	8151A	Ш
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	3550B	8270C	111
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	3550B	8270C SIM	III
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	METHOD	300.0	III
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	METHOD	314.0	111
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	METHOD	7471A	111
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	METHOD	8015B	111
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	METHOD	8015M	10
30-Nov-2011	SL-282-SA6-SS-0.0-0.5	6487628	N	METHOD	9012B	101
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	3050B	6010B	III
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	3050B	6020	111
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	3060A	7199	111
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	3550B	8015B	Ш
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	3550B	8015M	Ш
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	3550B	8082	Ш
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	3550B	8270C	III
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	3550B	8270C SIM	tii
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	5035	8015M	111
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	METHOD	300.0	III
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	METHOD	314.0	III
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	METHOD	7471A	III
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	METHOD	8015B	111
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	METHOD	8015M	111
30-Nov-2011	SL-283-SA6-SB-4.0-5.0	6487636	N	METHOD	9012B	III

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	3050B	601 0B	III
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	3050B	6020	Ш
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	3060A	7199	111
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	3550B	8015B	111
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	3550B	8015M	111
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	3550B	8082	III
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	3550B	8270C	111
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	3550B	8270C SIM	III
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	5035	8015M	[1]
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	METHOD	300.0	111
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	METHOD	314.0	III
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	METHOD	7471A	Ш
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	METHOD	8015B	Ш
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	METHOD	8015M	111
30-Nov-2011	SL-283-SA6-SB-9.0-10.0	6487637	N	METHOD	9012B	m
30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	3050B	6010B	10
30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	3050B	6020	m
30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	3060A	7199	Ш
30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	3550B	8015B	Ш
30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	3550B	8015M	Ш
30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	3550B	8082	18
30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	3550B	8270C	III
30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	5035	8015M	III
30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	METHOD	300.0	111
30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	METHOD	314.0	Ш
30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	METHOD	7471A	111

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
 30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	METHOD	8015B	III
30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	METHOD	8015M	Ш
30-Nov-2011	SL-283-SA6-SB-14.0-15.0	6487638	N	METHOD	9012B	111
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	3050B	6010B	111
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	3050B	6020	m
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	3060A	7199	Ш
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	3546	1625C	III
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	3550B	8015B	m
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	3550B	8015M	111
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	3550B	8082	111
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	3550B	8270C	m
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	3550B	8270C SIM	III
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	5035	8015M	III
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	8330	8330A	III
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	METHOD	300.0	111
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	METHOD	314.0	Ш
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	METHOD	7471A	Ш
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	METHOD	8015B	III
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	METHOD	8015M	III
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	METHOD	8315A	III
30-Nov-2011	SL-283-SA6-SB-18.0-19.0	6487639	N	METHOD	9012B	III
30-Nov-2011	SL-282-SA6-SB-2.5-3.5	6487629	N	3050B	6010B	III
30-Nov-2011	SL-282-SA6-SB-2.5-3.5	6487629	N	3050B	6020	Ш
30-Nov-2011	SL-282-SA6-SB-2.5-3.5	6487629	N	3060A	7199	111
30-Nov-2011	SL-282-SA6-SB-2.5-3.5	6487629	N	3550B	8015B	111
30-Nov-2011	SL-282-SA6-SB-2,5-3,5	6487629	N	3550B	8015M	HI

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
30-Nov-2011	SL-282-SA6-SB-2.5-3.5	6487629	N	3550B	8082	lli
30-Nov-2011	SL-282-SA6-SB-2.5-3.5	6487629	N	3550B	8270C	III
30-Nov-2011	SL-282-SA6-SB-2.5-3.5	6487629	N	3550B	8270C SIM	III
30-Nov-2011	SL-282-SA6-SB-2.5-3.5	6487629	N	5035	8015M	III
30-Nov-2011	SL-282-SA6-SB-2.5-3.5	6487629	N	METHOD	300.0	111
30-Nov-2011	SL-282-SA6-SB-2.5-3.5	6487629	N	METHOD	314.0	III
30-Nov-2011	SL-282-SA6-SB-2.5-3.5	6487629	N	METHOD	7471A	III
30-Nov-2011	SL-282-SA6-SB-2.5-3.5	6487629	N	METHOD	8015B	111
30-Nov-2011	SL-282-SA6-SB-2.5-3.5	6487629	N	METHOD	8015M	III
30-Nov-2011	SL-282-SA6-SB-2,5-3.5	6487629	N	METHOD	9012B	m
30-Nov-2011	EB-SA6-SB-113011	6487645	EB	3520C	1625C	III

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM	e-same (paemawanana araza)		CANAL SALES AND A	Transfer of the state of	E PRINT		
Method:	300.0		Matrix:	so			•	

Sample ID: SL-284-SA6-SB-14.0-15.0	Collect	ted: 11/30/2	2011 10:5	0:00 A	nalysis Ty	/pe: RES			Dilution: 1
	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
ELLOPIDE	0.00	1 I	0.00	BAIDI	4 4	DOI	malka	111	^

Sample ID: SL-284-SA6-SB-15.5-16.5	Collected: 11/30/2011 10:55:00 Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	1.1	J	0.92	MDL	1.2	PQL	mg/Kg	J	Z, Q

Sample ID: SL-284-SA6-SB-4.0-5.0	Collected: 11/30/2011 10:40:00 Analysis Type: RES								Dilution: 1		
	Lab	Lab		DL		RL		Data Review	Reason		
Analyte	Result	Qual	DL	Туре	RL	Type	Units	Qual	Code		
		Control Management (1977)	unterental state with state to 1	·	1	<u> </u>	4 %LX (LX 4/10 LX 10 Y 12 L				
FLUORIDE	3.9		0.88	MDL	1.1	PQL	mg/Kg	J	Q		

Sample ID: SL-284-SA6-SB-9.0-10.0	i-10.0 Collected: 1				1/30/2011 10:45:00 Analysis Type: RES				Dilution: 1			
	Lab	Lab		DL		RL		Data Review	Reason			
Analyte	Result	Qual	DL	Туре	RL	Туре	<u>Units</u>	Qual	Code			
FLUORIDE	0.84	Ú	0.84	MDL	1.0	PQL	mg/Kg	υJ	Q			

Sample ID: SL-284-SA6-SS-0.0-0.5	Collected: 11/30/2011 8:25:00 Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL · Type	RL	RL Type	Units	Data Review Qual	Reason Code
FLUORIDE	2.6		0.88	MDL	1.1	PQL	mg/Kg	J	Q

Method Category:	METALS	rine in egin god			
Method:	6010B		Matrîx:	so	

Sample ID: SL-282-SA6-SB-2.5-3.5	Collected: 11/30/2011 3:45:00				naiysis Ty	ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PHOSPHORUS	541		0.392	MDL	11.2	PQL	mg/Kg	J	Q
TIN	3.51	J	0.358	MDL	11.2	PQL	mg/Kg	U	В

Sample ID: SL-282-SA6-SS-0.0-0.5	Collected: 11/30/2011 12:35:00			5:00 A	\nalysis Ty	/pe: REA	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
THE CONTRACTOR OF THE PROPERTY	. L	a. Can a i waka kao mana arao in a zi ina	THE STREET SHIP HE STO	nga (hijim i angkarangkar		(200 TO 100 TO 1	2007 X 2000 (MIX. 168)		COLUMN ACTION AND ASSESSMENT OF THE
Zirconium	4.47	J	0.479	MDL	5.20	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

2/10/2012 11:49:10 AM ADR version 1.4.0.111 Page 1 of 30

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1

eQAPP Name: CDM_SSFL_110509

Method Category:	METALS				
Method:	6010B	Matrix:	so		

Sample ID: SL282-SA6-SS-0.0-0.5	Collec	Collected: 11/30/2011 12:35:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
PHOSPHORUS	503		0.364	MDL	10.4	PQL	mg/Kg	J	Q	
TIN	2.65	J	0.333	MDL	10.4	PQL	mg/Kg	U	В	

Sample ID: SL-283-SA6-SB-14.0-15.0	Collect	ted: 11/30/	2011 1:20	:00 🗡	analysis T	vpe: REA	ı		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	\$6\$0.000\$1.10000.510.400.50.50*	a. Tab 16 Same a. Jan 18 (cm		the a face of recording a of the	allega kay Pilan Bayo Yellian (1867)		au toma o conjecti nativa vene co	WWW.WOTECHERS	
Zirconium	2.66	J	0.495	MDL	5.38	PQL	mg/Kg	J	Z

Sample ID: SL-283-SA6-SB-14.0-15.0	Collec	Collected: 11/30/2011 1:20:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	4.22	J	0.387	MDL	5.38	PQL	mg/Kg	J	Z
PHOSPHORUS	150		0.377	MDL	10.8	PQL	mg/Kg	J	Q
SODIUM	85.9	J	6.40	MDL	108	PQL	mg/Kg	J	Z
TIN	2.70	J	0.344	MDL	10.8	PQL	mg/Kg	U	В

Sample ID: SL-283-SA6-SB-18.0-19.0	Collect	ted: 11/30/	2011 1:25	:00 A	nalysis T	ype: REA		Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
			DAY OF STREET	7,7				100000000000000000000000000000000000000			
Zirconium	4.38	J	0.503	MDL	5.47	PQL	mg/Kg	J	Z		

Sample ID: SL-283-SA6-SB-18.0-19.0	Collected: 11/30/2011 1:25:00 Analysis Type: RES								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BORON	4.19	J	0.394	MDL	5.47	PQL	mg/Kg	J	Z		
PHOSPHORUS	348		0.383	MDL	10.9	PQL	mg/Kg	J	Q		
TIN	2.82	J	0.350	MDL	10.9	PQL	mg/Kg	U	В		

Sample ID: SL-283-SA6-SB-4.0-5.0	Collect	ted: 11/30/	2011 1:10	:00 A	Inalysis T	/pe: REA			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Zirconium	4.28	J	0.475	MDL	5.16	PQL	mg/Kg	J	Z

2/10/2012 11:49:10 AM ADR version 1.4.0.111 Page 2 of 30

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1

eQAPP Name: CDM_SSFL_110509

Method Catego	ory: METALS			
Method:	6010B	Matrix:	so	
Sample ID: SL-283	3-SA6-SB-4.0-5.0	Collected: 11/30/2011 1:10:00	Analysis Tyne: RE	S Dilution: 1

Sample ID: SL-283-SA6-SB-4.0-5.0	Collected: 11/30/2011 1:10:00 Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PHOSPHORUS	391		0.361	MDL	10.3	PQL	mg/Kg	J	Q
TIN	2.61	J	0.330	MDL	10.3	PQL	mg/Kg	U	В

Sample ID: SL-283-SA6-SB-9.0-10.0	Collect	ted: 11/30/	2011 1:15	:00 A	nalysis Ty	/pe: REA		,	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Analyte	Result	Quai	DL	Type	KL	i ype	Units	Quai	Code
Zirconium	3.56	J	0.493	MDL	5.36	PQL	mg/Kg	J	Z

Sample ID: SL-283-SA6-SB-9.0-10.0	Collec	Collected: 11/30/2011 1:15:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BORON	4.80	J	0.386	MDL	5.36	PQL	mg/Kg	J	Z	
PHOSPHORUS	352		0.375	MDL	10.7	PQL	mg/Kg	J	Q	
SODIUM	96.3	J	6.38	MDL	107	PQL	mg/Kg	J	Z	
TIN	2.62	J	0.343	MDL	10.7	PQL	mg/Kg	U	В	

Sample ID: SL-283-SA6-SS-0.0-0.5	Collect	ed: 11/30/2	2011 10:0	0:00 A	nalysis Ty	/pe: REA	: REA Dilutio				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
Zirconium	2.24	J	0.480	MDL	5.22	PQL	mg/Kg	J	Z		

Sample ID: SL-283-SA6-SS-0.0-0.5	Collect	ted: 11/30/	Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	4.88	J	0.376	MDL	5.22	PQL	mg/Kg	J	Z
PHOSPHORUS	392		0.365	MDL	10.4	PQL	mg/Kg	J	Q
TIN	2.71	J	0.334	MDL	10.4	PQL	mg/Kg	U	В

Sample ID: SL-284-SA6-SB-14.0-15.0	Collected: 11/30/2011 10:50:00				Analysis Ty	ype: REA	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Zirconium	3.65	J	0.512	MDL	5.56	PQL	mg/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	ory: METALS			
Method:	6010B	Matrix:	so	
Sample ID: St -284	L-SA6-SR-14 0-15 0	Collected: 11/30/2011 10:50:00	Analysis Type: RES	Dilution: 4

Sample ID: SL-284-SA6-SB-14.0-15.0	Collec	Collected: 11/30/2011 10:50:00 Analysis Type: RES							
<i>Analyte</i>	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	5.36	J	0.400	MDL	5.56	PQL	mg/Kg	J	Z
PHOSPHORUS	304		0.389	MDL	11.1	PQL	mg/Kg	J	Q
TIN	2.94	J	0.356	MDL	11.1	PQL	mg/Kg	U	В

Sample ID: SL-284-SA6-SB-15.5-16.5	Collected: 11/30/2011 10:55:00 Analysis Type: REA								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
Zirconium	3.96	J	0.505	MDL	5.49	PQL	mg/Kg	U	В		

Sample ID: SL-284-SA6-SB-15.5-16.5	Collec	ted: 11/30/	Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BORON	4.71	J	0.395	MDL	5.49	PQL	mg/Kg	J	Z
PHOSPHORUS	201		0.384	MDL	11.0	PQL	mg/Kg	J	Q
TIN	2.73	J	0.351	MDL	11.0	PQL	mg/Kg	U	В

Sample ID: SL-284-SA6-SB-4.0-5.0	Collect	ted: 11/30/	0:00 A	nalysis T	ype: REA	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	V2020000000000000000000000000000000000	STATE OF THE STATE OF	ORDINAL MARKANIA				erecolar del celore del	N 427 427	0000
Zirconium	2.74	J	0.499	MDL	5.42	PQL	mg/Kg	U	В

Sample ID: SL-284-SA6-SB-4.0-5.0	Collec	Collected: 11/30/2011 10:40:00 Analysis Type: RES							Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
BORON	4.67	J	0.390	MDL	5.42	PQL	mg/Kg	J	Z			
PHOSPHORUS	330		0.380	MDL	10.8	PQL	mg/Kg	J.	Q			
TIN	2.60	J	0.347	MDL	10.8	PQL	mg/Kg	U	В			

Sample ID: SL-284-SA6-SB-9.0-10.0	Collected: 11/30/2011 10:45:00 Analysis Type: REA								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code		
Zirconium	3.18	J	0.475	MDL	5.16	PQL	mg/Kg	U	В		

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1

eQAPP Name: CDM_SSFL_110509

Method Category:	METALS			CC CD
Method:	6010B	Matrix:	so	

Sample ID: SL-284-SA6-SB-9.0-10.0	Collec	Collected: 11/30/2011 10:45:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BORON	3.80	J	0.371	MDL	5.16	PQL	mg/Kg	J	Z	
PHOSPHORUS	361		0.361	MDL	10.3	PQL	mg/Kg	J	Q	
TIN	2.58	J	0.330	MDL	10.3	PQL	mg/Kg	U	В	

Sample ID: SL-284-SA6-SS-0.0-0.5	Collect	Collected: 11/30/2011 8:25:00 Analysis Type: REA						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
and the second s	m echanism georgestes ages my	e de Caracida e Mario anno aguardo e Cara	** 6 * 2 6 0 1 mil 1960 0 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EAR 17 95 - 1852 174 EM	ry, are to their organization	فانته الرواسان فالولاق التدواء بالدائه	Mary and the company exist	execute date in a date out of	and the second section of the section of the second section of the section of the second section of the section of th	
Zirconium	2.39	J	0.499	MDL	5.42	PQL	mg/Kg	U	В	

ample ID: SL-284-SA6-SS-0.0-0.5	Collect	ted: 11/30/	2011 8:25	:00 A	nalysis T	ype: RES		Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
BORON	5.40	J	0.390	MDL	5.42	PQL	mg/Kg	J	Z			
PHOSPHORUS	473		0.380	MDL	10.8	PQL	mg/Kg	J	Q			
TIN	11.5		0.347	MDL	10.8	PQL	mg/Kg	J	FD			

ample ID: St285-SA6-SB-4.0-5.0	Collec	ted: 11/29/	2011 3:25	:00 A	nalysis T	ype: RES			Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code				
BORON	3.18	J	0.364	MDL	5.05	PQL	mg/Kg	J	Z				
PHOSPHORUS	344		0.354	MDL	10.1	PQL	mg/Kg	J	a				
SODIUM	83.0	J	6.01	MDL	101	PQL	mg/Kg	J	Z				
TIN	2.60	J	0.323	MDL	10.1	PQL	mg/Kg	U	В				

Sample ID: SL-285-SA6-SB-6.0-7.0	Collect	ted: 11/29/	2011 3:35	:00 /	Analysis Ty	ype: REA	3		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PHOSPHORUS	320		0.358	MDL	10.2	PQL	mg/Kg	J	Q
TIN	2.71	J	0.327	MDL	10.2	PQL	mg/Kg	υ	В

Sample ID: SL-285-SA6-SB-6.0-7.0	Collect	ted: 11/29/	2011 3:35	:00 A	nalysis Ty	/pe: REA	4	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
Zirconium	2.36	J	0.470	MDL	5.11	PQL	mg/Kg	J	Z		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 2/10/2012 11:49:10 AM ADR version 1.4.0.111

Page 5 of 30

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1	eQAPP Name: CDM_SSFL_110509
------------------------	-----------------------------

weinoa Calego	ory: WETALS									
Method:	6010B			Ma	atrix:	so				
Sample ID: SL-285	5-SA6-SS-0.0-0.5	Collec	ted: 11/29/	2011 1:35	:00 A	nalysis T	ype: REA			Dilution: 1
Analyte	W. Wilson dashiwa wa andre di SMM denistrativa	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Zirconium		2.36	j	0.476	MDL	5.18	PQL	mg/Kg	J	Z
Sample ID: SL-285	5-SA6-SS-0.0-0.5	Collec	ted: 11/29/	2011 1:35	:00 A	nalysis T	ype: RES			Dilution: 1
Analyte		Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PHOSPHORUS	375		0.362	MDL	10.4	PQL	mg/Kg	J	Q
TIN	2.95	J	0.331	MDL	10.4	PQL	mg/Kg	υ	В

Method Category:	METALS			
Method:	6020	Matrix:	so	
	"			

Sample ID: SL-282-SA6-SB-2.5-3.5	Collect	ted: 11/30/	2011 3:45:	:00 A	nalysis Ty	ype: REA	3		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.186	J	0.0630	MDL	0.435	PQL	mg/Kg	UJ	Q, B

S	ample ID: SL-282-SA6-SB-2.5-3.5	Collect	ted: 11/30/:	2011 3:45	:00 A	nalysis T	ype: REA	4	Dilution: 2			
		Lab	Lab		DL		RL		Data Review	Reason		
A	nalyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code		
М	OLYBDENUM	0.868		0.0543	MDL	0.109	PQL	ma/Ka	J	Q. E. E		

Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code	
MOLYBDENUM	0.868		0.0543	MDL	0.109	PQL	mg/Kg	J	Q, E, E	
Sample ID: SL-282-SA6-SB-2.5-3.5	Collected: 11/30/2011 3:45:00 Analysis Type: REA5							Dilution: 2		

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
	me, tresky mm, and radiological c	Course Pallingue Course Co.	P 1070 100 LIVE - 100 LIVE		opening pages with			22.00 (10.00 to 10.00 to	All behalf retained a substitution of
BARIUM	1 14		0.115	MDL	0.435	PQL	mg/Kg	7	E, E

Analyte	Collec	Collected: 11/30/2011 3:45:00 Analysis Type: RES								
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.123	J	0.0804	MDL	0.217	PQL	mg/Kg	UJ	Q, B	
ARSENIC	10.3		0.0869	MDL	0.435	PQL	mg/Kg	J	Q, E	
BERYLLIUM	1.09		0.0174	MDL	0.109	PQL	mg/Kg	J	Q, E	
САФМІИМ	0.0657	J	0.0478	MDL	0.109	PQL	mg/Kg	J	Z, Q, E	
CHROMIUM	27.4		0.130	MDL	0.435	PQL	mg/Kg	J	Q, E, A	
COBALT	10.9		0.0217	MDL	0.109	PQL	mg/Kg	J	Q, E, A	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
2/10/2012 11:49:10 AM ADR version 1.4.0.111 Page 6 of 30

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method:	6020		Matrix:	SC
Method Category:	METALS	न्त्र का जन्म समिति कृतासुर सम्बद्धाः स्थापन्ति । स्थापना स्थापना अन्यस्था । स्था	ajawa da da markila dig	

87.7

Sample ID: SL-282-SA6-SB-2.5-3.5	Collec	Collected: 11/30/2011 3:45:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
COPPER	11.9		0.0869	MDL	0.435	PQL	mg/Kg	J	Q, E, E	
LEAD	8.41		0.0111	MDL	0.217	PQL	mg/Kg	J	Q, E, E	
NICKEL	17.1		0.109	MDL	0.435	PQL	mg/Kg	J	Q, E	
SILVER	0.0317	J	0.0154	MDL	0.109	PQL	mg/Kg	J	Z, Q, E	
THALLIUM	0.636		0.0326	MDL	0.109	PQL	mg/Kg	J	Q, E	
VANADIUM	59.4		0.0239	MDL	0.109	PQL	mg/Kg	J	Q. E	

Sample ID: SL-282-SA6-SS-0.0-0.5	Collec	Collected: 11/30/2011 12:35:00 Analysis Type: REA3						Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
	Challer of Child and Associated Services (1984) and Child	COMPANIES	A CONTRACTOR OF THE PARTY OF THE	VII. (4 C 4 C 12	NLC TOPOLOGY, and had	oper terries. NAS 14 Co.S.	HALLOW AND AND A	na hidoniaa sii iliinaa ka k		
SELENIUM	0.115	J	0.0610	MDL	0.420	PQL	mg/Kg	UJ	Q, B	

0.608

MDL

3.26

PQL

mg/Kg

E, A

Sample ID: 51282-5A6-55-0.0-0.5	Collected: 11/30/2011 12:35:00 Analysis Type: REA4								Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
IN THE RESIDENCE OF THE PROPERTY OF THE PROPER	nergy of a growing or area of the particle	Proposition of the Control of the Co	C. Bak (8x about 1 top6b), 11.1.	white it is a series of the series of	r ugur r udamagili yan digilal biran yan	- And I washington the time to the same to	Spaces were considered and strong and a	SAN'S SHOWN BOOKS STORY, BY JUST IN	ERIANOS PARAS PARA		
MOLYBDENUM	0.549		0.0526	MDL	0.105	PQL	mg/Kg	j	Q, E, E		

Sample ID: SL-282-SA6-SS-0.0-0.5	Collec	ted: 11/30/	2011 12:3	5:00 A	5	Dilution: 2			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Analyte	Resuit	Quai	UL	l Type	KL	Type	UIIIG	Quai	Code
BARIUM	114		0.111	MDL	0.420	PQL	mg/Kg	J	E, E

Sample ID: SL-282-SA6-SS-0.0-0.5 Analyte	Collec	Dilution: 2							
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.0943	J	0.0778	MDL	0.210	PQL	mg/Kg	UJ	Q, B
ARSENIC	6.60		0.0841	MDL	0.420	PQL	mg/Kg	J	Q, E
BERYLLIUM	0.529		0.0168	MDL	0.105	PQL	mg/Kg	J	Q, E
CADMIUM	0.396		0.0462	MDL	0.105	PQL	mg/Kg	J	Q, E
CHROMIUM	20.1		0.126	MDL	0.420	PQL	mg/Kg	J	Q, E, A
COBALT	9.17		0.0210	MDL	0.105	PQL	mg/Kg	J	Q, E, A
COPPER	15.5		0.0841	MDL	0.420	PQL	mg/Kg	J	Q, E, E
LEAD	8.35		0.0107	MDL	0.210	PQL	mg/Kg	J	Q, E, E
NICKEL	14.5		0.105	MDL	0.420	PQL	mg/Kg	J	Q, E

^{*} denotes a non-reportable result

ZINC

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 2/10/2012 11:49:10 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Wethod Category: META	
Lateral Cotooonic Birch	

Method: 6020 Matrix: SO

Sample ID: SL-282-SA6-SS-0.0-0.5	Collec	Collected: 11/30/2011 12:35:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL_	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SILVER	0.0579	J	0.0149	MDL	0.105	PQL	mg/Kg	J	Z, Q, E
THALLIUM	0.281		0.0315	MDL	0.105	PQL	mg/Kg	J	Q, E
VANADIUM	41.5		0.0231	MDL	0.105	PQL	mg/Kg	J	Q, E
ZINC	103		0.589	MDL	3.15	PQL	mg/Kg	J	E. A

Sample ID: SL-283-SA6-SB-14.0-15.0 Collected: 11/30/2011 1:20:00 Analysis Type: REA Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHROMIUM	23.6		0.129	MDL	0.430	PQL	mg/Kg	J	Q, E, A
VANADIUM	44.1		0.0237	MDL	0.108	PQL	mg/Kg	J	Q, E

Sample ID: SL-283-SA6-SB-14.0-15.0 Collected: 11/30/2011 1:20:00 Analysis Type: REA4 Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.667		0.0538	MDL	0.108	PQL	mg/Kg	J	Q, E, E

Sample ID: SL-283-SA6-SB-14.0-15.0 Collected: 11/30/2011 1:20:00 Analysis Type: REA5 Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	84.4		0.114	MDL	0.430	PQL	mg/Kg	J	E, E

Sample ID: SL-283-SA6-SB-14.0-15.0 Collected: 11/30/2011 1:20:00 Analysis Type: RES Dilution: 2

	Dilation. Z							
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.0796	U	0.0796	MDL	0.215	PQL	mg/Kg	UJ	Q
4.08		0.0861	MDL	0.430	PQL	mg/Kg	J	Q, E
0.686		0.0172	MDL	0.108	PQL	mg/Kg	J	Q, E
0.0474	U	0.0474	MDL	0.108	PQL	mg/Kg	UJ	E
5.73		0.0215	MDL	0.108	PQL	mg/Kg	J	Q, E, A
7.10		0.0861	MDL	0.430	PQL	mg/Kg	J	Q, E, E
4.80		0.0110	MDL	0.215	PQL	mg/Kg	J	Q, E, E
11.3		0.108	MDL	0.430	PQL	mg/Kg	J	Q, E
0.0306	J	0.0153	MDL	0.108	PQL	mg/Kg	J	Z, Q, E
0.271		0.0323	MDL	0.108	PQL	mg/Kg	J	Q, E
45.2		0.603	MDL	3.23	PQL	mg/Kg	J	E, A
	Lab Result 0.0796 4.08 0.686 0.0474 5.73 7.10 4.80 11.3 0.0306 0.271	Lab Result Lab Qual 0.0796 U 4.08 U 0.686 U 5.73 T.10 4.80 11.3 0.0306 J 0.271 U	Lab Result Lab Qual DL 0.0796 U 0.0796 4.08 0.0861 0.686 0.0172 0.0474 U 0.0474 5.73 0.0215 7.10 0.0861 4.80 0.0110 11.3 0.108 0.0306 J 0.0153 0.271 0.0323	Lab Result Lab Qual DL DL Type 0.0796 U 0.0796 MDL 4.08 0.0861 MDL 0.686 0.0172 MDL 0.0474 U 0.0474 MDL 5.73 0.0215 MDL 7.10 0.0861 MDL 4.80 0.0110 MDL 11.3 0.108 MDL 0.0306 J 0.0153 MDL 0.271 0.0323 MDL	Lab Result Lab Qual DL DL Type Type RL 0.0796 U 0.0796 MDL 0.215 4.08 0.0861 MDL 0.430 0.686 0.0172 MDL 0.108 0.0474 U 0.0474 MDL 0.108 5.73 0.0215 MDL 0.108 7.10 0.0861 MDL 0.430 4.80 0.0110 MDL 0.215 11.3 0.108 MDL 0.430 0.0306 J 0.0153 MDL 0.108 0.271 0.0323 MDL 0.108	Lab Result Lab Qual DL DL DL Type Type RL Type RL Type 0.0796 U 0.0796 MDL 0.215 PQL 4.08 0.0861 MDL 0.430 PQL 0.686 0.0172 MDL 0.108 PQL 0.0474 U 0.0474 MDL 0.108 PQL 5.73 0.0215 MDL 0.108 PQL 7.10 0.0861 MDL 0.430 PQL 4.80 0.0110 MDL 0.215 PQL 11.3 0.108 MDL 0.430 PQL 0.0306 J 0.0153 MDL 0.108 PQL 0.271 0.0323 MDL 0.108 PQL	Lab Result Lab Qual DL DL Type RL Type Units 0.0796 U 0.0796 MDL 0.215 PQL mg/Kg 4.08 0.0861 MDL 0.430 PQL mg/Kg 0.686 0.0172 MDL 0.108 PQL mg/Kg 0.0474 U 0.0474 MDL 0.108 PQL mg/Kg 5.73 0.0215 MDL 0.108 PQL mg/Kg 7.10 0.0861 MDL 0.430 PQL mg/Kg 4.80 0.0110 MDL 0.215 PQL mg/Kg 11.3 0.108 MDL 0.430 PQL mg/Kg 0.0306 J 0.0153 MDL 0.108 PQL mg/Kg 0.271 0.0323 MDL 0.108 PQL mg/Kg	Lab Result Lab Qual DL Type RL Type Units Data Review Qual 0.0796 U 0.0796 MDL 0.215 PQL mg/Kg UJ 4.08 0.0861 MDL 0.430 PQL mg/Kg J 0.686 0.0172 MDL 0.108 PQL mg/Kg J 0.0474 U 0.0474 MDL 0.108 PQL mg/Kg UJ 5.73 0.0215 MDL 0.108 PQL mg/Kg J 7.10 0.0861 MDL 0.430 PQL mg/Kg J 4.80 0.0110 MDL 0.215 PQL mg/Kg J 11.3 0.108 MDL 0.430 PQL mg/Kg J 0.0306 J 0.0153 MDL 0.108 PQL mg/Kg J 0.271 0.0323 MDL 0.108 PQL mg/Kg J

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

2/10/2012 11:49:10 AM ADR version 1.4.0.111 Page 8 of 30

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method:	6020			Ma	trix:	so				
Sample ID: SL-283	-SA6-SB-18.0-19.0	Collec	ted: 11/30	/2011 1:25	:00 A	nalysis T	ype: REA	.3	1	Dilution: 2
Analyte	Nai-Silakid/Mandahun/Tuilka	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM		0.0660	J	0.0622	MDL	0.429	PQL	mg/Kg	บม	Q, B
Sample ID: SL-283	-SA6-SB-18.0-19.0	Collect	ted: 11/30/	2011 1:25	:00 A	nalysis Ty	/pe: REA	4	ı	Dilution: 2
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM		0.428		0.0536	MDL	0.107	PQL	mg/Kg	j	Q, E, E

Sample ID: SL-283-SA6-SB-18.0-19.0	Collect	cted: 11/30/2011 1:25:00 Analysis Type: REA5							Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
BARIUM	79.7		0.114	MDL	0.429	PQL	mg/Kg	J	E, E		

Sample ID: SL-283-SA6-SB-18.0-19.0 Collected: 11/30/2011 1:25:00 Analysis Type: RES Dilution: 2 Data Lab DL Lab RL Review Reason Analyte Result Qual DL Type RL Units Qual Code Type ANTIMONY 0.0794 U 0.0794 MDL 0.215 **PQL** mg/Kg UJ Q ARSENIC 5.07 0.0858 MDL 0.429 **PQL** mg/Kg Q, E BERYLLIUM 0.749 0.0172 MDL 0.107 **PQL** mg/Kg J Q, E CADMIUM U 0.0472 0.0472 MDL 0.107 **PQL** UJ Ε mg/Kg CHROMIUM 21.4 0.129 MDL 0.429 PQL mg/Kg J Q, E, A COBALT 4.96 0.0215 MDL 0.107 PQL mg/Kg J Q, E, A COPPER 8.00 0.0858 MDL 0.429 PQL mg/Kg Q, E, E J LEAD 4.29 0.0109 MDL J 0.215 **PQL** mg/Kg Q, E, E NICKEL 9.71 0.107 MDL 0.429 **PQL** J mg/Kg Q, E SILVER 0.0730 J 0.0152 MDL 0.107 **PQL** mg/Kg J Z, Q, E THALLIUM 0.251 0.0322 MDL 0.107 PQL mg/Kg J Q, E

Sample ID: SL-283-SA6-SB-4.0-5.0	Collec	Collected: 11/30/2011 1:10:00 Analysis Type: REA						Dilution: 5		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
LEAD	5.09		0.0271	MDL	0.532	PQL	mg/Kg	J	Q, E, E	
THALLIUM	0.292		0.0798	MDL	0.266	PQL	mg/Kg	J	Q, E	

0.0236

0.601

MDL,

MDL

0.107

3.22

PQL

PQL

mg/Kg

mg/Kg

J

J

40.4

49.4

VANADIUM

ZINC

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 2/10/2012 11:49:10 AM ADR version 1.4.0.111

Q, E

E, A

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE290

EDD Filename: DE290_v1

EQAPP Name: CDM_SSFL_110509

Method Categor	ry: METALS				
Method:	6020	Matrix:	so	: · · · · · · · · · · · · · · · · · · ·	7. 1 1.4.8
Sample ID: SL-283-5	SA6-SB-4.0-5.0	Collected: 11/30/2011 1:10:00	Analysis Tyne: REA2	,	Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHROMIUM	22.2		0.128	MDL	0.425	PQL	mg/Kg	J	Q, E, A
VANADIUM	43.9		0.0234	MDL	0.106	PQL	mg/Kg	J	Q, E

Sample ID: SL-283-SA6-SB-4.0-5.0	Collected: 11/30/2011 1:10:00 Analysis Type: REA3							Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
	1.COUR	i waai	DL	Type	I NL	i ype	Uiiii	Quai	COUE	
SELENIUM	0.138	J	0.0617	MDL	0.425	PQL	mg/Kg	υJ	Q, B	

Sample ID: SL-283-SA6-SB-4.0-5.0	Collected: 11/30/2011 1:10:00 Analysis Type: REA4							Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
of the control of the	******	60111120143480 N/C49434A, -6-	i, diagrafikikuli Silan ngero i		TANK TO THE PROPERTY OF THE PARTY OF T	THE THE	Continue	QUOI	COUC	
MOLYBDENUM	0.678		0.0532	MDL	0.106	PQL	mg/Kg	J	Q, E, E	

Sample ID: SL-283-SA6-SB-4.0-5.0					Inalysis Ty	/pe: REA	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	111		0.113	MDL	0.425	PQL	mg/Kg	J	E, E

Sample ID: SL-283-SA6-SB-4.0-5.0	Collec	ted: 11/30/	2011 1:10	:00 A	nalysis Ty	/pe: RES		Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.0787	U	0.0787	MDL	0.213	PQL	mg/Kg	UJ	Q	
ARSENIC	5.20		0.0851	MDL	0.425	PQL	mg/Kg	J	Q, E	
BERYLLIUM	0.918		0.0170	MDL.	0.106	PQL	mg/Kg	J	Q, E	
CADMIUM	0.0973	J	0.0468	MDL	0.106	PQL	mg/Kg	J	Z, Q, E	
COBALT	7.04		0.0213	MDL	0.106	PQL	mg/Kg	J	Q, E, A	
COPPER	9.83		0.0851	MDL	0.425	PQL	mg/Kg	7	Q, E, E	
NICKEL	14.5		0.106	MDL	0.425	PQL	mg/Kg	J	Q, E	
SILVER	0.0307	J	0.0151	MDL	0.106	PQL	mg/Kg	J	Z, Q, E	

Sample ID: SL-283-SA6-SB-9.0-10.0	Collect	Collected: 11/30/2011 1:15:00 Analy					3	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
And the state of the state of the Company of the state of	error control description of the first	d::3***************	Comment to the	2 1/4 (18 2/1942. A M.C.)	232/12/20/20/20/20/20	100 (150) (1 m) (1 m) (1 m) (1 m) (1 m)	901 (1019 CD 2023 C) C	2. I liam Mily & Livery and	erikan programma katalogi (1865), sili 1867 (
SELENIUM	0.0701	J	0.0622	MDL	0.429	PQL	mg/Kg	UJ	Q, B	

0.596

60.6

MDL

3.19

PQL

mg/Kg

E, A

ZINC

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
2/10/2012 11:49:10 AM ADR version 1.4.0.111 Page 10 of 30

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	METALS				
Method:	6020	Matrix:	SC	o	
•					

Sample ID: SL-283-SA6-SB-9.0-10.0	Collected: 11/30/2011 1:15:00 Analysis Ty						4		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.923	trongi siinse dand,e	0.0536	MDL	0.107	PQL	mg/Kg	J	Q, E, E

Sample ID: SL-283-SA6-SB-9.0-10.0	Collect	ted: 11/30/	Dilution: 2						
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	114	W. (10.198.000.71.10)	0.114	MDL	0.429	PQL	mg/Kg	J	E, E

Sample ID: SL-283-SA6-SB-9.0-10.0	Collec	Collected: 11/30/2011 1:15:00 Analysis Type: RES									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
ANTIMONY	0.0794	U	0.0794	MDL	0.215	PQL	mg/Kg	UJ	Q		
ARSENIC	5.99		0.0858	MDL	0.429	PQL	mg/Kg	J	Q, E		
BERYLLIUM	0.724		0.0172	MDL	0.107	PQL	mg/Kg	J	Q, E		
CADMIUM	0.0658	J	0.0472	MDL	0.107	PQL	mg/Kg	J	Z, Q, E		
CHROMIUM	24.4		0.129	MDL	0.429	PQL	mg/Kg	J	Q, E, A		
COBALT	7.21		0.0215	MDL	0.107	PQL	mg/Kg	J	Q, E, A		
COPPER	7.97		0.0858	MDL	0.429	PQL	mg/Kg	J	Q, E, E		
LEAD	5.89		0.0109	MDL	0.215	PQL	mg/Kg	J	Q, E, E		
NICKEL	14.5		0.107	MDL	0.429	PQL	mg/Kg	J	Q, E		
SILVER	0.0544	J	0.0152	MDL	0.107	PQL	mg/Kg	J	Z, Q, E		
THALLIUM	0.300		0.0322	MDL	0.107	PQL	mg/Kg	J	Q, E		
VANADIUM	50.2		0.0236	MDL	0.107	PQL	mg/Kg	J	Q, E		
ZINC	50.6		0.601	MDL	3.22	PQL	mg/Kg	L	E, A		

Sample ID: SL-283-SA6-SS-0.0-0.5	Collect	ted: 11/30/	Dilution: 2						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.273	J	0.0594	MDL	0.410	PQL	mg/Kg	บป	Q, B

Sample ID: SL-283-SA6-SS-0.0-0.5	Collect	ted: 11/30/:	0:00	Analysis Ty	vpe: REA	4	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.975	2001	0.0512	MDL	0.102	PQL	mg/Kg	J	Q, E, E

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	METALS	
Method:	6020	Matrix: SO

Sample ID: 5L-283-5A6-55-0.0-0.5	Collect		naiysis i j	ype: KEA	Dilution: 2 Data				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
BARIUM	109	and the second second second second	0.109	MDL	0.410	PQL	mg/Kg	J	E, E

Sample ID: SL-283-SA6-SS-0.0-0.5	Collec	Collected: 11/30/2011 10:00:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.122	J	0.0758	MDL	0.205	PQL	mg/Kg	UJ	Q, B	
ARSENIC	4.49		0.0819	MDL	0.410	PQL	mg/Kg	J	Q, E	
BERYLLIUM	0.509		0.0164	MDL,	0.102	PQL	mg/Kg	J	Q, E	
CADMIUM	0.245		0.0451	MDL	0.102	PQL	mg/Kg	J	Q, E	
CHROMIUM	19.1		0.123	MDL	0.410	PQL	mg/Kg	J	Q, E, A	
COBALT	7.17		0.0205	MDL	0.102	PQL	mg/Kg	J	Q, E, A	
COPPER	12.7		0.0819	MDL	0.410	PQL	mg/Kg	J	Q, E, E	
LEAD	10.9		0.0104	MDL	0.205	PQL	mg/Kg	J	Q, E, E	
NICKEL	13.2		0.102	MDL	0.410	PQL	mg/Kg	J	Q, E	
SILVER	0.0524	J	0.0145	MDL	0.102	PQL	mg/Kg	J	Z, Q, E	
THALLIUM	0.263		0.0307	MDL	0.102	PQL	mg/Kg	J	Q, E	
VANADIUM [*]	40.3		0.0225	MDL	0.102	PQL	mg/Kg	J	Q, E	
ZINC	73.5		0.573	MDL	3.07	PQL	mg/Kg	J	E, A	

Sample ID: SL-284-SA6-SB-14.0-15.0	Collect	ted: 11/30/	2011 10:5	0:00 A	nalysis Ty	/pe: REA	3		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
		er periodical contra	al Al Andrews	1 .750	CONTRACTOR CONTRACTOR	ACCOMMONDED SPECIES	CALL PROPERTY OF THE	- quu	THE PERSONAL COLUMN COL
SELENIUM	0.0673	J	0.0652	MDL	0.449	PQL	mg/Kg	บม	Q, B

Sample ID: SL-284-SA6-SB-14.0-15.0	Collect	ted: 11/30/	2011 10:5	0:00	nalysis T	ype: REA	4		Dilution: 2	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MOLYBDENUM	1.44	S DE SECTION OF THE SECTION OF THE	0.0562	MDL	0.112	PQL	mg/Kg	J	Q, E, E	

Sample ID: SL-284-SA6-SB-14.0-15.0	Collected: 11/30/2011 10:50:00 Analysis Type: REA5							Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
BARIUM	149	100000000000000000000000000000000000000	0.119	MDL	0.449	PQL	mg/Kg	J	E, E	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
2/10/2012 11:49:10 AM ADR version 1.4.0.111 Page 12 of 30

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	METALS
Method:	6020

Matrix: SO

Sample ID: SL-284-SA6-SB-14.0-15.0	Collec	Collected: 11/30/2011 10:50:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.0831	U	0.0831	MDL	0.225	PQL	mg/Kg	UJ	Q	
ARSENIC	5.93		0.0899	MDL	0.449	PQL	mg/Kg	J	Q, E	
BERYLLIUM	1.10		0.0180	MDL	0.112	PQL	mg/Kg	J	Q, E	
CADMIUM	0.0494	U	0.0494	MDL	0.112	PQL	mg/Kg	UJ	E	
CHROMIUM	27.9		0.135	MDL	0.449	PQL	mg/Kg	J	Q, E, A	
COBALT	7.54		0.0225	MDL	0.112	PQL	mg/Kg	J	Q, E, A	
COPPER	8.46		0.0899	MDL	0.449	PQL	mg/Kg	J	Q, E, E	
LEAD	8.32		0.0115	MDL	0.225	PQL	mg/Kg	J	Q, E, E	
NICKEL	14.5		0.112	MDL	0.449	PQL	mg/Kg	J	Q, E	
SILVER	0.0721	J	0.0160	MDL	0.112	PQL	mg/Kg	J	Z, Q, E	
THALLIUM	0.396		0.0337	MDL	0.112	PQL	mg/Kg	J	Q, E	
VANADIUM	53.1		0.0247	MDL	0.112	PQL	mg/Kg	J	Q, E	
ZINC	67.1		0.629	MDL	3.37	PQL	mg/Kg	J	E, A	

Sample ID: SL-284-SA6-SB-15.5-16.5

Collected:	11/30/2011	10:55:00
	1 110012011	10.00.00

Analysis Type: REA3

Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.0750	J	0.0631	MDL	0.435	PQL	mg/Kg	UJ	Q, B

Sample ID: SL-284-SA6-SB-15.5-16.5

Analysis Type: REA4

Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	1.14		0.0544	MDL	0.109	PQL	mg/Kg	J	Q, E, E

Sample ID: SL-284-SA6-SB-15.5-16.5

Collected: 11/30/2011 10:55:00

Analysis Type: REA5

Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	142		0.115	MDL	0.435	PQL	mg/Kg	J	E, E

Sample ID: SL-284-SA6-SB-15.5-16.5

Collected: 11/30/2011 10:55:00

Analysis Type: RES

Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.0912	J	0.0805	MDL	0.218	PQL	mg/Kg	บง	Q, B
ARSENIC	6.37		0.0870	MDL	0.435	PQL	mg/Kg	J	Q, E
BERYLLIUM	1.09		0.0174	MDL	0.109	PQL	mg/Kg	J	Q, E

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

2/10/2012 11:49:10 AM

ADR version 1.4.0.111

Page 13 of 30

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1

eQAPP Name: CDM_SSFL_110509

Method Category:	METALS				
Method:	6020	Matrix:	so		

Collected: 11/30/2011 10:55:00

Analysis Type: RES

Dilution: 2

Page 14 of 30

				/.		, po		Diracion. Z		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CADMIUM	0.0704	J	0.0479	MDL	0.109	PQL	mg/Kg	J	Z, Q, E	
CHROMIUM	27.8		0.131	MDL	0.435	PQL	mg/Kg	J	Q, E, A	
COBALT	8.45		0.0218	MDL	0.109	PQL	mg/Kg	J	Q, E, A	
COPPER	8.82		0.0870	MDL	0.435	PQL	mg/Kg	J	Q, E, E	
LEAD	8.62	-	0.0111	MDL	0.218	PQL	mg/Kg	J	Q, E, E	
NICKEL	17.1		0.109	MDL	0.435	PQL	mg/Kg	J	Q, E	
SILVER	0.0759	J	0.0154	MDL	0.109	PQL	mg/Kg	J	Z, Q, E	
THALLIUM	0.373		0.0326	MDL	0.109	PQL	mg/Kg	J	Q, E	
VANADIUM	55.3		0.0239	MDL	0.109	PQL	mg/Kg	J	Q, E	
ZINC	71.4	<u> </u>	0.609	MDL	3.26	PQL	mg/Kg	J	E, A	

Sample ID: SL-284-SA6-SB-4.0-5.0	Collected: 11/30/2011 10:40:00				nalysis Ty	/pe: REA	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL.	RL Type	Units	Data Review Qual	Reason Code
BERYLLIUM	0.717	Survice of manufacture and an analysis of Modern	0.0169	MDL	0.105	PQL	mg/Kg	J	Q, E

Sample ID: SL-284-SA6-SB-4.0-5.0	Collect	ted: 11/30/	2011 10:4	0:00 A	nalysis Ty	/pe: REA	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.119	J	0.0611	MDL	0.421	PQL	mg/Kg	UJ	Q, B

Sample ID: SL-284-SA6-SB-4.0-5.0	Collected: 11/30/2011 10:40:00 Analysis Type: REA4							Dilution: 2		
	Lab	Lab		DL		RL		Data Review	Reason	
Analyte	Result	Qual	DL	Туре	RL	Type	Units	Qual	Code	
MOLYBDENUM	0.551		0.0527	MDL	0.105	PQL	mg/Kg	J	Q, E, E	

Sample ID: SL-284-SA6-SB-4.0-5.0	Collected: 11/30/2011 10:40:00 Analysis Type: REA5						Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
COSTANT REPORT OF THE PROPERTY	(30°)) [34 60 6] 5, 46, 50°, 50° 1 <u>50°</u> 1.	dy pod hadronia o zona z ho seme e	ALLEN CHONTONYO	82306. Mills@r kc. 18	و معد من رکات الفائد و المنها		angeren Pagera anglebet yay	AND THE PROPERTY OF STREET	AND THE REAL PROPERTY OF THE PARTY OF THE PA
BARIUM	101		0.112	MDL	0.421	PQL	mg/Kg	J	E, E

Sample ID: SL-284-SA6-SB-4.0-5.0	Collected: 11/30/2011 10:40:00 Analysis Type: RES Dilution: 2									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
ANTIMONY	0.0779	U	0.0779	MDL	0.211	PQL	mg/Kg	UJ	Q	

^{*} denotes a non-reportable result

Sample ID: SL-284-SA6-SB-15.5-16.5

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
2/10/2012 11:49:10 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1

eQAPP Name: CDM_SSFL_110509

Method Category:

METALS

Method:

6020

SO Matrix:

Sample ID: SL-284-SA6-SB-4.0-5.0

Collected: 11/30/2011 10:40:00

Analysis Type: RES

Dilution: 2

-				Diadon. Z					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
ARSENIC	5.65		0.0843	MDL	0.421	PQL	mg/Kg	J	Q, E
CADMIUM	0.0735	J	0.0463	MDL	0.105	PQL	mg/Kg	J	Z, Q, E
CHROMIUM	23.4		0.126	MDL	0.421	PQL	mg/Kg	J	Q, E, A
COBALT	7.46		0.0211	MDL	0.105	PQL	mg/Kg	J	Q, E, A
COPPER	9.18		0.0843	MDL	0.421	PQL	mg/Kg	J	Q, E, E
LEAD	5.89		0.0107	MDL	0.211	PQL	mg/Kg	J	Q, E, E
NICKEL	13.6	1	0.105	MDL	0.421	PQL	mg/Kg	J	Q, E
SILVER	0.0335	J	0.0150	MDL	0.105	PQL	mg/Kg	J	Z, Q, E
THALLIUM	0.339		0.0316	MDL	0.105	PQL	mg/Kg	J	Q, E
VANADIUM	47.0		0.0232	MDL	0.105	PQL	mg/Kg	J	Q, E
ZINC	72.5		0.590	MDL	3.16	PQL	mg/Kg	J	E, A

Sample ID: SL-284-SA6-SB-9.0-10.0

Collected: 11/30/2011 10:45:00

Analysis Type: REA4

Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.391		0.0511	MDL	0.102	PQL	mg/Kg	J	Q, E, E

Sample ID: SL-284-SA6-SB-9.0-10.0

Collected: 11/30/2011 10:45:00

Analysis Type: REA5

Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	87.7		0.108	MDL	0.409	PQL	mg/Kg	J	E, E

Sample ID: SL-284-SA6-SB-9.0-10.0

Collected: 11/30/2011 10:45:00

Analysis Type: RES

Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.0756	U	0.0756	MDL	0.204	PQL	mg/Kg	UJ	Q
ARSENIC	5.60		0.0817	MDL	0.409	PQL	mg/Kg	J	Q, E
BERYLLIUM	0.413		0.0163	MDL	0.102	PQL	mg/Kg	J	Q, E
CADMIUM	0.103		0.0450	MDL	0.102	PQL	mg/Kg	J	Q, E
CHROMIUM	17.5		0.123	MDL	0.409	PQL	mg/Kg	J	Q, E, A
COBALT	6.41		0.0204	MDL	0.102	PQL	mg/Kg	J	Q, E, A
COPPER	7.07		0.0817	MDL	0.409	PQL	mg/Kg	J	Q, E, E
LEAD	4.42		0.0104	MDL	0.204	PQL	mg/Kg	J	Q, E, E
NICKEL	10.1		0.102	MDL	0.409	PQL	mg/Kg	J	Q, E
SILVER	0.0145	υ	0.0145	MDL	0.102	PQL	mg/Kg	UJ	E

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

2/10/2012 11:49:10 AM

ADR version 1.4.0.111

Page 15 of 30

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	METAL:	3
------------------	--------	---

Method: 6020 <u>Matrix: SO</u>

Sample ID: SL-284-SA6-SB-9.0-10.0	Collected: 11/	30/2011 10:45:00	Analysis Type:	RES	Dilution: 2		
					Data		

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
THALLIUM	0.282		0.0307	MDL	0.102	PQL	mg/Kg	J	Q, E
VANADIUM	34.5		0.0225	MDL	0.102	PQL	mg/Kg	J	Q, E
ZINC	66.5		0.572	MDL	3.07	PQL	mg/Kg	j	E, A

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	0.635		0.0617	MDL	0.425	PQL	mg/Kg	J	Q

Sample ID: SL-284-SA6-SS-0.0-0.5 Collected: 11/30/2011 8:25:00 Analysis Type: REA4 Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	3.21		0.0532	MDL	0.106	PQL	mg/Kg	J	Q, E, E

Sample ID: SL-284-SA6-SS-0.0-0.5 Collected: 11/30/2011 8:25:00 Analysis Type: REA5 Dilution: 2

	Lab	Lab		DL		RL		Data Review	Reason	
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code	
at principle agreement with a long or of the assets of Company and the assets of the asset of the assets of the assets of the asset of the asse	rang selenyang pada daggeria nyayir ny	Mar ing a spill any free solitor.	Au., 6.X	(authorities and a single of	has a Sillia working is him as	College Commission (College College Co	Section of the Control of the Contro	ALKO ASSA MATERIA	the region of the first state of the state o	
BARIUM	121		0.113	MDL	0.425	PQL	mg/Kg	J	E, E	

Sample ID: SL-284-SA6-SS-0.0-0.5 Collected: 11/30/2011 8:25:00 Analysis Type: RES Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.116	J	0.0787	MDL	0.213	PQL	mg/Kg	υJ	Q, B
ARSENIC	4.41		0.0851	MDL	0.425	PQL	mg/Kg	J	Q, E
BERYLLIUM	0.641		0.0170	MDL	0.106	PQL	mg/Kg	J	Q, E
CADMIUM	0.272		0.0468	MDL	0.106	PQL	mg/Kg	J	Q, E
CHROMIUM	20.1		0.128	MDL	0.425	PQL	mg/Kg	J	Q, E, A
COBALT	7.10		0.0213	MDL	0.106	PQL	mg/Kg	j	Q, E, A
COPPER	13.0		0.0851	MDL	0.425	PQL	mg/Kg	j	Q, E, E
LEAD	12.9		0.0108	MDL	0.213	PQL	mg/Kg	J	Q, E, E
NICKEL	13.2		0.106	MDL	0.425	PQL	mg/Kg	J	Q, E
SILVER	0.0445	J	0.0151	MDL	0.106	PQL	mg/Kg	J	Z, Q, E
THALLIUM	0.238		0.0319	MDL	0.106	PQL	mg/Kg	J	Q, E
VANADIUM	41.2		0.0234	MDL	0.106	PQL	mg/Kg	J	Q, E
ZINC	107		0.595	MDL	3.19	PQL	mg/Kg	J	E, A

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

2/10/2012 11:49:10 AM ADR version 1.4.0.111 Page 16 of 30

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290 v1

ACAPP Name: CDM SSEL 110509

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509										
Method Category:	METALS									
Method:	6020			Mé	atrix:	so				
Sample ID: SL-285-SA6	-SB-4.0-5.0	Collec	ted: 11/29/	2011 3:25	:00 <i>A</i>	nalysis T	ype: REA	.3		Dilution: 2
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM	193.2.	0.0694	J	0.0580	MDL	0.400	PQL	mg/Kg	υJ	Q, B
Sample ID: SL-285-SA6	-SB-4.0-5.0	Collec	ted: 11/29/	2011 3:25	:00 A	nalysis T	ype: REA	.4		Dilution: 2
Analyte		Lab Result	Lab Qual	DL	DL Type	RL_	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM		0.325		0.0500	MDL	0.100	PQL	mg/Kg	ΟĴ	Q, E, E, B
Sample ID: SL-285-SA6-	-SB-4.0-5.0	Collec	ted: 11/29/	2011 3:25	:00 A	nalysis T	ype: REA	.5		Dilution: 2
Analyte	o 11 pro provincio compositivos com procija ne con decan planika i kolo nikaje.	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM		96.5		0.106	MDL	0.400	PQL	mg/Kg	J	E, E
Sample ID: SL-285-SA6-	SB-4.0-5.0	Collec	ted: 11/29/	2011 3:25	:00 A	nalysis Ty	ype: RES			Dilution: 2
Analyte		Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY		0.0740	U	0.0740	MDL	0.200	PQL	mg/Kg	UJ	Q
ARSENIC		5.84		0.0800	MDL	0.400	PQL	' mg/Kg	J	Q, E
BERYLLIUM		0.484		0.0160	MDL	0.100	PQL	mg/Kg	J	Q, E
CADMIUM		0.0791	J	0.0440	MDL	0.100	PQL	mg/Kg	J	Ž, Q, E
CHROMIUM		18.3		0.120	MDL	0.400	PQL	mg/Kg	J	Q, E, A
COBALT		6.38		0.0200	MDL	0.100	PQL	mg/Kg	J	Q, E, A
COPPER		8.08		0.0800	MDL	0.400	PQL	mg/Kg	J	Q, E, E
LEAD		5.93		0.0102	MDL	0.200	PQL	mg/Kg	J	Q, E, E
NICKEL		10.7		0.100	MDL	0.400	PQL	mg/Kg	J	Q, E
SILVER		0.0142	U	0.0142	MDL	0.100	PQL	mg/Kg	UJ	Ш
THALLIUM		0.286		0.0300	MDL	0.100	PQL	mg/Kg	J	Q, E
VANADIUM		38.8		0.0220	MDL	0.100	PQL	mg/Kg	J	Q, E
ZINC		75.6		0.560	MDL	3.00	PQL	mg/Kg	J	E, A
Sample ID: SL-285-SA6-	SB-6.0-7.0	Collec	ted: 11/29/	2011 3:35	:00 A	nalysis Ty	pe: REA	3		Dilution: 2
Analyte	TANISATA ANNA VII AA TANISATAA	Lab Result	Lab Qual	DĻ	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
SELENIUM		0.201	J	0.0604	MDL	0.417	PQL	mg/Kg	UJ	Q, B
		·			· · · · · · · · · · · · · · · · · · ·					L

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
2/10/2012 11:49:10 AM ADR version 1.4.0.111 Page 17 of 30

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

SO

Method:	6020				Matrix:	
Method Category:	METALS			The second		

Sample ID: SL-285-SA6-SB-6.0-7.0	Collect	ted: 11/29/	2011 3:35	:00 A	nalysis T	pe: REA	4		Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	0.671		0.0521	MDL	0.104	PQL	mg/Kg	J	Q, E, E

Sample ID: SL-285-SA6-SB-6.0-7.0	Collected: 11/29/2011 3:35:00 Analysis Type: REA5 D						Dilution: 2		
Analvte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
		NOTES AND DESCRIPTION	and the second second	C.: Spageom calabanda bel S	PEGINAL MEAN MARKET PROPERTY				girlander der state der st
BARIHM	673	1	0.110	MDI	0.447	POI	malka	l 1	l ee

	and a survey of the control of the c	1 4444			1	.,,,,,		- Walai	0000
BARIUM	67.3		0.110	MDL	0.417	PQL	mg/Kg	J	E, E
Sample ID: SL-285-SA6-SB-6.0-7.0	Collec	ted: 11/29/	2011 3:35	:00 A	nalysis T	pe: RES			Dilution: 2
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.0771	U	0.0771	MDL	0.208	PQL	mg/Kg	UJ	Q
ARSENIC	5.19		0.0833	MDL	0.417	PQL	mg/Kg	J	Q, E
BERYLLIUM	0.544		0.0167	MDL	0.104	PQL	mg/Kg	J	Q, E
CADMIUM	0.0558	J	0.0458	MDL	0.104	PQL	mg/Kg	J	Z, Q, E
CHROMIUM	16.8		0.125	MDL	0.417	PQL	mg/Kg	J	Q, E, A
COBALT	5.79		0.0208	MDL	0.104	PQL	mg/Kg	J	Q, E, A
COPPER FEEDING	6.31		0.0833	MDL	0.417	PQL	mg/Kg	J	Q, E, E

0.0106

0.104

0.0148

0.0313

0.0229

0.583

1.48

MDL

MDL

MDL

MDL

MDL

MDL

MDL

0.208

0.417

0.104

0.104

0.104

3.13

7.92

PQL

PQL

PQL

PQL

PQL

PQL

PQL

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

J

J

J

J

Q, E, E

Q, E

Z, Q, E

Q, E

Q, E

E, A

E, A

4.56

7.56

0.0187

0.287

31.3

81.1

173

Sample ID: \$L-285-\$A6-\$\$-0.0-0.5	Collect	ted: 11/29/	2011 1:35	:00 A	nalysis Ty	/pe: REA		Dilution			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
LEAD	91.7		0.0269	MDL	0.528	PQL	mg/Kg	J	Q, E, E		

J

Sample ID: SL-285-SA6-SS-0.0-0.5	Collec	Collected: 11/29/2011 1:35:00 A					2	Dilution: 2		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
CHROMIUM	31.5		0.127	MDL	0.422	PQL	mg/Kg	J	Q, E, A	
VANADIUM	43.1		0.0232	MDL	0.106	PQL	mg/Kg	J	Q, E	

^{*} denotes a non-reportable result

LEAD

NICKEL

SILVER

ZINC

ZINC

THALLIUM

VANADIUM

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
2/10/2012 11:49:10 AM ADR version 1.4.0.111 Page 18 of 30

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO

Sample ID: Sl285-SA6-SS-0.0-0.5	Collect	Collected: 11/29/2011 1:35:00 Analysis Type: REA						3 Dilution: 2			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Tvpe	Units	Data Review Qual	Reason Code		
	The section of the forest contacts and a till on	all design was properly through	55 (Sec. of Car) 25 (45 (20) 10 (10) 10 (10)	C 1985 NO. 1073	CARROLLESS AND ACTIVITIES	\$\$\case\$\can	15. 107 (83/05/07/29/10) 03/0/	******************	SCHOOL STATE OF STATE		
SELENIUM	0.241	J	0.0612	MDL	0.422	PQL	mg/Kg	บา	Q, B		

Sample ID: SL-285-SA6-SS-0.0-0.5 Collected: 11/29/2011 1:35:00 Analysis Type: REA4 Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MOLYBDENUM	1.95		0.0528	MDL	0.106	PQL	mg/Kg	J	Q, E, E

Sample ID: SL-285-SA6-SS-0.0-0.5 Collected: 11/29/2011 1:35:00 Analysis Type: REA5 Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BARIUM	90.9		0.112	MDL	0.422	PQL	mg/Kg	J	E, E

Sample ID: SL-285-SA6-SS-0.0-0.5 Collected: 11/29/2011 1:35:00 Analysis Type: RES Dilution: 2

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTIMONY	0.101	J	0.0781	MDL	0.211	PQL	mg/Kg	บม	Q, B
ARSENIC	4.51		0.0844	MDL	0.422	PQL	mg/Kg	J	Q, E
BERYLLIUM	0.690		0.0169	MDL	0.106	PQL	mg/Kg	J	Q, E
CADMIUM	0.572		0.0464	MDL	0.106	PQL	mg/Kg	J	Q, E
COBALT	6.63		0.0211	MDL	0.106	PQL	mg/Kg	J	Q, E, A
COPPER	42.3		0.0844	MDL	0.422	PQL	mg/Kg	J	Q, E, E
NICKEL	16.2		0.106	MDL	0.422	PQL	mg/Kg	J	Q, E
SILVER	0.164		0.0150	MDL	0.106	PQL	mg/Kg	J	Q, E
THALLIUM	0.275		0.0317	MDL	0.106	PQL	mg/Kg	J	Q, E

Method Category: METALS

Method: 7199 Matrix: SO

Sample ID: SL-282-SA6-SB-2.5-3.5 Collected: 11/30/2011 3:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.34	J	0.22	MDL	1.1	PQL	mg/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

2/10/2012 11:49:10 AM ADR version 1.4.0.111 Page 19 of 30

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE290 Laboratory: LL EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509 Method Category: **METALS** Method: 7199 Matrix: SO Sample ID: SL-282-SA6-SS-0.0-0.5 Collected: 11/30/2011 12:35:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRL Review Reason Analyte Result DL RLQual Units Type Type Qual Code HEXAVALENT CHROMIUM 0.36 0.20 MDL Z 1.0 PQL mg/Kg J Sample ID: SL-283-SA6-SB-14.0-15.0 Collected: 11/30/2011 1:20:00 Analysis Type: RES Dilution: 1 Data Lab DLLab RL Review Reason Analyte Result Qual DL RL Туре Type Units Qual Code HEXAVALENT CHROMIUM 0.52 0.22 MDL 1.1 **PQL** mg/Kg Z Sample ID: SL-283-SA6-SB-4.0-5.0 Collected: 11/30/2011 1:10:00 Analysis Type: RES Dilution: 1 Data DLLab Lab RL Review Reason Analyte Result Qual DL Туре RL. Units Qual Type Code HEXAVALENT CHROMIUM mg/Kg 0.65 0.21 MDL 1.1 PQL z Sample ID: SL-283-SA6-SB-9.0-10.0 Collected: 11/30/2011 1:15:00 Analysis Type: RES Dilution: 1 Data DL Lab Lab RLReview Reason Analyte Result Qual DLType RLType Units Qual Code HEXAVALENT CHROMIUM 0.33 z 0.20 MDL 1.0 **PQL** mg/Kg Sample ID: SL-283-SA6-SS-0.0-0.5 والمحالج والمرازر Dilution: 1 Collected: 11/30/2011 10:00:00 Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.32	J	0.21	MDL	1.0	PQL	mg/Kg	J	Z

Sample ID: SL-284-SA6-SB-14.0-15.0	Collected: 11/30/2011 10:50:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
HEXAVALENT CHROMIUM	0.37	J	0.23	MDL	1.1	PQL	mg/Kg	J	Z	

Sample ID: SL-284-SA6-SB-15.5-16.5	Collec	ted: 11/30/	/2011 10:5	5:00 A	nalysis T	ype: RES	•		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.32	J	0.21	MDL	1.1	PQL	mg/Kg	J	Z

Sample ID: SL-284-SA6-SB-4.0-5.0	Collect	ted: 11/30/2	Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.24	J	0.22	MDL	1,1	PQL	mg/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

2/10/2012 11:49:11 AM ADR version 1.4.0.111 Page 20 of 30

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1

eQAPP Name: CDM_SSFL_110509

Method: 7199			Ma	atrix:	so				
Sample ID: SL-284-SA6-SS-0.0-0.5	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.33	J	0.22	MDL	1.1	PQL	mg/Kg	J	Z
Sample ID: SL-285-SA6-SB-6.0-7.0	Collec	ted: 11/29/	2011 3:35	:00 A	nalysis T	ype: RES	1	I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.37	J	0.22	MDL	1.1	PQL	mg/Kg	J	Z
Sample ID: SL-285-SA6-SS-0.0-0.5	Collec	ted: 11/29/	2011 1:35	:00 A	nalysis T	ype: RES		ľ	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEXAVALENT CHROMIUM	0.58	J	0.21	MDL	1.1	PQL	mg/Kg	J	Z
Method Category: METALS		ing special control of the control o	erus insire erimi.	a	aita adalkista	erana kalan Kerelin K			
Method: 7471A			Ma	trix:	so				

Sample ID: SL-282-SA6-SB-2.5-3.5	Collect	ted: 11/30/	2011,3:45:	:00 A	nalysis Ty	/pe: RES			Dilution: 1
	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL DL	_ Type	RL	Туре	Units	Qual	Code
MERCURY	0.0122	J	0.0078	MDL	0.111	PQL	mg/Kg	J	Z

Sample ID: SL-284-SA6-SB-14.0-15.0	Collected: 11/30/2011 10:50:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
MERCURY	0.0117	J	0.0075	MDL	0.107	PQL	ma/Ka	J	Z	

Sample ID: SL-284-SA6-SS-0.0-0.5	Collect	ted: 11/30/	2011 8:25:	:00 #	Inalysis T	/pe: RES			Dilution: 10
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
		TO SECTION OF THE RESERVE OF THE RES			tropick Continues	ristration (and an arrange area as			**************************************
MERCURY	2.87		0.0728	MDL	1.04	PQL	mg/Kg	J	FD

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
2/10/2012 11:49:11 AM ADR version 1.4.0.111 Page 21 of 30

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1						eQAF	P Name	e: CDM_S	SFL_110509
Method Category: SVOA									
Method: 1625C			Ma	atrix:	AQ				
Sample ID: EB-SA6-SB-113011	Collec	ted: 11/30/	2011 4:00	:00 A	nalysis T	ype: RE\$	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
N-NITROSODIMETHYLAMINE	2.65		0.479	MDL	0.958	PQL	ng/L	J	L, S
Sample ID: TB-113011	Collec	ted: 11/30/	[⊥] 2011 8:00	:00 A	nalvsis T	pe: REA	L	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
N-NITROSODIMETHYLAMINE	0.482	U	0.482	MDL	0.964	PQL	ng/L	UJ	L
Method Category: SVOA	1 71 1 47 1 49	11-4 (DB 1082			si kiringan ka	r og certige	.v.s. Winn vill hand die		id on the same as
Method: 8015M			Ma	ntrix:	so				
Sample ID: SL-282-SA6-SB-2.5-3.5	Colleg	ted: 11/30/	2011 2:45	·00 A	nalvoje Ti	/pe: REA	2		Dilution: 4
Gample ID. 31-202-3A0-3B-2.3-3.3	Conec	111301	2011 3:43	.00 A	lialysis i	/pe: KEA		Data	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
EFH (C21-C30)	1.3	J	0.57	MDL	1.7	PQL	mg/Kg	J	Z
Sample ID: SL-283-SA6-SB-14.0-15.0	Collec	ted: 11/30/	2011 1:20	:00 A	nalysis T	/pe: REA	2		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C15-C20)	0.56	J	0.47	MDL	1.4	PQL	mg/Kg	J	Z
Sample ID: SL-283-SA6-SB-18.0-19.0	Collec	ted: 11/30/2	2011 1:25	:00 A	nalysis Ty	pe: REA	2		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C21-C30)	1.3	J	0.57	MDL	1.7	PQL	mg/Kg	J	Z
Sample ID: SL-283-SA6-SB-18.0-19.0	Collect	ted: 11/30/2	2011 1:25:	:00 A	nalysis Ty	pe: RES	· · · · · · · · · · · · · · · · · · ·		Dilution: 24.61
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
GASOLINE RANGE ORGANICS (C5-C12)	0.3	J	0.2	MDL	1.1	PQL	mg/Kg	J	Z
Sample ID: SL-283-SA6-SS-0.0-0.5	Collect	ted: 11/30/2	2011 10:0	0:00 A	nalysis Ty	pe: RES		т	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
DIETHYLENE GLYCOL	5.3	U	5.3	MDL	11	PQL	mg/Kg	UJ	Q

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 2/10/2012 11:49:11 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method:	8015M			Ma	atrix: S	3 0				
Sample ID: SL-284	-SA6-SB-14.0-15.0	Collec	ted: 11/30/	2011 10:5	0:00 Ar	nalysis T	ype: REA	2	D	ilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reasor Code
EFH (C30-C40)		0.83	J	0.54	MDL	1.6	PQL	mg/Kg	J	Z

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C21-C30)	0.91	J	0.49	MDL	1.5	PQL	mg/Kg	J	Z

Sample ID: SL-284-SA6-SB-9.0-10.0	Collect	ted: 11/30/	2011 10:4	5:00	Analysis Ty	/pe: REA			Dilution: 22.32
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
GASOLINE RANGE ORGANICS (C5-C12)	0.6	J	0.2	MDL	0.9	PQL	mg/Kg	J	Z

Sample ID: SL-284-SA6-SS-0.0-0.5	Collec	ted: 11/30/	2011 8:25	:00 A	nalysis T	ype: REA			Dilution: 50
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
EFH (C21-C30)	180		22	MDL	66	PQL	mg/Kg	J	FD
EFH (C30-C40)	800		22	MDL	66	PQL	mg/Kg	J	FD

Sample ID: SL-285-SA6-SB-4.0-5.0	Collect	ted: 11/29/	2011 3:25	:00	Analysis T	•	2		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type		RL Type	Units	Data Review Qual	Reason Code
EFH (C21-C30)	0.84	J	0.52	MDL	1.6	PQL	mg/Kg	J	Z

Method Category:	SVOA	
Method:	8081A	Matrix: SO

Sample ID: SL-282-SA6-SS-0.0-0.5	Collec	Collected: 11/30/2011 12:35:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
4,4'-DDE	0.27	J	0.070	MDL	0.36	PQL	ug/Kg	J	Z			
ENDOSULFAN II	0.12	J	0.070	MDL	0.36	PQL	ug/Kg	J	Z			

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

2/10/2012 11:49:11 AM

ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 8081A Matrix: SO

Sample ID: SL-283-SA6-SS-0.0-0.5 Analysis Type: RES-BASE/NEUTRAL Collected: 11/30/2011 10:00:00 Dilution: 1 Lab DLLab RLReview Reason Analyte Result DL RLQual Type Units Qual Type Code 4,4'-DDD 0.070 U 0.070 MDL 0.36 **PQL** ug/Kg R Q 4,4'-DDE 0.070 U 0.070 MDL 0.36 PQL ug/Kg UJ S 4,4'-DDT 0.070 0.070 MDL 0.36 PQL R ug/Kg O ALDRIN U 0.070 0.070 MDL, 0.18 **PQL** R ug/Kg Q ALPHA-BHC 0.036 U 0.036 MDL 0.18 PQL ug/Kg R Q BETA-BHC 0.064 U 0.064 MDL 0.18 **PQL** ug/Kg R Q Chlordane 0.85 U 0.85 MDL UJ 3.6 **PQL** ug/Kg s DELTA-BHC 0.038 U 0.038 MDL 0.18 **PQL** ug/Kg R Q DIELDRIN 0.070 U 0.070 MDL 0.36 **PQL** R Q ug/Kg ENDOSULFAN I PQL 0.047 U 0.047 MDL 0.18 ug/Kg R Q ENDOSULFAN II U 0.070 0.070 MDL 0.36 **PQL** R ug/Kg Q ENDOSULFAN SULFATE 0.070 Ü 0.070 MDL 0.36 **PQL** R Q ug/Kg **ENDRIN** 0.070 U 0.070 MDL 0.36 PQL ug/Kg UJ s ENDRIN ALDEHYDE 0.22 J 0.070 MDL 0.36 PQL ug/Kg J Z, Q, S ENDRIN KETONE U 0.070 0.070 MDL 0.36 **PQL** ug/Kg R Q gamma-BHC (Lindane) 0.036 U 0.036 MDL 0.18 **PQL** UJ ug/Kg S HEPTACHLOR ug/Kg 0.064 U 0.064 MDL. 0.18 PQL R Q HEPTACHLOR EPOXIDE 0.036 0.036 MDL 0.18 PQL UJ Q, S ug/Kg METHOXYCHLOR 0.36 U 0.36 MDL 1.8 PQL ug/Kg IJ Q, S MIREX 0.070 υ 0.070 MDL 0.36 **PQL** ug/Kg UJ s

Sample ID: SL-284-SA6-SS-0.0-0.5 Collected: 11/30/2011 8:25:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

2.3

MDL

7.0

PQL

ug/Kg

UJ

S

U

2.3

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
4,4'-DDD	0.072	U	0.072	MDL	0.37	PQL	ug/Kg	UJ	S
4,4'-DDE	0.11	J	0.072	MDL	0.37	PQL	ug/Kg	J	Z, S, FD
4,4'-DDT	0.50	U	0.50	MDL	0.50	PQL	ug/Kg	IJ	S, FD
ALDRIN	0.072	υ	0.072	MDL	0.18	PQL	ug/Kg	υJ	s
ALPHA-BHC	0.037	U	0.037	MDL	0.18	PQL	ug/Kg	UJ	s
BETA-BHC	0.066	U	0.066	MDL	0.18	PQL	ug/Kg	UJ	s
Chlordane	0.88	U	0.88	MDL	3.7	PQL	ug/Kg	UJ	s
DELTA-BHC	0.039	U	0.039	MDL.	0.18	PQL	ug/Kg	บม	S
DIELDRIN	0.11	J	0.072	MDL	0.37	PQL	ug/Kg	J	Z, S, FD

^{*} denotes a non-reportable result

TOXAPHENE

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

2/10/2012 11:49:11 AM ADR version 1.4.0.111 Page 24 of 30

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 8081A Matrix: SO

Sample ID: SL-284-SA6-SS-0.0-0.5	Collected: 11/30/2011 8:25:00	Analysis Type: RES-BASE/NEUTRAL	Dilution: 1
----------------------------------	-------------------------------	---------------------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ENDOSULFAN I	0.048	υ	0.048	MDL	0.18	PQL	ug/Kg	UJ	\$
ENDOSULFAN II	0.11	U	0.11	MDL	0.37	PQL	ug/Kg	UJ	\$, FD
ENDOSULFAN SULFATE	0.072	U	0.072	MDL	0.37	PQL	ug/Kg	UJ	s
ENDRIN	0.072	U	0.072	MDL	0.37	PQL	ug/Kg	UJ	s
ENDRIN ALDEHYDE	0.32	U	0.32	MDL	0.37	PQL	ug/Kg	UJ	S, FD
ENDRIN KETONE	0.072	U	0.072	MDL	0.37	PQL	ug/Kg	UJ	S
gamma-BHC (Lindane)	0.037	U	0.037	MDL	0.18	PQL	ug/Kg	LU	s
HEPTACHLOR	0.066	U	0.066	MDL	0.18	PQL	ug/Kg	UJ	s
HEPTACHLOR EPOXIDE	0.037	υ	0.037	MDL	0.18	PQL	ug/Kg	IJ	s
METHOXYCHLOR	0.37	U	0.37	MDL	1.8	PQL	ug/Kg	IJ	S
MIREX	0.072	U	0.072	MDL	0.37	PQL	ug/Kg	UJ	S
TOXAPHENE	2.4	υ	2.4	MDL	7.2	PQL	ug/Kg	UJ	S

Sample ID: SL-285-SA6-SS-0.0-0.5 Analysis Type: RES-BASE/NEUTRAL Collected: 11/29/2011 1:35:00

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
HEPTACHLOR EPOXIDE	0.14	J	0.036	MDL	0.18	PQL	ug/Kg	J	Z

Method Category: SVOA

Method: 8082 Matrix: SO

Sample ID: SL-284-SA6-SS-0.0-0.5	Collected: 11/30/2011 8:25:00	Analysis Type: RES-BASE/NEUTRAL	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1254	0.36	U	0.36	MDL	1.9	PQL	ug/Kg	UJ	FD
AROCLOR 1260	5.9		0.43	MDL	1.9	PQL	ug/Kg	J	FD
Aroclor 5460	17		1.1	MDL	3.6	PQL	ug/Kg	J	FD

Sample ID: SL-285-SA6-SS-0.0-0.5 Collected: 11/29/2011 1:35:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
AROCLOR 1260	1.6	J	0.42	MDL	1.8	PQL	ug/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 2/10/2012 11:49:11 AM ADR version 1.4.0.111

Page 25 of 30

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 8151A

Matrix: SO

Sample ID: SL-282-SA6-SS-0.0-0.5 Collected: 11/30/2011 12:35:00

Sample ID: SL-282-SA6-SS-0.0-0.5	Collec	ted: 11/30/	2011 12:3	5:00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4,5-TP (Silvex)	0.15	J	0.079	MDL	0.18	PQL	ug/Kg	J	Z
MCPA	100	J	81	MDL	260	PQL	ug/Kg	J	Z
MCPP	110	J	79	MDL	260	PQL	ug/Kg	J	z

Sample ID: SL-283-SA6-SS-0.0-0.5 Collected: 11/30/2011 10:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
MCPA	110	J	81	MDL	270	PQL	ug/Kg	J	Z

Sample ID: SL-284-SA6-SS-0.0-0.5 Collected: 11/30/2011 8:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,4,5-TP (Silvex)	0.11	J	0.082	MDL	0.19	PQL	ug/Kg	J	Z
MCPA	340	U	340	MDL	340	PQL	ug/Kg	υJ	FD
MCPP	140	J	82	MDL	270	PQL	ug/Kg	J	Z, FD

Method Category: SVOA Method: 8270C Matrix: SO

Sample ID: SL-282-SA6-SS-0.0-0.5 Collected: 11/30/2011 12:35:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			J.1.4.01.1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(A)ANTHRACENE	92	J	18	MDL	180	PQL	ug/Kg	J	Z
BENZO(A)PYRENE	84	j	18	MDL	180	PQL	ug/Kg	J	Z
BENZO(B)FLUORANTHENE	110	J	18	MDL	180	PQL	ug/Kg	J	Z
BENZO(G,H,I)PERYLENE	63	J	18	MDL	180	PQL	ug/Kg	J	Z
BENZO(K)FLUORANTHENE	51	J	18	MDL	180	PQL	ug/Kg	J	Z
BIS(2-ETHYLHEXYL)PHTHALATE	140	J	18	MDL	350	PQL	ug/Kg	J	Z
CHRYSENE	84	J	18	MDL	180	PQL	ug/Kg	J	Z
DIBENZO(A,H)ANTHRACENE	24	J	18	MDL	180	PQL	ug/Kg	J	Z
FLUORANTHENE	130	J	18	MDL	180	PQL	ug/Kg	J	Z
INDENO(1,2,3-CD)PYRENE	53	J	18	MDL	180	PQL	ug/Kg	J	Z
PYRENE	140	J	18	MDL	180	PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 2/10/2012 11:49:11 AM Page 26 of 30

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

wetnoa:	8270C	Matrix:	SO	
Mathadi		110 - 4 william	00	
Method Catego	ory: SVOA			

Sample ID: SL-283-SA6-SB-4.0-5.0	Collec	tea: 11/30/.	2011 1:10	:00 🗡	analysis T	ype: RES	BASE/NE	UIRAL	Dilution: 1
	Lab	Lab		DL		_RL		Data Review	Reason
Analyte	Result	Qual	DL	<i>Туре</i>	RL	Type	Units	Qual	Code
BIS(2-ETHYLHEXYL)PHTHALATE	20	J	18	MDL	360	PQL	ug/Kg	J	Z

Sample ID: SL-283-SA6-SS-0.0-0.5	Collec	Collected: 11/30/2011 10:00:00 Analysis Type: RES-ACID								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
4,6-DINITRO-2-METHYLPHENOL	1800	U	1800	MDL	5300	PQL	ug/Kg	R	Q	
4-NITROPHENOL	1800	U	1800	MDL	5300	PQL	ug/Kg	R	Q	
ANILINE	1800	U	1800	MDL	5300	PQL	ug/Kg	R	Q	
BENZIDINE	12000	U	12000	MDL	35000	PQL	ug/Kg	R	Q	
BENZOIC ACID	1800	υ	1800	MDL	5300	PQL	ug/Kg	R	Q	
BENZYL ALCOHOL	1800	U	1800	MDL	5300	PQL	ug/Kg	R	Q	

Sample ID: SL-284-SA6-SB-14.0-15.0	Collect	ted: 11/30/	2011 10:5	0:00 A	Inalysis T	/pe: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	19	J	19	MDL	370	PQL	ug/Kg	J	Z

Sample ID: SL-284-SA6-SS-0.0-0.5	Collec	ted: 11/30/	2011 8:25	:00 A	nalysis T	ype: RES	-BASE/NE	UTRAL I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
ANTHRACENE	91	U	91	MDL	910	PQL	ug/Kg	UJ	FD
BENZO(A)PYRENE	91	U	91	MDL	910	PQL	ug/Kg	υJ	FD
BENZO(B)FLUORANTHENE	91	U	91	MDL	910	PQL	ug/Kg	υJ	FD
BENZO(G,H,I)PERYLENE	91	U	91	MDL	910	PQL	ug/Kg	ΟĴ	FD
BIS(2-ETHYLHEXYL)PHTHALATE	91	U	91	MDL	1800	PQL	ug/Kg	ΟΊ	FD
CHRYSENE	91	U	91	MDL,	910	PQL	ug/Kg	ΟĴ	FD
INDENO(1,2,3-CD)PYRENE	91	U	91	MDL	910	PQL	ug/Kg	UJ	FD

Sample ID: SL-285-SA6-SS-0.0-0.5	Collect	ed: 11/29/2	2011 1:35	:00 A	nalysis Ty	pe: RES	-BASE/NE	UTRAL	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	21	J	18	MDL	360	PQL	ug/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

			ite				¥		

Method: 8270C SIM

Matrix: SO

Sample ID: SL-283-SA6-SB-18.0-19.0 Collected: 11/30/2011 1:25:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Di-n-butylphthalate	11	J	6.6	MDL	20	PQL	ug/Kg	J	Z

Sample ID: SL-284-SA6-SB-15.5-16.5 Collected: 11/30/2011 10:55:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BENZO(B)FLUORANTHENE	1.3	J	0.75	MDL	1.9	PQL	ug/Kg	J	·Z
BENZO(K)FLUORANTHENE	1.0	J	0.75	MDL	1.9	PQL	ug/Kg	J	Z

Sample ID: SL-285-SA6-SB-6.0-7.0 Collected: 11/29/2011 3:35:00 Analysis Type: RES-BASE/NEUTRAL Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
BIS(2-ETHYLHEXYL)PHTHALATE	8.8	J	6.4	MDL	19	PQL	ug/Kg	J	Z

Method Category: SVOA

Method: 8315A

Matrix: SO

Sample ID: SL-285-SA6-SB-6.0-7.0 Collected: 11/29/2011 3:35:00 Analysis Type: RES Dilution: 1

					• •	•				
v. (1.7) √8								Data	_	}
	Lab	Lab		DL		RL		Review	Reason	١
Analyte	Result	Qual	DL	Туре	RL	Type	Units	Qual	Code	
FORMALDEHYDE	810	J	630	MDL	1600	PQL	ug/Kg	J	z	1

Method Category: VOA

Method: 8015B

Matrix: SO

 Sample ID: SL-284-SA6-SS-0.0-0.5
 Collected: 11/30/2011 8:25:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
METHANOL	130	J	110	MDL	550	PQL	ug/Kg	J	Z

2/10/2012 11:49:11 AM ADR version 1.4.0.111 Page 28 of 30

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DE290

TOLUENE

Laboratory: LL

В

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method Category: VOA Method: 8260B Matrix: SO

0.09

Sample ID: SL-285-SA6-SB-4.0-5.0 Collected: 11/29/2011 3:25:00 Analysis Type: RES Dilution: 0.93 Data Lab DL Lab RL Review Reason Analyte Result DLRL Qual Туре Units Qual Туре Code CHLOROFORM 0.19 0.12 MDL 3.9 PQL U В ug/Kg METHYLENE CHLORIDE 1.5 J 0.23 MDL 3.9 **PQL** U В ug/Kg

Sample ID: SL-285-SA6-SB-6.0-7.0 Collected: 11/29/2011 3:35:00 Analysis Type: RES Dilution: 1.06

0.08

MDL.

PQL

ug/Kg

3.9

U

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
CHLOROFORM	0.25	J	0.13	MDL	4.5	PQL	ug/Kg	U	В
METHYLENE CHLORIDE	1.7	J	0.27	MDL	4.5	PQL	ug/Kg	υ	В
TOLUENE	0.17	J	0.09	MDL	4.5	PQL	ug/Kg	U	В

Lab Reporting Batch ID: DE290

EDD Filename: DE290_v1

Laboratory: LL eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
E	Laboratory Duplicate Precision
E	Matrix Spike Precision
FD	Field Duplicate Precision
L	Laboratory Control Spike Lower Estimation
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
S	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Upper Estimation
Z	Reporting Limit Trace Value

Enclosure I

Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DE290

Method Blank Outlier Report

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method: 6010 Matrix: SO	B			POSOPOLOPIA DELECTRA
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P33908BB221208	12/8/2011 12:08:00 PM	CALCIUM IRON MAGNESIUM PHOSPHORUS TIN	4.62 mg/Kg 4.80 mg/Kg 4.81 mg/Kg 0.983 mg/Kg 1.52 mg/Kg	SL-282-SA6-SB-2.5-3.5 SL-283-SA6-SS-0.0-0.5 SL-283-SA6-SB-14.0-15.0 SL-283-SA6-SB-4.0-5.0 SL-283-SA6-SB-4.0-5.0 SL-283-SA6-SB-9.0-10.0 SL-283-SA6-SS-0.0-0.5 SL-284-SA6-SB-14.0-15.0 SL-284-SA6-SB-15.5-16.5 SL-284-SA6-SB-4.0-5.0 SL-284-SA6-SB-0-0-0.5 SL-284-SA6-SB-0-0-0.5 SL-285-SA6-SB-4.0-5.0 SL-285-SA6-SB-4.0-5.0
P34108AB220345	12/9/2011 3:45:00 AM	CALCIUM IRON MAGNESIUM PHOSPHORUS STRONTIUM TIN	8.12 mg/Kg 3.17 mg/Kg 4.76 mg/Kg 0.960 mg/Kg 0.0287 mg/Kg 1.33 mg/Kg	SL-285-SA6-SB-6.0-7.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-282-SA6-SB-2.5-3.5(RES)	TIN	3.51 mg/Kg	3.51U mg/Kg
SL-282-SA6-SS-0.0-0.5(RES)	TIN	2.65 mg/Kg	2.65U mg/Kg
SL-283-SA6-SB-14.0-15.0(RES)	TIN	2.70 mg/Kg	2.70U mg/Kg
SL-283-SA6-SB-18.0-19.0(RES)	TIN	2.82 mg/Kg	2.82U mg/Kg
SL-283-SA6-SB-4.0-5.0(RES)	TIN	2.61 mg/Kg	2.61U mg/Kg
SL-283-SA6-SB-9.0-10.0(RES)	TIN	2.62 mg/Kg	2.62U mg/Kg
SL-283-SA6-SS-0.0-0.5(RES)	TIN	2.71 mg/Kg	2.71U mg/Kg
SL-284-SA6-SB-14.0-15.0(RES)	TIN	2.94 mg/Kg	2.94U mg/Kg
SL-284-SA6-SB-15.5-16.5(RES)	TIN	2.73 mg/Kg	2.73U mg/Kg
SL-284-SA6-SB-4.0-5.0(RES)	TIN	2.60 mg/Kg	2.60U mg/Kg
SL-284-SA6-SB-9.0-10.0(RES)	TIN	2.58 mg/Kg	2,58U mg/Kg
SL-285-SA6-SB-4.0-5.0(RES)	TIN	2,60 mg/Kg	2.60U mg/Kg
SL-285-SA6-SB-6.0-7.0(REA3)	TIN	2.71 mg/Kg	2.71U mg/Kg
SL-285-SA6-SS-0.0-0.5(RES)	TIN	2.95 mg/Kg	2.95U mg/Kg

Method Blank Outlier Report

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
P33926BB220518B	12/12/2011 5:18:00 AM	SELENIUM	0.0675 mg/Kg	SL-282-SA6-SB-2.5-3.5 SL-282-SA6-SS-0.0-0.5 SL-283-SA6-SB-14.0-15.0 SL-283-SA6-SB-18.0-19.0 SL-283-SA6-SB-4.0-5.0 SL-283-SA6-SB-9.0-10.0 SL-283-SA6-SS-0.0-0.5 SL-284-SA6-SB-14.0-15.0 SL-284-SA6-SB-15.5-16.5 SL-284-SA6-SB-0.0-0.0 SL-284-SA6-SB-0.0-0.0 SL-284-SA6-SB-0.0-0.5 SL-284-SA6-SB-9.0-10.0 SL-284-SA6-SB-4.0-5.0 SL-285-SA6-SB-4.0-5.0 SL-285-SA6-SB-4.0-5.0 SL-285-SA6-SB-0.0-0.5
P33926BB221247A	12/8/2011 12:47:00 PM	LEAD ZINC	0.0126 mg/Kg 0.838 mg/Kg	SL-282-SA6-SB-2.5-3.5 SL-282-SA6-SB-0.0-0.5 SL-283-SA6-SB-14.0-15.0 SL-283-SA6-SB-4.0-5.0 SL-283-SA6-SB-9.0-10.0 SL-283-SA6-SB-9.0-10.0 SL-283-SA6-SB-14.0-15.0 SL-284-SA6-SB-14.0-15.0 SL-284-SA6-SB-14.0-15.0 SL-284-SA6-SB-4.0-5.0 SL-284-SA6-SB-4.0-5.0 SL-284-SA6-SB-9.0-10.0 SL-284-SA6-SB-4.0-5.0 SL-285-SA6-SB-4.0-5.0 SL-285-SA6-SB-4.0-5.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-282-SA6-SB-2.5-3.5(REA3)	SELENIUM	0.186 mg/Kg	0.186U mg/Kg
SL-282-SA6-SS-0.0-0.5(REA3)	SELENIUM	0.115 mg/Kg	0.115U mg/Kg
SL-283-SA6-SB-18.0-19.0(REA3)	SELENIUM	0.0660 mg/Kg	0.0660U mg/Kg
SL-283-SA6-SB-4.0-5.0(REA3)	SELENIUM	0.138 mg/Kg	0.138U mg/Kg
SL-283-SA6-SB-9.0-10.0(REA3)	SELENIUM	0.0701 mg/Kg	0.0701U mg/Kg
SL-283-SA6-SS-0.0-0.5(REA3)	SELENIUM	0.273 mg/Kg	0.273U mg/Kg
SL-284-SA6-SB-14.0-15.0(REA3)	SELENIUM	0.0673 mg/Kg	0,0673U mg/Kg
SL-284-SA6-SB-15.5-16.5(REA3)	SELENIUM	0.0750 mg/Kg	0.0750U mg/Kg
SL-284-SA6-SB-4.0-5.0(REA3)	SELENIUM	0.119 mg/Kg	0.119U mg/Kg
SL-285-SA6-SB-4.0-5.0(REA3)	SELENIUM	0.0694 mg/Kg	0.0694U mg/Kg
SL-285-SA6-SB-6.0-7.0(REA3)	SELENIUM	0.201 mg/Kg	0.201U mg/Kg
SL-285-SA6-SS-0.0-0.5(REA3)	SELENIUM	0.241 mg/Kg	0.241U mg/Kg

2/10/2012 9:40:29 AM ADR version 1.4.0.111 Page 2 of 3

Method Blank Outlier Report

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method: 8260B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
VBLKB22B211148A	12/6/2011 11:48:00 AM	1,2,4-TRIMETHYLBENZENE 1,3,5-TRIMETHYLBENZENE CHLOROFORM ETHYLBENZENE m,p-Xylene METHYLENE CHLORIDE N-PROPYLBENZENE O-XYLENE SEC-BUTYLBENZENE TOLUENE	1.9 ug/Kg 0.81 ug/Kg 0.26 ug/Kg 0.27 ug/Kg 1.1 ug/Kg 0.40 ug/Kg 0.28 ug/Kg 0.18 ug/Kg 0.06 ug/Kg 0.08 ug/Kg	SL-285-SA6-SB-4.0-5.0 SL-285-SA6-SB-6.0-7.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-285-SA6-SB-4.0-5.0(RES)	CHLOROFORM	0.19 ug/Kg	3.9U ug/Kg
SL-285-SA6-SB-4.0-5.0(RES)	METHYLENE CHLORIDE	1.5 ug/Kg	3.9U ug/Kg
SL-285-SA6-SB-4.0-5.0(RES)	TOLUENE	0.09 ug/Kg	3.9U ug/Kg
SL-285-SA6-SB-6.0-7.0(RES)	CHLOROFORM	0.25 ug/Kg	4.5U ug/Kg
SL-285-SA6-SB-6.0-7.0(RES)	METHYLENE CHLORIDE	1.7 ug/Kg	4.5U ug/Kg
SL-285-SA6-SB-6.0-7.0(RES)	TOLUENE	0.17 ug/Kg	4.5U ug/Kg

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method: 8081A							
Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-283-SA6-SS-0.0-0.5MSD SL-283-SA6-SS-0.0-0.5)	4,4'-DDE ENDRIN ENDRIN ALDEHYDE gamma-BHC (Lindane)	-	-	18.00-161.00 11.00-149.00 10.00-148.00 10.00-140.00	69 (50.00) 63 (50.00) 38 (35.00) 72 (50.00)	4,4'-DDE ENDRIN ENDRIN ALDEHYDE gamma-BHC (Lindane)	J (all detects)
SL-283-SA6-SS-0.0-0.5MS SL-283-SA6-SS-0.0-0.5MSD SL-283-SA6-SS-0.0-0.5)	4.4'-DDD 4.4'-DDT ALDRIN ALPHA-BHC BETA-BHC DELTA-BHC DIELDRIN ENDOSULFAN I ENDOSULFAN SULFATE ENDRIN KETONE HEPTACHLOR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16.00-163.00 10.00-176.00 16.00-126.00 10.00-129.00 14.00-147.00 23.00-140.00 19.00-154.00 28.00-154.00 22.00-160.00 22.00-165.00 13.00-126.00	200 (50.00) 200 (50.00) 200 (50.00) 200 (50.00) 200 (50.00) 200 (50.00)	4,4'-DDD 4,4'-DDT ALDRIN ALPHA-BHC BETA-BHC DELTA-BHC DIELDRIN ENDOSULFAN I ENDOSULFAN SULFATE ENDRIN KETONE HEPTACHLOR	J(all detects) R(all non-detects)
L-283-SA6-SS-0.0-0.5MS L-283-SA6-SS-0.0-0.5MSD SL-283-SA6-SS-0.0-0.5)	HEPTACHLOR EPOXIDE METHOXYCHLOR	29	12 21	13.00-157.00 32.00-147.00	104 (50.00)	HEPTACHLOR EPOXIDE METHOXYCHLOR	J(all detects) UJ(all non-detects
Method: 8015M Matrix: SO	m _{ak} a mananan kanan ma			arra a inga arang	Transport States	हरे हैं है है है है है है कि	ing the second s
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
L-283-SA6-SS-0,0-0.5MS L-283-SA6-SS-0.0-0.5MSD SL-283-SA6-SS-0.0-0.5)	EFH (C12-C14) EFH (C15-C20) EFH (C21-C30) EFH (C30-C40) EFH (C8-C11)	0 0 147 -4209 0	0 0 -288 -3930 0	49.00-123.00 49.00-123.00 49.00-123.00 49.00-123.00 49.00-123.00	-	EFH (C12-C14) EFH (C15-C20) EFH (C21-C30) EFH (C30-C40) EFH (C8-C11)	No Qual, Diluted Out
Method: 8151A Matrix: SO				n y yn w	The second	and was an experience and some some some continues of the content	ge ingerglegnigererelfgliften geme ge e
QC Sample ID							

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-283-SA6-SS-0.0-0.5MSD (SL-283-SA6-SS-0.0-0.5)	MCPP	_ 	-	10.00-184.00	64 (50.00)	МСРР	J(all detects)

Method: 8015M Matrix: SO		11.00	Note that the	,			
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-283-SA6-SS-0.0-0.5MS SL-283-SA6-SS-0.0-0.5MSD	DIETHYLENE GLYCOL	24	23	59.00-109.00	-	DIETHYLENE GLYCOL	J(all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method: 8270C Matrix: SO	and the state of t						
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-283-SA6-SS-0.0-0.5MS SL-283-SA6-SS-0.0-0.5MSD (SL-283-SA6-SS-0.0-0.5)	PENTACHLOROPHENOL	155	154	28.00-127.00	<u>.</u>	PENTACHLOROPHENOL	J(all detects)
SL-283-SA6-SS-0.0-0.5MS SL-283-SA6-SS-0.0-0.5MSD (SL-283-SA6-SS-0.0-0.5)	4,6-DINITRO-2-METHYLPHENOL 4-NITROPHENOL ANILINE BENZIDINE BENZOIC ACID BENZYL ALCOHOL	0 0 0 0	0 0 0 0	11.00-126.00 37.00-129.00 18.00-116.00 35.00-141.00 10.00-173.00 67.00-115.00	- - - -	4,6-DINITRO-2-METHYLPHEN 4-NITROPHENOL ANILINE BENZIDINE BENZOIC ACID BENZYL ALCOHOL	J(all detects) R(all non-detects)

Method: 6020 Matrix: SO

QC Sample ID							
(Associated		MS	MSD	%R	RPD	Affected	
Samples)	Compound	%R	%R	Limits	(Limits)	Compounds	Flag
SL-283-SA6-SS-0.0-0.5MS SL-283-SA6-SS-0.0-0.5MSD (SL-282-SA6-SS-2.5-3.5 SL-282-SA6-SS-0.0-0.5 SL-283-SA6-SB-14.0-15.0 SL-283-SA6-SB-18.0-19.0 SL-283-SA6-SB-4.0-5.0 SL-283-SA6-SB-9.0-10.0 SL-283-SA6-SS-0.0-0.5 SL-283-SA6-SS-0.0-0.5	ANTIMONY ARSENIC BERYLLIUM CADMIUM CHROMIUM COBALT COPPER LEAD NICKEL SILVER	43 277 204 188 263 191 257 329 256	37 165 - 127 155 128 136 - 145	75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00		ANTIMONY ARSENIC BERYLLIUM CADMIUM CHROMIUM COBALT COPPER LEAD NICKEL	J(all detects) UJ(all non-detects)
SL -284-SA6-SB-15.5-16.5 SL -284-SA6-SB-4.0-5.0 SL -284-SA6-SB-9.0-10.0 SL -284-SA6-SS-0.0-0.5 SL -285-SA6-SB-4.0-5.0 SL -285-SA6-SB-6.0-7.0 SL -285-SA6-SS-0.0-0.5)	THALLIUM VANADIUM ZINC	175 202 348 477	136 191 214	75.00-125.00 75.00-125.00 75.00-125.00 75.00-125.00	35 (20.00) 29 (20.00) 25 (20.00) 26 (20.00)	THALLIUM VANADIUM ZINC	Zn, No Qual %R, >4x
SL -283 - SA6 - SS - 0.0 - 0.5MS SL -283 - SA6 - SS - 0.0 - 0.5MSD (SL -282 - SA6 - SB - 2.5 - 3.5 SL -282 - SA6 - SB - 2.5 - 3.5 SL -283 - SA6 - SB - 14.0 - 15.0 SL -283 - SA6 - SB - 14.0 - 15.0 SL -283 - SA6 - SB - 18.0 - 19.0 SL -283 - SA6 - SB - 18.0 - 19.0 SL -283 - SA6 - SB - 9.0 - 10.0 SL -283 - SA6 - SB - 9.0 - 10.0 SL -284 - SA6 - SB - 14.0 - 15.0 SL -284 - SA6 - SB - 14.0 - 15.0 SL -284 - SA6 - SB - 14.0 - 15.0 SL -284 - SA6 - SB - 10.0 - 0.5 SL -284 - SA6 - SB - 10.0 - 0.5 SL -284 - SA6 - SB - 10.0 - 0.5 SL -285 - SA6 - SB - 4.0 - 5.0 SL -285 - SA6 - SB - 4.0 - 5.0 SL -285 - SA6 - SB - 4.0 - 5.0	SELENIUM	131	131	75.00-125.00	-	SELENIUM	J(all detects)

2/10/2012 10:56:41 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO

QC Sample ID (Associated		MS	MSD	%R	RPD	Affected	
Samples)	Compound	%R	%R	Limits	(Limits)	Compounds	Flag
SL-283-SA6-SS-0.0-0.5MSD SL-283-SA6-SS-0.0-0.5MSD (SL-282-SA6-SB-2.5-3.5 SL-282-SA6-SB-0.0-0.5 SL-283-SA6-SB-14.0-15.0 SL-283-SA6-SB-18.0-19.0 SL-283-SA6-SB-18.0-19.0 SL-283-SA6-SB-9.0-10.0 SL-283-SA6-SB-9.0-10.0 SL-284-SA6-SB-14.0-15.0 SL-284-SA6-SB-15.5-16.5 SL-284-SA6-SB-9.0-10.0 SL-284-SA6-SB-9.0-10.0 SL-284-SA6-SB-9.0-10.0 SL-284-SA6-SB-9.0-10.0 SL-284-SA6-SB-9.0-10.0 SL-284-SA6-SB-9.0-10.0 SL-284-SA6-SB-9.0-10.0 SL-285-SA6-SB-9.0-10.0 SL-285-SA6-SB-9.0-10.0	MOLYBDENUM	179	-	75.00-125.00	35 (20.00)	MOLYBDENUM	J(all detects) UJ(all non-detects)
SL-283-SA6-SS-0.0-0.5MS SL-283-SA6-SS-0.0-0.5MSD (SL-282-SA6-SS-2.5-3.5 SL-282-SA6-SS-0.0-0.5 SL-283-SA6-SB-14.0-15.0 SL-283-SA6-SB-18.0-19.0 SL-283-SA6-SB-4.0-5.0 SL-283-SA6-SB-4.0-5.0 SL-283-SA6-SB-4.0-5.0 SL-283-SA6-SB-9.0-10.0 SL-283-SA6-SB-15.5-16.5 SL-284-SA6-SB-15.5-16.5 SL-284-SA6-SB-10.0-0.5 SL-284-SA6-SB-0.0-0.5 SL-284-SA6-SB-0.0-0.5 SL-284-SA6-SB-0.0-0.5 SL-285-SA6-SB-6.0-7.0 SL-285-SA6-SB-6.0-7.0	BARIUM	550	130	75.00-125.00	31 (20.00)	BARIUM	J(all detects) UJ(all non-detects) No Qual %R, >4x

Method: 6010B
Matrix: SO

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-283-SA6-SS-0.0-0.5MS SL-283-SA6-SS-0.0-0.5MSD	ALUMINUM CALCIUM	611 287	863 386	75.00-125.00	-	ALUMINUM	
(SL-282-SA6-SB-2.5-3.5	MAGNESIUM	207	200	75.00-125.00 75.00-125.00		CALCIUM IMAGNESIUM	
SL -282-SA6-SS-0.0-0.5	PHOSPHORUS	128	-	75.00-125.00	<u> </u>	PHOSPHORUS	
SL -283-SA6-SB-14.0-15.0	TITANIUM	168	265	75.00-125.00	_	TITANIUM	
SL -283-SA6-SB-18.0-19.0		ł					
SL -283-SA6-SB-4.0-5.0		1					
SL -283-SA6-SB-9.0-10.0		1					J(all detects)
SL -283-SA6-SS-0.0-0.5 SL -284-SA6-SB-14.0-15.0		1					(4.1. 40.00.0)
SL -284-SA6-SB-15.5-16.5		İ					
SL -284-SA6-SB-4.0-5.0		ŀ					
SL -284-SA6-SB-9.0-10.0		İ					
SL -284-SA6-SS-0.0-0.5							Al, Ca, Mg, Ti,
SL -285-SA6-SB-4.0-5.0							No Qual, >4x
SL -285-SA6-SS-0.0-0.5)							

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

					ALL STATE OF THE S	
	l		<u> </u>	<u> </u>		
	MS	MŞD	%R	RPD	Affected	
Compound	%R	%R	Limits	(Limits)	Compounds	Flag
IRON	-2297	-1472	75.00-125,00	-	IRON	
MANGANESE	-31	6	75.00-125.00	-	MANGANESE	
	ŀ					
						No Qual, >4x
					į	
	RON	Compound %R RON -2297	Compound %R %R RON -2297 -1472	Compound %R %R Limits RON -2297 -1472 75.00-125.00	Compound %R %R Limits (Limits) RON -2297 -1472 75.00-125.00 -	Compound %R %R Limits (Limits) Compounds RON -2297 -1472 75.00-125.00 - IRON

Method: 8270C SIM

Matrix: SO

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-283-SA6-SS-0.0-0.5MS SL-283-SA6-SS-0.0-0.5MSD	2-METHYLNAPHTHALENE ANTHRACENE	106	-	64.00-103.00	-	2-METHYLNAPHTHALENE	
(SL-283-SA6-SS-0.0-0.5)	BENZO(A)ANTHRACENE	118 131	118	73.00-115.00 59.00-128.00		ANTHRACENE BENZO(A)ANTHRACENE	
	BENZO(A)PYRENE	-	143	58.00-142.00	-	BENZO(A)PYRENE	
	BENZO(B)FLUORANTHENE	192	208	54.00-163.00	-	BENZO(B)FLUORANTHENE	
	BIS(2-ETHYLHEXYL)PHTHALAT	170	729	39.00-167.00	124 (30,00)	BIS(2-ETHYLHEXYL)PHTHALA	
-	Butylbenzylphthalate	-	174	57.00-173.00	-	Butylbenzylphthalate	J(all detects)
	CHRYSENE	154	152	48.00-134.00	-	CHRYSENE	
	Diethylphthalate	139	142	70.00-136.00		Diethylphthalate	
	Dimethylphthalate	148	148	74.00-118.00	-	Dimethylphthalate	
	Di-n-butylphthalate	-	167	65.00-148.00	-	Di-n-butylphthalate	
	NAPHTHALENE	108	-	61.00-102.00	ł -	NAPHTHALENE	

Method: 6010B Matrix: SO

QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-285-SA6-SB-6.0-7.0MS (SL-285-SA6-SB-6.0-7.0)	ALUMINUM	569	-	75.00-125.00	-	ALUMINUM	No Qual, >4x
SL-285-SA6-SB-6.0-7.0MS SL-285-SA6-SB-6.0-7.0MSD (SL-285-SA6-SB-6.0-7.0)	IRON MAGNESIUM MANGANESE	-1228 17 35	-1709 -136 -5	75.00-125.00 75.00-125.00 75.00-125.00	-	IRON MAGNESIUM MANGANESE	No Quai, >4x
SL-285-SA6-SB-6.0-7.0MS SL-285-SA6-SB-6.0-7.0MSD (SL-285-SA6-SB-6.0-7.0)	CALCIUM PHOSPHORUS TITANIUM	169 - 156	67 57 41	75.00-125.00 75.00-125.00 75.00-125.00		CALCIUM PHOSPHORUS TITANIUM	J(all detects) UJ(all non-detects) Ca, Ti, No Qual, >4x

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1

eQAPP Name: CDM_SSFL_110509

Method: 300.0 Matrix: SO		ALL SOLETHIC STEELER COMMENTERS OF					
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL -284 -SA6 -SS -0.0 -0.5MS (SL -284 -SA6 -SB -14.0 -15.0 SL -284 -SA6 -SB -15.5 -16.5 SL -284 -SA6 -SB -4.0 -5.0 SL -284 -SA6 -SB -9.0 -10.0 SL -284 -SA6 -SS -0.0 -0.5)	FLUORIDE	76	•	80.00-120.00	_	FLUORIDE	J(all detects) UJ(all non-detects)

Lab Duplicate Outlier Report

Lab Reporting Batch ID: DE290 Laboratory: LL EDD Filename: DE290 v1 eQAPP Name: CDM_SSFL 110509 Method: 300.0 Matrix: SO QC Sample ID (Associated eQAPP Sample Sample ID) Analyte RPD RPD Flag SL-284-SA6-SS-0.0-0.5DUP FLUORIDE 23 20.00 (SL-284-SA6-SB-14.0-15.0 SL -284-SA6-SB-15.5-16.5 No Qual. SL -284-SA6-SB-4.0-5.0 OK by Difference SL -284-SA6-SB-9.0-10.0 SL -284-SA6-SS-0.0-0.5) Method: 6010B Matrix: SO QC Sample ID (Associated eQAPP Sample Sample ID) RPD Analyte RPD Flag SL-285-SA6-SB-6.0-7.0DUP Zirconium 31 20.00 No Qual. (SL-285-SA6-SB-6.0-7.0) OK by Difference Method: 300.0 Matrix: SO QC Sample ID (Associated Sample eQAPP Sample ID) RPD Analyte RPD Flag SL-283-SA6-SS-0.0-0.5DUP FLUORIDE 21 20.00 (SL-282-SA6-SB-2.5-3.5 SL -282-SA6-SS-0.0-0.5 SL -283-SA6-SB-14.0-15.0 SL -283-SA6-SB-18.0-19.0 No Qual, SL -283-SA6-SB-4.0-5.0 SL -283-SA6-SB-9.0-10.0 OK by Difference SL -283-SA6-SS-0.0-0.5 SL -285-SA6-SB-4.0-5.0 SL -285-SA6-SB-6.0-7.0 SL -285-SA6-SS-0.0-0.5) Method: 6010B Matrix: SO QC Sample ID (Associated Sample eQAPP Sample ID) Analyte RPD RPD Flag SL-283-SA6-SS-0.0-0.5DUP Zirconium 79 20.00 (SL-282-SA6-SB-2.5-3.5 SL -282-SA6-SS-0.0-0.5 SL -283-SA6-SB-14.0-15.0 SL -283-SA6-SB-18.0-19.0 SL -283-SA6-SB-4.0-5.0 SL -283-SA6-SB-9.0-10.0 No Qual, SL -283-SA6-SS-0.0-0.5 OK by Difference SL -284-SA6-SB-14.0-15.0 SL -284-SA6-SB-15.5-16.5 SL -284-SA6-SB-4.0-5.0 SL -284-SA6-SB-9.0-10.0 SL -284-SA6-SS-0.0-0.5

SL -285-SA6-SB-4.0-5.0 SL -285-SA6-SS-0.0-0.5)

2/10/2012 11:17:35 AM ADR version 1.4.0.111 Page 1 of 2

Lab Duplicate Outlier Report

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method: 6020 Matrix: SO				
QC Sample ID (Associated Sample ID)	Analyte	Sample RPD	eQAPP RPD	Flag
SL-283-SA6-SS-0.0-0.5DUP (SL-282-SA6-SB-2.5-3.5 SL -282-SA6-SS-0.0-0.5 SL -283-SA6-SB-14.0-15.0 SL -283-SA6-SB-18.0-19.0 SL -283-SA6-SB-4.0-5.0 SL -283-SA6-SB-9.0-10.0 SL -283-SA6-SB-9.0-15.0 SL -284-SA6-SB-14.0-15.0 SL -284-SA6-SB-14.0-15.0 SL -284-SA6-SB-14.0-15.0 SL -284-SA6-SB-4.0-5.0 SL -284-SA6-SB-4.0-5.0 SL -284-SA6-SB-9.0-10.0 SL -284-SA6-SB-9.0-10.0 SL -285-SA6-SB-0.0-0.5 SL -285-SA6-SB-4.0-5.0 SL -285-SA6-SB-6.0-7.0 SL -285-SA6-SB-6.0-7.0	ANTIMONY BARIUM COPPER LEAD MOLYBDENUM SELENIUM SILVER THALLIUM	200 27 26 50 34 68 33 24	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	J(all detects) UJ(all non-detects) Sb, Se, Ag, TI, No Qual, OK by Difference

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: DE290

Method: 6020

Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method: 1625C Matrix: AQ									
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag		
P0WALCSY261135 (EB-SA6-SB-113011 TB -113011)	N-NITROSODIMETHYLAMINE	-	63	70.00-130.00	_	N-NITROSODIMETHYLAMINE	J(all detects) UJ(all non-detects)		

Matrix: SO							
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
P33926BQ221250A (SL-282-SA6-SB-2.5-3.5 SL -282-SA6-SB-14.0-15.0 SL -283-SA6-SB-14.0-15.0 SL -283-SA6-SB-18.0-19.0 SL -283-SA6-SB-9.0-10.0 SL -283-SA6-SB-9.0-10.0 SL -283-SA6-SB-9.0-10.0 SL -284-SA6-SB-14.0-15.0 SL -284-SA6-SB-15.5-16.5 SL -284-SA6-SB-9.0-10.0 SL -284-SA6-SB-9.0-10.0 SL -284-SA6-SB-9.0-10.0 SL -284-SA6-SB-9.0-10.0 SL -285-SA6-SB-4.0-5.0 SL -285-SA6-SB-4.0-5.0	ANTIMONY	74		80.00-120,00		ANTIMONY	No Qual, SRM within Limits

Method: 6010B Matrix: SO			e in letter to la ve			the same of the property of the same of th	47.77
QC Sample ID (Associated Samples)	Compound	LCS %R	LCSD %R	Limits	RPD (Limits)	Affected Compounds	Flag
P34108AQ220349 (SL-285-SA6-SB-6.0-7.0)	IRON	79	-	80.00-120.00	-	IRON	No Qual, SRM within Limits

Page 1 of 1

Surrogate Outlier Report

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

lethod: 162! latrix: AQ	(Control of the section of the sect	at hannerdikkan even under a	and the second section of the second section of the second section of the second section of the second section		
Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
B-SA6-SB- 13011	N-Nitrosodimethylamine-d6	244	50.00-150.00	All Target Analytes	J (all detects)

Method: 8081A Matrix: SO

Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
SL-283-SA6-SS-0.0 -0.5	TETRACHLORO-M-XYLENE	20	50.00-130.00	All Target Analytes	J(all detects) UJ(all non-detects)
SL-283-SA6-SS-0.0 -0.5RLLCS	TETRACHLORO-M-XYLENE	31	50.00-130.00	All Target Analytes	Not Validated
SL-283-SA6-SS-0.0 -0.5RLMS	TETRACHLORO-M-XYLENE	37	50.00-130.00	All Target Analytes	Not Validated
SL-284-SA6-SS-0.0 -0.5	TETRACHLORO-M-XYLENE	24	50.00-130.00	All Target Analytes	J(all detects) UJ(all non-detects)

Method: 8082 Matrix: SO

Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
SL-282-SA6-SB-2.5 -3.5	DECACHLOROBIPHENYL	124	45.00-120.00	All Target Analytes	J(all detects)
SL-283-SA6-SB-4.0 -5.0	DECACHLOROBIPHENYL	142	45.00-120.00	All Target Analytes	J(all detects)
SL-284-SA6-SB- 15.5-16.5	DECACHLOROBIPHENYL	122	45.00-120.00	All Target Analytes	J(all detects)

Method: 8270C Matrix: SO

Sample ID	Surrogate	Sample % Recovery	% Recovery Limits	Affected Compounds	Flag
SL-284-SA6-SB- 15.5-16.5	2,4,6-TRIBROMOPHENOL	33	35.00-130.00	No Affected Compounds	J(all detects) UJ(all non-detects)

Field Duplicate RPD Report

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

ілетпоа:	760.3W
Matrix	90

	Concenti	ration (%)		r	
Analyte	SL-284-SA6-SS-0.0-0.5	DUP17-SA6-QC-120111	Sample RPD	eQAPP RPD	Flag
MOISTURE	8.7	7.500000000	15		No Qualifiers Applied

Method: 300.0 Matrix: SO

	Concentrat				
Analyte	SL-284-SA6-SS-0.0-0.5	DUP17-SA6-QC-120111	Sample RPD	eQAPP RPD	Flag
FLUORIDE	2.6	1.900000000	31		No Qualifiers Applied

Method: 6010B Matrix: SO

	Concentration (mg/Kg)				
Analyte	SL-284-SA6-SS-0.0-0.5	DUP17-SA6-QC-120111	Sample RPD	eQAPP RPD	Flag
ALUMINUM	13200	13000.000000000	2	50.00	
BORON	5.40	4.710000000	14	50.00	
CALCIUM	4590	4030.000000000	13	50.00	•
IRON	22000	19900.000000000	10	50.00	
LITHIUM	19.0	20.300000000	7	50.00	
MAGNESIUM	4180	4380.000000000	5	50.00	
MANGANESE	266	277.000000000	4	50.00	No Qualifiers Applied
PHOSPHORUS	473	424.000000000	11	50.00	
POTASSIUM	2370	2470.000000000	4	50.00	
SODIUM	171	215.000000000	23	50.00	
STRONTIUM	26.1	24.100000000	8	50.00	
TITANIUM	963	975.000000000	1	50.00	
Zirconium	2.39	3.080000000	25	50.00	
TIN	11.5	2.460000000	130	50.00	J(all detects)
	į.			•	

Method: 6020 Matrix: SO

	Concentrat				
Analyte	SL-284-SA6-SS-0.0-0.5	DUP17-SA6-QC-120111	Sample RPD	eQAPP RPD	Flag
ANTIMONY	0.116	0.088100000	27	50.00	
ARSENIC	4.41	4.740000000	7	50.00	
BARIUM	121	104.00000000	15	50.00	
BERYLLIUM	0.641	0.678000000	6	50.00	
CADMIUM	0.272	0.208000000	27	50.00	
CHROMIUM	20.1	21.800000000	8	50.00	
COBALT	7.10	7.020000000	1	50.00	
COPPER	13.0	12.100000000	7	50.00	No Ovellena Analina
LEAD	12.9	11.600000000	11	50.00	No Qualifiers Applied
MOLYBDENUM	3.21	2.220000000	36	50.00	
NICKEL	13.2	13.900000000	5	50.00	
SELENIUM	0.635	0.733000000	14	50.00	
SILVER	0.0445	0.039800000	11	50.00	
THALLIUM	0.238	0.292000000	20	50.00	
VANADIUM	41.2	42.400000000	3	50.00	
ZINC	107	126.000000000	16	50.00	

2/10/2012 11:15:19 AM ADR version 1.4.0.111 Page 1 of 3

Field Duplicate RPD Report

Lab Reporting Batch ID: DE290

Laboratory: LL

No Qualifiers Applied

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Matrix:	SO						t substantial and the
			Concentrat	ion (mg/Kg)			
					Sample	eQAPP	
	Analyte	ļs	SL-284-SA6-SS-0.0-0.5	DUP17-SA6-QC-120111	RPD	RPD	Flag

0.280000000

0.33

Method: 7471A Matrix: SO

HEXAVALENT CHROMIUM

Method: 7199

	Concentrati				
		DUP17-SA6-QC-120111	Sample RPD	eQAPP RPD	Flag
MERCURY	2.87	1.620000000	56	50.00	J(all detects)

Method: 8015B Matrix: SO

	Concentrat				
	SL-284-SA6-SS-0.0-0.5	DUP17-SA6-QC-120111	Sample RPD	eQAPP RPD	Flag
METHANOL	130	130.000000000	0	50.00	No Qualifiers Applied

Method: 8015M Matrix: SO

	Concentrat	tion (mg/Kg)			
Analyte	SL-284-SA6-SS-0.0-0.5	DUP17-SA6-QC-120111	Sample RPD	eQAPP RPD	Flag
EFH (C30-C40)	180 800	60.000000000 260.000000000	100 102	50.00 50.00	J(all detects)

Method: 8081A Matrix: SO

,	Concentra	tion (ug/Kg)			
Analyte	SL-284-SA6-SS-0.0-0.5	DUP17-SA6-QC-120111	Sample RPD	eQAPP RPD	Flag
4,4'-DDE	0.11	0.370000000 U	200	50.00	A second
4,4'-DDT	0.50 U	0.27000000	200	50.00	I/all datasta
DIELDRIN	0.11	0.210000000	62	50.00	J(all detects)
ENDOSULFAN II	0.37 U	0.10000000	200	50.00	UJ(all non-detects)
ENDRIN ALDEHYDE	0.37 U	0.240000000	200	50.00	

Method: 8082 Matrix: SO

	Concentra	tion (ug/Kg)			
Analyte	SL-284-SA6-SS-0.0-0.5	DUP17-SA6-QC-120111	Sample RPD	eQAPP RPD	Flag
AROCLOR 1254 AROCLOR 1260 Aroclor 5460	1.9 U 5.9 17	6.600000000 13.000000000 7.400000000	200 75 79	50.00 50.00 50.00	J(all detects) UJ(all non-detects)

2/10/2012 11:15:19 AM ADR version 1.4.0.111 Page 2 of 3

Field Duplicate RPD Report

Lab Reporting Batch ID: DE290

EDD Filename: DE290_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 8151A Matrix: SO

	Concentra	tion (ug/Kg)		[
Analyte	SL-284-SA6-SS-0.0-0.5			eQAPP RPD	Flag	
2,4,5-TP (Silvex)	0.11	0.096000000	14	50.00	No Qualifiers Applied	
MCPA MCPP	340 U 140	140.000000000 270.000000000 U	200 200	50.00 50.00	J(all detects) UJ(all non-detects)	

Method: 8270C Matrix: SO

	Concentra	tion (ug/Kg)			
Analyte	SL-284-SA6-SS-0.0-0.5 DUP17-SA6-QC-120111		Sample RPD	eQAPP RPD	Flag
ANTHRACENE	910 U	26.000000000	200	50.00	
BENZO(A)PYRENE	910 U	21.000000000	200	50.00	
BENZO(B)FLUORANTHENE	910 U	32.000000000	200	50.00	If all ale to each
BENZO(G,H,I)PERYLENE	910 U	83.000000000	200	50.00	J(all detects)
BIS(2-ETHYLHEXYL)PHTHALATE	1800 U	34.000000000	200	50.00	UJ(all non-detects)
CHRYSENE	910 U	29.000000000	200	50.00	
INDENO(1,2,3-CD)PYRENE	910 U	50.000000000	200	50.00	

Method: 9045M Matrix: SO

	Concentrati				
Analyte		DUP17-SA6-QC-120111	Sample RPD	eQAPP RPD	Flag
РН	8.66	8.750000000	1		No Qualifiers Applied

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method: 300.0

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-284-SA6-SB-15.5-16.5	FLUORIDE	J	1.1	1.2	PQL	mg/Kg	J (all detects)

Method: 6010B

Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-282-SA6-SB-2.5-3.5	TIN	J	3.51	11.2	PQL	mg/Kg	J (all detects)
SL-282-SA6-SS-0.0-0.5	TIN Zirconium	7 7	2.65 4.47	10.4 5.20	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-283-SA6-SB-14.0-15.0	BORON SODIUM TIN Zirconium	777	4.22 85.9 2.70 2.66	5.38 108 10.8 5.38	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
SL-283-SA6-SB-18.0-19.0	BORON TIN Zirconium	7	4.19 2.82 4.38	5.47 10.9 5.47	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-283-SA6-SB-4.0-5.0	TIN Zirconium	J	2.61 4.28	10.3 5.16	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-283-SA6-SB-9.0-10.0	BORON SODIUM TIN Zirconium	7 7 7	4.80 96.3 2.62 3.56	5.36 107 10.7 5.36	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
SL-283-SA6-SS-0.0-0.5	BORON TIN Zirconium	777	4.88 2.71 2.24	5.22 10.4 5.22	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-284-SA6-SB-14.0-15.0	BORON TIN Zirconium	7 7	5.36 2.94 3.65	5.56 11.1 5.56	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-284-SA6-SB-15.5-16.5	BORON TIN Zirconium	7 7 7	4.71 2.73 3.96	5.49 11.0 5.49	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-284-SA6-SB-4.0-5.0	BORON TIN Zirconium	7 7 7	4.67 2.60 2.74	5.42 10.8 5.42	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-284-SA6-SB-9.0-10.0	BORON TIN Zirconium	J	3.80 2.58 3.18	5.16 10.3 5.16	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-284-SA6-SS-0.0-0.5	BORON Zirconium	J	5.40 2.39	5.42 5.42	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-285-SA6-SB-4.0-5.0	BORON SODIUM TIN	J	3.18 83.0 2.60	5.05 101 10.1	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-285-SA6-SB-6.0-7.0	TIN Zirconium	J J	2.71 2.36	10.2 5.11	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-285-SA6-SS-0.0-0.5	TIN Zirconium	J	2.95 2.36	10.4 5.18	PQL PQL	mg/Kg mg/Kg	J (all detects)

2/10/2012 11:48:45 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DE290 Laboratory: LL EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method: 6020

0	Ameliado	Lab		Reporting	RL	<u>, , , </u>	
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-282-SA6-SB-2,5-3,5	ANTIMONY CADMIUM SELENIUM SILVER)]]	0.123 0.0657 0.186 0.0317	0.217 0.109 0.435 0.109	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
SL-282-SA6-SS-0.0-0.5	ANTIMONY SELENIUM SILVER	7	0.0943 0.115 0.0579	0.210 0.420 0.105	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-283-SA6-SB-14.0-15.0	SILVER	j	0.0306	0.108	PQL	mg/Kg	J (all detects)
SL-283-SA6-SB-18.0-19.0	SELENIUM SILVER	J	0.0660 0.0730	0.429 0.107	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-283-SA6-SB-4.0-5.0	CADMIUM SELENIUM SILVER	1	0.0973 0.138 0.0307	0.106 0.425 0.106	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-283-SA6-SB-9.0-10.0	CADMIUM SELENIUM SILVER	JJ	0.0658 0.0701 0.0544	0.107 0.429 0.107	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-283-SA6-SS-0.0-0.5	ANTIMONY SELENIUM SILVER]	0.122 0.273 0.0524	0.205 0.410 0.102	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-284-SA6-SB-14.0-15.0	SELENIUM SILVER	J	0.0673 0.0721	0.449 0.112	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-284-SA6-SB-15.5-16.5	ANTIMONY CADMIUM SELENIUM SILVER	1 1	0.0912 0.0704 0.0750 0.0759	0.218 0.109 0.435 0.109	PQL PQL PQL PQL	mg/Kg mg/Kg mg/Kg mg/Kg	J (all detects)
SL-284-SA6-SB-4,0-5.0	CADMIUM SELENIUM SILVER	1 1	0.0735 0.119 0.0335	0.105 0.421 0.105	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-284-SA6-SS-0.0-0.5	ANTIMONY SILVER	J	0.116 0.0445	0.213 0.106	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-285-SA6-SB-4.0-5.0	CADMIUM SELENIUM	j	0.0791 0.0694	0.100 0.400	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-285-SA6-SB-6.0-7.0	CADMIUM SELENIUM SILVER	j J	0.0558 0.201 0.0187	0.104 0.417 0.104	PQL PQL PQL	mg/Kg mg/Kg mg/Kg	J (all detects)
SL-285-SA6-SS-0.0-0.5	ANTIMONY SELENILIM	J	0.101	0.211	PQL	mg/Kg	J (all detects)

Method: 7199 Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-282-SA6-SB-2.5-3.5	HEXAVALENT CHROMIUM	J	0.34	1.1	PQL	mg/Kg	J (all detects)
SL-282-SA6-SS-0.0-0.5	HEXAVALENT CHROMIUM	J	0.36	1.0	PQL	mg/Kg	J (all detects)
SL-283-SA6-SB-14.0-15.0	HEXAVALENT CHROMIUM	J	0.52	1.1	PQL	mg/Kg	J (all detects)
SL-283-SA6-SB-4.0-5.0	HEXAVALENT CHROMIUM	J	0.65	1.1	PQL	mg/Kg	J (all detects)
SL-283-SA6-SB-9.0-10.0	HEXAVALENT CHROMIUM	J	0.33	1.0	PQL	mg/Kg	J (all detects)
SL-283-SA6-SS-0.0-0.5	HEXAVALENT CHROMIUM	J	0.32	1.0	PQL	mg/Kg	J (all detects)

0.241

0.422

PQL

mg/Kg

J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

SELENIUM

Lab Reporting Batch ID: DE290 Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method: 7199 *Matrix:* SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-284-SA6-SB-14.0-15.0	HEXAVALENT CHROMIUM	J	0.37	1.1	PQL	mg/Kg	J (all detects)
SL-284-SA6-SB-15.5-16.5	HEXAVALENT CHROMIUM	J	0.32	1.1	PQL	mg/Kg	J (all detects)
SL-284-SA6-SB-4.0-5.0	HEXAVALENT CHROMIUM	J	0.24	1.1	PQL	mg/Kg	J (all detects)
SL-284-SA6-SS-0.0-0.5	HEXAVALENT CHROMIUM	J	0.33	1.1	PQL	mg/Kg	J (all detects)
SL-285-SA6-SB-6.0-7.0	HEXAVALENT CHROMIUM	J	0.37	1.1	PQL	mg/Kg	J (all detects)
SL-285-SA6-SS-0.0-0.5	HEXAVALENT CHROMIUM	J	0.58	1.1	PQL	mg/Kg	J (all detects)

Method: 7471A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-282-SA6-SB-2.5-3.5	MERCURY	j	0.0122	0.111	PQL	mg/Kg	J (all detects)
SL-284-SA6-SB-14.0-15.0	MERCURY	J	0.0117	0.107	PQL	mg/Kg	J (all detects)

Method: 8015B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-284-SA6-SS-0.0-0.5	METHANOL	J	130	550	PQL	ug/Kg	J (all detects)

Method: 8015M

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-282-SA6-SB-2.5-3.5	EFH (C21-C30)	J	1.3	1.7	PQL	mg/Kg	J (all detects)
SL-283-SA6-SB-14.0-15.0	EFH (C15-C20)	J	0.56	1.4	PQL	mg/Kg	J (all detects)
SL-283-SA6-SB-18.0-19.0	EFH (C21-C30) GASOLINE RANGE ORGANICS (C5-C12)	J	1.3 0.3	1.7 1.1	PQL PQL	mg/Kg mg/Kg	J (all detects)
SL-284-SA6-SB-14.0-15.0	EFH (C30-C40)	J	0.83	1.6	PQL	mg/Kg	J (all detects)
SL-284-SA6-SB-4.0-5.0	EFH (C21-C30)	J	0.91	1.5	PQL	mg/Kg	J (all detects)
SL-284-SA6-SB-9.0-10.0	GASOLINE RANGE ORGANICS (C5-C12)	J	0.6	0.9	PQL	mg/Kg	J (all detects)
SL-285-SA6-SB-4.0-5.0	EFH (C21-C30)	J	0.84	1.6	PQL	mg/Kg	J (all detects)

Method: 8081A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-282-SA6-SS-0.0-0.5	4,4'-DDE ENDOSULFAN II	J J	0.27 0.12	0.36 0.36	PQL PQL	ug/Kg ug/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DE290

Laboratory: LL

EDD Filename: DE290_v1 eQAPP Name: CDM_SSFL_110509

Method: 8081A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-283-SA6-SS-0.0-0.5	ENDRIN ALDEHYDE	J	0.22	0.36	PQL	ug/Kg	J (all detects)
SL-284-SA6-SS-0.0-0.5	4,4'-DDE DIELDRIN	J	0.11 0.11	0.37 0.37	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-285-SA6-SS-0.0-0.5	HEPTACHLOR EPOXIDE	J	0.14	0.18	PQL	ug/Kg	J (all detects)

Method: 8082

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-285-SA6-SS-0.0-0.5	AROCLOR 1260	J	1.6	1.8	PQL	ug/Kg	J (all detects)

Method: 8151A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-282-SA6-SS-0.0-0.5	2,4,5-TP (Silvex) MCPA MCPP	J J	0.15 100 110	0.18 260 260	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects).
SL-283-SA6-SS-0.0-0.5	MCPA	J	110	270	PQL	ug/Kg	J (all detects)
SL-284-SA6-SS-0.0-0.5	2,4,5-TP (Silvex) MCPP	j J	0.11 140	0.19 270	PQL PQL	ug/Kg ug/Kg	J (all detects)

Method: 8260B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-285-SA6-SB-4.0-5.0	CHLOROFORM METHYLENE CHLORIDE TOLUENE	J J	0.19 1.5 0.09	3.9 3.9 3.9	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)
SL-285-SA6-SB-6.0-7.0	CHLOROFORM METHYLENE CHLORIDE TOLUENE	J	0.25 1.7 0.17	4.5 4.5 4.5	PQL PQL PQL	ug/Kg ug/Kg ug/Kg	J (all detects)

Lab Reporting Batch ID: DE290

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DE290_v1

so

Method: 8270C

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-282-SA6-SS-0.0-0.5	BENZO(A)ANTHRACENE BENZO(A)PYRENE BENZO(B)FLUORANTHENE BENZO(G,H,I)PERYLENE BENZO(K)FLUORANTHENE BIS(2-ETHYLHEXYL)PHTHALATE CHRYSENE DIBENZO(A,H)ANTHRACENE FLUORANTHENE INDENO(1,2,3-CD)PYRENE PYRENE		92 84 110 63 51 140 84 24 130 53	180 180 180 180 180 350 180 180 180 180	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	J (all detects)
SL-283-SA6-SB-4.0-5.0	BIS(2-ETHYLHEXYL)PHTHALATE	J	20	360	PQL	ug/Kg	J (all detects)
SL-284-SA6-SB-14.0-15.0	BIS(2-ETHYLHEXYL)PHTHALATE	J	19	370	PQL	ug/Kg	J (all detects)
SL-285-SA6-SS-0.0-0.5	BIS(2-ETHYLHEXYL)PHTHALATE	J	21	360	PQL	ug/Kg	J (all detects)

Method: 8270C SIM

Matrix: SO

SamplelD	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-283-SA6-SB-18.0-19.0	Di-n-butylphthalate	J	11	20	PQL	ug/Kg	J (all detects)
SL-284-SA6-SB-15.5-16.5	BENZO(B)FLUORANTHENE BENZO(K)FLUORANTHENE	J	1.3 1.0	1.9 1.9	PQL PQL	ug/Kg ug/Kg	J (all detects)
SL-285-SA6-SB-6.0-7.0	BIS(2-ETHYLHEXYL)PHTHALATE	J	8.8	19	PQL	ug/Kg	J (all detects)

Method: 8315A

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-285-SA6-SB-6.0-7.0	FORMALDEHYDE	J	810	1600	PQL	ug/Kg	J (all detects)

2/10/2012 11:48:45 AM ADR version 1.4.0.111 Page 5 of 5

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

DC #: <u>27083B4</u>	VALIDATION COMPLETENESS WORKSHEET	Date: 2 / 9 / 12
SDG #: <u>DE290</u>	ADR	Page: <u>(</u> of <u>)</u>
_aboratory: <u>Lancaster Laborat</u>	<u>ories</u>	Reviewer:
METHOD: Metals (EPA SW/8	46 Method 6010R/6020A/7000\	2nd Reviewer:

METHOD: Metals (EPA SW 846 Method 6010B/6020A/7000)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
I.	Technical holding times	N	Sampling dates:
II.	ICP/MS Tune	N	
.111	Calibration	~	
IV.	Blanks	9~	
V.	ICP Interference Check Sample (ICS) Analysis	N	
VI.	Matrix Spike Analysis	5 W	
VII.	Duplicate Sample Analysis	لالاك	
VIII.	Laboratory Control Samples (LCS)	'NA	
IX.	Internal Standard (ICP-MS)	N N	
X.	Furnace Atomic Absorption QC	N	
XI.	ICP Serial Dilution	5w	Cr, co, in J/nJ/A
XII.	Sample Result Verification	N	
XIII.	Overall Assessment of Data	N	
XIV.	Field Duplicates	N	
ΧV	Field Blanks	\mathcal{N}	-7B=16 ~

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

R = Rinsate FB = Field blank D = Duplicate

TB = Trip blank

EB = Equipment blank

Validated Samples:

1	SL-285-SA6-SS-0.0-0.5	11	SL-284-SA6-SS-0.0-0.5	21	\$3M5D (6010	B B31	
2	SL-285-SA6-SB-4.0-5.0	12	SL-284-SA6-SB-4.0-5.0	22	x5 pup V	32	
3	SL-285-SA6-SB-6.0-7.0	13	SL-284-SA6-SB-9.0-10.0	23		33	
4	SL-282-SA6-SS-0.0-0.5	14	SL-284-SA6-SB-14.0-15.0	24		34	
5	SL-282-SA6-SB-2.5-3.5	15	SL-284-SA6-SB-15.5-16.5	25		35	
6	SL-283-SA6-SS-0.0-0.5	16	ÉB SAG-SB 113011	26		36	——————————————————————————————————————
7	SL-283-SA6-SB-4.0-5.0	17	SL-283-SA6-SS-0.0-0.5MS	27		37	
8	SL-283-SA6-SB-9.0-10.0	18	SL-283-SA6-SS-0.0-0.5MSD	28		38	
9	SL-283-SA6-SB-14.0-15.0	19	SL-283-SA6-SS-0.0-0.5DUP	29		39	,
10	SL-283-SA6-SB-18.0-19.0	20	#3 My 16010B	39		40	

ND = No compounds detected

Notes:			
· · · · · · · · · · · · · · · · · · ·			

LDC#: 27083B4

METHOD: Trace metals (EPA SW 864 Method 6010B/6020/7000)

VALIDATION FINDINGS WORKSHEET
PRICERICE OITSTIFFED SAMPLES

Soil preparation factor applied: 200X Associated Samples: All 1/2 2 M - 17 Reason: B

Page: Lol Reviewer: C

ŀ	, m inc	ir	1	T	Т	T	ī
₹ }			 - 				
Į.							
1							<u>_a</u>
	200	5)					4
		13					7
į	100	(2)				24.4	24 40 20 72 26
ason: B		5	0,091				0,7
1 / Re			در'ه			44	2.4
Associated Samples: All Av 211 - (7 Reason: B		9	1600 C10 C10 210 4600				
mples: A	电子 医水子	2	9,12				
ociated Sa		4	p6.0				
Ass		4				0.32	
mg/Kg		_	d1.0				
ise noted:		Action Limit	0:30	0.47	0.053	0.33	97 26
less otherw		Maximum Maximum PB° ICB/CCB° (ug/L)	0:30	0.47	0.053	0.33	4,2
Sample Concentration units, unless otherwise noted: mg/Kg							
oncentration		Analyte Maximum PB³ (mg/Kg)					
Sample C		Analyte	gS	As	Be	Mo	4,

Samples with analyte concentrations within five times the associated ICB, CCB or PB concentration are listed above with the identifications from the Validation Completeness Worksheet. These sample results were qualified as not detected, "U". Note: a - The listed analyte concentration is the highest ICB, CCB, or PB detected in the analysis of each element.

💸 eurofins | Lancaster | Laboratories

QUALITY ASSURANCE SUMMARY FORM 5A (MS/MSD)

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

DE290 Matrix: SOIL SDG No.:

Level (low/med): LOW

Matrix Spike Duplicate Lab Sample ID: 6487632MSD Matrix Spike Lab Sample ID: 6487631MS P33908B, P33926B, P33911C Background Lab Sample ID: 6487630BKG % Solids for Sample: 93.9 Batch Id(s):

ממרוז זהום)		1997665, £337465,	FOSSILC								
		BKG Sample	MS Sample	MSD Sample	MS Spike	MSD Spike	MS	MSD		Control	T.imit
Analyte	Мазв	Regult C	Result C	Result C			8. C	O 28*	רומיה	TOTAL S	N LOC
Aluminum		14245.2118	15495.8671	16030,6782	204.8005	688	1	Ţ		ľ	-1:
Antimony	121	0.1221 B	0.6728	0.5951	1.2780	1 2653 MG/KG	NEV	N C C	3 6	75 175	7 0 0
Arsenic	75	4.4892	10.3898	7,9630	2.1299	2.1088MG/KG			* 90	75 - 13	2007
Barium	137	108.7900	167.3269	122.4813		10.5442 MG/KG				1	S O MC
Beryllium	0	0.5085	2.2492	1,5188	0.8520	0.8435MG/KG	204 N	120	* 60	7.	SOM
Boron		4.8842 B	206.1717	209,2393	204.8005	206.7889IMG/KG		66	-	, ,	200
Cadmium	111	0.2449	2.2428	1.5789	1.0650	1.0544 MG/KG	-	127 N	* 1 50 1 1	75-	20 MG
Calcium		4940.2337	6114.9504	6536,5303	409.6010	413.5778 MG/KG	287	386	-	b	200
Chromium	52	19.0813	47.0501	35,3863	10.6496	10.5442 MG/KG	263 N	155 N	× 82	75 - 125	20 Mg
Cobalt	59	7.1721	108.6262	74.7583	53.2481	52.7209MG/KG		128 Z	* 22	75-	20 Mg
Copper	63	12.6710	40.0852	26.9720	10.6496	10.5442 MG/KG	_	136 N	*	1,5	S NOC
Iron		22267.7442	19916.0615	20745.9144	102.4003	103.3944 MG/KG	-2297	-1472	4	ילן	200
Lead	208	10.8729	21.3845	13.3384	3.1949	3.1633MG/KG	329 N	78	46 *	75 - 125	20 MS
Lithium		22.7202	125.0655	124.3928	102.4003	103.3944 MG/KG	100	86			202
Magnesium		5174.5589	5373.6473	5587.4448	204.8005	206.7889MG/KG	97	200	1 4	K	200
Manganese		327,9626	311.9573	331,1331	51,2001	51.6972MG/KG	.31	9	9		20 P
Mercury			0.7402	0.6844	0.1678	0.1750MG/KG	106	70	00	65 - 135	2000
Molybdenum	98	0.9749	20.0703	14.1355	10.6496	10.5442 MG/KG	179 N	125	35	75 - 12	20 Mg
Nickel	9	13.2096	40.5112	28.5115	10.6496	10.5442 MG/KG		145 N	* 556	75 - 12	S O W
Phosphorus		391,6547	522.5342	513.4433	102.4003	103.3944 MG/KG	128 N			- 12	200
Potassium		2630.8724	3703.1345	3676.1541	1024.0026	1033.9444 MG/KG	105	101		10	202
Selenium	78		3.0607	3.0388	2.1299	2.1088 MG/KG	131 N	131 N	r-1	- 12	20MS
Silver	107	0.0524B	18.6794	13.1191	10.6496	10.5442 MG/KG	175 N	124	35 *	75 - 125	20 MS
Sodium		147.2447	1148.9402	1161.3026	1024.0026	1033.9444 MG/KG	98	96	, -1	- 12	20P
serone, um	,	21.1040	126.2134	126.7182	102.4003	103.3944 MG/KG	103	102	0	75 - 115	20P
Thallum	203		1.1240	0.8378	0.4260	0.4218MG/KG	202 N	136 N	× 62	75 - 125	20MS
Tin		2.7115B	379.0755	372.6635	409.6010	413.5778 MG/KG	92	68	7	80 - 110	20P
Tranium		1099.4727	1271.5245	1373.9539	102.4003	103.3944 MG/KG	168	265	8	757	20P
Vanadium	21	40.2638	77.3376	60.4182	10.6496	10.5442 MG/KG	348 N	191 N	25 *	75 - 125	20 MS
Zinc	99	73.5439	124.3024	96.0997	10.6496	10.5442 MG/KG	477	214	26 *	X	20MS
Zirconium		2.2364 B	104.7084	107.6925	102.4003	103.3944 MG/KG	100	102	м	81 - 110	20P
	E										

METHODS:

CV = Cold Vapor FINODS: 44
P = ICP Atomic Emission Spectrometer MS = ICP Mass Spectrometry

AF = Cold Vapor Atomic Fluorescence

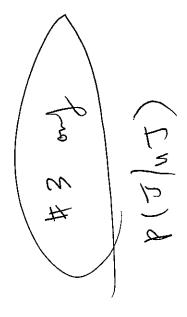
U= Below MDL, B= Below LOQ CONCENTRATION QUALIFIERS: FLAGS: * = Duplicate 00S

N = Matrix Spike 00S,

TAS (12, 4-15 (P 12)

ंे eurofins | Laneaster | Laboratories

QUALITY ASSURANCE SUMMARY FORM 5A (MS/MSD)


MATRIX SPIKE/MATRIX SPIKE DUPLICATE

SDG No.: DE290 Matrix: SOIL

Level (low/med): LOW

Matrix Spike Lab Sample ID: 6487627MS Matrix Spike Duplicate Lab Sample ID: 6487627MSD Background Lab Sample ID: 6487627BKG % Solids for Sample: 94.1 Batch Id(s): P34108A

		BKG Gample	Mc Games	- 1 down								,
1		ביות המנולים	TIS BAIIIDTE	MSD Sample	MS Spike	MSD Spike	S.	MSD		Control Limit	+ mi +	
Analyte	Mass	Result C	Result C	Result C	Added	Added Units	88 0	% 7.8	O CIETA O		ν (10 α	
Aluminum		10687.6012	11862.5166	10939.2187	206.3494	202.4189	569	124		7	45	_ E
Boron		6.3486	198.6515	194.2412	206.3494			1 0	3 6	-:	4 6	7
Calcium		2569.7386	3266,1267	2840.0617	412 6987	1	7	100	7	CTT _ #0	202	
Iron		17233.1358	15965.7171	15503 0079	777 501			7000	310	7.5	Z0 Z	_
Lithium		19.7499	716 9526	113 0514	(F) + (O)		77	K0/T-	7	7	Z0P	ī
Macmoon			0200	#176.CTT	1707 TO	LUI.ZUBS MG/KG	94	93	m	82 - 114	20P	
radition all		3/20.6685	3756.1807	3445,0281	206.3494	202.4189 MG/KG	3 17	-136	σ	14,4	2012	_
Manganese		278.2903	296.4467	275,9385	51.5873	50 6047 MG/KG	ייי		1		1 6	- T-
Phosphorus		320.4018	412 3130	270 4770	100	5				2	402	7
111111111111111111111111111111111111111		0.10		0//#	TO3 . T / 4 /	TOT SUBSIME/ KG	89	N 23 N	מ	75 - 125	20 <u>P</u>	<u>ح</u>
FOCABBILLIII		2/18.5043	3786.5955	3517,8969	1031.7469	1012.0945 MG/KG	3 104	19	7	75 - 125	200	· T
Sodium		211,8573	1216.6906	1188.9368	1031.7469	1012.0945 MG/KG	İ	0.7	·	100	2 6	
Strontium		12.7125	111.6464	108.0300	103 1747	1		0	4 c	75 - 75	707	•
Tin		2.7150B	371 3092	266 795	44.0 6000			**	1	CTT - C/	407 107	
mi tanium		7771 670		2001.1302	1050.27%	404.83/8MG/KG	82	90	7	80 - 110	20[P	
11 Cart 4 Uii		TOT3 . 1364	11/5.0874	1054.8849	103.1747	101.2095 MG/KG	156	4.1	11	7 to	200	
Zirconium		2.3594 B	102.8383	101,0344	103.1747		L	0.0	,		1 6	
						ı		_	7		7 7	

ETHODS: 43
P = ICP Atomic Emission Spectrometer MS = ICP Mass Spectrometry METHODS:

CV = Cold Vapor

AF = Cold Vapor Atomic Fluorescence

U= Below MDL, B= Below LOQ CONCENTRATION QUALIFIERS:

FLAGS:

N = Matrix Spike OOS, * = Duplicate OOS

stream | Lancaster Laboratories

QUALITY ASSURANCE SUMMARY

FORM 6

DUPLICATES

SDG No.: DE290

Matrix: SOIL

Level (low/med): LOW

Duplicate Lab Sample ID: 6487633DUP

% Solids for Sample: 93.9

Background Lab Sample ID: 6487630BKG

% Solids for Duplicate: 93.7

Batch ID(s): P33908B, P33926B, P33911C

Concentration Units: MG/KG

on oni									٦
	ľ	0	_		_		Ì	Ì	
Mass	TIMIL		_		_	RPD	ĮΩ		_
1					-	6]
		***************************************			\leftarrow	200		_	125
			_		_	7		MS	
					_	27	*	_	j
9	0.1			0.4954	_	3		MS]
		4.8842	В	4.1265	В	17		P]
111	0.1	0.2449		0.2081	П	16		MS	1
		4940.2337		5945.6621		18		P	1
52		19.0813		16.8387		12		MS	1
59		7.1721		6.0396		17		MS	1
63		12.6710		9.7649		26	*	MS	1
		22267.7442		20794.3112		7		B	1
208		10.8729	П	6.5393		50	*	MS	1
		22.7202	\Box	21.5557		5		P	1
]		5174.5589	П	5263.5152		2		Р	1
		327.9626	\square	274.9237		18		P	1
	0.1	0.5625				10			1
98		0.9749		0.6914		34	*		1
60		13.2096	П	11.7883		11			
			-	*****					ŀ
		2630.8724						<u> </u>	
78	0.4	0.2732	в						45
107			-	***************************************	В				
	104.4		-	· · · · · · · · · · · · · · · · · · ·					
						6			
203	0.1							_	45
1 1								_	
		·			-				•
51			\vdash						
			\vdash						
			R		\dashv				حل
	Mass 121 75 137 9 111 52 59 63 208 98 60 78 107	121 75 137 9 0.1 111 0.1 52 59 63 208 0.1 98 60 78 0.4 1.07 1.04.4 203 0.1	Mass Limit Samples (S) 121 0.1221 75 4.4892 137 108.7900 9 0.1 0.5085 4.8842 111 0.1 0.2449 4940.2337 4940.2337 52 19.0813 59 7.1721 63 12.6710 22267.7442 208 10.8729 22.7202 5174.5589 327.9626 98 0.9749 391.6547 60 13.2096 391.6547 78 0.4 0.2732 107 0.0524 147.2447 203 0.1 0.2630 203 0.1 0.2630 203 0.1 0.2638 51 40.2638 66 73.5439	Mass Limit Samples (S) C 121 0.1221 B 0.1221 B 75 4.4892 137 9 0.1 0.5085 4.8842 B 111 0.1 0.2449 4940.2337 4940.2337 52 19.0813 59 7.1721 63 12.6710 22267.7442 208 10.8729 22.7202 5174.5589 327.9626 0.1 0.5625 98 0.9749 60 13.2096 391.6547 2630.8724 78 0.4 0.2732 B 107 0.0524 B 104.4 147.2447 203 0.1 0.2630 2.7115 B 1099.4727 51 40.2638	Mass Control Limit Samples (S) C Duplicate (D) 121 0.1221 B 0.0758 75 4.4892 A 4.1677 137 108.7900 B2.6985 0.4954 9 0.1 0.5085 A 0.4954 111 0.1 0.2449 A 0.2081 52 19.0813 A 16.8387 59 7.1721 A 6.0396 63 12.6710 A 9.7649 208 10.8729 A 6.5393 22267.7442 A 20794.3112 20794.3112 208 10.8729 A 6.5393 22.7202 A 21.5557 5174.5589 A 5263.5152 327.9626 A 274.9237 0.6914 0.6914 60 13.2096 A 11.7883 11.7883 391.6547 A 406.9967 2630.8724 A 2579.6354 78 0.4 0.2732 B 0.5544 107 0.0524 B 0.0375 104.4 A 147.2447 A 144.9766 203 O.1 O.1 O.2630 O.2075 2	Mass Control Limit Samples (S) C Duplicate (D) C 121 0.1221 B 0.0758 U 0.0758 U 75 4.4892 A 4.1677 137 108.7900 B2.6985 0.4954 A 9 0.1 0.5085 A 0.4954 A 4.8842 B 4.1265 B 4.1265 B 111 O.1 0.2449 A 0.2081 A 52 19.0813 A 16.8387 A 59 7.1721 A 6.0396 A 63 12.6710 A 9.7649 A 208 10.8729 A 6.5393 A 22267.7442 A 20794.3112 A 208 10.8729 A 6.5393 A 22.7202 A 21.5557 A 5174.5589 A 5263.5152 A 327.9626 A 274.9237 A 98 0.9749 A 0.6914 A 60 13.2096 A 11.7883 A 391.6547 A 406.9967 A 2630.8724 A 2579.6354 A 107 0.0524 B 0.0375 B 104.4 A 147.2447 A 144.9766 A </td <td>Mass Control Limit Samples (S) C Duplicate (D) C RPD 14245.2118 13384.2158 6 121 0.1221 B 0.0758 U 200 75 4.4892 4.1677 7 137 108.7900 82.6985 27 9 0.1 0.5085 0.4954 3 111 0.1 0.2449 0.2081 16 121 4.8842 B 4.1265 B 17 111 0.1 0.2449 0.2081 16 4940.2337 5945.6621 18 18 52 19.0813 16.8387 12 59 7.1721 6.0396 17 63 12.6710 9.7649 26 208 10.8729 6.5393 50 208 10.8729 6.5393 50 22.702 21.5557 5 5174.5589 5263.5152 2 327.9626 274.9237 18 0.1</td> <td> Mass Control Limit Samples (S) C Duplicate (D) C RPD Q </td> <td> Mass Control Limit Samples (S) C Duplicate (D) C RPD Q M </td>	Mass Control Limit Samples (S) C Duplicate (D) C RPD 14245.2118 13384.2158 6 121 0.1221 B 0.0758 U 200 75 4.4892 4.1677 7 137 108.7900 82.6985 27 9 0.1 0.5085 0.4954 3 111 0.1 0.2449 0.2081 16 121 4.8842 B 4.1265 B 17 111 0.1 0.2449 0.2081 16 4940.2337 5945.6621 18 18 52 19.0813 16.8387 12 59 7.1721 6.0396 17 63 12.6710 9.7649 26 208 10.8729 6.5393 50 208 10.8729 6.5393 50 22.702 21.5557 5 5174.5589 5263.5152 2 327.9626 274.9237 18 0.1	Mass Control Limit Samples (S) C Duplicate (D) C RPD Q	Mass Control Limit Samples (S) C Duplicate (D) C RPD Q M

NOTE: A

An asterisk (*) in column "Q" indicates poor duplicate precision (RPD > 20% OR |(S) - (D)| > LOQ for values < 5x LOQ).

The data are considered to be valid because the laboratory control sample is within the control limits. See the Laboratory Control Sample.

1 60/018) 10P 3 1,2, 415

ful All Sayly Ba, Cu, Pb, Mo,

RE290 5479

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CV = Cold Vapor

AF = Cold Vapor Atomic Fluorescence

CONCENTRATION QUALIFIERS:

U= Below MDL

B≔ Below LOQ

FLAGS:

* = Duplicate Out of Spec

🔆 eurofins |

QUALITY ASSURANCE SUMMARY

FORM 6

DUPLICATES

SDG No.: DE290

Matrix: SOIL

Level (low/med): LOW

Background Lab Sample ID: 6487627BKG

% Solids for Duplicate: 94.1

Batch ID(s): P34108A

Duplicate Lab Sample ID: 6487627DUP % Solids for Sample: 94.1

Concentrati	on Uni	ts: MG/KG							
		Control							Τ
Analyte	Mass	Limit	Samples (\$)	C	Duplicate (D)	C	RPD	Q	М
Aluminum			10687.6012		11036.9830		3		P
Boron		5.1	6.3486		6.9760	\Box	9		P
Calcium			2569.7386		2399.4646		7		P
Iron			17233.1358		17298.0739	Ħ	0		₽
Lithium			19.7499		18.5175		6		P
Magnesium			3720.6685		3488.1448		6		P
Manganese			278.2903		274.9561		1		P
Phosphorus			320.4018		320.8269	Ħ	0.		Р
Potassium			2718.5043		2622.0858	П	4		P
Sodium		102.2	211.8573		172.7714		20		P
Strontium			12.7125		13.1775		4		P
Tin			2.7150	В	2.5719	В	5		P
Titanium			1013.7364		1029.1629		2		P
Zirconium		_	2 3594	B	3 2249	ㅁ	27		<u> </u>

NOTE:

An asterisk (*) in column "Q" indicates poor duplicate precision (RPD > 20% OR |(S) - (D)| > LOQ for values < 5x LOQ).

The data are considered to be valid because the laboratory control sample is within the control limits. See the Laboratory Control Sample.

TV DLJX M. ful

#3 ~~

DEZ98 M477

METHODS:

P = ICP Atomic Emission Spectrometer

MS = ICP Mass Spectrometry

CV = Cold Vapor

AF = Cold Vapor Atomic Fluorescence

CONCENTRATION QUALIFIERS:

U= Below MDL

B= Below LOO

FLAGS:

* = Duplicate Out of Spec

SAMPLE DELIVERY GROUP

DX110

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
11-Jul-2011	SL-149-SA5DN-SB-4.0-5.0	6340984	N	METHOD	1613B	111
11-Jul-2011	SL-298-SA6-SS-0.0-0.5	6340995	N	METHOD	1613B	III
11-Jul-2011	SL-149-SA6-SS-0.0-0.5	6340990	. N	METHOD	1613B	111
11-Jul-2011	SL-297-SA6-SS-0.0-0.5	6340991	N	METHOD	1613B	HI
11-Jul-2011	SL-297-SA6-SS-0.0-0.5MS	6340992	MS	METHOD	1613B	111
11-Jul-2011	SL-297-SA6-SS-0.0-0.5MSD	6340993	MSD	METHOD	1613B	111
11-Jul-2011	SL-297-SA6-SS-0.0-0.5MSD	P340991M371013	MSD	METHOD	1613B	111
11-Jul-2011	SL-297-SA6-SS-0.0-0.5MS	P340991R370916	MS	METHOD	1613B	Ш
11-Jul-2011	DUP01-SA6-QC-071111	6340996	FD	METHOD	1613B	111
11-Jul-2011	SL-199-SA5DN-SB-4.0-5.0	6340985	N	METHOD	1613B	Ш
11-Jul-2011	SL-199-SA5DN-SB-9.0-10.0	6340986	N	METHOD	1613B	Ш
11-Jul-2011	SL-135-SA6-SB-4.0-5.0	6340987	N	METHOD	1613B	111
11-Jul-2011	SL-292-SA6-SS-0.0-0.5	6340994	N	METHOD	1613B	111
11-Jul-2011	SL-138-SA6-SB-4.0-5.0	6340988	N	METHOD	1613B	111
11-Jul-2011	SL-138-SA6-SB-9.0-10.0	6340989	N	METHOD	1613B	III
11-Jul-2011	SL-289-SA6-SS-0.0-0.5	6342345	N	METHOD	1613B	111
12-Jul-2011	SL-136-SA6-SB-4.0-5.0	6342337	N	METHOD	1613B	III
12-Jul-2011	SL-136-SA6-SB-9.0-10.0	6342338	N	METHOD	1613B	Ш
12-Jul-2011	SL-139-SA6-SB-4.0-5.0	6342339	N	METHOD	1613B	111
12-Jul-2011	SL-139-SA6-SB-9.0-10.0	6342340	N	METHOD	1613B	Ш
12-Jul-2011	SL-275-SA6-SB-4.0-5.0	6342341	N	METHOD	1613B	111
12-Jul-2011	SL-275-SA6-SB-9.0-10.0	6342342	N	METHOD	1613B	111
12-Jul-2011	SL-276-SA6-SB-4.0-5.0	6342343	N	METHOD	1613B	111
12-Jul-2011	SL-276-SA6-SB-9.0-10.0	6342344	N	METHOD	1613B	111

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX110 Laboratory: LL

EDD Filename: PrepDX110_v1 eQAPP Name: CDM_SSFL_110509

Method Categor	GENCHEN	nomination of the second conference in	e develope	e e de la Company	ericania comina internativa de
Method:	1613B	Matrix:	SO		

Sample ID: DUP01-SA6-QC-071111	Collect	ted: 7/11/2	011 9:50:0	00 4	Inalysis T	ype: RES	;	,	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,7,8-TCDD	0.936	J	0.100	MDL	1.01	PQL	ng/Kg	J	Z	T

Sample ID: SL-135-SA6-SB-4.0-5.0	Collec	ted: 7/11/2	2011 12:00:	:00 A	nalysis T	ype: RES		E	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.458	JB	0.0418	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.177	JBQ	0.0124	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0298	JBQ	0.0264	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0452	JBQ	0.0289	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0268	JBQ	0.0185	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0749	JBQ	0.0289	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0932	JBQ	0.0267	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0542	JBQ	0.0226	MDL	5.75	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0288	JQ	0.0166	MDL	5.75	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0516	JB	0.0167	MDL	5.75	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0432	JBQ	0.0169	MDL	5.75	PQL	ng/Kg	U	В
OCDD	0.987	JBQ	0.0373	MDL	11.5	PQL	ng/Kg	· υ	В
OCDF	0.229	JBQ	0.0754	MDL	11.5	PQL	ng/Kg	U	В

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.805	JB	0.0948	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.173	JBQ	0.0646	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0745	JBQ	0.0395	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0470	JBQ	0.0322	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0716	JB	0.0399	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0280	JBQ	0.0264	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0672	JBQ	0.0391	MDL	5.40	PQL	ng/Kg	Ü	В
1,2,3,7,8,9-HXCDF	0.0711	JB	0.0375	MDL	5.40	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0402	JBQ	0.0276	MDL	5.40	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0550	JBQ	0.0296	MDL	5.40	PQL	ng/Kg	U	В

Collected: 7/12/2011 8:25:00

Analysis Type: RES

Dilution: 1

Z

В

OCDD

OCDF

Sample ID: SL-136-SA6-SB-4.0-5.0

0.0952

0.120

MDL

MDL

10.8

10.8

PQL

PQL

ng/Kg

ng/Kg

U

JB

JBQ

6.26

0.313

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX110

EDD Filename: PrepDX110_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM
Method: 1613B

Matrix: SO

MDL

0.121

Sample ID: SL-136-SA6-SB-9.0-10.0	Collec	ted: 7/12/2	2011 8:35:0	00 A	Analysis Type: RES				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.681	JB	0.0670	MDL	5.40	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.165	JBQ	0.0453	MDL	5.40	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.0408	JBQ	0.0293	MDL	5.40	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0367	JBQ	0.0237	MDL	5.40	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.0359	JB	0.0289	MDL	5.40	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.0419	JB	0.0235	MDL	5.40	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0646	JBQ	0.0281	MDL	5.40	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.0479	JQ	0.0410	MDL	1.08	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.0430	JQ	0.0413	MDL	1.08	PQL	ng/Kg	U	В		
OCDD	2.50	JB	0.0934	MDL	10.8	PQL	ng/Kg	υ	В		
		+		 				· · · · · · · · · · · · · · · · · · ·			

Sample ID: SL-138-SA6-SB-4.0-5.0

OCDF

Collected: 7/11/2011 3:05:00

JBQ

0.187

Analysis Type: RES

10.8

PQL

ng/Kg

U

Dilution: 1

В

Laboratory: LL

			711121y 515 1 yps, 1136				Dilation, (
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.493	JB	0.0482	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.129	JB	0.0141	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0361	JBQ	0.0272	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0321	JBQ	0.0235	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0317	JB	0.0251	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0239	JBQ	0.0198	MDL	5.31	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0571	JBQ	0.0241	MDL	5.31	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0529	JBQ	0.0177	MDL	5.31	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0546	JBQ	0.0193	MDL	5.31	PQL	ng/Kg	υ	В
OCDD	1.60	JB	0.0466	MDL	10.6	PQL	ng/Kg	υ	В
OCDF	0.138	JBQ	0.0932	MDL	10.6	PQL	ng/Kg	U	В

Sample ID: SL-138-SA6-SB-9.0-10.0

Collected: 7/11/2011 3:15:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.848	JBQ	0.0633	MDL	5.51	PQL	ng/Kg	Ü	В
1,2,3,4,6,7,8-HPCDF	0.272	JB	0.0168	MDL	5.51	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0574	JBQ	0.0303	MDL	5.51	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.121	JBQ	0.0329	MDL	5.51	PQL	ng/Kg	u	В
1,2,3,4,7,8-HXCDF	0.160	JBQ	0.0249	MDL	5.51	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 8:06:43 AM

ADR version 1.4.0.111

Page 2 of 12

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

Matrix:

Sample ID: SL-138-SA6-SB-9.0-10.0	Collec	ted: 7/11/2	011 3:15:0	00 4	Analysis Type: RES				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,6,7,8-HXCDD	0.108	JВ	0.0341	MDL	5.51	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDF	0.0833	JBQ	0.0211	MDL	5.51	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.0675	JBQ	0.0334	MDL	5.51	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.115	JBQ	0.0290	MDL	5.51	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.133	JBQ	0.0456	MDL	5.51	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.176	JQ	0.0221	MDL	5.51	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.101	JBQ	0.0230	MDL	5.51	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.191	JB	0.0212	MDL	5.51	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.113	JQ	0.0475	MDL	1.10	PQL	ng/Kg	J	Z		
OCDD	4.73	JB	0.0583	MDL	11.0	PQL	ng/Kg	J	Z		
OCDF	0.447	JBQ	0.0928	MDL	11.0	PQL	ng/Kg	υ	8		

Sample ID; SL-139-SA6-SB-4.0-5.0

Collected: 7/12/2011 9:45:00

Analysis Type: RES

Dilution: 1

•										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.533	JB	0.0585	MDL	5.37	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.119	JBQ	0.0329	MDL	5.37	PQL	ng/Kg	υ	В	
1,2,3,4,7,8,9-HPCDF	0.0511	JBQ	0.0478	MDL.	5.37	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HXCDF	0.0619	JB	0.0268	MDL	5.37	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0388	JB	0.0259	MDL,	5.37	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.0435	JBQ	0.0261	MDL.	5.37	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0739	JBQ	0.0261	MDL	5.37	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0410	JB	0.0312	MDL	5.37	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0602	JBQ	0.0335	MDL	5.37	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0746	J	0.0229	MDL	5.37	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.0550	JB	0.0259	MDL	5.37	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.102	JBQ	0.0213	MDL	5.37	PQL	ng/Kg	u	В	
OCDD	1.87	JB	0.0932	MDL	10.7	PQL	ng/Kg	U	В	
OCDF	0.236	JBQ	0.0782	MDL	10.7	PQL	ng/Kg	U	B	

Sample ID: SL-139-SA6-SB-9.0-10.0

Collected: 7/12/2011 9:55:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.694	JB	0.0588	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.212	JBQ	0.0390	MDL	5.60	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

ADR version 1.4.0.111 10/27/2011 8:06:43 AM Page 3 of 12

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Matrix: SO

Sample ID: SL-139-SA6-SB-9.0-10.0	Collec	ted: 7/12/2	:011 9:55:0	00 A	Analysis Type: RES				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8-HxCDD	0.0691	JBQ	0.0339	MDL	5.60	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.102	JBQ	0.0221	MDL	5.60	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.0850	JB	0.0351	MDL	5.60	PQL	ng/Kg	Ų	В		
1,2,3,6,7,8-HXCDF	0.0895	JBQ	0.0212	MDL	5.60	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.0759	JBQ	0.0358	MDL	5.60	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.119	JBQ	0.0440	MDL	5.60	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.148	J	0.0238	MDL	5.60	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.0599	JBQ	0.0224	MDL	5.60	PQL	ng/Kg	U.	В		
2,3,4,7,8-PECDF	0.130	JBQ	0.0231	MDL	5.60	PQL	ng/Kg	U	В		
2,3,7,8-TCDF	0.0755	J	0.0334	MDL	1.12	PQL	ng/Kg	U	В		
OCDD	2.45	JB	0.0947	MDL	11.2	PQL	ng/Kg	U	В		
	1	 	+			t	+				

Sample ID: SL-149-SA5DN-SB-4.0-5.0

OCDF

Collected: 7/11/2011 8:15:00

0.0798

MDL

0.163

Analysis Type: RES

ng/Kg

11.2

Dilution: 1

В

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.807	JBQ	0.0654	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.251	JB	0.0272	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0619	JB	0.0256	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.109	JBQ	0.0385	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0558	JB	0.0215	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.122	JBQ	0.0382	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0982	JBQ	0.0370	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0310	JQ	0.0213	MDL	5.44	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0801	JBQ	0.0247	MDL	5.44	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0580	JB	0.0220	MDL	5.44	PQL	ng/Kg	U	В
OCDD	6.19	JВ	0.0920	MDL	10.9	PQL	ng/Kg	J	Z
OCDF	0.518	JBQ	0.118	MDL	10.9	PQL	ng/Kg	U	В

Sample ID: SL-149-SA6-SS-0.0-0.5

Collected: 7/11/2011 9:15:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.24	JB	0.0714	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.14	JB	0.0884	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.61	JВ	0.0773	MDL	5.02	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 8:06:43 AM

ADR version 1.4.0.111

Page 4 of 12

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

and the company of th

Method C	ate	go	ry.		e E	ľ	CI	Œ	V	1
							_			
Method:					16	K	1=1			

Matrix: SO

Sample ID: SL-149-SA6-SS-0.0-0.5	Collec	ted: 7/11/2	2011 9:15:0	0 A	Analysis Type: RES				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,6,7,8-HXCDD	2.65	JB	0.0872	MDL	5.02	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.993	JB	0.0707	MDL	5.02	PQL	ng/Kg	J	Z ·		
1,2,3,7,8,9-HXCDD	1.87	JB	0.0843	MDL	5.02	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.434	JBQ	0.0754	MDL	5.02	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.906	JB	0.0658	MDL	5.02	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	1.01	J	0.0680	MDL	5.02	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	1.04	JB	0.0614	MDL	5.02	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	1.27	JB	0.0626	MDL	5.02	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.267	J	0.0381	MDL	1.00	PQL	ng/Kg	J	Z		

Sample ID: SL-199-SA5DN-SB-4.0-5.0

Collected: 7/11/2011 10:00:00

Analysis Type: RES

Dilution: 1

					, 0.0 .	, pco	Dilation,		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.703	JB	0.0582	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.195	JB	0.0167	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0396	JBQ	0.0355	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0741	JBQ	0.0302	MDL	5.79	PQL	ng/Kg	Ü	В
1,2,3,6,7,8-HXCDD	0.188	JB	0.0362	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0407	JBQ	0.0237	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.438	JBQ	0.0370	MDL	5.79	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.538	JBQ	0.0468	MDL	5.79	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0889	JBQ	0.0399	MDL	5.79	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.145	JQ	0.0215	MDL	5.79	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0839	JB	0.0279	MDL	5.79	PQL	ng/Kg	U	B
2,3,4,7,8-PECDF	0.0485	JB	0.0228	MDL	5.79	PQL	ng/Kg	U	В
OCDD	2.11	JB	0.0645	MDL	11.6	PQL	ng/Kg	U	В
OCDF	0.264	JB	0.148	MDL	11.6	PQL	ng/Kg	U	В

Sample ID: SL-199-SA5DN-SB-9.0-10.0

Collected: 7/11/2011 10:05:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.857	JB	0.0599	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.227	JBQ	0.0162	MDL	5.57	PQL	ng/Kg	U	B
1,2,3,4,7,8,9-HPCDF	0.0376	JBQ	0.0354	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0465	JBQ	0.0213	MDL	5.57	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 8:06:43 AM

ADR version 1.4.0.111

Page 5 of 12

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM			
Method:	1613B	Matrix:	SO	

Sample ID: SL-199-SA5DN-SB-9.0-10.0	Collec	ted: 7/11/2	011 10:05	:00 A	nalysis T	ype: RES	Dilution: 1		
<i>Analyt</i> e	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDD	0.0397	JBQ	0.0321	MDL	5.57	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0191	JBQ	0.0187	MDL.	5.57	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0660	JBQ	0.0316	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0345	JQ	0.0211	MDL	5.57	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0487	JBQ	0.0201	MDL	5.57	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0579	JBQ	0.0220	MDL	5.57	PQL	ng/Kg	U	В
OCDD	3.74	JB	0.0480	MDL	11.1	PQL	ng/Kg	U	В
OCDF	0.271	JBQ	0.0989	MDL	11.1	PQL	ng/Kg	U	В

Sample ID: SL-275-SA6-SB-4.0-5.0 Collected: 7/12/2011 11:55:00 Analysis Type: RES Dilution: 1

	, ,,									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.608	JВ	0.0525	MDL	5.15	PQL	ng/Kg	υ	В	
1,2,3,4,6,7,8-HPCDF	0.117	JB	0.0219	MDL	5.15	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0798	JBQ	0.0542	MDL	5.15	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0664	JBQ	0.0173	MDL	5.15	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0785	JBQ	0.0281	MDL	5.15	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0364	JBQ	0.0139	MDL	5.15	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.134	JB	0.0283	MDL	5.15	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0569	JBQ	0.0240	MDL	5.15	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0324	JQ	0.0168	MDL	5.15	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.0274	JBQ	0.0162	MDL	5.15	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0570	JBQ	0.0175	MDL	5.15	PQL	ng/Kg	U	В	
OCDD	2.02	JB	0.0832	MDL	10.3	PQL	ng/Kg	U	В	
OCDF	0.224	JBQ	0.0829	MDL	10.3	PQL	ng/Kg	U	В	

Sample ID: SL-275-SA6-SB-9.0-10.0 Collected: 7/12/2011 12:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.555	JB	0.0452	MDL	5.45	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.128	JBQ	0.0172	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0396	JBQ	0.0125	MDL	5.45	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0337	JBQ	0.0257	MDL	5.45	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0280	JBQ	0.0251	MDL	5.45	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0257	JBQ	0.0164	MDL	5.45	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX110

EDD Filename: PrepDX110_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM CHARLES COMMON TO THE STATE OF THE S	i kinderie sam i satulististististististi	
Method:	1613B	Matrix: SO	

Sample ID: SL-275-SA6-SB-9.0-10.0	Collec	Collected: 7/12/2011 12:05:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,4,6,7,8-HXCDF	0.0393	JBQ	0.0117	MDL	5.45	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0387	JBQ	0.0163	MDL	5.45	PQL	ng/Kg	Ū	В	
OCDD	2.71	JBQ	0.0624	MDL	10.9	PQL	ng/Kg	U	В	
OCDF	0.152	JBQ	0.0759	MDL	10.9	PQL	ng/Kg	υ	В	

Sample ID: SL-276-SA6-SB-4.0-5.0	Collec	Collected: 7/12/2011 2:25:00						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,7,8-TCDF	0.965	JC	0.0894	MDL	1.08	PQL	ng/Kg	J	Z	٦

Sample ID: SL-276-SA6-SB-4.0-5.0	Collec	ted: 7/12/2	:011 2:25:0	10 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	1.21	JB	0.111	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.529	JBQ	0.0784	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	2.46	JB	0.102	MDL	5.42	PQL	ng/Kg	j	Z	
1,2,3,6,7,8-HXCDD	2.90	JB	0.0796	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	1.05	JB	0.101	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.17	JB	0.0766	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.232	JBQ	0.120	MDL,	5.42	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.230	JBQ	0.0587	MDL	5.42	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.756	JB	0.0986	MDL	5.42	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	2.81	JB	0.107	MDL	5.42	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0400	JQ	0.0313	MDL	1.08	PQL	ng/Kg	J	Z	

Sample ID: SL-276-SA6-SB-9.0-10.0	Collec	ted: 7/12/2	2011 2:35:0	00 A.	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.423	JB	0.0407	MDL	5.41	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0993	JB	0.0144	MDL	5.41	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0357	JBQ	0.0165	MDL.	5.41	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0291	JBQ	0.0137	MDL	5.41	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0427	JBQ	0.0154	MDL	5.41	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0541	JBQ	0.0174	MDL	5.41	PQL	ng/Kg	U	В	
OCDD	1.24	JB	0.0631	MDL	10.8	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 8:06:44 AM ADR version 1.4.0.111

Laboratory: LL

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

Method:	ory: GENCHEM 7 1613B			Ma	ıtrix:	so				
Sample ID: SL-276	-SA6-SB-9.0-10.0	Collec	ted: 7/12/2	2011 2:35:0	00 A	nalysis T	ype: RES		D	ilution: 1
Analyte		Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDF	Literature and the second seco	0.150	JB	0.0822	MDL	10.8	PQL	ng/Kg	U	В

Sample ID: SL-289-SA6-SS-0.0-0.5 Collected: 7/11/2011 3:50:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RL Review Reason Analyte Result Qual DL RL Units Type Type Qual Code 1,2,3,4,6,7,8-HPCDD 1.92 JB 0.0539 MDL 4.94 **PQL** В πg/Kg 1,2,3,4,6,7,8-HPCDF 0.300 JBQ 0.0207 MDL 4.94 PQL U В ng/Kg 1,2,3,4,7,8-HXCDF 0.0421 MDL PQL U **JBQ** 0.0149 4.94 ng/Kg В 1,2,3,6,7,8-HXCDD 0.0740 **JBQ** 0.0263 MDL 4.94 PQL U В ng/Kg 1,2,3,6,7,8-HXCDF U 0.0267 JBQ 0.0129 MDL 4.94 PQL ng/Kg В 1,2,3,7,8,9-HXCDD 0.0738 0.0268 MDL 4.94 JB PQL ng/Kg U В 1,2,3,7,8,9-HXCDF 0.0209 **JBQ** 0.0196 MDL 4.94 **PQL** U ng/Kg В 1,2,3,7,8-PECDF 0.0282 JQ 0.0161 MDL 4.94 **PQL** ng/Kg J Z 2,3,4,6,7,8-HXCDF 0.0410 JBQ 0.0143 MDL 4.94 **PQL** ng/Kg U В 2,3,4,7,8-PECDF 0.0424 **JBQ** 0.0170 MDL 4.94 PQL ng/Kg U В OCDF 0.493 0.0861 U JΒ MDL 9.88 **PQL** ng/Kg В

Sample ID: SL-292-SA6-SS-0.0-0.5	***************************************				Analysis Type: RES			Dilution: 1		
	Lab	Lab		DL		RL		Data Review	Reason	
Analyte	Result	Qual	l DL l	Type	l RL	Type	Units	Qual	Code	

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.67	JB	0.181	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	2.52	JB	0.122	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	3.55	JB	0.113	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	4.86	JB	0.122	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.02	JB	0.130	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3, 7, 8-PECDD	2.04	JB	0.184	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	3.99	J	0.126	MDL	5.01	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	3.32	JB	0.107	MDL	5.01	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	4.57	JB	0.117	MDL	5.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.643	JQ	0.0925	MDL	1.00	PQL	ng/Kg	J	Z

Lab Lab DL RL Review Reason Analyte Result Qual DL Type RL Type Units Qual Code	Sample ID: SL-297-SA6-SS-0.0-0.5	Collec	ted: 7/11/2	011 9:42:0	00 4	analysis T	ype: RES			Dilution: 1
	Analyte		1	DL		RL		Units	Review	

0.535

MDL

5.04

PQL

ng/Kg

*XI

1,2,3,4,6,7,8-HPCDD

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

2850

10/27/2011 8:06:44 AM ADR version 1.4.0.111 Page 8 of 12

EΒ

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM	andikaromarikanikan per			Carlos de la provi	FH-2145
Method:	1613B		Matrix:	SO	11 14 E T II L E	

Sample ID: SL-297-SA6-SS-0.0-0.5	Collec	ted: 7/11/2	2011 9:42:0	00 🗸	Analysis T	ype: RES		L	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDD	0.939	JQ	0.0911	MDL	1.01	PQL	ng/Kg	J	Z
OCDD	56700	EВ	1.02	MDL	10.1	PQL	ng/Kg	J	*XI

Sample ID: SL-298-SA6-SS-0.0-0.5	Collec	ted: 7/11/2	011 8:32:0	00 A	nalysis T	ype: RES		E	Dilution: 1
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5730	EB	1.09	MDL	5.02	PQL	ng/Kg	J	*XI
OCDD	97400	EB	1.61	MDL	10.0	PQL	ng/Kg	J	*XI

Lab Reporting Batch ID: DX110 EDD Filename: PrepDX110_v1

Laboratory: LL eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description							
	Duplicate Sample Count = 0							
	Duplicate Sample Count > 1							
	Illogical Fraction							
	Laboratory Control Sample Count = 0							
	Laboratory Control Sample Count > 1							
	Laboratory Triplicate Precision							
	Matrix Spike Sample Count = 0							
	Matrix Spike Sample Count > 1							
	Method Blank Sample Count = 0							
	Method Blank Sample Count > 1							
	Percent Moisture							
*XI	Compound Quantitation and CRQL							
A	ICP Serial Dilution							
В	Calibration Blank Contamination							
В	Method Blank Contamination							
С	Continuing Calibration Verification Correlation Coefficient							
С	Continuing Calibration Verification Percent Difference Lower Estimation							
С	Continuing Calibration Verification Percent Difference Lower Rejection							
C	Continuing Calibration Verification Percent Difference Upper Estimation							
С	Continuing Calibration Verification Percent Difference Upper Rejection							
С	Initial Calibration Correlation Coefficient							
c	Initial Calibration Percent Relative Standard Deviation							
С	Initial Calibration Verification Correlation Coefficient							
С	Initial Calibration Verification Percent Difference Lower Estimation							
С	Initial Calibration Verification Percent Difference Lower Rejection							
С	Initial Calibration Verification Percent Difference Upper Estimation							
С	Initial Calibration Verification Percent Difference Upper Rejection							
E	Laboratory Control Precision							
E	Laboratory Duplicate Precision							
E	Matrix Spike Precision							

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 8:06:44 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX110 Laboratory: LL

EDD Filename: PrepDX110_v1 eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
H	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
н	Temperature Rejection
1	Internal Standard Estimation
I	Internal Standard Rejection
L	Laboratory Control Precision
ī	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
M	Continuing Tune
M	Initial Tune
M	Performance Evaluation Mixture
M	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: PrepDX110_v1

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX110

Method Blank Outlier Report

Lab Reporting Batch ID: DX110

EDD Filename: DX110_v1.

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method: 161 Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2030B371855	7/25/2011 6:55:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-BCDD 2,3,4,6,7,8-PECDD 2,3,4,7,8-PECDD CODD OCDF	0.487 ng/Kg 0.198 ng/Kg 0.0894 ng/Kg 0.0284 ng/Kg 0.0788 ng/Kg 0.0466 ng/Kg 0.0517 ng/Kg 0.0580 ng/Kg 0.0495 ng/Kg 0.0396 ng/Kg 0.0396 ng/Kg 0.0396 ng/Kg 0.0844 ng/Kg 0.904 ng/Kg 0.914 ng/Kg	DUP01-SA6-QC-071111 SL-135-SA6-SB-4.0-5.0 SL-136-SA6-SB-4.0-5.0 SL-136-SA6-SB-4.0-5.0 SL-138-SA6-SB-4.0-5.0 SL-138-SA6-SB-9.0-10.0 SL-139-SA6-SB-9.0-10.0 SL-139-SA6-SB-9.0-10.0 SL-149-SA6-SB-9.0-10.0 SL-149-SA6-SB-9.0-10.0 SL-149-SA6-SB-0.0-0.5 SL-199-SA5DN-SB-4.0-5.0 SL-199-SA5DN-SB-4.0-5.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-289-SA6-SS-0.0-0.5 SL-292-SA6-SS-0.0-0.5 SL-298-SA6-SS-0.0-0.5
BLK2030B372235	7/27/2011 10:35:00 PM	2,3,7,8-TCDF	0.0224 ng/Kg	DUP01-SA6-QC-071111 SL-135-SA6-SB-4.0-5.0 SL-136-SA6-SB-4.0-5.0 SL-136-SA6-SB-9.0-10.0 SL-138-SA6-SB-9.0-10.0 SL-138-SA6-SB-9.0-10.0 SL-139-SA6-SB-9.0-10.0 SL-149-SA6-SB-9.0-10.0 SL-149-SA5DN-SB-4.0-5.0 SL-149-SA5DN-SB-4.0-5.0 SL-199-SA5DN-SB-9.0-10.0 SL-275-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SB-9.0-10.0 SL-276-SA6-SS-0.0-0.5 SL-292-SA6-SS-0.0-0.5 SL-298-SA6-SS-0.0-0.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.458 ng/Kg	0.458U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.177 ng/Kg	0.177U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0298 ng/Kg	0.0298U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0452 ng/Kg	0,0452U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0268 ng/Kg	0.0268U ng/Kg
SL-135-\$A6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0749 ng/Kg	0.0749U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0932 ng/Kg	0.0932U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0542 ng/Kg	0.0542U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0516 ng/Kg	0.0516U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0432 ng/Kg	0.0432U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	OCDD	0.987 ng/Kg	0.987U ng/Kg
SL-135-SA6-SB-4.0-5.0(RES)	OCDF	0.229 ng/Kg	0.229U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.805 ng/Kg	0.805U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.173 ng/Kg	0.173U ng/Kg

10/27/2011 7:40:54 AM ADR version 1.4.0.111 Page 1 of 5

Method Blank Outlier Report

Lab Reporting Batch ID: DX110 Laboratory: LL

EDD Filename: DX110_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B		Mindres and an every respect to the last the state of points of the		alan karangan kangan
Matrix: SO				en en de la companyant de de la companyant de la companyant de la companyant de la companyant de la companyant
Method Blank				Associated
Sample ID	Analysis Date	Analyte	Result	Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0745 ng/Kg	0.0745U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0470 ng/Kg	0.0470U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0716 ng/Kg	0.0716U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0280 ng/Kg	0.0280U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0672 ng/Kg	0.0672U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0711 ng/Kg	0.0711U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0402 ng/Kg	0.0402U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0550 ng/Kg	0.0550U ng/Kg
SL-136-SA6-SB-4.0-5.0(RES)	OCDF	0.313 ng/Kg	0.313U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.681 ng/Kg	0.681U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.165 ng/Kg	0.165U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0408 ng/Kg	0.0408U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0367 ng/Kg	0.0367U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0359 ng/Kg	0.0359U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0419 ng/Kg	0.0419U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0646 ng/Kg	0.0646U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0430 ng/Kg	0.0430U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	OCDD	2,50 ng/Kg	2.50U ng/Kg
SL-136-SA6-SB-9.0-10.0(RES)	OCDF	0.187 ng/Kg	0.187U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.493 ng/Kg	0.493U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.129 ng/Kg	0.129U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0361 ng/Kg	0.0361U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0321 ng/Kg	0.0321U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0317 ng/Kg	0.0317U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0239 ng/Kg	0.0239U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0571 ng/Kg	0.0571U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0529 ng/Kg	0.0529U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0546 ng/Kg	0.0546U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	OCDD	1.60 ng/Kg	1.60U ng/Kg
SL-138-SA6-SB-4.0-5.0(RES)	OCDF	0.138 ng/Kg	0.138U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.848 ng/Kg	0.848U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.272 ng/Kg	0.272U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0574 ng/Kg	0.0574U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.121 ng/Kg	0.121U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0,160 ng/Kg	0.160U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.108 ng/Kg	0.108U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	. 0.0833 ng/Kg	0.0833U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0675 ng/Kg	0.0675U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.115 ng/Kg	0.115U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.133 ng/Kg	0,133U ng/Kg

10/27/2011 7:40:54 AM ADR version 1.4.0.111 Page 2 of 5

Method Blank Outlier Report

Lab Reporting Batch ID: DX110 Laboratory: LL

EDD Filename: DX110_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO			ine jugget hat Kalennagine f	Allen (Veril) is united in uniterated by
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-138-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0,101 ng/Kg	0.101U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.191 ng/Kg	0.191U ng/Kg
SL-138-SA6-SB-9.0-10.0(RES)	OCDF	0.447 ng/Kg	0.447U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,533 ng/Kg	0.533U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.119 ng/Kg	0.119U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0511 ng/Kg	0.0511U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0619 ng/Kg	0.0619U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0388 ng/Kg	0.0388U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0435 ng/Kg	0.0435U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0739 ng/Kg	0.0739U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0410 ng/Kg	0.0410U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0602 ng/Kg	0.0602U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0550 ng/Kg	0.0550U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.102 ng/Kg	0.102U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	OCDD	1.87 ng/Kg	1.87U ng/Kg
SL-139-SA6-SB-4.0-5.0(RES)	OCDF	0.236 ng/Kg	0.236U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0,694 ng/Kg	0.694U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.212 ng/Kg	0.212U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0691 ng/Kg	0.0691U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.102 ng/Kg	0.102U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0850 ng/Kg	0.0850U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0895 ng/Kg	0.0895U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0759 ng/Kg	0.0759U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0,119 ng/Kg	0.119U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0599 ng/Kg	0.0599U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.130 ng/Kg	0.130U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0755 ng/Kg	0.0755U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	OCDD	2.45 ng/Kg	2,45U ng/Kg
SL-139-SA6-SB-9.0-10.0(RES)	OCDF	0.163 ng/Kg	0.163U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.807 ng/Kg	0.807U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.251 ng/Kg	0.251U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0619 ng/Kg	0.0619U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.109 ng/Kg	0.109U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0558 ng/Kg	0,0558U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.122 ng/Kg	0.122U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0982 ng/Kg	0.0982U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0801 ng/Kg	0.0801U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0580 ng/Kg	0.0580U ng/Kg
SL-149-SA5DN-SB-4.0-5.0(RES)	OCDF	0.518 ng/Kg	0.518U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.703 ng/Kg	0.703U ng/Kg

10/27/2011 7:40:54 AM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX110 Laboratory: LL

EDD Filename: DX110_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.195 ng/Kg	0.195U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0,0396 ng/Kg	0.0396U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0741 ng/Kg	0.0741U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.188 ng/Kg	0.188U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0407 ng/Kg	0.0407U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0889 ng/Kg	0.0889U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0839 ng/Kg	0.0839U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0485 ng/Kg	0.0485U ng/Kg
SL-199-SA5DN-SB-4,0-5,0(RES)	OCDD	2.11 ng/Kg	2.11U ng/Kg
SL-199-SA5DN-SB-4.0-5.0(RES)	OCDF	0.264 ng/Kg	0.264U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.857 ng/Kg	0.857U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.227 ng/Kg	0.227U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0376 ng/Kg	0.0376U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0465 ng/Kg	0.0465U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0397 ng/Kg	0.0397U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0191 ng/Kg	0.0191U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0660 ng/Kg	0.0660U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0487 ng/Kg	0.0487U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0579 ng/Kg	0.0579U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	OCDD	3.74 ng/Kg	3.74U ng/Kg
SL-199-SA5DN-SB-9.0-10.0(RES)	OCDF	0.271 ng/Kg	0.271U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.608 ng/Kg	0.608U ng/Kg
SL-275-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,4,6,7,8-HPCDF	0.117 ng/Kg	0.117U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0798 ng/Kg	0.0798U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0664 ng/Kg	0.0664U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0785 ng/Kg	0.0785U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0364 ng/Kg	0.0364U ng/Kg
SL-275-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,7,8,9-HXCDD	0.134 ng/Kg	0.134U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0569 ng/Kg	0.0569U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0274 ng/Kg	0.0274U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0570 ng/Kg	0.0570U ng/Kg
SL-275-\$A6-\$B-4.0-5.0(RE\$)	OCDD	2.02 ng/Kg	2.02U ng/Kg
SL-275-SA6-SB-4.0-5.0(RES)	OCDF	0.224 ng/Kg	0.224U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.555 ng/Kg	0.555U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.128 ng/Kg	0.128U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0396 ng/Kg	0.0396U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0337 ng/Kg	0.0337U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0280 ng/Kg	0.0280U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0257 ng/Kg	0.0257U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0393 ng/Kg	0.0393U ng/Kg

10/27/2011 7:40:54 AM ADR version 1.4.0.111 Page 4 of 5

Lab Reporting Batch ID: DX110 Laboratory: LL

EDD Filename: DX110_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				E Palential Anton apprendiction of the
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-275-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0387 ng/Kg	0.0387U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	OCDD	2.71 ng/Kg	2.71U ng/Kg
SL-275-SA6-SB-9.0-10.0(RES)	OCDF	0.152 ng/Kg	0.152U ng/Kg
SL-276-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.232 ng/Kg	0.232U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.423 ng/Kg	0.423U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0993 ng/Kg	0.0993U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0357 ng/Kg	0.0357U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0291 ng/Kg	0.0291U ng/Kg
SL-276-SA6-\$B-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0427 ng/Kg	0.0427U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0541 ng/Kg	0.0541U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	OCDD	1.24 ng/Kg	1.24U ng/Kg
SL-276-SA6-SB-9.0-10.0(RES)	OCDF	0.150 ng/Kg	0.150U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDD	1.92 ng/Kg	1.92U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDF	0.300 ng/Kg	0.300U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.0421 ng/Kg	0.0421U ng/Kg
SL-289-SA6-SS-0,0-0.5(RES)	1,2,3,6,7,8-HXCDD	0.0740 ng/Kg	0.0740U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.0267 ng/Kg	0.0267U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.0738 ng/Kg	0.0738U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0209 ng/Kg	0.0209U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.0410 ng/Kg	0.0410U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.0424 ng/Kg	0.0424U ng/Kg
SL-289-SA6-SS-0.0-0.5(RES)	OCDF	0.493 ng/Kg	0.493U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling
10/27/2011 7:40:54 AM ADR version 1.4.0.111

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: DX110_v1.

eQAPP Name: CDM_SSFL_110509

Matrix: SO		med deter A, m	* 144 1 71 1	the second reserve	ar meg e vie skill.	2 · · · \$1 1、15·40 \$200 \$300 \$300 \$300 \$300 \$300 \$300 \$30	
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected - Compounds	Flag
SL-297-SA6-SS-0.0-0.5MS SL-297-SA6-SS-0.0-0.5MSD SL-297-SA6-SS-0.0-0.5)	OCDD	-489	-572	40.00-135.00	-	OCDD	No Qual, >4x
SL-297-SA6-SS-0,0-0,5MSD SL-297-SA6-SS-0,0-0,5)	1,2,3,4,6,7,8-HPCDD	-	35	40.00-135.00	-	1,2,3,4,6,7,8-HPCDD	No Qual, >4x

10/27/2011 7:32:21 AM ADR version 1.4.0.111 Page 1 of 1

Field Duplicate RPD Report

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: DX110_v1. eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO					
	Concent	ration (%)		1	
Analyte	SL-297-SA6-SS-0.0-0.5	DUP01-SA6-QC-071111	Sample RPD	eQAPP RPD	Flag
MOISTURE	0.85	0.80	6		No Qualifiers Applied

Method: 1613B Matrix: SO

	Concentra	tion (ng/Kg)			
Analyte	SL-297-SA6-SS-0.0-0.5	DUP01-SA6-QC-071111	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD	2850	3330	16	50.00	
1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	354 41.6	419 49.0	17 16	50.00 50.00	
1,2,3,4,7,8-HxCDD	12.0	14.0	15	50.00	
1,2,3,4,7,8-HXCDF	30.7	33.5	9	50.00	
1,2,3,6,7,8-HXCDD	70.9	84.3	17	50.00	
1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	17.7 27.6	20.7 31.9	16 14	50.00 50.00	
1,2,3,7,8,9-HXCDF	5.90	6.47	9	50.00	No Qualifiers Applied
1,2,3,7,8-PECDD	7.47	6.57	13	50.00	
1,2,3,7,8-PECDF	33.6	51.0	41	50.00	
2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	31.1 28.7	37.9 34.2	20 17	50.00 50.00	
2,3,7,8-TCDD	0.939	0.936	0	50.00	
2,3,7,8-TCDF	11.8	11.5	3	50.00	
OCDD	56700	66100	15	50.00	
OCDF .	736	848	14	50.00	

Page 1 of 1

Lab Reporting Batch ID: DX110

EDD Filename: DX110_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP01-SA6-QC-071111	2,3,7,8-TCDD	J	0.936	1.01	PQL	ng/Kg	J (all detects)
SL-135-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	0.458 0.177 0.0298 0.0452 0.0268 0.0749 0.0932 0.0542 0.0288 0.0516 0.0432 0.987 0.229	5.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-136-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	0.805 0.173 0.0745 0.0470 0.0716 0.0280 0.0672 0.0711 0.0402 0.0550 6.26 0.313	5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40	PAL PAL PAL PAL PAL PAL PAL PAL PAL PAL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-136-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDD	# # # # # # # # # # # # # # # # # # #	0.681 0.165 0.0408 0.0367 0.0359 0.0419 0.0646 0.0479 0.0430 2.50 0.187	5.40 5.40 5.40 5.40 5.40 5.40 5.40 1.08 1.08 10.8	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-138-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.493 0.129 0.0361 0.0321 0.0317 0.0239 0.0571 0.0529 0.0546 1.60 0.138	5.31 5.31 5.31 5.31 5.31 5.31 5.31 5.31	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

10/27/2011 7:41:05 AM ADR version 1.4.0.111 Page 1 of 4

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: DX110_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Vlatr	ix:	SO
_		

Watrix: 50							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-138-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.848	5.51	PQL	ng/Kg	
02 100 0110 02 010 1010	1,2,3,4,6,7,8-HPCDF	JB	0.272	5.51	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0574	5.51	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.121	5.51	PQL.	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.160	5.51	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.108	5.51	PQL	ng/Kg	: '
	1,2,3,6,7,8-HXCDF	JBQ	0.0833	5.51	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0675	5.51	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.115	5.51	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.113	5.51	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JQ	0.176	5.51	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.170	5.51	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.101	5.51	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.131	1.10	PQL	ng/Kg	
	OCDD	JB .	4.73	11.0	PQL	ng/Kg	
	OCDF	JBQ	0.447	11.0	PQL	ng/Kg	
	·			<u> </u>			
SL-139-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.533	5.37	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.119	5.37	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0511	5.37	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0619	5.37	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0388	5.37	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0435	5.37	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0739	5.37	PQL	ng/Kg	l (all data da)
	1,2,3,7,8,9-HXCDF	JB	0.0410	5.37	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0602	5.37	PQL	ng/Kg	
	1,2,3,7,8-PECDF	J	0.0746	5.37	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0550	5.37	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.102	5.37	PQL	ng/Kg	
	OCDD .	JB	1.87	10.7	PQL	ng/Kg	
	OCDF	JBQ	0.236	10.7	PQL	ng/Kg	
SL-139-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.694	5.60	PQL	ng/Kg	
DE-103-0710-0D-3:0-10:0	1,2,3,4,6,7,8-HPCDF	JBQ	0.034	5.60	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0691	5.60	PQL		
	1,2,3,4,7,8-HXCDF	JBQ	0.102	5.60	PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.102	5.60	PQL		
	1,2,3,6,7,8-HXCDF	JBQ	0.0895	5.60	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0693	1	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0735	5.60 5.60	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	J	0.119	I I		ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ		5.60	PQL	ng/Kg	
:			0.0599	5.60	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.130	5.60	PQL	ng/Kg	
	2,3,7,8-TCDF OCDD	J	0.0755	1.12	PQL	ng/Kg	
	OCDF	JB	2.45	11.2	PQL	ng/Kg	
P		JBQ	0.163	11.2	PQL	ng/Kg	
SL-149-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.807	5.44	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.251	5.44	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0619	5.44	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.109	5.44	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0558	5.44	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.122	5.44	PQL	ng/Kg	المال المال المال
	1,2,3,7,8,9-HXCDF	JBQ	0.0982	5.44	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JQ	0.0310	5.44	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0801	5.44	PQL	ng/Kg	
!	2,3,4,7,8-PECDF	JB	0.0580	5.44	PQL	ng/Kg	
	OCDD	JВ	6.19	10.9	PQL	ng/Kg	
	OCDF	JBQ	0.518	10.9	PQL	ng/Kg	
	<u> </u>						

Lab Reporting Batch ID: DX110

Laboratory: LL

EDD Filename: DX110_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B SO

Matrix:

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-149-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD		1.24 1.14 2.61 2.65 0.993 1.87 0.434 0.906 1.01 1.04 1.27 0.267	5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-199-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	######################################	0.703 0.195 0.0396 0.0741 0.188 0.0407 0.438 0.538 0.0889 0.145 0.0839 0.0485 2.11 0.264	5.79 5.79 5.79 5.79 5.79 5.79 5.79 5.79	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-199-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	# # # # # # # # # # # # # # # # # # #	0.857 0.227 0.0376 0.0465 0.0397 0.0191 0.0660 0.0345 0.0487 0.0579 3.74 0.271	5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-275-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0CDD 0CDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	0.608 0.117 0.0798 0.0664 0.0785 0.0364 0.134 0.0569 0.0324 0.0274 0.0570 2.02 0.224	5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX110

EDD Filename: DX110_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SL-275-SA6-SB-9.0-10.0	Analyte 1,2,3,4,6,7,8-HPCDD	Qual	Result	Limit	Туре	Units	Flag
		JВ	0.555	5.45	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.128	5.45	PQL	ng/Kg	
i i	1,2,3,4,7,8-HXCDF	JBQ	0.0396	5.45	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0337	5.45	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0280	5.45	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0257	5.45	PQL	ng/Kg	J (all detects)
	2,3,4,6,7,8-HXCDF	JBQ	0.0393	5.45	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0387	5.45	PQL	ng/Kg	
	OCDD	JBQ	2.71	10.9	PQL	ng/Kg	
	OCDF	JBQ	0.152	10.9	PQL	ng/Kg	
	1.2.3.4.7.8.9-HPCDF	JB	1.21	5.42	PQL	·	·
	1,2,3,4,7,6,9-n-CDF 1,2,3,4,7,8-HxCDD	JBQ	0.529	5.42	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	2.46	5.42	PQL	ng/Kg	
						ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	2.90	5.42	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	1.05	5.42	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.17	5.42	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.232	5.42	PQL	ng/Kg	- (
	1,2,3,7,8-PECDD	JBQ	0.230	5.42	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.756	5.42	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	2.81	5.42	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0400	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	JC	0.965	1.08	PQL	ng/Kg	
SL-276-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.423	5.41	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0993	5.41	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0357	5.41	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0291	5.41	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0427	5.41	PQL	ng/Kg	J (all detects)
	2,3,4,7,8-PECDF	JBQ	0.0541	5.41	PQL	ng/Kg	
	OCDD	JB	1.24	10.8	PQL	ng/Kg	
	OCDF	JB	0.150	10.8	PQL	ng/Kg	
SL-289-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD	JB	1.92	4.94	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.300	4.94	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0421	4.94	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0740	4.94	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0267	4.94	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0738	4.94	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0209	4.94	PQL	ng/Kg	o (an actobio)
	1,2,3,7,8-PECDF	JQ	0.0282	4.94	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0410	4.94	PQL	ng/Kg	
İ	2,3,4,7,8-PECDF	JBQ	0.0410	4.94	PQL	ng/Kg	
	OCDF	JB	0.493	9.88	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB					
		JB	2.67	5.01	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD		2.52	5.01	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	3.55	5.01	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	4.86	5.01	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.02	5.01	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	2.04	5.01	PQL	ng/Kg	- ,/
	1,2,3,7,8-PECDF	7	3.99	5.01	PQL	ng/Kg	
			2 22	ı Kını l	137 31	i naika l	
	2,3,4,6,7,8-HXCDF	JB	3.32	5.01	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	4.57	5.01	PQL	ng/Kg	

10/27/2011 7:41:05 AM ADR version 1.4.0.111 Page 4 of 4

SAMPLE DELIVERY GROUP

DX111

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
11-Jul-2011	SL-291-SA6-SS-0.0-0.5	6342330	N	METHOD	1613B	III
12-Jul-2011	SL-290-SA6-SS-0.0-0.5	6342335	N	METHOD	1613B	III
12-Jul-2011	SL-098-SA6-SS-0.0-0.5	6342331	N	METHOD	1613B	III
12-Jul-2011	SL-109-SA6-SS-0.0-0.5	6342332	N	METHOD	1613B	111
12-Jul-2011	SL-110-SA6-SS-0.0-0.5	6342333	N	METHOD	1613B	111
12-Jul-2011	SL-113-SA6-SS-0.0-0.5	6342334	N	METHOD	1613B	111
12-Jul-2011	EB-SA6-SS-071211	6342336	EB	METHOD	1613B	Ш
12-Jul-2011	SL-281-SA6-SS-0.0-0.5	6343418	N	METHOD	1613B	HI
12-Jul-2011	SL-300-SA6-SS-0.0-0.5	6343419	N	METHOD	1613B	III
12-Jul-2011	SL-280-SA6-SS-0.0-0.5	6343417	N	METHOD	1613B	111
13-Jul-2011	SL-279-SA6-SS-0.0-0.5	6343428	N	METHOD	1613B	III
13-Jul-2011	SL-278-SA6-SS-0.0-0.5	6343427	N	METHOD	1613B	Ш
13-Jul-2011	SL-040-SA6-SS-0.0-0.5	6343422	N	METHOD	1613B	Ш
13-Jul-2011	SL-035-SA6-SS-0.0-0.5	6343421	N	METHOD	1613B	181
13-Jul-2011	SL-030-SA6-SS-0.0-0.5	6343420	N	METHOD	1613B	181
13-Jul-2011	SL-059-SA6-SS-0.0-0.5	6343424	N	METHOD	1613B	111
13-Jul-2011	SL-047-SA6-SS-0.0-0.5	6343423	N	METHOD	1613B	111
13-Jul-2011	SL-067-SA6-SS-0.0-0.5	6343426	N	METHOD	1613B	111
13-Jul-2011	SL-066-SA6-SS-0.0-0.5	6343425	N	METHOD	1613B	111

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX111 Laboratory: LL

EDD Filename: DX111_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: AQ

Sample ID: EB-SA6-SS-071211	Collec	ted: 7/12/2	011 1:00:0	00 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	5.28	JBQ	0.459	MDL	10.8	PQL	pg/L	U	В	
1,2,3,4,6,7,8-HPCDF	1.25	JB	0.117	MDL	10.8	PQL	pg/L	U	В	
1,2,3,4,7,8-HxCDD	0.405	JBQ	0.267	MDL	10.8	PQL	pg/L	U	В	
1,2,3,4,7,8-HXCDF	0.514	JBQ	0.171	MDL	10.8	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDF	0.288	JBQ	0.168	MDL	10.8	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDD	0.642	JBQ	0.275	MDL	10.8	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDF	0.256	JBQ	0.192	MDL	10.8	PQL	pg/L	U	В	
1,2,3,7,8-PECDF	0.183	JBQ	0.182	MDL	10.8	PQL	pg/L	υ	В	
2,3,4,6,7,8-HXCDF	0.597	JBQ	0.166	MDL	10.8	PQL	pg/L	υ	В	
2,3,4,7,8-PECDF	0.906	JBQ	0.155	MDL	10.8	PQL	pg/L	U	В	
OCDD	10.9	JB	0.416	MDL,	21.6	PQL	pg/L	υ	В	

Method Category: GENCHEM

Method: 1613B Matrix: SO

0.426

MDL

21.6

pg/L

1.17

Sample ID: SL-030-SA6-SS-0.0-0.5	Collec	Collected: 7/13/2011 11:10:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDF	1.46	JB	0.201	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	4.32	JB	0.257	MDL	5.08	PQL	ng/Kg	J	z
OCDD	21800	· EB	0.229	MDL	10.2	PQL	ng/Kg	J	*XI

Sample ID: SL-035-SA6-SS-0.0-0.5 Collected: 7/13/2011 10:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	2.69	JB	0.116	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	3.49	JB	0.0720	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	2.45	JB	0.0691	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	4.89	JB	0.114	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.544	JB	0.0759	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	4.05	JB	0.0772	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.65	JB	0.0836	MDL	5.04	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	3.98	JB	0.0715	MDL	5.04	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

OCDF

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling
10/27/2011 7:56:29 AM ADR version 1.4.0.111 Page 1 of 12

Lab Reporting Batch ID: DX111

Laboratory: LL

EDD Filename: DX111_v1.

eQAPP Name: CDM SSFL 110509

Method Categor	y: Genghem	idirah dipangan	iturilleri di tirchi accione et	
Method:	1613B	Matrix:	SO	
Sample ID: SL-035-S	A6-SS-0.0-0.5	Collected: 7/13/2011 10:05:00	Analysis Type: RES	Dilution: 1

Sample ID: SL-035-SA6-SS-0.0-0.5	Collec	Collected: 7/13/2011 10:05:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
2,3,4,7,8-PECDF	1.52	JB	0.0806	MDL	5.04	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.347	JB	0.0198	MDL	1.01	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.693	J	0.0942	MDL	1.01	PQL	ng/Kg	J	Z		
OCDD	5790	EB	0.121	MDL	10.1	PQL	ng/Kg	J	*XI		

Sample ID: SL-040-SA6-SS-0.0-0.5	Collec	ted: 7/13/2	2011 9:45:0	00 A	lnalysis T	ype: REA			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.414	JC	0.0702	MDL	1.03	PQL	ng/Kg	J	Z

Sample ID: SL-040-SA6-SS-0.0-0.5	Collec	ted: 7/13/2	:011 9:45:0	00 <i>A</i>	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	1.03	JB	0.149	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.607	JB	0.0617	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	1.73	JB	0.0571	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	2.02	JB	0.0647	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.800	JB	0.0555	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.06	JB	0.0620	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.279	JB	0.0620	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.300	JB	0.0398	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	4.92	JB	0.0679	MDL	5.17	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.714	JB	0.0559	MDL	5.17	PQL	ng/Kg	j	Z	
2,3,4,7,8-PECDF	1.07	JВ	0.0656	MDL	5.17	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0752	JB	0.0149	MDL,	1.03	PQL	ng/Kg	υ	В	

Sample ID: SL-047-SA6-SS-0.0-0.5	Collec	Collected: 7/13/2011 1:53:00 Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	2.96	JB	0.0228	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.247	JB	0.0320	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.270	JBQ	0.0514	MDL	4.98	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.422	JB	0.0357	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	1.09	JB	0.0521	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.285	JB	0.0320	MDL	4.98	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 7:56:29 AM

ADR version 1.4.0.111

Page 2 of 12

Callantaria 7/43/2014 4-53-00

Lab Reporting Batch ID: DX111

Laboratory: LL

Particular in a

EDD Filename: DX111_v1.

Comple ID: CL 047 CAC CC 0.0 0 E

eQAPP Name: CDM_SSFL_110509

Method:	1613B	Matrix:	SC
Method Cate	gory: GENCHEM		

Sample ID: SL-047-SA6-SS-0.0-0.5	Collec	ted: 7/13/2	2011 1:53:0	IU A	nalysis T	/pe: RES		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDD	1.08	JB	0.0541	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.112	JB	0.0384	MDL	4.98	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.185	JB	0.0335	MDL	4.98	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.420	JBQ	0.0334	MDL	4.98	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.256	JB	0.0331	MDL	4.98	PQL	ng/Kg	Ü	В
2,3,4,7,8-PECDF	0.438	JB	0.0294	MDL	4.98	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0518	JQ	0.0355	MDL	0.995	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.307	JBQ	0.0674	MDL	0.995	PQL	ng/Kg	J	Z
OCDF	8.79	JB	0.0358	MDL	9.95	PQL	ng/Kg	J	Z

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.683	JBQ	0.102	MDL	4.89	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.476	JB	0.0544	MDL	4.89	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.41	JB	0.0494	MDL	4.89	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.50	JB	0.0575	MDL	4.89	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.398	JB	0.0449	MDL	4.89	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.799	JBQ	0.0558	MDL	4.89	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0806	JBQ	0.0562	MDL	4.89	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.165	JBQ	0.0260	MDL	4.89	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.52	JB	0.0405	MDL	4.89	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.368	JB	0.0456	MDL	4.89	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.420	JB	0.0406	MDL	4.89	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0749	JBQ	0.0145	MDL	0.978	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.249	JQ	0.0509	MDL	0.978	PQL	ng/Kg	J	Z

Sample ID: SL-066-SA6-SS-0.0-0.5 Collected: 7/13/2011 2:43:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	1.77	JB	0.0911	MDL	4.87	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.82	JB	0.0725	MDL	4.87	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	3.10	JB	0.0613	MDL	4.87	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	4.33	JB	0.0894	MDL	4.87	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.530	JB	0.0830	MDL	4.87	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 7:56:29 AM ADR version 1.4.0.111 Page 3 of 12

Lab Reporting Batch ID: DX111

Laboratory: LL

EDD Filename: DX111_v1.

eQAPP Name: CDM_SSFL_110509

Method Category	GENCHEN	arabatiya kuluman je safishiya barus d			
Method:	1613B		Matrix:	so	

Sample ID: SL-066-SA6-SS-0.0-0.5	Collec	Collected: 7/13/2011 2:43:00 Analysis Type: R						RES Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,7,8-PECDD	0.996	JB	0.0428	MDL	4.87	PQL	ng/Kg	J	Z			
1,2,3,7,8-PECDF	0.566	JBQ	0.0333	MDL	4.87	PQL	ng/Kg	J	Z			
2,3,4,7,8-PECDF	0.255	JBQ	0.0352	MDL	4.87	PQL	ng/Kg	υ	В			
2,3,7,8-TCDD	0.110	JBQ	0.0155	MDL	0.974	PQL	ng/Kg	J	Z			
2,3,7,8-TCDF	0.0673	JQ	0.0332	MDL	0.974	PQL	ng/Kg	U	В			
OCDD	7900	EB	0.177	MDL	9.74	PQL	ng/Kg	J	*XI			

Sample ID: SL-067-SA6-SS-0.0-0.5 Collected: 7/13/2011 2:13:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	3.53	JB	0.0896	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.40	JВ	0.0724	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.21	JB	0.0601	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.28	JB	0.0535	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.91	JB	0.0677	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.305	JB	0.0636	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.596	JBQ	0.0401	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.665	JB	0.0406	MDL	4.94	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.72	JB	0.0524	MDL	4.94	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.543	JB	0.0412	MDL	4.94	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0984	JBQ	0.0161	MDL	0.988	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.224	J	0.0510	MDL	0.988	PQL	ng/Kg	J	Z

Sample ID: SL-098-SA6-SS-0.0-0.5 Collected: 7/12/2011 8:42:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.44	JВ	0.0535	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.320	JBQ	0.0658	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.177	JB	0.0503	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.491	JB	0.0380	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.490	JB	0.0513	MDL	5.05	PQL	ng/Kg	j	Z
1,2,3,6,7,8-HXCDF	0.247	JBQ	0.0368	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.341	JB	0.0477	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0892	JΒ	0.0388	MDL	5.05	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.124	JBQ	0.0213	MDL	5.05	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 7:56:29 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX111

Laboratory: LL

EDD Filename: DX111_v1.

Cample ID: CL 000 CAC CC 0.0 0.E

eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM				
Method:	1613B	Matrix:	so	a district	

Sample ID: SL-098-SA6-SS-0.0-0.5	Conec	Collected: 1/12/2011 8:42:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8-PECDF	0.923	JB	0.0412	MDL	5.05	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.256	JB	0.0356	MDL	5.05	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0208	JBQ	0.0128	MDL	1.01	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.292	J	0.0688	MDL	1.01	PQL	ng/Kg	J	Z	
OCDF	4.58	JB	0.109	MDL	10.1	PQL	na/Ka	J	Z	

Sample ID: SL-109-SA6-SS-0.0-0.5	Collec	ted: 7/12/2	2011 9:43:0	00 A	nalysis T	ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.72	JB	0.126	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.585	JB	0.0774	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.58	JB	0.0855	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.87	JB	0.0807	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.951	JB	0.0852	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.11	JB	0.0769	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.216	JBQ	0.0893	MDL.	5.08	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.548	JB	0.0343	MDL	5.08	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.22	JB	0.0782	MDL	5.08	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.49	JB	0.0863	MDL	5.08	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0776	JB	0.0196	MDL	1.02	PQL	ng/Kg	U	В

Sample ID: SL-110-SA6-SS-0.0-0.5	Collected: 7/12/2011 10:20:00	Analysis Type: RES	Dilution: 1
----------------------------------	-------------------------------	--------------------	-------------

outliple to: OL-110-OA0-OG-0.0-0.0	Conec	leu. 1712/2	2011 10.20	.00 A	naiysis i	ype. KLS		L	muuon; j
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	3.66	JВ	0.0948	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	4.05	JB	0.0874	MDL.	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.865	JB	0.0942	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.85	JB	0.0607	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.68	JB	0.0743	MDL	5.05	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	4.64	JB	0.0795	MDL	5.05	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.14	JB	0.0710	MDL	5.05	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.249	JB	0.0165	MDL	1.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.619	J	0.0977	MDL	1.01	PQL	ng/Kg	J	Z
OCDD	15000	EB	0.309	MDL	10.1	PQL	ng/Kg	J	*XI

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 7:56:29 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX111

Laboratory: LL

1

EDD Filename: DX111_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

1613B

Method:

Matrix: SO

Sample ID: SL-113-SA6-SS-0.0-0.5	Collec	ted: 7/12/2	011 12:08	:00	Analysis Ty	pe: Ri	S		Dilution	:

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	3.53	JB	0.177	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	4.13	JB	0.106	MDL	5.15	PQL,	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.12	JB	0.136	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.24	JB	0.0716	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.350	JBQ	0.0675	MDL	5.15	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.05	JB	0.0614	MDL	5.15	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.170	JB	0.0221	MDL	1.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.516	J	0.0930	MDL	1.03	PQL	ng/Kg	J	Z
OCDD	18800	EB	0.407	MDL	10.3	PQL	ng/Kg	J	*XI

		Direction							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	10900	EB	1.13	MDL	5.03	PQL	ng/Kg	J	*XI
1,2,3,7,8-PECDD	4.59	JB	0.297	MDL	5.03	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	4.94	JB	0.142	MDL	5.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.616	JB	0.0838	MDL	1.01	PQL	ng/Kg	J	Z
OCDD	135000	EB	0.784	MDL	10.1	PQL	ng/Kg	J	*XI

Sample ID: SL-279-SA6-SS-0.0-0.5 Collected: 7/13/2011 7:38:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.01	JBQ	0.138	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.642	JB	0.0720	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.02	JB	0.0634	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.05	JB	0.0742	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.520	JВ	0.0579	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.920	JB	0.0693	MDL.	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.208	JBQ	0.0764	MDL	5.03	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.305	JBQ	0.0369	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	2.88	JB	0.0616	MDL	5.03	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.569	JB	0.0630	MDL	5.03	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.561	JВ	0.0630	MDL	5.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0541	JBQ	0.0166	MDL	1.01	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.582	J	0.140	MDL	1.01	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 7:56:29 AM ADR version 1.4.0.111 Page 6 of 12

Lab Reporting Batch ID: DX111

Laboratory: LL

Page 7 of 12

EDD Filename: DX111_v1.

eQAPP Name: CDM_SSFL_110509

Method Catego	ory: GENCHEM	endilatine pravis konsulation i provide la s		
Method:	1613B	Matrix:	SO	
Sample ID: SL-280	-SA6-SS-0.0-0.5	Collected: 7/12/2011 3:43:00	Analysis Type: REA	Dilution: 1

Sample ID: SC-260-SA6-55-0.0-0.5	Collec	ctea: 1/12/2011 3:43:00 Analysis Type: REA					.	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,7,8-TCDF	0.674	JC	0.0802	MDL	1.02	PQL	ng/Kg	J	Z	

 Sample ID: SL-280-SA6-SS-0.0-0.5
 Collected: 7/12/2011 3:43:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	3.58	JB	0.112	MDL	5.11	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.69	JB	0.0927	MDL	5.11	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.33	JB	0.0870	MDL	5.11	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.422	JB	0.106	MDL	5.11	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.81	JB	0.0850	MDL	5.11	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.45	JBQ	0.0834	MDL	5.11	PQL	ng/Kg	J	Z
OCDD	7290	EB	0.193	MDL	10.2	PQL	ng/Kg	J	1X*

Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2.40	JB	0.128	MDL	5.08	PQL	ng/Kg	J	Z
3.28	JB	0.107	MDL	5.08	PQL	ng/Kg	J	Z
4.20	JB	0.101	MDL	5.08	PQL	ng/Kg	J	Z
1.35	JBQ	0.101	MDL	5.08	PQL	ng/Kg	J	Z
2.28	JB	0.103	MDL,	5.08	PQL	ng/Kg	J	Z
0.487	JB	0.109	MDL	5.08	PQL	ng/Kg	L	Z
3.08	JB	0.0982	MDL	5.08	PQL	ng/Kg	J	Z
1.61	JB	0.0940	MDL	5.08	PQL	ng/Kg	J	Z
3.33	JB	0.135	MDL	5.08	PQL	ng/Kg	J	Z
0.233	JBQ	0.0220	MDL	1.02	PQL	ng/Kg	J	Z
	Result 2.40 3.28 4.20 1.35 2.28 0.487 3.08 1.61 3.33	Result Qual 2.40 JB 3.28 JB 4.20 JB 1.35 JBQ 2.28 JB 0.487 JB 3.08 JB 1.61 JB 3.33 JB	Result Qual DL 2.40 JB 0.128 3.28 JB 0.107 4.20 JB 0.101 1.35 JBQ 0.101 2.28 JB 0.103 0.487 JB 0.109 3.08 JB 0.0982 1.61 JB 0.0940 3.33 JB 0.135	Result Qual DL Type 2.40 JB 0.128 MDL 3.28 JB 0.107 MDL 4.20 JB 0.101 MDL 1.35 JBQ 0.101 MDL 2.28 JB 0.103 MDL 0.487 JB 0.109 MDL 3.08 JB 0.0982 MDL 1.61 JB 0.0940 MDL 3.33 JB 0.135 MDL	Result Qual DL Type RL 2.40 JB 0.128 MDL 5.08 3.28 JB 0.107 MDL 5.08 4.20 JB 0.101 MDL 5.08 1.35 JBQ 0.101 MDL 5.08 2.28 JB 0.103 MDL 5.08 0.487 JB 0.109 MDL 5.08 3.08 JB 0.0982 MDL 5.08 1.61 JB 0.0940 MDL 5.08 3.33 JB 0.135 MDL 5.08	Result Qual DL Type RL Type 2.40 JB 0.128 MDL 5.08 PQL 3.28 JB 0.107 MDL 5.08 PQL 4.20 JB 0.101 MDL 5.08 PQL 1.35 JBQ 0.101 MDL 5.08 PQL 2.28 JB 0.103 MDL 5.08 PQL 0.487 JB 0.109 MDL 5.08 PQL 3.08 JB 0.0982 MDL 5.08 PQL 1.61 JB 0.0940 MDL 5.08 PQL 3.33 JB 0.135 MDL 5.08 PQL	Result Qual DL Type RL Type Units 2.40 JB 0.128 MDL 5.08 PQL ng/Kg 3.28 JB 0.107 MDL 5.08 PQL ng/Kg 4.20 JB 0.101 MDL 5.08 PQL ng/Kg 1.35 JBQ 0.101 MDL 5.08 PQL ng/Kg 2.28 JB 0.103 MDL 5.08 PQL ng/Kg 0.487 JB 0.109 MDL 5.08 PQL ng/Kg 3.08 JB 0.0982 MDL 5.08 PQL ng/Kg 1.61 JB 0.0940 MDL 5.08 PQL ng/Kg 3.33 JB 0.135 MDL 5.08 PQL ng/Kg	Lab Result Lab Qual DL DL Type RL Type RL Type RL Type RL Qual Review Qual 2.40 JB 0.128 MDL 5.08 PQL ng/Kg J 3.28 JB 0.107 MDL 5.08 PQL ng/Kg J 4.20 JB 0.101 MDL 5.08 PQL ng/Kg J 1.35 JBQ 0.101 MDL 5.08 PQL ng/Kg J 2.28 JB 0.103 MDL 5.08 PQL ng/Kg J 0.487 JB 0.109 MDL 5.08 PQL ng/Kg J 3.08 JB 0.0982 MDL 5.08 PQL ng/Kg J 1.61 JB 0.0940 MDL 5.08 PQL ng/Kg J 3.33 JB 0.135 MDL 5.08 PQL ng/Kg J

Sample ID: SL-290-SA6-SS-0.0-0.5 Collected: 7/12/2011 8:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.32	JB	0.0619	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.315	JBQ	0.0907	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.160	JBQ	0.0541	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.803	JBQ	0.0513	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.498	JB	0.0569	MDL	5.00	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 7:56:29 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX111

Laboratory: LL

EDD Filename: DX111_v1.

eQAPP Name: CDM SSFL 110509

	-	_
Method Category:	GENCHEN	
Method:	1613B	Matrix: SO

Sample ID: SL-290-SA6-SS-0.0-0.5	Collec	ted: 7/12/2	0:00:8 110:	10 A	nalysis T	ype: RES		I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDF	0.246	JB	0.0474	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.405	JB	0.0551	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.126	JBQ	0.0588	MDL	5.00	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.130	JB	0.0343	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.59	JB	0.0524	MDL	5.00	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.222	JB	0.0491	MDL	5.00	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.410	JB	0.0476	MDL	5.00	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0281	JBQ	0.0161	MDL	1.00	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.296	J	0.0764	MDL	1.00	PQL	ng/Kg	J	Z
OCDF	4.26	JB	0.121	MDL	10.0	PQL	ng/Kg	J	Z

					, 0.0 .	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	3.14	JB	0.0789	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	2.61	JB	0.0898	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	3.36	JB	0.0843	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.943	JB	0.0781	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	1.69	JB	0.102	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	3.85	JB	0.139	MDL	4.94	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	3.80	JB	0.0724	MDL	4.94	PQL	na/Ka	J		

Sample ID: SL-300-SA6-SS-0.0-0.5 Collected: 7/12/2011 3:05:00 Analysis Type: REA Dilution: 1

Analyte	Lab Result	Lab Qual	DL		RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.976	JC	0.0809	MDL	0.989	PQL	ng/Kg	J	Z

Sample ID: SL-300-SA6-SS-0.0-0.5 Collected: 7/12/2011 3:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.18	JB	0.0309	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.545	JВ	0.0418	MDL.	4.95	PQL	ng/Kg	J	Ż
1,2,3,4,7,8-HxCDD	3.51	JB	0.0514	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.24	JВ	0.0544	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.02	JB	0.0529	MDL	4.95	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 7:56:29 AM ADR version 1.4.0.111

Page 8 of 12

Lab Reporting Batch ID: DX111

Laboratory: LL

EDD Filename: DX111_v1.

eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM				
Method:	1613B	latrix:	SO		

Sample ID: SL-300-SA6-SS-0.0-0.5	Collected: 7/12/2011 3:05:00 Analysis Type: RES Dilution: 1							i	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDF	0.729	JB	0.0502	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.697	JB	0.0489	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.262	JB	0.0574	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.430	JВ	0.0481	MDL	4.95	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.609	JB	0.0488	MDL	4.95	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.67	JB	0.0771	MDL	4.95	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.143	JB	0.0197	MDL	0.989	PQL	ng/Kg	J	Z
OCDF	8.18	JB	0.0300	MDL	9.89	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX111

eQAPP Name: CDM_SSFL_110509

EDD Filename: DX111_v1.

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
<u> </u>	Percent Moisture
*XI	Compound Quantitation and CRQL
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
c	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
Е	Laboratory Duplicate Precision
Е	Matrix Spike Precision

^{*} denotes a non-reportable result

Laboratory: LL

Lab Reporting Batch ID: DX111

Laboratory: LL

EDD Filename: DX111_v1. eQAPP Name: CDM_SSFL_110509

F Field Blank Contamination FD Field Duplicate Precision FT Field Triplicate Precision FT Field Triplicate Precision H Extraction to Analysis Estimation H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Rejection H Sampling to Analysis Rejection H Sampling to Analysis Rejection H Sampling to Extraction Rejection H Sampling to Extraction Rejection H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Estimation Q Matrix Spike Deper Rejection Q Matrix Spike Upper Estimation	F	Equipment Blank Contamination
FT Field Triplicate Precision H Extraction to Analysis Estimation H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Leaching Estimation H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Rejection H Temperature Rejection I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Lower Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	F	Field Blank Contamination
H Extraction to Analysis Estimation H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Estimation H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Estimation H Temperature Estimation H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	FD	Field Duplicate Precision
H Extraction to Analysis Rejection H Sampling to Analysis Estimation H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Rejection I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	FT	Field Triplicate Precision
H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	н	Extraction to Analysis Estimation
H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Extraction to Analysis Rejection
H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Deper Estimation	н	Preservation
H Sampling to Extraction Estimation H Sampling to Leaching Estimation H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	н	Sampling to Analysis Estimation
H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Estimation	н	Sampling to Analysis Rejection
H Sampling to Leaching Estimation H Temperature Estimation H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	H	Sampling to Extraction Estimation
H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Sampling to Extraction Rejection
H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Precision	н	Sampling to Leaching Estimation
H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Precision Q Matrix Spike Precision	Н	Sampling to Leaching Rejection
Internal Standard Estimation Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	н	Temperature Estimation
Internal Standard Rejection Laboratory Control Precision Laboratory Control Spike Lower Estimation Laboratory Control Spike Lower Rejection Laboratory Control Spike Upper Estimation Laboratory Control Spike Upper Rejection Macontinuing Tune Malitial Tune Mare Performance Evaluation Mixture Mare Resolution Check Mixture Qaaboratory Duplicate Precision Qaaboratory Duplicate Precision Qaaboratory Duplicate Precision Qaaboratory Duplicate Precision Qaaboratory Duplicate Precision Qaaboratory Duplicate Precision Qaaboratory Duplicate Precision Qaaboratory Duplicate Precision Qaaboratory Duplicate Precision Qaaboratory Duplicate Precision Qaaboratory Duplicate Precision Qaaboratory Duplicate Precision	Н	Temperature Rejection
L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Upper Estimation Q Matrix Spike Upper Estimation	I	Internal Standard Estimation
L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Precision Q Matrix Spike Upper Estimation Q Matrix Spike Upper Estimation	i	Internal Standard Rejection
L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Precision Q Matrix Spike Precision	L	Laboratory Control Precision
L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Precision Q Matrix Spike Precision	L	Laboratory Control Spike Lower Estimation
L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Upper Estimation	L	Laboratory Control Spike Lower Rejection
M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision	L	Laboratory Control Spike Upper Estimation
M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Upper Estimation	L	Laboratory Control Spike Upper Rejection
M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Precision	М	Continuing Tune
M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Upper Estimation	М	Initial Tune
Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Upper Estimation	М	Performance Evaluation Mixture
Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Upper Estimation	М	Resolution Check Mixture
Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Upper Estimation	Q	Laboratory Duplicate Precision
Q Matrix Spike Precision Q Matrix Spike Upper Estimation	Q	Matrix Spike Lower Estimation
Q Matrix Spike Upper Estimation	Q	Matrix Spike Lower Rejection
	Q	Matrix Spike Precision
Q Matrix Spike Upper Rejection	Q	Matrix Spike Upper Estimation
	Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX111

Laboratory: LL

EDD Filename: DX111_v1. eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
τ	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX111

Lab Reporting Batch ID: DX111 Laboratory: LL

EDD Filename: DX111_v1. eQAPP Name: CDM_SSFL_110509

Method: 161: Matrix: AQ				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1990B371537	7/21/2011 3:37:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF	4.77 pg/L 1.11 pg/L 0.617 pg/L 0.272 pg/L 0.272 pg/L 0.447 pg/L 0.625 pg/L 0.360 pg/L 0.898 pg/L 0.596 pg/L 0.295 pg/L 0.321 pg/L 0.322 pg/L 0.382 pg/L 0.384 pg/L 1.09 pg/L	E8-SA6-SS-071211

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SS-071211(RES)	1,2,3,4,6,7,8-HPCDD	5.28 pg/L	5.28U pg/L
EB-\$A6-\$\$-071211(RE\$)	1,2,3,4,6,7,8-HPCDF	1.25 pg/L	1.25U pg/L
EB-SA6-SS-071211(RES)	1,2,3,4,7,8-HxCDD	0,405 pg/L	0.405U pg/L
EB-SA6-SS-071211(RES)	1,2,3,4,7,8-HXCDF	0.514 pg/L	0.514U pg/L
EB-SA6-SS-071211(RES)	1,2,3,6,7,8-HXCDF	0.288 pg/L	0.288U pg/L
EB-SA6-SS-071211(RES)	1,2,3,7,8,9-HXCDD	0.642 pg/L	0.642U pg/L
EB-SA6-SS-071211(RES)	1,2,3,7,8,9-HXCDF	0.256 pg/L	0.256U pg/L
EB-SA6-SS-071211(RES)	1,2,3,7,8-PECDF	0.183 pg/L	0.183U pg/L
EB-\$A6-S\$-071211(RES)	2,3,4,6,7,8-HXCDF	0.597 pg/L	0.597U pg/L
EB-SA6-SS-071211(RES)	2,3,4,7,8-PECDF	0.906 pg/L	0.906U pg/L
EB-SA6-SS-071211(RES)	OCDD	10.9 pg/L	10.9U pg/L
EB-SA6-SS-071211(RES)	OCDF	1.17 pg/L	1.17U pg/L

Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2060B371052	7/28/2011 10:52:00 AM	2,3,7,8-TCDF	0.0263 ng/Kg	SL-030-SA6-SS-0.0-0.5 SL-035-SA6-SS-0.0-0.5 SL-040-SA6-SS-0.0-0.5 SL-059-SA6-SS-0.0-0.5 SL-066-SA6-SS-0.0-0.5 SL-066-SA6-SS-0.0-0.5 SL-098-SA6-SS-0.0-0.5 SL-109-SA6-SS-0.0-0.5 SL-110-SA6-SS-0.0-0.5 SL-113-SA6-SS-0.0-0.5 SL-279-SA6-SS-0.0-0.5 SL-279-SA6-SS-0.0-0.5 SL-281-SA6-SS-0.0-0.5 SL-281-SA6-SS-0.0-0.5 SL-281-SA6-SS-0.0-0.5 SL-290-SA6-SS-0.0-0.5 SL-290-SA6-SS-0.0-0.5 SL-291-SA6-SS-0.0-0.5 SL-291-SA6-SS-0.0-0.5

10/27/2011 7:53:04 AM ADR version 1.4.0.111 Page 1 of 3

Lab Reporting Batch ID: DX111 Laboratory: LL

EDD Filename: DX111_v1. eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 1613 <i>Matrix:</i> SO	3B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2060B371804	7/26/2011 6:04:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDD	0.481 ng/Kg 0.220 ng/Kg 0.0514 ng/Kg 0.0514 ng/Kg 0.0136 ng/Kg 0.0540 ng/Kg 0.0339 ng/Kg 0.0359 ng/Kg 0.0460 ng/Kg 0.0147 ng/Kg 0.0222 ng/Kg 0.0544 ng/Kg 0.0584 ng/Kg 0.0186 ng/Kg 0.0187 ng/Kg 0.0587 ng/Kg 0.0186 ng/Kg 0.0186 ng/Kg 0.0185 ng/Kg	SL-030-SA6-SS-0.0-0.5 SL-035-SA6-SS-0.0-0.5 SL-040-SA6-SS-0.0-0.5 SL-059-SA6-SS-0.0-0.5 SL-066-SA6-SS-0.0-0.5 SL-066-SA6-SS-0.0-0.5 SL-109-SA6-SS-0.0-0.5 SL-110-SA6-SS-0.0-0.5 SL-110-SA6-SS-0.0-0.5 SL-113-SA6-SS-0.0-0.5 SL-278-SA6-SS-0.0-0.5 SL-279-SA6-SS-0.0-0.5 SL-280-SA6-SS-0.0-0.5 SL-290-SA6-SS-0.0-0.5 SL-290-SA6-SS-0.0-0.5 SL-291-SA6-SS-0.0-0.5 SL-291-SA6-SS-0.0-0.5 SL-291-SA6-SS-0.0-0.5 SL-291-SA6-SS-0.0-0.5
BLK2100B371502	8/1/2011 3:02:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,8,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	1.10 ng/Kg 0.0960 ng/Kg 0.0192 ng/Kg 0.0831 ng/Kg 0.0848 ng/Kg 0.0751 ng/Kg 0.0786 ng/Kg 0.0786 ng/Kg 0.0724 ng/Kg 0.0724 ng/Kg 0.0534 ng/Kg 0.0453 ng/Kg 0.0453 ng/Kg 0.0453 ng/Kg 0.0453 ng/Kg 0.174 ng/Kg 0.174 ng/Kg	SL-047-SA6-SS-0.0-0.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-040-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0752 ng/Kg	0.0752U ng/Kg
SL-047-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.270 ng/Kg	0.270U ng/Kg
SL-047-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.112 ng/Kg	0.112U ng/Kg
SL-047-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.185 ng/Kg	0.185U ng/Kg
SL-047-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.256 ng/Kg	0.256U ng/Kg
SL-059-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0806 ng/Kg	0.0806U ng/Kg
SL-059-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0749 ng/Kg	0.0749U ng/Kg
SL-066-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.255 ng/Kg	0.255U ng/Kg
SL-066-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0673 ng/Kg	0.0673U ng/Kg
SL-098-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0892 ng/Kg	0.0892U ng/Kg
SL-098-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.256 ng/Kg	0.256U ng/Kg
SL-098-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0208 ng/Kg	0.0208U ng/Kg
SL-109-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0,216 ng/Kg	0.216U ng/Kg
SL-109-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0776 ng/Kg	0.0776U ng/Kg
SL-279-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.208 ng/Kg	0.208U ng/Kg
SL-279-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0541 ng/Kg	0.0541U ng/Kg
SL-290-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.126 ng/Kg	0.126U ng/Kg
SL-290-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.222 ng/Kg	0.222U ng/Kg

10/27/2011 7:53:04 AM ADR version 1.4.0.111 Page 2 of 3

Lab Reporting Batch ID: DX111

Laboratory: LL

EDD Filename: DX111_v1.

eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blank Sample ID		Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-290-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0281 ng/Kg	0.0281U ng/Kg

ADR version 1.4.0.111 Page 3 of 3

Lab Reporting Batch ID: DX111

Laboratory: LL

EDD Filename: DX111_v1.

eQAPP Name: CDM_SSFL_110509

le	th	O	¢	é	ï	Á	I	3	Ė	ś	į		į

Matrix:	4	\Q

SampleID	Analyte	Lab Quai	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SS-071211	1,2,3,4,6,7,8-HPCDD	JBQ	5.28	10.8	PQL	pg/L	
	1,2,3,4,6,7,8-HPCDF	JB	1.25	10.8	PQL	pg/L	
	1,2,3,4,7,8-HxCDD	JBQ	0.405	10.8	PQL	pg/L	
	1,2,3,4,7,8-HXCDF	JBQ	0.514	10.8	PQL	pg/L	
	1,2,3,6,7,8-HXCDF	JBQ	0.288	10.8	PQL	pg/L	
	1,2,3,7,8,9-HXCDD	JBQ	0.642	10.8	PQL	pg/L	L (all datasta)
	1,2,3,7,8,9-HXCDF	JBQ	0.256	10.8	PQL	pg/L	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.183	10.8	PQL	pg/L	
	2,3,4,6,7,8-HXCDF	JBQ	0.597	10.8	PQL	pg/L	
	2,3,4,7,8-PECDF	JBQ	0.906	10.8	PQL	pg/L	
	OCDD	JB	10.9	21.6	PQL	pg/L	
	OCDF	JBQ	1.17	21.6	PQL	pg/L	

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-030-SA6-SS-0.0-0.5	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JB JB	1.46 4.32	5.08 5.08	PQL PQL	ng/Kg ng/Kg	J (all detects)
SL-035-SA6-SS-0.0-0.5	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		2.69 3.49 2.45 4.89 0.544 4.05 1.65 3.98 1.52 0.347 0.693	5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-040-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	B B B B B B B B B B B B B B B B B B B	1.03 0.607 1.73 2.02 0.800 1.06 0.279 0.300 4.92 0.714 1.07 0.0752 0.414	5.17 5.17 5.17 5.17 5.17 5.17 5.17 5.17	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

10/27/2011 7:53:18 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX111 Laboratory: LL

EDD Filename: DX111_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-047-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	B	2.96 0.247 0.270 0.422 1.09 0.285 1.08 0.112 0.185 0.420 0.256 0.438 0.0518 0.307 8.79	4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-059-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	BG B B B B B B B B B B B B B B B B B B	0.683 0.476 1.41 1.50 0.398 0.799 0.0806 0.165 1.52 0.368 0.420 0.0749 0.249	4.89 4.89 4.89 4.89 4.89 4.89 4.89 4.89	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-066-SA6-SS-0.0-0.5	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	\$\$\$\$\$\$\$\$\$\$	1.77 2.82 3.10 4.33 0.530 0.996 0.566 0.255 0.110 0.0673	4.87 4.87 4.87 4.87 4.87 4.87 4.87 4.87	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-067-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ ਜ਼ਜ਼ਜ਼ ਜ਼	3.53 1.40 1.21 1.28 2.91 0.305 0.596 0.665 1.72 0.543 0.0984 0.224	4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX111 Laboratory: LL

EDD Filename: DX111_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Watrix: SU							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-098-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD	JB JBQ JB JBQ JB JBQ JBQ JBQ JBQ JBQ JBQ	2.44 0.320 0.177 0.491 0.490 0.247 0.341 0.0892 0.124 0.923 0.256 0.0208 0.292 4.58	5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-109-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF	18 18 18 18 18 18 18 18 18 18 18 18	1.72 0.585 1.58 2.87 0.951 1.11 0.216 0.548 1.22 2.49 0.0776	5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-110-SA6-SS-0.0-0.5	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	JB JB JB JB JB JB JB JB	3.66 4.05 0.865 2.85 1.68 4.64 2.14 0.249 0.619	5.05 5.05 5.05 5.05 5.05 5.05 5.05 1.01 1.01	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-113-SA6-SS-0.0-0.5	1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	JB JB JB JB JB JB JB	3.53 4.13 1.12 2.24 0.350 2.05 0.170 0.516	5.15 5.15 5.15 5.15 5.15 5.15 1.03 1.03	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-278-SA6-SS-0.0-0.5	1,2,3,7,8-PECDD 2,3,4,7,8-PECDF 2,3,7,8-TCDD	JB JB JB	4.59 4.94 0.616	5.03 5.03 1.01	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	J (all detects)

10/27/2011 7:53:18 AM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX111

Laboratory: LL

EDD Filename: DX111_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Matrix: SU		I		1		I'''	
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-279-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	1999年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	1.01 0.642 1.02 2.05 0.520 0.920 0.208 0.305 2.88 0.569 0.561 0.0541 0.582	5.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-280-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF	ភទ្ធមធធធធ	3.58 2.69 1.33 0.422 1.81 1.45 0.674	5.11 5.11 5.11 5.11 5.11 5.11 1.02	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-281-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	San an an an an an an an an an an an an a	2.40 3.28 4.20 1.35 2.28 0.487 3.08 1.61 3.33 0.233	5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-290-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	まし なままま ない はん ない ない はん ない はん ない はん はん はん はん はん はん はん はん はん はん はん はん はん	2.32 0.315 0.160 0.803 0.498 0.246 0.405 0.126 0.130 1.59 0.222 0.410 0.0281 0.296 4.26	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-291-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	18 18 18 18 18 18 18 18 18 18 18 18 18 1	3.14 2.61 3.36 0.943 1.69 3.85 3.80	4.94 4.94 4.94 4.94 4.94 4.94	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX111

Laboratory: LL

EDD Filename: DX111_v1.

eQAPP Name: CDM_SSFL_110509

Meti	10a	16	13B

Matrix: SO		.:					Control of the Contro
SamplelD	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-300-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		4.18 0.545 3.51 2.24 1.02 0.729 0.697 0.262 0.430 0.609 1.67 0.143 0.976 8.18	4.95 4.95 4.95 4.95 4.95 4.95 4.95 4.95	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

10/27/2011 7:53:18 AM ADR version 1.4.0.111 Page 5 of 5

SAMPLE DELIVERY GROUP

DX112

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
13-Jul-2011	SL-072-SA6-SB-4.0-5.0	6343429	· N	METHOD	1613B	111
13-Jul-2011	SL-072-SA6-SB-9.0-10.0	6343430	N	METHOD	1613B	111
13-Jul-2011	SL-116-SA6-SB-2.5-3.5	6343431	N	METHOD	1613B	III
13-Jul-2011	SL-046-SA6-SS-0.0-0.5	6344256	N	METHOD	1613B	III
13-Jul-2011	EB-SA6-SB-071311	6343436	EB	METHOD	1613B	III
13-Jul-2011	SL-118-SA6-SB-10.5-11.5	6343433	N	METHOD	1613B	111
13-Jul-2011	SL-118-SA6-SB-4.0-5.0	6343432	N	METHOD	1613B	III
13-Jul-2011	SL-083-SA6-SB-4.0-5.0	6343434	N	METHOD	1613B	10
13-Jul-2011	SL-083-SA6-SB-9.0-10.0	6343435	N	METHOD	1613B	III
14-Jul-2011	SL-051-SA6-SS-0.0-0.5	6345461	N	METHOD	1613B	111
14-Jul-2011	SL-050-SA6-SS-0.0-0.5	6345460	N	METHOD	1613B	IJ
14-Jul-2011	SL-055-SA6-SS-0.0-0.5	6345465	N	METHOD	1613B	111
14-Jul-2011	SL-054-SA6-SS-0.0-0.5	6345464	N	METHOD	1613B	III
14-Jul-2011	SL-053-SA6-SS-0.0-0.5	6345463	N	METHOD	1613B	III
14-Jul-2011	SL-052-SA6-SS-0.0-0.5	6345462	N	METHOD	1613B	III
14-Jul-2011	SL-060-SA6-SS-0.0-0.5	6345466	N	METHOD	1613B	Ш
14-Jul-2011	SL-063-SA6-SS-0.0-0.5	6345467	N	METHOD	1613B	Ш
14-Jul-2011	SL-064-SA6-SS-0.0-0.5	6345468	N	METHOD	1613B	Ш
14-Jul-2011	SL-037-SA6-SS-0.0-0.5	6345457	N	METHOD	1613B	111
14-Jul-2011	SL-049-SA6-SS-0.0-0.5	6345459	N	METHOD	1613B	Ш
14-Jul-2011	SL-048-SA6-SS-0.0-0.5	6345458	N	METHOD	1613B	Ш

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX112

Laboratory: LL

EDD Filename: DX112_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Control of the Control of

Method:

1613B

Matrix:

AQ

Sample ID:	EB-SA6-SB-071311
------------	------------------

Collected:	7/13/2011	12:30:00

Sample ID: EB-SA6-SB-071311	Collec	ted: 7/13/2	011 12:30:	:00 A	nalysis T	pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	5.30	JВ	0.354	MDL	9.90	PQL	pg/L	U	В	
1,2,3,4,6,7,8-HPCDF	0.693	JB	0.0993	MDL	9.90	PQL	pg/L	U	В	
1,2,3,4,7,8,9-HPCDF	0.237	JBQ	0.126	MDL	9.90	PQL	pg/L	U	В	
1,2,3,4,7,8-HxCDD	0.270	JBQ	0.216	MDL	9.90	PQL	pg/L	U	В	
1,2,3,4,7,8-HXCDF	0.309	JBQ	0.115	MDL	9.90	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDD	0.367	JBQ	0.217	MDL	9.90	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDF	0.158	JBQ	0.115	MDL	9.90	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDD	0.520	JBQ	0.204	MDL	9.90	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDF	0.331	JBQ	0.131	MDL	9.90	PQL	pg/L	U	В	
1,2,3,7,8-PECDF	0.436	JBQ	0.119	MDL	9.90	PQL	pg/L	U	В	
2,3,4,6,7,8-HXCDF	0.468	JBQ	0.110	MDL,	9.90	PQL	pg/L	U	В	
2,3,4,7,8-PECDF	0.599	JBQ	0.103	MDL	9.90	PQL	pg/L	U	В	
OCDD	10.3	JB	0.336	MDL	19.8	PQL	pg/L	U	В	

Method Category:

GENCHEM

Method: 1613B Matrix:

Analysis Type: RES

SO

Sample ID: SL-037-SA6-SS-0.0-0.5	Collec	ted: 7/14/2	011 1:54:0	0 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.64	JB	0.0273	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.564	JB	0.0139	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.109	JBQ	0.0226	MDL.	4.95	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.130	J	0.0296	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.248	JB	0.0240	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.247	JB	0.0299	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.143	JB	0.0206	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.241	JB	0.0297	MDL	4.95	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.134	j	0.0236	MDL	4.95	PQL	ng/Kg	j	Z
1,2,3,7,8-PECDD	0.138	JQ	0.0228	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.225	JBQ	0.0193	MDL	4.95	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.176	JB	0.0218	MDL	4.95	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.335	JB	0.0181	MDL	4.95	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0774	JQ	0.0220	MDL	0.990	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 8:29:26 AM

ADR version 1.4.0.111

Page 1 of 13

Lab Reporting Batch ID: DX112

Laboratory: LL

EDD Filename: DX112_v1. eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM		
Method:	1613B	Matrix: SO	

Sample ID: SL-037-SA6-SS-0.0-0.5	Collec	ted: 7/14/2	2011 1:54:0	00 🗚	Analysis Type: RES			Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,7,8-TCDF	0.158	JQ	0.0341	MDL	0.990	PQL	ng/Kg	J	Z	
OCDF	1.06	JB	0.0286	MDL	9.90	PQL	ng/Kg	J	Z	

Dilution: 1 Sample ID: SL-046-SA6-SS-0.0-0.5 Collected: 7/13/2011 10:23:00 Analysis Type: RES Data Lab Lab DLRLReview Reason Analyte Result DLRL Units Qual Type Type Qual Code 1,2,3,4,7,8,9-HPCDF 0.832 JB 0.0848 MDL 4.95 PQL Z ng/Kg 1,2,3,4,7,8-HxCDD 0.677 J 0.0923 MDL 4.95 PQL ng/Kg J z 1.25 1,2,3,4,7,8-HXCDF JB 0.0737 MDL 4.95 PQL ng/Kg J Z 1,2,3,6,7,8-HXCDD 2.09 JΒ 0.0960 MDL, 4.95 PQL J Z ng/Kg 1,2,3,6,7,8-HXCDF 0.448 JBQ 0.0657 MDL, 4.95 PQL ng/Kg J z 1,2,3,7,8,9-HXCDD 1.28 JΒ 0.0973 MDL 4.95 PQL ng/Kg J Z 1,2,3,7,8,9-HXCDF 0.186 J 0.0851 MDL PQL J 4.95 Z ng/Kg 1,2,3,7,8-PECDD 0.278 JQ 0.0521 MDL 4.95 PQL J Z ng/Kg 1,2,3,7,8-PECDF 0.833 JΒ 0.0540 MDL 4.95 PQL J Z ng/Kg 2,3,4,6,7,8-HXCDF 0.561 JB 0.0732 MDL 4.95 PQL ng/Kg J Z 2,3,4,7,8-PECDF 0.757 JB 0.0539 MDL 4.95 PQL J Z ng/Kg 2,3,7,8-TCDD 0.0661 J 0.0368 MDL 0.990 PQL ng/Kg J z 2,3,7,8-TCDF 0.457 0.0817 MDL 0.990 PQL ng/Kg J Z

Sample ID. Scroto-Short-South-South Collected: 11442011 5:46:00 Analysis Type: RES Dilution	Sample ID: SL-048-SA6-SS-0.0-0.5	Collected: 7/14/2011 3:46:00	Analysis Type: RES	Dilution: 1
---	----------------------------------	------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.02	JB	0.0175	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.222	JB	0.0298	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.179	J	0.0459	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.625	JB	0.0376	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.613	JB	0.0448	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.197	JBQ	0.0330	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.441	JB	0.0431	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.111	J	0.0380	MDL	4.98	PQL	ng/Kg	j	Z
1,2,3,7,8-PECDD	0.122	J	0.0278	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.700	JBQ	0.0337	MDL	4.98	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.200	JB	0.0345	MDL	4.98	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0402	JQ	0.0277	MDL	0.996	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 8:29:26 AM ADR version 1.4.0.111 Page 2 of 13

Lab Reporting Batch ID: DX112

Laboratory: LL

EDD Filename: DX112_v1. eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM	e Gardina de Carlos de Carlos de Carlos de Carlos de Carlos de Carlos de Carlos de Carlos de Carlos de Carlos		
Method:	1613B	Matrix:	SO	

Sample ID: SL-048-SA6-SS-0.0-0.5	Collec	ted: 7/14/2	011 3:46:0	00 A	Analysis T	ype: RES	;		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.224	JQ	0.0656	MDL	0.996	PQL	ng/Kg	J	Z

Collected: 7/14/2011 2:26:00 Sample ID: SL-049-SA6-SS-0.0-0.5 Analysis Type: RES Dilution: 1 Data Lab Lab DL RL. Review Reason Result Analyte Qual DLRLUnits Qual Туре Type Code 1,2,3,4,6,7,8-HPCDF 1.17 JB 0.0167 MDL 5.01 PQL ng/Kg z 1,2,3,4,7,8,9-HPCDF 0.306 JB PQL J z 0.0242 MDL 5.01 ng/Kg 1,2,3,4,7,8-HxCDD 0.367 J 0.0374 MDL 5.01 PQL ng/Kg J Z 1,2,3,4,7,8-HXCDF 0.280 JB 0.0289 MDL 5.01 **PQL** J Z ng/Kg 1,2,3,6,7,8-HXCDD 0.564 JB 0.0368 MDL 5.01 PQL J Z ng/Kg 1,2,3,6,7,8-HXCDF 0.298 JB 0.0269 MDL, 5.01 **PQL** J Z ng/Kg 1,2,3,7,8,9-HXCDD 0.726 JB 0.0368 MDL 5.01 **PQL** ng/Kg J z 1,2,3,7,8,9-HXCDF 0.0312 MDL **PQL** J 0.334 5.01 ng/Kg Z 1,2,3,7,8-PECDD 0.331 JQ 0.0271 MDL 5.01 PQL J z ng/Kg 1,2,3,7,8-PECDF 0.268 **JBQ** 0.0179 MDL, Z 5.01 **PQL** J ng/Kg 2,3,4,6,7,8-HXCDF 0.321 JΒ 0.0276 MDL. 5.01 **PQL** J Z ng/Kg 2,3,4,7,8-PECDF 0.326 JΒ 0.0170 MDL **PQL** J Z 5.01 ng/Kg 2,3,7,8-TCDD 0.0442 JQ 0.0272 MDL 1.00 **PQL** J Z ng/Kg 2,3,7,8-TCDF 0.0848 JQ 0.0317 MDL 1.00 **PQL** ng/Kg J Z

Sample ID: SL-050-SA6-SS-0.0-0.5 Collected: 7/14/2011 8:27:00 Analysis Type: RES Dilution: 1

0.0274

MDL

10.0

PQL

ng/Kg

J

Z

JΒ

2.91

oumpic ib. OL vos orto da oto oto	Concu	(CG. 1) 1712	0110.27.0	, A	naiyara i	ype, iteo		_	muovm j
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.911	JB	0.0595	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.546	JB	0.0378	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.480	JB	0.0353	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.96	JB	0.0758	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.154	J	0.0409	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.12	JQ	0.0632	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.404	JB	0.0329	MDL	5.06	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.577	JBQ	0.0368	MDL	5.06	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.406	JВ	0.0313	MDL	5.06	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.301	J	0.0436	MDL	1.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.178	j	0.0664	MDL	1.01	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 8:29:26 AM

OCDF

ADR version 1.4.0.111

Lab Reporting Batch ID: DX112

Laboratory: LL

EDD Filename: DX112_v1.

eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM		and the second
Method:	1613B	Matrix: SO	

Sample ID: SL-051-SA6-SS-0.0-0.5	Collec	ted: 7/14/2	011 8:07:0	0 A	nalysis Ty	pe: RES		1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	ŖL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.20	JB	0.0218	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.347	JB	0.0352	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.359	J	0.0469	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.534	JB	0.0314	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.46	JB	0.0482	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.352	JBQ	0.0278	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.22	JB	0.0457	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.118	JQ	0.0346	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.312	J	0.0403	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.190	JB	0.0340	MDL	5.07	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.272	JBQ	0.0294	MDL	5.07	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.712	JB	0.0336	MDL	5.07	PQL	ng/Kg	j	Z
2,3,7,8-TCDD	0.0457	JQ	0.0286	MDL	1.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.330	JQ	0.0716	MDL	1.01	PQL	ng/Kg	J	Z
OCDF	7.68	JB	0.0284	MDL	10.1	PQL	ng/Kg	J	Z

Sample ID: SL-052-SA6-SS-0.0-0.5	Collected: 7/14/2011 10:17:00	Analysis Type: RES	Dilution: 1
----------------------------------	-------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.82	JB	0.0501	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.578	J	0.0532	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.64	JB	0.0570	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.59	JB	0.0536	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.93	JB	0.0511	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.430	J	0.0738	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.309	J	0.0515	MDL	5.02	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.40	JB	0.0561	MDL	5.02	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.07	JBQ	0.0856	MDL	5.02	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0332	JQ	0.0273	MDL	1.00	PQL	ng/Kg	J	Z

Sample ID: SL-053-SA6-SS-0.0-0.5 Collected: 7/14/2011 9:52:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.89	JB	0.0251	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.392	JB	0.0419	MDL	4.97	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX112

Laboratory: LL

EDD Filename: DX112_v1. eQAPP Name: CDM_SSFL_110509

Method Catego	ny: GENCHEM	lini ki jir dani kupi para para ki aka ka ka ka ka ka ka ka ka ka ka ka ka		
Method:	1613B	Matri	x: SC	

Sample ID: SL-053-SA6-SS-0.0-0.5	Collec	ted: 7/14/2	011 9:52:0	0 A	nalysis Ty	ype: RES		,	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	0.291	J	0.0485	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.327	JBQ	0.0343	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.22	JB	0.0484	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.244	JBQ	0.0298	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.944	JB	0.0482	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.109	JQ	0.0356	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.266	JQ	0.0339	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.221	JB	0.0246	MDL	4.97	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.267	JBQ	0.0314	MDL	4.97	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.359	JBQ	0.0249	MDL	4.97	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0396	JQ	0.0334	MDL	0.994	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.138	JQ	0.0507	MDL,	0.994	PQL	ng/Kg	J	Z
OCDF	9.23	JB	0.0344	MDL	9.94	PQL	ng/Kg	J	Z

Sample ID: SL-054-SA6-SS-0.0-0.5 Collected: 7/14/2011 9:20:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.580	JB	0.0603	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.407	JQ	0.0610	MDL	5.06	PQL	ng/Kg	j	Z
1,2,3,4,7,8-HXCDF	0.567	JBQ	0.0542	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.74	JB	0.0627	MDL	5.06	PQL	ng/Kg	j	Z
1,2,3,6,7,8-HXCDF	0.357	JB	0.0477	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.02	JB	0.0636	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.109	JQ	0.0643	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.277	J	0.0434	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.521	JB	0.0434	MDL	5.06	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.442	JB	0.0517	MDL	5.06	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.529	JBQ	0.0431	MDL	5.06	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0688	JQ	0.0402	MDL	1.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.306	J	0.0883	MDL	1.01	PQL	ng/Kg	J	Z

Sample ID: SL-055-SA6-SS-0.0-0.5 Collected: 7/14/2011 8:53:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.98	JB	0.0208	MDL	5.03	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 8:29:26 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX112 Laboratory: LL

EDD Filename: DX112_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-055-SA6-SS-0.0-0.5	Collec	ted: 7/14/2	011 8:53:0	00 A	Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.364	JB	0.0390	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.278	J	0.0493	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.399	JB	0.0349	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.15	.JB	0.0489	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.328	JB	0.0304	MDL	5.03	PQL	ng/Kg	J	Ž
1,2,3,7,8,9-HXCDD	0.913	JB	0.0463	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.151	JQ	0.0401	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.194	J	0.0322	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.369	JB	0.0343	MDL	5.03	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.298	JB	0.0335	MDL	5.03	PQL	ng/Kg	J	Ž
2,3,4,7,8-PECDF	0.596	JB	0.0344	MDL	5.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0545	JQ	0.0337	MDL	1.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.287	JQ	0.0827	MDL	1.01	PQL	ng/Kg	J	Z
OCDF	6.88	JB	0.0395	MDL	10.1	PQL	ng/Kg	J	Z

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.77	JB	0.0546	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.961	J	0.0567	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.42	JB	0.0444	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	4.40	JB	0.0576	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.972	JB	0.0408	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.96	JB	0.0577	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.232	J	0.0466	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.541	JQ	0.0484	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.698	JB	0.0498	MDL	5.07	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.25	JB	0.0424	MDL	5.07	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.947	JB	0.0476	MDL	5.07	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0809	JQ	0.0320	MDL	1.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.696	J	0.114	MDL	1.01	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX112

Laboratory: LL

EDD Filename: DX112_v1.

eQAPP Name: CDM_SSFL_110509

Method:		1613B			Matrix:	SO
Method Cate	gory.	GENCH	EΜ			

Sample ID: SL-063-SA6-SS-0.0-0.5	Collec	Collected: 7/14/2011 11:16:00 Analysis Type: RES							Dilution: 1			
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,4,6,7,8-HPCDD	3620	EB	0.407	MDL	5.14	PQL	ng/Kg	J	*XI			
1,2,3,7,8,9-HXCDF	3.28	J	0.215	MDL	5.14	PQL	ng/Kg	J	Z			
OCDD	48000	EB	0.447	MDL	10.3	PQL	ng/Kg	J	*X1			

Sample ID: SL-064-SA6-SS-0.0-0.5	Collec	Collected: 7/14/2011 1:29:00 Analysis Type: RES Dilutio								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	4.83	JB	0.103	MDL	5.11	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	2.99	J	0.0752	MDL	5.11	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	2.41	JB	0.0591	MDL	5.11	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	1.87	JB	0.0540	MDL	5.11	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.415	J	0.0666	MDL	5.11	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	1.35	J	0.0738	MDL	5.11	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.891	JB	0.0415	MDL	5.11	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	3.14	JB	0.0556	MDL	5.11	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.818	JB	0.0429	MDL	5.11	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.268	J	0.0336	MDL	1.02	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.413	J	0.0805	MDL.	1.02	PQL	ng/Kg	J	Z	

Sample ID: SL-072-SA6-SB-4.0-5.0	Collec	Collected: 7/13/2011 8:25:00 Analysis Ty						Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.27	JB	0.0662	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	2.22	JB	0.0266	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.142	JBQ	0.0386	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0446	JB	0.0329	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.194	JBQ	0.0315	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0351	JBQ	0.0301	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.103	JBQ	0.0314	MDL	5.56	PQL	ng/Kg	Ų	В
2,3,4,6,7,8-HXCDF	0.0549	JB	0.0304	MDL	5.56	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0759	JBQ	0.0214	MDL	5.56	PQL	ng/Kg	U	В
OCDF	9.54	JB	0.0399	MDL	11.1	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 8:29:26 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX112

Laboratory: LL

EDD Filename: DX112_v1.

eQAPP Name: CDM_SSFL_110509

Sample ID: SL-072-SA6-SB-9.0-10.0	Collec	Collected: 7/13/2011 8:35:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.473	JB	0.0359	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0757	JBQ	0.0124	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0166	JBQ	0.0161	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0455	JB	0.0254	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0463	JQ	0.0421	MDL	5.69	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0320	JBQ	0.0255	MDL	5.69	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0228	JBQ	0.0162	MDL	5.69	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0450	JBQ	0.0231	MDL	5.69	PQL	ng/Kg	U	В
OCDD	1.39	JB	0.0362	MDL	11.4	PQL	ng/Kg	U	В
OCDF	0.106	JB	0.0450	MDL	11.4	PQL	ng/Kg	υ	В

Sample ID: SL-083-SA6-SB-4.0-5.0 Collected: 7/13/2011 3:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.50	JB	0.0988	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	3.64	J	0.100	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.29	JB	0.0905	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.770	JB	0.0847	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.17	JB	0.0965	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.258	JQ	0.0686	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.05	j	0.0697	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.328	JB	0.0352	MDL	5.12	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.39	JB	0.0600	MDL	5.12	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.614	JB	0.0308	MDL	5.12	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.260	J	0.0288	MDL	1.02	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.468	J	0.0522	MDL	1.02	PQL	ng/Kg	J	Z
OCDD	5000	EB	0.226	MDL	10.2	PQL	ng/Kg	j	*XI

 Sample ID: SL-083-SA6-SB-9.0-10.0
 Collected: 7/13/2011 3:15:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	4.28	J	0.158	MDL	5.45	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.13	JB	0.0911	MDL	5.45	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.66	JB	0.0907	MDL	5.45	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.530	J	0.0917	MDL	5.45	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 8:29:26 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX112

Laboratory: LL

EDD Filename: DX112_v1.

eQAPP Name: CDM_SSFL_110509

Ų

В

Page 9 of 13

Method Category:	GENCHEM		
Method:	1613B	Matrix: SO	

Sample ID: SL-083-SA6-SB-9.0-10.0	Collec	Collected: 7/13/2011 3:15:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDF	1.32	JВ	0.0611	MDL	5.45	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	3.10	JB	0.0867	MDL	5.45	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.20	JB	0.0544	MDL	5.45	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.683	J	0.0367	MDL	1.09	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.846	J	0.111	MDL	1.09	PQL	ng/Kg	J	Z
OCDD	13000	EB	0.288	MDL	10.9	PQL	ng/Kg	J	*XI

Sample ID: SL-116-SA6-SB-2.5-3.5 Collected: 7/13/2011 9:35:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRL Review Reason Analyte Result Qual DL. Type RL Туре Units Qual Code 1,2,3,4,6,7,8-HPCDD 0.403 JΒ 0.0289 MDL 5.33 PQL ng/Kg В 1,2,3,4,6,7,8-HPCDF 0.0489 JΒ 0.0102 MDL 5.33 PQL ng/Kg В 1,2,3,4,7,8-HxCDD 0.0298 0.0204 MDL 5.33 **PQL** J Z JQ ng/Kg 1,2,3,6,7,8-HXCDD 0.0213 **JBQ** 0.0201 MDL 5.33 PQL U В ng/Kg 1,2,3,6,7,8-HXCDF 0.0202 JBQ 0.0131 MDL 5.33 **PQL** В ng/Kg U 1,2,3,7,8,9-HXCDD 0.0551 JBQ 0.0198 MDL 5.33 PQL U В ng/Kg 1,2,3,7,8-PECDD 0.0439 JQ 0.0360 MDL J Z 5.33 **PQL** ng/Kg 2,3,4,7,8-PECDF 0.0636 **JBQ** 0.0177 MDL 5.33 PQL ng/Kg U В OCDD 0.949 JΒ 0.0272 MDL 10.7 PQL ng/Kg U В

0.0348

MDL

10.7

PQL

ng/Kg

JBQ

0.141

Sample ID: SL-118-SA6-SB-10.5-11.5	Collec	Collected: 7/13/2011 1:45:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.871	JB	0.0356	MDL	5.17	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.222	JBQ	0.0172	MDL	5.17	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.0497	JB	0.0201	MDL	5.17	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDF	0.0336	JB	0.0223	MDL	5.17	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.0350	JBQ	0.0205	MDL	5.17	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.0423	JBQ	0.0235	MDL	5.17	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.133	JBQ	0.0213	MDL	5.17	PQL	ng/Kg	U	В		
OCDD	3.27	JB	0.0281	MDL	10.3	PQL	ng/Kg	U	В		
OCDF	0.321	JBQ	0.0362	MDL	10.3	PQL	ng/Kg	U	В		

^{*} denotes a non-reportable result

OCDF

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 8:29:26 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX112

Laboratory: LL

EDD Filename: DX112_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-118-SA6-SB-4.0-5.0	Collec	Collected: 7/13/2011 1:55:00 Analysis Type: RES							Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,4,6,7,8-HPCDF	0.999	JB	0.0373	MDL	5.57	PQL	ng/Kg	J	Z			
1,2,3,4,7,8,9-HPCDF	0.140	JB	0.0550	MDL	5.57	PQL	ng/Kg	J	Z			
1,2,3,4,7,8-HXCDF	0.0762	JBQ	0.0344	MDL	5.57	PQL	ng/Kg	U	В			
1,2,3,6,7,8-HXCDD	0.277	JB	0.0450	MDL	5.57	PQL	ng/Kg	j	Z			
1,2,3,6,7,8-HXCDF	0.0667	JBQ	0.0317	MDL	5.57	PQL	ng/Kg	υ	В			
1,2,3,7,8,9-HXCDD	0.139	JBQ	0.0425	MDL	5.57	PQL	пд/Кд	U	В			
1,2,3,7,8-PECDF	0.266	JBQ	0.0343	MDL	5.57	PQL	ng/Kg	J	Z			
2,3,4,6,7,8-HXCDF	0.0400	JBQ	0.0331	MDL	5.57	PQL	ng/Kg	υ	В			
2,3,4,7,8-PECDF	0.205	JB	0.0314	MDL	5.57	PQL	ng/Kg	J	Z			
OCDF	2.93	JВ	0.0447	MDL	11.1	PQL	ng/Kg	J	Z			

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX112 EDD Filename: DX112_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI	Compound Quantitation and CRQL
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX112

EDD Filename: DX112_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

. 13011011101 DX 1 12_1 1	
F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
н	Sampling to Leaching Estimation
н	Sampling to Leaching Rejection
н	Temperature Estimation
Н	Temperature Rejection
1	Internal Standard Estimation
1	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
M	Continuing Tune
M	Initial Tune
M	Performance Evaluation Mixture
M	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection
	

^{*} denotes a non-reportable result

10/27/2011 8:29:26 AM ADR version 1.4.0.111 Page 12 of 13

Lab Reporting Batch ID: DX112

EDD Filename: DX112_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
т	Trip Blank Contamination
z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX112

Method Blank Outlier Report

Lab Reporting Batch ID: DX112

Laboratory: LL

EDD Filename: DX112_v1. eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK1990B37 1 537	7/21/2011 3:37:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0CDD 0CDF	4.77 pg/L 1.11 pg/L 0.617 pg/L 0.272 pg/L 0.447 pg/L 0.625 pg/L 0.360 pg/L 0.898 pg/L 0.596 pg/L 0.295 pg/L 0.321 pg/L 0.382 pg/L 0.382 pg/L 0.397 pg/L	EB-SA6-SB-071311

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-071311(RES)	1,2,3,4,6,7,8-HPCDD	5.30 pg/L	5.30U pg/L
EB-\$A6-\$B-071311(RES)	1,2,3,4,6,7,8-HPCDF	0.693 pg/L	0.693U pg/L
EB-SA6-SB-071311(RES)	1,2,3,4,7,8,9-HPCDF	0.237 pg/L	0.237U pg/L
EB-SA6-SB-071311(RES)	1,2,3,4,7,8-HxCDD	0.270 pg/L	0.270U pg/L
EB-SA6-SB-071311(RES)	1,2,3,4,7,8-HXCDF	0.309 pg/L	0.309U pg/L
EB-SA6-SB-071311(RES)	1,2,3,6,7,8-HXCDD	0.367 pg/L	0.367U pg/L
EB-SA6-SB-071311(RES)	1,2,3,6,7,8-HXCDF	0.158 pg/L	0.158U pg/L
EB-SA6-SB-071311(RES)	1,2,3,7,8,9-HXCDD	0.520 pg/L	0.520U pg/L
EB-SA6-SB-071311(RES)	1,2,3,7,8,9-HXCDF	0.331 pg/L	0.331U pg/L
EB-SA6-SB-071311(RES)	1,2,3,7,8-PECDF	0.436 pg/L	0.436U pg/L
EB-SA6-SB-071311(RES)	2,3,4,6,7,8-HXCDF	0.468 pg/L	0.468U pg/L
B-SA6-SB-071311(RES)	2,3,4,7,8-PECDF	0,599 pg/L	0.599U pg/L
EB-SA6-SB-071311(RES)	OCDD	10.3 pg/L	10.3U pg/L

Method Blank Outlier Report

Lab Reporting Batch ID: DX112 Laboratory: LL

EDD Filename: DX112_v1. eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 1613 <i>Matrix:</i> SO	B					
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples		
BLK2070B370724	7/29/2011 7:24:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	0.365 ng/kg 0.0647 ng/kg 0.0217 ng/kg 0.0221 ng/kg 0.0231 ng/kg 0.0227 ng/kg 0.0584 ng/kg 0.0259 ng/kg 0.0195 ng/kg 0.0391 ng/kg 0.801 ng/kg 0.114 ng/kg	SL-037-SA6-SS-0.0-0.5 SL-046-SA6-SS-0.0-0.5 SL-048-SA6-SS-0.0-0.5 SL-049-SA6-SS-0.0-0.5 SL-050-SA6-SS-0.0-0.5 SL-051-SA6-SS-0.0-0.5 SL-052-SA6-SS-0.0-0.5 SL-053-SA6-SS-0.0-0.5 SL-054-SA6-SS-0.0-0.5 SL-055-SA6-SS-0.0-0.5 SL-063-SA6-SS-0.0-0.5 SL-063-SA6-SS-0.0-0.5 SL-063-SA6-SS-0.0-0.5 SL-063-SA6-SS-0.0-0.5 SL-072-SA6-SB-4.0-5.0 SL-072-SA6-SB-4.0-5.0 SL-083-SA6-SB-9.0-10.0 SL-083-SA6-SB-9.0-10.0 SL-116-SA6-SB-10.5-11.5 SL-118-SA6-SB-10.5-0		

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-037-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.241 ng/Kg	0.241U ng/Kg
SL-072-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0446 ng/Kg	0.0446U ng/Kg
SL-072-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,6,7,8-HXCDF	0.0351 ng/Kg	0.0351U ng/Kg
SL-072-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.103 ng/Kg	0.103U ng/Kg
SL-072-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0549 ng/Kg	0.0549U ng/Kg
SL-072-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0759 ng/Kg	0.0759U ng/Kg
SL-072-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.473 ng/Kg	0.473U ng/Kg
SL-072-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0757 ng/Kg	0.0757U ng/Kg
SL-072-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0166 ng/Kg	0.0166U ng/Kg
SL-072-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0455 ng/Kg	0.0455U ng/Kg
SL-072-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0320 ng/Kg	0.0320U ng/Kg
SL-072-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0228 ng/Kg	0.0228U ng/Kg
SL-072-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0450 ng/Kg	0.0450U ng/Kg
SL-072-SA6-SB-9.0-10.0(RES)	OCDD	1.39 ng/Kg	1.39U ng/Kg
SL-072-SA6-SB-9.0-10.0(RES)	OCDF	0.106 ng/Kg	0.106U ng/Kg
SL-116-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	0.403 ng/Kg	0.403U ng/Kg
SL-116-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0489 ng/Kg	0.0489U ng/Kg
SL-116-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDD	0.0213 ng/Kg	0.0213U ng/Kg
SL-116-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.0202 ng/Kg	0.0202U ng/Kg
SL-116-SA6-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDD	0.0551 ng/Kg	0.0551U ng/Kg
SL-116-SA6-SB-2,5-3,5(RES)	2,3,4,7,8-PECDF	0.0636 ng/Kg	0.0636U ng/Kg
SL-116-SA6-SB-2.5-3.5(RES)	OCDD	0.949 ng/Kg	0.949U ng/Kg
SL-116-SA6-SB-2.5-3.5(RES)	OCDF	0.141 ng/Kg	0.141U ng/Kg
SL-118-SA6-SB-10.5-11.5(RES)	1,2,3,4,6,7,8-HPCDD	0.871 ng/Kg	0.871U ng/Kg
SL-118-SA6-SB-10.5-11.5(RES)	1,2,3,4,6,7,8-HPCDF	0.222 ng/Kg	0.222U ng/Kg
SL-118-SA6-SB-10.5-11.5(RES)	1,2,3,6,7,8-HXCDD	0.0497 ng/Kg	0.0497U ng/Kg
SL-118-SA6-SB-10.5-11.5(RES)	1,2,3,6,7,8-HXCDF	0.0336 ng/Kg	0.0336U ng/Kg

10/27/2011 8:23:40 AM ADR version 1.4.0.111 Page 2 of 3

Method Blank Outlier Report

Lab Reporting Batch ID: DX112 Laboratory: LL

EDD Filename: DX112_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				engentaukan iskepkunakoloniztau
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-118-SA6-SB-10.5-11.5(RES)	1,2,3,7,8,9-HXCDD	0.0350 ng/Kg	0.0350U ng/Kg
SL-118-SA6-SB-10.5-11.5(RES)	2,3,4,6,7,8-HXCDF	0.0423 ng/Kg	0.0423U ng/Kg
SL-118-SA6-SB-10.5-11.5(RES)	2,3,4,7,8-PECDF	0.133 ng/Kg	0.133U ng/Kg
SL-118-SA6-SB-10.5-11.5(RES)	OCDD	3.27 ng/Kg	3.27U ng/Kg
SL-118-SA6-SB-10.5-11.5(RES)	OCDF	0.321 ng/Kg	0.321U ng/Kg
SL-118-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0762 ng/Kg	0.0762U ng/Kg
SL-118-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0667 ng/Kg	0.0667U ng/Kg
SL-118-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.139 ng/Kg	0.139U ng/Kg
SL-118-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0400 ng/Kg	0.0400U ng/Kg

Page 3 of 3

Lab Reporting Batch ID: DX112 Laboratory: LL

EDD Filename: DX112_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-071311	1,2,3,4,6,7,8-HPCDD	JB	5.30	9.90	PQL	pg/L	<u></u>
	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JBQ	0.693 0.237	9.90	PQL PQL	pg/L pg/L	
	1,2,3,4,7,8-HxCDD	JBQ	0.270	9.90	PQL	pg/L	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JBQ JBQ	0.309 0.367	9.90 9.90	PQL PQL	pg/L pg/L	
	1,2,3,6,7,8-HXCDF	JBQ	0.357	9.90	PQL	pg/L pg/L	J (all detects)
	1,2,3,7,8,9-HXCDD	JBQ	0.520	9.90	PQL	pg/L	,
	1,2,3,7,8,9-HXCDF	JBQ	0.331	9.90	PQL	pg/L	
	1,2,3,7,8-PECDF	JBQ	0.436	9.90	PQL	pg/L	
	2,3,4,6,7,8-HXCDF	JBQ	0.468	9.90	PQL	pg/L	
	2,3,4,7,8-PECDF	JBQ	0.599	9.90	PQL	pg/L	
	OCDD -	JB	10.3	19.8	PQL	pg/L	

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-037-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	SEST SEST SEST SEST SEST SEST SEST SEST	3.64 0.564 0.109 0.130 0.248 0.247 0.143 0.241 0.134 0.138 0.225 0.176 0.335 0.0774 0.158 1.06	4.95 4.95 4.95 4.95 4.95 4.95 4.95 4.95	PAL PAL PAL PAL PAL PAL PAL PAL PAL PAL	rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg rg/Kg	J (all detects)
SL-046-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD 2,3,7,8-TCDD	B-8888-3888	0.832 0.677 1.25 2.09 0.448 1.28 0.186 0.278 0.833 0.561 0.757 0.0661 0.457	4.95 4.95 4.95 4.95 4.95 4.95 4.95 4.95	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX112

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

EDD Filename: DX112_v1.

Method: 1613B

Matrix: SO

Matrix: SU				1		,	
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-048-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,7,8-TCDD 2,3,7,8-TCDD	##-###### <i>#</i>	4.02 0.222 0.179 0.625 0.613 0.197 0.441 0.111 0.122 0.700 0.200 0.0402 0.224	4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-049-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	#55####-4##############################	1.17 0.306 0.367 0.280 0.564 0.298 0.726 0.334 0.331 0.268 0.321 0.326 0.0442 0.0848 2.91	5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01	PAL PAL PAL PAL PAL PAL PAL PAL PAL PAL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-050-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		0.911 0.546 0.480 1.96 0.154 1.12 0.404 0.577 0.406 0.301 0.178	5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06	Pal Pal Pal Pal Pal Pal Pal Pal Pal Pal	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-051-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD 2,3,7,8-TCDD	#55#8#45#8#46#	3.20 0.347 0.359 0.534 1.46 0.352 1.22 0.118 0.312 0.190 0.272 0.712 0.0457 0.330 7.68	5.07 5.07 5.07 5.07 5.07 5.07 5.07 5.07	Pal Pal Pal Pal Pal Pal Pal Pal Pal Pal	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

10/27/2011 8:23:49 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX112 Laboratory: LL

EDD Filename: DX112_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO						•	
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-052-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	B B B J B B G	2.82 0.578 2.64 1.59 1.93 0.430 0.309 1.40 2.07 0.0332	5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-053-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	######################################	3.89 0.392 0.291 0.327 1.22 0.244 0.944 0.109 0.266 0.221 0.267 0.359 0.0396 0.138 9.23	4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-054-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	<u>ฅ</u> ៹ឰฅฅฅ៹¬ฅฅឰ៹¬	0.580 0.407 0.567 1.74 0.357 1.02 0.109 0.277 0.521 0.442 0.529 0.0688 0.306	5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-055-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	# <i>55</i> ###645###############################	2.98 0.364 0.278 0.399 1.15 0.328 0.913 0.151 0.194 0.369 0.298 0.596 0.0545 0.287 6.88	5.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX112 Laboratory: LL

EDD Filename: DX112_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-060-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF	JB J JB	1.77 0.961 1.42	5.07 5.07 5.07	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	JB JB JB	4.40 0.972 1.96	5.07 5.07 5.07 5.07	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF	JG JB JB JB	0.232 0.541 0.698 1.25 0.947	5.07 5.07 5.07 5.07 5.07	PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
	2,3,7,8-TCDD 2,3,7,8-TCDF	jg jg	0.0809 0.696	1.01 1.01	PQL PQL	ng/Kg ng/Kg	
SL-063-SA6-SS-0.0-0.5	1,2,3,7,8,9-HXCDF	J	3.28	5.14	PQL	ng/Kg	J (all detects)
SL-064-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	TB TB T T TB TB T T	4.83 2.99 2.41 1.87 0.415 1.35 0.891 3.14 0.818 0.268 0.413	5.11 5.11 5.11 5.11 5.11 5.11 5.11 5.11	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-072-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDD 2,3,4,6,7,8-PECDF OCDF	JB JB G JB G JB JB JB JB JB JB JB JB JB JB JB JB JB	4.27 2.22 0.142 0.0446 0.194 0.0351 0.103 0.0549 0.0759 9.54	5.56 5.56 5.56 5.56 5.56 5.56 5.56 5.56	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-072-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	######################################	0.473 0.0757 0.0166 0.0455 0.0463 0.0320 0.0228 0.0450 1.39 0.106	5.69 5.69 5.69 5.69 5.69 5.69 5.69 5.69	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-083-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		2.50 3.64 1.29 0.770 3.17 0.258 2.05 0.328 1.39 0.614 0.260 0.468	5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12	Pal Pal Pal Pal Pal Pal Pal Pal Pal Pal	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX112 Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX112_v1. Method: 1613B

Matrix: SO

IWALITA. 90							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-083-SA6-SB-9.0-10.0	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF		4.28 2.13 1.66 0.530 1.32 3.10 1.20 0.683 0.846	5.45 5.45 5.45 5.45 5.45 5.45 5.45 1.09	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-116-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 2,3,4,7,8-PECDD OCDF	######################################	0.403 0.0489 0.0298 0.0213 0.0202 0.0551 0.0439 0.0636 0.949 0.141	5.33 5.33 5.33 5.33 5.33 5.33 5.33 5.33	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-118-SA6-SB-10.5-11.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	B B B B B B B B B B B B B B B B B B B	0.871 0.222 0.0497 0.0336 0.0350 0.0423 0.133 3.27 0.321	5.17 5.17 5.17 5.17 5.17 5.17 5.17 10.3 10.3	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-118-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDF	ਜ਼ਜ਼ਫ਼ਜ਼ਫ਼ਫ਼ਫ਼ਜ਼ ਜ਼	0.999 0.140 0.0762 0.277 0.0667 0.139 0.266 0.0400 0.205 2.93	5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Page 5 of 5 10/27/2011 8:23:49 AM

SAMPLE DELIVERY GROUP

DX113

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
14-Jul-2011	SL-074-SA6-SB-4.0-5.0	6345471	N	METHOD	1613B	III
14-Jul-2011	SL-074-SA6-SB-4.0-5.0MS	6345472	MS	METHOD	1613B	111
14-Jul-2011	SL-074-SA6-SB-4.0-5.0MSD	6345473	MSD	METHOD	1613B	111
14-Jul-2011	SL-074-SA6-SB-4.0-5.0MSD	P345471M372101	MSD	METHOD	1613B	Ш
14-Jul-2011	SL-074-SA6-SB-4.0-5.0MS	P345471R372004	мѕ	METHOD	1613B	III
14-Jul-2011	DUP02-SA6-QC-071411	6345477	FD	METHOD	1613B	Ш
14-Jul-2011	SL-074-SA6-SB-9.0-10.0	6345474	N	METHOD	1613B	111
14-Jul-2011	SL-088-SA6-SB-4.0-5.0	6345475	N	METHOD	1613B	Ш
14-Jul-2011	SL-088-SA6-SB-9.0-10.0	6345476	N	METHOD	1613B	III .
14-Jul-2011	SL-071-SA6-SB-4.0-5.0	6345469	N	METHOD	1613B	III
14-Jul-2011	SL-071-SA6-SB-6.0-7.0	6345470	N	METHOD	1613B	111
18-Jul-2011	SL-133-SA6-SS-0.0-0.5	6348199	N	METHOD	1613B	Ш
18-Jul-2011	SL-134-SA6-SS-0.0-0.5	6348200	N	METHOD	1613B	Ш
18-Jul-2011	SL-128-SA6-SS-0.0-0.5	6348198	N	METHOD	1613B	111
18-Jul-2011	SL-145-SA6-SS-0.0-0.5	6348203	N	METHOD	1613B	Ш
18-Jul-2011	SL-127-SA6-SS-0.0-0.5	6348197	N	METHOD	1613B	111
18-Jul-2011	SL-146-SA6-SS-0.0-0.5	6348204	N	METHOD	1613B	Ш
18-Jul-2011	SL-147-SA6-SS-0.0-0.5	6348205	N	METHOD	1613B	111
18-Jul-2011	SL-142-SA6-SS-0.0-0.5	6348201	N	METHOD	1613B	Ш
18-Jul-2011	SL-143-SA6-SS-0.0-0.5	6348202	N	METHOD	1613B	111
18-Jul-2011	SL-148-SA6-SS-0.0-0.5	6348206	N	METHOD	1613B	111
18-Jul-2011	SL-150-SA6-SS-0.0-0.5	6348207	N	METHOD	1613B	111
18-Jul-2011	SL-155-SA6-SS-0.0-0.5	6348209	N	METHOD	1613B	Ш
18-Jul-2011	SL-152-SA6-SS-0.0-0.5	6348208	N	METHOD	1613B	III
					•	

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX113

Laboratory: LL

EDD Filename: PrepDX113_v1

eQAPP Name: CDM_SSFL_110509

net anni i chiantini di mattiri dalla di mattiri di casa di materia di materia di casa di casa di casa di casa

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: DUP02-SA6-QC-071411	Collect	ted: 7/14/2	011 8:25:0	00 A	nalysis T	ype: RES		1	Dilution: 1
	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Posult	Ougl	DI	Type	ום	Tuno	Unite	Oust	Codo

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	3.12	JB	0.0861	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	3.90	JB	0.114	MDL	5.25	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	1.32	JB	0.0747	MDL	5.25	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDF	0.948	JB	0.0701	MDL	5.25	PQL	ng/Kg	J	z
1,2,3,7,8,9-HXCDD	2.93	JB	0.115	MDL	5.25	PQL	ng/Kg	J	z
1,2,3,7,8,9-HXCDF	0.283	JBQ	0.0725	MDL	5.25	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDD	2.93	JB	0.0614	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.407	JB	0.0483	MDL	5.25	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.44	JB	0.0661	MDL	5.25	· PQL	ng/Kg	J	Z, FD
2,3,4,7,8-PECDF	0.942	JB	0.0461	MDL	5.25	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.341	J	0.0197	MDL	1.05	PQL	ng/Kg	J	z
2,3,7,8-TCDF	0.715	J	0.112	MDL	1.05	PQL	ng/Kg	J	Z
OCDD	6150	EB	0.174	MDL	10.5	PQL	ng/Kg	J	*XI

Sample ID: SL-071-SA6-SB-4.0-5.0

Collected: 7/14/2011 2:35:00

Analysis Type: RES

Dilution: 1

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,pc		Dilution		
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1.12	JB	0.0674	MDL	5.29	PQL	ng/Kg	J	Z	
0.589	JBQ	0.0772	MDL	5.29	PQL	ng/Kg	J	Z	
0.845	JB	0.0529	MDL	5.29	PQL	ng/Kg	J	Z	
2.55	JB	0.0803	MDL	5.29	PQL	ng/Kg	J	Z	
0.396	JB	0.0481	MDL	5.29	PQL	ng/Kg	J	Z	
1.04	JB	0.0743	MDL	5.29	PQL	ng/Kg	J	Z	
0.204	JB	0.0499	MDL	5.29	PQL	ng/Kg	U	В	
0.673	JB	0.0303	MDL	5.29	PQL	ng/Kg	J	Z	
0.173	JB	0.0423	MDL	5.29	PQL	ng/Kg	J	Z	
0.686	JB	0.0443	MDL	5.29	PQL	ng/Kg	J	Z	
0.793	JB	0.0400	MDL	5.29	PQL	ng/Kg	J	Z	
0.0595	JQ	0.0137	MDL	1.06	PQL	ng/Kg	J	Z	
0.813	J	0.101	MDL	1.06	PQL	ng/Kg	J	Z	
	Lab Result 1.12 0.589 0.845 2.55 0.396 1.04 0.204 0.673 0.173 0.686 0.793 0.0595	Lab Result Lab Qual 1.12 JB 0.589 JBQ 0.845 JB 2.55 JB 0.396 JB 1.04 JB 0.204 JB 0.673 JB 0.173 JB 0.686 JB 0.793 JB 0.0595 JQ	Lab Result Lab Qual DL 1.12 JB 0.0674 0.589 JBQ 0.0772 0.845 JB 0.0529 2.55 JB 0.0803 0.396 JB 0.0481 1.04 JB 0.0743 0.204 JB 0.0499 0.673 JB 0.0303 0.173 JB 0.0423 0.686 JB 0.0443 0.793 JB 0.0400 0.0595 JQ 0.0137	Lab Result Lab Qual DL DL Type 1.12 JB 0.0674 MDL 0.589 JBQ 0.0772 MDL 0.845 JB 0.0529 MDL 2.55 JB 0.0803 MDL 0.396 JB 0.0481 MDL 1.04 JB 0.0743 MDL 0.204 JB 0.0499 MDL 0.673 JB 0.0303 MDL 0.173 JB 0.0423 MDL 0.686 JB 0.0443 MDL 0.793 JB 0.0400 MDL 0.0595 JQ 0.0137 MDL	Lab Result Lab Qual DL DL Type RL 1.12 JB 0.0674 MDL 5.29 0.589 JBQ 0.0772 MDL 5.29 0.845 JB 0.0529 MDL 5.29 2.55 JB 0.0803 MDL 5.29 0.396 JB 0.0481 MDL 5.29 1.04 JB 0.0743 MDL 5.29 0.204 JB 0.0499 MDL 5.29 0.673 JB 0.0303 MDL 5.29 0.173 JB 0.0423 MDL 5.29 0.686 JB 0.0443 MDL 5.29 0.793 JB 0.0400 MDL 5.29 0.0595 JQ 0.0137 MDL 1.06	Lab Result Lab Qual DL Type RL Type RL Type 1.12 JB 0.0674 MDL 5.29 PQL 0.589 JBQ 0.0772 MDL 5.29 PQL 0.845 JB 0.0529 MDL 5.29 PQL 2.55 JB 0.0803 MDL 5.29 PQL 0.396 JB 0.0481 MDL 5.29 PQL 1.04 JB 0.0743 MDL 5.29 PQL 0.204 JB 0.0499 MDL 5.29 PQL 0.673 JB 0.0303 MDL 5.29 PQL 0.173 JB 0.0423 MDL 5.29 PQL 0.686 JB 0.0443 MDL 5.29 PQL 0.793 JB 0.0400 MDL 5.29 PQL 0.0595 JQ 0.0137 MDL 1.06 PQL	Lab Result Lab Qual DL DL DL Type RL Type RL Type RL Units 1.12 JB 0.0674 MDL 5.29 PQL ng/Kg 0.589 JBQ 0.0772 MDL 5.29 PQL ng/Kg 0.845 JB 0.0529 MDL 5.29 PQL ng/Kg 2.55 JB 0.0803 MDL 5.29 PQL ng/Kg 0.396 JB 0.0481 MDL 5.29 PQL ng/Kg 1.04 JB 0.0743 MDL 5.29 PQL ng/Kg 0.204 JB 0.0499 MDL 5.29 PQL ng/Kg 0.673 JB 0.0303 MDL 5.29 PQL ng/Kg 0.173 JB 0.0423 MDL 5.29 PQL ng/Kg 0.686 JB 0.0443 MDL 5.29 PQL ng/Kg 0.793 JB 0.0400 MDL 5.29	Lab Result Lab Qual DL DL Type RL Type RL Type RL Type Data Review Qual 1.12 JB 0.0674 MDL 5.29 PQL ng/Kg J 0.589 JBQ 0.0772 MDL 5.29 PQL ng/Kg J 0.845 JB 0.0529 MDL 5.29 PQL ng/Kg J 2.55 JB 0.0803 MDL 5.29 PQL ng/Kg J 0.396 JB 0.0481 MDL 5.29 PQL ng/Kg J 1.04 JB 0.0743 MDL 5.29 PQL ng/Kg J 0.204 JB 0.0499 MDL 5.29 PQL ng/Kg J 0.673 JB 0.0303 MDL 5.29 PQL ng/Kg J 0.173 JB 0.0423 MDL 5.29 PQL ng/Kg J 0.686 JB 0.0443 MDL <td< td=""></td<>	

Sample ID: SL-071-SA6-SB-6.0-7.0

Collected: 7/14/2011 2:45:00

Analysis Type: REA

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	1.00	JC	0.0475	MDL	1.07	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:36:53 PM

ADR version 1.4.0.111

Page 1 of 13

Lab Reporting Batch ID: DX113 Laboratory: LL

EDD Filename: PrepDX113_v1 eQAPP Name: CDM_SSFL_110509

SO

Method Catego	ory: GENCHEM	
Method:	1613B	Matrix

Sample ID: SL-071-SA6-SB-6.0-7.0	Collec	ted: 7/14/2	2011 2: 45:0	00 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HxCDD	4.38	JB	0.155	MDL	5.35	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	3.57	JB	0.118	MDL	5.35	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	2.11	JB	0.109	MDL	5.35	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.988	JB	0.101	MDL	5.35	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.561	JB	0.0624	MDL	5.35	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	3.81	JB	0.0917	MDL	5.35	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	1.28	JB	0.0591	MDL	5.35	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.679	J	0.0344	MDL	1.07	PQL	ng/Kg	J	Z	

Sample ID: SL-074-SA6-SB-4.0-5.0	Collect	ted: 7/14/2	011 8:15:0	90 A	nalysis T	ľ	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2.3.7.8-TCDF	0.905	JC	0.0558	MDI.	1.03	POL	na/Ka		7

Sample ID: SL-074-SA6-SB-4.0-5.0	Collec	ted: 7/14/2	011 8:15:0	00 A	nalysis T	ype: RES	i	D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	423	В	0.314	MDL.	5.13	PQL	ng/Kg	J	Q, Q
1,2,3,4,7,8,9-HPCDF	4.56	JB	0.110	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	2.19	JB	0.143	MDL	5.13	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	2.66	JB	0.109	MDL	5.13	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDF	1.46	JB	0.107	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.80	JB	0.145	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.662	JB	0.101	MDL	5.13	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDD	4.06	JВ	0.0918	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.380	JBQ	0.0627	MDL	5.13	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	2.53	JB	0.0925	MDL	5.13	PQL	ng/Kg	J	Z, FD
2,3,4,7,8-PECDF	1.31	JB	0.0582	MDL.	5.13	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.299	JQ	0.0281	MDL	1.03	PQL	ng/Kg	J	Z
OCDD	7280	EB	0.232	MDL	10.3	PQL	ng/Kg	J	*XI

Sample ID: SL-074-SA6-SB-9.0-10.0	Collec	Collected: 7/14/2011 8:35:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8,9-HPCDF	2.11	JB	0.0766	MDL	5.42	PQL	ng/Kg	J	Z		

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX113 Laboratory: LL

EDD Filename: PrepDX113_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

•									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	1.59	JB	0.102	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.72	JB	0.0610	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	4.57	JB	0.107	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.02	JB	0.0611	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.91	JB	0.102	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.62	JB	0.0578	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.880	JB	0.0441	MDL	5.42	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.47	JB	0.0537	MDL	5.42	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.25	JB	0.0404	MDL	5.42	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.132	J	0.0209	MDL	1.08	PQL	ng/Kg	J	Z

Sample ID: SL-088-SA6-SB-4.0-5.0 Collected: 7/14/2011 10:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.697	JB	0.0807	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.331	JB	0.0687	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.924	JB	0.0748	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.51	JB	0.0734	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.365	JB	0.0716	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.743	JB	0.0702	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.212	JB	0.0524	MDL	5.36	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.591	JB	0.0278	MDL	5.36	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.148	JBQ	0.0379	MDL	5.36	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.439	JB	0.0445	MDL	5.36	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.540	JB	0.0373	MDL	5.36	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0880	JQ	0.0214	MDL	1.07	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.426	J	0.0783	MDL	1.07	PQL	ng/Kg	J	Z

Sample ID: SL-088-SA6-SB-9.0-10.0 Collected: 7/14/2011 10:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.471	JB	0.0284	MDL	5.17	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0987	JBQ	0.00903	MDL	5.17	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0569	JB	0.0168	MDL	5.17	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0457	JBQ	0.0149	MDL	5.17	PQL	ng/Kg	U	В

Page 3 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX113

Laboratory: LL

EDD Filename: PrepDX113_v1

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

SO Matrix:

Sample ID: SL-088-SA6-SB-9.0-10.0	Collec	ted: 7/14/2	2011 10:55	:00 A	nalysis Ty	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HXCDF	0.0798	JB	0.0215	MDL	5.17	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0725	JBQ	0.0153	MDL	5.17	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0655	JB	0.0181	MDL	5.17	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0547	JBQ	0.0146	MDL	5.17	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDF	0.0762	JВ	0.0226	MDL	5.17	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0822	JBQ	0.0168	MDL	5.17	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0766	JB	0.0104	MDL	5.17	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.123	JBQ	0.0173	MDL	5.17	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.162	JB	0.0105	MDL	5.17	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0343	JQ	0.0159	MDL	1.03	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0206	JQ	0.0134	MDL	1.03	PQL	ng/Kg	J	Z	
OCDD	1.94	JB	0.0335	MDL	10.3	PQL	ng/Kg	U	В	
OCDF	0.181	JB	0.0366	MDL	10.3	PQL	ng/Kg	U	В	

Sample ID: SL-127-SA6-SS-0.0-0.5

Collected: 7/18/2011 9:42:00

Analysis Type: RES

Dilution: 1

Analyte	Conec	160. 1110/2		Diludon.					
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.584	JBQ	0.0429	MDL.	5.03	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.344	JB	0.0600	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.78	JB	0.0584	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.01	JB	0.0627	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.539	JB	0.0557	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.719	JB	0.0582	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.285	JB	0.0424	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.164	JB	0.0250	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.141	JB	0.0302	MDL	5.03	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.544	JB	0.0373	MDL	5.03	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.646	JB	0.0271	MDL	5.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0522	J	0.0156	MDL	1.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.228	JQ	0.0533	MDL	1.01	PQL	ng/Kg	J	Z

Sample ID: SL-128-SA6-SS-0.0-0.5

Collected: 7/18/2011 9:14:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.598	JBQ	0.0466	MDL	5.02	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 10/27/2011 12:36:53 PM

Page 4 of 13

Lab Reporting Batch ID: DX113

Laboratory: LL

EDD Filename: PrepDX113_v1

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

1613B

Matrix: SO

Sample ID: SL-128-SA6-SS-0.0-0.5

Method:

Collected: 7/18/2011 9:14:00

Analysis Type: RES

Dilution: 1

Analyte	Conec	Conected. Wild Analysis Type. NEO								
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HxCDD	0.306	JBQ	0.0568	MDL	5.02	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	1.08	JB	0.0441	MDL	5.02	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.962	JB	0.0598	MDL	5.02	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.337	JB	0.0424	MDL	5.02	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.571	JB	0.0573	MDL	5.02	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.207	JB	0.0403	MDL	5.02	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.164	JBQ	0.0214	MDL	5.02	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0924	JB	0.0182	MDL	5.02	PQL	ng/Kg	Ü	В	
2,3,4,6,7,8-HXCDF	0.404	JB	0.0329	MDL	5.02	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.307	JB	0.0192	MDL	5.02	PQL	ng/Kg	J	Ž	
2,3,7,8-TCDF	0.0697	J	0.0308	MDL	1.00	PQL	ng/Kg	J	Z	
OCDF	9.05	JB	0.0445	MDL	10.0	PQL	ng/Kg	J	Z	

Sample ID: SL-133-SA6-SS-0.0-0.5

Collected: 7/18/2011 7:55:00

Analysis Type: RES

Dilution: 1

					.,,	, po	Direction 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.509	JB	0.0368	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.162	JB	0.0465	MDL	4.86	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	2.11	JB	0.0451	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.716	JB	0.0496	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.452	JBQ	0.0421	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.389	JB	0.0484	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.225	JB	0.0437	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.150	JBQ	0.0172	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.119	JB	0.0228	MDL	4.86	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.454	JB	0.0357	MDL	4.86	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.664	JB	0.0223	MDL	4.86	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0788	J	0.0133	MDL	0.972	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.126	j	0.0399	MDL	0.972	PQL	ng/Kg	J	Z
OCDF	6.61	JB	0.0418	MDL	9.72	PQL	ng/Kg	J	Z
		1		L	1	1	1	1	

Sample ID: SL-134-SA6-SS-0.0-0.5

Collected: 7/18/2011 8:29:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.91	JB	0.0281	MDL	5.00	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX113 Laboratory: LL

EDD Filename: PrepDX113_v1 eQAPP Name: CDM_SSFL_110509

SO

Matrix:

Method Category: GENCHEM

Method: 1613B

Sample ID: SL-134-SA6-SS-0.0-0.5 Collected: 7/18/2011 8:29:00 Analysis Type: RES Dilution: 1

Sample ID; SL-134-SA6-SS-0.0-0.5	Collec	ted: 7/18/2	011 8:29:0	00 A	nalysis T	ype: RES	4	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.500	JB	0.0371	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.175	JB	0.0467	MDL	5.00	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	3.62	JB	0.0714	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.790	JB	0.0473	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.521	JB	0.0695	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.492	JB	0.0464	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.263	JB	0.0778	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.154	JBQ	0.0320	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.63	JB	0.0637	MDL	5.00	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.477	JB	0.0712	MDL	5.00	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.00	JB	0.0618	MDL	5.00	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.264	JQ	0.0156	MDL.	1.00	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.449	J	0.116	MDL	1.00	PQL	ng/Kg	J	Z
OCDF	8.11	JB	0.0325	MDL	10.0	PQL	ng/Kg	J	Z
			1		·				

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.457	JBQ	0.0423	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.428	JBQ	0.0586	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.78	JB	0.0490	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.11	JB	0.0602	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.437	JB	0.0471	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.794	· JB	0.0585	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.202	JB	0.0496	MDL	4.98	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.285	JB	0.0316	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.434	JB	0.0417	MDL	4.98	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.478	JB	0.0464	MDL	4.98	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.682	JB	0.0398	MDL	4.98	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.273	JQ	0.0183	MDL	0.996	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.463	JQ	0.0802	MDL	0.996	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:36:53 PM ADR version 1.4.0.111 Page 6 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX113 Laboratory: LL

EDD Filename: PrepDX113_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-143-SA6-SS-0.0-0.5 Collected: 7/18/2011 11:10:00 Analysis Type: RES Dilution: 1

\ Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.19	JB	0.0384	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.446	JBQ	0.0539	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.190	JBQ	0.0494	MDL	4.99	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	1.87	JB	0.0426	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.832	JB	0.0518	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.373	JB	0.0401	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.503	JBQ	0.0506	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.188	JB	0.0310	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.187	JB	0.0297	MDL	4.99	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.456	JB	0.0387	MDL	4.99	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.608	JB	0.0307	MDL	4.99	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.125	JQ	0.0146	MDL	0.998	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.238	J	0.0538	MDL	0.998	PQL	ng/Kg	J	Z
OCDF	7.18	JB	0.0494	MDL	9.98	PQL	ng/Kg	J	Z

Sample ID: SL-145-SA6-SS-0.0-0.5 Collected: 7/18/2011 9:33:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.19	JBQ	0.0737	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.276	JB	0.0473	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.29	JB	0.0502	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.20	JB	0.0585	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.606	JBQ	0.0418	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.558	JB	0.0489	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.182	JB	0.0218	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.381	JB	0.0353	MDL	5.01	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.28	JB	0.0423	MDL	5.01	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.70	JB	0.0341	MDL	5.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.293	JQ	0.0148	MDL	1.00	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.356	J	0.0558	MDL	1.00	PQL	ng/Kg	J	Z

Sample ID: SL-146-SA6-SS-0.0-0.5 Collected: 7/18/2011 10:23:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.45	JB	0.0632	MDL	5.03	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX113

Laboratory: LL

Dilution: 1

EDD Filename: PrepDX113_v1

eQAPP Name: CDM_SSFL_110509

Data

Method Categor	y: GENCHEM
Method:	1613B

SO Matrix:

Conec	(eu. 1110/2)	JII 10:23	.00 A	ilalysis iy	pe; KES	
 Lab Result	Lab Qual	DL	DL Type	RL	RL Type	U
 0.471	JBQ	0.0558	MDL	5.03	PQL	nę
4.52	JB	0.0595	MDL	5.03	PQL	ng
1.79	JB	0.0570	MDL	5.03	PQL	no

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	0.471	JBQ	0.0558	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	4.52	JB	0.0595	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.79	JB	0.0570	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.10	JBQ	0.0569	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.895	JB	0.0554	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.444	JB	0.0626	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.343	JBQ	0.0274	MDL.	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.430	JB	0.0581	MDL	5.03	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.25	JB	0.0542	MDL.	5.03	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.95	JB	0.0547	MDL	5.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0937	JQ	0.0145	MDL	1.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.706	J	0.116	MDL	1.01	PQL	ng/Kg	J	Z

Sample ID: SL-147-SA6-SS-0.0-0.5

Collected: 7/18/2011 10:25:00

Analysis Type: RES

Dilution: 1

oumple ib. ou-i+i-one-co-e.e-e.e	Conec	Dilution.							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.506	JB	0.0275	MDL	4.88	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.380	JB	0.0332	MDL	4.88	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.83	JB	0.0288	MDL	4.88	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.22	JB	0.0340	MDL	4.88	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.443	JB	0.0274	MDL	4.88	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.795	JB	0.0341	MDL	4.88	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.205	JB	0.0276	MDL	4.88	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.333	JB	0.0303	MDL	4.88	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.348	JBQ	0.0283	MDL	4.88	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.472	JB	0.0248	MDL.	4.88	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.641	JB	0.0254	MDL	4.88	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.383	J	0.0195	MDL	0.976	PQL	пд/Кд	J	Z
2,3,7,8-TCDF	0.423	J	0.0482	MDL	0.976	PQL	ng/Kg	J	Z
OCDF	8.56	JB	0.0219	MDL	9.76	PQL	ng/Kg	J	Z

Sample ID: SL-148-SA6-SS-0.0-0.5

Collected: 7/18/2011 11:40:00

Analysis Type: REA

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.911	JC	0.0503	MDL	1.00	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:36:53 PM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX113 Laboratory: LL

EDD Filename: PrepDX113_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: SO 1613B Matrix:

Sample ID: SL-148-SA6-SS-0.0-0.5	Collected: 7/	18/2011 11:40:00	Analysis Type: RES	Dilution: 1
				Data

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.35	JB	0.0740	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.654	JB	0.0796	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	4.64	JB	0.0810	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.31	JB	0.0869	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.976	JB	0.0822	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.31	JB	0.0793	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.453	JB	0.0584	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.380	JBQ	0.0405	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.404	JB	0.0708	MDL	5.01	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.12	JB	0.0524	MDL	5.01	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.40	JB	0.0704	MDL	5.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0687	JQ	0.0173	MDL	1.00	PQL	ng/Kg	J	Z

Collected: 7/18/2011 12:00:00 Analysis Type: RES Dilution: 1 Sample ID: SL-150-SA6-SS-0.0-0.5

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.610	JВ	0.0654	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.355	JВ	0.0523	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.25	JB	0.0753	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1,11	JB	0.0565	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.426	JВ	0.0736	MDL.	4.97	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.761	JB	0.0525	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.223	JB	0.0639	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.246	JB	0.0297	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.176	JB	0.0500	MDL	4.97	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.511	JB	0.0493	MDL	4.97	PQL.	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.882	JB	0.0500	MDL	4.97	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0834	JQ	0.0143	MDL	0.995	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.654	JQ	0.105	MDL	0.995	PQL	ng/Kg	J	Z

Sample ID: SL-152-SA6-SS-0.0-0.5 Collected: 7/18/2011 3:08:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.76	JВ	0.0432	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.289	JBQ	0.0628	MDL	4.99	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX113

Laboratory: LL

EDD Filename: PrepDX113_v1

eQAPP Name: CDM_SSFL_110509

Method Categ	ory: GENCHEM
Method:	1613B

1613B Matrix: SO

38111pie 101 0E-10E-0N0-00-010-013	Oblicated: 1710/2011 0.00.00 Allalysis Type: 1120							Ditation.		
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HxCDD	0.239	JBQ	0.0508	MDL	4.99	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.461	JB	0.0472	MDL	4.99	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.789	JB	0.0544	MDL	4.99	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.180	JBQ	0.0414	MDL	4.99	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.712	JB	0.0417	MDL	4.99	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.144	JBQ	0.0398	MDL	4.99	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.157	JBQ	0.0217	MDL	4.99	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.116	JB	0.0178	MDL	4.99	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.213	JB	0.0295	MDL	4.99	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.208	JB	0.0198	MDL	4.99	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0340	J	0.0140	MDL	0.997	PQL	ng/Kg	J	Z	
OCDF	6.57	JB	0.0507	MDL	9.97	PQL	ng/Kg	J	Z	

Sample ID: SL-155-SA6-SS-0.0-0.5

Collected: 7/18/2011 2:16:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.37	JB	0.0215	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.176	JBQ	0.0357	MDL	4.93	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.415	JB	0.0545	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.342	JBQ	0.0298	MDL	4.93	PQL	ng/Kg	J	z
1,2,3,6,7,8-HXCDD	0.960	JB	0.0559	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.175	JB	0.0266	MDL	4.93	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.953	JB	0.0525	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.262	JBQ	0.0317	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.253	JB	0.0285	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.133	JB	0.0210	MDL	4.93	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.200	JB	0.0255	MDL	4.93	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.293	JB	0.0225	MDL	4.93	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0356	JQ	0.0144	MDL	0.986	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.232	J	0.0379	MDL	0.986	PQL	ng/Kg	J	Z
OCDF	6.23	JB	0.0359	MDL	9.86	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 12:36:53 PM ADR version 1.4.0.111

Page 10 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX113 EDD Filename: PrepDX113_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
- K	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI	Compound Quantitation and CRQL
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
C	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
C	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX113

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

ilename: Pre		eQAPP Name: CDM
F	Equipment Blank Contamination	
F 	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
H	Extraction to Analysis Estimation	
H	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	,
Н	Sampling to Extraction Rejection	
н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
н	Temperature Estimation	
Н	Temperature Rejection	
1 .	Internal Standard Estimation	· · · · · · · · · · · · · · · · · · ·
1	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	<u>"</u>
L	Laboratory Control Spike Lower Rejection	·
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
М	Continuing Tune	•
М	Initial Tune	
М	Performance Evaluation Mixture	
M	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	· · ·

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX113

Laboratory: LL

EDD Filename: PrepDX113_v1

eQAPP Name: CDM_SSFL_110509

Continuing Calibration Verification Percent Recovery Lower Estimation
Continuing Calibration Verification Percent Recovery Lower Rejection
Continuing Calibration Verification Percent Recovery Upper Estimation
Continuing Calibration Verification Percent Recovery Upper Rejection
Continuing Calibration Verification Relative Response Factor
Initial Calibration Relative Response Factor
Initial Calibration Verification Percent Recovery Lower Estimation
Initial Calibration Verification Percent Recovery Lower Rejection
Initial Calibration Verification Percent Recovery Upper Estimation
Initial Calibration Verification Percent Recovery Upper Rejection
Initial Calibration Verification Relative Response Factor
Surrogate/Tracer Recovery Lower Estimation
Surrogate/Tracer Recovery Lower Rejection
Surrogate/Tracer Recovery Upper Estimation
Surrogate/Tracer Recovery Upper Rejection
Trip Blank Contamination
Reporting Limit
Reporting Limit > Project Maximum Contamination Limit
Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX113

Method Blank Outlier Report

Lab Reporting Batch ID: DX113 Laboratory: LL

EDD Filename: PrepDX113_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO			TOPEN ARRENTANIA	BATHIRAN (Analysis) and an experience of the second
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2080B371029	8/5/2011 10:29:00 AM	2,3,7,8-TCDF	0.0552 ng/Kg	SL-071-SA6-SB-6.0-7.0 SL-074-SA6-SB-4.0-5.0 SL-074-SA6-SB-9.0-10.0 SL-148-SA6-SS-0.0-0.5
BLK2080B371316	7/29/2011 1:16:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 0,0CDD 0CDF	0.905 ng/Kg 0.0836 ng/Kg 0.0469 ng/Kg 0.0496 ng/Kg 0.0405 ng/Kg 0.0405 ng/Kg 0.0381 ng/Kg 0.0739 ng/Kg 0.0439 ng/Kg 0.0231 ng/Kg 0.0313 ng/Kg 0.0445 ng/Kg 0.0505 ng/Kg 0.136 ng/Kg 0.136 ng/Kg	DUP02-SA6-QC-071411 SL-071-SA6-SB-4.0-5.0 SL-071-SA6-SB-6.0-7.0 SL-074-SA6-SB-6.0-7.0 SL-074-SA6-SB-9.0-10.0 SL-088-SA6-SB-9.0-10.0 SL-088-SA6-SB-9.0-10.0 SL-127-SA6-SS-0.0-0.5 SL-128-SA6-SS-0.0-0.5 SL-134-SA6-SS-0.0-0.5 SL-142-SA6-SS-0.0-0.5 SL-143-SA6-SS-0.0-0.5 SL-143-SA6-SS-0.0-0.5 SL-144-SA6-SS-0.0-0.5 SL-144-SA6-SS-0.0-0.5 SL-146-SA6-SS-0.0-0.5 SL-146-SA6-SS-0.0-0.5 SL-15-SA6-SS-0.0-0.5 SL-15-SA6-SS-0.0-0.5 SL-15-SA6-SS-0.0-0.5 SL-15-SA6-SS-0.0-0.5 SL-15-SA6-SS-0.0-0.5 SL-15-SA6-SS-0.0-0.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-071-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.204 ng/Kg	0.204U ng/Kg
SL-088-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.212 ng/Kg	0.212U ng/Kg
SL-088-\$A6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.148 ng/Kg	0.148U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.471 ng/Kg	0,471U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0987 ng/Kg	0.0987U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0569 ng/Kg	0.0569U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0457 ng/Kg	0.0457U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0798 ng/Kg	0.0798U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0725 ng/Kg	0.0725U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0655 ng/Kg	0.0655U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0547 ng/Kg	0.0547U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0762 ng/Kg	0.0762U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0822 ng/Kg	0.0822U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0766 ng/Kg	0.0766U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:32:24 PM

Method Blank Outlier Report

Lab Reporting Batch ID: DX113 Laboratory: LL
EDD Filename: PrepDX113_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO		Proches programmes and substitutive and commence of the Septime		Nortenbos (Mojes junis inpulation)
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-088-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.123 ng/Kg	0.123U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.162 ng/Kg	0.162U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	OCDD	1.94 ng/Kg	1.94U ng/Kg
SL-088-SA6-SB-9.0-10.0(RES)	OCDF	0.181 ng/Kg	0.181U ng/Kg
SL-127-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.141 ng/Kg	0.141U ng/Kg
SL-128-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.207 ng/Kg	0.207U ng/Kg
SL-128-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0924 ng/Kg	0.0924U ng/Kg
SL-133-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.162 ng/Kg	0.162U ng/Kg
SL-133-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.119 ng/Kg	0.119U ng/Kg
SL-134-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.175 ng/Kg	0.175U ng/Kg
SL-142-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.202 ng/Kg	0.202U ng/Kg
SL-143-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0,190 ng/Kg	0.190U ng/Kg
SL-147-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.205 ng/Kg	0.205U ng/Kg
SL-152-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.180 ng/Kg	0.180U ng/Kg
SL-152-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.144 ng/Kg	0.144U ng/Kg
SL-152-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.116 ng/Kg	0.116U ng/Kg
SL-152-\$A6-\$S-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0,213 ng/Kg	0.213U ng/Kg
SL-152-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.208 ng/Kg	0.208U ng/Kg
SL-155-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.176 ng/Kg	0.176U ng/Kg
SL-155-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.175 ng/Kg	0.175U ng/Kg
SL-155-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.133 ng/Kg	0.133U ng/Kg
SL-155-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.200 ng/Kg	0.200U ng/Kg

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX113

Laboratory: LL

EDD Filename: DX113_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	unggapung din 65.2%	Bosoviti.	28132	in einer der M.			
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-074-SA6-SB-4.0-5.0MS SL-074-SA6-SB-4.0-5.0MSD (SL-074-SA6-SB-4.0-5.0)	1,2,3,4,6,7,8-HPCDD OCDD	-195 -2301	-124 -1694	40.00-135.00 40.00-135.00	30 (20.00) 44 (20.00)	1,2,3,4,6,7,8-HPCDD OCDD	J (all detects) R (all non-detects) OCDD No Qual, >4x

Field Duplicate RPD Report

Lab Reporting Batch ID: DX113

Laboratory: LL

EDD Filename: DX113_v1. eQAPP Name: CDM_SSFL_110509

Matrix: SO					
	Concen	Concentration (%)			
Analyte	SL-074-SA6-SB-4.0-5.0	DUP02-SA6-QC-071411	Sample eQAP RPD RPD		Flag
MOISTURE	7.0	6.8	3		No Qualifiers Applied

Method: 1613B Matrix: SO					
Analyte	SL-074-SA6-SB-4.0-5.0	Concentration (ng/Kg) SL-074-SA6-SB-4.0-5.0 DUP02-SA6-QC-071411			Flag
1,2,3,4,6,7,8-HPCDD	423	312	30	50.00	
1,2,3,4,6,7,8-HPCDF	43.9	32.2	31	50.00	
1,2,3,4,7,8,9-HPCDF	4.56	3.12	37	50.00	
1,2,3,6,7,8-HXCDD	9.65	7.58	24	50.00	
1,2,3,6,7,8-HXCDF	1.46	0.948	43	50.00	
1,2,3,7,8,9-HXCDD	3.80	2.93	26	50.00	No Qualifiers Applied
1,2,3,7,8-PECDD	4.06	2.93	32	50.00	
1,2,3,7,8-PECDF	0.380	0.407	7	50.00	, ,
2,3,4,7,8-PECDF	1.31	0.942	33	50.00	
2,3,7,8-TCDD	0.299	0.341	13	50.00	
2,3,7,8-TCDF	0.905	0.715	23	50.00	
OCDD OCDF	7280 132	6150 98.8	17 29	50.00 50.00 50.00	
1,2,3,4,7,8-HxCDD	2.19	3.90	56	50.00	
1,2,3,4,7,8-HXCDF	2.66	1.32	67	50.00	J(all detects)
1,2,3,7,8,9-HXCDF	0.662	0.283	80	50.00	
2,3,4,6,7,8-HXCDF	2.53	1.44	55	50.00	

10/27/2011 8:44:58 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX113 Laboratory: LL

EDD Filename: DX113_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
DUP02-SA6-QC-071411	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD		3.12 3.90 1.32 0.948 2.93 0.283 2.93 0.407 1.44 0.942 0.341 0.715	5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-071-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD 2,3,7,8-TCDD	######################################	1.12 0.589 0.845 2.55 0.396 1.04 0.204 0.673 0.173 0.686 0.793 0.0595 0.813	5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.29	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-071-SA6-SB-6.0-7.0	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	JB JB JB JB JC	4.38 3.57 2.11 0.988 0.561 3.81 1.28 0.679 1.00	5.35 5.35 5.35 5.35 5.35 5.35 5.35 5.35	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-074-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD 2,3,7,8-TCDD	25 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4.56 2.19 2.66 1.46 3.80 0.662 4.06 0.380 2.53 1.31 0.299 0.905	5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-074-SA6-SB-9.0-10.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	JB JB JB JB JB JB JB JB	2.11 1.59 1.72 4.57 1.02 1.91 1.62 0.880 1.47 1.25 0.132	5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX113 Laboratory: LL

EDD Filename: DX113_v1. eQAPP Name: CDM_SSFL_110509

Matrix: SO	Method:	1613B			A die Ac		and the		A on	ing and	ins Chiele
	Matrix:	so	 			 '			*1 .		

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-088-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	HE HE HE HE HE HE HE HE HE HE HE HE HE H	0.697 0.331 0.924 1.51 0.365 0.743 0.212 0.591 0.148 0.439 0.540 0.0880 0.426	5.36 5.36 5.36 5.36 5.36 5.36 5.36 5.36	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-088-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDD OCDF	ងមេខម្មមាធិមាធិមាធិមាធិមាធា	0.471 0.0987 0.0569 0.0457 0.0798 0.0725 0.0655 0.0547 0.0762 0.0822 0.0766 0.123 0.162 0.0343 0.0206 1.94 0.181	5.17 5.17 5.17 5.17 5.17 5.17 5.17 5.17	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (ali detects)
SL-127-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	В	0.584 0.344 1.78 1.01 0.539 0.719 0.285 0.164 0.141 0.544 0.646 0.0522 0.228	5.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-128-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF 0CDF	######################################	0.598 0.306 1.08 0.962 0.337 0.571 0.207 0.164 0.0924 0.404 0.307 0.0697 9.05	5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX113 Laboratory: LL

EDD Filename: DX113_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

so

Matrix:

		Lab		Reporting	RL.		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-133-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	おいて、おおおびのおいのののである。	0.509 0.162 2.11 0.716 0.452 0.389 0.225 0.150 0.119 0.454 0.664 0.0788 0.126 6.61	4.86 4.86 4.86 4.86 4.86 4.86 4.86 4.86	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-134-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	6 人名葡萄罗西葡萄雷雷西西西	4.91 0.500 0.175 3.62 0.790 0.521 0.492 0.263 0.154 1.63 0.477 1.00 0.264 0.449 8.11	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-142-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	2000年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	0.457 0.428 1.78 1.11 0.437 0.794 0.202 0.285 0.434 0.478 0.682 0.273 0.463	4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-143-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	JB JBQ JB JB JB JB JB JB JB JB JB JB JB JB JB	4.19 0.446 0.190 1.87 0.832 0.373 0.503 0.188 0.187 0.456 0.608 0.125 0.238 7.18	4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX113 Laboratory: LL

EDD Filename: DX113_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

SO

Matrix:

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-145-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	JBB JBB JBB JBB JBB JBB JBB JBB JBB JBB	1.19 0.276 1.29 1.20 0.606 0.558 0.182 0.381 1.28 1.70 0.293 0.356	5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-146-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	н В В В В В В В В В В В В В	1.45 0.471 4.52 1.79 1.10 0.895 0.444 0.343 0.430 1.25 1.95 0.0937 0.706	5.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-147-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	0.506 0.380 1.83 1.22 0.443 0.795 0.205 0.333 0.348 0.472 0.641 0.383 0.423 8.56	4.88 4.88 4.88 4.88 4.88 4.88 4.88 4.88	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-148-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	18 18 18 18 18 18 18 18 18 18 18 18 18 1	1.35 0.654 4.64 2.31 0.976 1.31 0.453 0.380 0.404 1.12 2.40 0.0687 0.911	5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX113

Laboratory: LL

EDD Filename: DX113_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Watrix: SU				1			
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-150-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD 2,3,7,8-TCDD		0.610 0.355 2.25 1.11 0.426 0.761 0.223 0.246 0.176 0.511 0.882 0.0834 0.654	4.97 4.97 4.97 4.97 4.97 4.97 4.97 4.97	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-152-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	部ののでは、日本のは、日本のは、日本のは、日本のは、日本のは、日本のは、日本のは、日本の	2.76 0.289 0.239 0.461 0.789 0.180 0.712 0.144 0.157 0.116 0.213 0.208 0.0340 6.57	4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-155-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	а-Бааааааааааа	2.37 0.176 0.415 0.342 0.960 0.175 0.953 0.262 0.253 0.133 0.200 0.293 0.0356 0.232 6.23	4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.93	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

SAMPLE DELIVERY GROUP

DX114

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
13-Jul-2011	SL-058-SA6-SS-0.0-0.5	6347008	N	METHOD	1613B	III
13-Jul-2011	SL-056-SA6-SS-0.0-0.5	6347007	N	METHOD	1613B	111
14-Jul-2011	SL-043-SA6-SS-0.0-0.5	6346997	N	METHOD	1613B	Ш
14-Jul-2011	SL-044-SA6-SS-0.0-0.5	6346998	N	METHOD	1613B	III
14-Jul-2011	SL-302-SA6-SS-0.0-0.5	6347000	N	METHOD	16 1 3B	III
14-Jul-2011	SL-303-SA6-SS-0.0-0.5	6347001	N	METHOD	1613B	III
14-Jul-2011	SL-304-SA6-SS-0.0-0.5	6347002	N	METHOD	1613B	111
14-Jul-2011	SL-005-SA6-SS-0.0-0.5	6346994	N	METHOD	1613B	HI
14-Jul-2011	SL-004-SA6-SS-0.0-0.5	6346993	N	METHOD	1613B	III
14-Jul-2011	SL-020-SA6-SS-0.0-0.5	6346995	N	METHOD	1613B	III
14-Jul-2011	SL-029-SA6-SS-0.0-0.5	6346996	N	METHOD	1613B	H
14-Jul-2011	SL-126-SA6-SS-0.0-0.5	6346999	N	METHOD	1613B	10
14-Jul-2011	SL-286-SA6-SS-0.0-0.5	6347003	N	METHOD	1613B	111
14-Jul-2011	SL-286-SA6-SS-0.0-0,5MS	6347004	MS	METHOD	1613B	111
14-Jul-2011	SL-286-SA6-SS-0.0-0.5MSD	6347005	MSD	METHOD	1613B	111
14-Jul-2011	SL-286-SA6-SS-0.0-0.5MSD	P347003M371219	MSD	METHOD	1613B	III
14-Jul-2011	SL-286-SA6-SS-0.0-0.5MS	P347003R372300	мѕ	METHOD	1613B	Ш
14-Jul-2011	DUP03-SA6-QC-071511	6347006	FD	METHOD	1613B	Ш
18-Jul-2011	SL-293-SA6-SS-0.0-0.5	6348214	N	METHOD	1613B	III
18-Jul-2011	SL-176-SA6-SS-0.0-0.5	6348210	N	METHOD	1613B	Ш
18-Jul-2011	SL-182-SA6-SS-0.0-0.5	6348211	N	METHOD	1613B	H
18-Jul-2011	SL-183-SA6-SS-0.0-0.5	6348212	N	METHOD	1613B	III
18-Jul-2011	SL-184-SA6-SS-0.0-0.5	6348213	N	METHOD	1613B	Ш

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX114

EDD Filename: DX114_v1 eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Page 1 of 12

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: DUP03-SA6-QC-071511	Collec	ted: 7/14/2	011 2:59:0	00 A	nalysis T	pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	50.6	В	0.106	MDL	4.98	PQL	ng/Kg	J	FD	
1,2,3,4,6,7,8-HPCDF	7.54	В	0.0409	MDL	4.98	PQL	ng/Kg	J	FD	
1,2,3,4,7,8,9-HPCDF	0.779	JBQ	0.0733	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.454	JB	0.0846	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	2.94	JB	0.0710	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	1.26	JB	0.0848	MDL	4.98	PQL	ng/Kg	J	Z, FD	
1,2,3,6,7,8-HXCDF	0.757	JB	0.0619	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.815	JB	0.0835	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.339	JB	0.0820	MDL	4.98	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8-PECDD	0.214	JBQ	0.0298	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	2.84	JB	0.0602	MDL	4.98	PQL	ng/Kg	J	Z, FD	
2,3,4,6,7,8-HXCDF	0.640	JB	0.0687	MDL	4.98	PQL	ng/Kg	J	Z, FD	
2,3,4,7,8-PECDF	1.21	JB	0.0647	MDL	4.98	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0368	JQ	0.0140	MDL	0.996	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.659	JB	0.127	MDL.	0.996	PQL	ng/Kg	J	Z	
OCDD	593	В	0.0945	MDL	9.96	PQL	ng/Kg	J	FD	
OCDF	15.4	В	0.0529	MDL	9.96	PQL	ng/Kg	J	FD	

Sample ID: SL-004-SA6-SS-0.0-0.5	Collected: 7/14/2011 11:16:00	Analysis Type: RES	Dilution: 1
Sample ID: SL-004-SA6-SS-0.0-0.5	Collected: 7/14/2011 11:16:00	Analysis Type: RES	Dilution:

-									- manoin 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8-HxCDD	2.08	JB	0.0945	MDL	4.95	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	3.89	JB	0.0869	MDL	4.95	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	3.01	JB	0.0801	MDL	4.95	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	4.87	JB	0.0977	MDL	4.95	PQL	ng/Kg	J	Ž		
1,2,3,7,8,9-HXCDF	0.724	JB	0.0834	MDL	4.95	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.996	JB	0.0506	MDL	4.95	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	1.25	JB	0.0612	MDL	4.95	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	4.79	JB	0.0728	MDL	4.95	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	2.88	JB	0.0611	MDL	4.95	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.0866	JQ	0.0155	MDL	0.989	PQL	ng/Kg	J	Z		
OCDD	8530	EB	0.165	MDL	9.89	PQL	ng/Kg	J	*XI		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

11/7/2011 2:18:18 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DX114

Laboratory: LL

Ollusiani a

EDD Filename: DX114_v1

eQAPP Name: CDM_SSFL_110509

Analysis Types DES

Method Categor	y: SVOA
Method:	1613B

Sample ID: SI -005-SA6-SS-0 0-0 5

Method: 1613B Matrix: SO

Sample ID. SE-003-SA0-SS-0.0-0.5	Conec	tea: 111412	2011 10:50	.00 A	naiysis i	ype: K⊏3	1		Jiiution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	3.14	JB	0.0800	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.60	JB	0.0954	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.44	JB	0.0928	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.45	JB	0.169	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.12	JB	0.136	MDL	4.96	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	4.72	JB	0.145	MDL	4.96	PQL	ng/Kg	J	Z

Collected: 7/14/2011 10:50:00

Sample ID: SL-020-SA6-SS-0.0-0.5 Collected: 7/14/2011 12:57:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4970	EB	0.581	MDL	5.11	PQL	ng/Kg	J	*XI
OCDD	64000	ĒВ	0.392	MDL	10.2	PQL	ng/Kg	j	*XI

Analyte								_	Ditta Off,		
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8,9-HPCDF	1.05	JB	0.0815	MDL	4.92	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HxCDD	0.699	JB	0.0752	MDL	4.92	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	4.23	JB	0.0877	MDL	4.92	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	2.18	JB	0.0780	MDL	4.92	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	1.07	JB	0.0729	MDL	4.92	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	1.52	JB	0.0706	MDL	4.92	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.327	JB	0.0915	MDL	4.92	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.387	JBQ	0.0469	MDL	4.92	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	1.48	JB	0.0647	MDL	4.92	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	1.09	JB	0.0618	MDL	4.92	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	3.13	JB	0.0759	MDL	4.92	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.0595	J	0.0190	MDL	0.985	PQL	ng/Kg	J	Z ·		

 Sample ID: SL-043-SA6-SS-0.0-0.5
 Collected: 7/14/2011 7:41:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.422	JB	0.0542	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.731	JB	0.0716	MDL,	5.04	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.860	JB	0.0547	MDL	5.04	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 11/7/2011 2:18:18 PM ADR version 1.4.0.111

Page 2 of 12

Lab Reporting Batch ID: DX114

Laboratory: LL

EDD Filename: DX114_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-043-SA6-SS-0.0-0.5	Collec	Collected: 7/14/2011 7:41:00						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDD	2.36	JB	0.0741	MDL	5.04	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.475	JB	0.0474	MDL	5.04	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.77	JB	0.0690	MDL	5.04	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.495	JB	0.0459	MDL.	5.04	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.416	JBQ	0.0320	MDL	5.04	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.228	JBQ	0.0210	MDL	5.04	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.542	JB	0.0385	MDL	5.04	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.533	JB	0.0220	MDL.	5.04	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0818	JQ	0.0149	MDL.	1.01	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.128	JB	0.0230	MDL	1.01	PQL	ng/Kg	J	Z	

Sample ID: SL-044-SA6-SS-0.0-0.5 Collect	ected: 7/14/2011 8:00:00	Analysis Type: RES	Dilution: 1
--	--------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.83	JB	0.103	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	4.57	JB	0.0883	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	4.28	JB	0.0792	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	3.38	JB	0.0733	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	2.83	JB	0.0830	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.00	JB	0.0666	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.48	JB	0.0371	MDL	5.05	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	3.00	JB	0.0696	MDL	5.05	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.66	JB	0.0381	MDL	5.05	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.332	J	0.0171	MDL	1.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.337	JB	0.0346	MDL	1.01	PQL	ng/Kg	J	Z
OCDD	6250	ЕВ	0.181	MDL	10.1	PQL	ng/Kg	J	*XI

Sample ID: SL-056-SA6-SS-0.0-0.5 Collected: 7/13/2011 3:22:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.924	JBQ	0.0601	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.206	JB	0.0534	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.715	JB	0.0549	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.57	JB	0.0833	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.481	JB	0.0518	MDL	5.04	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

11/7/2011 2:18:18 PM ADR version 1.4.0.111 Page 3 of 12

Lab Reporting Batch ID: DX114

Laboratory: LL

EDD Filename: DX114_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID:	SL-056-SA	.6-SS-0.0-0.5
------------	-----------	---------------

Sample ID: SL-056-SA6-SS-0.0-0.5 Analyte	Collec		Dilution: 1						
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDF	0.441	JBQ	0.124	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.269	JBQ	0.0641	MDL	5.04	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.33	JB	0.0912	MDL	5.04	PQL	ng/Kg	J	Z
2.3.7.8-TCDD	0.0237	JO	0.0168	MDI	1.01	POL	na/Ka	.1	7

Sample ID: SL-058-SA6-SS-0.0-0.5

Collected: 7/13/2011 3:02:00

Analysis Type: RES

Dilution: 1

Analyte	Ooneo	100. 1110/2	-011 0.02.0	,,	niary sis i	pe. ILLO	'	Dilation.		
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	1.29	JB	0.0932	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.537	JB	0.0784	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	1.39	JB	0.0614	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	2.44	JB	0.0818	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.774	JB	0.0501	MDL.	4.94	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.58	JB	0.0767	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.157	JB	0.0752	MDL	4.94	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.252	JB	0.0262	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.802	JB	0.0357	MDL	4.94	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.929	JB	0.0566	MDL	4.94	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.429	JB	0.0405	MDL	4.94	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0637	JQ	0.0123	MDL	0.988	PQL	ng/Kg	J	Z	
							<u> </u>			

Sample ID: SL-126-SA6-SS-0.0-0.5

Collected: 7/14/2011 2:35:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.727	JB	0.0527	MDL	4.89	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.702	JB	0.0547	MDL	4.89	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.32	JB	0.0502	MDL	4.89	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.86	JВ	0.0571	MDL	4.89	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.531	JB	0.0476	MDL	4.89	PQL	ng/Kg	j .	Z
1,2,3,7,8,9-HXCDD	1.45	JB	0.0571	MDL	4.89	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.179	JB	0.0448	MDL	4.89	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.424	JB	0.0313	MDL	4.89	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.443	JB	0.0390	MDL	4.89	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.540	JB	0.0403	MDL	4.89	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.690	JB	0.0372	MDL	4.89	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

11/7/2011 2:18:18 PM

ADR version 1.4.0.111

Page 4 of 12

Lab Reporting Batch ID: DX114

Laboratory: LL

EDD Filename: DX114_v1

eQAPP Name: CDM_SSFL_110509

Matrix: SO

Sample ID: St126-SA6-SS-0.0-0.5	Collected: 7/14/2011 2:35:00 Analysis Type: RES								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
2,3,7,8-TCDD	0.0554	J	0.0131	MDL	0.978	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.672	JB	0.0823	MDL	0.978	PQL	ng/Kg	J	Z		

Sample ID: SL-176-SA6-SS-0.0-0.5 Collected: 7/18/2011 2:34:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RL Review Reason Analyte Result Qual DL Туре RLТуре Units Qual Code 1,2,3,4,6,7,8-HPCDF 2.41 0.0235 MDL 4.81 PQL ng/Kg J Z 1,2,3,4,7,8,9-HPCDF 0.191 JB 0.0386 **MDL** 4.81 PQL U В ng/Kg 1,2,3,4,7,8-HxCDD JВ 0.0514 0.247 MDL 4.81 **PQL** ng/Kg J Z 1,2,3,4,7,8-HXCDF 0.0376 0.460 JB MDL 4.81 PQL J Z ng/Kg 1,2,3,6,7,8-HXCDD JB 0.0535 0.819 MDL 4.81 **PQL** ng/Kg J Z 1,2,3,6,7,8-HXCDF 0.223 JBQ 0.0357 MDL 4.81 PQL J z ng/Kg 1,2,3,7,8,9-HXCDD 0.723 JB 0.0505 PQL MDL 4.81 ng/Kg J Z 1,2,3,7,8,9-HXCDF 0.135 **JBQ** 0.0438 MDL 4.81 PQL U ng/Kg В 1,2,3,7,8-PECDD 0.223 JB 0.0280 MDL. 4.81 **PQL** ng/Kg J z JB 0.0312 1,2,3,7,8-PECDF 0.396 MDL 4.81 **PQL** ng/Kg J z 2,3,4,6,7,8-HXCDF 0.268 JΒ 0.0367 MDL **PQL** Z 4.81 ng/Kg J 2,3,4,7,8-PECDF 0.380 JB 0.0316 MDL. 4.81 PQL J Z ng/Kg 2,3,7,8-TCDD 0.0366 JQ 0.0133 MDL 0.962 **PQL** J z ng/Kg 2,3,7,8-TCDF 0.207 JB 0.0446 MDL 0.962 J z **PQL** ng/Kg OCDF 5.26 JΒ 0.0306 MDL 9.62 **PQL** ng/Kg J Z

Sample ID: SL-182-SA6-SS-0.0-0.5	Collected: 7/18/2011 2:45:00	Analysis Type: RES	Dilution: 1
----------------------------------	------------------------------	--------------------	-------------

oup. 0 12, 02 102 010 00 010	00,,00	Amayora Type: Tel							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.884	JB	0.0358	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.08	JB	0.0354	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.595	JB	0.0241	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	3.13	JB	0.0354	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.457	JB	0.0234	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.37	JB	0.0331	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.177	JB	0.0268	MDL	4.95	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.635	JB	0.0384	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.246	JB	0.0201	MDL	4.95	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.483	JB	0.0233	MDL	4.95	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

11/7/2011 2:18:18 PM ADR version 1.4.0.111 Page 5 of 12

Lab Reporting Batch ID: DX114

Laboratory: LL

EDD Filename: DX114_v1

eQAPP Name: CDM SSFL 110509

Method Category: SVOA Method: 1613B

Matrix: SO

ng/Kg

A CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE LA CONTRACTOR DE CONTRACTOR

Sample ID: SL-182-SA6-SS-0.0-0.5	Collec	Collected: 7/18/2011 2:45:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,4,7,8-PECDF	0.331	JB	0.0187	MDL	4.95	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0483	JQ	0.0226	MDL	0.990	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.107	JBQ	0.0325	MDL	0.990	PQL	ng/Kg	J	Z	

Sample ID: SL-183-SA6-SS-0.0-0.5 Collected: 7/18/2011 3:20:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Result Analyte DL RL Qual Type Type Units Qual Code 1,2,3,4,6,7,8-HPCDF 3.90 JB 0.0187 MDL 4.92 PQL J Ζ ng/Kg 1,2,3,4,7,8,9-HPCDF 0.0310 4.92 U 0.305 JB MDL PQL ng/Kg В 0.0355 1,2,3,4,7,8-HxCDD 0.380 JB MDL. 4.92 POL J z ng/Kg 1,2,3,4,7,8-HXCDF JB 0.0204 **PQL** z 0.247 MDL 4.92 ng/Kg J 1,2,3,6,7,8-HXCDD 0.932 JB 0.0360 MDL 4.92 PQL J Z ng/Kg 1,2,3,6,7,8-HXCDF 0.201 JΒ 0.0183 **PQL** J Z MDL, 4.92 ng/Kg 1,2,3,7,8,9-HXCDD 0.802 JΒ 0.0356 MDL 4.92 **PQL** J Z ng/Kg 1,2,3,7,8,9-HXCDF 0.0846 JB 0.0211 MDL 4.92 **PQL** ng/Kg U В 1,2,3,7,8-PECDD JBQ 0.0265 Z 0.232 MDL 4.92 PQL ng/Kg J 1,2,3,7,8-PECDF 0.107 JBQ 0.0139 MDL 4.92 **PQL** U ng/Kg В 2,3,4,6,7,8-HXCDF 0.243 JΒ 0.0189 MDL 4.92 PQL ng/Kg J z 2,3,4,7,8-PECDF U 0.167 JB 0.0136 MDL 4.92 **PQL** ng/Kg В 2,3,7,8-TCDD 0.0521 JQ 0.0192 MDL 0.985 PQL j z ng/Kg 2,3,7,8-TCDF 0.0433 **JBQ** 0.0214 0.985 **PQL** MDL ng/Kg U В OCDF 9.28 JΒ 0.0314 MDL 9.85 PQL ng/Kg z

Sample ID: SL-184-SA6-SS-0.0-0.5	Collected: 7/18/2011 3:27:00	Analysis Type: RES	Dilution: 1
0811/ptc 1D. 0E-104-070-00-0.0-0.0	Concuted. Microil 3.21.00	Alialysis Type, ICCS	Dilation.

	- Thurston Type: The								Distacti. 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8,9-HPCDF	1.01	JВ	0.0508	MDL	4.81	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HxCDD	0.792	JB	0.0357	MDL	4.81	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	1.78	JB	0.0403	MDL	4.81	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	2.59	JB	0.0351	MDL	4.81	PQL	ng/Kg	J	Z		
,2,3,6,7,8-HXCDF	0.711	JB	0.0361	MDL	4.81	PQL	ng/Kg	J	Z		
,2,3,7,8,9-HXCDD	1.68	JB	0.0348	MDL	4.81	PQL	ng/Kg	J	Z		
,2,3,7,8,9-HXCDF	0.178	JB	0.0400	MDL.	4.81	PQL	ng/Kg	U	В		
,2,3,7,8-PECDD	0.461	JB	0.0404	MDL	4.81	PQL	ng/Kg	J	Z		
,2,3,7,8-PECDF	0.728	JB	0.0359	MDL	4.81	PQL	ng/Kg	J	Z		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

ADR version 1.4.0.111 11/7/2011 2:18:18 PM Page 6 of 12

Lab Reporting Batch ID: DX114

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX114_v1

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-184-SA6-SS-0.0-0.5 Collected: 7/18/2011 3:27:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,6,7,8-HXCDF	0.904	JB	0.0352	MDL	4.81	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.955	JB	0.0372	MDL	4.81	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0873	JQ	0.0235	MDL	0.961	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.598	JB	0.0801	MDL.	0.961	PQL	ng/Kg	J	Z

Sample ID: SL-286-SA6-SS-0.0-0.5 Collected: 7/14/2011 2:54:00 Analysis Type: RES Dilution: 1

Sample ID: SL-200-5A0-55-0.0-0.5	Conec	Collected: 1/14/2011 2:54:00 Analysis Type:						pe: KES DI			
Analyte	Lab Result	Lab Quai	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	147	В	0.147	MDL	4.99	PQL	ng/Kg	J	Q, FD		
1,2,3,4,6,7,8-HPCDF	17.7	В	0.0396	MDL	4.99	PQL	ng/Kg	J	FD		
1,2,3,4,7,8,9-HPCDF	1.27	JB	0.0684	MDL.	4.99	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HxCDD	0.526	JB	0.0528	MDL	4.99	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	3.34	JB	0.0750	MDL	4.99	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	2.20	JB	0.0552	MDL	4.99	PQL	ng/Kg	J	Z, FD		
1,2,3,6,7,8-HXCDF	1.13	JB	0.0645	MDL	4.99	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.898	JB	0.0519	MDL	4.99	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.0804	U	0.0804	MDL	4.99	PQL	ng/Kg	UJ	FD		
1,2,3,7,8-PECDD	0.210	JB	0.0318	MDL.	4.99	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	1.70	JB	0.0569	MDL	4.99	PQL	ng/Kg	J	Z, FD		
2,3,4,6,7,8-HXCDF	1.14	JB	0.0640	MDL	4.99	PQL	ng/Kg	J	Z, FD		
2,3,4,7,8-PECDF	1.30	JB	0.0616	MDL	4.99	PQL	пд/Кд	J	Z		
2,3,7,8-TCDD	0.0432	JQ	0.0131	MDL	0.999	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.765	JB	0.120	MDL	0.999	PQL	ng/Kg	J	Z		
OCDD	2100	В	0.0955	MDL	9.99	PQL	ng/Kg	J	FD		
OCDF	32.2	В	0.0431	MDL	9.99	PQL	ng/Kg	J	FD		

Sample ID: SL-293-SA6-SS-0.0-0.5

Collected: 7/18/2011 8:35:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.25	JB	0.0168	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.230	JB	0.0279	MDL	4.93	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.142	JB	0.0340	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.917	JB	0.0308	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.528	JB	0.0336	MDL	4.93	PQL	ng/Kg	J	Z
I,2,3,6,7,8-HXCDF	0.219	JBQ	0.0270	MDL	4.93	PQL	ng/Kg	J	Z
		I		l	ľ	1	1	i	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

11/7/2011 2:18:18 PM

ADR version 1.4.0.111

Page 7 of 12

Lab Reporting Batch ID: DX114

Laboratory: LL

EDD Filename: DX114_v1

eQAPP Name: CDM_SSFL_110509

rando en de la companya di anticolori de la companya di anticolori di anticolori di anticolori di anticolori d

Method Categ	ary: SVOA
Method:	1613B

Matrix: SO

Sample ID: SL-293-SA6-SS-0.0-0.5	Collec	ted: 7/18/2	011 8:35:0	00 A	nalysis Ty	ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDD	0.383	JB	0.0334	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.108	JBQ	0.0338	MDL	4.93	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.361	JB	0.0261	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.315	JB	0.0239	MDL	4.93	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.234	JB	0.0277	MDL	4.93	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.240	JB	0.0239	MDL	4.93	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.102	JQ	0.0248	MDL	0.985	PQL	ng/Kg	J	Z

0.0442

0.0317

MDL

MDL

Sample ID: SL-302-SA6-SS-0.0-0.5

2,3,7,8-TCDF

OCDF

Collected: 7/14/2011 8:28:00

JB

JΒ

0.0948

3.58

Analysis Type: RES

PQL

PQL

ng/Kg

ng/Kg

0.985

9.85

Dilution: 1

J

Z

Z

•										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	3.89	JB	0.136	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	4.43	JB	0.0812	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	3.88	JB	0.111	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	2.60	JB	0.127	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	2.40	JB	0.0748	MDL	5.12	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	4.62	JB	0.0895	MDL	5.12	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	4.39	JB	0.0749	MDL	5.12	PQL	ng/Kg	J	Z	
OCDD	7830	EB	0.187	MDL	10.2	PQL	ng/Kg	J	*XI	

Sample ID: SL-303-SA6-SS-0.0-0.5

Collected: 7/14/2011 8:55:00

Analysis Type: REA

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.885	JBCQ	0.0673	MDL	1.02	PQL	ng/Kg	J	Z

Sample ID: SL-303-SA6-SS-0.0-0.5

Collected: 7/14/2011 8:55:00

Analysis Type: RES

Dilution: 1

	001100	tou. 1/1-7/2	.011 0.00.0	~ ~	narysis i	, pcc			7100011.
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.84	JB	0.0884	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	4.84	JB	0.112	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	4.48	JB	0.0885	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	3.40	JB	0.0853	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.54	JB	0.100	MDL	5.09	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

11/7/2011 2:18:18 PM

ADR version 1.4.0.111

Page 8 of 12

Lab Reporting Batch ID: DX114

Laboratory: LL

EDD Filename: DX114_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: so

Sample ID: 3L-303-5A6-55-0.0-0.5	Collec	tea: //14/2	U11 8:55:U	N A	naiysis i	ype: KES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
and the second of the second o	* *** ** ** **************************	1	123		1 7 7 17 17 17 17		4		

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
1,2,3,7,8-PECDF	1.59	JB	0.0867	MDL	5.09	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	3.31	JB	0.0799	MDL	5.09	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	4.41	JB	0.0855	MDL	5.09	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.464	J	0.0298	MDL	1.02	PQL	ng/Kg	J	Z
OCDD	5780	EB	0.154	MDL	10.2	PQL	ng/Kg	J	*XI

Sample ID: SL-304-SA6-SS-0.0-0.5 Collected: 7/14/2011 9:14:00 Dilution: 1 Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.49	JB	0.114	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	2.57	JB	0.0927	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.31	JB	0.0828	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.77	JB	0.0709	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.38	JB	0.0983	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.33	JB	0.0893	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.941	JB	0.0690	MDL	5.12	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.91	JB	0.0806	MDL	5.12	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.97	JB	0.0724	MDL	5.12	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.250	J	0.0274	MDL	1.02	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.723	JB	0.136	MDL	1.02	PQL.	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX114

EDD Filename: DX114_v1

Laboratory: LL eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI	Compound Quantitation and CRQLs
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision
·	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 11/7/2011 2:18:18 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DX114

EDD Filename: DX114_v1

EQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
Н	Preservation
н	Sampling to Analysis Estimation
H	Sampling to Analysis Rejection
н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
н	Sampling to Leaching Rejection
н	Temperature Estimation
Н	Temperature Rejection
I	Internal Standard Estimation
l	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
М	Initial Tune
М	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
a	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 11/7/2011 2:18:18 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DX114

EDD Filename: DX114_v1 eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

Laboratory: LL

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX114

Method Blank Outlier Report

Lab Reporting Batch ID: DX114

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX114_v1

<i>Method:</i> 1613B <i>Matrix:</i> SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2090B372004	7/30/2011 8:04:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF COCDD OCDF	0.228 ng/Kg 0.0803 ng/Kg 0.0699 ng/Kg 0.0699 ng/Kg 0.0135 ng/Kg 0.0326 ng/Kg 0.0322 ng/Kg 0.0322 ng/Kg 0.0330 ng/Kg 0.0727 ng/Kg 0.0309 ng/Kg 0.0241 ng/Kg 0.0357 ng/Kg 0.0487 ng/Kg 0.0129 ng/Kg 0.485 ng/Kg 0.1777 ng/Kg	DUP03-SA6-QC-071511 SL-004-SA6-SS-0.0-0.5 SL-005-SA6-SS-0.0-0.5 SL-020-SA6-SS-0.0-0.5 SL-029-SA6-SS-0.0-0.5 SL-043-SA6-SS-0.0-0.5 SL-044-SA6-SS-0.0-0.5 SL-056-SA6-SS-0.0-0.5 SL-058-SA6-SS-0.0-0.5 SL-126-SA6-SS-0.0-0.5 SL-176-SA6-SS-0.0-0.5 SL-183-SA6-SS-0.0-0.5 SL-183-SA6-SS-0.0-0.5 SL-183-SA6-SS-0.0-0.5 SL-183-SA6-SS-0.0-0.5 SL-293-SA6-SS-0.0-0.5 SL-303-SA6-SS-0.0-0.5 SL-303-SA6-SS-0.0-0.5 SL-303-SA6-SS-0.0-0.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP03-SA6-QC-071511(RES)	1,2,3,7,8,9-HXCDF	0,339 ng/Kg	0.339U ng/Kg
SL-029-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.327 ng/Kg	0.327U ng/Kg
SL-058-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.157 ng/Kg	0.157U ng/Kg
SL-126-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.179 ng/Kg	0.179U ng/Kg
SL-176-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.191 ng/Kg	0.191U ng/Kg
SL-176-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.135 ng/Kg	0.135U ng/Kg
SL-182-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.177 ng/Kg	0.177U ng/Kg
SL-183-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.305 ng/Kg	0.305U ng/Kg
SL-183-SA6-SS-0.0-0,5(RES)	1,2,3,7,8,9-HXCDF	0.0846 ng/Kg	0.0846U ng/Kg
SL-183-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.107 ng/Kg	0.107U ng/Kg
SL-183-SA6-SS-0.0-0,5(RES)	2,3,4,7,8-PECDF	0.167 ng/Kg	0.167U ng/Kg
SL-183-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0433 ng/Kg	0.0433U ng/Kg
SL-184-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.178 ng/Kg	0.178U ng/Kg
SL-293-\$A6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.230 ng/Kg	0.230U ng/Kg
SL-293-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0,108 ng/Kg	0.108U ng/Kg
SL-293-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.240 ng/Kg	0.240U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

11/7/2011 2:15:23 PM ADR version 1.4.0.111 Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX114

Laboratory: LL

EDD Filename: DX114_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO		, kan	a daya		i paga di ka		Bussing all Third Made to
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-286-SA6-SS-0.0-0.5MS SL-286-SA6-SS-0.0-0.5MSD (SL-286-SA6-SS-0.0-0.5)	1,2,3,4,6,7,8-HPCDD OCDD	-11 -682	-19 -721	40.00-135.00 40.00-135.00	-	1,2,3,4,6,7,8-HPCDD OCDD	J (all detects) R (all non-detects) OCDD, No Qual, >4x

11/7/2011 2:12:21 PM ADR version 1.4.0.111 Page 1 of 1

Field Duplicate RPD Report

Lab Reporting Batch ID: DX114

Laboratory: LL

EDD Filename: DX114_v1 eQAPP Name: CDM_SSFL_110509

Matrix:	100.314 SO					
		Concent	ration (%)			
	Analyte	SL-286-SA6-SS-0.0-0.5	DUP03-SA6-QC-071511	Sample RPD	eQAPP RPD	Flag
MOISTURE	The state of the s	0.88	0.81	8		No Qualifiers Applied

Wethod:	1613E		
Matrix:	SO		

	Concentra	tion (ng/Kg)				
Analyte	SL-286-SA6-SS-0.0-0.5	DUP03-SA6-QC-071511	Sample RPD	eQAPP RPD	Flag	
1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	1.27 0.526 3.34 1.13 0.898 0.210 1.30 0.0432 0.765	0.779 0.454 2.94 0.757 0.815 0.214 1.21 0.0368 0.659	48 15 13 40 10 2 7 16	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	No Qualifiers Applied	
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF OCDD	147 17.7 2.20 4.99 U 1.70 1.14 2100 32.2	50.6 7.54 1.26 0.339 2.84 0.640 593	98 81 54 200 50 56 112 71	50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)	

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling
11/7/2011 2:15:11 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DX114

Laboratory: LL

EDD Filename: DX114_v1

so

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix:

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
DUP03-SA6-QC-071511	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD	1999年 1999年	0.779 0.454 2.94 1.26 0.757 0.815 0.339 0.214 2.84 0.640 1.21 0.0368 0.659	4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-004-SA6-SS-0.0-0.5	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD	**************************************	2.08 3.89 3.01 4.87 0.724 0.996 1.25 4.79 2.88 0.0866	4.95 4.95 4.95 4.95 4.95 4.95 4.95 4.95	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-005-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF	JB JB JB JB	3.14 1.60 3.44 1.45 2.12 4.72	4.96 4.96 4.96 4.96 4.96	PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-029-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD	HERENE HERENE TO THE PROPERTY OF THE PROPERTY	1.05 0.699 4.23 2.18 1.07 1.52 0.327 0.387 1.48 1.09 3.13 0.0595	4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-043-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	######################################	0.422 0.731 0.860 2.36 0.475 1.77 0.495 0.416 0.228 0.542 0.533 0.0818 0.128	5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX114

EDD Filename: DX114_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Watrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-044-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	JB JB JB JB JB JB JB JB JB JB JB JB JB J	2.83 4.57 4.28 3.38 2.83 2.00 1.48 3.00 2.66 0.332 0.337	5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-056-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD	JBC JB JB JBC JBC JBC JBC JBC JBC JBC JB	0.924 0.206 0.715 1.57 0.481 0.441 0.269 1.33 0.0237	5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-058-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD		1.29 0.537 1.39 2.44 0.774 1.58 0.157 0.252 0.802 0.929 0.429 0.0637	4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-126-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	第一部部部部部部部部部	0.727 0.702 1.32 1.86 0.531 1.45 0.179 0.424 0.443 0.540 0.690 0.0554 0.672	4.89 4.89 4.89 4.89 4.89 4.89 4.89 4.89	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

11/7/2011 2:15:52 PM ADR version 1.4.0.111 Page 2 of 4

Lab Reporting Batch ID: DX114

EDD Filename: DX114_v1

EQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-176-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD		2.41 0.191 0.247 0.460 0.819 0.223 0.723 0.135 0.223 0.396 0.268 0.380 0.0366 0.207 5.26	4.81 4.81 4.81 4.81 4.81 4.81 4.81 4.81	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-182-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	現場 田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	0.884 1.08 0.595 3.13 0.457 2.37 0.177 0.635 0.246 0.483 0.331 0.0483 0.107	4.95 4.95 4.95 4.95 4.95 4.95 4.95 4.95	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-183-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	田田の田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	3.90 0.305 0.380 0.247 0.932 0.201 0.802 0.0846 0.232 0.107 0.243 0.167 0.0521 0.0433 9.28	4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-184-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	8888888888888	1.01 0.792 1.78 2.59 0.711 1.68 0.178 0.461 0.728 0.904 0.955 0.0873 0.598	4.81 4.81 4.81 4.81 4.81 4.81 4.81 4.81	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/K/g ng/K/g ng/K/g ng/K/g ng/K/g ng/K/g	J (all detects)

11/7/2011 2:15:52 PM ADR version 1.4.0.111 Page 3 of 4

Lab Reporting Batch ID: DX114

EDD Filename: DX114_v1

EQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		Γ					
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-286-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		1.27 0.526 3.34 2.20 1.13 0.898 0.210 1.70 1.14 1.30 0.0432 0.765	4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-293-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	田田 医西西西西西西西西西西西西西西西西西西西	2.25 0.230 0.142 0.917 0.528 0.219 0.383 0.108 0.361 0.315 0.234 0.240 0.102 0.0948 3.58	4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.93	Pal Pal Pal Pal Pal Pal Pal Pal Pal Pal	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-302-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	JB JB JB JB JB JB	3.89 4.43 3.88 2.60 2.40 4.62 4.39	5.12 5.12 5.12 5.12 5.12 5.12 5.12	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-303-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	B B B B B B B B B B B B B B B B B B B	2.84 4.84 4.48 3.40 2.54 1.59 3.31 4.41 0.464 0.885	5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-304-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	6 - 6 6 6 6 6 6 6 6	1.49 2.57 2.31 1.77 1.38 1.33 0.941 1.91 1.97 0.250 0.723	5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

SAMPLE DELIVERY GROUP

DX115

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
19-Jul-2011	SL-301-SA6-SS-0.0-0.5	6349749	N	METHOD	1613B	IV
19-Jul-2011	SL-174-SA6-SS-0.0-0.5	6349746	N	METHOD	1613B	IV
19-Jul-2011	SL-178-SA6-SS-0.0-0.5	6349747	N	METHOD	1613B	IV
19-Jul-2011	SL-185-SA6-SS-0.0-0.5	6349748	N	METHOD	1613B	IV
19-Jul-2011	SL-084-SA6-SB-4.0-5.0	6349750	N	METHOD	1613B	IV
19-Jul-2011	SL-151-SA6-SS-0.0-0.5	6349739	N	METHOD	1613B	IV
19-Jul-2011	SL-084-SA6-SB-9.0-10.0	6349751	N	METHOD	1613B	IV
19-Jul-2011	SL-154-SA6-SS-0.0-0.5	6349740	N	METHOD	1613B	IV
19-Jul-2011	SL-085-SA6-SB-4.0-5.0	6349752	N	METHOD	1613B	IV
19-Jul-2011	SL-172-SA6-SS-0.0-0.5	6349745	N	METHOD	1613B	IV
19-Jul-2011	SL-085-SA6-SB-7.0-8.0	6349753	N	METHOD	1613B	IV
19-Jul-2011	EB-SA6-SS-071911	6349754	EB	METHOD	1613B	IV
19-Jul-2011	SL-168-SA6-SS-0.0-0.5	6349742	N	METHOD	1613B	IV
19-Jul-2011	SL-169-SA6-SS-0.0-0.5	6349743	N	METHOD	1613B	IV
19-Jul-2011	SL-171-SA6-SS-0.0-0.5	6349744	N	METHOD	1613B	IV
19-Jul-2011	SL-166-SA6-SS-0.0-0.5	6349741	N	METHOD	1613B	IV
20-Jul-2011	SL-160-SA6-SS-0.0-0.5	6351934	N	METHOD	1613B	IV
20-Jul-2011	SL-160-SA6-SS-0.0-0.5MS	6351935	MS	METHOD	1613B	IV
20-Jul-2011	SL-160-SA6-SS-0.0-0.5MSD	6351936	MSD	METHOD	1613B	IV
20-Jul-2011	SL-160-SA6-SS-0.0-0.5MSD	P351934M372107	MSD	METHOD	1613B	IV
20-Jul-2011	SL-160-SA6-SS-0.0-0.5MS	P351934R370839	MS	METHOD	1613B	IV
20-Jul-2011	SL-156-SA6-SS-0.0-0.5	6351931	N	METHOD .	1613B	IV
20-Jul-2011	SL-157-SA6-SS-0.0-0.5	6351932	N	METHOD	1613B	IV
20-Jul-2011	SL-159-SA6-SS-0.0-0.5	6351933	N	METHOD	16 13 B	IV

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX115 Laboratory: LL

EDD Filename: PrepDX115_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: AQ

Sample ID: EB-SA6-SS-071911 Collected: 7/19/2011 1:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.67	JВ	0.124	MDL	9.96	PQL	pg/L	U	В
1,2,3,4,6,7,8-HPCDF	0.550	JBQ	0.0524	MDL	9.96	PQL	pg/L	U	В
1,2,3,4,7,8,9-HPCDF	0.319	JBQ	0.0593	MDL	9.96	PQL	pg/L	U	В
1,2,3,4,7,8-HxCDD	0.135	JBQ	0.0883	MDL	9.96	PQL	pg/L	U	В
1,2,3,4,7,8-HXCDF	0.238	JBQ	0.0568	MDL	9.96	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDD	0.273	JBQ	0.0918	MDL	9.96	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDF	0.163	JBQ	0.0550	MDL	9.96	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDD	0.213	JBQ	0.0921	MDL	9.96	PQL	pg/L	υ	В
1,2,3,7,8,9-HXCDF	0.288	JBQ	0.0464	MDL	9.96	PQL	pg/L	U	В
1,2,3,7,8-PECDF	0.149	JB	0.0495	MDL	9.96	PQL	pg/L	U	В
2,3,4,6,7,8-HXCDF	0.104	JB	0.0519	MDL	9.96	PQL	pg/L	U	В
2,3,4,7,8-PECDF	0.309	JB	0.0456	MDL	9.96	PQL	pg/L	U	В
2,3,7,8-TCDD	0.172	JBQ	0.0915	MDL	1.99	PQL	pg/L	U	В
2,3,7,8-TCDF	0.0901	JBQ	0.0749	MDL	1.99	PQL	pg/L	U	В
OCDD	7.81	JB	0.0980	MDL	19.9	PQL	pg/L	U	В
OCDF	0.984	JB	0.105	MDL	19.9	PQL	pg/L	U	В

Method Category: GENCHÉM Method: 1613B Matrix: SO

Sample ID: SL-084-SA6-SB-4.0-5.0	Collec	ted: 7/19/2	2011 9:35:0	00 A	nalysis T	lysis Type: RES			Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8,9-HPCDF	2.76	JB	0.0688	MDL	5.26	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HxCDD	5.21	JB	0.100	MDL	5.26	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	1.25	JB	0.0545	MDL	5.26	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.904	JB	0.0521	MDL	5.26	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	3.03	JB	0.0944	MDL	5.26	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.271	JB	0.0550	MDL	5.26	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	3.91	JB	0.0720	MDL	5.26	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.624	JB	0.0378	MDL	5.26	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	1.41	JB	0.0481	MDL.	5.26	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.851	JB	0.0347	MDL	5.26	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.308	J	0.0346	MDL	1.05	PQL	ng/Kg	j	Z		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 9:51:39 AM ADR version 1.4.0.111 Page 1 of 13

Lab Reporting Batch ID: DX115

Laboratory: LL

EDD Filename: PrepDX115_v1

eQAPP Name: CDM_SSFL_110509

Method:		1613B		Matrix:	so
Method Catego	ory:	GENCH	EM		

Sample ID: SL-084-SA6-SB-4.0-5.0	Collec	Collected: 7/19/2011 9:35:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.965	JB	0.0778	MDL	1.05	PQL	ng/Kg	J	Z
OCDD	5160	EB	0.191	MDL	10.5	PQL	ng/Kg	J	*XI

Sample ID: SL-084-SA6-SB-9.0-10.0	Collected: 7/19/2011 9:45:00				nalysis T	ype: REA	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	1.05	J BC	0.0405	MDL	1.06	PQL	ng/Kg	J	Z

Sample ID: SL-084-SA6-SB-9.0-10.0 Collected: 7/19/2011 9:45:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Analyte Result Qual DLТуре RL Units Qual Code Туре 1,2,3,4,7,8,9-HPCDF 3.54 JB 0.0816 MDL 5.32 PQL ng/Kg J Z 1,2,3,4,7,8-HxCDD 1.59 JB 0.0899 MDL 5.32 **PQL** J ng/Kg Ζ 1,2,3,4,7,8-HXCDF 1.77 JB 0.0616 MDL 5.32 **PQL** ng/Kg J z 0.0555 1,2,3,6,7,8-HXCDF 1.25 JВ MDL 5.32 **PQL** ng/Kg J Z 1,2,3,7,8,9-HXCDD 4.00 JB 0.0865 MDL 5.32 PQL J Z ng/Kg 1,2,3,7,8,9-HXCDF 0.403 JΒ 0.0688 MDL 5.32 j Z PQL ng/Kg 1,2,3,7,8-PECDD 0.586 **JBQ** 0.0566 MDL 5.32 **PQL** ng/Kg J Z 1,2,3,7,8-PECDF 0.703 JB 0.0375 MDL **PQL** 5.32 J Z ng/Kg 2,3,4,6,7,8-HXCDF 2.18 JB 0.0584 MDL 5.32 **PQL** ng/Kg J Z 2,3,4,7,8-PECDF 1.21 JB 0.0373 MDL 5.32 **PQL** J Z ng/Kg 2,3,7,8-TCDD 0.133 0.0300 J MDL 1.06 PQL ng/Kg z

Sample ID: SL-085-SA6-SB-4.0-5.0	Collected: 7/19/2011 11:10:00	Analysis Type: RES	Dilution: 1
		inalyere lyper ille	- manoiii 1

•										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	1.56	JB	0.0529	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.416	JB	0.0148	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0540	JBQ	0.0328	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0344	JBQ	0.0268	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.445	JB	0.0354	MDL	5.42	PQL	ng/Kg	J	Z	
I,2,3,6,7,8-HXCDD	0.0896	JB	0.0281	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.109	JBQ	0.0294	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.105	JBQ	0.0280	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0532	JBQ	0.0437	MDL	5.42	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX115 Laboratory: LL

EDD Filename: PrepDX115_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-085-SA6-SB-4.0-5.0 Collected: 7/19/2011 11:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDD	0.104	JBQ	0.0257	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.292	JBQ	0.0250	MDL	5.42	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0877	JBQ	0.0323	MDL	5.42	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.492	JBQ	0.0248	MDL	5.42	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0493	JQ	0.0317	MDL	1.08	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0522	JBQ	0.0329	MDL	1.08	PQL	ng/Kg	U	В
OCDD	12.5	В	0.0398	MDL	10.8	PQL	ng/Kg	U	В
OCDF	0.696	JB	0.0563	MDL	10.8	PQL	ng/Kg	U	В

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.323	JB	0.0260	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0703	JB	0.00773	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0264	JBQ	0.0158	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0264	JBQ	0.0184	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0622	JВ	0.0119	MDL	5.41	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0477	JB	0.0188	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0214	JBQ	0.0103	MDL	5.41	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0253	JBQ	0.0181	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0379	JBQ	0.0113	MDL	5.41	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0280	JBQ	0.0104	MDL	5.41	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0539	JB	0.0109	MDL	5.41	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0313	JQ	0.0234	MDL	1.08	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0269	JBQ	0.0176	MDL	1.08	PQL	ng/Kg	U	В
OCDD	1.09	JB	0.0294	MDL	10.8	PQL	ng/Kg	U	В
OCDF	0.147	JB	0.0392	MDL	10.8	PQL	ng/Kg	Ü	В

Analyte	Lab Result	Lab Qual	DI.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.775	JB	0.0525	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.961	JB	0.0704	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.774	JB	0.0569	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	3.17	JB	0.0714	MDL	4.94	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX115

Laboratory: LL

EDD Filename: PrepDX115_v1

eQAPP Name: CDM_SSFL_110509

	y: GENCHEM
Method:	1613B

SO Matrix:

Sample ID	: SL-151-SA6-SS-0.0-0.5	
-----------	-------------------------	--

Sample ID: SL-151-SA6-SS-0.0-0.5	Collec	ted: 7/19/2	011 9:36:0	00 A	nalysis T	/pe: RES		E	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDF	0.568	JB	0.0557	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	2,21	JB	0.0704	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.436	JB	0.0568	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.610	JB	0.0630	MDL	4.94	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.663	JB	0.0473	MDL	4.94	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.683	JB	0.0527	MDL	4.94	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.860	JB	0.0428	MDL	4.94	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0808	J	0.0372	MDL	0.988	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.528	JB	0.113	MDL	0.988	PQL	ng/Kg	J	Z	

Sample ID: SL-154-SA6-SS-0.0-0.5

Collected: 7/19/2011 10:08:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.36	JB	0.0700	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	2.96	JB	0.0639	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.29	JB	0.0552	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.642	JB	0.0540	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.381	JB	0.0562	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.95	JB	0.0598	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.532	JB	0.0372	MDL	5.01	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.755	JB	0.0510	MDL	5.01	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.489	JBQ	0.0331	MDL	5.01	PQL	ng/Kg	j	Z
2,3,7,8-TCDD	0.230	JQ	0.0324	MDL	1.00	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.203	JBQ	0.0624	MDL	1.00	PQL	ng/Kg	U	В

Sample ID: SL-156-SA6-SS-0.0-0.5

Collected: 7/20/2011 8:31:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.979	JB	0.0179	MDL.	5.03	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0613	JB	0.0231	MDL	5.03	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.259	JB	0.0408	MDL	5.03	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0802	JBQ	0.0205	MDL	5.03	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.582	JB	0.0414	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0742	JBQ	0.0191	MDL	5.03	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.820	JB	0.0401	MDL	5.03	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 9:51:39 AM

ADR version 1.4.0.111

Page 4 of 13

Lab Reporting Batch ID: DX115

Laboratory: LL

EDD Filename: PrepDX115_v1

eQAPP Name: CDM_SSFL_110509

Sample ID: SL-156-SA6-SS-0.0-0.5	Collec	Collected: 7/20/2011 8:31:00 Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8,9-HXCDF	0.114	JBQ	0.0190	MDL	5.03	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.226	JBQ	0.0269	MDL	5.03	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0282	JBQ	0.0140	MDL	5.03	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0736	JB	0.0172	MDL	5.03	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.101	JBQ	0.0127	MDL	5.03	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0263	JBQ	0.0206	MDL	1.01	PQL	ng/Kg	U	В	

0.0305

MDL

Matrix:

Sample ID: SL-157-SA6-SS-0.0-0.5

OCDF

Collected: 7/20/2011 9:14:00

J₿

2.34

Analysis Type: RES

PQL

ng/Kg

10.1

Dilution: 1

Z

ample ID. 3L-137-3A0-33-0.0-0.3	Conec	teu: 112012	011 9:14:0	N A	naiysis i	ype: KES	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	2.56	JB	0.0219	MDL	4.86	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.155	JBQ	0.0263	MDL.	4.86	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.470	JB	0.0527	MDL	4.86	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.257	JB	0.0278	MDL	4.86	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	1.31	JB	0.0519	MDL	4.86	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.160	JB	0.0258	MDL	4.86	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	1.08	JB	0.0524	MDL	4.86	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0988	JB	0.0260	MDL	4.86	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.274	JB	0.0299	MDL	4.86	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0502	JBQ	0.0202	MDL	4.86	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.181	JB	0.0235	MDL	4.86	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.181	JB	0.0175	MDL	4.86	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0780	J	0.0316	MDL	0.972	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0476	JBQ	0.0329	MDL	0.972	PQL	ng/Kg	U	В	
OCDF	8.41	JB	0.0456	MDL	9.72	PQL	ng/Kg	J	Z	

Sample ID: SL-159-SA6-SS-0.0-0.5

Collected: 7/20/2011 9:40:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.23	JB	0.0189	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.210	JB	0.0258	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.546	JB	0.0475	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.297	JB	0.0284	MDL	5.01	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.13	JB	0.0473	MDL	5.01	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 9:51:39 AM

ADR version 1.4.0.111

Page 5 of 13

Lab Reporting Batch ID: DX115 Laboratory: LL

EDD Filename: PrepDX115_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B		Matrix:	SO
Method Catego	ry: GENCHEN	de 1990 e novembro por proficio de la compansión de la compansión de la compansión de la compansión de la comp		

Sample ID: SL-159-SA6-SS-0.0-0.5	Collec	Collected: 7/20/2011 9:40:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,6,7,8-HXCDF	0.183	JBQ	0.0257	MDL	5.01	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	1.09	JB	0.0464	MDL	5.01	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.176	JBQ	0.0280	MDL	5.01	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.318	JBQ	0.0340	MDL	5.01	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.0674	JBQ	0.0163	MDL	5.01	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.229	JB	0.0236	MDL	5.01	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.211	JBQ	0.0161	MDL	5.01	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.0680	JQ	0.0316	MDL	1.00	PQL	ng/Kg	J	Z		
OCDF	5.82	JB	0.0431	MDL	10.0	PQL	ng/Kg	J	Ζ,		

Sample ID: SL-160-SA6-SS-0.0-0.5 Collected: 7/20/2011 8:15:00 Analysis Type: RES Dilution: 1

	Conec	Conected. 1120/2011 0.15.00 Analysis Type. NEO								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	3.12	JB	0.0170	MDL	4.96	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.332	JB	0.0287	MDL	4.96	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.276	JB	0.0460	MDL	4.96	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.246	JB	0.0257	MDL	4.96	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.594	JB	0.0472	MDL	4.96	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.169	JB	0.0229	MDL.	4.96	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.472	JB	0.0465	MDL	4.96	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.134	JBQ	0.0290	MDL.	4.96	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.108	JBQ	0.0278	MDL	4.96	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8-PECDF	0.0290	JBQ	0.0141	MDL	4.96	PQL	ng/Kg	UJ	B, FD	
2,3,4,6,7,8-HXCDF	0.204	JBQ	0.0237	MDL	4.96	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.125	JBQ	0.0138	MDL	4.96	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0392	JQ	0.0287	MDL	0.992	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0274	υ	0.0274	MDL	0.992	PQL	ng/Kg	UJ	FD	
OCDF	6.53	JB	0.0355	MDL	9.92	PQL	ng/Kg	J	Z	

Sample ID: SL-166-SA6-SS-0.0-0.5 Collected: 7/19/2011 3:09:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.16	JB	0.0279	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.268	JB	0.0359	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.568	JB	0.0674	MDL	5.02	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 9:51:39 AM ADR version 1.4.0.111 Page 6 of 13

Lab Reporting Batch ID: DX115

Laboratory: LL

EDD Filename: PrepDX115_v1

eQAPP Name: CDM_SSFL_110509

Method Categor	у: G	ENCHEM
Method:	16	513B

Matrix: SO

Sample ID: SL-166-SA6-SS-0.0-0.5	Collec	Collected: 7/19/2011 3:09:00					Analysis Type: RES				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8-HXCDF	0.325	JB	0.0343	MDL	5.02	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	1.50	JB	0.0688	MDL	5.02	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.214	JBQ	0.0319	MDL	5.02	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	1.31	JB	0.0660	MDL	5.02	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.211	JBQ	0.0351	MDL	5.02	PQL ·	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.372	JBQ	0.0396	MDL	5.02	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.0963	JBQ	0.0221	MDL	5.02	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.250	JBQ	0.0318	MDL	5.02	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.177	JB	0.0203	MDL	5.02	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.0489	JQ	0.0384	MDL	1.00	PQL	ng/Kg	J	Z		
OCDF	7.06	JB	0.0357	MDL	10.0	PQL	ng/Kg	J	Z		

Sample ID: SL-168-SA6-SS-0.0-0.5

Collected: 7/19/2011 1:02:00

Analysis Type: RES

Dilution: 1

Dampic ID. OE-100-0A0-00-0.0-0.0	Conec	(CO, 111312	OII 1.02.C	, A	naiysis i	pe. KLO	Ditation. (
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.429	JB	0.0414	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.928	JB	0.0678	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.479	JB	0.0397	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	3.00	JB	0.0666	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.378	JB	0.0347	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.49	JB	0.0654	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.271	JB	0.0329	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.650	JB	0.0430	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.149	JBQ	0.0226	MDL	4.90	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.349	JB	0.0290	MDL	4.90	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.406	JBQ	0.0206	MDL	4.90	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.120	J	0.0270	MDL	0.979	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.174	JBQ	0.0465	MDL	0.979	PQL	ng/Kg	U	В

Sample ID: SL-169-SA6-SS-0.0-0.5

Collected: 7/19/2011 1:27:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2380	EB	0.369	MDL	4.88	PQL	ng/Kg	J	*XI
1,2,3,7,8-PECDF	4.12	JB	0.101	MDL	4.88	PQL	ng/Kg	J	Z
OCDD	71800	EB	0.726	MDL	9.77	PQL	ng/Kg	J	*XI

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 9:51:39 AM

ADR version 1.4.0.111

Page 7 of 13

Lab Reporting Batch ID: DX115

Laboratory: LL

Page 8 of 13

EDD Filename: PrepDX115_v1

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B

Matrix: SO

Sample ID: SL-171-SA6-SS-0.0-0.5	Collec	ted: 7/19/2	011 2:21:0	10 A	nalysis T	/pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	1.58	JB	0.0140	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.108	JBQ	0.0152	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.632	JB	0.0398	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.219	JBQ	0.0228	MDL	4.98	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDD	1.41	JB	0.0406	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.173	JB	0.0218	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.56	JВ	0.0376	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.223	JBQ	0.0204	MDL	4.98	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.558	JВ	0.0278	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.231	JВ	0.0143	MDL	4.98	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.209	JB	0.0180	MDL	4.98	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.316	JB	0.0121	MDL	4.98	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.119	JBQ	0.0217	MDL	0.996	PQL	ng/Kg	U	В	
OCDF	5.85	JB	0.0285	MDL	9.96	PQL	ng/Kg	J	Z	

Sample ID: SL-172-SA6-SS-0.0-0.5	Collected: 7/19/2011 11:18:00	Analysis Type: RES	Dilution: 1
----------------------------------	-------------------------------	--------------------	-------------

	Lab	Lab		DL		RL		Data	Dana.
Analyte	Result	Qual	DL	Type	RL	Type	Units	Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.90	JB	0.0310	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.148	JBQ	0.0356	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.329	JB	0.0585	MDL	5.32	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.590	JB	0.0410	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.38	JB	0.0575	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.193	JB	0.0396	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.901	JB	0.0573	MDL	5.32	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.203	JB	0.0395	MDL	5.32	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.185	JBQ	0.0313	MDL	5.32	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.393	JB	0.0326	MDL	5.32	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.214	JB	0.0343	MDL	5.32	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.870	JВ	0.0289	MDL	5.32	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0595	JQ	0.0254	MDL	1.06	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0594	JBQ	0.0332	MDL	1.06	PQL	ng/Kg	U	В

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 9:51:39 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX115

Laboratory: LL

EDD Filename: PrepDX115_v1

eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM	nik ik nijandi kecimbili dibibi sarat sana	iliter ing partition of the contract of the co	
Method:	1613B	Matrix:	SO	A STATE OF THE STA

Sample ID: SL-174-SA6-SS-0.0-0.5	Collec	ted: 7/19/2	011 8:16:0	0 A	nalysis T	pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	1.69	JB	0.0171	MDL	4.83	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.132	JBQ	0.0275	MDL	4.83	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.177	JBQ	0.0427	MDL	4.83	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.344	JB	0.0291	MDL	4.83	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.383	JB	0.0426	MDL	4.83	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.147	JB	0.0261	MDL	4.83	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.439	JB	0.0401	MDL	4.83	PQL	пд/Кд	J	Z	
1,2,3,7,8,9-HXCDF	0.0911	JB	0.0325	MDL	4.83	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.108	JB	0.0271	MDL	4.83	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.156	JB	0.0280	MDL	4.83	PQL	пg/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.198	JB	0.0279	MDL	4.83	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.491	JB	0.0275	MDL	4.83	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.128	JBQ	0.0427	MDL	0.966	PQL	ng/Kg	U	В	
OCDF	4.02	JB	0.0319	MDL	9.66	PQL	ng/Kg	J	Z	

Sample ID: SL-178-SA6-SS-0.0-0.5 Collected: 7/19/2011 8:40:00 Analysis Type: REA Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.792	J BC	0.0572	MDL	0.965	PQL	ng/Kg	J	Z

Sample ID: SL-178-SA6-SS-0.0-0.5 Collected: 7/19/2011 8:40:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	4.10	JB	0.0864	MDL	4.82	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	3.34	JB	0.0856	MDL	4.82	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.628	JB	0.0851	MDL	4.82	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	3.02	JB	0.0973	MDL	4.82	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.84	JB	0.0807	MDL	4.82	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	3.23	JB	0.0728	MDL	4.82	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.330	JQ	0.0363	MDL	0.965	PQL	ng/Kg	J	Z

Sample ID: SL-185-SA6-SS-0.0-0.5 Collected: 7/19/2011 9:21:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.63	JB	0.0247	MDL	5.22	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 9:51:39 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX115

Laboratory: LL

EDD Filename: PrepDX115_v1

eQAPP Name: CDM_SSFL_110509

Method Catego	ory: GENCH	EM	1
Method:	1613R		

Matrix: SO

Sample ID: SL-185-SA6-SS-0.0-0.5	Collec	ted: 7/19/2	2011 9:21:0	00 A	nalysis T	ype: RES	;	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	0.230	JB	0.0317	MDL	5.22	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.471	JBQ	0.0528	MDL	5.22	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.619	JB	0.0423	MDL	5.22	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	1.14	JB	0.0538	MDL	5.22	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.320	JB	0.0408	MDL	5.22	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.02	JB	0.0518	MDL	5.22	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.139	JB	0.0447	MDL	5.22	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.269	JB	0.0371	MDL	5.22	PQL	ng/Kg	Ü	В	
1,2,3,7,8-PECDF	0.773	JB	0.0501	MDL	5.22	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.328	JB	0.0386	MDL	5.22	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	3.71	JB	0.0451	MDL	5.22	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0385	JQ	0.0267	MDL	1.04	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.173	JB	0.0585	MDL	1.04	PQL	ng/Kg	U	В	
OCDF	6.97	JB	0.0328	MDI.	10.4	POI	ng/Kg	1	7	

Sample ID: SL-301-SA6-SS-0.0-0.5 Collected: 7/19/2011 8:01:00 Analysis Type: RES Dilution: 1

·-··									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.463	JВ	0.0487	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.684	JB	0.0584	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.84	JB	0.0612	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.45	JB	0.0607	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.473	JВ	0.0532	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.69	JB	0.0608	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.322	JBQ	0.0642	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.518	JB	0.0584	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.728	JB	0.0510	MDL	5.05	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.499	JB	0.0538	MDL	5.05	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.976	JB	0.0482	MDL	5.05	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.140	J	0.0408	MDL	1.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.946	JB	0.122	MDL	1.01	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX115 EDD Filename: PrepDX115_v1

Laboratory: LL eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI	Compound Quantitation and CRQL
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
Ċ	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX115

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: PrepDX115_v1

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
H	Temperature Rejection
I	Internal Standard Estimation
l	Internal Standard Rejection
L.	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
М	Initial Tune
М	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
a	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX115

Laboratory: LL

EDD Filename: PrepDX115_v1 eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX115

Lab Reporting Batch ID: DX115

Laboratory: LL

EDD Filename: DX115_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ						
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples		
BLK2240B371404	8/16/2011 2:04:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	3.99 pg/L 0.817 pg/L 0.551 pg/L 0.200 pg/L 0.405 pg/L 0.373 pg/L 0.218 pg/L 0.458 pg/L 0.458 pg/L 0.595 pg/L 0.437 pg/L 0.268 pg/L 0.450 pg/L 0.457 pg/L 0.457 pg/L 0.457 pg/L 0.139 pg/L 0.139 pg/L 8.97 pg/L 1.57 pg/L	EB-SA6-SS-071911		

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SS-071911(RES)	1,2,3,4,6,7,8-HPCDD	3.67 pg/L	3.67U pg/L
EB-SA6-SS-071911(RES)	1,2,3,4,6,7,8-HPCDF	0.550 pg/L	0.550U pg/L
EB-SA6-SS-071911(RES)	1,2,3,4,7,8,9-HPCDF	0.319 pg/L	0.319U pg/L
EB-SA6-SS-071911(RES)	1,2,3,4,7,8-HxCDD	0.135 pg/L	0.135U pg/L
EB-SA6-SS-071911(RES)	1,2,3,4,7,8-HXCDF	0.238 pg/L	0.238U pg/L
EB-SA6-SS-071911(RES)	1,2,3,6,7,8-HXCDD	0.273 pg/L	0.273U pg/L
EB-SA6-SS-071911(RES)	1,2,3,6,7,8-HXCDF	0.163 pg/L	0.163U pg/L
EB-SA6-SS-071911(RES)	1,2,3,7,8,9-HXCDD	0.213 pg/L	0.213U pg/L
EB-SA6-SS-071911(RES)	1,2,3,7,8,9-HXCDF	0.288 pg/L	0.288U pg/L
EB-SA6-SS-071911(RES)	1,2,3,7,8-PECDF	0.149 pg/L	0.149U pg/L
EB-SA6-SS-071911(RES)	2,3,4,6,7,8-HXCDF	0.104 pg/L	0.104U pg/L
EB-SA6-SS-071911(RES)	2,3,4,7,8-PECDF	0.309 pg/L	0.309U pg/L
EB-SA6-SS-071911(RES)	2,3,7,8-TCDD	0.172 pg/L	0.172U pg/L
EB-SA6-SS-071911(RES)	2,3,7,8-TCDF	0.0901 pg/L	0.0901U pg/L
EB-SA6-SS-071911(RES)	OCDD	7.81 pg/L	7.81U pg/L
EB-SA6-SS-071911(RES)	OCDF	0.984 pg/L	0.984U pg/L

Lab Reporting Batch ID: DX115

EDD Filename: DX115_v1.

Laboratory: LL eQAPP Name: CDM SSFL 110509

			egarr nam	6: CDM_22FF_110203
Method: 161 Matrix: SO	3B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2100B371502	8/1/2011 3:02:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDF CCDD OCDF	1.10 ng/Kg 0.0960 ng/Kg 0.0192 ng/Kg 0.0192 ng/Kg 0.0831 ng/Kg 0.0448 ng/Kg 0.0751 ng/Kg 0.0341 ng/Kg 0.0786 ng/Kg 0.0484 ng/Kg 0.0724 ng/Kg 0.0473 ng/Kg 0.0534 ng/Kg 0.0459 ng/Kg 0.0475 ng/Kg 6.35 ng/Kg 0.174 ng/Kg	SL-084-SA6-SB-4.0-5.0 SL-084-SA6-SB-9.0-10.0 SL-085-SA6-SB-7.0-8.0 SL-151-SA6-SS-0.0-0.5 SL-154-SA6-SS-0.0-0.5 SL-156-SA6-SS-0.0-0.5 SL-159-SA6-SS-0.0-0.5 SL-160-SA6-SS-0.0-0.5 SL-160-SA6-SS-0.0-0.5 SL-168-SA6-SS-0.0-0.5 SL-168-SA6-SS-0.0-0.5 SL-172-SA6-SS-0.0-0.5 SL-172-SA6-SS-0.0-0.5 SL-172-SA6-SS-0.0-0.5 SL-172-SA6-SS-0.0-0.5 SL-174-SA6-SS-0.0-0.5 SL-174-SA6-SS-0.0-0.5 SL-174-SA6-SS-0.0-0.5 SL-178-SA6-SS-0.0-0.5 SL-185-SA6-SS-0.0-0.5 SL-130-SA6-SS-0.0-0.5 SL-130-SA6-SS-0.0-0.5 SL-130-SA6-SS-0.0-0.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-085-SA6-SB-4,0-5,0(RES)	1,2,3,4,6,7,8-HPCDD	1.56 ng/Kg	1.56U ng/Kg
SL-085-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.416 ng/Kg	0.416U ng/Kg
SL-085-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0540 ng/Kg	0.0540U ng/Kg
SL-085-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0344 ng/Kg	0.0344U ng/Kg
SL-085-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0896 ng/Kg	0.0896U ng/Kg
SL-085-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.109 ng/Kg	0,109U ng/Kg
SL-085-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.105 ng/Kg	0.105U ng/Kg
SL-085-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0532 ng/Kg	0.0532U ng/Kg
SL-085-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.104 ng/Kg	0.104U ng/Kg
SL-085-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0877 ng/Kg	0.0877U ng/Kg
SL-085-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0522 ng/Kg	0.0522U ng/Kg
SL-085-SA6-SB-4.0-5.0(RES)	OCDD	12.5 ng/Kg	12.5U ng/Kg
SL-085-SA6-SB-4.0-5.0(RES)	OCDF	0.696 ng/Kg	0.696U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDD	0.323 ng/Kg	0.323U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0703 ng/Kg	0.0703U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0264 ng/Kg	0.0264U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	1,2,3,4,7,8-HxCDD	0.0264 ng/Kg	0.0264U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	1,2,3,4,7,8-HXCDF	0.0622 ng/Kg	0.0622U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	1,2,3,6,7,8-HXCDD	0.0477 ng/Kg	0.0477U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	1,2,3,6,7,8-HXCDF	0.0214 ng/Kg	0.0214U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	1,2,3,7,8,9-HXCDD	0.0253 ng/Kg	0.0253U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	1,2,3,7,8-PECDF	0.0379 ng/Kg	0.0379U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	2,3,4,6,7,8-HXCDF	0.0280 ng/Kg	0.0280U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	2,3,4,7,8-PECDF	0.0539 ng/Kg	0.0539U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	2,3,7,8-TCDF	0.0269 ng/Kg	0.0269U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	OCDD	1.09 ng/Kg	1.09U ng/Kg
SL-085-SA6-SB-7.0-8.0(RES)	OCDF	0.147 ng/Kg	0.147U ng/Kg

10/27/2011 9:21:20 AM ADR version 1.4.0.111 Page 2 of 4

Lab Reporting Batch ID: DX115 Laboratory: LL

EDD Filename: DX115_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				TERROT PERSONAL PROPERTY.
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-154-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.203 ng/Kg	0.203U ng/Kg
SL-156-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0613 ng/Kg	0.0613U ng/Kg
SL-156-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.259 ng/Kg	0.259U ng/Kg
SL-156-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.0802 ng/Kg	0.0802U ng/Kg
SL-156-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.0742 ng/Kg	0.0742U ng/Kg
SL-156-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.114 ng/Kg	0.114U ng/Kg
SL-156-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0,226 ng/Kg	0.226U ng/Kg
SL-156-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0282 ng/Kg	0.0282U ng/Kg
SL-156-SA6-SS-0.0-0,5(RES)	2,3,4,6,7,8-HXCDF	0.0736 ng/Kg	0.0736U ng/Kg
SL-156-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.101 ng/Kg	0.101U ng/Kg
SL-156-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0263 ng/Kg	0.0263U ng/Kg
6L-157-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0,160 ng/Kg	0.160U ng/Kg
SL-157-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0988 ng/Kg	0.0988U ng/Kg
SL-157-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0,274 ng/Kg	0.274U ng/Kg
SL-157-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0502 ng/Kg	0.0502U ng/Kg
SL-157-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.181 ng/Kg	0.181U ng/Kg
L-157-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.181 ng/Kg	0.181U ng/Kg
L-157-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0476 ng/Kg	0.0476U ng/Kg
L-159-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.176 ng/Kg	0.176U ng/Kg
L-159-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.318 ng/Kg	0.318U ng/Kg
L-159-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0674 ng/Kg	0.0674U ng/Kg
L-159-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.229 ng/Kg	0.229U ng/Kg
L-159-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.211 ng/Kg	0.211U ng/Kg
SL-160-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.276 ng/Kg	0.276U ng/Kg
SL-160-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.169 ng/Kg	0.169U ng/Kg
L-160-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.134 ng/Kg	0.134U ng/Kg
L-160-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.108 ng/Kg	0.108U ng/Kg
L-160-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0290 ng/Kg	0.0290U ng/Kg
L-160-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.204 ng/Kg	0.204U ng/Kg
L-160-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.125 ng/Kg	0.125U ng/Kg
L-166-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.211 ng/Kg	0.211U ng/Kg
L-166-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0963 ng/Kg	0.0963U ng/Kg
L-166-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.250 ng/Kg	0.250U ng/Kg
L-166-SA6-SS-0.0-0,5(RES)	2,3,4,7,8-PECDF	0.177 ng/Kg	0.177U ng/Kg
L-168-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.149 ng/Kg	0.149U ng/Kg
L-168-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.174 ng/Kg	0.174U ng/Kg
L-171-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.219 ng/Kg	0.219U ng/Kg
L-171-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.223 ng/Kg	0.223U ng/Kg
L-171-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.231 ng/Kg	0.231U ng/Kg
L-171-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.209 ng/Kg	0.209U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 9:21:20 AM ADR version 1.4.0.111 Page 3 of 4

Lab Reporting Batch ID: DX115

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

EDD Filename: DX115_v1.

Method: 1613B				
Matrix: SO				ilik en und sistemen debaha strek
Method Blank				Associated
Sample ID	Analysis Date	Analyte	Result	Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-171-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.119 ng/Kg	0.119U ng/Kg
SL-172-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.329 ng/Kg	0.329U ng/Kg
SL-172-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.203 ng/Kg	0.203U ng/Kg
SL-172-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.185 ng/Kg	0.185U ng/Kg
SL-172-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.214 ng/Kg	0.214U ng/Kg
SL-172-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0594 ng/Kg	0.0594U ng/Kg
SL-174-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.177 ng/Kg	0.177U ng/Kg
SL-174-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.147 ng/Kg	0.147U ng/Kg
SL-174-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0911 ng/Kg	0.0911U ng/Kg
SL-174-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.108 ng/Kg	0.108U ng/Kg
SL-174-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.156 ng/Kg	0.156U ng/Kg
SL-174-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.198 ng/Kg	0.198U ng/Kg
SL-174-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.128 ng/Kg	0.128U ng/Kg
SL-185-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.139 ng/Kg	0.139U ng/Kg
SL-185-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.269 ng/Kg	0.269U ng/Kg
SL-185-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.173 ng/Kg	0.173U ng/Kg

10/27/2011 9:21:20 AM ADR version 1.4.0.111 Page 4 of 4

Field Duplicate RPD Report

Lab Reporting Batch ID: DX115

2,3,7,8-TCDD

1,2,3,7,8-PECDD

1,2,3,7,8-PECDF

2,3,7,8-TCDF

OCDD

OCDF

Laboratory: LL

EDD Filename: PrepDX115_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO					
	Concent	Concentration (%)			
Analyte	SL-160-SA6-SS-0.0-0.5	DUP04-SA6-QC-072011	Sample RPD	eQAPP RPD	Flag
MOISTURE	1.7	1.900000000	11		No Qualifiers Applie

Method: 1613B ning pagang palagrapa na pagang pagang pagang pagang pagang pagang pagang pagang pagang pagang pagang pagang p Matrix: SO Concentration (ng/Kg) eQAPP Sample SL-160-SA6-SS-0.0-0.5 DUP04-SA6-QC-072011 Analyte **RPD** RPD Flag 1,2,3,4,6,7,8-HPCDD 20.2 25.900000000 25 50.00 1,2,3,4,6,7,8-HPCDF 3.12 4.000000000 25 50.00 1,2,3,4,7,8,9-HPCDF 0.332 0.340000000 2 50.00 1,2,3,4,7,8-HxCDD 0.276 0.363000000 27 50.00 1,2,3,4,7,8-HXCDF 0.246 0.318000000 26 50.00 1,2,3,6,7,8-HXCDD 0.594 0.799000000 29 50.00 1,2,3,6,7,8-HXCDF 0.169 0.184000000 8 50.00 No Qualifiers Applied 1,2,3,7,8,9-HXCDD 0.680000000 0.472 36 50.00 1,2,3,7,8,9-HXCDF 0.134 0.186000000 32 50.00 2,3,4,6,7,8-HXCDF 0.204 0.212000000 4 50.00 2,3,4,7,8-PECDF 0.125 0.127000000 2 50.00

0.050900000

436.000000000

8.280000000

0.193000000

0.070300000

0.042000000

26

36

24

56

83

200

50.00

50.00

50.00

50.00

50.00

50.00

J(all detects)

UJ(all non-detects)

0.0392

302

6.53

0.108

0.0290

0.992 U

Lab Reporting Batch ID: DX115

Laboratory: LL

EDD Filename: DX115_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: AQ

SamplelD	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SS-071911	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 0,3,7,8-TCDD 0,3,7,8-TCDD 0,0CDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	3.67 0.550 0.319 0.135 0.238 0.273 0.163 0.213 0.288 0.149 0.104 0.309 0.172 0.0901 7.81 0.984	9.96 9.96 9.96 9.96 9.96 9.96 9.96 9.96	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-084-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF	JB	2.76	5.26	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	5.21	5.26	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	1.25	5.26	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.904	5.26	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	3.03	5.26	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.271	5.26	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	3.91	5.26	PQL	ng/Kg	o (an detects)
	1,2,3,7,8-PECDF	JB	0.624	5.26	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.41	5.26	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.851	5.26	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.308	1.05	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.965	1.05	PQL	ng/Kg	
SL-084-SA6-SB-9.0-10.0	1,2,3,4,7,8,9-HPCDF	JB	3.54	5.32	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	1.59	5.32	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	1.77	5.32	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	1.25	5.32	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	4.00	5.32	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.403	5.32	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.586	5.32	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.703	5.32	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	2.18	5.32	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	1.21	5.32	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.133	1.06	PQL	ng/Kg	
	2,3,7,8-TCDF	JBC	1.05	1.06	PQL	ng/Kg	

Lab Reporting Batch ID: DX115

EDD Filename: DX115_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		Γ					
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-085-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	<u> </u>			· · · · · · · · · · · · · · · · · · ·		ray
52 505-0/10-0B-4.0-0.0	1,2,3,4,6,7,8-HPCDF	JB	1.56	5.42	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.416	5.42	PQL	ng/Kg	
		JBQ	0.0540	5.42	PQL	ng/Kg	
Ì	1,2,3,4,7,8-HxCDD	JBQ	0.0344	5.42	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.445	5.42	PQL	ng/Kg	
1	1,2,3,6,7,8-HXCDD	JB	0.0896	5.42	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.109	5.42	PQL	ng/Kg	
İ	1,2,3,7,8,9-HXCDD	JBQ	0.105	5.42	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0532	5.42	PQL	ng/Kg	o (an dolodo)
	1,2,3,7,8-PECDD	JBQ	0.104	5.42	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.292	5.42	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0877	5.42	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.492	5.42	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0493	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0522	1.08	PQL	ng/Kg	
	OCDF	JB	0.696	10.8	PQL	ng/Kg	
SL-085-SA6-SB-7.0-8.0	1,2,3,4,6,7,8-HPCDD	JB	0.323	5.41	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0703	5.41	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0264	5.41	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0264	5.41	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0622	5.41	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0477	5.41	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0214	5.41	PQL	ng/Kg	
İ	1,2,3,7,8,9-HXCDD	JBQ	0.0253	5.41	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.0379	5.41	PQL	ng/Kg	o (an delects)
İ	2,3,4,6,7,8-HXCDF	JBQ	0.0280	5.41	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0539	5.41	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0313	1.08	PQL	ng/Kg	
•	2,3,7,8-TCDF	JBQ	0.0269	1.08	PQL	ng/Kg	
	OCDD	JB	1.09	10.8	PQL	ng/Kg	
	OCDF	JB	0.147	10.8	PQL	ng/Kg	
SL-151-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	0.775				
	1,2,3,4,7,8-HxCDD	JB	0.775	4.94 4.94	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.901		PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB		4.94	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	3.17	4.94	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.568 2.21	4.94	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.436	4.94	PQL	ng/Kg	1.7-11.4-1-7.3
	1,2,3,7,8-PECDD	JB		4.94	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.610 0.663	4.94	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB		4.94	PQL	ng/Kg	
	2,3,4,7,8-PECDF		0.683	4.94	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.860	4.94	PQL	ng/Kg	
	2,3,7,8-TCDF	J JB	0.0808	0.988	PQL	ng/Kg	
01.454.040.00.00.05			0.528	0.988	PQL	ng/Kg	
SL-154-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	1.36	5.01	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	2.96	5.01	PQL	ng/Kg	
•	1,2,3,4,7,8-HXCDF	JB	1.29	5.01	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.642	5.01	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.381	5.01	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	1.95	5.01	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.532	5.01	PQL	ng/Kg	` '
	2,3,4,6,7,8-HXCDF	JB	0.755	5.01	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.489	5.01	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.230	1.00	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.203	1.00	PQL	ng/Kg	

Lab Reporting Batch ID: DX115

EDD Filename: DX115_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Watrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-156-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF	JB JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JB	0.979 0.0613 0.259 0.0802 0.582 0.0742 0.820 0.114 0.226 0.0282 0.0736 0.101 0.0263 2.34	5.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-157-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	明め、日本のは、日本のは、日本のは、日本のは、日本のは、日本のは、日本のは、日本のは	2.56 0.155 0.470 0.257 1.31 0.160 1.08 0.0988 0.274 0.0502 0.181 0.0780 0.0476 8.41	4.86 4.86 4.86 4.86 4.86 4.86 4.86 4.86	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-159-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	JB JB JB JB JB JB JB JB JB JB JB JB JB J	3.23 0.210 0.546 0.297 1.13 0.183 1.09 0.176 0.318 0.0674 0.229 0.211 0.0680 5.82	5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-160-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD OCDF	JB JB JB JB JB JBQ JBQ JBQ JBQ JBQ JBQ J	3.12 0.332 0.276 0.246 0.594 0.169 0.472 0.134 0.108 0.0290 0.204 0.125 0.0392 6.53	4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96	PQ	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX115

Laboratory: LL

EDD Filename: DX115_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Watrix: 50		.,	,		,-		
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-166-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF	JB JB JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	4.16 0.268 0.568 0.325 1.50 0.214 1.31 0.211 0.372 0.0963 0.250 0.177 0.0489 7.06	5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-168-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		0.429 0.928 0.479 3.00 0.378 2.49 0.271 0.650 0.149 0.349 0.406 0.120 0.174	4.90 4.90 4.90 4.90 4.90 4.90 4.90 4.90	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-169-SA6-SS-0.0-0.5	1,2,3,7,8-PECDF	JB	4.12	4.88	PQL	ng/Kg	J (all detects)
SL-171-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 0CDF	JB JB JB JB JB JB JB JB JB JB JB JB JB J	1.58 0.108 0.632 0.219 1.41 0.173 1.56 0.223 0.558 0.231 0.209 0.316 0.119 5.85	4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-172-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	JB JB JB JB JB JB JBQ JBQ JBQ JBQ JBQ	2.90 0.148 0.329 0.590 1.38 0.193 0.901 0.203 0.185 0.393 0.214 0.870 0.0595 0.0594	5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32	PG	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX115

Laboratory: LL

EDD Filename: DX115_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Watrix: 50							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-174-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF	JB JBQ JBQ JB JB JB JB JB JB JB	1.69 0.132 0.177 0.344 0.383 0.147 0.439 0.0911 0.108 0.156 0.198 0.491 0.128	4.83 4.83 4.83 4.83 4.83 4.83 4.83 4.83	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-178-SA6-SS-0.0-0.5	OCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF	JB JB JB JB JB JB JB JB JB JB JB JB JB J	4.02 4.10 3.34 0.628 3.02 1.84 3.23 0.330 0.792	9.66 4.82 4.82 4.82 4.82 4.82 4.82 0.965 0.965	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-185-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.63 0.230 0.471 0.619 1.14 0.320 1.02 0.139 0.269 0.773 0.328 3.71 0.0385 0.173 6.97	5.22 5.22 5.22 5.22 5.22 5.22 5.22 5.22	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-301-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD 2,3,7,8-TCDD	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.463 0.684 1.84 1.45 0.473 1.69 0.322 0.518 0.728 0.499 0.976 0.140 0.946	5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Enclosure II

EPA Level IV Validation Reports

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

Santa Susana Field Laboratory

Collection Date:

July 19 through July 20, 2011

LDC Report Date:

October 21, 2011

Matrix:

Soil/Water

Parameters:

Dioxins/Dibenzofurans

Validation Level:

Level IV

Laboratory:

Lancaster Laboratories

Sample Delivery Group (SDG): DX115

Sample Identification

SL-151-SA6-SS-0.0-0.5 SL-160-SA6-SS-0.0-0.5MS SL-154-SA6-SS-0.0-0.5 SL-160-SA6-SS-0.0-0.5MSD SL-166-SA6-SS-0.0-0.5 SL-168-SA6-SS-0.0-0.5 SL-169-SA6-SS-0.0-0.5 SL-171-SA6-SS-0.0-0.5 SL-172-SA6-SS-0.0-0.5 SL-174-SA6-SS-0.0-0.5 SL-178-SA6-SS-0.0-0.5 SL-185-SA6-SS-0.0-0.5 SL-301-SA6-SS-0.0-0.5 SL-084-SA6-SB-4.0-5.0 SL-084-SA6-SB-9.0-10.0 SL-085-SA6-SB-4.0-5.0 SL-085-SA6-SB-7.0-8.0 EB-SA6-SS-071911 SL-156-SA6-SS-0.0-0.5 SL-157-SA6-SS-0.0-0.5 SL-159-SA6-SS-0.0-0.5 SL-160-SA6-SS-0.0-0.5

Introduction

This data review covers 21 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1613B for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Quality Assurance Project Plan for Santa Susana Field Laboratory (SSFL), RCRA Facility Investigation, Surficial Media Operable Unit (March 2009, Revision 4) and the USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.

None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

The chromatographic resolution between 2,3,7,8-TCDD and the peaks representing any other unlabeled TCDD isomers was resolved with a valley of less than or equal to 25%.

PFK and static resolving power were within validation criteria.

III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were within QC limits.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BLK224001	8/12/11	2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF OCDD OCDF	0.139 pg/L 0.457 pg/L 0.280 pg/L 0.450 pg/L 0.437 pg/L 0.405 pg/L 0.218 pg/L 0.268 pg/L 0.200 pg/L 0.373 pg/L 0.458 pg/L 0.595 pg/L 0.817 pg/L 3.99 pg/L 0.551 pg/L 8.97 pg/L	All water samples in SDG DX115
BLK210001	8/12/11	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0,2,0,0,0,0	0.0475 ng/Kg 0.0473 ng/Kg 0.0459 ng/Kg 0.0724 ng/Kg 0.0448 ng/Kg 0.0341 ng/Kg 0.0534 ng/Kg 0.0751 ng/Kg 0.0751 ng/Kg 0.0786 ng/Kg 0.0484 ng/Kg 0.0960 ng/Kg 1.10 ng/Kg 0.0192 ng/Kg 6.35 ng/Kg 0.174 ng/Kg	All soil samples in SDG DX115

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
EB-SA6-SS-071911	2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PCDF 2,3,4,7,8-PCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDD 0CDF	0.0901 pg/L 0.172 pg/L 0.149 pg/L 0.309 pg/L 0.238 pg/L 0.163 pg/L 0.104 pg/L 0.135 pg/L 0.273 pg/L 0.273 pg/L 0.213 pg/L 0.288 pg/L 0.550 pg/L 3.67 pg/L 0.319 pg/L 7.81 pg/L 0.984 pg/L	0.0901U pg/L 0.172U pg/L 0.149U pg/L 0.309U pg/L 0.238U pg/L 0.163U pg/L 0.104U pg/L 0.135U pg/L 0.273U pg/L 0.213U pg/L 0.288U pg/L 0.288U pg/L 0.550U pg/L 3.67U pg/L 0.319U pg/L 7.81U pg/L

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-154-SA6-SS-0.0-0.5	2,3,7,8-TCDF	0.203 ng/Kg	0.203U ng/Kg
SL-166-SA6-SS-0.0-0.5	1,2,3,7,8-PeCDF	0.0963 ng/Kg	0.0963U ng/Kg
	2,3,4,7,8-PeCDF	0.177 ng/Kg	0.177U ng/Kg
	2,3,4,6,7,8-HxCDF	0.250 ng/Kg	0.250U ng/Kg
	1,2,3,7,8,9-HxCDF	0.211 ng/Kg	0.211U ng/Kg
SL-168-SA6-SS-0.0-0.5	2,3,7,8-TCDF	0.174 ng/Kg	0.174U ng/Kg
	1,2,3,7,8-PeCDF	0.149 ng/Kg	0.149U ng/Kg
SL-171-SA6-SS-0.0-0.5	2,3,7,8-TCDF	0.119 ng/Kg	0.119U ng/Kg
	1,2,3,7,8-PeCDF	0.231 ng/Kg	0.231U ng/Kg
	1,2,3,4,7,8-HxCDF	0.219 ng/Kg	0.219U ng/Kg
	2,3,4,6,7,8-HxCDF	0.209 ng/Kg	0.209U ng/Kg
	1,2,3,7,8,9-HxCDF	0.223 ng/Kg	0.223U ng/Kg
SL-172-SA6-SS-0.0-0.5	2,3,7,8-TCDF	0.0594 ng/Kg	0.0594U ng/Kg
	1,2,3,7,8-PeCDD	0.185 ng/Kg	0.185U ng/Kg
	2,3,4,6,7,8-HxCDF	0.214 ng/Kg	0.214U ng/Kg
	1,2,3,7,8,9-HxCDF	0.203 ng/Kg	0.203U ng/Kg
SL-174-SA6-SS-0.0-0.5	2,3,7,8-TCDF	0.128 ng/Kg	0.128U ng/Kg
	1,2,3,7,8-PeCDF	0.156 ng/Kg	0.156U ng/Kg
	1,2,3,7,8-PeCDD	0.108 ng/Kg	0.108U ng/Kg
	2,3,4,6,7,8-HxCDF	0.198 ng/Kg	0.198U ng/Kg
	1,2,3,4,7,8-HxCDD	0.177 ng/Kg	0.177U ng/Kg
	1,2,3,7,8,9-HxCDF	0.0911 ng/Kg	0.0911U ng/Kg
SL-185-SA6-SS-0.0-0.5	2,3,7,8-TCDF	0.173 ng/Kg	0.173U ng/Kg
	1,2,3,7,8-PeCDD	0.269 ng/Kg	0.269U ng/Kg
	1,2,3,7,8,9-HxCDF	0.139 ng/Kg	0.139U ng/Kg
SL-085-SA6-SB-4.0-5.0	2,3,7,8-TCDF 1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD OCDD	0.0522 ng/Kg 0.104 ng/Kg 0.109 ng/Kg 0.0877 ng/Kg 0.0344 ng/Kg 0.0896 ng/Kg 0.105 ng/Kg 0.0532 ng/Kg 0.416 ng/Kg 1.56 ng/Kg 0.0540 ng/Kg 1.55 ng/Kg	0.0522U ng/Kg 0.104U ng/Kg 0.109U ng/Kg 0.0877U ng/Kg 0.0344U ng/Kg 0.0896U ng/Kg 0.1052U ng/Kg 0.0532U ng/Kg 0.416U ng/Kg 1.56U ng/Kg 0.0540U ng/Kg 12.5U ng/Kg 0.696U ng/Kg
SL-085-SA6-SB-7.0-8.0	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDD OCDF	0.0269 ng/Kg 0.0379 ng/Kg 0.0539 ng/Kg 0.0622 ng/Kg 0.0214 ng/Kg 0.0280 ng/Kg 0.0264 ng/Kg 0.0477 ng/Kg 0.0253 ng/Kg 0.0703 ng/Kg 0.323 ng/Kg 0.0264 ng/Kg 1.09 ng/Kg 0.147 ng/Kg	0.0269U ng/Kg 0.0379U ng/Kg 0.0539U ng/Kg 0.0622U ng/Kg 0.0214U ng/Kg 0.0280U ng/Kg 0.0264U ng/Kg 0.0477U ng/Kg 0.0253U ng/Kg 0.0703U ng/Kg 0.323U ng/Kg 0.0264U ng/Kg 0.0264U ng/Kg 1.09U ng/Kg 0.147U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-156-SA6-SS-0.0-0.5	2,3,7,8-TCDF	0.0263 ng/Kg	0.0263U ng/Kg
	1,2,3,7,8-PeCDF	0.0282 ng/Kg	0.0282U ng/Kg
	2,3,4,7,8-PeCDF	0.101 ng/Kg	0.101U ng/Kg
	1,2,3,7,8-PeCDD	0.226 ng/Kg	0.226U ng/Kg
	1,2,3,4,7,8-HxCDF	0.0802 ng/Kg	0.0802U ng/Kg
	1,2,3,6,7,8-HxCDF	0.0742 ng/Kg	0.0742U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0746 ng/Kg	0.0736U ng/Kg
	1,2,3,4,7,8-HxCDD	0.259 ng/Kg	0.259U ng/Kg
	1,2,3,4,7,8-HxCDD	0.114 ng/Kg	0.114U ng/Kg
	1,2,3,7,8,9-HxCDF	0.0613 ng/Kg	0.0613U ng/Kg
SL-157-SA6-SS-0.0-0.5	2,3,7,8-TCDF	0.0476 ng/Kg	0.0476U ng/Kg
	1,2,3,7,8-PeCDF	0.0502 ng/Kg	0.0502U ng/Kg
	2,3,4,7,8-PeCDF	0.181 ng/Kg	0.181U ng/Kg
	1,2,3,7,8-PeCDD	0.274 ng/Kg	0.274U ng/Kg
	1,2,3,6,7,8-HxCDF	0.160 ng/Kg	0.160U ng/Kg
	2,3,4,6,7,8-HxCDF	0.181 ng/Kg	0.181U ng/Kg
	1,2,3,7,8,9-HxCDF	0.0988 ng/Kg	0.0988U ng/Kg
SL-159-SA6-SS-0.0-0.5	1,2,3,7,8-PeCDF	0.0674 ng/Kg	0.0674U ng/Kg
	2,3,4,7,8-PeCDF	0.211 ng/Kg	0.211U ng/Kg
	1,2,3,7,8-PeCDD	0.318 ng/Kg	0.318U ng/Kg
	2,3,4,6,7,8-HxCDF	0.229 ng/Kg	0.229U ng/Kg
	1,2,3,7,8,9-HxCDF	0.176 ng/Kg	0.176U ng/Kg
SL-160-SA6-SS-0.0-0.5	1,2,3,7,8-PeCDF	0.0290 ng/Kg	0.0290U ng/Kg
	2,3,4,7,8-PeCDF	0.125 ng/Kg	0.125U ng/Kg
	1,2,3,7,8-PeCDD	0.108 ng/Kg	0.108U ng/Kg
	1,2,3,6,7,8-HxCDF	0.169 ng/Kg	0.169U ng/Kg
	2,3,4,6,7,8-HxCDF	0.204 ng/Kg	0.204U ng/Kg
	1,2,3,4,7,8-HxCDD	0.276 ng/Kg	0.276U ng/Kg
	1,2,3,7,8,9-HxCDF	0.134 ng/Kg	0.134U ng/Kg

Sample EB-SA6-SS-071911 was identified as an equipment blank. No polychlorinated dioxin/dibenzofuran contaminants were found with the following exceptions:

Equipment Blank ID	Sampling Date	Compound	Concentration	Associated Samples
EB-SA6-SS-071911	7/19/11	2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF 0CDD 0CDF	0.0901 pg/L 0.172 pg/L 0.149 pg/L 0.309 pg/L 0.238 pg/L 0.163 pg/L 0.163 pg/L 0.135 pg/L 0.273 pg/L 0.213 pg/L 0.288 pg/L 0.550 pg/L 0.319 pg/L 0.319 pg/L 0.319 pg/L	SL-151-SA6-SS-0.0-0.5 SL-154-SA6-SS-0.0-0.5 SL-166-SA6-SS-0.0-0.5 SL-169-SA6-SS-0.0-0.5 SL-171-SA6-SS-0.0-0.5 SL-171-SA6-SS-0.0-0.5 SL-172-SA6-SS-0.0-0.5 SL-178-SA6-SS-0.0-0.5 SL-178-SA6-SS-0.0-0.5 SL-185-SA6-SS-0.0-0.5 SL-185-SA6-SS-0.0-0.5 SL-084-SA6-SB-4.0-5.0 SL-084-SA6-SB-4.0-5.0 SL-085-SA6-SB-4.0-5.0 SL-085-SA6-SB-7.0-8.0

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X for other contaminants) than the concentrations found in the associated field blanks.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within the QC limits.

VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits.

VIII. Regional Quality Assurance and Quality Control

Not applicable.

IX. Internal Standards

All internal standard recoveries were within QC limits.

X. Target Compound Identifications

All target compound identifications were within validation criteria.

XI. Compound Quantitation and RLs

All compound quantitation and RLs were within validation criteria with the following exceptions:

Sample	Compound	Finding	Criteria	Flag	A or P
SL-169-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HpCDD OCDD	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects) J (all detects)	Р
SL-084-SA6-SB-4.0-5.0	OCDD	Sample result exceeded calibration range.	Reported result should be within calibration range.	J (all detects) J (all detects)	Р

All compounds reported below the RL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG DX115	All compounds reported below the RL.	J (all detects)	А

XII. System Performance

The system performance was acceptable.

XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

XIV. Field Duplicates

Samples SL-160-SA6-SS-0.0-0.5 and DUP04-SA6-QC-072011 (from SDG DX116) were identified as field duplicates. No polychlorinated dioxins/dibenzofurans were detected in any of the samples with the following exceptions:

	Concentra	tion (ng/Kg)			
Compound	SL-160-SA6-SS-0.0-0.5	DUP04-SA6-QC-072011	RPD (Limits)	Flags	A or P
1,2,3,4,6,7,8-HpCDD	20.2	25.9	25 (≤50)	-	-
1,2,3,4,6,7,8-HpCDF	3.12	4.0	25 (≤50)	•	-
1,2,3,4,7,8,9-HpCDF	0.332	0.34	2 (≤50)	-	_
1,2,3,4,7,8-HxCDD	0.276	0.636	27 (≤50)	•	-
1,2,3,4,7,8-HxCDF	0.246	0.318	26 (≤50)	-	-
1,2,3,6,7,8-HxCDD	0.594	0.799	29 (≤50)	-	-
1,2,3,6,7,8-HxCDF	0.169	0.184	8 (≤50)	-	_
1,2,3,7,8,9-HxCDD	0.472	0.68	36 (≤50)	-	-
1,2,3,7,8,9-HxCDF	0.134	0.186	32 (≤50)	-	-
2,3,4,6,7,8-HxCDF	0.204	0.212	4 (≤50)	_	-
2,3,4,7,8-PeCDF	0.125	0.127	2 (≤50)	-	-
2,3,7,8-TCDD	0.0392	0.0509	26 (≤50)	-	-
OCDD	302	436	36 (≤50)	-	-
OCDF	6.53	8.28	24 (≤50)	-	-
1,2,3,7,8-PeCDD	0.108	0.193	56 (≤50)	J (all detects)	А

	Concentra				
Compound	SL-160-SA6-SS-0.0-0.5	DUP04-SA6-QC-072011	RPD (Limits)	Flags	A or P
1,2,3,7,8-PeCDF	0.0290	0.703	83 (≤50)	J (all detects)	Α
2,3,7,8-TCDF	0.992U	0.042	200 (≤50)	J (all detects) UJ (all non-detects)	Α

Santa Susana Field Laboratory Dioxins/Dibenzofurans - Data Qualification Summary - SDG DX115

SDG	Sample	Compound	Flag	A or P	Reason (Code)
DX115	SL-169-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HpCDD OCDD	J (all detects) J (all detects)	Р	Compound quantitation and RLs (*XI)
DX115	SL-084-SA6-SB-4.0-5.0	OCDD	J (all detects)	Р	Compound quantitation and RLs (*XI)
DX115	SL-151-SA6-SS-0.0-0.5 SL-154-SA6-SS-0.0-0.5 SL-166-SA6-SS-0.0-0.5 SL-169-SA6-SS-0.0-0.5 SL-169-SA6-SS-0.0-0.5 SL-171-SA6-SS-0.0-0.5 SL-172-SA6-SS-0.0-0.5 SL-178-SA6-SS-0.0-0.5 SL-185-SA6-SS-0.0-0.5 SL-185-SA6-SS-0.0-0.5 SL-084-SA6-SB-4.0-5.0 SL-084-SA6-SB-4.0-5.0 SL-085-SA6-SB-4.0-5.0 SL-085-SA6-SB-4.0-5.0 SL-085-SA6-SB-0.0-0.5 SL-157-SA6-SS-0.0-0.5 SL-159-SA6-SS-0.0-0.5 SL-159-SA6-SS-0.0-0.5	All compounds reported below the RL.	J (all detects)	Α	Compound quantitation and RLs (Z)
DX115	SL-160-SA6-SS-0.0-0.5	1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF	J (all detects) J (all detects)	Α	Field duplicates (RPD) (FD)
DX115	SL-160-SA6-SS-0.0-0.5	2,3,7,8-TCDF	J (all detects) UJ (all non-detects)	А	Field duplicates (RPD) (FD)

Santa Susana Field Laboratory Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG DX115

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX115	EB-SA6-SS-071911	2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF 0CDD 0CDF	0.0901U pg/L 0.172U pg/L 0.149U pg/L 0.309U pg/L 0.238U pg/L 0.163U pg/L 0.135U pg/L 0.273U pg/L 0.213U pg/L 0.288U pg/L 0.288U pg/L 0.319U pg/L 0.319U pg/L 0.319U pg/L 0.319U pg/L 0.984U pg/L	А	В
DX115	SL-154-SA6-SS-0.0-0.5	2,3,7,8-TCDF	0.203U ng/Kg	А	В
DX115	SL-166-SA6-SS-0.0-0.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.0963U ng/Kg 0.177U ng/Kg 0.250U ng/Kg 0.211U ng/Kg	A	В
DX115	SL-168-SA6-SS-0.0-0.5	2,3,7,8-TCDF 1,2,3,7,8-PeCDF	0.174U ng/Kg 0.149U ng/Kg	А	В
DX115	SL-171-SA6-SS-0.0-0.5	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.119U ng/Kg 0.231U ng/Kg 0.219U ng/Kg 0.209U ng/Kg 0.223U ng/Kg	A	В
DX115	SL-172-SA6-SS-0.0-0.5	2,3,7,8-TCDF 1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.0594U ng/Kg 0.185U ng/Kg 0.214U ng/Kg 0.203U ng/Kg	A	В
DX115	SL-174-SA6-SS-0.0-0.5	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDF	0.128U ng/Kg 0.156U ng/Kg 0.108U ng/Kg 0.198U ng/Kg 0.177U ng/Kg 0.0911U ng/Kg	A	В
DX115	SL-185-SA6-SS-0.0-0.5	2,3,7,8-TCDF 1,2,3,7,8-PeCDD 1,2,3,7,8,9-HxCDF	0.173U ng/Kg 0.269U ng/Kg 0.139U ng/Kg	A	В

SDG	Consula		Modified Final		
DX115	Sample SL-085-SA6-SB-4.0-5.0	2,3,7,8-TCDF 1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 0CDF	0.0522U ng/Kg 0.104U ng/Kg 0.109U ng/Kg 0.0877U ng/Kg 0.0344U ng/Kg 0.0896U ng/Kg 0.105U ng/Kg 0.0532U ng/Kg 0.416U ng/Kg 1.56U ng/Kg 1.56U ng/Kg 0.0540U ng/Kg 0.0540U ng/Kg	A or P	B
DX115	SL-085-SA6-SB-7.0-8.0	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF OCDD OCDF	0.0269U ng/Kg 0.0379U ng/Kg 0.0539U ng/Kg 0.0622U ng/Kg 0.0214U ng/Kg 0.0280U ng/Kg 0.0264U ng/Kg 0.0477U ng/Kg 0.0253U ng/Kg 0.0703U ng/Kg 0.323U ng/Kg 0.0264U ng/Kg 0.0964U ng/Kg 0.147U ng/Kg		В
DX115	SL-156-SA6-SS-0.0-0.5	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8,9-HpCDF	0.0263U ng/Kg 0.0282U ng/Kg 0.101U ng/Kg 0.226U ng/Kg 0.0802U ng/Kg 0.0742U ng/Kg 0.0736U ng/Kg 0.259U ng/Kg 0.114U ng/Kg 0.0613U ng/Kg	А	В
DX115	SL-157-SA6-SS-0.0-0.5	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.0476U ng/Kg 0.0502U ng/Kg 0.181U ng/Kg 0.274U ng/Kg 0.160U ng/Kg 0.181U ng/Kg 0.0988U ng/Kg	А	В
DX115	SL-159-SA6-SS-0.0-0.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	0.0674U ng/Kg 0.211U ng/Kg 0.318U ng/Kg 0.229U ng/Kg 0.176U ng/Kg	А	В
DX115	SL-160-SA6-SS-0.0-0.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDF	0.0290U ng/Kg 0.125U ng/Kg 0.108U ng/Kg 0.169U ng/Kg 0.204U ng/Kg 0.276U ng/Kg 0.134U ng/Kg	А	В

Santa Susana Field Laboratory Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG DX115

No Sample Data Qualified in this SDG

E		1. 1
LDC #: 26392\21	_ VALIDATION COMPLETENESS WORKSHEET	Date:_/o//9///
SDG #: DX115	Level IV	Page: / of /
Laboratory: Lancaster Labo	<u>ratories</u>	Reviewer: F
METHOD: HDGC/HDMS D	ioxins/Dibenzofurans (EPA Method 1613B)	2nd Reviewer:
METHOD. HAGGIARMS D	OXIIIS/DIDENZOIDIANS (EPA MELIOD 1013B)	<u></u>

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets. .

	Validation Area		Comments
l.	Technical holding times	Δ	Sampling dates: 7/19 - 7/20/1/
11.	HRGC/HRMS Instrument performance check	Λ	
III.	Initial calibration	À	% RSD = 20/35
IV.	Routine calibration/ICV	Д	ac limit
V.	Blanks	SW	
VI.	Matrix spike/Matrix spike duplicates	5WA	
VII.	Laboratory control samples	Α	tes OPR
VIII.	Regional quality assurance and quality control	N	
IX.	Internal standards	A	ac limit
X.	Target compound identifications	Δ	
XI.	Compound quantitation and CRQLs	SW	
XII.	System performance	Δ	
XIII.	Overall assessment of data	4	
XIV.	Field duplicates	TUSW	DUPOY-SA6-QC-072011 from SDG DX116 5 12
XV.	Field blanks	SW	EB= 16

Note:

A = Acceptable

N = Not provided/applicable SW = See worksheet

ND = No compounds detected

D = Duplicate

R = Rinsate FB = Field blank

TB = Trip blank EB = Equipment blank

Validated Samples:

,	SOIL of M							
1	SL-151-SA6-SS-0.0-0.5	11	SL-301-SA6-SS-0.0-0.5		21	SL-160-SA6-SS-0.0-0.5MS	<u></u> <u></u> <u></u> <u> </u>	Blank 2/000/
2	SL-154-SA6-SS-0.0-0.5	12	SL-084-SA6-SB-4.0-5.0		22	SL-160-SA6-SS-0.0-0.5MSD	₹ ₃₂ 2	Blank 22400/
3	SL-166-SA6-SS-0.0-0.5	13	SL-084-SA6-SB-9.0-10.0		23		33	
4	SL-168-SA6-SS-0.0-0.5	14	SL-085-SA6-SB-4.0-5.0		24		34	
5	SL-169-SA6-SS-0.0-0.5	15	SL-085-SA6-SB-7.0-8.0		25		35	
6	SL-171-SA6-SS-0.0-0.5	16 2	EB-SA6-SS-071911	W	26		36	
7	SL-172-SA6-SS-0.0-0.5	17	SL-156-SA6-SS-0.0-0.5		27		37	
8	SL-174-SA6-SS-0.0-0.5	18	SL-157-SA6-SS-0.0-0.5		28		38	
9	SL-178-SA6-SS-0.0-0.5	19	SL-159-SA6-SS-0.0-0.5		29		39	
10	SL-185-SA6-SS-0.0-0.5	20	SL-160-SA6-SS-0.0-0.5		30		40	

Notes:_			 _	

LDC#: 26392E2

VALIDATION FINDINGS CHECKLIST

Page:_/_of	2
Reviewer: FT	
2nd Reviewer:	_
7	_

Method: Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

Validation Area	Yes	No	NA	Findings/Comments
Technical holding times	14-1		1110	i indings/comments
All technical holding times were met.		1	Ī	
Cooler temperature criteria was met.			-	
Was PFK exact mass 380.9760 verified?			Γ	
Were the retention time windows established for all homologues?				
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers < 25% ?	/			
Is the static resolving power at least 10,000 (10% valley definition)?				
Was the mass resolution adequately check with PFK?			<u></u>	
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?		<u> </u>		
III. Initial calibration	, i.e.		***	
Was the initial calibration performed at 5 concentration levels?				
Were all percent relative standard deviations (%RSD) ≤ 20% for unlabeled compounds and < 35% for labeled compounds ?				
Did all calibration standards meet the Ion Abundance Ratio criteria?		-		
Was the signal to noise ratio for each target compound ≥ 2.5 and for each recovery and internal standard ≥ 10?		_		
IV. Continuing calibration	1.0		(1.1.63) (1.1.63)	
Was a routine calibration performed at the beginning and end of each 12 hour period?		1		
Were all the concentrations for the unlabeled compounds and labeled compounds within the QC limits (Method 1613B, Table 6)?				
Did all routine calibration standards meet the Ion Abundance Ratio criteria?				
V. Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank performed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet?		_		
VI, Matrix spike/Matrix spikė duplicates	SEVEN VARIOT			
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.		·		
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?		/		
VII. Laboratory control samples				
Was an LCS analyzed for this SDG?	~			
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

LDC# 26392E2

VALIDATION FINDINGS CHECKLIST

Page: 2-of 2
Reviewer: FT
2nd Reviewer: 7

Validation Area	Yes	No	NA	Findings/Comments
VIII. Regional Quality Assurance and Quality Control	163			r munigarcomments
Were performance evaluation (PE) samples performed?	<u> </u>			
Were the performance evaluation (PE) samples within the acceptance limits?				
IX. Internal standards		2 W 1 W 1		
Were internal standard recoveries within the 25-150% criteria?				
Was the minimum S/N ratio of all internal standard peaks ≥ 10?				
X. Target compound identification			r	
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?		-		•
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?		-		
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?		•		
Did compound spectra contain all characteristic ions listed in the table attached?		-		
Was the Ion Abundance Ratio for the two quantitation ions within criteria?				
Was the signal to noise ratio for each target compound and labeled standard <u>></u> 2.5?		-		
Does the maximum intensity of each specified characteristic ion coincide within \pm 2 seconds (includes labeled standards)?	/	•		,
For PCDF identification, was any signal (S/N \geq 2.5, at \pm seconds RT) detected in the corresponding PCDPE channel?				
Was an acceptable lock mass recorded and monitored?				
XI. Compound quantitation/CRQLs			· V.M.	
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?		-		
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?		1	·	
XII. System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	-			
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.	,			
Target compounds were detected in the field duplicates.			-	
XV. Field blanks		i v		
Field blanks were identified in this SDG.		_		
Target compounds were detected in the field blanks.				

VALIDATION FINDINGS WORKSHEET

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	I. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

26 392E2, LDC #: 26250521

VALIDATION FINDINGS WORKSHEET

2nd Reviewer: Reviewer:

<u>Blanks</u>

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed? Was the method blank contaminated?

Blank analysis date: 8/16/11

X N N/A AN NA

Blank extraction date: 8/12/11

Associated samples:_

ALL WATER

*EMPC

Conc. units: ng/kg	<u>ا</u> الا					
	Blank ID			Sample Identification		
	BL K224001		16			
Ξ	0.139	0.695	0.0901*U			
A	0.457*	2.285	0.172*U			
	0.280*	1.4	0.149U			
ſ	0.450*	2.25	0.309U			
B	0.437*	2.185				
X	0.405	2.025	0.238*U			
Г	0.218*	1.09	 0.163*U			
M	0.268	1.34	0.1040			
0	0.200*	1	0.135*U			
D	0.373*	1.865	0.273*U			
Ш	0.458	2.29	0.213*U			
Z	0.595*	2.975	0.288*U			
0	0.817*	4.085	0.550*U			
ш.	3.99	19.95	3.67U			:
a .	0.551*	2.755	0.319*U			
9	8.97	44.85	7.81U			
C	1.57*	7.85	0.98411			•

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC#<u>26250821</u> 2 6392 E 2,

VALIDATION FINDINGS WORKSHEET Blanks

Page: Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Pjease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A"

Were all samples associated with a method blank? N/A Y N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed?

Was the method blank contaminated?

Blank analysis date: 8/16/11 Bfank extraction date: 8/12/11 Y X N/A

ALL SOIL Associated samples:_

*EMPC

Conc. units: ng/Kg						Ć	Associated samples.	inpics:	ר סטור	
Compound	Blank ID				Š	Sample Identification	ation			
	BLK210001	χς	2	3	4	9		8	10	14
I	0.0475*	0.2375	0.203*U		0.174*U	0.119*U	0.0594*U	0.128*U	0.173U	0.0522*∪
*		0								
	0.0473*	0.2365		0.0963*U	0.149*∪	0.231U		0.156U		
ſ	0.0459	0.2295		0.177U						
8	0.0724*	0.362				:	0.185*U	0.108U	0.269U	0.104*U
×	0.0448*	0.224				0.219*U	-			
Γ	0.0341*	0.1705								0.109*U
M	0.0534	0.267		0.250*U		0.209U	0.214U	0.198U		0.0877*U
U	0.0831*	0.4155						0.177*U		0.0344*U
٥	0.0751	0.3755								0.0896U
ш	0.0786*	0.393			_					0.105*U
z	0.0484*	0.242		0.211*U		0.223*U	0.203U	0.0911U	0.139U	0.0532*U
0	0.0960*	0.48								0.416U
ഥ	1.10	5.5								1.56U
<u>G</u> .	0.0192	0.096								0.0540*U
9	6.35	31.75								12.5U
C	0.174*	78.0								1 1808 0

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC #: <u>26250521</u> 26-392E2,

VALIDATION FINDINGS WORKSHEET

Page:_ Reviewer 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Rease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A",

Were all samples associated with a method blank? Z Z Z Z

Was a method blank performed for each matrix and whenever a sample extraction was performed?

Was the method blank contaminated? YN N/Y

Blank analysis date: 8/16/11 Blank extraction date: 8/12/11

ALL SOIL Associated samples:_

*EMPC

Conc. units: ng/Kg

		i															
																	
ation	20		0.0290*	0.125*	0.108*		0.169	0.204*	0.276			0.134*					
Sample Identification	19		0.0674*U	0.211*U	0.318*U			0.229U				0.176*U					
S	18	0.0476*	0.0502*	0.181	0.274		0.160	0.181				0.0988					
	17	0.0263*U	0.0282*U	0.101*U	0.226*U	0.0802*U	0.0742*U	0.0736U	0.259U			0.114*U			0.0613U		
	15		0.0379*U	0.0539U		0.0622U	0.0214*U	0.0280*U	0.0264*U	0.0477U	0.0253*U		0.0703U	0.323U	0.0264*U	1.09U	112710
	χç	0.2375	0.2365	0.2295	0.362	0.224	0.1705	0.267	0.4155	0.3755	0.393	0.242	0.48	5.5	0.096	31.75	28 U
Blank ID	BLK210001	0.0475*	0.0473*	0.0459	0.0724*	0.0448*	0.0341*	0.0534	0.0831*	0.0831* 0.4155 0.0264*U 0.259U 0.0751 0.3755 0.0477U 0.0253*U 0.0786* 0.393 0.0253*U 0.014*U 0.0484* 0.242 0.114*U 0.0988 0.176*U	1.10	0.0192	6.35	. 174*			
Compound		Τ.		7	В	¥		M	O	D	E	Z	0	.	Р	G	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

LDC# 2639262/

VALIDATION FINDINGS WORKSHEET Field Blanks

Page: Reviewer: 2nd Reviewer:

METHOD: GC/MS Dioxins/Dibenzofurans (Method 1613B)

Y N/A Were field blanks identified in this SDG? * empc

Associated sample units: ng/Kg

Ш Blank units: pg/L Associated sample units: ng/K Sampling date: 7/19/11 Field blank / Rinsate / Other:

oles: $1-15$ > 5 \times	ıtification																	
/ Rinsate / Other: EB Associated Samples:														:				
Field Blank	Blank ID	16	0.0901*	0.172*	0.149	0.309	0.238*	0.163*	0.104	0.135*	0.273*	0.213*	0.288*	0.550*	3.67	0.319*	7 04	.0.7
Field blank type: (circle one) Field Blank / Rinsate / Other.	Compound	いい かんさん できない ないかい かんしん	Н	Ą	_	,	K	Ţ	M	၁	D	Ш	N	0	Ľ	Ь	ď	_

55
25
ω
i
B
#

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported CRQLs

\ \ \ \	ᇤ	1
Page:	Reviewer:	2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8290)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Y N/A

Were the correct internal standard (IS), quantitation ions and relative response factors (RRF) used to quantitate the compound? Compound quantitation and CRQLs were adjusted to reflect all sample dilutions and dry weight factors (if necessary).

ations	[× *	*						
Qualifications	1/Adet	, 3						
Associated Samples	h	12						
Finding	x'd cal Range							
Co mpo Sampio IB	F, G	9						-
Date							 	
#								

Comments: See sample calculation verification worksheet for recalculations

LDC#: 263921321 SDG#: DX115

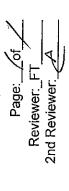
VALIDATION FINDINGS WORKSHEET <u>Field Duplicates</u>

Page:___of |
Reviewer:_A
2nd reviewer:_A

METHOD: GC/MS Dioxins/Dibenzofurans (Method 1613B)

Were field duplicate pairs identified in this SDG. Were target compounds detected in the field duplicate pairs?

	Concentr	ration (ng/kg)	
Compound	70	DUPOU-5A6- QC-072011	RPD (≤ 50)
F	26.2	25.9	25
0	3.12	4.0	25
Р	6.332	o .34	2
C	0.276	0.363	27
K	6.246	0.318	26

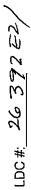

	Concentratio	on ()	
Compound	cenet.		RPD
D	0.594	0.799	29
₩ L	0.169	0.184	8
Б	0.472	0.68	36
N	0.134	0.186	32
М	0.204	0212	4

	Concentration	on ()	
Compound	Cont.		RPD
J	0.125	0.127	2
A	0.0392	0.0509	26
6	302	436	36
Q.	53. ي	8.28	24
В	0.108	0.193	56 J/A/(FD)

	Concentration	1()	
Compound	· aut,		RPD
I	0.0290	0.703	83 J/A (FD)
Н	0.9920	0.042	200 J/UJ/A (FI
		-	

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)


The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF = $(A_a)(C_b)/(A_s)(C_c)$ average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $A_{k} = Area\ of\ compound, \qquad A_{s} = Area\ of\ associated\ internal\ standard\ C_{x} = Concentration\ of\ compound, \qquad C_{s} = Concentration\ of\ internal\ standard\ S = Standard\ deviation\ of\ the\ RRFs, \qquad X = Mean\ of\ the\ RRFs$

L									
				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF (Cs 3 std)	RRF (C3 5 std)	%RSD	%RSD
	1691	11/8/9	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	1.017	1.01	1.033	1.033	4.59	4.59
			2.3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.186	481-1	1.186	1.186	5.56	5:36
	-		1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	0.995	0.995	1.001	1001	3.43	3-43
			1,2,3,4,6,7,8-HpCDD (¹³ C-1,2,4,6,7,8,-HpCDD)	1.077	620.1	1.101.1	10.1	402	402
			OCDF (13c-OCDF)	5260	586-0	0.974	416.0	3.54	33
7	1091	c/m/11	2,3,7,8-TCDF (¹³ C.2,3,7,8-TCDF)	10%	<i>₹0-1</i>	1.022	1.023	7.77	7.77
			2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	1.142	1-142	1./33	1.133	352	3.52
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	8/01	810-1	0.97/	0.97/	4.32	4-32
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	1.087	1.087	1.053	1.053	4.49	4.49
			OCDF (13C-OCDF)	1.001	1.00-1	0.950	0.250	10:5	5.0/
m	(A)	11/2/3	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	1.012	1.01	1.00%	200.1	365	3.61
	1852951		2,3,7,8-TCDD (13C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)						
			OCDF (1°C-OCDF)					,	

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

Routine Calibration Results Verification VALIDATION FINDINGS WORKSHEET

ō, 2nd Reviewer Reviewer:

16/3/3 METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 9290)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_{\lambda})(C_{k})/(A_{k})(C_{\lambda})$

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, A_x = Concentration of compound, C_x = Where:

 $A_{\rm ls} = Area$ of associated internal standard $C_{\rm ls} = Concentration$ of internal standard

				Amy	Reported	Recalculated	Renorted	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	- KRF	ARF CCC)	<i>√,</i>	X %
	cev 13:34	200	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	0.01	2.950	2:9:2	201	asi
		•	2,3,7,8-TCDD (¹³C-2,3,7,8-TCDD)	0 0	USE-01	US. 3.50	701	hal
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	O '28	021-25	021.53	101	401
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	O \propto	052.73	57.230	70/	701
			OCDE (13C-OCDD)	0.001	104.310	015-701	102	102
2	cer 04:29 8/6/11	11/2/8	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	01	8.630	8.650	87	68
	(sp233)		2,3,7,8-TCDD (13C-2,3,7,8-TCDD)					
	`		1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			OCDE (¹¹C-OCDD)					
3			2,3,7,8-TCDF (13C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			OCDF (13C-OCDD)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC# 26 3 92 E2,

Routine Calibration Results Verification VALIDATION FINDINGS WORKSHEET

Page: 2nd Reviewer: Reviewer.

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF = $(A_x)(C_s)/(A_s)(C_x)$

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, A_s C_x = Concentration of compound, C_s

 $A_{\rm ls} = Area$ of associated internal standard $C_{\rm ls} = Concentration of internal standard$

<u> </u>				Amx	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	A verago -RRF (initial)	RAR And	RRF (CC)	4%	ď%
	ce	11/91/8	2,3,7,8-TCDF (¹³ C-2,3,7,8-TCDF)	10.01	9.760	9.740	97	97
	9/:0/		2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	0.01	081.6	9.180	26	76
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	50.0	30 360	25,360	/0/	101
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	50.0	081-05	087-05	00/	001
	•		OCDF (48C-OCDF)	0.00	024.601	Ochlal	701	401
2	cer	11/10/8	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	0.01	072-6	2.20	28	26
	12:12		2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	0.01	10.300	008 01	601	801
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	50.0	065-64	49.59	66	66
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	52.0	48.6M	48.69	97	47
			OCDF ('3C-OCDF)	100.0	25e-46	aschb	46	16
3	aer ooy/	11/2/8	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	10.0	9.82	9.80	66	66
		`	2,3,7,8-TCDD (¹³ C-2,3,7,8-TCDD)	10.0	0/10/10	Ope.01	102	701
	ļ		1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	5.0.0	50.210	OHEAS	101	a a)
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	80.0	48.870	48.870	R	26
			OCDF (13C-OCDF)	100:00	04.710	04.77	16	97

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the results. recalculated

1
ti.
Ü
•
0
M
١, ١
0
1
3
j
الرزر
#,
\circ

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSR - SR)/SA

Where: SSR = Spiked sample result, SR = Sample result SA = Spike added

RPD = I MSR - MSDR I * 2/(MSR + MSDR)

MSR = Matrix spike percent recovery MSDR = Matrix spike duplicate percent recovery

MS/MSD samples: 3/ 1 22

	ds	ike	Sample	Spiked Sample	Sample	Mafrix Spike	Spike	Matrix Spik	Matrix Spike Duplicate	Reported	Recalculated
Compound	A ()	Added (n.g. //gg)	Concentration (ng //fn	Concentration	itration	Percent Recovery	Recovery	Percent Recovery	Recovery	RPD	RPD
	WS	U MSD	0 0	MS.	MSD	Reported	Recalc	Reported	Recalc		
2,3,7,8-TCDD	19.7	7.61	0.0392	0.81	1.91	16	16	28	7.8	//	1
1,2,3,7,8-PeCDD	5.86	5.7%	0.108	91.3	8/.3	93	93	82	\$	/2	17
1,2,3,4,7,8-HxCDD	1	1	0.276	90.3	82.6	16	16	48	Z	0	6
1,2,3,4,7,8,9-HpCDF	7	1	0.332	85.7	79.9	87	28	1/8	18		7
OCDF	197	197	6.53	176	771	28	28	79	19	0	8
				<u> </u>							
		•									

Comments: Refer to Matrix Spike/Matrix Spike Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

•
7
a G
39
Q 6
LDC #:

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: /of /	Reviewer: FT	2nd Reviewer: A
		7

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA WI

Where: SSC = Spiked sample concentration SA = Spike added

RPD = ILCS - LCSD I*2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCS ID: 0PR 2 1 001

LCSD = Laboratory control sample duplicate percent recovery

•	Spike	Spiked Sa	ample	1.08	S	I GSD	d	I CS/I	CS/I CSD
Added,	_	Concentration (ng/5)	ation 4 S	Percent Recovery	Recovery	Percent Recovery	есоvегу	RF	RPD
	2	>	Cosp	Reported	Recalc	Renorted	Recalc	Reported	Received
20.00 NA 18.4	18.4	7	NA	76	76				
001	96.	9	1	27	b				
100 / 93.9	93.	7	_	16	hb				
00/8 / 00/	87.	0		87	87				
011 1 000	170	2	1	J.	A.	7 A 5			
	į				,				
	;					:			

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

	Accurate mass ⁽⁴⁾	(on ID	Elemental Composition	Analyte	Descriptor	Accurate Mass ^(a)	lon ID	Flamental Composition	
303.9016 305.8987 315.9419 317.9389 319.8965 321.8936 331.9368 331.9368		2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Gr.H.**Gl,O Gr.H.**Gl,**C10 10Cr.H.**Gl,O 10Cr.H.**Gl,**C10 Cr.H.**Gl,**C10, 10Cr.H.**Gl,**C10, 10Cr.H.**Gl,**C10,	TCDF TCDF (\$) TCDD (\$) TCDD TCDD TCDD (\$)	4	407.7818 409.7788 417.8250 419.8220 423.7767 425.7737		C ₁₂ H ³² Cl ₄ 37ClO C ₁₂ H ³² Cl ₄ 37ClO 13C ₁₂ H ³³ Cl ₄ 37ClO 13C ₁₂ H ³³ Cl ₄ 37ClO C ₁₂ H ³³ Cl ₄ 37ClO ₂ C ₁₂ H ³³ Cl ₄ 37ClO ₂ 13C ₁₂ H ³³ Cl ₄ 37ClO ₂	Analyte HpCDF HpCDF HpCDF HpCDF HpCDD HpCDD
3/5,8364 [354,9792] 339,8597 341,8567	20	M+2 M+4 M+4	C ₁₂ H ₃ ³³ ClO C ₁₂ H ₃ ³³ ClO C ₁₂ H ₃ ³³ ClO C ₁₂ H ₃ ³³ ClO C ₁₂ H ₃ ³³ ClO C ₁₂ H ₃ ³³ Cl ₂ O	HYCDPE PFK PeODF	מי	437,8140 479,7165 [430,9728] 441,7428		(10 C ₁₂ H ³⁵ Cl ₃ ³¹ Cl ₂ O C ₁₂ H ³² Cl ₃ ³¹ Cl ₂ O C ₃ F ₁₇ C ₁₂ ³² Cl ₃ 3ClO	
353.8970 355.8546 357.8546 357.8546 367.8949 369.8919		M M M M M M M M M M M M M M M M M M M	C ₁₂ H ₃ = C ₁ 70: 10 C ₁₃ H ₃ = C ₁ 70: 10 C ₁₄ H ₃ = C ₁₄ H	PeCDF (S) PeCDF (S) PeCDD PeCDD PeCDD (S) PeCDD (S)		457.7377 459.7348 469.7780 471.7750 513.6775	M M M M M M M M M M M M M M M M M M M	G ₁₂ *G ₁₃ *G ₁₂ G ₁₂ *G ₁₃ *G ₁₃ *G ₁₃ G	OCDF OCDD OCDD OCDD (S) OCDD (S) DCDPE
[354.9792]		LOCK M+2	C ₁₂ H ₃ Cl ₆ 3'ClO C ₂ F ₁₃ C ₂ H 3Cl 3'ClO	HpCDPE PFK				Ç ₁₀ + ₁₇	Д
375.8178 383.8639 385.8610 389.8156	_		C. H. 30 C. C. H. 30 C. C. C. H. 30 C. C. C. C. C. C. C. C. C. C. C. C. C.	HXCDF HXCDF (S) HXCDF (S) HXCDD (S)				-	
401.8559 403.8529 445.7555 [430.9728]	~ ~~~	M+2 M+4 LOCK	16,14,301,300,00 16,14,301,300,00 C,24,301,300,0 C,67,	HXCDD (S) HXCDD (S) OCDPE PFK					

(a) The following nuclidic masses were used:

 $H \approx 1.007825$ C = 12.000000 $^{10}C = 13.003355$ F = 18.9984

O = 15.994915 $^{36}Cl = 34.968853$ $^{37}Cl = 36.965903$

S = internal/recovery standard

LDC#: 26392EZ/

VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page:_	of_	_
Reviewer:	FT	
2nd reviewer:	A	
	- (

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

Ŕ	Ŋ	N/A
\overline{Y}	Ń	N/A
$\overline{}$		

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = (A)(I_s)(DF) (A_{is})(RRF)(V₀)(%S) Area of the characteristic ion (EICP) for the A, compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added in nanograms (ng) V. = Volume or weight of sample extract in milliliters (ml) or **RRF** = Relative Response Factor (average) from the initial calibration Df Dilution Factor. %S Percent solids, applicable to soil and solid matrices

Example:
Sample I.D. # / oc DP

20.745.90Conc. = (18.41037) (4000) (10.2) (7.041) (1.041) (10.2) (0.99)688 $\frac{1}{9}18$

1017 ng 1kg

#	Sample ID	Compound	Reporte Concentra (ed Calculate ition Concentrat	
	#5 2	378 TCDF			
	(SPZ 331)				
	-	(17604+13024)((1170767+932631	2000)	- 2	-83 ng/k
		(1170767+932631	1.006 (10-3)(1	0-99)	011
<u> </u>					
 					
					
 					
					
		•			

LDC #:	
SDG #:	

VALIDATION FINDINGS WORKSHEET
Sample Calculation Verification (additional page)

Page:___of___ Reviewer:____

SAMPLE DELIVERY GROUP

DX116

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
20-Jul-2011	SL-167-SA6-SS-0.0-0.5	6351947	N	METHOD	1613B	10
20-Jul-2011	DUP04-SA6-QC-072011	6351954	FD	METHOD	1613B	Ш
20-Jul-2011	SL-164-SA6-SS-0.0-0.5	6351945	N	METHOD	1613B	[1]
20-Jul-2011	SL-162-SA6-SS-0.0-0.5	6351944	N	METHOD	1613B	[]]
20-Jul-2011	SL-321-SA6-SS-0.0-0.5	6351952	N	METHOD	1613B	Ш
20-Jul-2011	SL-165-SA6-SS-0.0-0.5	6351946	N	METHOD	1613B	111
20-Jul-2011	SL-322-SA6-SS-0.0-0.5	6351953	N	METHOD	1613B	111
20-Jul-2011	EB-SA6-SB-072011	6351958	EB	METHOD	1613B	111
20-Jul-2011	SL-218-SA6-SS-0.0-0.5	6351949	N	METHOD	1613B	Ш
20-Jul-2011	SL-220-SA6-SS-0.0-0.5	6351950	N	METHOD	1613B	Ш
20-Jul-2011	SL-215-SA6-SS-0.0-0.5	6351948	N	METHOD	1613B	III
20-Jul-2011	SL-310-SA6-SS-0.0-0.5	6351951	N	METHOD	1613B	Ш
20-Jul-2011	SL-097-SA6-SB-1.5-2.5	6351957	N	METHOD	1613B	III
20-Jul-2011	SL-086-SA6-SB-4.0-5.0	6351955	N	METHOD	1613B	111
20-Jul-2011	SL-086-SA6-SB-9.0-10.0	6351956	N	METHOD	1613B	113
21-Jul-2011	SL-214-SA6-SS-0.0-0.5	6353214	N	METHOD	1613B	III
21-Jul-2011	SL-219-SA6-SS-0.0-0.5	6353216	N	METHOD	1613B	III
21-Jul-2011	SL-216-SA6-SS-0.0-0.5	6353215	N	METHOD	1613B	IIi
21-Jul-2011	SL-211-SA6-SS-0.0-0.5	6353211	N	METHOD	1613B	111
21-Jul-2011	SL-211-SA6-SS-0.0-0.5MS	6353212	MS	METHOD	1613B	III
21-Jul-2011	SL-211-SA6-SS-0.0-0.5MSD	6353213	MSD	METHOD	1613B	111
21-Jul-2011	SL-211-SA6-SS-0.0-0.5MSD	P353211M371630	MSD	METHOD	1613B	111
21-Jul-2011	SL-211-SA6-SS-0.0-0.5MS	P353211R371533	MS	METHOD	1613B	M

Attachment II

Overall Data Qualification Summary

Data Qualifier Summary

Lab Reporting Batch ID: DX116 Laboratory: LL

EDD Filename: DX116_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

1613B Method: Matrix: AQ

Sample ID: EB-SA6-SB-072011	Collect	ted: 7/20/2	011 12:00:	:00 A		RES	i.	Dilution: 1
							Data	
	Lab	Lab		DL -	RI	-	Review	Reason

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.26	JB	0.111	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,6,7,8-HPCDF	0.605	JB	0.0527	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,7,8,9-HPCDF	0.386	JBQ	0.0644	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,7,8-HxCDD	0.134	JBQ	0.0888	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,7,8-HXCDF	0.200	JBQ	0.0459	MDL	10.6	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDD	0.243	JB	0.0948	MDL	10.6	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDF	0.180	JB	0.0456	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDD	0.395	JB	0.0916	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDF	0.330	JB	0.0374	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8-PECDD	0.106	JBQ	0.0888	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8-PECDF	0.108	JBQ	0.0528	MDL	10.6	PQL	pg/L	U	В
2,3,4,6,7,8-HXCDF	0.165	JBQ	0.0430	MDL,	10.6	PQL	pg/L	υ	В
2,3,4,7,8-PECDF	0.433	JBQ	0.0459	MDL	10.6	PQL	pg/L	U	В
2,3,7,8-TCDD	0.173	JB	0.0937	MDL	2.12	PQL	pg/L	U	В
OCDD	9.53	JB	0.121	MDL	21.2	PQL	pg/L	U	В
OCDF	0.986	JB	0.131	MDL	21.2	PQL	pg/L	U	В

Method Category:	GENCHEM			in the singenganoring decoupers	
Method:	1613B	Matrix:	SO		

Sample ID: DUP04-SA6-QC-072011	Collected: 7/20/2011 8:15:00	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.00	JB	0.0222	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.340	JB	0.0239	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.363	JB	0.0487	MDL	4.96	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.318	JBQ	0.0335	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.799	JВ	0.0498	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.184	JB	0.0306	MDL	4.96	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.680	JB	0.0579	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.186	JB	0.0274	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.193	JB	0.0259	MDL	4.96	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDF	0.0703	JB	0.0144	MDL	4.96	PQL	ng/Kg	UJ	B, FD
2,3,4,6,7,8-HXCDF	0.212	JB	0.0244	MDL	4.96	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

ADR version 1.4.0.111 10/27/2011 10:09:42 AM Page 1 of 12

Data Qualifier Summary

Lab Reporting Batch ID: DX116

Laboratory: LL

Dilution: 1

EDD Filename: DX116 v1.

Sample ID: SL-086-SA6-SB-4.0-5.0

eQAPP Name: CDM SSFL 110509

Method Catego	ory: GENCHEM
Method:	1613B

Matrix: SO

Sample ID: DUP04-SA6-QC-072011	Collec	Collected: 7/20/2011 8:15:00 Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
2,3,4,7,8-PECDF	0.127	JB	0.0146	MDL	4.96	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0509	JQ	0.0183	MDL	0.992	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0420	JBQ	0.0219	MDL	0.992	PQL	ng/Kg	ÚĴ	B, FD	
OCDF	8.28	JB	0.0298	MDL	9.92	PQL	ng/Kg	J	Z	

Data Lab Lab DL RLReview Reason Result Qual DL Туре RL Units Type Qual Code

Collected: 7/20/2011 2:40:00

Analyte 1,2,3,4,6,7,8-HPCDD 3.54 0.0294 MDL JB 5.29 PQL ng/Kg В 1,2,3,4,6,7,8-HPCDF 1.34 0.0191 MDL JB 5.29 PQL ng/Kg J z 1,2,3,4,7,8,9-HPCDF 0.111 JBQ 0.0216 MDL 5.29 **PQL** Ų ng/Kg В 1,2,3,4,7,8-HxCDD 0.0415 JBQ 0.0255 MDL ng/Kg 5.29 PQL U В 1,2,3,4,7,8-HXCDF 1.50 JB 0.0478 MDL 5.29 **PQL** Z ng/Kg J 1,2,3,6,7,8-HXCDD 0.187 **JBQ** 0.0265 MDL 5.29 PQL ng/Kg U В 1,2,3,6,7,8-HXCDF 0.126 **JBQ** 0.0439 MDL 5.29 **PQL** ng/Kg U ₿ 1,2,3,7,8,9-HXCDD JB 0.0236 MDL U 0.103 5.29 PQL. ng/Kg В 1,2,3,7,8,9-HXCDF 0.0801 JBQ 0.0414 MDL 5.29 **PQL** ng/Kg В 1,2,3,7,8-PECDD 0.0763 JBQ 0.0195 MDL 5.29 PQL ng/Kg U В 1,2,3,7,8-PECDF 0.205 JB 0.0268 **MDL** PQL 5.29 J Z ng/Kg 2,3,4,6,7,8-HXCDF 0.207 JB 0.0367 MDL 5.29 PQL J Z ng/Kg 2,3,4,7,8-PECDF 0.197 JBQ 0.0264 MDL. 5.29 POL U ng/Kg В 2,3,7,8-TCDF 0.319 **JBQ** 0.0228 MDL 1.06 PQL ng/Kg J Z OCDD 29.9 В 0.0207 MDL 10.6 PQL U В ng/Kg

Sample ID: SL-086-SA6-SB-9.0-10.0

OCDF

Collected: 7/20/2011 2:50:00

JB

3.14

Analysis Type: RES

PQL

ng/Kg

10.6

Analysis Type: RES

Dilution: 1

z

J

oumpic 15. OL-000-ON0-OB-310-1010	Onected. (120/2011 2.30:30 Analysis Type: Nac Dilation, 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.260	JB	0.0217	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0598	JB	0.0107	MDL	5.34	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0191	JB	0.0119	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0176	JBQ	0.0130	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0451	JBQ	0.0164	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0196	JBQ	0.0121	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0408	JBQ	0.0141	MDL	5.34	PQL	ng/Kg	U	В

0.0197

MDL

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 10/27/2011 10:09:42 AM

Page 2 of 12

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116_v1.

eQAPP Name: CDM_SSFL_110509

Иe	thot	i Ca	tega	ry:	(e =	ŊΟ	ΗE	Vi

Method: 1613B Matrix: SO

Sample ID: SL-086-SA6-SB-9.0-10.0	Collec	ted: 7/20/2	2011 2:50:0	0 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8,9-HXCDF	0.0354	JBQ	0.0114	MDL	5.34	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0212	JBQ	0.0187	MDL	5.34	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0283	JB	0.0131	MDL	5.34	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0243	JBQ	0.00953	MDL	5.34	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0664	JBQ	0.0127	MDL	5.34	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0323	JQ	0.0197	MDL	1.07	PQL	ng/Kg	J	Z	
OCDD	0.930	JB	0.0209	MDL	10.7	PQL	ng/Kg	U	В	
OCDF	0.122	JB	0.0233	MDL	10.7	PQL	ng/Kg	U	В	

Sample ID: SL-097-SA6-SB-1.5-2.5 Collected: 7/20/2011 2:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.756	JB	0.0281	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.451	JB	0.0288	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.417	JB	0.0425	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.55	JB	0.0305	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.328	JB	0.0429	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.583	JB	0.0280	MDL	5.05	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.128	JB	0.0281	MDL	5.05	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.165	JBQ	0.0220	MDL	5.05	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.190	JB	0.0178	MDL	5.05	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.490	JB	0.0255	MDL	5.05	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.297	JB	0.0177	MDL	5.05	PQL	ng/Kg	υ	В
2,3,7,8-TCDD	0.0589	JQ	0.0144	MDL	1.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.362	JB	0.0290	MDL	1.01	PQL	ng/Kg	J	Z

Sample ID: SL-162-SA6-SS-0.0-0.5

Collected: 7/20/2011 9:51:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.79	JB	0.0281	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.320	JB	0.0198	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.08	JВ	0.0434	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.645	JBQ	0.0489	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.35	JB	0.0446	MDL	4.95	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.405	JB	0.0499	MDL	4.95	PQL	ng/Kg	j	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 10:09:42 AM ADR version 1.4.0.111 Page 3 of 12

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116_v1.

2,3,7,8-TCDF

eQAPP Name: CDM_SSFL_110509

J

Z

i Printe de la Carlo de La companya de la companya de la companya de la companya de la companya de la companya

Matrix: SO

Sample ID: SL-162-SA6-SS-0.0-0.5	Collec	ted: 7/20/2	2011 9:51:0	10 A	nalysis T	/pe: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8,9-HXCDD	2.64	JB	0.0429	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.240	JB	0.0268	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.651	JB	0.0362	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.162	JBQ	0.0214	MDL	4.95	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.328	JBQ	0.0268	MDL	4.95	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.476	JB	0.0208	MDL	4.95	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0887	J	0.0239	MDL	0.989	PQL	ng/Kg	J	Z	

Sample ID: SL-164-SA6-SS-0.0-0.5 Collected: 7/20/2011 8:57:00 Analysis Type: RES Dilution: 1

0.0280

MDL

0.989

PQL

ng/Kg

JB

0.291

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.78	JB	0.0371	MDL	4.92	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.150	JB	0.0288	MDL	4.92	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.295	JB	0.0396	MDL	4.92	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.156	JBQ	0.0339	MDL	4.92	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.759	JB	0.0408	MDL	4.92	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.207	JBQ	0.0347	MDL.	4.92	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.940	JB	0.0347	MDL	4.92	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0827	JB	0.0185	MDL	4.92	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.199	JB	0.0251	MDL	4.92	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0561	JBQ	0.0138	MDL	4.92	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.133	JBQ	0.0172	MDL	4.92	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0857	JBQ	0.0129	MDL	4.92	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0449	JQ	0.0197	MDL	0.984	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0393	JBQ	0.0223	MDL	0.984	PQL	ng/Kg	U	В
OCDF	3.88	JВ	0.0271	MDL	9.84	PQL	ng/Kg	J	Z

 Sample ID: SL-165-SA6-SS-0.0-0.5
 Collected: 7/20/2011 10:24:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.64	JB	0.0198	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.149	JBQ	0.0233	MDL	4.98	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.260	JBQ	0.0382	MDL	4.98	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.131	JB	0.0290	MDL	4.98	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 10:09:42 AM ADR version 1.4.0.111 Page 4 of 12

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116 v1.

eQAPP Name: CDM_SSFL_110509

and a subtractive of the first section of the control of the contr

Method Categor	y: GENCHEM
Method:	1613B

Matrix: SO

Sample ID: SL-165-SA6-SS-0.0-0.5

Collected: 7/20/2011 10:24:00

Analysis Type: RES

Dilution: 1

		Thialyeld Type:								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDD	0.738	JBQ	0.0407	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.146	JBQ	0.0267	MDL	4.98	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.737	JB	0.0352	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0821	JBQ	0.0243	MDL	4.98	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.157	JBQ	0.0248	MDL	4.98	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0641	JBQ	0.0153	MDL	4.98	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.117	JBQ	0.0195	MDL	4.98	PQL	ng/Kg	J	Ż	
2,3,4,7,8-PECDF	0.0825	JB	0.0151	MDL	4.98	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0342	JQ	0.0265	MDL	0.996	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0919	JBQ	0.0288	MDL	0.996	PQL	ng/Kg	U	В	
OCDF	3.98	JB	0.0325	MDL	9.96	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF OCDF		ļ			-		ng/Kg	ļ		

Sample ID: SL-167-SA6-SS-0.0-0.5

Collected: 7/20/2011 8:14:00

Analysis Type: RES

Dilution: 1

		T				ř		Data	
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.362	JB	0.0213	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.38	JB	0.0323	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.355	JB	0.0339	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.84	JB	0.0329	MDL	4.93	PQL	ng/Kg	J	Z,
1,2,3,6,7,8-HXCDF	0.219	JBQ	0.0324	MDL	4.93	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	2.97	JB	0.0312	MDL.	4.93	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.199	JBQ	0.0252	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.882	JB	0.0346	MDL.	4.93	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0882	JB	0.0157	MDL	4.93	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.252	JB	0.0224	MDL	4.93	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.202	JBQ	0.0151	MDL	4.93	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.134	JQ	0.0209	MDL	0.986	PQL	ng/Kg	J	Z

Sample ID: SL-211-SA6-SS-0.0-0.5

Collected: 7/21/2011 10:23:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	351	В	0.134	MDL	4.83	PQL	ng/Kg	J	Q
1,2,3,4,7,8,9-HPCDF	4.58	JB	0.0595	MDL	4.83	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	3.80	JB	0.0613	MDL	4.83	PQL	ng/Kg	j	Z
1,2,3,4,7,8-HXCDF	3.83	JB	0.0692	MDL	4.83	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 10:09:42 AM

ADR version 1.4.0.111

Page 5 of 12

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM	The conditions of the Constitution of the Cons	
Method: 1613B	Matrix: SO	

Sample ID: SL-211-SA6-SS-0.0-0.5	Collec	Collected: 7/21/2011 10:23:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDF	2.16	JB	0.0657	MDL	4.83	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.993	JB	0.0660	MDL	4.83	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	1.63	JB	0.0640	MDL	4.83	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	1.49	JB	0.0534	MDL	4.83	PQL	ng/Kg	J	Z, FD	
2,3,4,6,7,8-HXCDF	2.90	JB	0.0585	MDL	4.83	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	2.02	JB	0.0489	MDL	4.83	PQL	ng/Kg	j	Z	
2,3,7,8-TCDD	0.248	J	0.0257	MDL	0.966	PQL	ng/Kg	J	Z	
OCDD	5120	EB	0.0780	MDL	9.66	PQL	ng/Kg	J	*XI	
OCDF	273	В	0.0346	MDL	9.66	PQL	na/Ka	j	Q	

Sample ID: SL-214-SA6-SS-0.0-0.5 Collected: 7/21/2011 9:07:00	Analysis Type: RES	Dilution: 1
---	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4390	EB	0.294	MDL	4.91	PQL	ng/Kg	J	*XI
OCDD	76100	EB	0.209	MDL	9.82	PQL	ng/Kg	J	*XI
OCDF	4680	EB	0.0584	MDL	9.82	PQL	ng/Kg	J	*XI

Sample ID: SL-215-SA6-SS-0.0-0.5 Collected: 7/20/2011 1:39:00 Analysis Type: RES Dilution: 1

<u> </u>										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDF	. 4.38	JB	0.110	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	1.92	JB	0.0711	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	3.37	JB	0.0668	MDL	5.00	PQL	ng/Kg	J	Z	
OCDD	12900	EB	0.107	MDL	10.0	PQL	ng/Kg	J	*XI	

Sample ID: SL-216-SA6-SS-0.0-0.5	Collected: 7/21/2011 9:49:00	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDF	1.58	JB	0.0462	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	4.60	JB	0.0411	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	2.88	JB	0.0304	MDL	5.04	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	3.35	JB	0.0303	MDL	5.04	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.474	JB	0.0215	MDL	1.01	PQL	ng/Kg	J	Z
OCDD	21100	EB	0.109	MDL	10.1	PQL	ng/Kg	J	*XI

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 10:09:42 AM ADR version 1.4.0.111

10:09:42 AM ADR version 1.4.0.111 Page 6 of 12

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116_v1.

eQAPP Name: CDM_SSFL_110509

en kana pikangga pikanga ang kalamangga pakangan kanang kalamatan kanang kalamat

Method Category	GENCHEM
Method:	1613B

Matrix: SO

Sample ID: SL-218-SA6-SS-0.0-0.5	Collec	ted: 7/20/2	2011 12:38	:00 A	nalysis Ty	pe: RES		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	4.00	JB	0.0589	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.83	JB	0.0428	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.68	JB	0.0479	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	4.11	JB	0.0454	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.69	JB	0.0434	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.10	JB	0.0431	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.305	JBQ	0.0356	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.656	JB	0.0410	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.337	JB	0.0222	MDL	4.98	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	2.13	JB	0.0301	MDL	4.98	PQL	ng/Kg	j	Z
2,3,4,7,8-PECDF	0.570	JB	0.0230	MDL	4.98	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.103	J	0.0239	MDL	0.996	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.484	JB	0.0329	MDL	0.996	PQL	ng/Kg	J	Z

Sample ID: SL-219-SA6-SS-0.0-0.5 Collected: 7/21/2011 9:25:00 Dilution: 1 Analysis Type: REA Data Lab Lab DL RL. Review Reason Analyte Result Qual DL RL Туре Туре Units Qual Code 2,3,7,8-TCDF 0.866 J BC 0.0304 MDL 0.999 PQL ng/Kg J Z

Sample ID: SL-219-SA6-SS-0.0-0.5	Collec	ted: 7/21/2	:011 9:25:0	0 A	nalysis Ty	pe: RES		1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.61	JB	0.0416	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.08	JB	0.0371	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.13	JB	0.0795	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.52	JВ	0.0376	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.806	JB	0.0904	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.85	JB	0.0339	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.383	JB	0.0343	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.451	JB	0.0346	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.342	JB	0.0245	MDL	5.00	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.890	JB	0.0306	MDL	5.00	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.704	JB	0.0242	MDL	5.00	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0721	J	0.0172	MDL	0.999	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 10:09:42 AM ADR version 1.4.0.111 Page 7 of 12

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116_v1. eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM		
Method:	1613B	Matrix: SO	

Sample ID: SL-220-SA6-SS-0.0-0.5 Analyte	Collec	Collected: 7/20/2011 1:19:00 Analysis Type: RES							
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3210	EB	0.230	MDL	4.97	PQL	ng/Kg	J	*XI
1,2,3,7,8,9-HXCDF	3.48	JB	0.0870	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	3.76	JB	0.0719	MDL	4.97	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.898	J	0.0338	MDL	0.994	PQL	ng/Kg	J	Z
OCDD	48200	EB	0.152	MDL	9.94	PQL	ng/Kg	J	*XI

Sample ID: SL-310-SA6-SS-0.0-0.5 Collected: 7/20/2011 1:51:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte DL Result RL Units Qual Type Type Qual Code 1,2,3,4,7,8,9-HPCDF 4.21 JΒ 0.0561 MDL 4.93 PQL ng/Kg J Z 1,2,3,4,7,8-HxCDD 4.38 JB 0.0618 MDL 4.93 **PQL** ng/Kg J z 1,2,3,4,7,8-HXCDF 4.65 JB 0.116 MDL 4.93 PQL J Z ng/Kg 1,2,3,6,7,8-HXCDF 2.48 JB 0.112 MDL, 4.93 **PQL** ng/Kg J Z 1,2,3,7,8,9-HXCDF 0.930 JВ 0.0570 MDL 4.93 PQL J Z ng/Kg 1,2,3,7,8-PECDD 2.12 JB 0.0640 MDL 4.93 PQL ng/Kg J Z 1,2,3,7,8-PECDF 1.31 JB 0.0609 MDL 4.93 **PQL** J Z ng/Kg 2,3,4,6,7,8-HXCDF 3.65 JB 0.0510 MDL 4.93 **PQL** ng/Kg z 2,3,4,7,8-PECDF 4.71 JB 0.0614 MDL 4.93 PQL J z ng/Kg 2,3,7,8-TCDD 0.285 J 0.985 PQL 0.0249 MDL ng/Kg J Z OCDD 6990 MDL 9.85 EΒ 0.0992 PQL J *XI ng/Kg

Sample ID: SL-321-SA6-SS-0.0-0.5	Collected: 7/20/2011 10:10:00	Analysis Type: RES	Dilution: 1
----------------------------------	-------------------------------	--------------------	-------------

Sample ID: 3L-321-3A6-33-0.0-0.5	Collec	Collected: 1120/2011 10:10:00 Analysis Type: RES						Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.50	JB	0.0274	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.299	JB	0.0265	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.320	JB	0.0436	MDL.	4.93	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.276	JB	0.0356	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.669	JВ	0.0451	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.147	JB	0.0348	MDL	4.93	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.487	JB	0.0400	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.208	JB	0.0250	MDL	4.93	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.131	JBQ	0.0260	MDL.	4.93	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0812	JBQ	0.0127	MDL	4.93	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.183	JB	0.0244	MDL	4.93	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 10:09:42 AM ADR version 1.4.0.111 Page 8 of 12

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

SO Matrix:

Sample ID: SL-321-SA6-SS-0.0-0.5

Collected: 7/20/2011 10:10:00

Analysis Type: RES Dilution: 1

									,	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,4,7,8-PECDF	0.113	JB	0.0125	MDL	4.93	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0741	J	0.0182	MDL	0.987	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0483	JB	0.0176	MDL	0.987	PQL	ng/Kg	U	В	
OCDF	6.42	JB	0.0297	MDL.	9.87	PQL	ng/Kg	J	Z	

Sample ID: SL-322-SA6-SS-0.0-0.5

Collected: 7/20/2011 10:52:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	2.73	JB	0.0474	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	3.34	JB	0.0493	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.39	JB	0.0449	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.67	JB	0.0474	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.34	JB	0.0411	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.666	JB	0.0563	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.253	JB	0.0177	MDL	4.98	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	2.07	JB	0.0402	MDL	4.98	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.511	JВ	0.0169	MDL	4.98	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.112	JQ	0.0232	MDL	0.995	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.110	JB	0.0229	MDL ·	0.995	PQL	ng/Kg	U	В
OCDD	4170	EB	0.0546	MDL	9.95	PQL	ng/Kg	J	*XI

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX116

EDD Filename: DX116_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI	Compound Quantitation and CRQL
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
C .	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116_v1. eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
H	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
	Internal Standard Estimation
1	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
Ļ	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
M	Initial Tune
М	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX116

EDD Filename: DX116_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX116

Lab Reporting Batch ID: DX116 Laboratory: LL

EDD Filename: DX116_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ							
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples			
BLK2240B371404	8/16/2011 2:04:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDD OCDF	3.99 pg/L 0.817 pg/L 0.551 pg/L 0.200 pg/L 0.405 pg/L 0.373 pg/L 0.218 pg/L 0.458 pg/L 0.458 pg/L 0.437 pg/L 0.280 pg/L 0.280 pg/L 0.457 pg/L 0.457 pg/L 0.457 pg/L 0.457 pg/L 1.57 pg/L	EB-SA6-SB-072011			

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-072011(RES)	1,2,3,4,6,7,8-HPCDD	4.26 pg/L	4.26U pg/L
EB-SA6-SB-072011(RES)	1,2,3,4,6,7,8-HPCDF	0.605 pg/L	0.605U pg/L
EB-SA6-SB-072011(RES)	SA6-SB-072011(RES) 1,2,3,4,7,8,9-HPCDF		0.386U pg/L
EB-SA6-SB-072011(RES) 1,2,3,4,7,8-HxCDD		0.134 pg/L	0.134U pg/L
EB-SA6-SB-072011(RES) 1,2,3,4,7,8-HXCDF		0.200 pg/L	0.200U pg/L
EB-SA6-SB-072011(RES) 1,2,3,6,7,8-HXCDD		0.243 pg/L	0.243U pg/L
EB-SA6-SB-072011(RES)	1,2,3,6,7,8-HXCDF	0.180 pg/L	0.180U pg/L
EB-\$A6-\$B-072011(RE\$)	1,2,3,7,8,9-HXCDD	0,395 pg/L	0.395U pg/L
EB-SA6-SB-072011(RES)	1,2,3,7,8,9-HXCDF	0.330 pg/L	0.330U pg/L
EB-SA6-SB-072011(RES)	1,2,3,7,8-PECDD	0.106 pg/L	0.106U pg/L
EB-SA6-SB-072011(RES)	1,2,3,7,8-PECDF	0.108 pg/L	0.108U pg/L
EB-SA6-SB-072011(RES)	2,3,4,6,7,8-HXCDF	0.165 pg/L	0.165U pg/L
EB-SA6-SB-072011(RES)	2,3,4,7,8-PECDF	0.433 pg/L	0.433U pg/L
EB-SA6-SB-072011(RES)	2,3,7,8-TCDD	0.173 pg/L	0.173U pg/L
EB-SA6-SB-072011(RES)	OCDD	9,53 pg/L	9.53U pg/L
EB-SA6-SB-072011(RES)	OCDF	0.986 pg/L	0.986U pg/L

10/27/2011 10:06:31 AM ADR version 1.4.0.111 Page 1 of 4

Lab Reporting Batch ID: DX116

EDD Filename: DX116_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 161 Matrix: SO	3B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2140B370347	8/9/2011 3:47:00 AM	2,3,7,8-TCDF	0.0381 ng/Kg	DUP04-SA6-QC-072011 SL-086-SA6-SB-4.0-5.0 SL-086-SA6-SB-9.0-10.0 SL-097-SA6-SB-1.5-2.5 SL-162-SA6-SS-0.0-0.5 SL-164-SA6-SS-0.0-0.5 SL-167-SA6-SS-0.0-0.5 SL-211-SA6-SS-0.0-0.5 SL-214-SA6-SS-0.0-0.5 SL-214-SA6-SS-0.0-0.5 SL-218-SA6-SS-0.0-0.5 SL-218-SA6-SS-0.0-0.5 SL-219-SA6-SS-0.0-0.5 SL-210-SA6-SS-0.0-0.5 SL-322-SA6-SS-0.0-0.5 SL-322-SA6-SS-0.0-0.5 SL-322-SA6-SS-0.0-0.5
BLK2140B372124	8/5/2011 9:24:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	1.14 ng/kg 0.0913 ng/kg 0.0938 ng/kg 0.0386 ng/kg 0.0847 ng/kg 0.0447 ng/kg 0.0467 ng/kg 0.0880 ng/kg 0.0283 ng/kg 0.0337 ng/kg 0.0327 ng/kg 0.0193 ng/kg 0.0364 ng/kg 7.54 ng/kg 0.147 ng/kg	DUP04-SA6-QC-072011 SL-086-SA6-SB-4.0-5.0 SL-086-SA6-SB-9.0-10.0 SL-097-SA6-SB-1.5-2.5 SL-162-SA6-SS-0.0-0.5 SL-164-SA6-SS-0.0-0.5 SL-165-SA6-SS-0.0-0.5 SL-167-SA6-SS-0.0-0.5 SL-211-SA6-SS-0.0-0.5 SL-214-SA6-SS-0.0-0.5 SL-214-SA6-SS-0.0-0.5 SL-218-SA6-SS-0.0-0.5 SL-218-SA6-SS-0.0-0.5 SL-218-SA6-SS-0.0-0.5 SL-219-SA6-SS-0.0-0.5 SL-322-SA6-SS-0.0-0.5 SL-321-SA6-SS-0.0-0.5 SL-321-SA6-SS-0.0-0.5
BLK2220B372003	8/11/2011 8:03:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDD	0.288 ng/kg 0.0535 ng/kg 0.0287 ng/kg 0.0201 ng/kg 0.0276 ng/kg 0.0380 ng/kg 0.0102 ng/kg 0.0395 ng/kg 0.0235 ng/kg 0.0211 ng/kg 0.0221 ng/kg 0.0245 ng/kg 0.0487 ng/kg 0.0582 ng/kg 0.582 ng/kg 0.582 ng/kg	SL-216-SA6-SS-0.0-0.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP04-SA6-QC-072011(RES)	1,2,3,4,7,8-HxCDD	0.363 ng/Kg	0.363U ng/Kg
DUP04-SA6-QC-072011(RES)	1,2,3,6,7,8-HXCDF	0.184 ng/Kg	0.184U ng/Kg
DUP04-SA6-QC-072011(RES)	1,2,3,7,8-PECDF	0.0703 ng/Kg	0.0703U ng/Kg
DUP04-SA6-QC-072011(RES)	2,3,4,7,8-PECDF	0.127 ng/Kg	0.127U ng/Kg
DUP04-SA6-QC-072011(RES)	2,3,7,8-TCDF	0.0420 ng/Kg	0.0420U ng/Kg
SL-086-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	3.54 ng/Kg	3.54U ng/Kg
SL-086-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.111 ng/Kg	0.111U ng/Kg

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 10:06:31 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX116 Laboratory: LL

EDD Filename: DX116_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B				
Matrix: SO				•
Method Blank				Associated
Sample ID	Analysis Date	Analyte	Result	Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-086-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0415 ng/Kg	0.0415U ng/Kg	
SL-086-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.187 ng/Kg	0.187U ng/Kg	
SL-086-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.126 ng/Kg	0.126U ng/Kg	
SL-086-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.103 ng/Kg	0.103U ng/Kg	
SL-086-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0801 ng/Kg	0.0801U ng/Kg	
SL-086-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0763 ng/Kg	0.0763U ng/Kg	
SL-086-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.197 ng/Kg	0.197U ng/Kg	
SL-086-SA6-SB-4.0-5.0(RES)	OCDD	29.9 ng/Kg	29.9U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.260 ng/Kg	0.260U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0598 ng/Kg	0.0598U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0191 ng/Kg	0.0191U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0176 ng/Kg	0.0176U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0451 ng/Kg	0.0451U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0196 ng/Kg	0.0196U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0408 ng/Kg	0.0408U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0354 ng/Kg	0.0354U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	. 0.0212 ng/Kg	0.0212U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0,0283 ng/Kg	0.0283U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0243 ng/Kg	0.0243U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0664 ng/Kg	0.0664U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	OCDD	0.930 ng/Kg	0.930U ng/Kg	
SL-086-SA6-SB-9.0-10.0(RES)	OCDF	0.122 ng/Kg	0.122U ng/Kg	
SL-097-SA6-SB-1.5-2.5(RES)	1,2,3,7,8,9-HXCDF	0.128 ng/Kg	0.128U ng/Kg	
SL-097-SA6-SB-1.5-2.5(RES)	1,2,3,7,8-PECDD	0.165 ng/Kg	0.165U ng/Kg	
SL-097-SA6-SB-1.5-2.5(RES)	2,3,4,7,8-PECDF	0.297 ng/Kg	0.297U ng/Kg	
SL-164-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.150 ng/Kg	0.150U ng/Kg	
SL-164-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.295 ng/Kg	0.295U ng/Kg	
SL-164-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.156 ng/Kg	0.156U ng/Kg	
SL-164-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.207 ng/Kg	0.207U ng/Kg	
SL-164-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0827 ng/Kg	0.0827U ng/Kg	
SL-164-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0561 ng/Kg	0.0561U ng/Kg	
SL-164-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.0857 ng/Kg	0.0857U ng/Kg	
SL-164-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0393 ng/Kg	0.0393U ng/Kg	
SL-165-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.149 ng/Kg	0.149U ng/Kg	
SL-165-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0,260 ng/Kg	0.260U ng/Kg	
SL-165-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.131 ng/Kg	0.131U ng/Kg	
SL-165-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.146 ng/Kg	0.146U ng/Kg	
SL-165-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0821 ng/Kg	0.0821U ng/Kg	
SL-165-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.157 ng/Kg	0.157U ng/Kg	
SL-165-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0641 ng/Kg	0.0641U ng/Kg	

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 10:06:31 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

ample ID Analyte		Reported Result	Modified Final Result	
SL-165-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.0825 ng/Kg	0.0825U ng/Kg	
SL-165-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0919 ng/Kg	0.0919U ng/Kg	
SL-167-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.219 ng/Kg	0.219U ng/Kg	
SL-167-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0882 ng/Kg	0.0882U ng/Kg	
SL-167-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.202 ng/Kg	0.202U ng/Kg	
SL-321-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.320 ng/Kg	0.320U ng/Kg	
SL-321-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.147 ng/Kg	0.147U ng/Kg	
SL-321-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.131 ng/Kg	0.131U ng/Kg	
SL-321-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0812 ng/Kg	0.0812U ng/Kg	
SL-321-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.113 ng/Kg	0.113U ng/Kg	
SL-321-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0483 ng/Kg	0.0483U ng/Kg	
SL-322-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.110 ng/Kg	0.110U ng/Kg	

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO		Bulan ya fusibe					erineri Transcere
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-211-SA6-SS-0.0-0.5MSD (SL-211-SA6-SS-0.0-0.5)	1,2,3,4,6,7,8-HPCDD OCDF		151 146	40.00-135.00 40.00-135.00	-	1,2,3,4,6,7,8-HPCDD OCDF	J (all detects)
SL-211-SA6-SS-0.0-0.5MS SL-211-SA6-SS-0.0-0.5MSD (SL-211-SA6-SS-0.0-0.5)	OCDD	-445	-51	40.00-135,00	-	OCDD	No Qual, >4x

10/27/2011 9:58:16 AM ADR version 1.4.0.111 Page 1 of 1

Field Duplicate RPD Report

Lab Reporting Batch ID: DX116 Laboratory: LL

EDD Filename: PrepDX116_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO			- Karaman (1991 A-1994), Arabar (
	Concent	tration (%)			
Analyte	SL-211-SA6-SS-0.0-0.5	DUP05-SA6-QC-072111	Sample RPD	eQAPP RPD	Flag
MOISTURE	1.1	1.300000000	17	T	No Qualifiers Applied

					140 Qualifiers Applied	
Method: 1613B Matrix: SO		edenbarkenkilikkiniste Fillingdukrann				
	Concentra	tion (ng/Kg)				
Analyte	SL-211-SA6-SS-0.0-0.5	DUP05-SA6-QC-072111	Sample RPD	eQAPP RPD	Flag	
1,2,3,4,6,7,8-HPCDD	351	327.000000000	7	50.00		
1,2,3,4,6,7,8-HPCDF	67.4	66.400000000	1	50.00		
1,2,3,4,7,8,9-HPCDF	4.58	4.960000000	8	50.00		
1,2,3,4,7,8-HxCDD	3.80	3.800000000	0	50.00		
1,2,3,4,7,8-HXCDF	3.83	4.850000000	24	50.00		
1,2,3,6,7,8-HXCDD	11.3	10.100000000	11	50.00		
1,2,3,6,7,8-HXCDF	2.16	3.170000000	38	50.00		
1,2,3,7,8,9-HXCDD	7.05	7.030000000	0	50.00	N. O	
1,2,3,7,8,9-HXCDF	0.993	0.96900000	2	50.00	No Qualifiers Applied	
1,2,3,7,8-PECDD	1.63	1.850000000	13	50.00		
2,3,4,6,7,8-HXCDF	2.90	2.950000000	2	50.00		
2,3,4,7,8-PECDF	2.02	2.690000000	28	50.00		
2,3,7,8-TCDD	0.248	0.260000000	5	50.00		
2,3,7,8-TCDF	1.79	1.960000000	9	50.00		
OCDD	5120	3590.000000000	35	50.00		
OCDF	273	270.000000000	1	50.00		
1,2,3,7,8-PECDF	1.49	13.100000000	159	50.00	J(all detects)	

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116_v1.

AQ

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-072011	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDD	JB JBQ JBQ JBQ JBB JB JBQ JBQ JBQ JBQ JB	4.26 0.605 0.386 0.134 0.200 0.243 0.180 0.395 0.330 0.106 0.108 0.165 0.433 0.173 9.53 0.986	10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613B

Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
DUP04-SA6-QC-072011	1,2,3,4,6,7,8-HPCDF	JB	4.00	4.96	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.340	4.96	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.363	4.96	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.318	4.96	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.799	4.96	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.184	4.96	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.680	4.96	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.186	4.96	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.193	4.96	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0703	4.96	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.212	4.96	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.127	4.96	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0509	0.992	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0420	0.992	PQL	ng/Kg	
	OCDF	JB	8.28	9.92	PQL	ng/Kg	
SL-086-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	3.54	5.29	PQL	ng/Kg	- -
	1,2,3,4,6,7,8-HPCDF	JB	1.34	5.29	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.111	5.29	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0415	5.29	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	1.50	5.29	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.187	5.29	PQL	ng/Kg	
}	1,2,3,6,7,8-HXCDF	JBQ	0.126	5.29	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.103	5.29	PQL	ng/Kg	J (all detects)
į.	1,2,3,7,8,9-HXCDF	JBQ	0.0801	5.29	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0763	5.29	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.205	5.29	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.207	5.29	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.197	5.29	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.319	1.06	PQL	ng/Kg	
	OCDF	JB	3.14	10.6	PQL	ng/Kg	

10/27/2011 10:06:42 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-086-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF	IB IB IB CO IB IB IB IB IB IB IB IB IB IB IB IB IB	0.260 0.0598 0.0191 0.0176 0.0451 0.0408 0.0354 0.0212 0.0283 0.0243 0.0664 0.0323 0.930 0.122	5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-097-SA6-SB-1.5-2.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	######################################	0.756 0.451 0.417 1.55 0.328 0.583 0.128 0.165 0.190 0.490 0.297 0.0589 0.362	5.05 5.05 5.05 5.05 5.05 5.05 5.05 5.05	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-162-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	а-абававававава	4.79 0.320 1.08 0.645 2.35 0.405 2.64 0.240 0.651 0.162 0.328 0.476 0.0887 0.291	4.95 4.95 4.95 4.95 4.95 4.95 4.95 4.95	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-164-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	ਜ਼ਜ਼ਫ਼ਜ਼ਫ਼ਜ਼ਫ਼ਜ਼ਜ਼ਜ਼ਫ਼ਫ਼ਫ਼ਫ਼ਫ਼ <u>ਜ਼</u>	1.78 0.150 0.295 0.156 0.759 0.207 0.940 0.0827 0.199 0.0561 0.133 0.0857 0.0449 0.0393 3.88	4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Elaa
		<u></u>		<u> </u>		<u></u>	Flag
SL-165-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	1.64	4.98	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.149	4.98	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.260	4.98	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.131	4.98	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.738	4.98	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	JBQ JB	0.146 0.737	4.98	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ		4.98	PQL	ng/Kg ng/Kg	احتم متماد المارا
	1,2,3,7,8,9-FACDF	JBQ	0.0821 0.157	4.98 4.98	PQL PQL		J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.157	4.98	PQL	ng/Kg ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0041	4.98	PQL	ng/Kg ng/Kg	
İ	2,3,4,7,8-PECDF	JB	0.117	4.98	PQL	ng/Kg	
I	2,3,7,8-TCDD	JQ	0.0342	0.996	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0342	0.996	PQL	ng/Kg	
	OCDF	JB	3.98	9.96	PQL	ng/Kg	
CL 407 CAC CC 0 0 0 5	***************************************						
SL-167-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	0.362	4.93	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	1.38	4.93	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.355	4.93	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	2.84	4.93	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.219	4.93	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	2.97	4.93	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.199	4.93	PQL	ng/Kg	- (
	1,2,3,7,8-PECDD	JB	0.882	4.93	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0882	4.93	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.252	4.93	PQL	ng/Kg	
	2,3,4,7,8-PECDF 2,3,7,8-TCDD	JBQ	0.202 0.134	4.93	PQL	ng/Kg	
		JQ		0.986	PQL	ng/Kg	
SL-211-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	4.58	4.83	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	3.80	4.83	PQL	ng/Kg	
i	1,2,3,4,7,8-HXCDF	JB	3.83	4.83	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	2.16	4.83	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.993	4.83	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	1.63	4.83	PQL	ng/Kg	o (a.: 00:00a)
	1,2,3,7,8-PECDF	JB	1.49	4.83	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	2.90	4.83	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	2.02	4.83	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.248	0.966	PQL	ng/Kg	
SL-215-SA6-SS-0.0-0.5	1,2,3,6,7,8-HXCDF	JB	4.38	5.00	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.92	5.00	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	3.37	5.00	PQL	ng/Kg	, ,
SL-216-SA6-SS-0.0-0.5	1,2,3,7,8,9-HXCDF	JB	1.58	5.04	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	4.60	5.04	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	2.88	5.04	PQL	ng/Kg	J (all detects)
	2,3,4,7,8-PECDF	JB	3.35	5.04	PQL	ng/Kg	o (an actoris)
	2,3,7,8-TCDD	JB	0.474	1.01	PQL	ng/Kg	

10/27/2011 10:06:42 AM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX116

EDD Filename: DX116_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Watrix: SU							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-218-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	明明の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	4.00 1.83 1.68 4.11 1.69 3.10 0.305 0.656 0.337 2.13 0.570 0.103 0.484	4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-219-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD 2,3,7,8-TCDD	38年8年8年8年8日8日8日8日8日8日8日8日8日8日8日8日8日8日8日8	1.61 1.08 1.13 2.52 0.806 1.85 0.383 0.451 0.342 0.890 0.704 0.0721 0.866	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-220-SA6-SS-0.0-0.5	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,7,8-TCDD	JB JB J	3.48 3.76 0.898	4.97 4.97 0.994	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	J (all detects)
SL-310-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD		4.21 4.38 4.65 2.48 0.930 2.12 1.31 3.65 4.71 0.285	4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.93	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-321-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	######################################	3.50 0.299 0.320 0.276 0.669 0.147 0.487 0.208 0.131 0.0812 0.183 0.113 0.0741 0.0483 6.42	4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.93	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX116

Laboratory: LL

EDD Filename: DX116_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

SamplaID	Analyta	Lab	Decuit	Reporting		l forito	P*1
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-322-SA6-SS-0.0-0.5	1,2,3,4,7,8-HxCDD	JB	2.73	4.98	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	3.34	4.98	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	1.39	4.98	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	2.67	4.98	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.34	4.98	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	0.666	4.98	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.253	4.98	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	2.07	4.98	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.511	4.98	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.112	0.995	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.110	0.995	PQL	ng/Kg	

10/27/2011 10:06:42 AM ADR version 1.4.0.111 Page 5 of 5

SAMPLE DELIVERY GROUP

DX117

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
21-Jul-2011	SL-073-SA6-SB-4.0-5.0	6353228	N	METHOD	1613B	llí
21-Jul-2011	DUP05-SA6-QC-072111	6353227	FD	METHOD	1613B	111
21-Jul-2011	SL-105-SA6-SB-2.5-3.5	6353232	N	METHOD	1613B	111
21-Jul-2011	SL-228-SA6-SS-0.0-0.5	6353217	N	METHOD	1613B	III
21-Jul-2011	SL-228-SA6-SS-0.0-0.5MS	6353218	MS	METHOD	1613B	111
21-Jul-2011	SL-228-SA6-SS-0.0-0.5MSD	6353219	MSD	METHOD	1613B	Ш
21-Jul-2011	SL-228-SA6-SS-0.0-0.5MSD	P353217M372111	M\$D	METHOD	1613B	III
21-Jul-2011	SL-228-SA6-SS-0.0-0.5MS	P353217R372014	MS	METHOD	1613B	III
21-Jul-2011	DUP06-SA6-QC-072111	6353226	FD	METHOD	1613B	III
21-Jul-2011	SL-314-SA6-SS-0.0-0.5	6353222	N	METHOD	1613B	Ш
21-Jul-2011	SL-315-SA6-SS-0.0-0.5	6353223	N	METHOD	1613B	111
21-Jul-2011	SL-237-SA6-SS-0.0-0.5	6353220	N	METHOD	1613B	Ш
21-Jui-2011	SL-316-SA6-SS-0.0-0.5	6353224	N	METHOD	1613B	111
21-Jul-2011	SL-104-SA6-SB-2.5-3.5	6353231	N	METHOD	1613B	III
21-Jul-2011	SL-318-SA6-SS-0.0-0.5	6353225	N	METHOD	1613B	III
21-Jul-2011	SL-240-SA6-SS-0.0-0.5	6353221	N	METHOD	1613B	111
21-Jul-2011	SL-081-SA6-SB-4.0-5.0	6353229	N	METHOD	1613B	Ш
21-Jul-2011	SL-081-SA6-SB-9.0-10.0	6353230	N	METHOD	1613B	III
22-Jul-2011	SL-233-SA6-SS-0.0-0.5	6354170	N	METHOD	1613B	Ш
22-Jul-2011	SL-238-SA6-SS-0.0-0.5	6354171	N	METHOD	1613B	111
22-Jul-2011	SL-241-SA6-SS-0.0-0.5	6354172	N	METHOD	1613B	Ш
22-Jul-2011	SL-243-SA6-SS-0.0-0.5	6354174	N	METHOD	1613B	Ш
22-Jul-2011	SL-244-SA6-SS-0.0-0.5	6354175	N	METHOD	1613B	Ш
22-Jul-2011	SL-242-SA6-SS-0.0-0.5	6354173	N	METHOD	1613B	III

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1.

eQAPP Name: CDM_SSFL_110509

Method Categ	ory: GENCHEM:	and the state of t	19 og 19	ali v igya anio	
Method:	1613B	Matrix:	so	 # 1 61 	

Sample ID: DUP05-SA6-QC-072111	Collec	ted: 7/21/2	2011 10:40	:00 A	nalysis T	ype: RES		D	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	3.80	JB	0.0882	MDL	4.92	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	4.85	JB	0.0770	MDL	4.92	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	3.17	J	0.0697	MDL	4.92	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.969	JB	0.0744	MDL	4.92	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.85	JB	0.101	MDL	4.92	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	13.1	В	0.0825	MDL	4.92	PQL	ng/Kg	J	FD
2,3,4,6,7,8-HXCDF	2.95	JB	0.0714	MDL	4.92	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.69	JB	0.0801	MDL	4.92	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.260	JQ	0.0400	MDL	0.985	PQL	ng/Kg	J	Z

Sample ID: DUP06-SA6-QC-072111 Collected: 7/21/2011 12:49:00 Analysis Type: RES Dilution: 1

oumpione: Dot of onto QO 012111		160. 112112	.011 12.43	.00 A	iiaiysis ij	ype. KLO			Jiiauon, 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	4.88	JB	0.0840	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	3.68	J	0.0733	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.973	JB	0.0872	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	7.94	В	0.0983	MDL	5.08	PQL	ng/Kg	J	FD
1,2,3,7,8-PECDF	4.53	JB	0.0621	MDL	5.08	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.63	JB	0.0623	MDL	5.08	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.653	J	0.0478	MDL	1.02	PQL	ng/Kg	J	Z
OCDD	5500	EB	0.214	MDL	10.2	PQL	ng/Kg	J	*XI

Collected: 7/21/2011 10:00:00 Sample ID: SL-073-SA6-SB-4.0-5.0 Analysis Type: REA Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.929	J BC	0.0356	MDL	1.09	PQL	ng/Kg	J	Z

Sample ID: SL-073-SA6-SB-4.0-5.0 Collected: 7/21/2011 10:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	3.07	JB	0.0872	MDL	5.45	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	3.50	JB	0.0908	MDL	5.45	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.45	JB	0.0543	MDL	5.45	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.02	J	0.0532	MDL	5.45	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.05	JB	0.0882	MDL	5.45	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:03:02 AM ADR version 1.4.0.111 Page 1 of 12

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1.

eQAPP Name: CDM_SSFL_110509

Method:	1613B	Matrix: SO
Method Category	: GENCHEN	nder franke bligger betrette fra flotten fig der die freiste bei de deut bei.

Sample ID: SL-073-SA6-SB-4.0-5.0	Collec	ted: 7/21/2	2011 10:00:	:00 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8,9-HXCDF	0.386	JB	0.0561	MDL	5.45	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	2.85	JB	0.0684	MDL	5.45	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	1.22	JB	0.0461	MDL	5.45	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.81	JB	0.0546	MDL	5.45	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.945	JB	0.0421	MDL	5.45	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.324	J	0.0395	MDL	1.09	PQL	ng/Kg	J	Z	
OCDD	5320	EB	0.245	MDL	10.9	PQL	ng/Kg	J	*XI	

						,,				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	1.24	JB	0.0573	MDL	5.29	PQL	ng/Kg	υ	В	
1,2,3,4,6,7,8-HPCDF	0.152	JBQ	0.0255	MDL	5.29	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0482	JBQ	0.0446	MDL	5.29	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0600	JBQ	0.0366	MDL	5.29	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.128	JBQ	0.0362	MDL.	5.29	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0221	JQ	0.0179	MDL	5.29	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.0987	JB	0.0343	MDL	5.29	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0804	JBQ	0.0375	MDL	5.29	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0177	JBQ	0.0168	MDL	5.29	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0242	JBQ	0.0191	MDL	5.29	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0345	JB	0.0153	MDL	5.29	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0392	JQ	0.0322	MDL	1.06	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0268	JBQ	0.0265	MDL	1.06	PQL	ng/Kg	υ	В	
OCDD	7.81	JB	0.0964	MDL	10.6	PQL	ng/Kg	υ	В	
OCDF	0.414	JB	0.0521	MDL,	10.6	PQL	ng/Kg	υ	В	

Sample ID: SL-081-SA6-SB-9.0-10.0 Collected: 7/21/2011 3:20:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.05	JB	0.0575	MDL	5.54	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.102	JBQ	0.0234	MDL	5.54	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0739	JB	0.0498	MDL	5.54	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0211	JB	0.0211	MDL	5.54	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0590	JB	0.0321	MDL	5.54	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:03:02 AM ADR version 1.4.0.111 Page 2 of 12

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

Matrix: SO

Sample ID:	SL-081-S/	46-SB-9.0-10.0
------------	-----------	----------------

Sample ID: SL-081-SA6-SB-9.0-10.0	Collec	ted: 7/21/2	2011 3:20:0	0 A	nalysis T	ype: RES		I	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDF	0.0220	JQ	0.0175	MDL	5.54	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.0884	JBQ	0.0301	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0231	JBQ	0.0226	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0614	JBQ	0.0284	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0203	JBQ	0.0144	MDL	5.54	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0493	JBQ	0.0193	MDL	5.54	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0569	JBQ	0.0146	MDL	5.54	PQL	ng/Kg	U	В	
OCDD	6.36	JB	0.0913	MDL	11.1	PQL	ng/Kg	U	В	
OCDF	0.254	JB	0.0994	MDL	11.1	PQL	ng/Kg	U	В	

Sample ID: SL-104-SA6-SB-2.5-3.5

Collected: 7/21/2011 2:40:00

Analysis Type: RES

Dilution: 1

						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Dilotton, I		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.76	JB	0.0403	MDL	5.38	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.181	JBQ	0.0553	MDL	5.38	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.125	JBQ	0.0545	MDL	5.38	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.483	JB	0.0408	MDL	5.38	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.495	JB	0.0541	MDL	5.38	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.238	J	0.0416	MDL	5.38	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.258	JBQ	0.0528	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.122	JBQ	0.0395	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	1.19	JBQ	0.0374	MDL	5.38	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.195	JB	0.0407	MDL	5.38	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.772	JB	0.0337	MDL	5.38	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0441	J	0.0373	MDL	1.08	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0845	JBQ	0.0410	MDL	1.08	PQL	ng/Kg	U	В
OCDF	10.4	JB	0.0683	MDL	10.8	PQL	ng/Kg	J	Z

Sample ID: SL-105-SA6-SB-2.5-3.5

Collected: 7/21/2011 10:59:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.55	JB	0.0460	MDL	5.30	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.745	JB	0.0235	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0715	JBQ	0.0398	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0912	JB	0.0344	MDL	5.30	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:03:02 AM

ADR version 1.4.0.111

Page 3 of 12

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1.

eQAPP Name: CDM_SSFL_110509

Method (Categ	ory:	GENC	HEM
Mothod:			46430	

1613B Matrix: SO

Sample ID: SL-105-SA6-SB-2.5-3.5	Collec	ted: 7/21/2	011 10:59:	:00 <i>A</i>	nalysis Ty	/pe: RES		4	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	0.162	JBQ	0.0247	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.188	JB	0.0335	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.124	J	0.0226	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.132	JB	0.0323	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0621	JBQ	0.0279	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0911	JBQ	0.0267	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.203	JBQ	0.0192	MDL	5.30	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0956	JB	0.0243	MDL	5.30	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.315	JBQ	0.0193	MDL	5.30	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0444	JQ	0.0287	MDL	1.06	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0844	JB	0.0260	MDL	1.06	PQL	ng/Kg	U	В
OCDD	36.6	В	0.0931	MDL	10.6	PQL	ng/Kg	U	В
OCDF	1.46	JBQ	0.0475	MDL	10.6	PQL	ng/Kg	J	Z

Sample ID: SL-228-SA6-SS-0.0-0.5

Collected: 7/21/2011 12:39:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	4.43	JB	0.0822	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	3.35	J	0.0754	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.898	JB	0.0794	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.23	JB	0.0945	MDL	4.86	PQL	ng/Kg	J	Z, FD
2,3,4,7,8-PECDF	2.47	JB	0.0628	MDL	4.86	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.611	J	0.0493	MDL	0.973	PQL	ng/Kg	J	Z
OCDD	5810	EB	0.187	MDL	9.73	PQL	ng/Kg	J	*XI

Sample ID: SL-233-SA6-SS-0.0-0.5

Collected: 7/22/2011 8:09:00

Analysis Type: RES

Dilution: 1

	The state of the s									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	3.18	JB	0.0762	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	1.29	JB	0.0682	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	1.46	JB	0.0489	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	4.85	JB	0.0667	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	1.27	J	0.0415	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	2.06	JB	0.0670	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.294	JВ	0.0594	MDL	4.98	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:03:02 AM ADR version 1.4.0.111 Page 4 of 12

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1.

eQAPP Name: CDM_SSFL_110509

Matrix: SO

Sample ID: SL-233-SA6-SS-0.0-0.5	Collec	ted: 7/22/2	2011 8:09:0	10 A	nalysis T	ype: RES		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDD	3.29	JB	0.0479	MDL	4.98	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	2.11	JB	0.0354	MDL	4.98	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.79	JB	0.0463	MDL	4.98	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.625	JB	0.0364	MDL	4.98	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.179	JQ	0.0289	MDL	0.997	PQL	ng/Kg	J	Z
2.3.7.8-TCDF	0.358	JB	0.0599	MDI	0.997	POL	na/Ka	.1	7

Sample ID: SL-237-SA6-SS-0.0-0.5

Collected: 7/21/2011 2:00:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDF	1.59	JB	0.0935	MDL	4.96	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	3.57	JB	0.0862	MDL	4.96	PQL	ng/Kg	J	Z
OCDD	10300	EB	0.313	MDL.	9.92	PQL	ng/Kg	J	*XI

Sample ID: SL-238-SA6-SS-0.0-0.5

Collected: 7/22/2011 8:56:00

Analysis Type: RES

Dilution: 1

RL		Data	
Type	Units	Review Qual	Reason Code
PQL	ng/Kg	J	Z
PQL	ng/Kg	J	z
PQL	ng/Kg	υ	В
PQL	ng/Kg	J	Z
PQL	ng/Kg	J	Z
PQL	ng/Kg	J	Z
PQL	ng/Kg	J	Z
PQL	ng/Kg	J	Z
PQL	ng/Kg	u	В
PQL	ng/Kg	J	Z
PQL	ng/Kg	J	Z
PQL	ng/Kg	J	Z
PQL	ng/Kg	J	Z
PQL	ng/Kg	J	Z
	+	+	Z
	PQL PQL PQL PQL PQL	PQL ng/Kg PQL ng/Kg PQL ng/Kg PQL ng/Kg PQL ng/Kg PQL ng/Kg PQL ng/Kg PQL ng/Kg	PQL ng/Kg J PQL ng/Kg U PQL ng/Kg J PQL ng/Kg J PQL ng/Kg J PQL ng/Kg J

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 11:03:02 AM ADR version 1.4.0.111

Page 5 of 12

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-240-SA6-SS-0.0-0.5	Collec	ted: 7/21/2	:011 3:01:0	0 A	nalysis T	Type: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	3.23	JB	0.0329	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.259	JBQ	0.0527	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.342	JB	0.0456	MDL	5.01	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.519	JBQ	0.0406	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.798	JB	0.0468	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.288	J	0.0356	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.676	JB	0.0467	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.206	JB	0.0435	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.254	JB	0.0423	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.757	JB	0.0360	MDL	5.01	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.363	JB	0.0392	MDL	5.01	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.561	JB	0.0346	MDL	5.01	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0510	JQ	0.0376	MDL	1.00	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.316	JBQ	0.0613	MDL	1.00	PQL	ng/Kg	J	Z	
OCDF	8.95	JВ	0.0501	MDL	10.0	PQL	ng/Kg	J	Z	

Sample ID: SL-241-SA6-SS-0.0-0.5	Collected: 7/22/2011 11:25:00	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL	RL	RL Tuno	Units	Data Review Qual	Reason
	A CONTRACTOR OF THE PROPERTY O	·	<u> </u>	Туре		Туре		Wuai	Code
1,2,3,4,7,8,9-HPCDF	0.739	JB	0.0467	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.638	JBQ	0.0502	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.566	JB	0.0344	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.33	JB	0.0512	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.514	J	0.0306	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.13	JB	0.0481	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.203	JBQ	0.0405	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.277	JBQ	0.0360	MDL	4.94	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.182	JB	0.0270	MDL	4.94	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.611	JB	0.0322	MDL	4.94	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.277	JBQ	0.0258	MDL	4.94	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0427	J	0.0253	MDL	0.987	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.105	JBQ	0.0331	MDL	0.987	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1.

eQAPP Name: CDM_SSFL_110509

Method Ca	3	Ţ	1	O	1	y	0	GENCHEM
Mathada								40420

Method: 1613B Matrix: SC

Sample ID: SL-242-SA6-\$\$-0.0-0.5	Collec	ted: 7/22/2	011 3:27:0	10 A	nalysis T	ype: RES	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	1.04	JB	0.0496	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.664	JB	0.0668	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.863	JB	0.0471	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	1.62	JB	0.0679	MDL.	5.01	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.710	J	0.0453	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.50	JB	0.0657	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.355	JB	0.0461	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.356	JBQ	0.0459	MDL	5.01	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.353	JBQ	0.0443	MDL	5.01	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.809	JB	0.0427	MDL	5.01	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.364	JB	0.0395	MDL	5.01	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0508	JQ	0.0360	MDL	1.00	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.228	JB	0.0531	MDL	1.00	PQL	ng/Kg	J	Z	

Sample ID: SL-243-SA6-SS-0.0-0.5

Collected: 7/22/2011 2:52:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.03	JB	0.0667	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.41	JB	0.0522	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.09	JB	0.0441	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	3.55	JB	0.0525	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.823	J	0.0356	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.24	JB	0.0542	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.431	JB	0.0518	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.02	JB	0.0541	MDL	4.86	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.541	JB	0.0333	MDL	4.86	PQL	ng/Kg	J	Ž
2,3,4,6,7,8-HXCDF	1.01	JB	0.0396	MDL	4.86	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.755	JB	0.0358	MDL	4.86	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0775	JQ	0.0331	MDL	0.971	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.282	JBQ	0.0532	MDL	0.971	PQL	ng/Kg	J	Z

Sample ID: SL-244-SA6-SS-0.0-0.5

Collected: 7/22/2011 3:08:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.21	JB	0.0648	MDL	4.90	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:03:02 AM ADR version 1.4.0.111 Page 7 of 12

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1.

eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM		Neda Plan Arrio
Method:	1613B	Matrix: SO	

Sample ID: SL-244-SA6-SS-0.0-0.5	Collec	ted: 7/22/2	2011 3:08:0	00 A	nalysis T	pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HxCDD	0.772	JB	0.0547	MDL	4.90	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	2.21	JB	0.0508	MDL	4.90	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	2.42	JB	0.0538	MDL	4.90	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.817	J	0.0435	MDL	4.90	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.62	JB	0.0516	MDL	4.90	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.510	JBQ	0.0603	MDL	4.90	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.538	JB	0.0435	MDL	4.90	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.905	JB	0.0486	MDL	4.90	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.07	JВ	0.0481	MDL	4.90	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	1.53	JB	0.0496	MDL	4.90	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0998	J	0.0308	MDL	0.979	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.486	JB	0.0883	MDL	0.979	PQL	ng/Kg	J	Z	

Sample ID	: SL-3:	14-SA6-SS	-0.0-0.5
-----------	---------	-----------	----------

Collected: 7/21/2011 1:14:00

Analysis Type: RES

Dilution: 1

•						•				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	25500	EB	3.04	MDL	42.5	PQL	ng/Kg	J	*XI	
1,2,3,7,8,9-HXCDF	36.0	JB	1.15	MDL	42.5	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	26.3	JB	0.196	MDL	42.5	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	40.7	JB	0.228	MDL	42.5	PQL	ng/Kg	J	Z	
OCDD	280000	EB	2.06	MDL	85.1	PQL	ng/Kg	J	*XI	

Sample ID: SL-315-SA6-SS-0.0-0.5

Collected: 7/21/2011 1:37:00

Analysis Type: REA

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	7.60	J BC	0.833	MDL	8.56	POL	ng/Kg	J	Z

Sample ID: SL-315-SA6-SS-0.0-0.5

Collected: 7/21/2011 1:37:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	21100	EВ	2.61	MDL	42.8	PQL	ng/Kg	J	*XI
1,2,3,7,8,9-HXCDF	36.7	JB	0.933	MDL	42.8	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	25.6	JB	0.264	MDL	42.8	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	34.4	JB	0.294	MDL	42.8	PQL	ng/Kg	J	Z
OCDD	289000	EB	1.98	MDL	85.6	PQL	ng/Kg	J	*XI

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:03:02 AM ADR version 1.4.0.111 Page 8 of 12

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1.

eQAPP Name: CDM_SSFL_110509

Method Category	: GENCHEN	ratus desperatorios de la completa de la completa de la completa de la completa de la completa de la completa d	
Method:	1613B	Matrix: SO	

Sample ID: SL-316-SA6-SS-0.0-0.5	Collected: 7/21/2011 2:20:00				nalysis T	ype: REA		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,7,8-TCDF	2.23	J BC	0.677	MDL	9.25	PQL	ng/Kg	J	Z	

Sample ID: SL-316-SA6-SS-0.0-0.5 Collected: 7/21/2011 2:20:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RL Review Reason Analyte Result Qual DL RL Туре Type Units Qual Code 1,2,3,7,8-PECDF 12.6 JB 0.279 MDL 46.2 **PQL** ng/Kg J Z 2,3,4,7,8-PECDF 11.3 JВ 0.286 MDL 46.2 PQL J ng/Kg Z 2,3,7,8-TCDD 8.30 JΒ 0.254 MDL 9.25 PQL ng/Kg J Z OCDD 74300 EΒ 1.35 MDL 92.5 PQL J *XI ng/Kg

Sample ID: SL-318-SA6-SS-0.0-0.5	Collec	Collected: 7/21/2011 2:41:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2800	EB	0.364	MDL	5.01	PQL	ng/Kg	J	*XI
1,2,3,7,8,9-HXCDF	3.37	JB	0.134	MDL	5.01	PQL	ng/Kg	J	Z
OCDD	37200	EB	0.358	MDL	10.0	PQL	ng/Kg	J	*XI

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:03:02 AM ADR version 1.4.0.111 Page 9 of 12

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX117 EDD Filename: DX117_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI	Compound Quantitation and CRQL
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
c	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
c	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

10/27/2011 11:03:02 AM ADR version 1.4.0.111 Page 10 of 12

Lab Reporting Batch ID: DX117

EDD Filename: DX117_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination	own Hamer opin_oor L_
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	****
Н	Temperature Rejection	
1	Internal Standard Estimation	
1	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
M	Continuing Tune	
M	Initial Tune	
М	Performance Evaluation Mixture	
M	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	
	· · · · · · · · · · · · · · · · · · ·	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1. eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s 	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX117

Lab Reporting Batch ID: DX117 Laboratory: LL

EDD Filename: DX117_v1. eQAPP Name: CDM_SSFL_110509

Method: 161 Matrix: SO	3B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2150B371821	8/6/2011 6:21:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF CODD OCDF	1.55 ng/Kg 0.0375 ng/Kg 0.0418 ng/Kg 0.0923 ng/Kg 0.0210 ng/Kg 0.0904 ng/Kg 0.0884 ng/Kg 0.0316 ng/Kg 0.0492 ng/Kg 0.0271 ng/Kg 0.0231 ng/Kg 0.0505 ng/Kg 0.0317 ng/Kg 0.1011 ng/Kg	DUP05-SA6-QC-072111 DUP06-SA6-QC-072111 SL-073-SA6-SB-4.0-5.0 SL-081-SA6-SB-4.0-5.0 SL-081-SA6-SB-9.0-10.0 SL-104-SA6-SB-2.5-3.5 SL-105-SA6-SB-2.5-3.5 SL-228-SA6-SS-0.0-0.5 SL-233-SA6-SS-0.0-0.5 SL-237-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-244-SA6-SS-0.0-0.5 SL-244-SA6-SS-0.0-0.5 SL-242-SA6-SS-0.0-0.5 SL-244-SA6-SS-0.0-0.5 SL-244-SA6-SS-0.0-0.5 SL-244-SA6-SS-0.0-0.5 SL-244-SA6-SS-0.0-0.5 SL-244-SA6-SS-0.0-0.5
BLK2220B372003	8/11/2011 8:03:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 0CDD 0CDD	0.288 ng/Kg 0.0535 ng/Kg 0.0287 ng/Kg 0.0201 ng/Kg 0.0276 ng/Kg 0.0380 ng/Kg 0.0102 ng/Kg 0.0395 ng/Kg 0.0235 ng/Kg 0.0211 ng/Kg 0.0321 ng/Kg 0.0325 ng/Kg 0.0245 ng/Kg 0.0487 ng/Kg 0.0582 ng/Kg 0.582 ng/Kg	SL-314-SA6-SS-0.0-0.5 SL-315-SA6-SS-0.0-0.5 SL-316-SA6-SS-0.0-0.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-081-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.24 ng/Kg	1.24U ng/Kg
SL-081-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.152 ng/Kg	0.152U ng/Kg
SL-081-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0482 ng/Kg	0.0482U ng/Kg
SL-081-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0600 ng/Kg	0.0600U ng/Kg
SL-081-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.128 ng/Kg	0.128U ng/Kg
SL-081-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0987 ng/Kg	0.0987U ng/Kg
SL-081-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0804 ng/Kg	0.0804U ng/Kg
SL-081-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0177 ng/Kg	0.0177U ng/Kg
SL-081-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0242 ng/Kg	0.0242U ng/Kg
SL-081-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0345 ng/Kg	0.0345U ng/Kg
SL-081-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0268 ng/Kg	0,0268U ng/Kg
SL-081-SA6-SB-4.0-5.0(RES)	OCDD	7.81 ng/Kg	7.81U ng/Kg
SL-081-SA6-SB-4.0-5.0(RES)	OCDF	0.414 ng/Kg	0.414U ng/Kg
SL-081-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	1.05 ng/Kg	1.05U ng/Kg
SL-081-SA6-SB-9,0-10,0(RES)	1,2,3,4,6,7,8-HPCDF	0.102 ng/Kg	0.102U ng/Kg
SL-081-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0739 ng/Kg	0.0739U ng/Kg
SL-081-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0211 ng/Kg	0.0211U ng/Kg
SL-081-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0590 ng/Kg	0.0590U ng/Kg

10/27/2011 10:59:57 AM ADR version 1.4.0.111 Page 1 of 2

Lab Reporting Batch ID: DX117 Laboratory: LL

EDD Filename: DX117_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-081-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0884 ng/Kg	0.0884U ng/Kg
SL-081-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0231 ng/Kg	0.0231U ng/Kg
SL-081-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0614 ng/Kg	0.0614U ng/Kg
SL-081-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0203 ng/Kg	0.0203U ng/Kg
SL-081-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0493 ng/Kg	0.0493U ng/Kg
SL-081-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0569 ng/Kg	0.0569U ng/Kg
SL-081-SA6-SB-9.0-10.0(RES)	OCDD	6.36 ng/Kg	6.36U ng/Kg
SL-081-SA6-SB-9.0-10.0(RES)	OCDF	0.254 ng/Kg	0.254U ng/Kg
SL-104-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8,9-HPCDF	0.181 ng/Kg	0.181U ng/Kg
SL-104-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8-HxCDD	0.125 ng/Kg	0.125U ng/Kg
SL-104-SA6-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDD	0,258 ng/Kg	0.258U ng/Kg
SL-104-SA6-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.122 ng/Kg	0.122U ng/Kg
SL-104-SA6-SB-2.5-3,5(RES)	2,3,7,8-TCDF	0.0845 ng/Kg	0.0845U ng/Kg
SL-105-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	4.55 ng/Kg	4.55U ng/Kg
SL-105-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0715 ng/Kg	0.0715U ng/Kg
SL-105-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8-HxCDD	0.0912 ng/Kg	0.0912U ng/Kg
SL-105-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDD	0.188 ng/Kg	0.188U ng/Kg
SL-105-SA6-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDD	0.132 ng/Kg	0.132U ng/Kg
SL-105-SA6-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDF	0.0621 ng/Kg	0.0621U ng/Kg
SL-105-SA6-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0,0911 ng/Kg	0.0911U ng/Kg
SL-105-SA6-SB-2.5-3.5(RES)	2,3,4,6,7,8-HXCDF	0.0956 ng/Kg	0.0956U ng/Kg
SL-105-SA6-SB-2.5-3.5(RES)	2,3,7,8-TCDF	0.0844 ng/Kg	0.0844U ng/Kg
SL-105-SA6-SB-2.5-3.5(RES)	OCDD	36.6 ng/Kg	36.6U ng/Kg
SL-238-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.211 ng/Kg	0.211U ng/Kg
SL-238-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.176 ng/Kg	0.176U ng/Kg
SL-240-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.342 ng/Kg	0.342U ng/Kg
SL-241-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.105 ng/Kg	0.105U ng/Kg

10/27/2011 10:59:57 AM ADR version 1.4.0.111 Page 2 of 2

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	allaticking penggapakan penjaban				isabustina	in an east per un de la principal de la princi	
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-228-SA6-SS-0.0-0.5MS SL-228-SA6-SS-0.0-0.5MSD (SL-228-SA6-SS-0.0-0.5)	1,2,3,4,6,7,8-HPCDD OCDD	148 584	- 139	40.00-135.00 40.00-135.00	-	1,2,3,4,6,7,8-HPCDD OCDD	No Qual, >4x

Field Duplicate RPD Report

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1. eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO					
	Concent	Concentration (%)			
Analyte	SL-228-SA6-SS-0.0-0.5	DUP06-SA6-QC-072111	Sample RPD	eQAPP RPD	Flag
MOISTURE	1.9	1.8	5	<u> </u>	No Qualifiers Applied

Method: 1613B Matrix: SO			teri e company to		
	Concentra	tion (ng/Kg)			
Analyte	SL-228-SA6-SS-0.0-0.5	DUP06-SA6-QC-072111	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD	600	561	7	50.00	
1,2,3,4,6,7,8-HPCDF	115	116	1	50.00	
1,2,3,4,7,8,9-HPCDF	10.7	11.1	4	50.00	
1,2,3,4,7,8-HxCDD	7.93	6.48	20	50.00	
1,2,3,4,7,8-HXCDF	4.43	4.88	10	50.00	
1,2,3,6,7,8-HXCDD	23.8	22.9	4	50.00	
1,2,3,6,7,8-HXCDF	3.35	3.68	9	50.00	
1,2,3,7,8,9-HXCDD	10.2	9.06	12	50.00	No Qualifiers Applied
1,2,3,7,8,9-HXCDF	0.898	0.973	8	50.00	140 Qualitiers Applied
1,2,3,7,8-PECDF	5.43	4.53	18	50.00	
2,3,4,6,7,8-HXCDF	5.61	6.02	7	50.00	
2,3,4,7,8-PECDF	2.47	2.63	6	50.00	
2,3,7,8-TCDD	0.611	0.653	7	50.00	
2,3,7,8-TCDF	1.98	2.18	10	50.00	
OCDD	5810	5500	5	50.00	
OCDF	355	344	3	50.00	
1,2,3,7,8-PECDD	2.23	7.94	112	50.00	J(all detects)

10/27/2011 10:59:11 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX117 Laboratory: LL

EDD Filename: DX117_v1. eQAPP Name: CDM_SSFL_110509

Method:	1613B	i Assilia			ya ya na na kata ka sa	ie glostyczne		deliber
Matrix:	so		 					
			 	 			1	

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP05-SA6-QC-072111	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	3.80 4.85 3.17 0.969 1.85 2.95 2.69 0.260	4.92 4.92 4.92 4.92 4.92 4.92 4.92 0.985	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
DUP06-SA6-QC-072111	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	ト街街街〜街	4.88 3.68 0.973 4.53 2.63 0.653	5.08 5.08 5.08 5.08 5.08 1.02	PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-073-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD 2,3,7,8-TCDD	S C S S S S S S S S S S S S S S S S S S	3.07 3.50 1.45 1.02 3.05 0.386 2.85 1.22 1.81 0.945 0.324 0.929	5.45 5.45 5.45 5.45 5.45 5.45 5.45 5.45	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-081-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDD	######################################	1.24 0.152 0.0482 0.0600 0.128 0.0221 0.0987 0.0804 0.0177 0.0242 0.0345 0.0392 0.0268 7.81 0.414	5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.29	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-081-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0CDD 0CDF	男 男 男 男 男 男 男 男 男 男 男 男 男 男 男 男 男 男 男	1.05 0.102 0.0739 0.0211 0.0590 0.0220 0.0884 0.0231 0.0614 0.0203 0.0493 0.0569 6.36 0.254	5.54 5.54 5.54 5.54 5.54 5.54 5.54 5.54	PAL PAL PAL PAL PAL PAL PAL PAL PAL PAL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Matrix: SU							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-104-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	JB JBQ JBQ JB JBQ JBQ JBB JBB JBQ JBQ JB	2.76 0.181 0.125 0.483 0.495 0.238 0.258 0.122 1.19 0.195 0.772 0.0441 0.0845 10.4	5.38 5.38 5.38 5.38 5.38 5.38 5.38 5.38	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-105-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0,0,7,8-TCDD	のましばませばましまがある とまない はん はん はん はん はん はん はん はん はん はん はん はん はん	4.55 0.745 0.0715 0.0912 0.162 0.188 0.124 0.132 0.0621 0.0911 0.203 0.0956 0.315 0.0444 0.0844 1.46	5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30	Pal Pal Pal Pal Pal Pal Pal Pal Pal Pal	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-228-SA6-SS-0.0-0.5	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,7,8-PECDF 2,3,7,8-TCDD	JB JB JB	4.43 3.35 0.898 2.23 2.47 0.611	4.86 4.86 4.86 4.86 4.86 0.973	PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-233-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	# 5 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6 # 6	3.18 1.29 1.46 4.85 1.27 2.06 0.294 3.29 2.11 1.79 0.625 0.179 0.358	4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-237-SA6-SS-0.0-0.5	1,2,3,7,8,9-HXCDF 2,3,4,7,8-PECDF	JB JB	1.59 3.57	4.96 4.96	PQL PQL	ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-238-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HCDD 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	IB JBQ JBBBBJBBBBGGBBGGBBBGGBBBGGBBBBGGBBBBBBBB	2.62 0.280 0.211 0.473 0.637 0.200 0.526 0.244 0.176 0.426 0.312 0.394 0.0344 0.259 5.97	4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg ng/kg	J (all detects)
SL-240-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	а В В В В В В В В В В В В В В В В В В В	3.23 0.259 0.342 0.519 0.798 0.288 0.676 0.206 0.254 0.757 0.363 0.561 0.0510 0.316 8.95	5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-241-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	g - B - B - B - B - B - B - B - B - B - B	0.739 0.638 0.566 1.33 0.514 1.13 0.203 0.277 0.182 0.611 0.277 0.0427 0.105	4.94 4.94 4.94 4.94 4.94 4.94 4.94 4.94	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-242-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	####¬#################################	1.04 0.664 0.863 1.62 0.710 1.50 0.355 0.356 0.353 0.809 0.364 0.0508 0.228	5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX117

Laboratory: LL

EDD Filename: DX117_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Watrix. 50							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-243-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	B B B B B B B B B B B B B B B B B B B	1.03 1.41 1.09 3.55 0.823 3.24 0.431 1.02 0.541 1.01 0.755 0.0775 0.282	4.86 4.86 4.86 4.86 4.86 4.86 4.86 4.86	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-244-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	BBBB JBBBBB JBBBBBBBBBBBBBBBBBBBBBBBBB	1.21 0.772 2.21 2.42 0.817 1.62 0.510 0.538 0.905 1.07 1.53 0.0998 0.486	4.90 4.90 4.90 4.90 4.90 4.90 4.90 4.90	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-314-SA6-SS-0.0-0.5	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF	JB JB JB	36.0 26.3 40.7	42.5 42.5 42.5	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	J (all detects)
SL-315-SA6-SS-0.0-0.5	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF	JB JB JB J BC	36.7 25.6 34.4 7.60	42.8 42.8 42.8 8.56	PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-316-SA6-SS-0.0-0.5	1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF	JB JB JB JBC	12.6 11.3 8.30 2.23	46.2 46.2 9.25 9.25	PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-318-SA6-SS-0.0-0.5	1,2,3,7,8,9-HXCDF	JB	3.37	5.01	PQL	ng/Kg	J (all detects)

SAMPLE DELIVERY GROUP

DX118

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
22-Jul-2011	SL-103-SA6-SB-4.0-5.0	6354181	N	METHOD	1 613B	Ш
22-Jul-2011	SL-103-SA6-SB-9.0-10.0	6354182	N	METHOD	1613B	111
22-Jul-2011	SL-082-SA6-SB-4.0-5.0	6354179	N	METHOD	1613B	Ш
22-Jul-2011	SL-082-SA6-SB-9.0-10.0	6354180	N	METHOD	1613B	111
22-Jul-2011	SL-124-SA6-SB-4.0-5.0	6354183	N	METHOD	1613B	181
22-Jul-2011	SL-124-SA6-SB-12.5-13.5	6354184	N	METHOD	1613B	111
22-Jul-2011	SL-308-SA6-SS-0.0-0.5	6354177	N	METHOD	1613B	111
22-Jul-2011	SL-307-SA6-SS-0.0-0.5	6354176	N	METHOD	1613B	111
22-Jul-2011	SL-309-SA6-SS-0.0-0.5	6354178	N	METHOD	1613B	Ш
22-Jul-2011	SL-075-SA6-SB-4.0-5.0	6354185	N	METHOD	1613B	Ш
22-Jul-2011	SL-075-SA6-SB-9.0-10.0	6354186	N	METHOD	1613B	THI
25-Jul-2011	SL-289-SA6-SB-3.5-4.5	6355068	N	METHOD	1613B	Ш
25-Jul-2011	SL-098-SA6-SB-2.0-3.0	6355065	N	METHOD	1613B	111
25-Jul-2011	SL-098-SA6-SB-2.0-3.0MS	6355066	MS	METHOD	1613B	111
25-Jul-2011	SL-098-SA6-SB-2.0-3.0MSD	6355067	MSD	METHOD	1613B	Ш
25-Jul-2011	DUP07-SA6-QC-072511	6355069	FD	METHOD	16 1 3B	111

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX118

EDD Filename: DX118_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: DUP07-SA6-QC-072511 Collected: 7/25/2011 10:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.492	JB	0.0188	MDL	5.24	PQL	ng/Kg	UJ	B, FD
1,2,3,4,6,7,8-HPCDF	0.0595	JB	0.00682	MDL	5.24	PQL	ng/Kg	UJ	B, FD
1,2,3,4,7,8,9-HPCDF	0.0469	JBQ	0.0140	MDL	5.24	PQL	ng/Kg	UJ	B, FD
1,2,3,4,7,8-HxCDD	0.0234	JBQ	0.0124	MDL	5.24	PQL	ng/Kg	UJ	B, FD
1,2,3,4,7,8-HXCDF	0.0407	JBQ	0.00948	MDL	5.24	PQL	ng/Kg	บป	B, FD
1,2,3,6,7,8-HXCDD	0.0423	JB	0.0125	MDL	5.24	PQL	ng/Kg	ŊĴ	B, FD
1,2,3,6,7,8-HXCDF	0.0343	JB	0.00745	MDL	5.24	PQL	ng/Kg	ΟJ	B, FD
1,2,3,7,8,9-HXCDD	0.0424	JB	0.0126	MDL	5.24	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8,9-HXCDF	0.0546	JB	0.0113	MDL	5.24	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0555	JBQ	0.0140	MDL	5.24	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0518	JB	0.0110	MDL	5.24	PQL	ng/Kg	UJ	B, FD
2,3,4,6,7,8-HXCDF	0.0399	JBQ	0.00841	MDL	5.24	PQL	ng/Kg	UJ	B, FD
2,3,4,7,8-PECDF	0.0766	JBQ	0.0126	MDL	5.24	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0208	JB	0.0117	MDL	1.05	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0104	U	0.0104	MDL	1.05	PQL	ng/Kg	UJ	FD
OCDD	2.82	JB	0.0194	MDL	10.5	PQL	ng/Kg	IJ	B, FD
OCDF	0.138	JB	0.0215	MDL	10.5	PQL	ng/Kg	UJ	B, FD

Sample ID: SL-075-SA6-SB-4.0-5.0 Collected: 7/22/2011 3:05:00 Analysis Type: RES Dilution: 1

Sample ID: SL-075-5A6-5B-4.0-5.0	Conec	tea: //ZZ/Z	0113:05:0	U A	ilalysis ij	ype. KLO	Ditation.		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.979	JB	0.0129	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.159	JBQ	0.0226	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0625	JB	0.0272	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0986	JB	0.0222	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.304	JB	0.0268	MDL	5.56	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0854	JB	0.0186	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.156	JB	0.0263	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0677	JBQ	0.0237	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0399	JB	0.0179	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.280	JB	0.0140	MDL	5.56	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.109	JBQ	0.0204	MDL	5.56	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.112	JB	0.0151	MDL	5.56	PQL	ng/Kg	υ	В
OCDF	2.20	JB	0.0235	MDL	11.1	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Laboratory: LL

Lab Reporting Batch ID: DX118 Laboratory: LL

EDD Filename: DX118_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-075-SA6-SB-9.0-10.0	Collec	ted: 7/22/2	011 3:15:0	00 A	nalysis Ty	pe: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.61	JB	0.0391	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.789	JB	0.0528	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.96	JB	0.0419	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	3.46	JB	0.0543	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.977	JB	0.0391	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.15	JB	0.0518	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.507	JB	0.0439	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.273	JВ	0.0460	MDL	5.20	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	1.47	JB	0.0316	MDL	5.20	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	2.05	JB	0.0387	MDL	5.20	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.12	JB	0.0335	MDL	5.20	PQL	пд/Кд	J	Z
2,3,7,8-TCDD	0.130	JB	0.0172	MDL	1.04	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.494	J	0.0613	MDL	1.04	PQL	ng/Kg	J	Z

Sample ID: SL-082-SA6-SB-4.0-5.0 Collected: 7/22/2011 10:00:00 Analysis Type: RES Dilution: 1

· · · · · · · · · · · · · · · · · · ·		••			,					
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	1.39	JB	0.0256	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.156	JB	0.0344	MDL	5.12	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0806	JB	0.0330	MDL	5.12	PQL	ng/Kg	Ų	В	
1,2,3,4,7,8-HXCDF	0.523	JB	0.0423	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.283	JBQ	0.0337	MDL	5.12	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.125	JB	0.0398	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.132	JB	0.0337	MDL	5.12	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0451	JB	0.0229	MDL	5.12	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	1.77	JB	0.0372	MDL	5.12	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.150	JBQ	0.0385	MDL	5.12	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.114	JB	0.0366	MDL	5.12	PQL	ng/Kg	U	В	
OCDF	3.60	JB	0.0332	MDL	10.2	PQL	ng/Kg	J	Z	

Sample ID: SL-082-SA6-SB-9.0-10.0 Collected: 7/22/2011 10:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.468	JBQ	0.0237	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.123	JBQ	0.0178	MDL	5.43	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX118

Laboratory: LL

EDD Filename: DX118_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-082-SA6-SB-9.0-10.0 Collected: 7/22/2011 10:10:00 Analysis Type: RES Dilution: 1

Sample ID. GC-062-3A0-3B-9.0-10.0	Conec	(GG. 112212	011 10.10	, VO	nulyana i j	, pc	. 1125			
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	0.0682	JB	0.0325	MDL	5.43	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0874	JB	0.0133	MDL	5.43	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0365	JBQ	0.0146	MDL	5.43	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0276	JBQ	0.0112	MDL	5.43	PQL	ng/Kg	Ų	В	
,2,3,7,8,9-HXCDD	0.0281	JBQ	0.0143	MDL	5.43	PQL	ng/Kg	υ	В	
,2,3,7,8,9-HXCDF	0.0402	JB	0.0161	MDL	5.43	PQL	ng/Kg	U	В	
,2,3,7,8-PECDF	0.0329	JBQ	0.0128	MDL	5.43	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0272	JBQ	0.0122	MDL	5.43	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0407	JBQ	0.0135	MDL	5.43	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0202	JQ	0.0148	MDL	1.09	PQL	ng/Kg	J	Z	
OCDD	1.95	JB	0.0257	MDL	10.9	PQL	ng/Kg	U	В	
OCDF	0.204	JB	0.0292	MDL	10.9	PQL	ng/Kg	U	В	

Sample ID: SL-098-SA6-SB-2.0-3.0 Collected: 7/25/2011 9:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	6.92	В	0.0363	MDL	5.13	PQL	ng/Kg	J	FD
1,2,3,4,6,7,8-HPCDF	1.12	JB	0.0152	MDL	5.13	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8,9-HPCDF	0.123	JB	0.0179	MDL	5.13	PQL	ng/Kg	υJ	B, FD
1,2,3,4,7,8-HxCDD	0.0427	JBQ	0.0262	MDL	5.13	PQL	ng/Kg	UJ	B, FD
1,2,3,4,7,8-HXCDF	0.175	JB	0.0210	MDL	5.13	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDD	0.228	JB	0.0270	MDL	5.13	PQL	ng/Kg	กา	B, FD
1,2,3,6,7,8-HXCDF	0.0873	JB	0.0210	MDL	5.13	PQL	ng/Kg	ΟĴ	B, FD
1,2,3,7,8,9-HXCDD	0.101	JBQ	0.0268	MDL	5.13	PQL	ng/Kg	บา	B, FD
1,2,3,7,8,9-HXCDF	0.0362	JB	0.0212	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0473	JBQ	0.0187	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.333	JB	0.0238	MDL	5.13	PQL	ng/Kg	J	Z, FD
2,3,4,6,7,8-HXCDF	0.0979	JB	0.0191	MDL	5.13	PQL	ng/Kg	UJ	B, FD
2,3,4,7,8-PECDF	0.0986	JB	0.0225	MDL	5.13	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0125	JB	0.0111	MDL	1.03	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0783	j	0.0309	MDL	1.03	PQL	ng/Kg	J	Z, FD
OCDD	92.5	В	0.0254	MDL	10.3	PQL	ng/Kg	J	FD
OCDF	3.04	JB	0.0216	MDL	10.3	PQL	ng/Kg	J	Z, FD

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX118 Laboratory: LL

EDD Filename: DX118_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-103-SA6-SB-4.0-5.0 Collected: 7/22/2011 8:35:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.456	JB	0.0237	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0712	JB	0.0124	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0423	JBQ	0.0222	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0370	JB	0.0135	MDL	5.34	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0501	JB	0.0108	MDL	5.34	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0603	JB	0.0138	MDL	5.34	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0445	JBQ	0.00888	MDL	5.34	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0505	JB	0.0129	MDL	5.34	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0412	JB	0.0123	MDL	5.34	PQL	ng/Kg	Ų	В
1,2,3,7,8-PECDD	0.0797	JBQ	0.0157	MDL	5.34	PQL	ng/Kg	υ	В
I,2,3,7,8-PECDF	0.102	JBQ	0.0104	MDL	5.34	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.0316	JBQ	0.00984	MDL	5.34	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.106	JB	0.0113	MDL	5.34	PQL	ng/Kg	U	В
OCDD	1.56	JB	0.0214	MDL	10.7	PQL	ng/Kg	U	В
OCDF	0.141	JВ	0.0241	MDL	10.7	PQL	ng/Kg	U	В

Cample 18. GE 100 GNO GB 010 1010									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.573	JB	0.0212	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.113	JBQ	0.00735	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0460	JBQ	0.0122	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0660	JBQ	0.0173	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.122	JB	0.0143	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0762	JBQ	0.0179	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.103	JB	0.0120	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0825	JBQ	0.0167	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0983	JB	0.0148	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.178	JBQ	0.0186	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.239	JB	0.0125	MDL	5.44	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0872	JB	0.0136	MDL	5.44	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.233	JB	0.0129	MDL	5.44	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.115	JB	0.0152	MDL	1.09	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.119	JQ	0.0147	MDL	1.09	PQL	ng/Kg	, J	Z

^{*} denotes a non-reportable result

9/28/2011 10:15:33 AM ADR version 1.4.0.111 Page 4 of 10

Lab Reporting Batch ID: DX118 Laboratory: LL

EDD Filename: DX118_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA	
Method:	1613B	Matrix: SO

			00 A		/pe: RES			Dilution: 1
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2.29	JB	0.0193	MDL	10.9	PQL	ng/Kg	U	В
	Result	Result Qual	Result Qual DL	Result Qual DL Type	Result Qual DL Type RL	Result Qual DL Type RL Type	Result Qual DL Type RL Type Units	Lab Lab DL RL Review Result Qual DL Type RL Type Units Qual

0.0221

MDL

10.9

JΒ

0.202

0.730

1.86

0.866

0.228

PQL

ng/Kg

υ

J

В

Z

Dilution: 1

Dilution: 1 Sample ID: SL-124-SA6-SB-12.5-13.5 Collected: 7/22/2011 11:55:00 Analysis Type: RES Data Review Lab Lab DL RLReason DL RLUnits Qual Code Analyte Result Qual Type Type **PQL** Z MDL J 1,2,3,4,7,8,9-HPCDF 1.42 JB 0.0351 5.45 ng/Kg Z JB 0.0415 MDL 5.45 **PQL** ng/Kg J 1,2,3,4,7,8-HxCDD 0.487 1.46 JB 0.0386 MDL 5.45 **PQL** пg/Kg J Z 1,2,3,4,7,8-HXCDF J Z 1,2,3,6,7,8-HXCDD 2.75 JB 0.0433 MDL 5.45 **PQL** ng/Kg z J JB 0.0366 MDL 5.45 **PQL** ng/Kg 1,2,3,6,7,8-HXCDF 0.774 1.10 JB 0.0407 MDL 5.45 **PQL** ng/Kg J Z 1,2,3,7,8,9-HXCDD 0.0396 MDL 5.45 **PQL** ng/Kg J Z JΒ 0.392 1,2,3,7,8,9-HXCDF Ų В 0.215 0.0377 MDL 5.45 **PQL** ng/Kg 1,2,3,7,8-PECDD MDL PQL J z 1.16 JΒ 0.0348 5.45 ng/Kg 1,2,3,7,8-PECDF 1.20 JB 0.0370 MDL 5.45 PQL. ng/Kg J Z 2,3,4,6,7,8-HXCDF 0.0346 1.05 MDL PQL ng/Kg J Z JB 5.45 2,3,4,7,8-PECDF Z J 2,3,7,8-TCDD 0.107 **JBQ** 0.0133 MDL 1.09 PQL πg/Kg

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	3.05	JB	0.0534	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.67	JB	0.0637	MDL	5.28	PQL	ng/Kg	Ĵ	Z
1,2,3,4,7,8-HXCDF	1.98	JB	0.0551	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.11	JB	0.0517	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.98	JB	0.0645	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.484	JB	0.0514	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.549	JB	0.0520	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	2.15	JB	0.0426	MDL	5.28	PQL	ng/Kg	J	Z

JB

JΒ

JВ

0.0517

0.0449

0.0156

MDL

MDL

MDL

5.28

5.28

1.06

PQL

PQL

PQL

ng/Kg

ng/Kg

ng/Kg

J

0.0647

J

Collected: 7/22/2011 11:45:00

MDL

1.09

Analysis Type: RES

PQL

ng/Kg

2,3,4,6,7,8-HXCDF

2,3,4,7,8-PECDF

2,3,7,8-TCDD

OCDF

2,3,7,8-TCDF

Sample ID: SL-124-SA6-SB-4.0-5.0

Page 5 of 10

Z

Z

Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX118

Laboratory: LL

Page 6 of 10

EDD Filename: DX118_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B

Matrix: SO

Sample ID: SL-289-SA6-SB-3.5-4.5 Collected: 7/25/2011 8:30:00 Analysis Type: RES Dilution: 1

3ample 15. 0E-200-0A0-0B-0.0-4.0	Conco								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.451	JB	0.0197	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0839	JBQ	0.0154	MDL	5.18	PQL	ng/Kg	U ·	В
1,2,3,4,7,8,9-HPCDF	0.0922	JB	0.0327	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0402	JBQ	0.0138	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0655	JBQ	0.0123	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0537	JB	0.0145	MDL	5.18	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0395	JBQ	0.00980	MDL	5.18	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0812	JB	0.0140	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.108	JB	0.0143	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0657	JB	0.0176	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0686	JBQ	0.0123	MDL	5.18	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0510	JB	0.0109	MDL	5.18	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0887	JB	0.0139	MDL	5.18	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0168	JQ	0.0133	MDL	1.04	PQL	ng/Kg	J	Z
OCDD	1.18	JB	0.0201	MDL	10.4	PQL	ng/Kg	υ	В
OCDF	0.223	JB	0.0244	MDL	10.4	PQL	ng/Kg	U	В

Sample ID: SL-307-SA6-SS-0.0-0.5 Collected: 7/22/2011 2:12:00 Analysis Type: RES Dilution: 1

Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1.14	JB	0.0390	MDL	5.02	PQL	ng/Kg	J	Z	
0.718	JB	0.0368	MDL	5.02	PQL	ng/Kg	J	Z	
3.78	JB	0.0612	MDL	5.02	PQL	ng/Kg	J	Z	
2.43	JB	0.0389	MDL	5.02	PQL	ng/Kg	J	Z	
1.37	JB	0.0539	MDL	5.02	PQL	ng/Kg	J	Z	
1.58	JB	0.0379	MDL	5.02	PQL	ng/Kg	J	Z	
0.647	JB	0.0601	MDL	5.02	PQL	ng/Kg	J	Z	
0.462	JB	0.0559	MDL	5.02	PQL	ng/Kg	J	Z	
1.39	JB	0.0550	MDL	5.02	PQL	ng/Kg	J	Z	
3.41	JB	0.0810	MDL	5.02	PQL	ng/Kg	J	Z	
0.0374	JB	0.0183	MDL	1.00	PQL	ng/Kg	U	В	
	Result 1.14 0.718 3.78 2.43 1.37 1.58 0.647 0.462 1.39 3.41	Result Qual 1.14 JB 0.718 JB 3.78 JB 2.43 JB 1.37 JB 1.58 JB 0.647 JB 0.462 JB 1.39 JB 3.41 JB	Result Qual DL 1.14 JB 0.0390 0.718 JB 0.0368 3.78 JB 0.0612 2.43 JB 0.0389 1.37 JB 0.0539 1.58 JB 0.0379 0.647 JB 0.0601 0.462 JB 0.0559 1.39 JB 0.0550 3.41 JB 0.0810	Result Qual DL Type 1.14 JB 0.0390 MDL 0.718 JB 0.0368 MDL 3.78 JB 0.0612 MDL 2.43 JB 0.0389 MDL 1.37 JB 0.0539 MDL 1.58 JB 0.0379 MDL 0.647 JB 0.0601 MDL 0.462 JB 0.0559 MDL 1.39 JB 0.0550 MDL 3.41 JB 0.0810 MDL	Result Qual DL Type RL 1.14 JB 0.0390 MDL 5.02 0.718 JB 0.0368 MDL 5.02 3.78 JB 0.0612 MDL 5.02 2.43 JB 0.0389 MDL 5.02 1.37 JB 0.0539 MDL 5.02 1.58 JB 0.0379 MDL 5.02 0.647 JB 0.0601 MDL 5.02 0.462 JB 0.0559 MDL 5.02 1.39 JB 0.0550 MDL 5.02 3.41 JB 0.0810 MDL 5.02	Result Qual DL Type RL Type 1.14 JB 0.0390 MDL 5.02 PQL 0.718 JB 0.0368 MDL 5.02 PQL 3.78 JB 0.0612 MDL 5.02 PQL 2.43 JB 0.0389 MDL 5.02 PQL 1.37 JB 0.0539 MDL 5.02 PQL 1.58 JB 0.0379 MDL 5.02 PQL 0.647 JB 0.0601 MDL 5.02 PQL 0.462 JB 0.0559 MDL 5.02 PQL 1.39 JB 0.0550 MDL 5.02 PQL 3.41 JB 0.0810 MDL 5.02 PQL	Result Qual DL Type RL Type Units 1.14 JB 0.0390 MDL 5.02 PQL ng/Kg 0.718 JB 0.0368 MDL 5.02 PQL ng/Kg 3.78 JB 0.0612 MDL 5.02 PQL ng/Kg 2.43 JB 0.0389 MDL 5.02 PQL ng/Kg 1.37 JB 0.0539 MDL 5.02 PQL ng/Kg 1.58 JB 0.0379 MDL 5.02 PQL ng/Kg 0.647 JB 0.0601 MDL 5.02 PQL ng/Kg 0.462 JB 0.0559 MDL 5.02 PQL ng/Kg 1.39 JB 0.0550 MDL 5.02 PQL ng/Kg 3.41 JB 0.0810 MDL 5.02 PQL ng/Kg	Lab Result Lab Qual DL DL Type RL Type RL Type RL Type RL Qual 1.14 JB 0.0390 MDL 5.02 PQL ng/Kg J 0.718 JB 0.0368 MDL 5.02 PQL ng/Kg J 3.78 JB 0.0612 MDL 5.02 PQL ng/Kg J 2.43 JB 0.0389 MDL 5.02 PQL ng/Kg J 1.37 JB 0.0539 MDL 5.02 PQL ng/Kg J 1.58 JB 0.0379 MDL 5.02 PQL ng/Kg J 0.647 JB 0.0601 MDL 5.02 PQL ng/Kg J 0.462 JB 0.0559 MDL 5.02 PQL ng/Kg J 1.39 JB 0.0550 MDL 5.02 PQL ng/Kg J 3.41 JB 0.0810 MDL 5.02 PQL ng/Kg J	

^{*} denotes a non-reportable result

Laboratory: LL Lab Reporting Batch ID: DX118

eQAPP Name: CDM_SSFL_110509 EDD Filename: DX118_v1

Method Category: SVOA Method: 1613B Matrix: SO

Collected: 7/22/2011 1:54:00 Analysis Type: RES Dilution: 1 Sample ID: SL-308-SA6-SS-0.0-0.5

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.96	JB	0.0135	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.360	JB	0.0259	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.251	JB	0.0287	MDL	5.08	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.284	JB	0.0236	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.814	JB	0.0293	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.262	JB	0.0188	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.881	JB	0.0266	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.289	JBQ	0.0235	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.244	JB	0.0287	MDL	5.08	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.133	JB	0.0149	MDL	5.08	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.278	JB	0.0212	MDL	5.08	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.218	JB	0.0158	MDL	5.08	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0575	JB	0.0168	MDL	1.02	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.108	J	0.0257	MDL	1.02	PQL	ng/Kg	J	Z

Collected: 7/22/2011 2:35:00 Analysis Type: RES Dilution: 1 Sample ID: SL-309-SA6-SS-0.0-0.5

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.569	JB	0.0427	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.568	. JB	0.0372	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.13	JB	0.0492	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.65	JB	0.0381	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.597	JB	0.0400	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.33	JB	0.0389	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.363	JBQ	0.0514	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.405	JВ	0.0345	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	2.06	JB	0.0466	MDL	5.04	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.668	JВ	0.0427	MDL	5.04	PQL	ng/Kg	J	z
2,3,4,7,8-PECDF	1.59	JB	0.0491	MDL	5.04	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0656	JВ	0.0164	MDL	1.01	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.695	J	0.0974	MDL	1.01	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX118

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX118_v1

Reason Code Legend

Reason Code	Description							
ti moduli i izrin arab	Duplicate Sample Count = 0							
	Duplicate Sample Count > 1							
	Illogical Fraction							
	Laboratory Control Sample Count = 0							
	Laboratory Control Sample Count > 1							
	Matrix Spike Sample Count = 0							
	Matrix Spike Sample Count > 1							
	Method Blank Sample Count = 0							
	Method Blank Sample Count > 1							
	Percent Moisture							
*#	Professional Judgment							
A	ICP Serial Dilution							
В	Calibration Blank Contamination							
В	Method Blank Contamination							
С	Continuing Calibration Verification Correlation Coefficient							
С	Continuing Calibration Verification Percent Difference Lower Estimation							
С	Continuing Calibration Verification Percent Difference Lower Rejection							
С	Continuing Calibration Verification Percent Difference Upper Estimation							
С	Continuing Calibration Verification Percent Difference Upper Rejection							
С	Initial Calibration Correlation Coefficient							
С	Initial Calibration Percent Relative Standard Deviation							
С	Initial Calibration Verification Correlation Coefficient							
С	Initial Calibration Verification Percent Difference Lower Estimation							
С	Initial Calibration Verification Percent Difference Lower Rejection							
С	Initial Calibration Verification Percent Difference Upper Estimation							
С	Initial Calibration Verification Percent Difference Upper Rejection							
E	Laboratory Control Precision							
E	Laboratory Duplicate Precision							
Ē	Laboratory Triplicate Precision							
E	Matrix Spike Precision							

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX118

EDD Filename: DX118_v1

EQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
Ī	Internal Standard Estimation
ı	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
М	Initial Tune
М	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Laboratory Triplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX118

EDD Filename: DX118_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX118

Lab Reporting Batch ID: DX118

EDD Filename: DX118_v1

EQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO									
Method Blank Sample ID	Analysis Date	Analyte	Resuit	Associated Samples					
BLK2160B372223	8/6/2011 10:23:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD OCDD OCDD	1.38 ng/Kg 0.0477 ng/Kg 0.0477 ng/Kg 0.0394 ng/Kg 0.0588 ng/Kg 0.0339 ng/Kg 0.0713 ng/Kg 0.0222 ng/Kg 0.0628 ng/Kg 0.0628 ng/Kg 0.0673 ng/Kg 0.0613 ng/Kg 0.0293 ng/Kg 0.0248 ng/Kg 0.0509 ng/Kg 0.0166 ng/Kg 8.21 ng/Kg 0.131 ng/Kg	DUP07-SA6-QC-072511 SL-075-SA6-SB-4.0-5.0 SL-075-SA6-SB-9.0-10.0 SL-082-SA6-SB-9.0-10.0 SL-082-SA6-SB-9.0-10.0 SL-082-SA6-SB-9.0-10.0 SL-103-SA6-SB-4.0-5.0 SL-103-SA6-SB-9.0-10.0 SL-124-SA6-SB-12.5-13.5 SL-124-SA6-SB-4.0-5.0 SL-124-SA6-SB-3.5-4.5 SL-307-SA6-SS-0.0-0.5 SL-308-SA6-SS-0.0-0.5					

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
DUP07-SA6-QC-072511(RES)	1,2,3,4,6,7,8-HPCDD	0.492 ng/Kg	0.492U ng/Kg	
DUP07-SA6-QC-072511(RES)	1,2,3,4,6,7,8-HPCDF	0,0595 ng/Kg	0.0595U ng/Kg	
DUP07-SA6-QC-072511(RES)	1,2,3,4,7,8,9-HPCDF	0.0469 ng/Kg	0.0469U ng/Kg	
DUP07-SA6-QC-072511(RES)	1,2,3,4,7,8-HxCDD	0.0234 ng/Kg	0.0234U ng/Kg	
DUP07-SA6-QC-072511(RES)	1,2,3,4,7,8-HXCDF	0.0407 ng/Kg	0.0407U ng/Kg	
DUP07-SA6-QC-072511(RES)	1,2,3,6,7,8-HXCDD	0.0423 ng/Kg	0.0423U ng/Kg	
DUP07-SA6-QC-072511(RES)	1,2,3,6,7,8-HXCDF	0.0343 ng/Kg	0.0343U ng/Kg	
DUP07-SA6-QC-072511(RES)	1,2,3,7,8,9-HXCDD	0.0424 ng/Kg	0.0424U ng/Kg	
DUP07-SA6-QC-072511(RES)	1,2,3,7,8,9-HXCDF	0.0546 ng/Kg	0.0546U ng/Kg	
DUP07-SA6-QC-072511(RES)	1,2,3,7,8-PECDD	0.0555 ng/Kg	0.0555U ng/Kg	
DUP07-SA6-QC-072511(RES)	1,2,3,7,8-PECDF	0.0518 ng/Kg	0.0518U ng/Kg	
DUP07-SA6-QC-072511(RES)	2,3,4,6,7,8-HXCDF	0.0399 ng/Kg	0.0399U ng/Kg	
DUP07-SA6-QC-072511(RES)	2,3,4,7,8-PECDF	0.0766 ng/Kg	0.0766U ng/Kg	
DUP07-SA6-QC-072511(RES)	2,3,7,8-TCDD	0,0208 ng/Kg	0.0208U ng/Kg	
DUP07-SA6-QC-072511(RES)	OCDD	2.82 ng/Kg	2.82U ng/Kg	
DUP07-SA6-QC-072511(RES)	OCDF	0.138 ng/Kg	0.138U ng/Kg	
SL-075-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.159 ng/Kg	0.159U ng/Kg	
SL-075-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0625 ng/Kg	0.0625U ng/Kg	
SL-075-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0986 ng/Kg	0.0986U ng/Kg	
SL-075-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.304 ng/Kg	0.304U ng/Kg	
SL-075-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0854 ng/Kg	0.0854U ng/Kg	
SL-075-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.156 ng/Kg	0.156U ng/Kg	
SL-075-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0677 ng/Kg	0.0677U ng/Kg	
SL-075-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0399 ng/Kg	0.0399U ng/Kg	
SL-075-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.109 ng/Kg	0.109U ng/Kg	
SL-075-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.112 ng/Kg	0.112U ng/Kg	
SL-075-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.273 ng/Kg	0.273U ng/Kg	
SL-082-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.156 ng/Kg	0.156U ng/Kg	
SL-082-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0806 ng/Kg	0.0806U ng/Kg	

9/28/2011 10:14:50 AM ADR version 1.4.0.111 Page 1 of 3

Lab Reporting Batch ID: DX118 Laboratory: LL

EDD Filename: DX118_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	त्रात्म क्षेत्रक क्षेत्रक क्षेत्रक क्षेत्रक क्षेत्रक क्षेत्रक क्षेत्रक क्षेत्रक क्षेत्रक क्षेत्रक क्षेत्रक क्ष			Nines de la constante de la co
Method Blar Sample ID	ık	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-082-SA6-SB-4,0-5,0(RES)	1,2,3,6,7,8-HXCDD	0.283 ng/Kg		
SL-082-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.132 ng/Kg	0.132U ng/Kg	
SL-082-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0451 ng/Kg	0.0451U ng/Kg	
SL-082-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.114 ng/Kg	0.114U ng/Kg	
SL-082-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0,468 ng/Kg	0.468U ng/Kg	
SL-082-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.123 ng/Kg	0.123U ng/Kg	
SL-082-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0682 ng/Kg	0.0682U ng/Kg	
SL-082-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0874 ng/Kg	0.0874U ng/Kg	
SL-082-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0365 ng/Kg	0,0365U ng/Kg	
SL-082-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0276 ng/Kg	0.0276U ng/Kg	
SL-082-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0281 ng/Kg	0.0281U ng/Kg	
SL-082-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0402 ng/Kg	0.0402U ng/Kg	
SL-082-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0,0329 ng/Kg	0.0329U ng/Kg	
SL-082-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0272 ng/Kg	0.0272U ng/Kg	
SL-082-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0407 ng/Kg	0.0407U ng/Kg	
SL-082-SA6-SB-9.0-10.0(RES)	OCDD	1.95 ng/Kg	1.95U ng/Kg	
SL-082-SA6-SB-9.0-10.0(RES)	OCDF	0.204 ng/Kg	0.204U ng/Kg	
SL-098-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0,123 ng/Kg	0.123U ng/Kg	
SL-098-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HxCDD	0.0427 ng/Kg	0.0427U ng/Kg	
SL-098-SA6-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDD	0.228 ng/Kg	0.228U ng/Kg	
SL-098-SA6-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDF	0.0873 ng/Kg	0.0873U ng/Kg	
SL-098-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDD	0.101 ng/Kg	0.101U ng/Kg	
SL-098-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDF	0.0362 ng/Kg	0.0362U ng/Kg	
SL-098-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDD	0.0473 ng/Kg	0.0473U ng/Kg	
SL-098-SA6-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.0979 ng/Kg	0.0979U ng/Kg	
SL-098-SA6-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0.0986 ng/Kg	0.0986U ng/Kg	
SL-098-SA6-SB-2.0-3.0(RES)	2,3,7,8-TCDD	0.0125 ng/Kg	0.0125U ng/Kg	
SL-103-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.456 ng/Kg	0.456U ng/Kg	
SL-103-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0712 ng/Kg	0.0712U ng/Kg	
SL-103-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0423 ng/Kg	0.0423U ng/Kg	
SL-103-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0370 ng/Kg	0.0370U ng/Kg	
SL-103-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0501 ng/Kg	0.0501U ng/Kg	
SL-103-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0603 ng/Kg	0.0603U ng/Kg	
SL-103-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0445 ng/Kg	0.0445U ng/Kg	
SL-103-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0505 ng/Kg	0.0505U ng/Kg	
SL-103-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0412 ng/Kg	0.0412U ng/Kg	
SL-103-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0,0797 ng/Kg	0.0797U ng/Kg	
SL-103-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.102 ng/Kg	0.102U ng/Kg	
SL-103-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0316 ng/Kg	0.0316U ng/Kg	
SL-103-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,106 ng/Kg	0.106U ng/Kg	

9/28/2011 10:14:50 AM ADR version 1.4.0.111 Page 2 of 3

Lab Reporting Batch ID: DX118 Laboratory: LL

EDD Filename: DX118_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-103-SA6-SB-4.0-5.0(RES)	OCDD	1.56 ng/Kg		
SL-103-SA6-SB-4.0-5.0(RES)	OCDF	0.141 ng/Kg	0.141U ng/Kg	
SL-103-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.573 ng/Kg	0.573U ng/Kg	
SL-103-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.113 ng/Kg	0.113U ng/Kg	
SL-103-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0460 ng/Kg	0.0460U ng/Kg	
SL-103-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0660 ng/Kg	0.0660U ng/Kg	
SL-103-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.122 ng/Kg	0.122U ng/Kg	
SL-103-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0762 ng/Kg	0.0762U ng/Kg	
SL-103-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.103 ng/Kg	0.103U ng/Kg	
SL-103-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0825 ng/Kg	0.0825U ng/Kg	
SL-103-SA6-SB-9,0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0983 ng/Kg	0.0983U ng/Kg	
SL-103-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.178 ng/Kg	0.178U ng/Kg	
SL-103-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0872 ng/Kg	0.0872U ng/Kg	
SL-103-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.233 ng/Kg	0.233U ng/Kg	
SL-103-SA6-SB-9,0-10,0(RES)	OCDD	2.29 ng/Kg	2.29U ng/Kg	
SL-103-SA6-SB-9.0-10.0(RES)	OCDF	0.202 ng/Kg	0.202U ng/Kg	
SL-124-SA6-SB-12.5-13.5(RES)	1,2,3,7,8-PEGDD	0.215 ng/Kg	0.215U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDD	0.451 ng/Kg	0.451U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0839 ng/Kg	0.0839U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0922 ng/Kg	0.0922U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8-HxCDD	0,0402 ng/Kg	0.0402U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8-HXCDF	0.0655 ng/Kg	0.0655U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDD	0.0537 ng/Kg	0.0537U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDF	0.0395 ng/Kg	0.0395U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDD	0,0812 ng/Kg	0.0812U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDF	0.108 ng/Kg	0.108U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	1,2,3,7,8-PECDD	0.0657 ng/Kg	0.0657U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	1,2,3,7,8-PECDF	0.0686 ng/Kg	0.0686U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	2,3,4,6,7,8-HXCDF	0.0510 ng/Kg	0.0510U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	2,3,4,7,8-PECDF	0.0887 ng/Kg	0.0887U ng/Kg	
SL-289-SA6-SB-3,5-4,5(RES)	OCDD	1.18 ng/Kg	1.18U ng/Kg	
SL-289-SA6-SB-3.5-4.5(RES)	OCDF	0.223 ng/Kg	0.223U ng/Kg	
SL-307-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0374 ng/Kg	0.0374U ng/Kg	
SL-308-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.251 ng/Kg	0.251U ng/Kg	
SL-308-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.244 ng/Kg	0.244U ng/Kg	
SL-308-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.133 ng/Kg	0.133U ng/Kg	
SL-308-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.218 ng/Kg	0.218U ng/Kg	
SL-308-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0575 ng/Kg	0,0575U ng/Kg	
SL-309-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0656 ng/Kg	0.0656U ng/Kg	

9/28/2011 10:14:50 AM ADR version 1.4.0.111 Page 3 of 3

Field Duplicate RPD Report

Lab Reporting Batch ID: DX118

Laboratory: LL

EDD Filename: DX118_v1		eQAPP	Name: C	DM_SSFL_110509	
Method: 160.3M Matrix: SO				V2100 10000	
	Concent	Concentration (%)			
Analyte	SL-098-SA6-SB-2.0-3.0	DUP07-SA6-QC-072511	Sample RPD	eQAPP RPD	Flag
MOISTURE	5.4	6.1	12		No Qualifiers Applied

	Concentra	tion (ng/Kg)	 			
Analyte	SL-098-SA6-SB-2.0-3.0	SL-098-SA6-SB-2.0-3.0 DUP07-SA6-QC-072511		eQAPP RPD	Flag	
1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	0.0362 0.0473 0.0986	0.0546 0.0555 0.0766	41 16 25	50.00 50.00 50.00	No Qualifiers Applie	
2,3,4,7,8-PECDF 2,3,7,8-TCDD	0.0125	0.0788	50 50	50.00		
1,2,3,4,6,7,8-HPCDD	6.92	0.492	173	50.00		
1,2,3,4,6,7,8-HPCDF	1.12	0.0595	180	50.00		
1,2,3,4,7,8,9-HPCDF	0.123	0.0469	90	50.00		
1,2,3,4,7,8-HxCDD	0.0427	0.0234	58	50.00		
1,2,3,4,7,8-HXCDF	0.175	0.0407	125	50.00	J(all detects) UJ(all non-detects)	
1,2,3,6,7,8-HXCDD	0.228	0.0423	137	50.00		
1,2,3,6,7,8-HXCDF	0.0873	0.0343	87	50.00		
1,2,3,7,8,9-HXCDD	0.101	0.0424	82	50.00	25(2 11011 40(00	
1,2,3,7,8-PECDF	0.333	0.0518	146	50.00		
2,3,4,6,7,8-HXCDF	0.0979	0.0399	84	50.00		
2,3,7,8-TCDF	0.0783	1.05 U	200	50.00		
OCDD	92.5	2.82	188	50.00		
OCDF	3.04	0.138	183	50.00		

ADR version 1.4.0.111 Page 1 of 1 9/28/2011 10:14:19 AM

Lab Reporting Batch ID: DX118

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

EDD Filename: DX118_v1

Method: 1613B Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP07-SA6-QC-072511	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF	JB JB	0.492 0.0595	5.24 5.24	PQL PQL	ng/Kg ng/Kg	, lag
	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD	JBQ JBQ	0.0469 0.0234	5.24 5.24	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JBQ JB	0.0407 0.0423	5.24 5.24	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	JB JB	0.0343 0.0424	5.24 5.24	PQL PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JB JBQ	0.0546 0.0555 0.0518	5.24 5.24	PQL PQL PQL	ng/Kg ng/Kg	•
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JB JBQ JBQ	0.0318 0.0399 0.0766	5.24 5.24 5.24	PQL PQL	ng/Kg ng/Kg ng/Kg	
	2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD	JB JB	0.0208 2.82	1.05 10.5	PQL PQL	ng/Kg ng/Kg	
01.075.040.00	OCDF	JB	0.138	10.5	PQL	ng/Kg ng/Kg	
SL-075-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JBQ JB	0.979 0.159 0.0625	5.56 5.56 5.56	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JB JB	0.0025 0.0986 0.304	5.56 5.56	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	JB JB	0.0854 0.156	5.56 5.56	PQL PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JBQ JB	0.0677 0.0399	5.56 5.56	PQL PQL	ng/Kg ng/Kg	,
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JB JBQ	0.280 0.109	5.56 5.56	PQL PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF OCDF	JB JB	0.112 2.20	5.56 11.1	PQL PQL	ng/Kg ng/Kg	
SL-075-SA6-SB-9.0-10.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD	JB JB	2.61 0.789	5.20 5.20	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JB JB	1.96 3.46	5.20 5.20	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	JB JB	0.977 1.15	5.20 5.20	PQL PQL	ng/Kg ng/Kg	1 (-1) -1-44-3
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JB JB	0.507 0.273	5.20 5.20	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JB JB	1.47 2.05 1.12	5.20 5.20 5.20	PQL PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF	JB J	0.130 0.494	1.04	PQL PQL	ng/Kg ng/Kg	
SL-082-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JB	1.39 0.156	5.12 5.12	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF	JB JB	0.0806 0.523	5.12 5.12	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	JBQ JB	0.283 0.125	5.12 5.12	PQL PQL	ng/Kg ng/Kg	1 (all datasts)
	1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD	JB JB	0.132 0.0451	5.12 5.12	PQL PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JB JBQ	1.77 0.150	5.12 5.12	PQL PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF OCDF	JB JB	0.114 3.60	5.12 10.2	PQL PQL	ng/Kg ng/Kg	

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX118

EDD Filename: DX118_v1

EQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Matrix: SO		_					
		Lab		Reporting	RL		
SamplelD	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-082-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.468	5.43	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.123	5.43	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0682	5.43	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0874	5.43	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0365	5.43	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0276	5.43	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0281	5.43	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.0402	5.43	PQL	ng/Kg	- (
	1,2,3,7,8-PECDF	JBQ	0.0329	5.43	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0272	5.43	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0407	5.43	PQL PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0202	1.09	PQL	ng/Kg ng/Kg	
	OCDD OCDF	JB JB	1.95 0.204	10.9 10.9	PQL	ng/Kg	
				_			
SL-098-SA6-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDF	JB	1.12	5.13	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.123	5.13	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0427	5.13	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.175	5.13	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.228	5.13	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0873	5.13	PQL PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.101	5.13	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB JBQ	0.0362 0.0473	5.13 5.13	PQL	ng/Kg ng/Kg	J (all delects)
	1,2,3,7,8-PECDD	JB	0.0473	5.13	PQL	ng/Kg	
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JB	0.333	5.13	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0978	5.13	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0300	1.03	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.0783	1.03	PQL	ng/Kg	
	OCDF	JB	3.04	10.3	PQL	ng/Kg	
SL-103-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.456	5.34	PQL	ng/Kg	
SE-103-070-0B-4.0-3.0	1,2,3,4,6,7,8-HPCDF	JB	0.0712	5.34	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0423	5.34	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0370	5.34	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0501	5.34	PQL	ng/Kg	
:	1,2,3,6,7,8-HXCDD	JB	0.0603	5.34	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0445	5.34	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0505	5.34	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.0412	5.34	PQL	ng/Kg	*
	1,2,3,7,8-PECDD	JBQ	0.0797	5.34	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.102	5.34	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0316	5.34	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.106	5.34	PQL	ng/Kg	
	OCDD	JB	1.56	10.7	PQL	ng/Kg	
	OCDF	JB	0.141	10.7	PQL	ng/Kg	

Lab Reporting Batch ID: DX118

Laboratory: LL

EDD Filename: DX118_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
						<u> </u>	7 149
SL-103-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.573	5.44	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.113	5.44	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0460	5.44	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ JB	0.0660 0.122	5.44 5.44	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JBQ	0.122	5.44	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.103	5.44	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0825	5.44	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.0983	5.44	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.178	5.44	PQL	ng/Kg	- (,
	1,2,3,7,8-PECDF	JB	0.239	5.44	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0872	5.44	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.233	5.44	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.115	1.09	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.119	1.09	PQL	ng/Kg	
	OCDD	JB	2.29	10.9	PQL	ng/Kg	
	OCDF	JB	0.202	10.9	PQL	ng/Kg	
SL-124-SA6-SB-12.5-13.5	1,2,3,4,7,8,9-HPCDF	JB	1.42	5.45	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.487	5.45	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	1.46	5.45	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	2.75	5.45	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.774	5.45	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.10	5.45	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.392	5.45	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.215	5.45	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	1.16	5.45	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB JB	1.20 1.05	5.45 5.45	PQL PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF 2,3,7,8-TCDD	JBQ	0.107	1.09	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.730	1.09	PQL	ng/Kg	
01 404 046 65 40 56	* * * *				PQL		
SL-124-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF	JB JB	3.05 1.67	5.28 5.28	PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HxCDD	JB JB	1.98	5.28	PQL	ng/Kg	
•	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF	JB	1.11	5.28	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.11	5.28	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.484	5.28	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.549	5.28	PQL	ng/Kg	3 (4 45.55.5)
	1,2,3,7,8-PECDF	JB	2.15	5.28	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.86	5.28	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.866	5.28	PQL	ng/Kg	
	2,3,7,8-TCDD	JВ	0.228	1.06	PQL	ng/Kg	

Lab Reporting Batch ID: DX118 Laboratory: LL

EDD Filename: DX118_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Matrix: SO		1				ı i	
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-289-SA6-SB-3.5-4.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF C,3,7,8-TCDF CCDD OCDF	# # # # # # # # # # # # # # # # # # #	0.451 0.0839 0.0922 0.0402 0.0655 0.0537 0.0395 0.0812 0.108 0.0657 0.0686 0.0510 0.0887 0.0168 1.18 0.223	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-307-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	18 18 18 18 18 18 18 18 18 18	1.14 0.718 3.78 2.43 1.37 1.58 0.647 0.462 1.39 3.41 0.0374	5.02 5.02 5.02 5.02 5.02 5.02 5.02 5.02	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-308-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	B B B B B B B B B B B B B B B B B B B	4.96 0.360 0.251 0.284 0.814 0.262 0.881 0.289 0.244 0.133 0.278 0.218 0.0575 0.108	5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08	PGL PGL PGL PGL PGL PGL PGL PGL PGL PGL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-309-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	HE HE HE HE HE HE HE HE HE HE HE HE HE H	0.569 0.568 1.13 1.65 0.597 1.33 0.363 0.405 2.06 0.668 1.59 0.0656 0.695	5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Project Name and Number: 1203-004-008-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 10:15:20 AM ADR version 1.4.0.111 Page 4 of 4

SAMPLE DELIVERY GROUP

DX119

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
SL-236-SA6-SS-0.0-0.5	6355082	N	METHOD	1613B	[II]
SL-235-SA6-SS-0.0-0.5	6355081	N	METHOD	1613B	111
SL-255-SA6-SS-0.0-0.5	6355086	N	METHOD	1613B	[1]
SL-256-SA6-SS-0.0-0.5	6355087	N	METHOD	1613B	III
SL-193-SA6-SS-0.0-0.5	6355080	N	METHOD	1613B	[11]
SL-245-SA6-SS-0.0-0.5	6355083	N	METHOD	1613B	111
SL-254-SA6-SS-0.0-0.5	6355085	N	METHOD	1613B	Ш
SL-253-SA6-SS-0.0-0.5	6355084	N	METHOD	1613B	III
SL-268-SA6-SS-0.0-0.5	6355088	N	METHOD	1613B	III
SL-192-SA6-SS-0.0-0.5	6355079	N	METHOD	1613B	11 1
SL-190-SA6-SS-0.0-0.5	6355078	N	METHOD	1613B	III
SL-206-SA6-SS-0.0-0.5	6356792	N	METHOD	1613B	Ш
SL-213-SA6-SS-0.0-0.5	6356793	N	METHOD	1613B	111
SL-217-SA6-SS-0.0-0.5	6356794	N	METHOD	1613B	111
SL-204-SA6-SS-0.0-0.5	6356788	N	METHOD	1613B	111
SL-319-SA6-SS-0.0-0.5	6356796	N	METHOD	1613B	Ш
SL-317-SA6-SS-0.0-0.5	6356795	N	METHOD	1613B	111
SL-205-SA6-SS-0.0-0.5	6356789	N	METHOD	1613B	111
SL-205-SA6-SS-0.0-0.5MS	6356790	MS	METHOD	1613B	III
SL-205-SA6-SS-0.0-0.5MSD	6356791	MSD	METHOD	1613B	111
SL-013-SA6-SS-0.0-0.5	6356787	N	METHOD	1613B	III
SL-012-SA6-SS-0.0-0.5	6356786	N	METHOD	1613B	Ш
	SL-236-SA6-SS-0.0-0.5 SL-235-SA6-SS-0.0-0.5 SL-255-SA6-SS-0.0-0.5 SL-256-SA6-SS-0.0-0.5 SL-193-SA6-SS-0.0-0.5 SL-245-SA6-SS-0.0-0.5 SL-253-SA6-SS-0.0-0.5 SL-268-SA6-SS-0.0-0.5 SL-192-SA6-SS-0.0-0.5 SL-190-SA6-SS-0.0-0.5 SL-213-SA6-SS-0.0-0.5 SL-217-SA6-SS-0.0-0.5 SL-217-SA6-SS-0.0-0.5 SL-217-SA6-SS-0.0-0.5 SL-204-SA6-SS-0.0-0.5 SL-319-SA6-SS-0.0-0.5 SL-319-SA6-SS-0.0-0.5 SL-205-SA6-SS-0.0-0.5 SL-205-SA6-SS-0.0-0.5 SL-205-SA6-SS-0.0-0.5MSD SL-205-SA6-SS-0.0-0.5	SL-236-SA6-SS-0.0-0.5 6355082 SL-235-SA6-SS-0.0-0.5 6355081 SL-255-SA6-SS-0.0-0.5 6355086 SL-256-SA6-SS-0.0-0.5 6355087 SL-193-SA6-SS-0.0-0.5 6355080 SL-245-SA6-SS-0.0-0.5 6355083 SL-254-SA6-SS-0.0-0.5 6355085 SL-253-SA6-SS-0.0-0.5 6355084 SL-268-SA6-SS-0.0-0.5 6355088 SL-192-SA6-SS-0.0-0.5 6355079 SL-190-SA6-SS-0.0-0.5 6355078 SL-206-SA6-SS-0.0-0.5 6356792 SL-213-SA6-SS-0.0-0.5 6356792 SL-217-SA6-SS-0.0-0.5 6356793 SL-217-SA6-SS-0.0-0.5 6356794 SL-204-SA6-SS-0.0-0.5 6356796 SL-319-SA6-SS-0.0-0.5 6356795 SL-205-SA6-SS-0.0-0.5 6356789 SL-205-SA6-SS-0.0-0.5MSD 6356791 SL-205-SA6-SS-0.0-0.5 6356787	Field Sample ID Lab Sample ID Type SL-236-SA6-SS-0.0-0.5 6355082 N SL-235-SA6-SS-0.0-0.5 6355081 N SL-255-SA6-SS-0.0-0.5 6355086 N SL-256-SA6-SS-0.0-0.5 6355087 N SL-256-SA6-SS-0.0-0.5 6355080 N SL-245-SA6-SS-0.0-0.5 6355083 N SL-254-SA6-SS-0.0-0.5 6355085 N SL-253-SA6-SS-0.0-0.5 6355085 N SL-268-SA6-SS-0.0-0.5 6355088 N SL-268-SA6-SS-0.0-0.5 6355088 N SL-192-SA6-SS-0.0-0.5 6355079 N SL-190-SA6-SS-0.0-0.5 6355078 N SL-208-SA6-SS-0.0-0.5 6356792 N SL-217-SA6-SS-0.0-0.5 6356793 N SL-204-SA6-SS-0.0-0.5 6356796 N SL-317-SA6-SS-0.0-0.5 6356796 N SL-205-SA6-SS-0.0-0.5 6356789 N SL-205-SA6-SS-0.0-0.5MSD 6356790 MS SL-205-SA6-SS-0.0-0.5 6356791 MSD <	Field Sample ID Lab Sample ID Type Method SL-236-SA6-SS-0.0-0.5 6355082 N METHOD SL-235-SA6-SS-0.0-0.5 6355081 N METHOD SL-255-SA6-SS-0.0-0.5 6355086 N METHOD SL-256-SA6-SS-0.0-0.5 6355087 N METHOD SL-193-SA6-SS-0.0-0.5 6355080 N METHOD SL-245-SA6-SS-0.0-0.5 6355083 N METHOD SL-253-SA6-SS-0.0-0.5 6355086 N METHOD SL-263-SA6-SS-0.0-0.5 6355088 N METHOD SL-263-SA6-SS-0.0-0.5 6355088 N METHOD SL-192-SA6-SS-0.0-0.5 6355079 N METHOD SL-192-SA6-SS-0.0-0.5 6356079 N METHOD SL-205-SA6-SS-0.0-0.5 6356792 N METHOD SL-217-SA6-SS-0.0-0.5 6356793 N METHOD SL-319-SA6-SS-0.0-0.5 6356796 N METHOD SL-317-SA6-SS-0.0-0.5 6356796 N METHOD SL-2	Field Sample ID Lab Sample ID Type Method Method SL-236-SA6-SS-0.0-0.5 6355082 N METHOD 16138 SL-235-SA6-SS-0.0-0.5 6355081 N METHOD 16138 SL-255-SA6-SS-0.0-0.5 6355086 N METHOD 16138 SL-256-SA6-SS-0.0-0.5 6355087 N METHOD 16138 SL-256-SA6-SS-0.0-0.5 6355080 N METHOD 16138 SL-245-SA6-SS-0.0-0.5 6355083 N METHOD 16138 SL-253-SA6-SS-0.0-0.5 6355085 N METHOD 16138 SL-253-SA6-SS-0.0-0.5 6355084 N METHOD 16138 SL-268-SA6-SS-0.0-0.5 6355088 N METHOD 16138 SL-192-SA6-SS-0.0-0.5 6355079 N METHOD 16138 SL-192-SA6-SS-0.0-0.5 6356792 N METHOD 16138 SL-213-SA6-SS-0.0-0.5 6356793 N METHOD 16138 SL-204-SA6-SS-0.0-0.5 6356794 N <td< td=""></td<>

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-012-SA6-SS-0.0-0.5	Collec	ted: 7/26/2	011 3:02:0	0 A	nalysis Ty	pe: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.16	JB	0.0219	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.242	JB	0.0273	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.258	JВ	0.0502	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	1.59	JВ	0.0565	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.41	JB	0.0511	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.390	JB	0.0552	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.787	JB	0.0462	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.100	JB	0.0509	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.411	JBQ	0.0538	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	2.10	JВ	0.0635	MDL	5.10	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.353	JB	0.0520	MDL	5.10	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.434	JB	0.0617	MDL	5.10	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.148	JB	0.0238	MDL	1.02	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.196	j	0.0827	MDL	1.02	PQL	ng/Kg	J	Z
OCDF	8.86	JB	0.0282	MDL	10.2	PQL	ng/Kg	J	Z

Sample ID: SL-013-SA6-SS-0.0-0.5 Collected: 7/26/2011 2:39:00 Analysis Type: RES Dilution: 1

	Lab	Lab		DL		RL Turns	11-14-	Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,7,8,9-HPCDF	0.378	JB	0.0337	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.541	JB	0.0539	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.94	JВ	0.0663	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.73	JB	0.0525	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.664	JB	0.0606	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.07	JB	0.0503	MDL	4.90	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.397	JB	0.0451	MDL.	4.90	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	4.08	JB	0.0643	MDL	4.90	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.748	JB	0.0587	MDL	4.90	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.76	JB	0.0589	MDL	4.90	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.454	J	0.0808	MDL	0.980	PQL	ng/Kg	J	Z
OCDF	8.65	JB	0.0346	MDL	9.80	PQL	ng/Kg	J	Z

ADR version 1.4.0.111 Page 1 of 14

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-190-SA6-SS-0.0-0.5 Collected: 7/25/2011 3:51:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	1.48	JB	0.0753	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.875	JB	0.0572	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	3.10	JB	0.0576	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	1.21	JB	0.0887	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.73	JB	0.0650	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.446	JB	0.103	MDL	4.95	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.643	JB	0.102	MDL	4.95	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.32	JB	0.0908	MDL	4.95	PQL	ng/Kg	L	Z	
2,3,4,7,8-PECDF	2.85	JB	0.115	MDL	4.95	PQL	ng/Kg	J	Z	
2,3,7;8-TCDD	0.126	JB	0.0361	MDL	0.989	PQL	ng/Kg	U	В	

Sample ID: SL-192-SA6-SS-0.0-0.5 Collected: 7/25/2011 3:23:00 Analysis Type: RES Dilution: 1

Sample ID: 3L-192-3A0-33-0.0-0.9	Conec	tea. Hasia	0113.23.0	.do Analysis Type. NEO				Diblion.		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	3.25	JB	0.0269	MDL	5.03	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.241	JB	0.0337	MDL	5.03	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.204	JB	0.0371	MDL	5.03	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.353	JB	0.0346	MDL	5.03	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.758	JB	0.0377	MDL	5.03	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.271	JB	0.0312	MDL	5.03	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.543	JB	0.0365	MDL	5.03	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.131	JBQ	0.0358	MDL	5.03	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.188	JB	0.0340	MDL	5.03	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	4.11	JB	0.0396	MDL	5.03	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.234	JB	0.0289	MDL	5.03	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.418	JB	0.0374	MDL	5.03	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0371	JBQ	0.0209	MDL	1.01	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.245	J	0.0494	MDL	1.01	PQL	ng/Kg	J	Z	
OCDF	6.11	JB	0.0207	MDL	10.1	PQL	ng/Kg	J	Z	

Sample ID: SL-193-SA6-SS-0.0-0.5 Collected: 7/25/2011 10:56:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5.72	В	0.0351	MDL	4.92	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	1.73	JB	0.0142	MDL	4.92	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-193-SA6-SS-0.0-0.5 Collected: 7/25/2011 10:56:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.154	JBQ	0.0244	MDL	4.92	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.100	JB	0.0379	MDL	4.92	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.167	JB	0.0277	MDL	4.92	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.500	JB	0.0377	MDL	4.92	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.146	JВ	0.0245	MDL	4.92	PQL	ng/Kg	Ų	В
1,2,3,7,8,9-HXCDD	0.338	JВ	0.0349	MDL	4.92	PQL	ng/Kg	Ų	В
1,2,3,7,8,9-HXCDF	0.113	JB	0.0245	MDL	4.92	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.104	JB	0.0239	MDL	4.92	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.433	JB	0.0198	MDL	4.92	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.147	JBQ	0.0245	MDL	4.92	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.198	JB	0.0211	MDL	4.92	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.165	J	0.0360	MDL	0.984	PQL	ng/Kg	J	Z
DCDF	2.87	JB	0.0218	MDL	9.84	PQL	ng/Kg	J	Z

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.67	JВ	0.0568	MDL	4.85	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.26	JB	0.0421	MDL	4.85	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.02	JB	0.0486	MDL	4.85	PQL	ng/Kg	j	Z
1,2,3,6,7,8-HXCDD	2.84	JB	0.0431	MDL	4.85	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.18	JВ	0.0393	MDL	4.85	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.31	JB	0.0377	MDL	4.85	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.397	JB	0.0541	MDL	4.85	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.557	JB	0.0567	MDL	4.85	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.03	JB	0.0367	MDL	4.85	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.41	JB	0.0452	MDL	4.85	PQL .	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.636	JB	0.0389	MDL	4.85	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0977	JBQ	0.0262	MDL	0.970	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.365	J	0.0545	MDL	0.970	PQL	ng/Kg	j	Z

Sample ID: SL-205-SA6-SS-0.0-0.5 Collected: 7/26/2011 12:06:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.45	JB	0.0473	MDL	4.95	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

9/28/2011 10:22:06 AM ADR version 1.4.0.111 Page 3 of 14

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-205-SA6-SS-0.0-0.5 Collected: 7/26/2011 12:06:00 Analysis Type: RES Dilution: 1 Data RLLab Lab DL Review Reason DL RL Units Result Qual Code Analyte Qual Type Type Z 1,2,3,4,7,8-HxCDD 1.29 JB 0.0346 MDL 4.95 PQL ng/Kg J Z 1,2,3,6,7,8-HXCDD 1.84 JB 0.0366 MDL 4.95 PQL ng/Kg JВ 0.0736 MDL 4.95 PQL ng/Kg J Z 1,2,3,6,7,8-HXCDF 3.36 1.73 JB 0.0329 MDL 4.95 **PQL** ng/Kg Z 1,2,3,7,8,9-HXCDD JBQ 0.0808 MDL 4.95 PQL J Z 1,2,3,7,8,9-HXCDF 0.953 ng/Kg J z 1,2,3,7,8-PECDD 0.547 JB 0.0763 MDL 4.95 **PQL** ng/Kg 0.0720 MDL 4.95 PQL J Z JB ng/Kg 2,3,4,6,7,8-HXCDF 1.73 U В 2,3,7,8-TCDD 0.111 JΒ 0.0276 MDL 0.990 PQL ng/Kg ng/Kg OCDD 744 В 0.0405 MDL 9.90 PQL J Q, Q

Sample ID: SL-206-SA6-SS-0.0-0.5	Collec	ted: 7/26/2	011 8:18:0	10 A	nalysis Ty	/pe: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.50	JB	0.0278	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.346	JB	0.0318	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.323	JB	0.0416	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.622	JB	0.0358	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.13	JB	0.0428	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.322	JB	0.0342	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.766	JB	0.0416	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.335	JB	0.0337	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.277	JBQ	0.0344	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.05	JB	0.0367	MDL	5.15	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.290	JB	0.0308	MDL	5.15	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.758	JB	0.0369	MDL	5.15	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.162	JBQ	0.0194	MDL	1.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.422	JQ	0.0982	MDL	1.03	PQL	ng/Kg	J	Z
OCDF	8.96	JB	0.0281	MDL	10.3	PQL	ng/Kg	J	Z

Sample ID: SL-213-SA6-SS-0.0-0.5	Collec	Collected: 7/26/2011 8:38:00 Analysis Type: RES							Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,4,6,7,8-HPCDF	1.61	JB	0.0192	MDL	4.98	PQL	ng/Kg	J	Z			
1,2,3,4,7,8,9-HPCDF	0.145	JB	0.0265	MDL	4.98	PQL	ng/Kg	U	В			
1,2,3,4,7,8-HxCDD	0.0893	JB	0.0333	MDL	4.98	PQL	ng/Kg	U	В			

^{*} denotes a non-reportable result

9/28/2011 10:22:06 AM ADR version 1.4.0.111 Page 4 of 14

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-213-SA6-SS-0.0-0.5 Collected: 7/26/2011 8:38:00 Analysis Type: RES Dilution: 1

inproduct of the original	••									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HXCDF	0.168	JBQ	0.0234	MDL	4.98	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.509	JB	0.0338	MDL	4.98	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.112	JBQ	0.0203	MDL	4.98	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	0.404	JB	0.0321	MDL	4.98	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDF	0.231	JB	0.0227	MDL	4.98	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDD	0.117	JBQ	0.0199	MDL	4.98	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDF	0.185	JBQ	0.0156	MDL	4.98	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.113	JB	0.0218	MDL	4.98	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.171	JBQ	0.0155	MDL	4.98	PQL	ng/Kg	υ	В	
2,3,7,8-TCDD	0.0591	JBQ	0.0153	MDL	0.996	PQL	ng/Kg	υ	В	
2,3,7,8-TCDF	0.0682	J	0.0277	MDL	0.996	PQL	ng/Kg	J	Z	
OCDF	4.26	JB	0.0260	MDL	9.96	PQL	ng/Kg	J	Z	

Sample ID: SL-217-SA6-SS-0.0-0.5 Collected: 7/26/2011 9:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2,20	JВ	0.0159	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.128	JВ	0.0225	MDL	5.17	PQL	ng/Kg	Ų	В
1,2,3,4,7,8-HxCDD	0.0837	JВ	0.0340	MDL	5.17	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.150	JBQ	0.0309	MDL	5.17	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.312	JB	0.0347	MDL	5.17	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0994	JB	0.0267	MDL	5.17	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.301	JB	0.0346	MDL	5.17	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.212	JBQ	0.0304	MDL	5.17	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0978	JBQ	0.0251	MDL	5.17	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.310	JB	0.0208	MDL	5.17	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.129	JB	0.0253	MDL	5.17	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.119	JB	0.0216	MDL	5.17	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.104	J	0.0404	MDL	1.03	PQL	ng/Kg	J	Z
OCDF	5.29	JB	0.0330	MDL.	10.3	PQL	ng/Kg	J	Z

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.33	В	0.0188	MDL	2.53	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
9/28/2011 10:22:06 AM ADR version 1.4.0.111

9/28/2011 10:22:06 AM ADR version 1.4.0.111 Page 5 of 14

Laboratory: LL Lab Reporting Batch ID: DX119

eQAPP Name: CDM_SSFL_110509 EDD Filename: DX119_v1

the state of the s Method Category: SVOA Matrix: SO Method: 1613B

Dilution: 1 Sample ID: SL-235-SA6-SS-0.0-0.5 Collected: 7/25/2011 8:15:00 Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.712	JB	0.00690	MDL	2.53	PQL	ng/Kg	L	Z
1,2,3,4,7,8,9-HPCDF	0.0839	JBQ	0.0134	MDL	2.53	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0681	JB	0.0208	MDL	2.53	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0724	JBQ	0.0149	MDL	2.53	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.222	JB	0.0214	MDL	2.53	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0682	JBQ	0.0127	MDL	2.53	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.231	JB	0.0192	MDL	2.53	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.115	JB	0.0157	MDL	2.53	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0711	JBQ	0.0160	MDL	2.53	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.162	JB	0.00963	MDL	2.53	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.0928	JB	0.0124	MDL	2.53	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.183	JBQ	0.0104	MDL	2.53	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.0827	JQ	0.0174	MDL	0.506	PQL	ng/Kg	J	Z
OCDD	40.0	В	0.0114	MDL	5.06	PQL	ng/Kg	U	В
OCDF	2.00	JŖ	0.0156	MDL	5.06	PQL	ng/Kg	J	Z

Dilution: 1 Analysis Type: RES Collected: 7/25/2011 7:52:00 Sample ID: SL-236-SA6-SS-0.0-0.5

3aniple ID: 3L-230-3A0-33-0.0-0.0	CONCU	.cu. ,,,,,,,,	011110210		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, pu			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.45	В	0.0215	MDL	2.52	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.970	JB	0.00838	MDL	2.52	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.105	JBQ	0.0171	MDL	2.52	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0752	JBQ	0.0239	MDL	2.52	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0877	JBQ	0.0164	MDL	2.52	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.234	JB	0.0249	MDL	2.52	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0886	JB	0.0133	MDL	2.52	PQL	ng/Kg	C	В
1,2,3,7,8,9-HXCDD	0.215	JB	0.0228	MDL	2.52	PQL	ng/Kg	Ü	В
1,2,3,7,8,9-HXCDF	0.0614	JBQ	0.0182	MDL	2.52	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0916	JBQ	0.0154	MDL	2.52	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.197	JBQ	0.0122	MDL	2.52	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.110	JBQ	0.0149	MDL	2.52	PQL	ng/Kg	J	В
2,3,4,7,8-PECDF	0.221	JBQ	0.0138	MDL	2.52	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0949	JQ	0.0187	MDL	0.503	PQL	ng/Kg	J	Z
OCDF	2.76	JB	0.0170	MDL	5.03	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-245-SA6-SS-0.0-0.5	Collected: 7/25/2011 11:39:00	Analysis Type: RES	Dilution: 1
Sample ID. 3L-240-3M0-33-0.0-0.0	Conected. 1120/2011 11:05:00	Allalysis Type. NEO	Dittation.

			•						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.40	В	0.0155	MDL	2.49	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	1.44	JB	0.00525	MDL	2.49	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.143	JBQ	0.0135	MDL	2.49	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0838	JBQ	0.0185	MDL	2.49	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.171	JB	0.0181	MDL	2.49	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.374	JB	0.0190	MDL	2.49	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.162	JB	0.0141	MDL	2.49	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.267	JB	0.0173	MDL	2.49	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.100	JB	0.0219	MDL	2.49	PQL	ng/Kg	Ų	₿
1,2,3,7,8-PECDD	0.109	JBQ	0.0137	MDL	2.49	PQL	ng/Kg	U	8
1,2,3,7,8-PECDF	0.308	JB	0.0103	MDL	2.49	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.166	JB	0.0164	MDL	2.49	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.206	JB	0.0121	MDL.	2.49	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0273	JB	0.0110	MDL	0.498	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.151	J	0.0187	MDL	0.498	PQL	ng/Kg	J	Z
OCDD	23.3	В	0.0131	MDL	4.98	PQL	ng/Kg	U	В
OCDF	. 2.63	JB	0.0157	MDL	4.98	PQL	ng/Kg	J	Z

Sample ID: SL-253-SA6-SS-0.0-0.5 Collected: 7/25/2011 2:21:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5.84	В	0.0288	MDL	5.03	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	2.40	JB	0.0103	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.255	JB	0.0232	MDL	5.03	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.171	JBQ	0.0381	MDL	5.03	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.293	JBQ	0.0325	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.587	JВ	0.0398	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.252	JВ	0.0256	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.342	JB	0.0343	MDL	5.03	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.218	JB	0.0403	MDL	5.03	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.267	JB	0.0261	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.371	JB	0.0161	MDL	5.03	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.285	JB	0.0300	MDL	5.03	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.322	JBQ	0.0177	MDL	5.03	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-253-SA6-SS-0.0-0.5 Collected: 7/25/2011 2:21:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDD	0.0840	JB	0.0209	MDL	1.01	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.200	J	0.0263	MDL	1.01	PQL	ng/Kg	J	z
OCDD	33.9	В	0.0216	MDL	10.1	PQL	ng/Kg	U	В
OCDF	3.99	JB	0.0315	MDL	10.1	PQL	ng/Kg	J	Z

Sample ID: SL-254-SA6-SS-0.0-0.5 Collected: 7/25/2011 1:45:00 Analysis Type: RES Dilution: 1

antple ID. GE-204-GAG-GG-GG-GG	Conec	teu. Hene	VII 1.70.0	~ ~	Allarysis Type. NEO				Dilution.		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDF	3.10	JB	0.0179	MDL	4.92	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.237	JB	0.0235	MDL	4.92	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.174	JBQ	0.0498	MDL	4.92	PQL	ng/Kg	Ų	В		
1,2,3,4,7,8-HXCDF	0.296	JBQ	0.0338	MDL	4.92	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	0.819	JB	0.0493	MDL	4.92	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.336	JB	0.0320	MDL	4.92	PQL	ng/Kg	L	Z		
1,2,3,7,8,9-HXCDD	0.655	JBQ	0.0462	MDL	4.92	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.200	JB	0.0356	MDL	4.92	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.168	JBQ	0.0304	MDL	4.92	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.786	JB	0.0279	MDL	4.92	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.244	JB	0.0336	MDL	4.92	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.503	JB	0.0285	MDL	4.92	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.0277	JB	0.0228	MDL	0.984	PQL	ng/Kg	U	В		
2,3,7,8-TCDF	0.376	J	0.0523	MDL	0.984	PQL	ng/Kg	J	Z		
OCDF	5.97	JB	0.0207	MDL	9.84	PQL	ng/Kg	J	Z		

Sample ID: SL-255-SA6-SS-0.0-0.5 Collected: 7/25/2011 9:35:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.01	JB	0.0382	MDL	5.03	PQL	ng/Kg	Ų	В
1,2,3,4,6,7,8-HPCDF	1.25	JB	0.0139	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.145	JBQ	0.0306	MDL	5.03	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.118	JB	0.0422	MDL	5.03	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.222	JB	0.0315	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.284	JB	0.0445	MDL	5.03	PQL	ng/Kg	Ų	В
1,2,3,6,7,8-HXCDF	0.119	JB	0.0252	MDL	5.03	PQL	лд/Кд	U	В
1,2,3,7,8,9-HXCDD	0.218	JBQ	0.0385	MDL	5.03	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX119

Laboratory: LL

EDD Filename: DX119_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-255-SA6-SS-0.0-0.5	Collec	ted: 7/25/2	011 9:35:0	10 A	nalysis Ty	pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8,9-HXCDF	0.0981	JB	0.0370	MDL	5.03	PQL	ng/Kg	Ų	В	
1,2,3,7,8-PECDD	0.107	JBQ	0.0275	MDL	5.03	PQL	ng/Kg	Ų	В	
1,2,3,7,8-PECDF	0.464	JBQ	0.0292	MDL	5.03	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.115	JB	0.0270	MDL	5.03	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.157	JB	0.0342	MDL	5.03	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0338	JBQ	0.0236	MDL	1.01	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.100	JQ	0.0718	MDL	1.01	PQL	ng/Kg	J	Z	
OCDD	34.6	В	0.0264	MDL	10.1	PQL	ng/Kg	U	В	
OCDF	3.12	JB	0.0365	MDL	10.1	PQL	ng/Kg	J	Z	

Collected: 7/25/2011 10:20:00 Analysis Type: RES Dilution: 1 Sample ID: SL-256-SA6-SS-0.0-0.5

cumple ib. or-zoo ono de die die	00,,00				, ,				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.90	JB	0.0104	MDL	4.85	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.233	JB	0.0250	MDL	4.85	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0996	JB	0.0378	MDL	4.85	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.212	JB	0.0269	MDL	4.85	PQL	ng/Kg	j	Z
1,2,3,6,7,8-HXCDD	0.397	JB	0.0368	MDL	4.85	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.208	JBQ	0.0218	MDL	4.85	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.304	JB	0.0379	MDL	4.85	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.146	JBQ	0.0338	MDL	4.85	PQL	ng/Kg	Ų	В
1,2,3,7,8-PECDD	0.0900	JB	0.0305	MDL	4.85	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.749	JB	0.0195	MDL	4.85	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.183	JB	0.0244	MDL	4.85	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.254	JB	0.0225	MDL	4.85	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.162	J	0.0354	MDL	0.969	PQL	ng/Kg	J	z
OCDF	3.81	JB	0.0283	MDL	9.69	PQL	ng/Kg	J	Z

Dilution: 1 Sample ID: SL-268-SA6-SS-0.0-0.5 Collected: 7/25/2011 2:53:00 Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.924	JB	0.0306	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.912	JB	0.0457	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.83	JB	0.0478	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	3.61	JB	0.0468	MDL	4.99	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

ADR version 1.4.0.111 9/28/2011 10:22:06 AM Page 9 of 14

Lab Reporting Batch ID: DX119

Laboratory: LL

1

EDD Filename: DX119_v1

eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA
Method:	1613B

Matrix: SO

Sample ID: SL-268-SA6-SS-0.0-0.5	Collected: 7/25/2011 2:53:00	Analysis Type: RES	Dilution:
----------------------------------	------------------------------	--------------------	-----------

campioner on not or to occur					, ,				
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDF	1.51	JB	0.0451	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.24	JB	0.0446	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.538	JB	0.0448	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.692	JB	0.0679	MDL	4.99	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.73	JB	0.0600	MDL	4.99	PQL	лд/Кд	J	Z
2,3,4,6,7,8-HXCDF	1.74	JB	0.0429	MDL	4.99	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.89	JB	0.0544	MDL	4.99	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.129	JB	0.0258	MDL	0.999	PQL	ng/Kg	Ų	В

 Sample ID: SL-317-SA6-SS-0.0-0.5
 Collected: 7/26/2011 11:50:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL_	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	3.00	JВ	0.0527	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	4.08	JB	0.0729	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	3.39	JB	0.0612	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.540	JB	0.0887	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.24	JВ	0.0687	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	2.18	JB	0.0572	MDL	4.96	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	4.29	JB	0.0721	MDL	4.96	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.42	JB	0.0629	MDL	4.96	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.161	JBQ	0.0262	MDL	0.991	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.671	J	0.129	MDL	0.991	PQL	ng/Kg	J	Z

Sample ID: SL-319-SA6-SS-0.0-0.5 Collected: 7/26/2011 10:22:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.85	JB	0.0520	MDL	4.96	PQL	ng/Kg	J	z
1,2,3,4,7,8-HxCDD	2.28	JB	0.0542	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	3.02	JB	0.0673	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	4.69	JB	0.0492	MDL	4.96	PQL	n g /Kg	J	Z
,2,3,7,8,9-HXCDF	1.06	JB	0.0726	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.43	JB	0.0806	MDL	4.96	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	2.73	JB	0.0658	MDL	4.96	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	3.20	JB	0.0673	MDL	4.96	PQL	ng/Kg	J	Z
2,3, 7 ,8-TCDD	0.279	JB	0.0404	MDL	0.992	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

9/28/2011 10:22:07 AM ADR version 1.4.0.111 Page 10 of 14

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX119

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX119_v1

Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
Ē	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Laboratory Triplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Laboratory: LL Lab Reporting Batch ID: DX119 eQAPP Name: CDM_SSFL_110509 EDD Filename: DX119_v1

ichanic. DX i io_v	•
F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
н	Sampling to Extraction Estimation
н	Sampling to Extraction Rejection
н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
ļ	Internal Standard Estimation
1	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
M	Initial Tune
М	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Laboratory Triplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX119

EDD Filename: DX119_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Q	Matrix Spike Upper Rejection
R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

Enclosure I

EPA Level III ADR Outliers (including Manual Review Outliers)

Quality Control Outlier Reports

DX119

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX119

Laboratory: LL

EDD Filename: DX119_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-205-SA6-SS-0.0-0.5MSD (SL-205-SA6-SS-0.0-0.5)	OCDD	-	-34	40.00-135.00	28 (20.00)	OCDD	J (all detects) R (all non-detects)

9/28/2011 10:19:11 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO	В								
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples					
BLK2170B371618	8/9/2011 4:18:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	1.47 ng/Kg 0.0539 ng/Kg 0.0538 ng/Kg 0.0904 ng/Kg 0.0904 ng/Kg 0.0842 ng/Kg 0.0842 ng/Kg 0.0945 ng/Kg 0.0531 ng/Kg 0.0531 ng/Kg 0.0533 ng/Kg 0.0533 ng/Kg 0.0553 ng/Kg 0.0573 ng/Kg 0.0573 ng/Kg 0.0571 ng/Kg 0.0574 ng/Kg 0.0574 ng/Kg 0.0574 ng/Kg 0.0440 ng/Kg	SL-012-SA6-SS-0.0-0.5 SL-013-SA6-SS-0.0-0.5 SL-190-SA6-SS-0.0-0.5 SL-192-SA6-SS-0.0-0.5 SL-193-SA6-SS-0.0-0.5 SL-204-SA6-SS-0.0-0.5 SL-205-SA6-SS-0.0-0.5 SL-213-SA6-SS-0.0-0.5 SL-217-SA6-SS-0.0-0.5 SL-235-SA6-SS-0.0-0.5 SL-235-SA6-SS-0.0-0.5 SL-235-SA6-SS-0.0-0.5 SL-253-SA6-SS-0.0-0.5 SL-253-SA6-SS-0.0-0.5 SL-253-SA6-SS-0.0-0.5 SL-255-SA6-SS-0.0-0.5 SL-256-SA6-SS-0.0-0.5 SL-258-SA6-SS-0.0-0.5 SL-258-SA6-SS-0.0-0.5 SL-258-SA6-SS-0.0-0.5 SL-258-SA6-SS-0.0-0.5 SL-258-SA6-SS-0.0-0.5 SL-258-SA6-SS-0.0-0.5 SL-258-SA6-SS-0.0-0.5 SL-258-SA6-SS-0.0-0.5 SL-258-SA6-SS-0.0-0.5 SL-258-SA6-SS-0.0-0.5					

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-012-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.242 ng/Kg	0.242U ng/Kg
SL-012-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.258 ng/Kg	0.258U ng/Kg
SL-012-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.100 ng/Kg	0,100U ng/Kg
SL-190-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.126 ng/Kg	0.126U ng/Kg
SL-192-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0,241 ng/Kg	0.241U ng/Kg
SL-192-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.204 ng/Kg	0.204U ng/Kg
SL-192-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.131 ng/Kg	0.131U ng/Kg
SL-192-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.188 ng/Kg	0.188U ng/Kg
SL-192-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0371 ng/Kg	0,0371U ng/Kg
SL-193-SA6-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDD	5.72 ng/Kg	5,72U ng/Kg
SL-193-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0,154 ng/Kg	0.154U ng/Kg
SL-193-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.100 ng/Kg	0.100U ng/Kg
SL-193-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.167 ng/Kg	0.167U ng/Kg
SL-193-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.146 ng/Kg	0.146U ng/Kg
SL-193-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.338 ng/Kg	0.338U ng/Kg
SL-193-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.113 ng/Kg	0.113U ng/Kg
SL-193-\$A6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.104 ng/Kg	0.104U ng/Kg
SL-193-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.198 ng/Kg	0.198U ng/Kg
SL-204-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0977 ng/Kg	0.0977U ng/Kg
SL-205-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.111 ng/Kg	0.111U ng/Kg
SL-206-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.323 ng/Kg	0.323U ng/Kg
SL-213-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.145 ng/Kg	0.145U ng/Kg
SL-213-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0,0893 ng/Kg	0.0893U ng/Kg
SL-213-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.168 ng/Kg	0.168U ng/Kg
SL-213-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.112 ng/Kg	0.112U ng/Kg
SL-213-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.404 ng/Kg	0.404U ng/Kg
SL-213-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.231 ng/Kg	0.231U ng/Kg

9/28/2011 10:21:26 AM ADR version 1.4.0.111 Page 1 of 4

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	And the second s			
Method Blar Sample ID	ık	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-213-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.117 ng/Kg	0.117U ng/Kg
SL-213-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.185 ng/Kg	0.185U ng/Kg
SL-213-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.113 ng/Kg	0.113U ng/Kg
SL-213-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.171 ng/Kg	0,171U ng/Kg
SL-213-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0591 ng/Kg	0.0591U ng/Kg
SL-217-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.128 ng/Kg	0.128U ng/Kg
SL-217-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.0837 ng/Kg	0.0837U ng/Kg
SL-217-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.150 ng/Kg	0.150U ng/Kg
SL-217-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDD	0.312 ng/Kg	0.312U ng/Kg
SL-217-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.0994 ng/Kg	0.0994U ng/Kg
SL-217-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.301 ng/Kg	0.301U ng/Kg
SL-217-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.212 ng/Kg	0.212U ng/Kg
SL-217-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.0978 ng/Kg	0.0978U ng/Kg
SL-217-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.129 ng/Kg	0.129U ng/Kg
SL-217-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.119 ng/Kg	0.119U ng/Kg
SL-235-SA6-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDD	3.33 ng/Kg	3,33U ng/Kg
SL-235-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0839 ng/Kg	0.0839U ng/Kg
SL-235-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.0681 ng/Kg	0,0681U ng/Kg
SL-235-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.0724 ng/Kg	0.0724U ng/Kg
SL-235-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDD	0.222 ng/Kg	0.222U ng/Kg
SL-235-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.0682 ng/Kg	0.0682U ng/Kg
SL-235-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.231 ng/Kg	0.231U ng/Kg
SL-235-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.115 ng/Kg	0.115U ng/Kg
SL-235-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.0711 ng/Kg	0.0711U ng/Kg
SL-235-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.162 ng/Kg	0.162U ng/Kg
SL-235-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.0928 ng/Kg	0.0928U ng/Kg
SL-235-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.183 ng/Kg	0.183U ng/Kg
6L-235-SA6-SS-0.0-0.5(RES)	OCDD	40.0 ng/Kg	40.0U ng/Kg
SL-236-SA6-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDD	4.45 ng/Kg	4.45U ng/Kg
6L-236-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.105 ng/Kg	0.105U ng/Kg
SL-236-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.0752 ng/Kg	0.0752U ng/Kg
6L-236-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.0877 ng/Kg	0.0877U ng/Kg
SL-236-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDD	0.234 ng/Kg	0,234U ng/Kg
SL-236-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.0886 ng/Kg	0.0886U ng/Kg
SL-236-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.215 ng/Kg	0.215U ng/Kg
SL-236-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0614 ng/Kg	0.0614U ng/Kg
SL-236-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.0916 ng/Kg	0.0916U ng/Kg
SL-236-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.197 ng/Kg	0.197U ng/Kg
SL-236-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.110 ng/Kg	0.110U ng/Kg
SL-236-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0,221 ng/Kg	0.221U ng/Kg

9/28/2011 10:21:26 AM ADR version 1.4.0.111 Page 2 of 4

Lab Reporting Batch ID: DX119 Laboratory: LL EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO				
Method Blar Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-245-SA6-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDD	3.40 ng/Kg	3.40U ng/Kg
SL-245-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0,143 ng/Kg	0.143U ng/Kg
SL-245-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.0838 ng/Kg	0.0838U ng/Kg
SL-245-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.171 ng/Kg	0.171U ng/Kg
SL-245-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDD	0.374 ng/Kg	0.374U ng/Kg
SL-245-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.267 ng/Kg	0.267U ng/Kg
SL-245-SA6-SS-0,0-0,5(RES)	1,2,3,7,8,9-HXCDF	0.100 ng/Kg	0.100U ng/Kg
SL-245-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.109 ng/Kg	0.109U ng/Kg
SL-245-SA6-SS-0,0-0,5(RES)	2,3,4,7,8-PECDF	0.206 ng/Kg	0.206U ng/Kg
SL-245-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0273 ng/Kg	0.0273U ng/Kg
SL-245-SA6-SS-0.0-0.5(RES)	OCDD	23.3 ng/Kg	23.3U ng/Kg
SL-253-SA6-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDD	5.84 ng/Kg	5,84U ng/Kg
SL-253-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.255 ng/Kg	0.255U ng/Kg
SL-253-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.171 ng/Kg	0.171U ng/Kg
SL-253-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.342 ng/Kg	0.342U ng/Kg
SL-253-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.218 ng/Kg	0.218U ng/Kg
SL-253-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0840 ng/Kg	0.0840U ng/Kg
SL-253-SA6-SS-0.0-0.5(RES)	OCDD	33.9 ng/Kg	33.9U ng/Kg
SL-254-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.237 ng/Kg	0.237U ng/Kg
SL-254-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.174 ng/Kg	0.174U ng/Kg
SL-254-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.200 ng/Kg	0.200U ng/Kg
SL-254-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0,168 ng/Kg	0.168U ng/Kg
SL-254-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0277 ng/Kg	0.0277U ng/Kg
SL-255-SA6-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDD	4.01 ng/Kg	4,01U ng/Kg
SL-255-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.145 ng/Kg	0.145U ng/Kg
SL-255-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.118 ng/Kg	0.118U ng/Kg
SL-255-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDD	0.284 ng/Kg	0.284U ng/Kg
SL-255-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.119 ng/Kg	0.119U ng/Kg
SL-255-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.218 ng/Kg	0.218U ng/Kg
SL-255-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0981 ng/Kg	0.0981U ng/Kg
SL-255-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.107 ng/Kg	0.107U ng/Kg
SL-255-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.115 ng/Kg	0.115U ng/Kg
SL-255-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.157 ng/Kg	0,157U ng/Kg
SL-255-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.0338 ng/Kg	0.0338U ng/Kg
SL-255-SA6-SS-0.0-0.5(RES)	OCDD	34.6 ng/Kg	34.6U ng/Kg
SL-256-\$A6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.233 ng/Kg	0.233U ng/Kg
SL-256-SA6-SS-0.0-0,5(RES)	1,2,3,4,7,8-HxCDD	0.0996 ng/Kg	0.0996U ng/Kg
SL-256-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDD	0.397 ng/Kg	0.397U ng/Kg
SL-256-SA6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.304 ng/Kg	0.304U ng/Kg
SL-256-\$A6-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.146 ng/Kg	0.146U ng/Kg

9/28/2011 10:21:26 AM ADR version 1.4.0.111 Page 3 of 4

Lab Reporting Batch ID: DX119

Laboratory: LL

EDD Filename: DX119_v1

eQAPP Name: CDM_SSFL_110509

Method: Matrix:	1613B SO	ন্তু প্ৰচাৰে কৰে ক্ষিত্ৰ হৈ স্থানীয় ক			
Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-256-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.0900 ng/Kg	0.0900U ng/Kg
SL-256-SA6-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.254 ng/Kg	0.254U ng/Kg
SL-268-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.129 ng/Kg	0.129U ng/Kg

9/28/2011 10:21:26 AM ADR version 1.4.0.111 Page 4 of 4

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Wattix. SO		1-6		Donostin u			
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-012-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		3.16 0.242 0.258 1.59 1.41 0.390 0.787 0.100 0.411 2.10 0.353 0.434 0.148 0.196 8.86	5.10 5.10 5.10 5.10 5.10 5.10 5.10 5.10	PAL PAL PAL PAL PAL PAL PAL PAL PAL PAL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-013-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	18 18 18 18 18 18 18 18 18	0.378 0.541 1.94 1.73 0.664 1.07 0.397 4.08 0.748 2.76 0.454 8.65	4.90 4.90 4.90 4.90 4.90 4.90 4.90 4.90	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-190-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	18 18 18 18 18 18 18 18 18 18 18 18 18 1	1.48 0.875 3.10 1.21 1.73 0.446 0.643 1.32 2.85 0.126	4.95 4.95 4.95 4.95 4.95 4.95 4.95 4.95	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-192-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	ង-ខ្លួងងង់ងង់ងំងង់ង់ង	3.25 0.241 0.204 0.353 0.758 0.271 0.543 0.131 0.188 4.11 0.234 0.418 0.0371 0.245 6.11	5.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

9/28/2011 10:21:53 AM ADR version 1.4.0.111 Page 1 of 6

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

		Lab	D 14	Reporting	RL	11-14-	<i></i>
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-193-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	6 - 年期 8 年 8 年 8 年 8 年 8 年 8	1.73 0.154 0.100 0.167 0.500 0.146 0.338 0.113 0.104 0.433 0.147 0.198 0.165 2.87	4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-204-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		1.67 1.26 2.02 2.84 1.18 2.31 0.397 0.557 1.03 1.41 0.636 0.0977 0.365	4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-205-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD	JB JB JB JB JB JB JB JB	1.45 1.29 1.84 3.36 1.73 0.953 0.547 1.73 0.111	4.95 4.95 4.95 4.95 4.95 4.95 4.95 4.95	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-206-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD		3.50 0.346 0.323 0.622 1.13 0.322 0.766 0.335 0.277 1.05 0.290 0.758 0.162 0.422 8.96	5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

<i>Matrix:</i> SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-213-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD	JB JB JB JB JB JB JB JB JB JB JB JB JB J	1.61 0.145 0.0893 0.168 0.509 0.112 0.404 0.231 0.117 0.185 0.113 0.171 0.0591 0.0682 4.26	4.98 4.98 4.98 4.98 4.98 4.98 4.98 4.98	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-217-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	JB JB JB JB JB JBQ JBB JBB JBB JBB JBB J	2.20 0.128 0.0837 0.150 0.312 0.0994 0.301 0.212 0.0978 0.310 0.129 0.119 0.104 5.29	5.17 5.17 5.17 5.17 5.17 5.17 5.17 5.17	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-235-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF CODF	JB JBQ JBQ JBQ JBB JBQ JB JBQ JBBQ JBQ J	0.712 0.0839 0.0681 0.0724 0.222 0.0682 0.231 0.115 0.0711 0.162 0.0928 0.183 0.0827 2.00	2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B		
Matrix:	SO		

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-236-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	0.970	2,52	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.105	2.52	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0752	2.52	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0877	2.52	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.234	2.52	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0886	2.52	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.215	2.52	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0614	2.52	PQL	ng/Kg	J (all delects)
	1,2,3,7,8-PECDD	JBQ	0.0916	2.52	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.197	2.52	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.110	2.52	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.221	2.52	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0949	0.503	PQL	ng/Kg	
	OCDF	JB	2.76	5.03	PQL	ng/Kg	
SL-245-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	1.44	2.49	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.143	2.49	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0838	2.49	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.171	2.49	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.374	2.49	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.162	2.49	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.267	2.49	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.100	2.49	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.109	2.49	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.308	2.49	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.166	2.49	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.206	2.49	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0273	0.498	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.151	0.498	PQL	ng/Kg	
	OCDF	JB	2.63	4.98	PQL	ng/Kg	
SL-253-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	2.40	5.03	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.255	5.03	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.171	5.03	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.293	5.03	PQL	ng/Kg	
•	1,2,3,6,7,8-HXCDD	JB	0.587	5.03	PQL	ng/Kg	
]1,2,3,6,7,8-HXCDF	JB	0.252	5.03	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.342	5.03	PQL	ng/Kg	1 (-1) -1 -44 - \
	1,2,3,7,8,9-HXCDF	JB	0.218	5.03	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.267	5.03	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.371	5.03	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.285	5.03	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.322	5.03	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0840	1.01	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.200	1.01	PQL	ng/Kg	
	OCDF	JB	3.99	10.1	PQL	ng/Kg	

Lab Reporting Batch ID: DX119 Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Matrix: SO							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-254-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JB	3.10 0.237	4.92 4.92	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF	JBQ JBQ JB	0.174 0.296 0.819	4.92 4.92 4.92	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	JB JBQ	0.336 0.655	4.92 4.92	PQL PQL	ng/Kg ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JB JBQ	0.200 0.168	4.92 4.92	PQL PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	3 9 9	0.786 0.244	4.92 4.92	PQL PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF 2,3,7,8-TCDD	JB JB	0.503 0.0277	4.92 0.984	PQL PQL	ng/Kg ng/Kg	
	2,3,7,8-TCDF OCDF	J JB	0.376 5.97	0.984 9.84	PQL PQL	ng/Kg ng/Kg	
SL-255-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF	岳岳	4.01 1.25	5.03 5.03	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD	JBQ JB	0.145 0.118	5.03 5.03	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	ß ЭВ	0.222 0.284	5.03 5.03	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF	JB JBQ JB	0.119 0.218 0.0981	5.03 5.03 5.03	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8-PECDD 1,2,3,7,8-PECDF	JBQ JBQ	0.107 0.464	5.03 5.03	PQL PQL	ng/Kg ng/Kg	
	2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	JB JB	0.115 0.157	5.03 5.03	PQL PQL	ng/Kg ng/Kg	
	2,3,7,8-TCDD 2,3,7,8-TCDF	JBQ JQ	0.0338 0.100	1.01 1.01	PQL PQL	ng/Kg ng/Kg	
	OCDF	JB	3.12	10.1	PQL	ng/Kg	
SL-256-SA6-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD	JB JB	1.90 0.233 0.0996	4.85 4.85 4.85	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD	JB JB	0.212 0.397	4.85 4.85	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	JBQ JB	0.208 0.304	4.85 4.85	PQL PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JBQ JB JB	0.146 0.0900 0.749	4.85 4.85	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	, ,,
	1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	JB JB	0.749 0.183 0.254	4.85 4.85 4.85	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	2,3,4,7,6-FEGDF 2,3,7,8-TCDF OCDF	J JB	0.162 3.81	0.969 9.69	PQL PQL	ng/Kg ng/Kg	

Lab Reporting Batch ID: DX119

Laboratory: LL

EDD Filename: DX119_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B		
Matrix:	so		. ;

Wallix. SU		,				Ţ,	
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-268-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD		0.924 0.912 1.83 3.61 1.51 2.24 0.538 0.692 1.73	4.99 4.99 4.99 4.99 4.99 4.99 4.99 4.99	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
	2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	JB JB JB	1.74 1.89 0.129	4.99 4.99 0.999	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
SL-317-SA6-SS-0.0-0.5	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	unden en en en en en en en en en en en en e	3.00 4.08 3.39 0.540 1.24 2.18 4.29 1.42 0.161 0.671	4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-319-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	JB JB JB JB JB	2.85 2.28 3.02 4.69 1.06 1.43 2.73 3.20 0.279	4.96 4.96 4.96 4.96 4.96 4.96 4.96 4.96	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

SAMPLE DELIVERY GROUP

DX120

Attachment I

Sample ID Cross Reference and Data Review Level

Sample Cross Reference

	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
26-Jul-2011	SL-077-SA6-SB-4.0-5.0	6356798	N	METHOD	1613B	Ш
26-Jul-2011	SL-077-SA6-SB-9.0-10.0	6356799	N	METHOD	1613B	Ш
26-Jul-2011	SL-080-SA6-SB-3.5-4.5	6356800	N	METHOD	1613B	111
26-Jul-2011	EB-SA6-SS-072611	6356801	EB	METHOD	1613B	111
26-Jul-2011	SL-311-SA6-SS-0.0-0.5	6356802	N	METHOD	1613B	111
26-Jul-2011	DUP08-SA6-QC-072611	6356797	FD	METHOD	1613B	UI
27-Jul-2011	SL-028-SA6-SS-0.0-0.5	6358402	N	METHOD	1613B	Ш
27-Jui-2011	SL-009-SA6-SS-0.0-0.5	6358398	N	METHOD	1613B	Ш
27-Jul-2011	SL-009-SA6-SS-0.0-0.5MS	6358399	MS	METHOD	1613B	10
27-Jul-2011	SL-009-SA6-SS-0.0-0.5MSD	6358400	MSD	METHOD	1613B	III
27-Jul-2011	SL-009-SA6-SS-0.0-0.5MSD	P358398M371933	MSD	METHOD	1613B	III
27-Jul-2011	SL-009-SA6-SS-0.0-0.5MS	P358398R371837	MS	METHOD	1613B	III
27-Jul-2011	DUP09-SA6-QC-072711	6358403	FD	METHOD	1613B	111
27-Jul-2011	SL-069-SA6-SB-4.0-5.0	6358404	N	METHOD	1613B	111
27-Jul-2011	SL-069-SA6-SB-9.0-10.0	6358405	N	METHOD	1613B	UI
27-Jul-2011	SL-017-SA6-SS-0.0-0.5	6358401	И	METHOD	1613B	Ш
27-Jul-2011	SL-089-SA6-SB-4.0-5.0	6358407	N	METHOD	1613B	111
27-Jul-2011	SL-089-SA6-SB-9.0-10.0	6358408	N	METHOD	1613B	111
27-Jul-2011	SL-076-SA6-SB-2.0-3.0	6358406	N	METHOD	1613B	111
27-Jul-2011	SL-117-SA6-SB-2.0-3.0	6358409	N	METHOD	1613B	Ш
27-Jul-2011	EB-SA6-SB-072711	6358412	EB	METHOD	1613B	Ш
27-Jul-2011	SL-179-SA5DN-SB-4.0-5.0	6358410	N	METHOD	1613B	Ш
27-Jul-2011	SL-179-SA5DN-SB-9.0-10.0	6358411	N	METHOD	1613B	Ш

Attachment II

Overall Data Qualification Summary

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B

Matrix: AQ

Sample ID: EB-SA6-SB-072711	Collected: 7/27/2011 1:00:00	Analysis Type: RES	Dilution: 1
0111/2121 22 0110 02 012111		rinalyons ryper inte	Direction, 1

·											
nalyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	2.95	JB	0.566	MDL	9.80	PQL	pg/L	U	В		
1,2,3,4,6,7,8-HPCDF	0.567	JBQ	0.215	MDL	9.80	PQL	pg/L	U	В		
1,2,3,4,7,8-HxCDD	0.369	JBQ	0.346	MDL	9.80	PQL	pg/L	U	В		
1,2,3,4,7,8-HXCDF	0.225	JBQ	0.210	MDL	9.80	PQL	pg/L	U	В		
1,2,3,6,7,8-HXCDF	0.334	JBQ	0.216	MDL	9.80	PQL	pg/L	U	В		
1,2,3,7,8,9-HXCDD	0.679	JBQ	0.360	MDL	9.80	PQL	pg/L	U	В		
1,2,3,7,8,9-HXCDF	0.463	JB	0.213	MDL	9.80	PQL	pg/L	U	В		
1,2,3,7,8-PECDF	0.377	JQ	0.292	MDL	9.80	PQL	pg/L	J	Z		
2,3,4,7,8-PECDF	0.611	JBQ	0.254	MDL	9.80	PQL	pg/L	U	В		
2,3,7,8-TCDF	0.571	JQ	0.534	MDL.	1.96	PQL	pg/L	J	Z		
OCDD	5.10	JBQ	0.418	MDL	19.6	PQL	pg/L	U	В		
OCDF	0.922	JB	0.542	MDL	19.6	PQL.	pg/L	U	В		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<del></del>										

Sample ID: EB-SA6-SS-072611 Collected: 7/26/2011 11:30:00 Analysis Type: RES Dilution: 1

inpic ib. Lb-ond-or-vizori	Conec	Ounetied. 1120/2011 11:30:00 Analysis Type. Nat Different								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	3.71	JBQ	0.646	MDL	9.94	PQL	pg/L	U	В	
1,2,3,4,6,7,8-HPCDF	1.69	JB	0.317	MDL	9.94	PQL	pg/L	U	В	
1,2,3,4,7,8,9-HPCDF	0.449	JBQ	0.335	MDL.	9.94	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDD	0.484	JB	0.423	MDL	9.94	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDF	0.392	JBQ	0.308	MDL	9.94	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDD	0.576	JBQ	0.428	MDL	9.94	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDF	1.09	JBQ	0.319	MDL	9.94	PQL	pg/L	U	В	
1,2,3,7,8-PECDF	1.65	JQ	0.373	MDL	9.94	PQL	pg/L	J	Z	
2,3,4,6,7,8-HXCDF	0.368	JBQ	0.287	MDL	9.94	PQL	pg/L	U	В	
2,3,4,7,8-PECDF	1.95	JBQ	0.334	MDL	9.94	PQL	pg/L	U	В	
OCDD	7.99	JB	0.446	MDL	19.9	PQL	pg/L	U	В	
OCDF	1.26	JBQ	0.727	MDL	19.9	PQL	pg/L	U	В	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 11:35:26 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX120

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method Category: GENCHEM
Method: 1613B

1613B Matrix: SO

Sample ID: DUP08-SA6-QC-072611	Collec	Collected: 7/26/2011 12:14:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.49	JB	0.0474	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.737	JB	0.0239	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.66	JB	0.0249	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.69	JB	0.0249	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.822	JBQ	0.0427	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.363	JB	0.0350	MDL	5.08	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.80	JB	0.0371	MDL	5.08	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0680	JB	0.0193	MDL	1.02	PQL	ng/Kg	U	В

Sample ID: DUP09-SA6-QC-072711 Collected: 7/27/2011 8:28:00 Analysis Type: RES Dilution: 1

analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	2.92	JB	0.0370	MDL	4.93	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	1.50	JB	0.0298	MDL	4.93	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	2.79	JB	0.0383	MDL	4.93	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	3.63	JB	0.0283	MDL	4.93	PQL	ng/Kg	J	Z	
,2,3,7,8,9-HXCDF	0.819	JB	0.0345	MDL	4.93	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	1.24	JB	0.0421	MDL	4.93	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	1.90	JB	0.0482	MDL	4.93	PQL	ng/Kg	J	Z, FD	
2,3,4,6,7,8-HXCDF	2.84	JB	0.0318	MDL	4.93	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	1.32	В	0.0202	MDL	0.986	PQL	ng/Kg	J	FD	

Sample ID: SL-009-SA6-SS-0.0-0.5 Collected: 7/27/2011 8:20:00 Analysis Type: RES Dilution: 1

Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
2.83	JB	0.0305	MDL	5.08	PQL	ng/Kg	J	Z		
1.58	JB	0.0282	MDL	5.08	PQL	ng/Kg	J	Z		
3.33	JB	0.0351	MDL	5.08	PQL	ng/Kg	J	Z		
3.42	JB	0.0267	MDL	5.08	PQL	ng/Kg	J	Z		
0.876	JB	0.0345	MDL	5.08	PQL	ng/Kg	J	Z		
1.32	JB	0.0449	MDL	5.08	PQL	ng/Kg	J	Z		
10.3	В	0.0513	MDL	5.08	PQL	ng/Kg	J	FD		
3.16	JB	0.0326	MDL	5.08	PQL	ng/Kg	J	Z		
6.67	В	0.0211	MDL	1.02	PQL	ng/Kg	J	FD		
80.5	В	0.0230	MDL	10.2	PQL	ng/Kg	J	Q, Q		
	Result       2.83       1.58       3.33       3.42       0.876       1.32       10.3       3.16       6.67	Result         Qual           2.83         JB           1.58         JB           3.33         JB           3.42         JB           0.876         JB           1.32         JB           10.3         B           3.16         JB           6.67         B	Result         Qual         DL           2.83         JB         0.0305           1.58         JB         0.0282           3.33         JB         0.0351           3.42         JB         0.0267           0.876         JB         0.0345           1.32         JB         0.0449           10.3         B         0.0513           3.16         JB         0.0326           6.67         B         0.0211	Result         Qual         DL         Type           2.83         JB         0.0305         MDL           1.58         JB         0.0282         MDL           3.33         JB         0.0351         MDL           3.42         JB         0.0267         MDL           0.876         JB         0.0345         MDL           1.32         JB         0.0449         MDL           10.3         B         0.0513         MDL           3.16         JB         0.0326         MDL           6.67         B         0.0211         MDL	Result         Qual         DL         Type         RL           2.83         JB         0.0305         MDL         5.08           1.58         JB         0.0282         MDL         5.08           3.33         JB         0.0351         MDL         5.08           3.42         JB         0.0267         MDL         5.08           0.876         JB         0.0345         MDL         5.08           1.32         JB         0.0449         MDL         5.08           10.3         B         0.0513         MDL         5.08           3.16         JB         0.0326         MDL         5.08           6.67         B         0.0211         MDL         1.02	Result         Qual         DL         Type         RL         Type           2.83         JB         0.0305         MDL         5.08         PQL           1.58         JB         0.0282         MDL         5.08         PQL           3.33         JB         0.0351         MDL         5.08         PQL           3.42         JB         0.0267         MDL         5.08         PQL           0.876         JB         0.0345         MDL         5.08         PQL           1.32         JB         0.0449         MDL         5.08         PQL           10.3         B         0.0513         MDL         5.08         PQL           3.16         JB         0.0326         MDL         5.08         PQL           6.67         B         0.0211         MDL         1.02         PQL	Result         Qual         DL         Type         RL         Type         Units           2.83         JB         0.0305         MDL         5.08         PQL         ng/Kg           1.58         JB         0.0282         MDL         5.08         PQL         ng/Kg           3.33         JB         0.0351         MDL         5.08         PQL         ng/Kg           3.42         JB         0.0267         MDL         5.08         PQL         ng/Kg           0.876         JB         0.0345         MDL         5.08         PQL         ng/Kg           1.32         JB         0.0449         MDL         5.08         PQL         ng/Kg           10.3         B         0.0513         MDL         5.08         PQL         ng/Kg           3.16         JB         0.0326         MDL         5.08         PQL         ng/Kg           6.67         B         0.0211         MDL         1.02         PQL         ng/Kg	Lab Result         Lab Qual         DL DL Type         RL Type         RL Type         RL Type         RL Type         RL Qual           2.83         JB         0.0305         MDL 5.08         PQL ng/Kg         J           1.58         JB         0.0282         MDL 5.08         PQL ng/Kg         J           3.33         JB         0.0351         MDL 5.08         PQL ng/Kg         J           3.42         JB         0.0267         MDL 5.08         PQL ng/Kg         J           0.876         JB         0.0345         MDL 5.08         PQL ng/Kg         J           1.32         JB         0.0449         MDL 5.08         PQL ng/Kg         J           10.3         B         0.0513         MDL 5.08         PQL ng/Kg         J           3.16         JB         0.0326         MDL 5.08         PQL ng/Kg         J           6.67         B         0.0211         MDL 1.02         PQL ng/Kg         J		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:35:26 AM ADR version 1.4.0.111 Page 2 of 12

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Mathadi		46420	-	
Method Categ	ary:	GEN	CHEM	107

Matrix: SO

Sample ID: SL-017-SA6-SS-0.0-0.5	Collected: 7/27/2011 9:14:00 Analysis Type: RES								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8-HxCDD	4.75	JB	0.0824	MDL	5.00	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	4.18	JB	0.0557	MDL	5.00	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	1.17	JB	0.0596	MDL	5.00	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	2.18	JB	0.0588	MDL	5.00	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	2.36	JB	0.0388	MDL	5.00	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.326	JB	0.0244	MDL	1.00	PQL	ng/Kg	J	Z		
OCDD	21800	EB	0.188	MDL	10.0	PQL	na/Ka	J	*XI		

Sample ID: SL-028-SA6-SS-0.0-0.5

Collected: 7/27/2011 7:30:00

Analysis Type: RES

Dilution: 1

	Things of Type III							2000000		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	2.52	JB	0.0345	MDL	5.07	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	1.77	JB	0.0342	MDL.	5.07	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	3.81	JB	0.0319	MDL	5.07	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.964	JB	0.0519	MDL	5.07	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	1.49	JB	0.0602	MDL	5.07	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	4.02	JB	0.0450	MDL	5.07	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.302	JB	0.0197	MDL	1.01	PQL	ng/Kg	J	Z	

Sample ID: SL-069-SA6-SB-4.0-5.0

Collected: 7/27/2011 8:35:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.401	JВ	0.0121	MDL	5.22	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.124	JBQ	0.0248	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0266	JB	0.0154	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.104	JBQ	0.0163	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.120	JB	0.0158	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0597	JB	0.0130	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.107	JB	0.0154	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0782	JB	0.0168	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0351	JBQ	0.0119	MDL	5.22	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.0526	JBQ	0.0121	MDL	5.22	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.0733	JB	0.0136	MDL	5.22	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.106	JBQ	0.0124	MDL	5.22	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0117	JBQ	0.0105	MDL	1.04	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:35:26 AM

ADR version 1.4.0.111

Page 3 of 12

Lab Reporting Batch ID: DX120 Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM	
Method:	1613B	Matrix: SO

Sample ID: SL-069-SA6-SB-4.0-5.0	Collec	Collected: 7/27/2011 8:35:00				ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,7,8-TCDF	0.0257	JBQ	0.0147	MDL	1.04	PQL	ng/Kg	U	В	
OCDF	0.991	JB	0.0310	MDL	10.4	PQL	ng/Kg	J	Ż	

Sample ID: SL-069-SA6-SB-9.0-10.0 Collected: 7/27/2011 8:45:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Analyte DL RL. Units Result Qual Type Type Qual Code 1,2,3,4,6,7,8-HPCDD 1.37 JΒ MDL PQL 0.0191 5.48 U ng/Kg В 1,2,3,4,6,7,8-HPCDF 0.150 **JBQ** 0.00885 MDL 5.48 **PQL** ng/Kg U В 1,2,3,4,7,8,9-HPCDF 0.0618 JΒ 0.0161 MDL 5.48 **PQL** U ng/Kg В 1,2,3,4,7,8-HxCDD 0.0355 **JBQ** 0.0136 MDL 5.48 PQL ng/Kg U В 1,2,3,4,7,8-HXCDF 0.0178 0.358 JB MDL 5.48 PQL ng/Kg J Z 1,2,3,6,7,8-HXCDD 8080.0 JB 0.0145 PQL U MDL 5.48 ng/Kg В 1,2,3,6,7,8-HXCDF 0.0515 JBQ 0.0146 MDL 5.48 **PQL** U В ng/Kg 1,2,3,7,8,9-HXCDD 0.143 U JΒ 0.0126 MDL 5.48 **PQL** ng/Kg В 1,2,3,7,8,9-HXCDF 0.164 0.0171 JBQ MDL 5.48 **PQL** U В ng/Kg 1,2,3,7,8-PECDD 0.0131 U 0.0451 JBQ MDL, 5.48 **PQL** ng/Kg В 1,2,3,7,8-PECDF 0.140 JΒ 0.0156 MDL 5.48 **PQL** J z ng/Kg 0.0593 U 2,3,4,6,7,8-HXCDF JΒ 0.0125 MDL 5.48 **PQL** ng/Kg В 2,3,4,7,8-PECDF 0.261 JBQ 0.0164 MDL 5.48 **PQL** J ng/Kg Z 2,3,7,8-TCDF U 0.0825 JВ 0.0313 MDL 1.10 PQL В ng/Kg OCDD 10.5 JВ 0.0240 MDL 11.0 PQL J z ng/Kg OCDF PQL 0.396 JB 0.0255 MDL В 11.0 U ng/Kg

Sample ID: SL-076-SA6-SB-2.0-3.0	Collected: 7/27/2011 11:05:00	Analysis Type: RES	Dilution: 1
----------------------------------	-------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.473	JB	0.0199	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0433	JBQ	0.00542	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0620	JBQ	0.0125	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0199	JBQ	0.0146	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0227	JBQ	0.0119	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0393	JBQ	0.0154	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0311	JB	0.00975	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0689	JBQ	0.0148	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0310	JBQ	0.0160	MDL	5.41	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM	
Method:	1613B	Matrix: SO

	Collec	ted: 7/27/	2011 11:05:	00 A	nalysis T	ype: RES	;	E	Dilution: 1	
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8-PECDF	0.0268	JBQ	0.00769	MDL	5.41	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0152	JBQ	0.0102	MDL	5.41	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0478	JBQ	0.00823	MDL	5.41	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0638	JB	0.0180	MDL	1.08	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0129	JBQ	0.0116	MDL	1.08	PQL	ng/Kg	U	В	
OCDD	0.974	JB	0.0217	MDL	10.8	PQL	ng/Kg	U	В	
OCDF	0.135	JBQ	0.0341	MDL	10.8	PQL	ng/Kg	U	В	

Sample ID: SL-077-SA6-SB-4.0-5.0 Collected: 7/26/2011 9:30:00 Analysis Type: RES Dilution: 1

oanipie ib. OE-011-0A0-0B-4.0-3.0	Conected. 1120/2011 9.30.00 Analysis Type: NES								Ditution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDF	1.83	JB	0.0336	MDL	5.38	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.326	JB	0.0484	MDL	5.38	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HxCDD	0.102	JBQ	0.0283	MDL	5.38	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.174	JBQ	0.0246	MDL	5.38	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	0.518	JB	0.0294	MDL	5.38	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.125	JBQ	0.0239	MDL	5.38	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.220	JB	0.0284	MDL	5.38	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.0880	JB	0.0279	MDL	5.38	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0581	JB	0.0166	MDL	5.38	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.655	JB	0.0156	MDL	5.38	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.204	JBQ	0.0244	MDL	5.38	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.282	JB	0.0150	MDL	5.38	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.0208	JB	0.0141	MDL	1.08	PQL	ng/Kg	U	В		
2,3,7,8-TCDF	0.0649	JB	0.0221	MDL	1.08	PQL	ng/Kg	U	В		
OCDF	5.93	JB	0.0586	MDL	10.8	PQL	ng/Kg	j	Z		

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.48	JB	0.0236	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.238	JB	0.0226	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2,19	JB	0.0226	MDL.	5.73	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.931	JB	0.0235	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.944	JB	0.0205	MDL	5.73	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:35:26 AM ADR version 1.4.0.111 Page 5 of 12

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

Matrix: SO

Sample ID: SL-077-SA6-SB-9.0-10.0	Collec	Collected: 7/26/2011 9:50:00 Analys						1	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8,9-HXCDD	0.421	JBQ	0.0238	MDL	5.73	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.806	JB	0.0254	MDL	5.73	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.231	JBQ	0.0178	MDL	5.73	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.926	JB	0.0223	MDL	5.73	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.13	JB	0.0212	MDL	5.73	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	1.24	JB	0.0213	MDL	5.73	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0576	JBQ	0.0121	MDL	1.15	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.481	JB	0.0397	MDL	1.15	PQL	ng/Kg	J	Z	

Sample ID: SL-080-SA6-SB-3.5-4.5

Collected: 7/26/2011 10:50:00

Dilution: 4

Sample ID: SL-080-SA6-SB-3.5-4.5	Collec	Collected: 7/26/2011 10:50:00 Analysis Type: RES Dilution									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.435	JB	0.0136	MDL	5.19	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.0648	JBQ	0.00775	MDL	5.19	PQL	ng/Kg	U	В		
1,2,3,4,7,8,9-HPCDF	0.0331	JBQ	0.0133	MDL	5.19	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.0177	JBQ	0.00984	MDL	5.19	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0497	JB	0.0135	MDL	5.19	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.0438	JBQ	0.0103	MDL	5.19	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDF	0.0325	JBQ	0.0114	MDL	5.19	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.0446	JBQ	0.0102	MDL	5.19	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.0502	JBQ	0.0145	MDL	5.19	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0156	JBQ	0.0112	MDL	5.19	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.0287	JB	0.0114	MDL	5.19	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.0566	JBQ	0.0124	MDL	5.19	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0625	JBQ	0.0110	MDL	5.19	PQL	ng/Kg	U	В		
OCDD	1.08	JB	0.0138	MDL	10.4	PQL	ng/Kg	υ	В		
OCDF	0.172	JB	0.0185	MDL	10.4	PQL	ng/Kg	U	В		

Sample ID: SL-089-SA6-SB-4.0-5.0

Collected: 7/27/2011 9:50:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.27	JB	0.0103	MDL	5.40	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.189	JB	0.0169	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0727	JBQ	0.0159	MDL	5.40	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.212	JBQ	0.0147	MDL	5.40	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

ADR version 1.4.0.111 10/27/2011 11:35:26 AM Page 6 of 12

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method Categ	ory: GENCHEM
Method:	1613B

Matrix: SO

Sample ID: SL-089-SA6-SB-4.0-5.0	Collec	ted: 7/27/2	2011 9:50:0	0 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDD	0.370	JB	0.0162	MDL	5.40	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.119	JB	0.0132	MDL	5.40	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.176	JB	0.0159	MDL	5.40	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0618	JBQ	0.0163	MDL	5.40	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDD	0.0484	JB	0.0134	MDL	5.40	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDF	0.497	JB	0.0140	MDL	5.40	PQL	ng/Kg	J	<b>Z</b> '	
2,3,4,6,7,8-HXCDF	0.151	JB	0.0134	MDL	5.40	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.429	JB	0.0135	MDL	5.40	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0209	JBQ	0.00989	MDL	1.08	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.205	JB	0.0245	MDL	1.08	PQL	ng/Kg	J	Z	
OCDF	2.80	JB	0.0201	MDL	10.8	PQL	ng/Kg	J	Z	

Sample ID: SL-089-SA6-SB-9.0-10.0

Collected: 7/27/2011 10:00:00

Analysis Type: RES

Dilution: 1

nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.44	JB	0.0153	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.473	JB	0.0214	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.346	JB	0.0224	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.396	JB	0.0177	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.26	JB	0.0228	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.216	JB	0.0153	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.570	JB	0.0229	MDL	5.31	PQL	ng/Kg	J	· Z
1,2,3,7,8,9-HXCDF	0.120	JBQ	0.0169	MDL	5.31	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.385	JB	0.0171	MDL	5.31	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.111	JB	0.0127	MDL	5.31	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.323	JВ	0.0141	MDL	5.31	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.357	JB	0.0124	MDL	5.31	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0567	JBQ	0.0101	MDL	1.06	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.204	JB	0.0189	MDL	1.06	PQL	ng/Kg	J	Z

Sample ID: SL-117-SA6-SB-2.0-3.0

Collected: 7/27/2011 12:15:00

Analysis Type: RES

Dilution: 1

Page 7 of 12

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.484	JB	0.0137	MDL	5.14	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.136	JB	0.00699	MDL	5.14	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:35:26 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM
Method: 1613B

Matrix: SO

Sample ID: SL-117-SA6-SB-2.0-3.0	Collec	Collected: 7/27/2011 12:15:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	0.0624	JB	0.0154	MDL	5.14	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HxCDD	0.0452	JBQ	0.00960	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0963	JBQ	0.00960	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0527	JB	0.0100	MDL.	5.14	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.0715	JB	0.00762	MDL	5.14	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	0.0756	JB	0.00929	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0586	JBQ	0.0100	MDL,	5.14	PQL	ng/Kg	U	8	
1,2,3,7,8-PECDD	0.0959	JBQ	0.00971	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.102	JB	0.00605	MDL	5.14	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0610	JB	0.00835	MDL	5.14	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.131	JB	0.00605	MDL	5.14	PQL	ng/Kg	υ	В	
2,3,7,8-TCDD	0.0404	JB	0.00939	MDL	1.03	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0225	JBQ	0.00856	MDL	1.03	PQL	ng/Kg	U	В	
OCDD	2.07	JB	0.0143	MDL	10.3	PQL	ng/Kg	U	В	
OCDF	0.349	JB	0.0195	MDL	10.3	PQL	ng/Kg	U	В	

Sample ID: SL-179-SA5DN-SB-4.0-5.0 Collected: 7/27/2011 2:31:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.33	JB	0.0382	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.90	JB	0.0547	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.982	JB	0.0282	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.11	JВ	0.0255	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.11	JB	0.0528	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.328	JB	0.0335	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.713	JB	0.0352	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.638	JB	0.0158	MDL	5.16	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.80	JB	0.0273	MDL	5.16	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.626	JB	0.0159	MDL	5.16	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0859	JB	0.0140	MDL	1.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.126	JB	0.0284	MDL.	1.03	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

Matrix:

Sample ID: SL-179-SA5DN-SB-9.0-10.0	Collec	ted: 7/27/	2011 2:49:0	0 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	0.852	JB	0.00889	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.111	JBQ	0.0168	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0800	JB	0.0200	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0747	JB	0.0122	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.311	JB	0.0201	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0642	JB	0.0103	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.145	JB	0.0205	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0285	JB	0.0130	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0536	JB	0.0137	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0467	JB	0.00730	MDL	5.52	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0903	JB	0.0107	MDL	5.52	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0887	JBQ	0.00718	MDL	5.52	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0116	JBQ	0.0105	MDL	1.10	PQL	ng/Kg	U	B	
2,3,7,8-TCDF	0.0278	JBQ	0.0131	MDL	1.10	PQL	ng/Kg	U	В	
OCDF	1.98	JB	0.0200	MDL	11.0	PQL	ng/Kg	J	Z	

Sample ID:	SL-311-SA	6-55-0.0-0.5
------------	-----------	--------------

Collected: 7/26/2011 11:31:00 Analysis Type: RES

Dilution: 1

Page 9 of 12

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	3.49	JB	0.0259	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.63	JB	0.0225	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.48	JB	0.0223	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.06	JB	0.0373	MDL	5.07	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.151	JB	0.0228	MDL	1.01	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 10/27/2011 11:35:26 AM

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX120

EDD Filename: DX120_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
·	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI .	Compound Quantitation and CRQL
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
н	Temperature Rejection
1	Internal Standard Estimation
1	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
M	Continuing Tune
M	Initial Tune
M	Performance Evaluation Mixture
M	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

# **Enclosure I**

EPA Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

**DX120** 

Lab Reporting Batch ID: DX120 Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2340B371734	8/23/2011 5:34:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDD 2,3,4,6,7,8-PECDF OCDD OCDF	2.80 pg/L 0.632 pg/L 0.512 pg/L 0.765 pg/L 0.547 pg/L 0.856 pg/L 0.489 pg/L 0.876 pg/L 0.588 pg/L 0.582 pg/L 1.02 pg/L 1.02 pg/L 2.84 pg/L	EB-SA6-SB-072711 EB-SA6-SS-072611

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-\$A6-\$B-072711(RES)	1,2,3,4,6,7,8-HPCDD	2.95 pg/L	2.95U pg/L
EB-SA6-SB-072711(RES)	1,2,3,4,6,7,8-HPCDF	0.567 pg/L	0.567U pg/L
EB-SA6-SB-072711(RES)	1,2,3,4,7,8-HxCDD	0.369 pg/L	0.369U pg/L
EB-SA6-SB-072711(RES)	1,2,3,4,7,8-HXCDF	0,225 pg/L	0.225U pg/L
EB-SA6-SB-072711(RES)	1,2,3,6,7,8-HXCDF	0.334 pg/L	0.334U pg/L
EB-SA6-SB-072711(RES)	1,2,3,7,8,9-HXCDD	0.679 pg/L	0.679U pg/L
EB-SA6-SB-072711(RES)	1,2,3,7,8,9-HXCDF	0,463 pg/L	0.463U pg/L
EB-SA6-SB-072711(RES)	2,3,4,7,8-PECDF	0.611 pg/L	0.611U pg/L
EB-SA6-SB-072711(RES)	OCDD	5.10 pg/L	5.10U pg/L
EB-SA6-SB-072711(RES)	OCDF	0.922 pg/L	0.922U pg/L
EB-SA6-SS-072611(RES)	1,2,3,4,6,7,8-HPCDD	3.71 pg/L	3.71U pg/L
EB-SA6-SS-072611(RES)	1,2,3,4,6,7,8-HPCDF	1.69 pg/L	1.69U pg/L
EB-SA6-SS-072611(RES)	1,2,3,4,7,8,9-HPCDF	0.449 pg/L	0.449U pg/L
EB-SA6-SS-072611(RES)	1,2,3,6,7,8-HXCDD	0.484 pg/L	0.484U pg/L
EB-SA6-SS-072611(RES)	1,2,3,6,7,8-HXCDF	0.392 pg/L	0.392U pg/L
EB-SA6-SS-072611(RES)	1,2,3,7,8,9-HXCDD	0.576 pg/L	0.576U pg/L
EB-SA6-SS-072611(RES)	1,2,3,7,8,9-HXCDF	1.09 pg/L	1.09U pg/L
EB-SA6-SS-072611(RES)	2,3,4,6,7,8-HXCDF	0.368 pg/L	0.368U pg/L
EB-SA6-SS-072611(RES)	2,3,4,7,8-PECDF	1.95 pg/L	1.95U pg/L
EB-SA6-SS-072611(RES)	OCDD	7.99 pg/L	7.99U pg/L
EB-SA6-SS-072611(RES)	OCDF	1.26 pg/L,	1.26U pg/L

10/27/2011 11:33:16 AM ADR version 1.4.0.111 Page 1 of 4

Lab Reporting Batch ID: DX120 Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO							
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples			
BLK2220B371906	8/11/2011 7:06:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDD 2,3,7,8-TCDD 0CDD 0CDF	0.375 ng/Kg 0.0662 ng/Kg 0.0516 ng/Kg 0.0516 ng/Kg 0.0259 ng/Kg 0.0276 ng/Kg 0.0288 ng/Kg 0.0193 ng/Kg 0.0352 ng/Kg 0.0495 ng/Kg 0.0262 ng/Kg 0.0265 ng/Kg 0.0255 ng/Kg 0.0152 ng/Kg 0.0165 ng/Kg 0.0166 ng/Kg 0.166 ng/Kg	DUP08-SA6-QC-072611 DUP09-SA6-QC-072711 SL-009-SA6-SS-0.0-0.5 SL-017-SA6-SS-0.0-0.5 SL-028-SA6-SS-0.0-0.5 SL-069-SA6-SB-4.0-5.0 SL-069-SA6-SB-4.0-5.0 SL-077-SA6-SB-4.0-5.0 SL-077-SA6-SB-4.0-5.0 SL-080-SA6-SB-3.5-4.5 SL-089-SA6-SB-4.0-5.0 SL-179-SA5DN-SB-4.0-5.0 SL-179-SA5DN-SB-4.0-5.0 SL-179-SA5DN-SB-9.0-10.0 SL-179-SA5DN-SB-9.0-10.0 SL-117-SA6-SB-2.0-3.0 SL-131-SA6-SS-0.0-0.5			

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP08-SA6-QC-072611(RES)	2,3,7,8-TCDD	0.0680 ng/Kg	0.0680U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.124 ng/Kg	0.124U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0266 ng/Kg	0.0266U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.104 ng/Kg	0.104U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.120 ng/Kg	0.120U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0597 ng/Kg	0.0597U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.107 ng/Kg	0.107U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0782 ng/Kg	0.0782U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0351 ng/Kg	0.0351U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0526 ng/Kg	0.0526U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0733 ng/Kg	0.0733U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.106 ng/Kg	0.106U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0117 ng/Kg	0.0117U ng/Kg
SL-069-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0257 ng/Kg	0.0257U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	1.37 ng/Kg	1.37U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.150 ng/Kg	0.150U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0618 ng/Kg	0.0618U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0355 ng/Kg	0.0355U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0808 ng/Kg	0.0808U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0515 ng/Kg	0.0515U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.143 ng/Kg	0.143U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.164 ng/Kg	0.164U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0451 ng/Kg	0.0451U ng/Kg
SL-069-\$A6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0593 ng/Kg	0.0593U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0825 ng/Kg	0.0825U ng/Kg
SL-069-SA6-SB-9.0-10.0(RES)	OCDF	0.396 ng/Kg	0.396U ng/Kg
SL-076-\$A6-\$B-2.0-3.0(RE\$)	1,2,3,4,6,7,8-HPCDD	0.473 ng/Kg	0.473U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0433 ng/Kg	0.0433U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0620 ng/Kg	0.0620U ng/Kg

10/27/2011 11:33:16 AM ADR version 1.4.0.111 Page 2 of 4

Lab Reporting Batch ID: DX120 Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HxCDD	0.0199 ng/Kg	0.0199U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HXCDF	0.0227 ng/Kg	0.0227U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDD	0.0393 ng/Kg	0.0393U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDF	0.0311 ng/Kg	0.0311U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDD	0.0689 ng/Kg	0.0689U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDD	0.0310 ng/Kg	0.0310U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDF	0,0268 ng/Kg	0.0268U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.0152 ng/Kg	0.0152U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0.0478 ng/Kg	0.0478U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	2,3,7,8-TCDD	0,0638 ng/Kg	0.0638U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	2,3,7,8-TCDF	0.0129 ng/Kg	0.0129U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	OCDD	0.974 ng/Kg	0.974U ng/Kg
SL-076-SA6-SB-2.0-3.0(RES)	OCDF	0.135 ng/Kg	0.135U ng/Kg
SL-077-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0,102 ng/Kg	0.102U ng/Kg
SL-077-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0880 ng/Kg	0.0880U ng/Kg
SL-077-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0581 ng/Kg	0.0581U ng/Kg
SL-077-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0208 ng/Kg	0.0208U ng/Kg
SL-077-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0649 ng/Kg	0.0649U ng/Kg
SL-077-SA6-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0576 ng/Kg	0.0576U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDD	0.435 ng/Kg	0.435U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0648 ng/Kg	0.0648U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0331 ng/Kg	0.0331U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8-HxCDD	0.0177 ng/Kg	0.0177U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8-HXCDF	0.0497 ng/Kg	0.0497U ng/Kg
SL-080-\$A6-\$B-3.5-4.5(RES)	1,2,3,6,7,8-HXCDD	0.0438 ng/Kg	0.0438U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDF	0.0325 ng/Kg	0.0325U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDD	0.0446 ng/Kg	0.0446U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDF	0.0502 ng/Kg	0.0502U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,7,8-PECDD	0.0156 ng/Kg	0.0156U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	1,2,3,7,8-PECDF	0.0287 ng/Kg	0.0287U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	2,3,4,6,7,8-HXCDF	0.0566 ng/Kg	0.0566U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	2,3,4,7,8-PECDF	0.0625 ng/Kg	0.0625U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	OCDD	1.08 ng/Kg	1.08U ng/Kg
SL-080-SA6-SB-3.5-4.5(RES)	OCDF	0.172 ng/Kg	0.172U ng/Kg
SL-089-\$A6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.189 ng/Kg	0.189U ng/Kg
SL-089-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0727 ng/Kg	0.0727U ng/Kg
SL-089-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.176 ng/Kg	0.176U ng/Kg
SL-089-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0,0618 ng/Kg	0.0618U ng/Kg
SL-089-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0484 ng/Kg	0.0484U ng/Kg
SL-089-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0209 ng/Kg	0.0209U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:33:16 AM ADR version 1.4.0.111 Page 3 of 4

Lab Reporting Batch ID: DX120 Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-089-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.120 ng/Kg	0.120U ng/Kg
SL-089-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF .	0.111 ng/Kg	0.111U ng/Kg
SL-089-SA6-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0567 ng/Kg	0.0567U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDD	0.484 ng/Kg	0.484U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDF	0.136 ng/Kg	0.136U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0624 ng/Kg	0.0624U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HxCDD	0.0452 ng/Kg	0.0452U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HXCDF	0.0963 ng/Kg	0.0963U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDD	0,0527 ng/Kg	0.0527U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDF	0.0715 ng/Kg	0.0715U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDD	0,0756 ng/Kg	0.0756U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDF	0.0586 ng/Kg	0.0586U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDD	0.0959 ng/Kg	0.0959U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDF	0.102 ng/Kg	0.102U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.0610 ng/Kg	0.0610U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0,131 ng/Kg	0.131U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	2,3,7,8-TCDD	0.0404 ng/Kg	0.0404U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	2,3,7,8-TCDF	0.0225 ng/Kg	0.0225U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	OCDD	2.07 ng/Kg	2.07U ng/Kg
SL-117-SA6-SB-2.0-3.0(RES)	OCDF	0.349 ng/Kg	0.349U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.111 ng/Kg	0.111U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0800 ng/Kg	0.0800U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0747 ng/Kg	0.0747U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0642 ng/Kg	0.0642U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.145 ng/Kg	0.145U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0285 ng/Kg	0.0285U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0536 ng/Kg	0.0536U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0467 ng/Kg	0.0467U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0903 ng/Kg	0.0903U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0887 ng/Kg	0.0887U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0116 ng/Kg	0.0116U ng/Kg
SL-179-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0278 ng/Kg	0.0278U ng/Kg

10/27/2011 11:33:16 AM ADR version 1.4.0.111 Page 4 of 4

## Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO					Mante Pa	in de significió de la como de la como de la como de la como de la como de la como de la como de la como de la	
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-009-SA6-SS-0.0-0.5MS SL-009-SA6-SS-0.0-0.5MSD (SL-009-SA6-SS-0.0-0.5)	OCDD	213	-17	40.00-135.00	22 (20.00)	OCDD	No Qual, >4x
SL-009-SA6-SS-0.0-0.5MS SL-009-SA6-SS-0.0-0.5MSD SL-009-SA6-SS-0.0-0.5)	OCDF	180	-	40.00-135.00	36 (20.00)	OCDF	J(all detects)

10/27/2011 11:27:58 AM ADR version 1.4.0.111 Page 1 of 1

## Field Duplicate RPD Report

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

	Canaan	tration (0/)			
	Concent	tration (%)			·
Analyte	SL-009-SA6-SS-0.0-0.5	DUP09-SA6-QC-072711	Sample RPD	eQAPP RPD	Flag
MOISTURE	2.7	2.7	n		No Qualifiers Applie

Method: 1613B Matrix: SO						
	Concentra	tion (ng/Kg)				
Analyte	SL-009-SA6-SS-0.0-0.5	DUP09-SA6-QC-072711	Sample RPD	eQAPP RPD	Flag	
1,2,3,4,6,7,8-HPCDD	162	174	7	50.00		
1,2,3,4,6,7,8-HPCDF	30.9	30.8	0	50.00		
1,2,3,4,7,8,9-HPCDF	2.83	2.92	3	50.00		
1,2,3,4,7,8-HxCDD	1.58	1.50	5	50.00		
1,2,3,4,7,8-HXCDF	6.02	6.83	13	50.00		
1,2,3,6,7,8-HXCDD	6.58	6.42	2	50.00		
1,2,3,6,7,8-HXCDF	3.33	2.79	18	50.00		
1,2,3,7,8,9-HXCDD	3.42	3.63	6	50.00	No Qualifiers Applied	
1,2,3,7,8,9-HXCDF	0.876	0.819	7	50.00		
1,2,3,7,8-PECDD	1.32	1.24	6	50.00		
2,3,4,6,7,8-HXCDF	3.16	2.84	11	50.00		
2,3,4,7,8-PECDF	5.95	5.96	0	50.00		
2,3,7,8-TCDF	4.53	4.11	10	50.00		
OCDD	1920	1790	7	50.00		
OCDF	80.5	86.7	7	50.00		
1,2,3,7,8-PECDF 2,3,7,8-TCDD	10.3 6.67	1.90 1.32	138 134	50.00 50.00	J(all detects)	

10/27/2011 11:31:53 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-072711	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	2.95 0.567 0.369 0.225 0.334 0.679 0.463 0.377 0.611 0.571 5.10 0.922	9.80 9.80 9.80 9.80 9.80 9.80 9.80 9.80	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)
EB-SA6-SS-072611	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	3.71 1.69 0.449 0.484 0.392 0.576 1.09 1.65 0.368 1.95 7.99 1.26	9.94 9.94 9.94 9.94 9.94 9.94 9.94 9.94	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613B Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP08-SA6-QC-072611	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD	99999999999999999999999999999999999999	1.49 0.737 1.66 1.69 0.822 0.363 1.80 0.0680	5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
DUP09-SA6-QC-072711	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF		2.92 1.50 2.79 3.63 0.819 1.24 1.90 2.84	4.93 4.93 4.93 4.93 4.93 4.93 4.93 4.93	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-009-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF	38 38 38 38 38 38 38 38 38 38 38 38 38 3	2.83 1.58 3.33 3.42 0.876 1.32 3.16	5.08 5.08 5.08 5.08 5.08 5.08 5.08	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-017-SA6-SS-0.0-0.5	1,2,3,4,7,8-HxCDD	JB	4.75	5.00	PQL	ng/Kg	, rug
	1,2,3,6,7,8-HXCDF	JB	4.18	5.00	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	1.17	5.00	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	2.18	5.00	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JВ	2.36	5.00	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.326	1.00	PQL	ng/Kg	
SL-028-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	2.52	5.07	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JВ	1.77	5.07	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	3.81	5.07	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.964	5.07	PQL	ng/Kg	. J (all detects)
	1,2,3,7,8-PECDD	JB	1.49	5.07	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	4.02	5.07	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.302	1.01	PQL	ng/Kg	
SL-069-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	0.401	5.22	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.124	5.22	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0266	5.22	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.104	5.22	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.120	5.22	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0597	5.22	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.107	5.22	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.0782	5.22	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0351	5.22	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0526	5.22	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0733	5.22	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.106	5.22	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0117	1.04	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0257	1.04	PQL	ng/Kg	
	OCDF	JB	0.991	10.4	PQL	ng/Kg	
SL-069-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	1.37	5.48	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.150	5.48	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF .	JB	0.0618	5.48	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0355	5.48	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.358	5.48	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0808	5.48	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0515	5.48	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.143	5.48	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.164	5.48	PQL	ng/Kg	a (an across)
	1,2,3,7,8-PECDD	JBQ	0.0451	5.48	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.140	5.48	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0593	5.48	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.261	5.48	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0825	1.10	PQL	ng/Kg	
	OCDD	JB	10.5	11.0	PQL	ng/Kg	
	OCDF	JB	0.396	11.0	PQL	ng/Kg	

10/27/2011 11:33:25 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX120 Laboratory: LL EDD Filename: DX120_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-076-SA6-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDD	JB	0.473	5.41	PQL	ng/Kg	<u></u>
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0433	5.41	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0620	5.41	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0199	5.41	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0227	5.41	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0393	5.41	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0311	5.41	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0689	5.41	PQL	ng/Kg	(/all data sta)
	1,2,3,7,8-PECDD	JBQ	0.0310	5.41	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.0268	5.41	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0152	5.41	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0478	5.41	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0638	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0129	1.08	PQL	ng/Kg	
	OCDD	JB	0.974	10.8	PQL	ng/Kg	
	OCDF	JBQ	0.135	10.8	PQL	ng/Kg	
SL-077-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	1.83	5.38	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.326	5.38	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.102	5.38	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.174	5.38	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.518	5.38	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.125	5.38	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.220	5.38	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.0880	5.38	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0581	5.38	PQL	ng/Kg	o (an actobic)
	1,2,3,7,8-PECDF	JB	0.655	5.38	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.204	5.38	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.282	5.38	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0208	1.08	PQL	ng/Kg ng/Kg	
	2,3,7,8-TCDF	JB	0.0208	1.08	PQL		
	OCDF	JB	5.93	10.8	PQL	ng/Kg ng/Kg	
SL-077-SA6-SB-9.0-10.0	1,2,3,4,7,8,9-HPCDF	JB	1.48	5.73	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JВ	0.238	5.73	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	2.19	5.73	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.931	5.73	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.944	5.73	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.421	5.73	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.806	5.73	PQL	ng/Kg	J (all detects)
	1,2,3,7,6,9-1,00DI	JBQ	0.831	5.73	PQL	ng/Kg	o (all detects)
	1,2,3,7,8-PECDF	JBQ	0.231	5.73	PQL		
	2,3,4,6,7,8-HXCDF			1		ng/Kg	
		JB	1.13	5.73	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	1.24	5.73	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0576	1.15	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.481	1.15	PQL	ng/Kg	

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

so

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix:

Samala ID	Analyte	Lab	<b>D</b>	Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-080-SA6-SB-3.5-4.5	1,2,3,4,6,7,8-HPCDD	JB	0.435	5.19	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0648	5.19	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0331	5.19	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0177	5.19	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0497	5.19	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0438	5.19	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0325	5.19	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0446	5.19	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0502	5.19	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0156	5.19	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JВ	0.0287	5.19	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0566	5.19	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0625	5.19	PQL	ng/Kg	
	OCDD	JB	1.08	10.4	PQL	ng/Kg	
	OCDF	JB	0.172	10.4	PQL	ng/Kg	
SL-089-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	1.27	5.40	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.189	5.40	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0727	5.40	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.212	5.40	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.370	5.40	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.119	5.40	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.176	5.40	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0618	5.40	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0484	5.40	PQL	ng/Kg	,
	1,2,3,7,8-PECDF	JB .	0.497	5.40	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.151	5.40	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.429	5.40	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0209	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.205	1.08	PQL	ng/Kg	
	OCDF	JB	2.80	10.8	PQL	ng/Kg	
SL-089-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF	JB	4.44	5.31	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.473	5.31	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.346	5.31	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.396	5.31	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.26	5.31	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.216	5.31	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.570	5.31	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.120	5.31	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.385	5.31	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.111	5.31	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.323	5.31	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.323	5.31	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0567	1.06	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0367	1.06	PQL	ng/kg	
	2,0,1,0-1000	l np	0.204	1.00	FUL	ng/Kg	

10/27/2011 11:33:25 AM ADR version 1.4.0.111 Page 4 of 5

Lab Reporting Batch ID: DX120

Laboratory: LL

EDD Filename: DX120_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO Lab Reporting RLSampleID Analyte Qual Result Limit Units Flag Type SL-117-SA6-SB-2.0-3.0 1,2,3,4,6,7,8-HPCDD JB. 0.484 5.14 PQL ng/Kg 1,2,3,4,6,7,8-HPCDF 0.136 JB 5.14 PQL ng/Kg 1,2,3,4,7,8,9-HPCDF 0.0624 PQL JB 5.14 ng/Kg 1,2,3,4,7,8-HxCDD 0.0452 **PQL JBQ** 5.14 ng/Kg 1,2,3,4,7,8-HXCDF **JBQ** 0.0963 5.14 **PQL** ng/Kg 1,2,3,6,7,8-HXCDD 0.0527 **PQL** ng/Kg JB 5.14 1,2,3,6,7,8-HXCDF **PQL** JB 0.0715 5.14 ng/Kg 1,2,3,7,8,9-HXCDD JB 0.0756 5.14 **PQL** ng/Kg 1,2,3,7,8,9-HXCDF **JBQ** 0.0586 PQL. 5.14 ng/Kg J (all detects) 1,2,3,7,8-PECDD **JBQ** 0.0959 5.14 **PQL** ng/Kg PQL 1,2,3,7,8-PECDF J.R 0.102 5.14 ng/Kg 2,3,4,6,7,8-HXCDF JΒ 0.0610 5.14 **PQL** ng/Kg 2,3,4,7,8-PECDF JB **PQL** 0.131 5.14 ng/Kg 2,3,7,8-TCDD JB 0.0404 1.03 **PQL** ng/Kg 2,3,7,8-TCDF JBQ 0.0225 **PQL** 1.03 ng/Kg **PQL** OCDD JB 2.07 10.3 ng/Kg OCDF JB 0.349 10.3 PQL. ng/Kg SL-179-SA5DN-SB-4.0-5.0 1,2,3,4,7,8,9-HPCDF JB 2.33 5.16 PQL ng/Kg 1,2,3,4,7,8-HxCDD JB. 1.90 **PQL** 5.16 ng/Kg 1,2,3,4,7,8-HXCDF JB 0.982 **PQL** 5.16 ng/Kg PQL 1,2,3,6,7,8-HXCDF JB 1.11 5.16 ng/Kg 1,2,3,7,8,9-HXCDD JB 3.11 5.16 PQL ng/Kg PQL 1,2,3,7,8,9-HXCDF JB 0.328 5.16 ng/Kg J (all detects) 1,2,3,7,8-PECDD JB 0.713 5.16 **PQL** ng/Kg PQL 1,2,3,7,8-PECDF JB 0.638 5.16 ng/Kg 2,3,4,6,7,8-HXCDF JB 1.80 **PQL** 5.16 ng/Kg 2,3,4,7,8-PECDF JB **PQL** 0.626 5.16 ng/Kg 2,3,7,8-TCDD JB 0.0859 **PQL** 1.03 ng/Kg PQL 2,3,7,8-TCDF JB 0.126 1.03 ng/Kg SL-179-SA5DN-SB-9.0-10.0 1,2,3,4,6,7,8-HPCDF JB 0.852 5.52 PQL ng/Kg **PQL** 1,2,3,4,7,8,9-HPCDF **JBQ** 0.111 5.52 ng/Kg 1,2,3,4,7,8-HxCDD JB 0.0800 5.52 **PQL** ng/Kg 1,2,3,4,7,8-HXCDF JB 0.0747 5.52 **PQL** ng/Kg ng/Kg 1,2,3,6,7,8-HXCDD JΒ 0.311 5.52 PQL **PQL** 1,2,3,6,7,8-HXCDF JB 0.0642 5.52 ng/Kg ng/Kg 1,2,3,7,8,9-HXCDD JB 0.145 5.52 PQL **PQL** 1,2,3,7,8,9-HXCDF JB 0.0285 5.52 ng/Kg J (all detects) ng/Kg 0.0536 **PQL** 1,2,3,7,8-PECDD JB 5.52 1,2,3,7,8-PECDF JB **PQL** 0.0467 5.52 ng/Kg 2,3,4,6,7,8-HXCDF JB **PQL** 0.0903 5.52 ng/Kg 2,3,4,7,8-PECDF **JBQ** PQL 0.0887 5.52 ng/Kg 2,3,7,8-TCDD JBQ **PQL** 0.0116 1.10 ng/Kg 2,3,7,8-TCDF **JBQ PQL** 0.0278 1.10 ng/Kg OCDF JΒ 1.98 **PQL** 11.0 ng/Kg SL-311-SA6-SS-0.0-0.5 JB PQL 1,2,3,4,7,8,9-HPCDF 3.49 5.07 ng/Kg 1.2.3.4.7.8-HxCDD 1.63 **PQL** JIR. 5.07 ng/Kg 1,2,3,7,8,9-HXCDD JΒ 3.48 5.07 **PQL** ng/Kg J (all detects) 1,2,3,7,8-PECDD JB 1.06 5.07 POI. ng/Kg 2,3,7,8-TCDD JB. 0.151 1.01 **PQL** ng/Kg

# **SAMPLE DELIVERY GROUP**

**DX121** 

# **Attachment I**

Sample ID Cross Reference and Data Review Level

## **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Jul-2011	SL-068-SA6-SB-4.0-5.0	6359587	N	METHOD	1613B	III
28-Jul-2011	SL-068-SA6-SB-19.0-20.0	6359588	N	METHOD	1613B	III
28-Jul-2011	SL-183-SA5DN-SB-4.0-5.0	6359582	N	METHOD	1613B	Ш
28-Jul-2011	SL-183-SA5DN-SB-4.0-5.0MS	6359583	MS	METHOD	1613B	Ш
28-Jul-2011	DUP21-SA5DN-QC-072811	6359586	FD	METHOD	1613B	Ш
28-Jul-2011	SL-070-SA6-SB-4.0-5.0	6359589	N	METHOD	1613B	111
28-Jul-2011	SL-183-SA5DN-SB-9.0-10.0	6359585	N	METHOD	1613B	111
28-Jul-2011	SL-090-SA6-SB-3.0-4.0	6359591	N	METHOD	1613B	Ш
28-Jul-2011	SL-070-SA6-SB-19.0-20.0	6359590	N	METHOD	1613B	Ш
28-Jul-2011	SL-172-SA5DN-SB-4.0-5.0	6359580	N	METHOD	1613B	111
28-Jul-2011	SL-172-SA5DN-SB-9.0-10.0	6359581	N	METHOD	1613B	III
29-Jul-2011	SL-180-SA5DN-SB-4.0-5.0	6360515	N	METHOD	1613B	111
29-Jul-2011	SL-180-SA5DN-SB-9.0-10.0	6360516	N	METHOD	16 <b>1</b> 3B	III
29-Jul-2011	SL-123-SA6-SB-4.0-5.0	6360520	N	METHOD	1613B	III
29-Jul-2011	SL-123-SA6-SB-7.0-8.0	6360521	N	METHOD	1613B	III
29-Jul-2011	SL-122-SA6-SB-0.0-0.5	6360519	N	METHOD	1613B	111
29-Jul-2011	SL-174-SA5DN-SB-4.0-5.0	6360517	N	METHOD	1613B	Ш
29-Jul-2011	SL-174-SA5DN-SB-9.0-10.0	6360518	N	METHOD	1613B	Ш

# Attachment II

**Overall Data Qualification Summary** 

Lab Reporting Batch ID: DX121

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: DUP21-SA5DN-QC-072811 Collected: 7/28/2011 10:19:00 Analysis Type: RES Dilution: 1

_ •		Zonostodi Wilder i Torrotto Wildred Type.							C. 1120				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code				
1,2,3,4,6,7,8-HPCDD	1.12	JB	0.0169	MDL	5.42	PQL	ng/Kg	υ	В				
1,2,3,4,6,7,8-HPCDF	0.177	JB	0.00765	MDL	5.42	PQL	ng/Kg	υ	В				
1,2,3,4,7,8,9-HPCDF	0.0442	JB	0.0185	MDL	5.42	PQL	ng/Kg	υ	В				
1,2,3,4,7,8-HxCDD	0.0398	JQ	0.0134	MDL	5.42	PQL	ng/Kg	j	Z, FD				
1,2,3,4,7,8-HXCDF	0.0536	JB	0.0112	MDL	5.42	PQL	ng/Kg	U	В				
1,2,3,6,7,8-HXCDD	0.0870	JBQ	0.0137	MDL	5.42	PQL	ng/Kg	υJ	B, FD				
1,2,3,6,7,8-HXCDF	0.0378	JBQ	0.00831	MDL	5.42	PQL	ng/Kg	UJ	B, FD				
1,2,3,7,8,9-HXCDD	0.0919	JB	0.0132	MDL	5.42	PQL	ng/Kg	υ	В				
1,2,3,7,8,9-HXCDF	0.0923	JBQ	0.0133	MDL	5.42	PQL	ng/Kg	UJ	B, FD				
1,2,3,7,8-PECDD	0.0105	υ	0.0105	MDL	5.42	PQL	ng/Kg	UJ	FD				
1,2,3,7,8-PECDF	0.0467	JBQ	0.00721	MDL	5.42	PQL	ng/Kg	U	В				
2,3,4,6,7,8-HXCDF	0.0484	JB	0.00931	MDL	5.42	PQL	ng/Kg	UJ	B, FD				
2,3,4,7,8-PECDF	0.0711	JBQ	0.00798	MDL	5.42	PQL	ng/Kg	U	В				
2,3,7,8-TCDF	0.0235	JQ	0.0121	MDL	1.08	PQL	ng/Kg	J	Z, FD				
OCDD	8.41	JB	0.0130	MDL	10.8	PQL	ng/Kg	J	Z, FD				
OCDF	0.432	JB	0.0222	MDL	10.8	PQL	ng/Kg	U	В				

 Sample ID: SL-068-SA6-SB-19.0-20.0
 Collected: 7/28/2011 7:50:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.940	JB	0.0313	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.621	J	0.0322	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.666	JB	0.0266	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.02	JB	0.0330	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.502	JB	0.0218	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.767	JB	0.0318	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.263	JB	0.0224	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.321	JB	0.0236	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.513	JB	0.0172	MDL	5.63	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.635	JB	0.0224	MDL	5.63	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.423	JB	0.0207	MDL	5.63	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.148	J	0.0131	MDL	1.13	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.338	J	0.0274	MDL	1.13	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 11:46:59 AM ADR version 1.4.0.111

Page 1 of 12

Laboratory: LL

Lab Reporting Batch ID: DX121

Laboratory: LL

Dilution: 1

Page 2 of 12

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM
Method: 1613B

Matrix: SO

and the Authoritation and the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Contraction of the Co

Sample ID: SL-068-SA6-SB-4.0-5.0	Collec	ted: 7/28/2	Collected: 7/28/2011 7:40:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	1.35	JB	0.0122	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.227	JB	0.0185	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.142	J	0.0261	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.257	JB	0.0224	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.453	JB	0.0255	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.158	JB	0.0188	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.203	JB	0.0252	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0896	JB	0.0197	MDL	5.34	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.146	JB	0.0145	MD1.	5.34	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.204	JB	0.0161	MDL	5.34	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.188	JB	0.0190	MDL	5.34	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.183	JBQ	0.0163	MDL	5.34	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0776	J	0.0118	MDL	1.07	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0796	JQ	0.0204	MDL	1.07	PQL	ng/Kg	J	Z	
OCDF ,	2.96	JB	0.0182	MDL	10.7	PQL	ng/Kg	J	Z	

Sample ID: SL-070-SA6-SB-19.0-20.0	Collected: 7/28/2011 11:30:00	Analysis Type: RES	
------------------------------------	-------------------------------	--------------------	--

Data Lab Lab DL RLReview Reason Analyte Result DLRL Units Qual Type Type Qual Code 1,2,3,4,6,7,8-HPCDF 4.94 JB 0.0292 MDL 5.93 **PQL** Ζ ng/Kg 1,2,3,4,7,8,9-HPCDF 0.557 JΒ 0.0399 MDL 5.93 **PQL** ng/Kg J z 1,2,3,4,7,8-HxCDD 0.343 0.0361 MDL J 5.93 **PQL** J Z пд/Кд 1,2,3,4,7,8-HXCDF 0.408 JΒ 0.0251 MDL 5.93 **PQL** ng/Kg Z 1,2,3,6,7,8-HXCDD 1.43 JΒ 0.0373 MDL 5.93 **PQL** ng/Kg J Z 1,2,3,6,7,8-HXCDF 0.233 JB ng/Kg J Z 0.0227 MDL 5.93 **PQL** 1,2,3,7,8,9-HXCDD 0.679 JΒ 0.0349 MDL 5.93 PQL J Z ng/Kg 1,2,3,7,8,9-HXCDF 0.103 JΒ 5.93 **PQL** U 0.0274 MDL ng/Kg В 1,2,3,7,8-PECDD 0.182 JΒ 0.0276 MDL 5.93 **PQL** j Z ng/Kg 1,2,3,7,8-PECDF 0.705 JΒ 0.0224 MDL 5.93 **PQL** J Z ng/Kg 2,3,4,6,7,8-HXCDF 0.354 JB 0.0239 MDL 5.93 PQL J z ng/Kg 2,3,4,7,8-PECDF U 0.203 JΒ 0.0252 MDL 5.93 **PQL** ng/Kg В 2,3,7,8-TCDD 0.0859 JQ 0.0136 MDL PQL J Z 1.19 ng/Kg 2,3,7,8-TCDF z 0.270 JQ 0.0339 MDL 1.19 **PQL** ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
10/27/2011 11:47:00 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Matrix: SO

Sample ID: SL-070-SA6-SB-4.0-5.0	Collected: 7/28/2011 10:20:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	0.696	JB	0.0111	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.163	JB	0.0251	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.121	J	0.0180	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.224	JB	0.0213	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.234	JB	0.0181	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.169	JB	0.0150	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.177	JB	0.0177	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.149	JB	0.0185	MDL	5.42	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.249	JBQ	0.0136	MDL	5.42	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.361	JB	0.00973	MDL	5.42	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.149	JB	0.0161	MDL	5.42	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.258	JB	0.0120	MDL	5.42	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0846	J	0.0120	MDL	1.08	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.110	J	0.0180	MDL	1.08	PQL	ng/Kg	J	Z	
OCDF	1.73	JB	0.0206	MDL	10.8	PQL	ng/Kg	J	Z	

Sample ID: SL-090-SA6-SB-3.0-4.0

Collected: 7/28/2011 11:20:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.363	JB	0.0122	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0582	JBQ	0.00587	MDL	5.41	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0362	JBQ	0.0188	MDL	5.41	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0109	JQ	0.00842	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0347	JB	0.00676	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0293	JBQ	0.00875	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0157	JBQ	0.00454	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0310	JB	0.00864	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0423	JBQ	0.00853	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0172	JBQ	0.00975	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0243	JBQ	0.00698	MDL	5.41	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0215	JB	0.00554	MDL	5.41	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0374	JBQ	0.00864	MDL	5.41	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0222	J	0.0112	MDL	1.08	PQL	ng/Kg	J	Z
OCDD	1.12	JB	0.0106	MDL	10.8	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:47:00 AM ADR version 1.4.0.111 Page 3 of 12

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Mothod		4643B					
Method Cate	gory:	GENU	LIEIAE	esa-1763 21011	11. 45-410-5	502.4.78	
			E 1 = 1.7.868	200			

Matrix: SO

Sample ID: SL-090-SA6-SB-3.0-4.0	Collec	Collected: 7/28/2011 11:20:00 Analysis Type: R					RES Dilution: 1				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
OCDF	0.243	JBQ	0.0279	MDL	10.8	PQL	ng/Kg	l u	R		
0001	0.210	000	1	1 1410	10.0	1 02	ngang	J	U		

Sample ID: SL-122-SA6-SB-0.0-0.5 Collected: 7/29/2011 2:30:00 Analysis Type: RES Dilution: 1

Campic ID: CE IEE O/IO CD CIO CIO	001100	Odileteta, 112012011 E100100 Alialysis						Direction.		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	1.57	JB	0.0248	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.234	J	0.0232	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	4.33	JB	0.0402	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.650	JB	0.0239	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	1.48	JB	0.0335	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.403	JB	0.0214	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.838	JB	0.0420	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.188	JB	0.0252	MDL	4.91	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	1.37	JB	0.0476	MDL	4.91	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.38	JB	0.0378	MDL	4.91	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	2.60	JB	0.0545	MDL	4.91	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0680	J	0.0112	MDL	0.983	PQL	ng/Kg	J	Z	

Sample ID: SL-123-SA6-SB-4.0-5.0 Collected: 7/29/2011 9:40:00 Analysis

Analysis Type: RES

Dilution: 1

imple to. 3L-123-3A0-3B-4.0-3.0	Conec	Conected, 1123/2011 9.40.00 Analysis Type: RES Dilution: 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	3.86	JB	0.0388	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	3.30	J	0.0377	MDL	5.31	PQL	ng/Kg	j	Z	
1,2,3,4,7,8-HXCDF	1.22	JB	0.0403	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	1.30	JB	0.0336	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	2.31	JB	0.0360	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.521	JB	0.0384	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.653	JB	0.0350	MDL.	5.31	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.459	JB	0.0253	MDL	5.31	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.77	JB	0.0357	MDL	5.31	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.487	JB	0.0278	MDL	5.31	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.323	J	0.0128	MDL	1.06	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.277	J	0.0607	MDL	1.06	PQL	ng/Kg	J	Z	
OCDD	6810	EB	0.0556	MDL	10.6	PQL	ng/Kg	J	*XI	
· · · · · · · · · · · · · · · · · · ·			4		·					

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 11:47:00 AM ADR version 1.4.0.111

Page 4 of 12

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

Matrix:

Sample ID: SL-123-SA6-SB-7.0-8.0	Collec	ted: 7/29/2	:011 9:50:0	00 A	Analysis Type: RES				Dilution: 1		
A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8,9-HPCDF	2.36	JB	0.0323	MDL	5.44	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HxCDD	1.55	J	0.0336	MDL	5.44	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	2.09	JB	0.0388	MDL	5.44	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	1.13	JB	0.0362	MDL	5.44	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	3.68	JB	0.0341	MDL	5.44	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.541	JB	0.0358	MDL	5.44	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.470	JB	0.0372	MDL	5.44	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.748	JB	0.0295	MDL	5.44	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	1.54	JB	0.0326	MDL.	5.44	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	1.29	JB	0.0289	MDL.	5.44	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.167	J	0.0124	MDL	1.09	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	1.02	J	0.0487	MDL	1.09	PQL	ng/Kg	J	z		

Sample ID: SL-172-SA5DN-SB-4.0-5.0

Collected: 7/28/2011 12:04:00 Analysis Type: RES

Dilution: 1

000000000000000000000000000000000000000		July 313 Type: The						Diración.			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDF	0.756	JB	0.0116	MDL	5.53	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.0873	JBQ	0.0243	MDL	5.53	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.158	J	0.0402	MDL	5.53	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	0.0874	JB	0.0265	MDL	5.53	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.413	JB	0.0420	MDL	5.53	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.0721	JBQ	0.0223	MDL	5.53	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.467	JB	0.0386	MDL	5.53	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.320	JB	0.0311	MDL	5.53	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.119	JB	0.0203	MDL	5.53	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.190	JB	0.0163	MDL.	5.53	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.0825	JB	0.0255	MDL	5.53	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.112	JBQ	0.0195	MDL	5.53	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.0186	JQ	0.0165	MDL	1.11	PQL	ng/Kg	J	Z		
OCDF	1.88	JB	0.0251	MDL	11.1	PQL	ng/Kg	J	Z		

Sample ID: SL-172-SA5DN-SB-9.0-10.0

Collected: 7/28/2011 12:09:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5.67	JB	0.0270	MDL	5.85	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 10/27/2011 11:47:00 AM

Page 5 of 12

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method Catego	ory: GENCHEM
Method:	1613B

SO

Matrix:

Sample ID: SL-172-SA5DN-SB-9.0-10.0  Analyte	Collec	ted: 7/28/2	2011 12:09:	00 A	nalysis T	pe: RES		Dilution: 1		
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	0.732	JB	0.00993	MDL	5.85	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.0718	JBQ	0.0202	MDL	5.85	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0893	J	0.0277	MDL	5.85	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0767	JBQ	0.0173	MDL	5.85	PQL	ng/Kg	U	. B	
1,2,3,6,7,8-HXCDD	0.224	JB	0.0271	MDL	5.85	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0417	JB	0.0142	MDL	5.85	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.201	JB	0.0264	MDL.	5.85	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0562	JB	0.0228	MDL	5.85	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDD	0.0700	JBQ	0.0175	MDL	5.85	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0625	JBQ	0.0123	MDL	5.85	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0506	JB	0.0158	MDL	5.85	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0553	JBQ	0.0139	MDL	5.85	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0220	JQ	0.0169	MDL	1.17	PQL	ng/Kg	J	Z	
OCDF	1.98	JB	0.0201	MDL	11.7	PQL	ng/Kg	J	Z	

Sample ID: SL-174-SA5DN-SB-4.0-5.0

Collected: 7/29/2011 2:49:00 Analys

Analysis Type: RES

Dilution: 1

	00,,,00	Analysis type.						oc. 1120 Distabil. 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	5.57	JB	0.0246	MDL	5.65	PQL	ng/Kg	J	Z		
1,2,3,4,6,7,8-HPCDF	0.873	JB	0.00804	MDL	5.65	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.114	JB	0.0212	MDL	5.65	PQL	ng/Kg	υ	В		
1,2,3,4,7,8-HxCDD	0.0561	J	0.0217	MDL	5.65	PQL	пд/Кд	J	Z		
1,2,3,4,7,8-HXCDF	0.0892	JBQ	0.0177	MDL	5.65	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.230	JB	0.0219	MDL	5.65	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.0649	JBQ	0.0132	MDL	5.65	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.127	JB	0.0204	MDL	5.65	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.0448	JB	0.0192	MDL	5.65	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0511	JBQ	0.0162	MDL	5.65	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.0582	JB	0.00851	MDL	5.65	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.0793	JBQ	0.0159	MDL,	5.65	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0605	JBQ	0.0112	MDL.	5.65	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.0361	J	0.0129	MDL,	1.13	PQL	ng/Kg	J	Z		
OCDF	1.93	JB	0.0216	MDL	11.3	PQL	ng/Kg	J	Z		
		<del></del>					1				

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX121

Laboratory: LL

Page 7 of 12

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method Category	: GENCHEM	Notes de la la la la la la la la la la la la la			
Method:	1613B		Matrix:	SO	

Sample ID: SL-174-SA5DN-SB-9.0-10.0	Collec	ted: 7/29/2	2011 2:51:0	0 A	nalysis T	pe: RES	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	0.989	JB	0.00575	MDL	5.68	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.142	JB	0.0147	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0715	JQ	0.0228	MDL	5.68	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.101	JB	0.0158	MDL	5.68	PQL	ng/Kg	j	Z	
1,2,3,6,7,8-HXCDD	0.296	JB	0.0231	MDL	5.68	PQL	ng/Kg	j	Z	
1,2,3,6,7,8-HXCDF	0.0851	JB	0.0125	MDL	5.68	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.144	JB	0.0215	MDL	5.68	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0490	JB	0.0180	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0634	JB	0.0145	MDL	5.68	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0845	JBQ	0.00875	MDL	5.68	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.103	JB	0.0145	MDL	5.68	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0924	JB	0.00990	MDL	5.68	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0512	JQ	0.0106	MDL	1.14	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0336	JQ	0.0139	MDL	1.14	PQL	ng/Kg	J	Z	
OCDF	2.06	JB	0.0168	MDL	11.4	PQL	ng/Kg	J	Z	

Sample ID: SL-180-SA5DN-SB-4.0-5.0 Collected: 7/29/2011 9:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.728	JВ	0.0128	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.109	JB	0.00627	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0568	JBQ	0.0187	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0116	JQ	0.0107	MDL	5.59	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0267	JB	0.00810	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0392	JBQ	0.0109	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0165	JBQ	0.00570	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0363	JBQ	0.0104	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0335	JBQ	0.0104	MDL	5.59	PQL	ng/Kg	Ų	В
1,2,3,7,8-PECDD	0.0129	JB	0.0107	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0282	JBQ	0.00650	MDL	5.59	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0205	JBQ	0.00673	MDL	5.59	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0404	JB	0.00775	MDL	5.59	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0169	JQ	0.0111	MDL	1.12	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0126	J	0.0121	MDL	1.12	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:47:00 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM	i dekalli daga ing daga di kabang pagan ang malikang pagang melebebahan pagan	
Method:	1613B	Matrix: SO	

Sample ID: SL-180-SA5DN-SB-4.0-5.0	Collected: 7/29/2011 9:10:00 Analysis					ype: RES	;	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
OCDD	4.51	JB	0.0122	MDL	11.2	PQL	ng/Kg	J	Z	
OCDF	0.271	JBQ	0.0273	MDL	11.2	PQL	ng/Kg	U	В	

Sample ID: SL-180-SA5DN-SB-9.0-10.0 Collected: 7/29/2011 9:12:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Analyte DLRL. Result Qual Units Code Type Type Qual 1,2,3,4,6,7,8-HPCDD 2,57 JB MDL 0.0152 5.87 PQL Z ng/Kg J 1,2,3,4,6,7,8-HPCDF 0.293 JB 0.00563 MDL 5.87 PQL ng/Kg J Z 1,2,3,4,7,8,9-HPCDF 0.0751 JB 0.0171 MDL PQL U 5.87 В ng/Kg 1,2,3,4,7,8-HxCDD 0.0402 J 0.0165 MDL 5.87 PQL ng/Kg J Z 1,2,3,4,7,8-HXCDF Ü 0.0292 JB 0.0103 MDL 5.87 PQL ng/Kg В 1,2,3,6,7,8-HXCDD 0.124 JB 0.0168 PQL Z MDL. 5.87 ng/Kg J 1,2,3,6,7,8-HXCDF 0.0321 JB 0.00766 MDL 5.87 PQL U В ng/Kg 1,2,3,7,8,9-HXCDD 0.0977 JB 0.0162 MDL 5.87 **PQL** ng/Kg U В 1,2,3,7,8,9-HXCDF 0.0311 0.0134 JBQ MDL 5.87 PQL U ng/Kg В 1,2,3,7,8-PECDD 0.0413 **JBQ** 0.0109 MDL. 5.87 PQL ng/Kg U В 1,2,3,7,8-PECDF 0.0257 **JBQ** 0.00599 MDL 5.87 PQL U В ng/Kg U 2,3,4,6,7,8-HXCDF 0.0407 JВ 0.00910 MDL 5.87 **PQL** ng/Kg В 2,3,4,7,8-PECDF 0.0428 **JBQ** 0.00778 MDL PQL U 5.87 ng/Kg В 2,3,7,8-TCDD J 0.0109 J 0.0157 MDL 1.17 **PQL** Z ng/Kg 2,3,7,8-TCDF 0.0171 JQ 0.0125 MDL 1.17 **PQL** J z ng/Kg OCDF 0.623 JВ 0.0284 MDL U 11.7 **PQL** В ng/Kg

Sample ID: SL-183-SA5DN-SB-4.0-5.0	Collected: 7/28/2011 10:11:00	Analysis Type: RES	Dilution: 1
<del></del>			

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.800	JB	0.0184	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.113	JBQ	0.00617	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0361	JBQ	0.0175	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0161	J	0.0130	MDL	5.45	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	0.0386	JB	0.00999	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0411	JBQ	0.0135	MDL	5.45	PQL	ng/Kg	บม	B, FD
1,2,3,6,7,8-HXCDF	0.0120	JBQ	0.00752	MDL	5.45	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8,9-HXCDD	0.0713	JBQ	0.0132	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0527	JBQ	0.0112	MDL	5.45	PQL	ng/Kg	UJ	B, FD

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:47:00 AM ADR version 1.4.0.111 Page 8 of 12

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B

Matrix: S

Sample ID: SL-183-SA5DN-SB-4.0-5.0	Collected: 7/28/2011 10:11:00 Analysis Type: RES								Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8-PECDD	0.0194	JBQ	0.0145	MDL	5.45	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8-PECDF	0.0458	JBQ	0.00808	MDL	5.45	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0277	JBQ	0.00853	MDL	5.45	PQL	ng/Kg	IJ	B, FD	
2,3,4,7,8-PECDF	0.0562	JBQ	0.00965	MDL	5.45	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0159	U	0.0159	MDL	1.09	PQL	ng/Kg	UJ	FD	
OCDD	4.73	JB	0.0176	MDL	10.9	PQL	ng/Kg	J	Z, FD	
OCDF	0.309	JB	0.0248	MDL	10.9	PQL	na/Ka	U	В	

Sample ID: 3L=163-5A3DN-3B-9.0-10.0	Conec	Collected: 1128/2011 10:30:00 Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.554	JB	0.0177	MDL	5.70	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.109	JB	0.00803	MDL	5.70	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0807	JB	0.0157	MDL	5.70	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0677	J	0.0143	MDL	5.70	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0924	JBQ	0.0126	MDL	5.70	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDD	0.0725	JBQ	0.0147	MDL	5.70	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.0735	JBQ	0.00894	MDL	5.70	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.0723	JBQ	0.0128	MDL	5.70	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0947	JB	0.0119	MDL	5.70	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0518	JBQ	0.0127	MDL	5.70	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0652	JBQ	0.00654	MDL	5.70	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0702	JB	0.00849	MDL	5.70	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0840	JB	0.00849	MDL	5.70	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0112	JQ	0.0111	MDL	1.14	PQL	ng/Kg	J	Z	
OCDD	2.78	JB	0.0173	MDL	11.4	PQL	ng/Kg	U	В	
OCDF	0.310	JB	0.0237	MDL	11.4	PQL	ng/Kg	U	В	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 11:47:00 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX121 EDD Filename: DX121_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

### Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*XI	Compound Quantitation and CRQL
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
c	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 11:47:00 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
I	Internal Standard Estimation
Į.	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
M	Initial Tune
M	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection
•	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

# **Enclosure I**

**EPA Level III ADR Outliers** (including Manual Review Outliers)

# Quality Control Outlier Reports

DX121

Lab Reporting Batch ID: DX121 Laboratory: LL

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 1613 <i>Matrix:</i> SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2230B371804	8/15/2011 6:04:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0CDD OCDF	0.353 ng/Kg 0.0526 ng/Kg 0.0526 ng/Kg 0.0314 ng/Kg 0.0198 ng/Kg 0.0237 ng/Kg 0.0114 ng/Kg 0.0270 ng/Kg 0.0270 ng/Kg 0.0321 ng/Kg 0.0239 ng/Kg 0.0220 ng/Kg 0.0231 ng/Kg 0.0422 ng/Kg 0.0422 ng/Kg 0.751 ng/Kg 0.168 ng/Kg	DUP21-SA5DN-QC-072811 SL-068-SA6-SB-19.0-20.0 SL-068-SA6-SB-4.0-5.0 SL-070-SA6-SB-4.0-5.0 SL-070-SA6-SB-3.0-4.0 SL-090-SA6-SB-3.0-4.0 SL-122-SA6-SB-0.0-0.5 SL-123-SA6-SB-7.0-8.0 SL-123-SA6-SB-7.0-8.0 SL-172-SA5DN-SB-9.0-10.0 SL-172-SA5DN-SB-9.0-10.0 SL-174-SA5DN-SB-4.0-5.0 SL-174-SA5DN-SB-4.0-5.0 SL-180-SA5DN-SB-4.0-5.0 SL-183-SA5DN-SB-4.0-5.0 SL-183-SA5DN-SB-9.0-10.0 SL-183-SA5DN-SB-9.0-10.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP21-SA5DN-QC-072811(RES)	1,2,3,4,6,7,8-HPCDD	1.12 ng/Kg	1.12U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,4,6,7,8-HPCDF	0,177 ng/Kg	0.177U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,4,7,8,9-HPCDF	0.0442 ng/Kg	0.0442U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,4,7,8-HXCDF	0.0536 ng/Kg	0.0536U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,6,7,8-HXCDD	0.0870 ng/Kg	0.0870U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,6,7,8-HXCDF	0.0378 ng/Kg	0.0378U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,7,8,9-HXCDD	0.0919 ng/Kg	0.0919U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,7,8,9-HXCDF	0.0923 ng/Kg	0.0923U ng/Kg
DUP21-SA5DN-QC-072811(RES)	1,2,3,7,8-PECDF	0.0467 ng/Kg	0.0467U ng/Kg
DUP21-SA5DN-QC-072811(RES)	2,3,4,6,7,8-HXCDF	0.0484 ng/Kg	0.0484U ng/Kg
DUP21-SA5DN-QC-072811(RES)	2,3,4,7,8-PECDF	0.0711 ng/Kg	0.0711U ng/Kg
DUP21-SA5DN-QC-072811(RES)	OCDF	0.432 ng/Kg	0.432U ng/Kg
SL-068-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0896 ng/Kg	0.0896U ng/Kg
SL-068-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.183 ng/Kg	0.183U ng/Kg
SL-070-SA6-SB-19.0-20.0(RES)	1,2,3,7,8,9-HXCDF	0.103 ng/Kg	0.103U ng/Kg
SL-070-SA6-SB-19.0-20.0(RES)	2,3,4,7,8-PECDF	0.203 ng/Kg	0.203U ng/Kg
SL-070-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.149 ng/Kg	0.149U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDD	0.363 ng/Kg	0,363U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0582 ng/Kg	0.0582U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0362 ng/Kg	0.0362U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,4,7,8-HXCDF	0.0347 ng/Kg	0.0347U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDD	0.0293 ng/Kg	0.0293U ng/Kg
SL-090-\$A6-\$B-3.0-4.0(RES)	1,2,3,6,7,8-HXCDF	0.0157 ng/Kg	0.0157U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDD	0.0310 ng/Kg	0.0310U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDF	0.0423 ng/Kg	0.0423U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,7,8-PECDD	0.0172 ng/Kg	0.0172U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	1,2,3,7,8-PECDF	0.0243 ng/Kg	0.0243U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	2,3,4,6,7,8-HXCDF	0.0215 ng/Kg	0.0215U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	2,3,4,7,8-PECDF	0.0374 ng/Kg	0.0374U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 11:45:26 AM ADR version 1.4.0.111 Page 1 of 3

Lab Reporting Batch ID: DX121 Laboratory: LL

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample !D	Analysis Date	Analyte	Result	Associated Samples

# The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-090-SA6-SB-3.0-4.0(RES)	OCDD	1.12 ng/Kg	1.12U ng/Kg
SL-090-SA6-SB-3.0-4.0(RES)	OCDF	0.243 ng/Kg	0.243U ng/Kg
SL-172-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0873 ng/Kg	0.0873U ng/Kg
SL-172-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0874 ng/Kg	0.0874U ng/Kg
SL-172-SA5DN-S8-4,0-5.0(RES)	1,2,3,7,8-PECDD	0.119 ng/Kg	0.119U ng/Kg
SL-172-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0825 ng/Kg	0.0825U ng/Kg
SL-172-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.112 ng/Kg	0.112U ng/Kg
SL-172-SA5DN-SB-9,0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0718 ng/Kg	0.0718U ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0767 ng/Kg	0.0767Ú ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0417 ng/Kg	0.0417U ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0,0562 ng/Kg	0.0562U ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0700 ng/Kg	0.0700U ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0625 ng/Kg	. 0.0625U ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0506 ng/Kg	0.0506U ng/Kg
SL-172-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0553 ng/Kg	0.0553U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.114 ng/Kg	0.114U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0892 ng/Kg	0.0892U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.127 ng/Kg	0.127U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0448 ng/Kg	0.0448U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0511 ng/Kg	0.0511U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0582 ng/Kg	0.0582U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0793 ng/Kg	0.0793U ng/Kg
SL-174-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0605 ng/Kg	0.0605U ng/Kg
SL-174-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.142 ng/Kg	0.142U ng/Kg
SL-174-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0490 ng/Kg	0.0490U ng/Kg
SL-174-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0634 ng/Kg	0.0634U ng/Kg
SL-174-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0845 ng/Kg	0.0845U ng/Kg
SL-174-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.103 ng/Kg	0.103U ng/Kg
SL-174-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0924 ng/Kg	0.0924U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.728 ng/Kg	0.728U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.109 ng/Kg	0.109U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0568 ng/Kg	0.0568U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0267 ng/Kg	0.0267U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0392 ng/Kg	0.0392U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0165 ng/Kg	0.0165U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0363 ng/Kg	0.0363U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0335 ng/Kg	0.0335U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0129 ng/Kg	0.0129U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0282 ng/Kg	0.0282U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0205 ng/Kg	0.0205U ng/Kg

10/27/2011 11:45:26 AM ADR version 1.4.0.111 Page 2 of 3

Lab Reporting Batch ID: DX121 Laboratory: LL

EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

Method: 16	13B			
Matrix: SC	<u> </u>			
Method Blank				Associated
Sample ID	Analysis Date	Analyte	Result	Samples

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-180-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0404 ng/Kg	0.0404U ng/Kg
SL-180-SA5DN-SB-4.0-5.0(RES)	OCDF	0.271 ng/Kg	0.271U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0751 ng/Kg	0.0751U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0292 ng/Kg	0.0292U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0321 ng/Kg	0.0321U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0977 ng/Kg	0.0977U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0311 ng/Kg	0.0311U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0413 ng/Kg	0.0413U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0257 ng/Kg	0.0257U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0407 ng/Kg	0.0407U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0428 ng/Kg	0.0428U ng/Kg
SL-180-SA5DN-SB-9.0-10.0(RES)	OCDF	0.623 ng/Kg	0.623U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.800 ng/Kg	0.800U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.113 ng/Kg	0.113U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0361 ng/Kg	0.0361U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0386 ng/Kg	0.0386U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0411 ng/Kg	0.0411U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0120 ng/Kg	0.0120U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0713 ng/Kg	0.0713U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0527 ng/Kg	0.0527U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0194 ng/Kg	0.0194U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0458 ng/Kg	0.0458U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0277 ng/Kg	0.0277U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0562 ng/Kg	0.0562U ng/Kg
SL-183-SA5DN-SB-4.0-5.0(RES)	OCDF	0.309 ng/Kg	0.309U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.554 ng/Kg	0.554U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.109 ng/Kg	0.109U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0,0807 ng/Kg	0.0807U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0924 ng/Kg	0.0924U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0725 ng/Kg	0.0725U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0723 ng/Kg	0.0723U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0947 ng/Kg	0.0947U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0518 ng/Kg	0.0518U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0652 ng/Kg	0.0652U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0702 ng/Kg	0.0702U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0840 ng/Kg	0.0840U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	OCDD	2.78 ng/Kg	2.78U ng/Kg
SL-183-SA5DN-SB-9.0-10.0(RES)	OCDF	0.310 ng/Kg	0.310U ng/Kg

# Field Duplicate RPD Report

Lab Reporting Batch ID: DX121

OCDD

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Matrix: SO					
	Concenti	ration (%)			
Analyte	SL-183-SA5DN-SB-4.0- 5.0	DUP21-SA5DN-QC- 072811	Sample RPD	eQAPP RPD	Flag
MOISTURE	10.9	9.8	11		No Qualifiers Applied

Method: 1613B Matrix: SO Concentration (ng/Kg) eQAPP Sample SL-183-SA5DN-SB-4.0-DUP21-SA5DN-QC-RPD RPD Flag Analyte 5.0 072811 1,2,3,4,6,7,8-HPCDD 0.800 1.12 33 50.00 1,2,3,4,6,7,8-HPCDF 0.113 0.177 44 50.00 1,2,3,4,7,8,9-HPCDF 0.0361 0.0442 20 50.00 1,2,3,4,7,8-HXCDF 0.0386 0.0536 33 50.00 No Qualifiers Applied 1,2,3,7,8,9-HXCDD 0.0713 0.0919 25 50.00 50.00 1,2,3,7,8-PECDF 0.0458 0.0467 2 2,3,4,7,8-PECDF 0.0562 0.0711 23 50.00 OCDF 0.309 0.432 33 50.00 0.0398 85 1,2,3,4,7,8-HxCDD 0.0161 50.00 1,2,3,6,7,8-HXCDD 0.0411 0.0870 72 50.00 1,2,3,6,7,8-HXCDF 0.0120 0.0378 104 50.00 1,2,3,7,8,9-HXCDF 0.0527 0.0923 55 50.00 J(all detects) 1,2,3,7,8-PECDD 0.0194 5.42 U 200 50.00 UJ(all non-detects) 2,3,4,6,7,8-HXCDF 0.0277 0.0484 54 50.00 2,3,7,8-TCDF 1.09 U 0.0235 200 50.00

8.41

56

50.00

4.73

10/27/2011 11:45:12 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Matrix: SO				7	<u> </u>		
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP21-SA5DN-QC-072811	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 0CDD 0CDF	###4###################################	1.12 0.177 0.0442 0.0398 0.0536 0.0870 0.0378 0.0919 0.0923 0.0467 0.0484 0.0711 0.0235 8.41 0.432	5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-068-SA6-SB-19.0-20.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		0.940 0.621 0.666 2.02 0.502 0.767 0.263 0.321 0.513 0.635 0.423 0.148 0.338	5.63 5.63 5.63 5.63 5.63 5.63 5.63 5.63	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-068-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	B   B   B   B   B   B   B   B   B   B	1.35 0.227 0.142 0.257 0.453 0.158 0.203 0.0896 0.146 0.204 0.188 0.183 0.0776 0.0796 2.96	5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	どろまままままままま 1 出出 日本 出出 日本 日本 田田 田田 田田 田田 田田 田田 田田 田田 田田 田田 田田 田田 田田	4.94 0.557 0.343 0.408 1.43 0.233 0.679 0.103 0.182 0.705 0.354 0.203 0.0859 0.270	5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX121 Laboratory: LL EDD Filename: DX121_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-070-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0,3,7,8-TCDD	B B B B B B B B B B B B B B B B B B B	0.696 0.163 0.121 0.224 0.234 0.169 0.177 0.149 0.249 0.361 0.149 0.258 0.0846 0.110	5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-090-SA6-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	######################################	0.363 0.0582 0.0362 0.0109 0.0347 0.0293 0.0157 0.0310 0.0423 0.0172 0.0243 0.0215 0.0374 0.0222 1.12 0.243	5.41 5.41 5.41 5.41 5.41 5.41 5.41 5.41	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-122-SA6-SB-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD		1.57 0.234 4.33 0.650 1.48 0.403 0.838 0.188 1.37 1.38 2.60 0.0680	4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-123-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		3.86 3.30 1.22 1.30 2.31 0.521 0.653 0.459 1.77 0.487 0.323 0.277	5.31 5.31 5.31 5.31 5.31 5.31 5.31 5.31	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

10/27/2011 11:45:35 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Watrix: 50					· · · · · · · · · · · · · · · · · · ·	1	
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-123-SA6-SB-7.0-8.0	1,2,3,4,7,8,9-HPCDF	JB	2.36	5.44	PQL	ng/Kg	<u> </u>
	1,2,3,4,7,8-HxCDD	J	1.55	5.44	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	2.09	5.44	PQL	ng/Kg	
İ	1,2,3,6,7,8-HXCDF	JB	1.13	5.44	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	3.68	5.44	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.541	5.44	PQL	ng/Kg	J (all detects)
1	1,2,3,7,8-PECDD	JB	0.470	5.44	PQL	ng/Kg	5 (a 55.55.6)
	1,2,3,7,8-PECDF	JB	0.748	5.44	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	JB	1.54	5.44	PQL	ng/Kg	
	2,3,7,8-TCDD	JB J	1.29 0.167	5.44	PQL PQL	ng/Kg	
1	2,3,7,8-TCDF	J	1.02	1.09 1.09	PQL	ng/Kg ng/Kg	
CL 470 CAEDN CD 40 F 0							
SL-172-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	0.756	5.53	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0873	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J JB	0.158 0.0874	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF  1,2,3,6,7,8-HXCDD	JB	0.0674	5.53 5.53	PQL PQL	ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.413	5.53	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.467	5.53	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.320	5.53	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.119	5.53	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.190	5.53	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0825	5.53	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.112	5.53	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0186	1.11	PQL	ng/Kg	
	OCDF	JB	1.88	11.1	PQL	ng/Kg	
SL-172-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	5.67	5.85	PQL	ng/Kg	
32 112 G/10511 G5 010 1010	1,2,3,4,6,7,8-HPCDF	JB	0.732	5.85	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0718	5.85	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0893	5.85	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0767	5.85	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.224	5.85	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0417	5.85	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.201	5.85	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.0562	5.85	PQL	ng/Kg	,
	1,2,3,7,8-PECDD	JBQ	0.0700	5.85	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0625	5.85	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0506	5.85	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0553	5.85	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0220	1.17	PQL	ng/Kg	
	OCDF	JB	1.98	11.7	PQL	ng/Kg	
SL-174-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	5.57	5.65	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.873	5.65	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.114	5.65	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0561	5.65	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0892	5.65	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.230	5.65	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0649	5.65	PQL	ng/Kg	1201
	1,2,3,7,8,9-HXCDD	JB	0.127	5.65	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.0448	5.65	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0511	5.65	PQL	ng/Kg	
	1,2,3,7,8-PECDF  2,3,4,6,7,8-HXCDF	JB	0.0582	5.65	PQL	ng/Kg	
	2,3,4,6,7,6-HXCDF  2,3,4,7,8-PECDF	JBQ JBQ	0.0793 0.0605	5.65	PQL	ng/Kg	
	2,3,4,7,6-FECDF 2,3,7,8-TCDD	JBQ	0.0361	5.65 1.13	PQL PQL	ng/Kg ng/Kg	
	OCDF	JB	1.93	11.3	PQL	ng/Kg	
	005,		1.33	11.0	r WL	ngrNg	

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		1 - 6					
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-174-SA5DN-SB-9.0-10.0			0.989				, 109
3L-174-3A3DIN-3B-9.0-10.0	1	JB		5.68	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.142	5.68	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0715	5.68	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.101	5.68	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.296	5.68	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0851	5.68	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.144	5.68	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JВ	0.0490	5.68	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0634	5.68	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0845	5.68	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.103	5.68	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0924	5.68	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0512	1.14	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0336	1.14	PQL	ng/Kg	
	OCDF	JB	2.06	11.4	PQL	ng/Kg	
SL-180-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.728	5.59	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JВ	0.109	5.59	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0568	5.59	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0308	5.59	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0267	5.59	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0392	5.59	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0165	5.59	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0363	5.59	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0335	5.59	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0129	5.59	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0282	5.59	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0205	5.59	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0404	5.59	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0169	1.12	PQL.	ng/Kg	
	2,3,7,8-TCDF	J	0.0126	1.12	PQL	ng/Kg	
	OCDD	JB	4.51	11.2	PQL	ng/Kg	
	OCDF	JBQ	0.271	11.2	PQL	ng/Kg	
SL-180-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	2.57	5.87	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.293	5.87	PQL	ng/Kg	
•	1,2,3,4,7,8,9-HPCDF	JВ	0.0751	5.87	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	Ĵ	0.0402	5.87	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	ĴВ	0.0402	5.87	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0252	5.87	PQL	ng/Kg ng/Kg	
						19/19	
	1,2,3,6,7,8-HXCDF	JB	0.0321	5.87	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0977	5.87	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0311	5.87	PQL	ng/Kg	,
	1,2,3,7,8-PECDD	JBQ	0.0413	5.87	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0257	5.87	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0407	5.87	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0428	5.87	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0157	1.17	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0171	1.17	PQL	ng/Kg	
	OCDF	JB	0.623	11.7	PQL	ng/Kg	

10/27/2011 11:45:35 AM

Lab Reporting Batch ID: DX121

Laboratory: LL

EDD Filename: DX121_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-183-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.800	5.45	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.113	5.45	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0361	5.45	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0161	5.45	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0386	5.45	PQL	ng/Kg	•
	1,2,3,6,7,8-HXCDD	JBQ	0.0411	5.45	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0120	5.45	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0713	5.45	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0527	5.45	PQL	ng/Kg	•
	1,2,3,7,8-PECDD	JBQ	0.0194	5.45	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0458	5.45	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0277	5.45	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0562	5.45	PQL	ng/Kg	
	OCDD	JB	4.73	10.9	PQL	ng/Kg	
	OCDF	JB	0.309	10.9	PQL	ng/Kg	
SL-183-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.554	5.70	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.109	5.70	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0807	5.70	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0677	5.70	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0924	5.70	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0725	5.70	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0735	5.70	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0723	5.70	PQL	ng/Kg	1.7-11.4-1-4-2
	1,2,3,7,8,9-HXCDF	JB	0.0947	5.70	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0518	5.70	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0652	5.70	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0702	5.70	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0840	5.70	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0112	1.14	PQL	ng/Kg	
	OCDD	JB	2.78	11.4	PQL	пд/Кд	
•	OCDF	JB	0.310	11.4	PQL	ng/Kg	

10/27/2011 11:45:35 AM ADR version 1.4.0.111 Page 5 of 5

# **SAMPLE DELIVERY GROUP**

**DX122** 

# Attachment I

Sample ID Cross Reference and Data Review Level

# Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
29-Jul-2011	SL-125-SA6-SB-4.0-5.0	6360522	N	METHOD	1613B	111
29-Jul-2011	SL-125-SA6-SB-4.0-5.0MS	6360523	MS	METHOD	1613B	III
29-Jul-2011	SL-125-SA6-SB-4.0-5.0MSD	6360524	MSD	METHOD	1613B	Ш
29-Jul-2011	DUP10-SA6-QC-072911	6360528	FD	METHOD	1613B	181
29-Jul-2011	SL-125-SA6-SB-20.0-21.0	6360525	N	METHOD	1613B	m
29-Jul-2011	SL-126-SA6-SB-4.0-5.0	6360526	N	METHOD	1613B	111
29-Jul-2011	SL-126-SA6-SB-9.0-10.0	6360527	N	METHOD	1613B	10

# Attachment II

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX122 Laboratory: LL

EDD Filename: DX122_v1. eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: DUP10-SA6-QC-072911	Collec	ted: 7/29/2	011 8:00:0	00 A	nalysis Ty	/pe: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	116	В	0.0969	MDL	5.59	PQL	ng/Kg	J	FD
1,2,3,4,6,7,8-HPCDF	8.48	В	0.0393	MDL	5.59	PQL	ng/Kg	J	FD
1,2,3,4,7,8,9-HPCDF	0.882	JB	0.0425	MDL	5.59	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HxCDD	0.641	JB	0.0488	MDL	5.59	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	0.752	JB	0.0409	MDL	5.59	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDD	2.24	JB	0.0478	MDL	5.59	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDF	0.412	JB	0.0378	MDL	5.59	PQL	ng/Kg	J	Z, FD
1,2,3,7,8,9-HXCDD	0.823	JB	0.0465	MDL	5.59	PQL	ng/Kg	J	Z, FD
1,2,3,7,8,9-HXCDF	0.171	JB	0.0391	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.197	JB	0.0352	MDL	5.59	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDF	1.13	JB	0.0393	MDL	5.59	PQL	ng/Kg	J	Z, FD
2,3,4,6,7,8-HXCDF	0.594	JB	0.0350	MDL	5.59	PQL	ng/Kg	J	Z, FD
2,3,4,7,8-PECDF	0.357	JBQ	0.0448	MDL	5.59	PQL	ng/Kg	J	Z, FD
2,3,7,8-TCDD	0.113	J	0.0174	MDL	1.12	PQL	ng/Kg	J	Z, FD
2,3,7,8-TCDF	0.754	JB	0.0809	MDL	1.12	PQL	ng/Kg	J	Z, FD
OCDD	1540	В	0.0555	MDL	11.2	PQL	ng/Kg	J	FD
OCDF	23.2	В	0.0350	MDL	11,2	PQL	ng/Kg	J	FD

Sample ID: SL-125-SA6-SB-20.0-21.0 Collected: 7/29/2011 8:1	5:00 Analysis Type:	RES	Dilution: 1
-------------------------------------------------------------	---------------------	-----	-------------

		Guncolca: Treated to 10:000 Analysis t						Dilucion.	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.06	JB	0.0315	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.449	JB	0.0351	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.168	JB	0.0453	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.760	JB	0.0434	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.574	JB	0.0467	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.306	JB	0.0411	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.321	JBQ	0.0440	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.183	JB	0.0421	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.118	JB	0.0245	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.978	JB	0.0428	MDL	5.60	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.466	JB	0.0395	MDL	5.60	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.245	JB	0.0405	MDL	5.60	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.520	JB	0.0979	MDL	1.12	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:05:51 PM ADR version 1.4.0.111 Page 1 of 6

Lab Reporting Batch ID: DX122

Laboratory: LL

EDD Filename: DX122_v1.

eQAPP Name: CDM_SSFL_110509

Matrix: SC

Sample ID: SL-125-SA6-SB-20.0-21.0	Collec	ted: 7/29/2	011 8:15:0	00 A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDF	5.60	JB	0.0343	MDL	11.2	PQL	ng/Kg	J.	Z

Sample ID: SL-125-SA6-SB-4.0-5.0 Collected: 7/29/2011 7:55:00 Analysis Type: RES Dilution: 1

3anipie ID. 3L-123-3A0-3B-4.0-3.0	Conec	Gonected: 1129/2011 1:55:00				ype: KES				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	12.2	В	0.0324	MDL	5.47	PQL	ng/Kg	J	Q, Q, FD	
1,2,3,4,6,7,8-HPCDF	0.791	JB	0.0201	MDL	5.47	PQL	ng/Kg	J	Z, FD	
1,2,3,4,7,8,9-HPCDF	0.125	JB	0.0222	MDL	5.47	PQL	ng/Kg	UJ	8, FD	
1,2,3,4,7,8-HxCDD	0.0819	JBQ	0.0277	MDL	5.47	PQL	ng/Kg	เกา	B, FD	
1,2,3,4,7,8-HXCDF	0.151	JBQ	0.0240	MDL	5.47	PQL	ng/Kg	UJ	B, FD	
1,2,3,6,7,8-HXCDD	0.220	JB	0.0277	MDL	5.47	PQL	ng/Kg	J	Z, FD	
1,2,3,6,7,8-HXCDF	0.0740	JB	0.0228	MDL	5.47	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8,9-HXCDD	0.136	JB	0.0249	MDL	5.47	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8,9-HXCDF	0.104	JB	0.0197	MDL	5.47	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDD	0.0673	JBQ	0.0119	MDL	5.47	PQL	ng/Kg	UJ	Q, B, FD	
1,2,3,7,8-PECDF	0.0808	JВ	0.0123	MDL	5.47	PQL	ng/Kg	UJ	B, FD	
2,3,4,6,7,8-HXCDF	0.113	JB	0.0189	MDL	5.47	PQL	ng/Kg	ΠΊ	B, FD	
2,3,4,7,8-PECDF	0.112	JB	0.0118	MDL.	5.47	PQL	ng/Kg	ÛĴ	B, FD	
2,3,7,8-TCDD	0.0169	JQ	0.0103	MDL	1.09	PQL	ng/Kg	J	Z, FD	
2,3,7,8-TCDF	0.0248	JBQ	0.0151	MDL	1.09	PQL	ng/Kg	บม	Q, B, FD	
OCDD	117	В	0.0333	MDL,	10.9	PQL	ng/Kg	J	Q, Q, FD	
OCDF	2.01	JB	0.0196	MDL	10.9	PQL	ng/Kg	J	Z, FD	

Sample ID: SL-126-SA6-SB-4.0-5.0	Collected: 7/29/2011 11:35:00	Analysis Ty
----------------------------------	-------------------------------	-------------

Analysis Type: RES Dilution: 1

oumpicio. Or ire one ob 4.0 0.0	Diddon.									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.361	JB	0.0218	MDL	5.26	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0826	JBQ	0.0116	MDL	5.26	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.172	JBQ	0.0178	MDL	5.26	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0317	JBQ	0.0138	MDL	5.26	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0611	JBQ	0.0108	MDL	5.26	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0495	JB	0.0141	MDL	5.26	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0322	JB	0.00969	MDL	5.26	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	0.0521	JBQ	0.0141	MDL	5.26	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0447	JBQ	0.0119	MDL	5.26	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:05:51 PM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX122

Laboratory: LL

EDD Filename: DX122_v1.

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-126-SA6-SB-4.0-5.0	Collec	ted: 7/29/2	2011 11:35	:00 A	nalysis T	ype: RES	i	E	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDD	0.0454	JBQ	0.0178	MDL	5.26	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0585	JB	0.0127	MDL	5.26	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0339	JBQ	0.0100	MDL	5.26	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0514	JBQ	0.0122	MDL	5.26	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0431	JQ	0.0249	MDL	1.05	PQL	ng/Kg	J	Z
OCDD	0.935	JB	0.0236	MDL	10.5	PQL	ng/Kg	U	В
OCDF	0.153	JBQ	0.0275	MDL	10.5	PQL	ng/Kg	U	В

Sample ID: SL-126-SA6-SB-9.0-10.0 Collected: 7/29/2011 11:45:00 Analysis Type: RES Dilution: 1

Sample 10. SE-120-SA0-SU-5.0-10.0	Conecieu: 1729/2011 11:45:00 Analysis Type: RES Diluti								Juuuon: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.330	JBQ	0.0219	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0741	JB	0.0108	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0732	JBQ	0.0159	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0976	JBQ	0.0172	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0460	JBQ	0.0120	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0682	JBQ	0.0174	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0311	JBQ	0.0106	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0284	JBQ	0.0148	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0647	JB	0.0118	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0461	JB	0.0220	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0404	JBQ	0.0179	MDL	5.46	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0366	JB	0.0101	MDL	5.46	PQL	ng/Kg	U	В
2,3,4, <b>7</b> ,8-PECDF	0.0627	JBQ	0.0173	MDL	5.46	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0250	JQ	0.0227	MDL	1.09	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0460	JBQ	0.0244	MDL	1.09	PQL	ng/Kg	U	В
OCDD	0.918	JB	0.0254	MDL	10.9	PQL	ng/Kg	U	В
OCDF	0.155	JBQ	0.0288	MDL	10.9	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX122 EDD Filename: DX122_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

# Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
É	Laboratory Duplicate Precision
E.	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX122

EDD Filename: DX122_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
H	. Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
Н	Preservation
Н	Sampling to Analysis Estimation
H	Sampling to Analysis Rejection
H	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
1	Internal Standard Estimation
	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
Ļ	Laboratory Control Spike Upper Rejection
М	Continuing Tune
М	initial Tune
М	Performance Evaluation Mixture
М	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX122

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX122_v1.

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

# **Enclosure I**

EPA Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX122

Lab Reporting Batch ID: DX122 Laboratory: LL

EDD Filename: DX122_v1. eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 161: <i>Matrix:</i> SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2270B371927	8/17/2011 7:27:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF 0,0,0,0	0.350 ng/Kg 0.0800 ng/Kg 0.0809 ng/Kg 0.0569 ng/Kg 0.0289 ng/Kg 0.0452 ng/Kg 0.0381 ng/Kg 0.0344 ng/Kg 0.0347 ng/Kg 0.0360 ng/Kg 0.0602 ng/Kg 0.0263 ng/Kg 0.0392 ng/Kg 0.0392 ng/Kg 0.0356 ng/Kg 0.0365 ng/Kg 0.0316 ng/Kg 0.0316 ng/Kg 0.0316 ng/Kg 0.0316 ng/Kg 0.0316 ng/Kg 0.0316 ng/Kg	DUP10-SA6-QC-072911 SL-125-SA6-SB-20.0-21.0 SL-125-SA6-SB-4.0-5.0 SL-126-SA6-SB-4.0-5.0 SL-126-SA6-SB-9.0-10.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP10-SA6-QC-072911(RES)	1,2,3,7,8,9-HXCDF	0.171 ng/Kg	0.171U ng/Kg
SL-125-SA6-SB-20.0-21.0(RES)	1,2,3,7,8,9-HXCDF	0,183 ng/Kg	0.183U ng/Kg
SL-125-SA6-SB-20.0-21.0(RES)	1,2,3,7,8-PECDD	0.118 ng/Kg	0.118U ng/Kg
SL-125-SA6-SB-20.0-21.0(RES)	2,3,4,7,8-PECDF	0.245 ng/Kg	0.245U ng/Kg
SL-125-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.125 ng/Kg	0.125U ng/Kg
SL-125-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0819 ng/Kg	0.0819U ng/Kg
SL-125-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.151 ng/Kg	0.151U ng/Kg
SL-125-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0740 ng/Kg	0.0740U ng/Kg
SL-125-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0,136 ng/Kg	0.136U ng/Kg
SL-125-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.104 ng/Kg	0.104U ng/Kg
SL-125-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0673 ng/Kg	0.0673U ng/Kg
SL-125-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0808 ng/Kg	0.0808U ng/Kg
SL-125-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.113 ng/Kg	0.113U ng/Kg
SL-125-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,112 ng/Kg	0.112U ng/Kg
SL-125-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0248 ng/Kg	0.0248U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.361 ng/Kg	0.361U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0826 ng/Kg	0.0826U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.172 ng/Kg	0.172U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0317 ng/Kg	0.0317U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0611 ng/Kg	0.0611U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0495 ng/Kg	0.0495U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0322 ng/Kg	0.0322U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0521 ng/Kg	0.0521U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0447 ng/Kg	0.0447U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0454 ng/Kg	0.0454U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0585 ng/Kg	0.0585U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0339 ng/Kg	0.0339U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0514 ng/Kg	0.0514U ng/Kg
SL-126-SA6-SB-4.0-5.0(RES)	OCDD	0.935 ng/Kg	0.935U ng/Kg

10/27/2011 12:04:53 PM ADR version 1.4.0.111 Page 1 of 2

Lab Reporting Batch ID: DX122 Laboratory: LL

EDD Filename: DX122_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				Tanton in the continues.
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-126-SA6-SB-4.0-5.0(RES)	OCDF	0.153 ng/Kg	0.153U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.330 ng/Kg	0.330U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0741 ng/Kg	0.0741U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0732 ng/Kg	0.0732U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0976 ng/Kg	0.0976U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0460 ng/Kg	0.0460U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0682 ng/Kg	0.0682U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0311 ng/Kg	0.0311U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0284 ng/Kg	0.0284U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0647 ng/Kg	0.0647U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0461 ng/Kg	0.0461U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0404 ng/Kg	0.0404U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0366 ng/Kg	0.0366U ng/Kg
SL-126-SA6-SB-9,0-10,0(RES)	2,3,4,7,8-PECDF	0.0627 ng/Kg	0.0627U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0460 ng/Kg	0.0460U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	OCDD	0.918 ng/Kg	0.918U ng/Kg
SL-126-SA6-SB-9.0-10.0(RES)	OCDF	0.155 ng/Kg	0.155U ng/Kg

Page 2 of 2

# Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX122

Laboratory: LL

EDD Filename: DX122_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO							
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-125-SA6-SB-4.0-5.0MS SL-125-SA6-SB-4.0-5.0MSD (SL-125-SA6-SB-4.0-5.0)	1,2,3,4,6,7,8-HPCDD 1,2,3,7,8-PECDD 2,3,7,8-TCDF OCDD	151 - - 157	-	40.00-135.00 40.00-135.00 40.00-135.00 40.00-135.00	40 (20,00) 22 (20.00)	1,2,3,4,6,7,8-HPCDD 1,2,3,7,8-PECDD 2,3,7,8-TCDF OCDD	J (all detects)

Page 1 of 1

Lab Reporting Batch ID: DX122

Laboratory: LL

EDD Filename: DX122_v1.

so

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP10-SA6-QC-072911	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	JB JB JB JB	0.882 0.641 0.752 2.24 0.412	5.59 5.59 5.59 5.59	PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	JB JB JB JB JB	0.823 0.171 0.197 1.13 0.594 0.357	5.59 5.59 5.59 5.59 5.59 5.59 5.59	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
	2,3,7,8-TCDD 2,3,7,8-TCDF	J JB	0.113 0.754	1.12 1.12	PQL PQL	ng/Kg ng/Kg ng/Kg	
SL-125-SA6-SB-20.0-21.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	JB JB JB JB JB	3.06 0.449 0.168 0.760 0.574 0.306	5.60 5.60 5.60 5.60 5.60 5.60	PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	JBQ JB JB JB JB	0.321 0.183 0.118 0.978 0.466 0.245	5.60 5.60 5.60 5.60 5.60 5.60	PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-125-SA6-SB-4.0-5.0	2,3,7,8-TCDF OCDF 1,2,3,4,6,7,8-HPCDF	JB JB JB	0.520 5.60 0.791	1.12 11.2 5.47	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	:
	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	JB JBQ JBQ JB JB	0.125 0.0819 0.151 0.220 0.0740	5.47 5.47 5.47 5.47 5.47	PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.136 0.104 0.0673 0.0808 0.113 0.112 0.0169 0.0248	5.47 5.47 5.47 5.47 5.47 5.47 1.09 1.09	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-126-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	JB JBQ JBQ JBQ JB JB JB	2.01 0.361 0.0826 0.172 0.0317 0.0611 0.0495 0.0322 0.0521	10.9 5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	JBQ JB JBQ JBQ JBQ JB JBQ	0.0447 0.0454 0.0585 0.0339 0.0514 0.0431 0.935 0.153	5.26 5.26 5.26 5.26 5.26 1.05 10.5	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX122

Laboratory: LL

EDD Filename: DX122_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-126-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	<b>3 年 3 日 3 日 3 日 3 日 3 日 3 日 3 日 3 日 3 日 </b>	0.330 0.0741 0.0732 0.0976 0.0460 0.0682 0.0311 0.0284 0.0647 0.0461 0.0461 0.0366 0.0627 0.0250 0.0460 0.918 0.155	5.46 5.46 5.46 5.46 5.46 5.46 5.46 5.46	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

10/27/2011 12:05:03 PM ADR version 1.4.0.111 Page 2 of 2

# Field Duplicate RPD Report

Lab Reporting Batch ID: DX122

Laboratory: LL

EDD Filename: DX122_v1.

Method: 1603/Method: 1503/Method: |         | Concent               | Concentration (%)   |               |              | · · · · · · · · · · · · · · · · · · · |
|---------|-----------------------|---------------------|---------------|--------------|---------------------------------------|
| Analyte | SL-125-SA6-SB-4.0-5.0 | DUP10-SA6-QC-072911 | Sample<br>RPD | eQAPP<br>RPD | Flag                                  |

Method: 1613B SO Matrix: Concentration (ng/Kg) Sample eQAPP Analyte SL-125-SA6-SB-4.0-5.0 DUP10-SA6-QC-072911 RPD RPD Flag 1,2,3,7,8,9-HXCDF 0.104 0.171 49 50.00 No Qualifiers Applied 1,2,3,4,6,7,8-HPCDD 12.2 162 116 50.00 1,2,3,4,6,7,8-HPCDF 0.791 8.48 166 50.00 1,2,3,4,7,8,9-HPCDF 0.125 0.882 150 50.00 1,2,3,4,7,8-HxCDD 0.0819 0.641 155 50.00 1,2,3,4,7,8-HXCDF 0.151 0.752 133 50.00 1,2,3,6,7,8-HXCDD 0.220 2.24 164 50.00 1,2,3,6,7,8-HXCDF 0.0740 0.412 139 50.00 1,2,3,7,8,9-HXCDD 0.136 143 0.823 50.00 J(all detects) 1,2,3,7,8-PECDD 0.0673 0.197 98 50.00 1,2,3,7,8-PECDF 8080.0 1.13 173 50.00 2,3,4,6,7,8-HXCDF 0.594 0.113 136 50.00 2,3,4,7,8-PECDF 0.112 0.357 104 50.00 2,3,7,8-TCDD 0.0169 0.113 148 50.00 2,3,7,8-TCDF 0.0248 0.754 187 50.00 OCDD 117 1540 172 50.00 OCDF 2.01 168 23.2 50.00

0/27/2011 12:04:01 PM ADR version 1.4.0.111 Page 1 of 1

# **SAMPLE DELIVERY GROUP**

**DX123** 

# Attachment I

Sample ID Cross Reference and Data Review Level

## Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
01-Aug-2011	SL-176-SA5DN-SB-4.0-5.0	6361794	N	METHOD	1613B	III
01-Aug-2011	SL-176-SA5DN-SB-9.0-10.0	6361795	N	METHOD	1613B	Ш
01-Aug-2011	SL-173-SA5DN-SB-4.0-5.0	6361788	N	METHOD	1613B	111
01-Aug-2011	SL-173-SA5DN-SB-9.0-10.0	6361789	N	METHOD	1613B	III
01-Aug-2011	SL-127-SA6-SB-2.0-3.0	6361796	N	METHOD	1613B	111
01-Aug-2011	SL-170-SA5DN-SB-4.0-5.0	6361786	N	METHOD	1613B	Ш
01-Aug-2011	SL-170-SA5DN-SB-9.0-10.0	6361787	N	METHOD	1613B	!!]
01-Aug-2011	SL-175-SA5DN-SB-4.0-5.0	6361790	N	METHOD	1613B	Ш
01-Aug-2011	SL-175-SA5DN-SB-4.0-5.0MS	6361791	MS	METHOD	1613B	111
01-Aug-2011	DUP22-SA5DN-QC-080111	6361797	FD	METHOD	1613B	W
01-Aug-2011	SL-175-SA5DN-SB-9.0-10.0	6361793	N	METHOD	1613B	m
02-Aug-2011	SL-145-SA6-SB-3.5-4.5	6363178	N	METHOD	1613B	III
02-Aug-2011	SL-160-SA5DN-SB-4.0-5.0	6363172	N	METHOD	1613B	111
02-Aug-2011	SL-128-SA6-SB-4.0-5.0	6363176	N	METHOD	1613B	Ш
02-Aug-2011	SL-128-SA6-SB-7.5-8.5	6363177	N	METHOD	1613B	111
02-Aug-2011	EB-SA6-SB-080211	6363175	EB	METHOD	1613B	Ш
02-Aug-2011	SL-162-SA5DN-SB-4.0-5.0	6363173	N	METHOD	1613B	111
02-Aug-2011	SL-162-SA5DN-SB-9.0-10.0	6363174	N	METHOD	1613B	<b>II</b> I

## **Attachment II**

**Overall Data Qualification Summary** 

Lab Reporting Batch ID: DX123

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX123_v1.

Method Category: SVOA Method: 1613B Matrix: AQ

Sample ID: EB-SA6-SB-080211

Collected: 8/2/2011 1:00:00 PM Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.60	JBQ	0.181	MDL	10.4	PQL	pg/L	υ	В
1,2,3,4,6,7,8-HPCDF	0.333	JB	0.0620	MDL	10.4	PQL	pg/L	U	В
1,2,3,4,7,8,9-HPCDF	0.121	JBQ	0.0716	MDL	10.4	PQL	pg/L	U	В
1,2,3,4,7,8-HXCDF	0.177	JBQ	0.0557	MDL	10.4	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDD	0.255	JBQ	0.132	MDL	10.4	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDD	0.189	JBQ	0.118	MDL	10.4	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDF	0.0584	JBQ	0.0577	MDL	10.4	PQL	pg/L	U	В
1,2,3,7,8-PECDF	0.117	JBQ	0.0969	MDL	10.4	PQL	pg/L	U	В
2,3,7,8-TCDF	0.136	JQ	0.133	MDL	2.07	PQL	pg/L	J	Z
OCDD	7.82	JB	0.226	MDL	20.7	PQL	pg/L	υ	В
OCDF	0.709	JBQ	0.182	MDL	20.7	PQL	pg/L	υ	В

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: DUP22-SA5DN-QC-080111

Collected: 8/1/2011 2:52:00 PM Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.551	JB	0.0496	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.245	JBQ	0.0542	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.285	JB	0.0362	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	1.59	JB	0.0551	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.239	JB	0.0325	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.609	JB	0.0494	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.156	JBQ	0.0420	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.157	JBQ	0.0416	MDL	5.46	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.385	JB	0.0199	MDL	5.46	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.323	JB	0.0346	MDL	5.46	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.142	JB	0.0202	MDL	5.46	PQL	ng/Kg	υJ	B, FD
2,3,7,8-TCDD	0.0336	JB	0.0182	MDL	1.09	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0521	JBQ	0.0294	MDL	1.09	PQL	ng/Kg	U	В

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:11:36 PM ADR version 1.4.0.111 Page 1 of 12

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

SVOA Method Category: Method: 1613B

Matrix: SO

MDL

MDL

MDL

Analyte	Collec	ted: 8/1/20	11 10:15:0	00 A	nalysis T	ype: RES		Dilution: 1			
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8,9-HPCDF	0.536	JB	0.0313	MDL	5.00	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HxCDD	0.305	JB	0.0503	MDL	5.00	PQL	ng/Kg	υ	В		
1,2,3,4,7,8-HXCDF	2.45	JB	0.0540	MDL	5.00	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	1.00	JB	0.0517	MDL	5.00	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.618	JB	0.0508	MDL	5.00	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.515	JB	0.0495	MDL	5.00	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.245	JB	0.0551	MDL	5.00	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.257	JB	0.0319	MDL	5.00	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	2.38	JB	0.0687	MDL	5.00	PQL	ng/Kg	J	Z		

0.0509

0.0140

0.129

Sample ID: SL-128-SA6-SB-4.0-5.0

2,3,4,6,7,8-HXCDF

2,3,7,8-TCDD

2,3,7,8-TCDF

Collected: 8/2/2011 12:25:00

JB

JВ

JΒ

0.629

0.0984

0.255

Analysis Type: RES

PQL

PQL

PQL

ng/Kg

ng/Kg

ng/Kg

J

U

J

5.00

1.00

1.00

Dilution: 1

z

В

z

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.38	JB	0.0411	MDL	5.21	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	1,43	JB	0.0151	MDL	5.21	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.199	JB	0.0267	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0391	JBQ	0.0222	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.847	JB	0.0363	MDL	5.21	PQL	ng/Kg	J	Ž
1,2,3,6,7,8-HXCDD	0.222	JB	0.0227	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.185	JB	0.0313	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.117	JB	0.0205	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0953	JB	0.0398	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0392	JBQ	0.0165	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0559	JBQ	0.0148	MDL	5.21	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.157	JB	0.0341	MDL	5.21	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.294	JBQ	0.0145	MDL,	5.21	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0201	JBQ	0.0174	MDL	1.04	PQL	ng/Kg	U	В
OCDF	1.48	JB	0.0351	MDL	10.4	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 10/27/2011 12:11:36 PM

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX123

Laboratory: LL EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

SVOA Method Category: Method: 1613B

Matrix: SO

pitelininkerikan kilonomian masangan pasiki samban pangaran mangan bahas s

Sample ID: SL-128-SA6-SB-7.5-8.5	Collec	Collected: 8/2/2011 12:35:00					00 Analysis Type: RES				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	2.66	JB	0.0356	MDL	5.35	PQL	ng/Kg	J	Z		
1,2,3,4,6,7,8-HPCDF	1.27	JB	0.0121	MDL	5.35	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.144	JB	0.0215	MDL	5.35	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.0316	JB	0.0196	MDL	5.35	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.592	JB	0.0409	MDL	5.35	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	0.152	JB	0.0192	MDL	5.35	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDF	0.155	JB	0.0337	MDL	5.35	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.144	JBQ	0.0199	MDL	5.35	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.121	JBQ	0.0390	MDL	5.35	PQL	ng/Kg	υ	В		
1,2,3,7,8-PECDD	0.0419	JBQ	0.0173	MDL	5.35	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.0833	JBQ	0.0138	MDL	5.35	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.169	JB	0.0360	MDL	5.35	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.224	JB	0.0148	MDL	5.35	PQL	ng/Kg	U	В		

Sample ID: SL-145-SA6-SB-3.5-4.5

2,3,7,8-TCDF

OCDF

Collected: 8/2/2011 8:28:00 AM

0.0226

0.0364

MDL

MDL

JBQ

JΒ

0.0477

1.21

Analysis Type: RES

PQL

PQL

ng/Kg

ng/Kg

U

J

1.07

10.7

Dilution: 1

В

z

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.247	JBQ	0.0171	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0462	JBQ	0.00527	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0211	JBQ	0.0110	MDL	5.30	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0141	JBQ	0.0125	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0196	JB	0.00883	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0242	JBQ	0.0127	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0239	JB	0.00721	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0504	JВ	0.0121	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0509	JBQ	0.0100	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0335	JBQ	0.0140	MDL	5.30	PQL	ng/Kg	Ü	В
1,2,3,7,8-PECDF	0.0219	JB	0.00947	MDL	5.30	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0125	JBQ	0.0101	MDL	5.30	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0392	JBQ	0.00990	MDL	5.30	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0154	JBQ	0.0137	MDL	1.06	PQL	ng/Kg	υ	В
OCDD	0.711	JВ	0.0233	MDL	10.6	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area iV Collocated Soil Sampling

10/27/2011 12:11:36 PM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX123

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method Category: SVOA
Method: 1613B

1613B Matrix: SO

Sample ID: SL-145-SA6-SB-3.5-4.5	Collec	Collected: 8/2/2011 8:28:00 AM				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDF	0.110	JBQ	0.0228	MDL	10.6	PQL	na/Ka	u	В

Sample ID: SL-160-SA5DN-SB-4.0-5.0 Collected: 8/2/2011 8:46:00 AM Analysis Type: RES Dilution: 1

Oanipie ib. OL-100-0A3511-05-4.0-3.0	Conet	leu. olzizi	711 0:40:00	AW A	ilalysis i	ype: KES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.305	JB	0.0193	MDL	5.54	PQL	ng/Kg	υ	В	
1,2,3,4,6,7,8-HPCDF	0.0524	JB	0.00608	MDL	5.54	PQL	ng/Kg	υ	В	
1,2,3,4,7,8,9-HPCDF	0.0455	JB	0.0125	MDL	5.54	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HXCDF	0.0343	JBQ	0.00946	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0207	JBQ	0.0151	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0316	JBQ	0.00800	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0490	JBQ	0.0135	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0438	JBQ	0.0114	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0179	JBQ	0.0179	MDL	5.54	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0293	JBQ	0.0109	MDL	5.54	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.0225	JB	0.00912	MDL	5.54	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0411	JBQ	0.0116	MDL	5.54	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0214	JBQ	0.0173	MDL	1.11	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0173	JBQ	0.0164	MDL	1.11	PQL	ng/Kg	U	В	
OCDD	0.896	JB	0.0298	MDL	11.1	PQL	ng/Kg	U	В	
OCDF	0.176	JBQ	0.0304	MDL	11.1	PQL	ng/Kg	U	В	

Sample ID: SL-162-SA5DN-SB-4.0-5.0 Collected: 8/2/2011 2:00:00 PM Analysis Type: RES Dilution: 1

Analyte	Direction. 4									
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.395	JB	0.0258	MDL	5.50	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0600	JBQ	0.00769	MDL	5.50	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0411	JBQ	0.0161	MDL	5.50	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0249	JBQ	0.0144	MDL	5.50	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0792	JBQ	0.0175	MDL	5.50	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0243	JBQ	0.0118	MDL	5.50	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.168	JB	0.0151	MDL	5.50	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.311	JB	0.0172	MDL	5.50	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0438	JB	0.0231	MDL	5.50	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0989	JB	0.0140	MDL	5.50	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:11:36 PM ADR version 1.4.0.111 Page 4 of 12

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

Method Categ	ary: SVOA
B # - 411-	40400

Matrix: SO

Analyte	Collec	tea: 8/2/20	711 2:00:00	PM A	naiysis i	ype: KES	)	Dilution: 1		
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,4,6,7,8-HXCDF	0.0323	JBQ	0.0134	MDL	5.50	PQL	ng/Kg	υ	8	
2,3,4,7,8-PECDF	0.0534	JB	0.0153	MDL	5.50	PQL	ng/Kg	U	В	
OCDD	1.56	JB	0.0318	MDL	11.0	PQL	ng/Kg	U	В	
OCDF	0.185	JBQ	0.0479	MDL	11.0	PQL	na/Ka	u	В	

Sample ID: SL-162-SA5DN-SB-9.0-10.0 Collected: 8/2/2011 3:15:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.330	JB	0.0256	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0710	JB	0.00806	MDL	5.69	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0247	JB	0.0166	MDL	5.69	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0268	JB	0.0126	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0564	JB	0.0164	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0250	JB	0.0104	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0745	JB	0.0164	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0851	JB	0.0142	MDL	5.69	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0331	JBQ	0.0145	MDL	5.69	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0272	JВ	0.0120	MDL	5.69	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0426	JBQ	0.0154	MDL	5.69	PQL	ng/Kg	U	B
2,3,7,8-TCDD	0.0286	JBQ	0.0191	MDL	1.14	PQL	ng/Kg	U	В
OCDD	1.15	JB	0.0338	MDL	11.4	PQL	ng/Kg	U	B
OCDF	0.189	JBQ	0.0397	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-170-SA5DN-SB-4.0-5.0

Collected: 8/1/2011 12:01:00

Analysis Type: RES

Dilution: 1

oumpic ibt ou the entert ob 410 ele	00//00	Dittaon.									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDF	1.94	JB	0.0214	MDL	5.40	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.244	JB	0.0248	MDL	5.40	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.212	JB	0.0653	MDL	5.40	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.275	JB	0.0334	MDL,	5.40	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.815	JB	0.0660	MDL	5.40	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.147	JB	0.0320	MDL	5.40	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.383	JB	0.0653	MDL	5.40	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.156	JB	0.0330	MDL	5.40	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.141	JBQ	0.0283	MDL	5.40	PQL	ng/Kg	U	В		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:11:36 PM

ADR version 1.4.0.111

Page 5 of 12

Lab Reporting Batch ID: DX123

EDD Filename: DX123_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-170-SA5DN-SB-4.0-5.0

Collected: 8/1/2011 12:01:00

Analysis Type: RES

Dilution: 1

Analyte	Conco			, , , ,	nunyono n	, pc. 1120		_	manon, I
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDF	0.345	JB	0.0267	MDL	5.40	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.157	JB	0.0318	MDL	5.40	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.143	JB	0.0256	MDL	5.40	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0351	JBQ	0.0162	MDL	1.08	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0903	JB	0.0455	MDL	1.08	PQL	ng/Kg	U	В
OCDF	4.55	JB	0.0266	MDL	10.8	PQL	ng/Kg	J	Z

Sample ID: SL-170-SA5DN-SB-9.0-10.0

Collected: 8/1/2011 12:02:00

Analysis Type: RES

Dilution: 1

Sample ID. SE-110-SASDIN-SB-3.0-10.0	Conec	teu: oi iizu	11 12:02:0	v A	Analysis Type: RE3			Dilution: 1		
nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.756	JB	0.0288	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.172	JB	0.00880	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0725	JBQ	0.0133	MDL	5.53	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HxCDD	0.0301	JB	0.0166	MDL	5.53	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HXCDF	0.111	JB	0.0141	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0535	JBQ	0.0167	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0533	JB	0.0126	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0587	JBQ	0.0156	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0722	JBQ	0.0159	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0372	JBQ	0.0216	MDL	5.53	PQL	ng/Kg	Ų	В	
1,2,3,7,8-PECDF	0.152	JBQ	0.0133	MDL	5.53	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0420	JBQ	0.0133	MDL	5.53	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0538	JBQ	0.0140	MDL	5.53	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0313	JBQ	0.0289	MDL	1.11	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0621	JBQ	0.0265	MDL	1.11	PQL	ng/Kg	U	В	
OCDD	10.4	JB	0.0248	MDL	11.1	PQL	ng/Kg	J	Z	
OCDF	0.418	JB	0.0310	MDL	11.1	PQL	ng/Kg	U	В	

Sample ID: SL-173-SA5DN-SB-4.0-5.0

Collected: 8/1/2011 10:03:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.09	JB	0.0273	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.195	JB	0.0109	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0442	JBQ	0.0176	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0483	JBQ	0.0130	MDL	5.67	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

Method Category	y same	SVOA
Method:		1613B

Matrix: so

Sample ID: SL-173-SA5DN-SB-4.0-5.0	Collec	ted: 8/1/20	11 10:03:0	00 A	nalysis T	/pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDD	0.0690	JBQ	0.0193	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0460	JBQ	0.0110	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0732	JBQ	0.0177	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0486	JBQ	0.0128	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0635	JBQ	0.0181	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0423	JBQ	0.0134	MDL	5.67	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0363	JB	0.0120	MDL	5.67	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0547	JB	0.0148	MDL	5.67	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0230	JBQ	0.0224	MDL.	1.13	PQL	ng/Kg	U	В	
OCDD	8.99	JB	0.0218	MDL	11.3	PQL	ng/Kg	J	Z	
OCDF	0.497	JВ	0.0321	MDL	11.3	PQL	ng/Kg	U	В	

Sample ID: SL-173-SA5DN-SB-9.0-10.0

Collected: 8/1/2011 10:05:00

Analysis Type: RES

Dilution: 1

Cample ID. CL-113-CADDIA-3D-3.0-10.0	Conet	teu. Oi IIZ	111 10.03.	JU 74	iiaiysis i	ype: KES	Diladon: 1		
<i>nalyte</i>	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.964	JB	0.0278	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.151	JB	0.0101	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0524	JBQ	0.0165	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0302	JBQ	0.0167	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0392	JBQ	0.0141	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0682	JB	0.0172	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0345	JBQ	0.0119	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0596	JBQ	0.0159	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0316	JBQ	0.0150	MDL	5.68	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0504	JBQ	0.0315	MDL	5.68	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.0425	JBQ	0.0135	MDL	5.68	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0665	JBQ	0.0150	MDL	5.68	PQL	ng/Kg	υ	В
OCDD	7.55	JB	0.0248	MDL	11.4	PQL	ng/Kg	J	Z
OCDF	0.380	JBQ	0.0316	MDL	11.4	PQL	ng/Kg	υ	В
					1		1		

Sample ID: SL-175-SA5DN-SB-4.0-5.0

Collected: 8/1/2011 2:45:00 PM

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.497	JВ	0.0428	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.368	JB	0.0441	MDL	5.37	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:11:36 PM

ADR version 1.4.0.111

Page 7 of 12

Lab Reporting Batch ID: DX123

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX123_v1.

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-175-SA5DN-SB-4.0-5.0 Coll	lected: 8/1/2011 2:45:00 PM	Analysis Type: RES	Dilution: 1
-----------------------------------------	-----------------------------	--------------------	-------------

A <i>nalyt</i> e	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	0.337	JB	0.0384	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	1.93	JB	0.0447	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.298	JB	0.0367	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.813	JB	0.0448	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.180	JВ	0.0371	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.231	JB	0.0340	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.578	JB	0.0267	MDL	5.37	PQL	пg/Kg	U	В
2,3,4,6,7,8-HXCDF	0.399	JB	0.0362	MDL	5.37	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.355	JB	0.0257	MDL	5.37	PQL	ng/Kg	UJ	B, FD
2,3,7,8-TCDD	0.0418	JВ	0.0193	MDL	1.07	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0596	JB	0.0379	MDL	1.07	PQL	ng/Kg	U	В

Sample ID: SL-175-SA5DN-SB-9.0-10.0

Collected:	8/1/2011	2:53:00 PM	Analysis Type:	RES
Ouncese.	0/1/4011	2,00,00 F IVI	Wildiable I Ahe.	111-0

Dilution: 1		RES	Analysis Type:	2:53:00 PM
	Data			

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.834	JB	0.0211	MDL	5.67	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.150	JB	0.0314	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.135	JB	0.0339	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.129	JB	0.0308	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.397	JB	0.0352	MDL	5.67	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.125	JB	0.0276	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.189	JB	0.0341	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.135	JBQ	0.0302	MDL	5.67	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.150	JBQ	0.0280	MDL	5.67	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.135	JВ	0.0137	MDL	5.67	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.149	JB	0.0295	MDL	5.67	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.170	JBQ	0.0140	MDL	5.67	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0323	JB	0.0189	MDL	1.13	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0305	JBQ	0.0226	MDL	1.13	PQL	ng/Kg	U	B
OCDF	2.11	JB	0.0370	MDL	11.3	PQL	ng/Kg	J	Z

Sample ID: SL-176-SA5DN-SB-4.0-5.0	Collec	ted: 8/1/20	11 8:21:00	AM A	nalysis T	ype: RES	i		Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.33	JВ	0.0502	MDL	5.39	PQL	ng/Kg	J	z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:11:36 PM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX123

Laboratory: LL

Dilution: 1

Dilution: 1

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

and property and a local department of a consequence of a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second

Method Category: SVOA

Method: 1613B

Matrix: SO

Sample ID: SL-176-SA5DN-SB-4.0-5.0 Collected: 8/1/2011 8:21:00 AM Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HxCDD	0.776	JB	0.0563	MDL	5.39	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.532	JB	0.0499	MDL	5.39	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	5.10	JB	0.0570	MDL	5.39	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.628	JB	0.0453	MDL	5.39	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.75	JB	0.0509	MDL	5.39	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.260	JB	0.0520	MDL	5.39	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.440	JB	0.0553	MDL	5.39	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.328	JB	0.0251	MDL	5.39	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.865	JB	0.0465	MDL	5.39	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.299	JBQ	0.0254	MDL	5.39	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0319	JBQ	0.0203	MDL	1.08	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0880	JBQ	0.0407	MDL	1.08	PQL	ng/Kg	U	В	
	·					<u> </u>	L	1		

Sample ID: SL-176-SA5DN-SB-9.0-10.0 Collected: 8/1/2011 8:23:00 AM Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.80	JB	0.0192	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.238	JB	0.0345	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.106	JB	0.0458	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0946	JB	0.0270	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.560	JB	0.0462	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0952	JB	0.0234	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.216	JB	0.0439	MDL	5.60	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0689	JBQ	0.0311	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.102	JBQ	0.0282	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.103	JB	0.0135	MDL	5.60	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.135	JBQ	0.0266	MDL	5.60	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0864	JBQ	0.0142	MDL	5.60	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0268	JB	0.0154	MDL	1.12	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0243	JB	0.0194	MDL	1.12	PQL	ng/Kg	U	В
OCDF	4.52	JB	0.0369	MDL	11.2	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 10/27/2011 12:11:36 PM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX123 EDD Filename: DX123_v1.

Laboratory: LL eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
<del></del>	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
c	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX123

EDD Filename: DX123_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

		COAL I MAINC, OBIL_COI L
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	*****
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	, The Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the Later of the
Н	Sampling to Extraction Rejection	1/4/1/
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
]	Internal Standard Estimation	
l	Internal Standard Rejection	
L ·	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L,	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
М	Continuing Tune	
М	Initial Tune	
M	Performance Evaluation Mixture	
М	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
<del></del>	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX123

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX123_v1.

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

## **Enclosure I**

EPA Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

**DX123** 

Lab Reporting Batch ID: DX123

EDD Filename: DX123_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 161 Matrix: AQ	3 <b>B</b>			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2200B371122	8/10/2011 11:22:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF CODD OCDF	3.70 pg/L 0.669 pg/L 0.287 pg/L 0.230 pg/L 0.448 pg/L 0.265 pg/L 0.242 pg/L 0.290 pg/L 0.198 pg/L 0.227 pg/L 0.517 pg/L 9.52 pg/L 1.03 pg/L	EB-\$A6-\$B-080211

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-080211(RE\$)	1,2,3,4,6,7,8-HPCDD	3.60 pg/L	3.60U pg/L
EB-SA6-SB-080211(RES)	1,2,3,4,6,7,8-HPCDF	0.333 pg/L	0.333U pg/L
EB-SA6-SB-080211(RES)	1,2,3,4,7,8,9-HPCDF	0.121 pg/L	0.121U pg/L
EB-SA6-SB-080211(RES)	1,2,3,4,7,8-HXCDF	0.177 pg/L	0.177U pg/L
B-SA6-SB-080211(RES)	1,2,3,6,7,8-HXCDD	0.255 pg/L	0.255U pg/L
EB-SA6-SB-080211(RES)	1,2,3,7,8,9-HXCDD	0.189 pg/L	0.189U pg/L
EB-SA6-SB-080211(RES)	1,2,3,7,8,9-HXCDF	0.0584 pg/L	0.0584U pg/L
EB-SA6-SB-080211(RES)	1,2,3,7,8-PECDF	0.117 pg/L	0.117U pg/L
EB-SA6-SB-080211(RES)	OCDD	7.82 pg/L	7.82U pg/L
EB-SA6-SB-080211(RES)	OCDF	0.709 pg/L	0.709U pg/L

Method: 1613 Matrix: SO	<b>B</b>			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2270B370700	8/18/2011 7:00:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD 0,0,0,0	0.291 ng/Kg 0.0805 ng/Kg 0.0805 ng/Kg 0.0937 ng/Kg 0.0933 ng/Kg 0.0930 ng/Kg 0.0813 ng/Kg 0.0813 ng/Kg 0.0813 ng/Kg 0.0135 ng/Kg 0.117 ng/Kg 0.135 ng/Kg 0.133 ng/Kg 0.133 ng/Kg 0.133 ng/Kg 0.135 ng/Kg 0.0841 ng/Kg 0.0889 ng/Kg 0.0485 ng/Kg 0.0485 ng/Kg 0.620 ng/Kg 0.171 ng/Kg	DUP22-SA5DN-QC-080111 SL-127-SA6-SB-2.0-3.0 SL-128-SA6-SB-3.0-3.0 SL-128-SA6-SB-7.5-8.5 SL-145-SA6-SB-7.5-8.5 SL-160-SA5DN-SB-4.0-5.0 SL-162-SA5DN-SB-4.0-5.0 SL-170-SA5DN-SB-9.0-10.0 SL-170-SA5DN-SB-9.0-10.0 SL-173-SA5DN-SB-4.0-5.0 SL-173-SA5DN-SB-4.0-5.0 SL-173-SA5DN-SB-4.0-5.0 SL-175-SA5DN-SB-4.0-5.0 SL-175-SA5DN-SB-4.0-5.0 SL-176-SA5DN-SB-4.0-5.0 SL-176-SA5DN-SB-4.0-5.0 SL-176-SA5DN-SB-9.0-10.0

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP22-SA5DN-QC-080111(RES)	1,2,3,4,7,8-HxCDD	0.245 ng/Kg	0.245U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:09:48 PM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX123 Laboratory: LL

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
DUP22-SA5DN-QC-080111(RES)	1,2,3,4,7,8-HXCDF	0.285 ng/Kg	0.285U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	1,2,3,6,7,8-HXCDF	0.239 ng/Kg	0.239U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	1,2,3,7,8,9-HXCDF	0.156 ng/Kg	0.156U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	1,2,3,7,8-PECDD	0.157 ng/Kg	0.157U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	1,2,3,7,8-PECDF	0.385 ng/Kg	0.385U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	2,3,4,7,8-PECDF	0.142 ng/Kg	0.142U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	2,3,7,8-TCDD	0.0336 ng/Kg	0.0336U ng/Kg	
DUP22-SA5DN-QC-080111(RES)	2,3,7,8-TCDF	0.0521 ng/Kg	0.0521U ng/Kg	
SL-127-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HxCDD	0.305 ng/Kg	0.305U ng/Kg	
SL-127-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDD	0.257 ng/Kg	0.257U ng/Kg	
SL-127-SA6-SB-2.0-3.0(RES)	2,3,7,8-TCDD	0.0984 ng/Kg	0.0984U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.199 ng/Kg	0.199U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0391 ng/Kg	0.0391U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.222 ng/Kg	0.222U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.185 ng/Kg	0.185U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.117 ng/Kg	0.117U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0953 ng/Kg	0.0953U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0392 ng/Kg	0.0392U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0559 ng/Kg	0.0559U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.157 ng/Kg	0.157U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.294 ng/Kg	0.294U ng/Kg	
SL-128-SA6-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0201 ng/Kg	0.0201U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	1,2,3,4,7,8,9-HPCDF	0.144 ng/Kg	0.144U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	1,2,3,4,7,8-HxCDD	0.0316 ng/Kg	0.0316U ng/Kg	
SL-128-\$A6-\$B-7.5-8.5(RES)	1,2,3,6,7,8-HXCDD	0,152 ng/Kg	0.152U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	1,2,3,6,7,8-HXCDF	0.155 ng/Kg	0.155U ng/Kg	
SL-128-\$A6-\$B-7.5-8.5(RE\$)	1,2,3,7,8,9-HXCDD	0,144 ng/Kg	0.144U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	1,2,3,7,8,9-HXCDF	0.121 ng/Kg	0.121U ng/Kg	
SL-128-SA6-SB-7,5-8,5(RES)	1,2,3,7,8-PECDD	0.0419 ng/Kg	0.0419U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	1,2,3,7,8-PECDF	0.0833 ng/Kg	0.0833U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	2,3,4,6,7,8-HXCDF	0,169 ng/Kg	0.169U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	2,3,4,7,8-PECDF	0.224 ng/Kg	0.224U ng/Kg	
SL-128-SA6-SB-7.5-8.5(RES)	2,3,7,8-TCDF	0.0477 ng/Kg	0.0477U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDD	0.247 ng/Kg	0.247U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0462 ng/Kg	0.0462U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0211 ng/Kg	0.0211U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8-HxCDD	0.0141 ng/Kg	0.0141U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,4,7,8-HXCDF	0.0196 ng/Kg	0.0196U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDD	0.0242 ng/Kg	0.0242U ng/Kg	
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDF	0.0239 ng/Kg	0.0239U ng/Kg	

10/27/2011 12:09:49 PM ADR version 1.4.0.111 Page 2 of 6

Lab Reporting Batch ID: DX123 Laboratory: LL

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				AND THE PROPERTY OF THE PROPERTY.
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDD	0.0504 ng/Kg	0.0504U ng/Kg
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDF	0.0509 ng/Kg	0.0509U ng/Kg
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,7,8-PECDD	0,0335 ng/Kg	0.0335U ng/Kg
SL-145-SA6-SB-3.5-4.5(RES)	1,2,3,7,8-PECDF	0.0219 ng/Kg	0.0219U ng/Kg
SL-145-SA6-SB-3.5-4.5(RES)	2,3,4,6,7,8-HXCDF	0.0125 ng/Kg	0.0125U ng/Kg
SL-145-SA6-SB-3.5-4.5(RES)	2,3,4,7,8-PECDF	0.0392 ng/Kg	0.0392U ng/Kg
SL-145-SA6-SB-3.5-4.5(RES)	2,3,7,8-TCDF	0.0154 ng/Kg	0.0154U ng/Kg
SL-145-SA6-SB-3.5-4.5(RES)	OCDD	0.711 ng/Kg	0.711U ng/Kg
SL-145-SA6-SB-3,5-4,5(RES)	OCDF	0.110 ng/Kg	0.110U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,305 ng/Kg	0.305U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0524 ng/Kg	0.0524U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0455 ng/Kg	0.0455U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0343 ng/Kg	0.0343U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0207 ng/Kg	0.0207U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0,0316 ng/Kg	0.0316U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0490 ng/Kg	0.0490U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0438 ng/Kg	0.0438U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0179 ng/Kg	0.0179U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0293 ng/Kg	0.0293U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0225 ng/Kg	0.0225U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0411 ng/Kg	0.0411U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0214 ng/Kg	0.0214U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0173 ng/Kg	0.0173U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	OCDD ,	0.896 ng/Kg	0.896U ng/Kg
SL-160-SA5DN-SB-4.0-5.0(RES)	OCDF	0.176 ng/Kg	0.176U ng/Kg
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.395 ng/Kg	0.395U ng/Kg
SL-162-SA5DN-SB-4,0-5,0(RES)	1,2,3,4,6,7,8-HPCDF	0.0600 ng/Kg	0.0600U ng/Kg
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0411 ng/Kg	0.0411U ng/Kg
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0249 ng/Kg	0.0249U ng/Kg
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0792 ng/Kg	0.0792U ng/Kg
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0243 ng/Kg	0.0243U ng/Kg
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.168 ng/Kg	0.168U ng/Kg
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0438 ng/Kg	0.0438U ng/Kg
SL-162-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0989 ng/Kg	0.0989U ng/Kg
SL-162-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0323 ng/Kg	0.0323U ng/Kg
SL-162-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0534 ng/Kg	0.0534U ng/Kg
SL-162-SA5DN-SB-4.0-5.0(RES)	OCDD	1.56 ng/Kg	1.56U ng/Kg
SL-162-SA5DN-SB-4.0-5.0(RES)	OCDF	0.185 ng/Kg	0.185U ng/Kg
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0,330 ng/Kg	0.330U ng/Kg
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0,0710 ng/Kg	0.0710U ng/Kg

10/27/2011 12:09:49 PM ADR version 1.4.0.111 Page 3 of 6

Lab Reporting Batch ID: DX123 Laboratory: LL

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0247 ng/Kg	0.0247U ng/Kg
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0268 ng/Kg	0.0268U ng/Kg
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0564 ng/Kg	0.0564U ng/Kg
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0250 ng/Kg	0.0250U ng/Kg
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0745 ng/Kg	0.0745U ng/Kg
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0851 ng/Kg	0.0851U ng/Kg
SL-162-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0331 ng/Kg	0.0331U ng/Kg
SL-162-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0272 ng/Kg	0.0272U ng/Kg
SL-162-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0426 ng/Kg	0.0426U ng/Kg
SL-162-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0286 ng/Kg	0.0286U ng/Kg
SL-162-SA5DN-SB-9.0-10.0(RES)	OCDD	1.15 ng/Kg	1.15U ng/Kg
SL-162-SA5DN-SB-9.0-10.0(RES)	OCDF	0.189 ng/Kg	0.189U ng/Kg
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.244 ng/Kg	0.244U ng/Kg
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.212 ng/Kg	0.212U ng/Kg
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.275 ng/Kg	0.275U ng/Kg
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.147 ng/Kg	0.147U ng/Kg
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0,383 ng/Kg	0.383U ng/Kg
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.156 ng/Kg	0.156U ng/Kg
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.141 ng/Kg	0.141U ng/Kg
SL-170-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.345 ng/Kg	0.345U ng/Kg
SL-170-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.157 ng/Kg	0.157U ng/Kg
SL-170-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.143 ng/Kg	0.143U ng/Kg
SL-170-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0351 ng/Kg	0.0351U ng/Kg
SL-170-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0903 ng/Kg	0.0903U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.756 ng/Kg	0.756U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.172 ng/Kg	0.172U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0725 ng/Kg	0.0725U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0301 ng/Kg	0.0301U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.111 ng/Kg	0.111U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0535 ng/Kg	0.0535U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0533 ng/Kg	0.0533U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0587 ng/Kg	0.0587U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0722 ng/Kg	0.0722U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0372 ng/Kg	0.0372U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.152 ng/Kg	0.152U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0420 ng/Kg	0.0420U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0538 ng/Kg	0.0538U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0313 ng/Kg	0.0313U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0621 ng/Kg	0.0621U ng/Kg
SL-170-SA5DN-SB-9.0-10.0(RES)	OCDF	0.418 ng/Kg	0.418U ng/Kg
		U,410 lig/Ng	0.7100 Hg/kg

10/27/2011 12:09:49 PM ADR version 1.4.0.111 Page 4 of 6

Lab Reporting Batch ID: DX123 Laboratory: LL

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B		And the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o		
Matrix: SO				
Method Blank				Associated
Sample ID	Analysis Date	Analyte	Result	Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.09 ng/Kg	1.09U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.195 ng/Kg	0.195U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0442 ng/Kg	0.0442U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0483 ng/Kg	0.0483U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0690 ng/Kg	0.0690U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0460 ng/Kg	0.0460U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0732 ng/Kg	0.0732U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0486 ng/Kg	0.0486U ng/Kg	
SL-173-SA5DN-SB-4,0-5.0(RES)	1,2,3,7,8-PECDD	0.0635 ng/Kg	0.0635U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0423 ng/Kg	0.0423U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0363 ng/Kg	0.0363U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0547 ng/Kg	0.0547U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0230 ng/Kg	0.0230U ng/Kg	
SL-173-SA5DN-SB-4.0-5.0(RES)	OCDF	0.497 ng/Kg	0.497U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.964 ng/Kg	0.964U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.151 ng/Kg	0.151U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0524 ng/Kg	0.0524U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0302 ng/Kg	0.0302U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0392 ng/Kg	0.0392U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0682 ng/Kg	0.0682U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0345 ng/Kg	0.0345U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0596 ng/Kg	0.0596U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0316 ng/Kg	0.0316U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0504 ng/Kg	0.0504U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0425 ng/Kg	0.0425U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0665 ng/Kg	0.0665U ng/Kg	
SL-173-SA5DN-SB-9.0-10.0(RES)	OCDF	0.380 ng/Kg	0.380U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.337 ng/Kg	0.337U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.298 ng/Kg	0.298U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.180 ng/Kg	0.180U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.231 ng/Kg	0.231U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.578 ng/Kg	0.578U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.355 ng/Kg	0.355U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0418 ng/Kg	0.0418U ng/Kg	
SL-175-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0596 ng/Kg	0.0596U ng/Kg	
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.150 ng/Kg	0.150U ng/Kg	
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3.4,7,8-HxCDD	0.135 ng/Kg	0.135U ng/Kg	
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.129 ng/Kg	0.129U ng/Kg	
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.125 ng/Kg	0.125U ng/Kg	
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0,189 ng/Kg	0.189U ng/Kg	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

10/27/2011 12:09:49 PM ADR version 1.4.0.111 Page 5 of 6

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613E Matrix: SO				indiana dependential del
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.135 ng/Kg	0.135U ng/Kg
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.150 ng/Kg	0.150U ng/Kg
SL-175-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.135 ng/Kg	0.135U ng/Kg
SL-175-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.149 ng/Kg	0.149U ng/Kg
SL-175-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.170 ng/Kg	0.170U ng/Kg
SL-175-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0323 ng/Kg	0,0323U ng/Kg
SL-175-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0305 ng/Kg	0.0305U ng/Kg
SL-176-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.440 ng/Kg	0.440U ng/Kg
SL-176-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.328 ng/Kg	0.328U ng/Kg
SL-176-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.299 ng/Kg	0.299U ng/Kg
SL-176-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDD	0.0319 ng/Kg	0.0319U ng/Kg
SL-176-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0,0880 ng/Kg	0.0880U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.238 ng/Kg	0.238U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.106 ng/Kg	0.106U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0946 ng/Kg	0.0946U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0952 ng/Kg	0.0952U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.216 ng/Kg	0.216U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0689 ng/Kg	0.0689U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.102 ng/Kg	0.102U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.103 ng/Kg	0.103U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.135 ng/Kg	0.135U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0864 ng/Kg	0.0864U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDD	0.0268 ng/Kg	0.0268U ng/Kg
SL-176-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0243 ng/Kg	0.0243U ng/Kg

10/27/2011 12:09:49 PM ADR version 1.4.0.111 Page 6 of 6

## Field Duplicate RPD Report

Lab Reporting Batch ID: DX123

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

EDD Filename: DX123_v1.

Method: 160.3M

Matrix. 30					
	Concenti	Concentration (%)			
Analyte	SL-175-SA5DN-SB-4.0- 5.0	DUP22-SA5DN-QC- 080111	Sample RPD	eQAPP RPD	Flag
MOISTURE	9.2	9.2	0		No Qualifiers Applied

Method: 1613B Matrix: SO

	Concentrati	Concentration (ng/Kg)			
Analyte	SL-175-SA5DN-SB-4.0- 5.0	DUP22-SA5DN-QC- 080111	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD	48.0	40.8	16	50.00	
1,2,3,4,6,7,8-HPCDF	6.13	5.67	8	50.00	
1,2,3,4,7,8,9-HPCDF	0.497	0.551	10	50.00	
,2,3,4,7,8-HxCDD	0.368	0.245	40	50.00	
,2,3,4,7,8-HXCDF	0.337	0.285	17	50.00	
,2,3,6,7,8-HXCDD	1.93	1.59	19	50.00	
,2,3,6,7,8-HXCDF	0.298	0.239	22	50.00	
,2,3,7,8,9-HXCDD	0.813	0.609	29	50.00	
,2,3,7,8,9-HXCDF	0.180	0.156	14	50.00	No Qualifiers Applie
,2,3,7,8-PECDD	0.231	0.157	38	50.00	
,2,3,7,8-PECDF	0.578	0.385	40	50.00	
,3,4,6,7,8-HXCDF	0.399	0.323	21	50.00	
,3,7,8-TCDD	0.0418	0.0336	22	50.00	
,3,7,8-TCDF	0.0596	0.0521	13	50.00	
OCDD	565	413	31	50.00	
OCDF	15.7	16.9	7	50.00	
,3,4,7,8-PECDF	0.355	0.142	86	50.00	J(all detects)

Lab Reporting Batch ID: DX123 Laboratory: LL

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

AQ

Matrix:

Lab Reporting RLSampleID Analyte Qual Limit Result Type Units Flag EB-SA6-SB-080211 1,2,3,4,6,7,8-HPCDD JBQ 3.60 10.4 **PQL** pg/L 1,2,3,4,6,7,8-HPCDF JΒ 0.333 10.4 PQL pg/L 1,2,3,4,7,8,9-HPCDF **JBQ** 0.121 10.4 PQL pg/L 1,2,3,4,7,8-HXCDF **JBQ** 0.177 10.4 PQL pg/L pg/L 1,2,3,6,7,8-HXCDD **JBQ** 0.255 10.4 PQL 1,2,3,7,8,9-HXCDD **JBQ** 0.189 10.4 PQL pg/L J (all detects) 1,2,3,7,8,9-HXCDF JBQ 0.0584 PQL pg/L 10.4 1,2,3,7,8-PECDF **JBQ** 0.117 10.4 PQL pg/L 2,3,7,8-TCDF 0.136 2.07 JQ **PQL** pg/L OCDD JB 7.82 20.7 **PQL** pg/L OCDF **JBQ** 0.709 **PQL** 20.7 pg/L

Method: 1613B

Matrix: SO Reporting RL Lab SampleID Analyte Qual Result Limit Units Type Flag DUP22-SA5DN-QC-080111 1,2,3,4,7,8,9-HPCDF 0.551 5.46 POL JB ng/Kg 1,2,3,4,7,8-HxCDD **JBQ** 0.245 5.46 **PQL** ng/Kg 1,2,3,4,7,8-HXCDF JB 0.285 5.46 **PQL** ng/Kg ng/Kg 1,2,3,6,7,8-HXCDD JB 1.59 5.46 **PQL** 1,2,3,6,7,8-HXCDF JB 0.239 **PQL** 5.46 ng/Kg 1,2,3,7,8,9-HXCDD JB 0.609 5.46 **PQL** ng/Kg 1,2,3,7,8,9-HXCDF 0.156 5.46 **PQL JBQ** ng/Kg J (all detects) 1,2,3,7,8-PECDD **JBQ** 0.157 5.46 **PQL** ng/Kg 1,2,3,7,8-PECDF JB 0.385 5.46 PQL ng/Kg 2,3,4,6,7,8-HXCDF JB 0.3235.46 PQL ng/Kg 0.142 2.3.4.7.8-PECDF JB 5.46 **PQL** ng/Kg 2,3,7,8-TCDD JB 0.0336 1.09 PQL ng/Kg 2,3,7,8-TCDF JBQ 0.0521 1.09 **PQL** ng/Kg SL-127-SA6-SB-2.0-3.0 1,2,3,4,7,8,9-HPCDF JB 0.536 5.00 PQL ng/Kg 1,2,3,4,7,8-HxCDD JB 0.305 5.00 PQL ng/Kg 1,2,3,4,7,8-HXCDF JB 2.45 5.00 PQL ng/Kg 1,2,3,6,7,8-HXCDD JB 1.00 5.00 PQL ng/Kg 1,2,3,6,7,8-HXCDF JB 0.618 5.00 **PQL** ng/Kg 1,2,3,7,8,9-HXCDD JB PQL 0.515 5.00 ng/Kg J (all detects) 1,2,3,7,8,9-HXCDF JB 0.245 5.00 **PQL** ng/Kg 1,2,3,7,8-PECDD 0.257 **PQL** JR. 5.00 ng/Kg 1,2,3,7,8-PECDF JB 2.38 5.00 **PQL** ng/Kg 2,3,4,6,7,8-HXCDF PQL JB 0.629 5.00 ng/Kg ng/Kg 2,3,7,8-TCDD JB 0.0984 1.00 **PQL** 2,3,7,8-TCDF JB 0.255 PQL 1.00 ng/Kg

10/27/2011 12:10:08 PM ADR version 1.4.0.111 Page 1 of 6

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1. eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-128-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	JB JB JB JB JB JB JB JB JB JB JB JB JB J	4.38 1.43 0.199 0.0391 0.847 0.222 0.185 0.117 0.0953 0.0392 0.0559 0.157 0.294 0.0201 1.48	5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-128-SA6-SB-7.5-8.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDF CODF	田野田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田	2.66 1.27 0.144 0.0316 0.592 0.152 0.155 0.144 0.121 0.0419 0.0833 0.169 0.224 0.0477	5.35 5.35 5.35 5.35 5.35 5.35 5.35 5.35	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-145-SA6-SB-3.5-4.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	B	0.247 0.0462 0.0211 0.0141 0.0196 0.0242 0.0239 0.0504 0.0509 0.0335 0.0219 0.0125 0.0392 0.0711 0.711	5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

10/27/2011 12:10:08 PM ADR version 1.4.0.111 Page 2 of 6

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-160-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF	JB JB	0.305 0.0524	5.54 5.54	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0455	5.54	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0343	5.54	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0207	5.54	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0316	5.54	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0490	5.54	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0438	5.54	PQL	ng/Kg	I (all data sta)
	1,2,3,7,8-PECDD	JBQ	0.0179	5.54	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.0293	5.54	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0225	5.54	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0411	5,54	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0214	1.11	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0173	1.11	PQL	ng/Kg	
	OCDD	JB	0.896	11.1	PQL	ng/Kg	
	OCDF	JBQ	0.176	11.1	PQL	ng/Kg	
SL-162-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JΒ	0.395	5.50	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0600	5.50	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0411	5.50	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0249	5.50	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0792	5.50	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0243	5.50	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.168	5.50	PQL	ng/Kg	12 11 1 1 1 1 1
	1,2,3,7,8,9-HXCDF	JB	0.311	5.50	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0438	5.50	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0989	5.50	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0323	5.50	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0534	5.50	PQL	ng/Kg	
	OCDD	JB	1.56	11.0	PQL	ng/Kg	
	OCDF	JBQ	0.185	11.0	PQL	ng/Kg	
SL-162-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.330	5.69	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JВ	0.0710	5.69	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0247	5.69	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0268	5.69	PQL	ng/Kg	
İ	1,2,3,6,7,8-HXCDD	JB	0.0564	5.69	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0250	5.69	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0745	5.69	PQL	ng/Kg	1 2-11 -1-4 2 3
	1,2,3,7,8,9-HXCDF	JB	0.0851	5.69	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.0331	5.69	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0272	5.69	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0426	5.69	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0286	1.14	PQL	ng/Kg	
	OCDD	JB	1.15	11.4	PQL	ng/Kg	
	OCDF	1				ו פייפיי	

Lab Reporting Batch ID: DX123

EDD Filename: DX123_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-170-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JB	1.94 0.244	5.40 5.40	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HxCDD	JВ	0.212	5.40	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.275	5.40	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.815	5.40	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.147	5.40	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.383	5.40	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.156	5.40	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.141	5.40	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.345	5.40	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.157	5.40	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.143	5.40	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0351	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0903	1.08	PQL	ng/Kg	
	OCDF	JB	4.55	10.8	PQL	ng/Kg	
SL-170-SA5DN-SB-9.0-10.0		JB	0.756	5.53	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.172	5.53	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0725	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0301	5.53	PQL	ng/Kg	
1  1	1,2,3,4,7,8-HXCDF	JB	0.111	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0535	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0533	5.53	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0587	5.53	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0722	5.53	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0372	5.53	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.152	5.53	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0420	5.53	PQL	ng/Kg	
	2,3,4,7,8-PECDF  2,3,7,8-TCDD	JBQ	0.0538	5.53	PQL	ng/Kg	
	2,3,7,8-1CDD 2,3,7,8-TCDF	JBQ JBQ	0.0313 0.0621	1.11 1.11	PQL PQL	ng/Kg	
	OCDD	JBC	10.4	11.1	PQL	ng/Kg ng/Kg	
	OCDF	JB	0.418	11.1	PQL	ng/Kg	
SL-173-SA5DN-SB-4.0-5.0		-				<del> </del>	
5L-173-5A5DN-5B-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	1.09	5.67	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.195	5.67	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF	JBQ JBQ	0.0442 0.0483	5.67	PQL PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0463	5.67	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0090	5.67		ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0460	5.67 5.67	PQL PQL	ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0732	5.67	PQL PQL	ng/Kg	J (all detects)
	1,2,3,7,6,9-1 AODI	JBQ	0.0485	5.67	PQL	ng/Kg	o (an detects)
	1,2,3,7,8-PECDF	JBQ	0.0033	5.67	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0363	5.67	PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0547	5.67	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0230	1.13	PQL	ng/Kg	
	OCDD	JB	8.99	11.3	PQL	ng/Kg	
	OCDF	JB	0.497	11.3	PQL	ng/Kg	

Lab Reporting Batch ID: DX123

EDD Filename: DX123_v1.

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		Lab	,	Penertina	DI		
SampleID	Analyte	Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-173-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.964	5.68	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.151	5.68	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0524	5.68	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0302	5.68	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0392	5.68	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0682	5.68	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0345	5.68	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0596	5.68	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0316	5.68	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JBQ	0.0504	5.68	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0425	5.68	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0665	5.68	PQL	ng/Kg	
	OCDD	JB	7.55	11.4	PQL	ng/Kg	
	OCDF	JBQ	0.380	11.4	PQL	ng/Kg	
SL-175-SA5DN-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF	JB	0.497	5.37	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.368	5.37	PQL	ng/Kg	•
	1,2,3,4,7,8-HXCDF	JB	0.337	5.37	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.93	5.37	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.298	5.37	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.230	5.37	PQL	ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.313	5.37	PQL		1 (all datacie)
	1,2,3,7,8,9=1XCDI* 1,2,3,7,8-PECDD	JB	0.160	5.37	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.231			ng/Kg	
	2,3,4,6,7,8-HXCDF			5.37	PQL	ng/Kg	
		JB	0.399	5.37	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.355	5.37	PQL	ng/Kg	
	2,3,7,8-TCDD 2,3,7,8-TCDF	JB JB	0.0418 0.0596	1.07 1.07	PQL PQL	ng/Kg ng/Kg	
SL-175-SA5DN-SB-9.0-10.0				<del></del>			
3E-173-3A3D(1-3B-9.0-10.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB	0.834	5.67	PQL	ng/Kg	
		JB	0.150	5.67	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.135	5.67	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.129	5.67	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.397	5.67	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.125	5.67	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.189	5.67	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.135	5.67	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.150	5.67	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.135	5.67	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.149	5.67	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.170	5.67	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0323	1.13	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0305	1.13	PQL	ng/Kg	
	OCDF	JB	2.11	11.3	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	1.33	5.39	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.776	5.39	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.532	5.39	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	5.10	5.39	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.628	5.39	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.75	5.39	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.260	5.39	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.440	5.39	PQL	ng/Kg	. ,
	1,2,3,7,8-PECDF	JB	0.328	5.39	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.865	5.39	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.299	5.39	PQL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.0319	1.08	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0880	1.08	PQL	ng/Kg	

Lab Reporting Batch ID: DX123

Laboratory: LL

EDD Filename: DX123_v1.

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-176-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF	JB	1.80	5.60	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.238	5.60	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.106	5.60	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0946	5.60	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.560	5.60	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0952	5.60	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.216	5.60	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0689	5.60	PQL	ng/Kg	J (all detects
	1,2,3,7,8-PECDD	JBQ	0.102	5.60	PQL	ng/Kg	•
	1,2,3,7,8-PECDF	JB	0.103	5.60	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.135	5.60	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0864	5.60	PQL	ng/Kg	
	2,3,7,8-TCDD	JB	0.0268	1.12	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0243	1.12	PQL	ng/Kg	
	OCDF	JB	4.52	11.2	PQL	ng/Kg	

## **SAMPLE DELIVERY GROUP**

**DX124** 

## **Attachment I**

Sample ID Cross Reference and Data Review Level

## **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
03-Aug-2011	SL-011-SA6-SB-0.5-1.5	6364636	N	METHOD	1613B	10
03-Aug-2011	SL-003-SA6-SB-4.0-5.0	6364633	N	METHOD	1613B	111
03-Aug-2011	SL-003-SA6-SB-8.5-9.5	6364634	N	METHOD	1613B	HI
03-Aug-2011	SL-188-SA5DN-SB-4.0-5.0	6364638	N	METHOD	<b>1</b> 613B	III
03-Aug-2011	SL-004-SA6-SB-1.5-2.5	6364635	N	METHOD	1613B	111
03-Aug-2011	SL-188-SA5DN-SB-9.0-10.0	6364639	N	METHOD	1613B	lli;
03-Aug-2011	EB23-SA5DN-SB-080311	6364637	EB	METHOD	1613B	Ш
03-Aug-2011	SL-193-SA5DN-SB-4.0-5.0	6364640	N	METHOD	1613B	Ш
03-Aug-2011	SL-002-SA6-SB-4.0-5.0	6364631	N	METHOD	1613B	111
03-Aug-2011	SL-002-SA6-SB-9.0-10.0	6364632	N	METHOD	16 <b>1</b> 3B	111
03-Aug-2011	SL-193-SA5DN-SB-9.0-10.0	6364641	N	METHOD	1613B	III
04-Aug-2011	SL-204-SA5DN-SB-9.0-10.0	6366529	N	METHOD	1613B	III
04-Aug-2011	SL-204-SA5DN-SB-4.0-5.0	6366528	N	METHOD	1613B	III
04-Aug-2011	SL-189-SA5DN-SB-4.0-5.0	6366524	N	METHOD	1613B	ŧII
04-Aug-2011	SL-189-SA5DN-SB-4.0-5.0 M	6366525	мѕ	METHOD	1613B	111
04-Aug-2011	DUP23-SA5DN-QC-080411	6366530	FD	METHOD	1613B	III
04-Aug-2011	SL-189-SA5DN-SB-9.0-10.0	6366527	N	METHOD	1613B	III
04-Aug-2011	SL-185-SA5DN-SB-4.0-5.0	6366522	N	METHOD	1613B	III
04-Aug-2011	SL-185-SA5DN-SB-9.0-10.0	6366523	N	METHOD	1613B	111

TB = Trip Blank FB = Field Blank

## **Attachment II**

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX124

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL 110509

Laboratory: LL

Page 1 of 14

Method Category: SVOA Method: 1613B Matrix: AQ

Sample ID: EB23-SA5DN-SB-080311 Collected: 8/3/2011 1:00:00 PM Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte Result Qual DLType RL Туре Units Qual Code 1,2,3,4,6,7,8-HPCDD 3.78 **JBQ** 0.257 MDL 11.2 PQL pg/L 1,2,3,4,6,7,8-HPCDF 0.491 JBQ MDL 0.119 11.2 PQL U В pg/L 1,2,3,4,7,8,9-HPCDF 0.350 **JBQ** 0.135 MDL 11.2 **PQL** pg/L U В 1,2,3,4,7,8-HxCDD 0.216 0.190 MDL 11.2 POL JQ J Z pg/L 1,2,3,4,7,8-HXCDF MDL 11.2 U 0.211 JB 0.123 PQL В pg/L 1,2,3,6,7,8-HXCDD 0.339 **JBQ** 0.204 MDL 11.2 **PQL** U В pg/L 0.109 1,2,3,6,7,8-HXCDF 0.263 MDL 11.2 PQL z JQ J pg/L 1,2,3,7,8-PECDD 0.493 JBQ 0.264 MDL 11.2 **PQL** U В pg/L 1,2,3,7,8-PECDF 0.557 JBQ 0.179 MDL 11.2 PQL U В pg/L 2,3,4,6,7,8-HXCDF 0.118 MDL 11.2 PQL 0.256 **JBQ** pg/L U В 2,3,4,7,8-PECDF 0.634 **JBQ** 0.173 MDL 11.2 **PQL** U В pg/L OCDD 22.4 U 8.38 JB 0.413 MDL **PQL** В pg/L OCDF 0.812 JBQ 0.285 MDL 22.4 PQL U В pg/L

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: DUP23-SA5DN-QC-080411	Collec	ted: 8/4/20	011 10:59:0	0 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.553	JB	0.0133	MDL	5.31	PQL	ng/Kg	υ	В	
1,2,3,4,6,7,8-HPCDF	0.0922	JB	0.00432	MDL	5.31	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0292	JB	0.0102	MDL	5.31	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0395	JB	0.0105	MDL	5.31	PQL	ng/Kg	UJ	B, FD	
1,2,3,4,7,8-HXCDF	0.0860	JB	0.00787	MDL	5.31	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0993	JBQ	0.0111	MDL	5.31	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0697	JB	0.00643	MDL	5.31	PQL	ng/Kg	บม	B, FD	
1,2,3,7,8,9-HXCDD	0.163	JB	0.0108	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.193	JB	0.00965	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0762	JB	0.0110	MDL	5.31	PQL	ng/Kg	บม	B, FD	
1,2,3,7,8-PECDF	0.178	JB	0.00654	MDL	5.31	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.0467	JВ	0.00765	MDL	5.31	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.125	JB	0.00698	MDL	5.31	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0290	JQ	0.00942	MDL	1.06	PQL	ng/Kg	J	Z, FD	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:40 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX124

Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

SO

nalyte	Collected: 8/4/2011 10:59:00 Analysis Type: RES Dilution: 1									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,7,8-TCDF	0.0436	JB	0.0120	MDL	1.06	PQL	ng/Kg	UJ	B, FD	
OCDD	5.41	JB	0.0116	MDL	10.6	PQL	ng/Kg	J	Z, FD	
OCDF	0.251	JBO	0.0195	MDI	10.6	POL	na/Ka	11)	B	

Sample ID: SL-002-SA6-SB-4.0-5.0

Collected: 8/3/2011 2:30:00 PM Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.99	JB	0.0170	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.983	JB	0.0267	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.126	JB	0.0238	MDL	5.53	PQL	ng/Kg	U ·	В
1,2,3,4,7,8-HXCDF	0.521	JB	0.0226	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.31	JB	0.0249	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.305	JB	0.0214	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.496	JB	0.0231	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.174	JB	0.0269	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.209	JB	0.0225	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.13	JB	0.0175	MDL	5.53	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.358	JB	0.0212	MDL	5.53	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.812	JB	0.0177	MDL	5.53	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0335	J	0.0151	MDL	1.11	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.256	JB	0.0348	MDL	1.11	PQL	ng/Kg	J	Z

Sample ID: SL-002-SA6-SB-9.0-10.0

Collected: 8/3/2011 2:33:00 PM

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.89	JB	0.0119	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.773	JB	0.0225	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.0984	JB	0.0248	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.681	JB	0.0197	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.826	JB	0.0254	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.423	JB	0.0171	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.295	JB	0.0244	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.167	JB	0.0209	MDL	5.49	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0749	JB	0.0150	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	2.82	JB	0.0192	MDL	5.49	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

ADR version 1.4.0.111 12/21/2011 11:55:41 AM Page 2 of 14

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Categ	ory is SVOA during	ĠŎĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ			
Method:	1613B		Matrix:	so	

Sample ID: SL-002-SA6-SB-9.0-10.0	Collec	ted: 8/3/20	11 2:33:00	PM A	nalysis T	ype: RES		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,6,7,8-HXCDF	0.345	JB	0.0180	MDL	5.49	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.67	JB	0.0193	MDL	5.49	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0170	J	0.0102	MDL	1.10	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.323	JB	0.0384	MDL	1.10	PQL	ng/Kg	J	Ž
OCDF	10.8	JB	0.0202	MDL	11.0	PQL	ng/Kg	J	Z

Sample ID: SL-003-SA6-SB-4.0-5.0	Collected: 8/3/2011 8:40:00 AM Analysis Type: RES								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDF	2.73	JB	0.0131	MDL	5.85	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.560	JB	0.0261	MDL	5.85	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HxCDD	0.0728	JB	0.0212	MDL	5.85	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.319	JB	0.0210	MDL	5.85	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	0.650	JB	0.0213	MDL	5.85	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.212	JB	0.0177	MDL	5.85	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.268	JB	0.0207	MDL	5.85	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.0997	JB	0.0234	MDL	5.85	PQL	ng/Kg	υ	В		
1,2,3,7,8-PECDD	0.0835	JB	0.0152	MDL	5.85	PQL	ng/Kg	υ	В		
1,2,3,7,8-PECDF	0.409	JB	0.0155	MDL	5.85	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.229	JB	0.0185	MDL	5.85	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.505	JB	0.0159	MDL	5.85	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.0327	J	0.0137	MDL	1.17	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.0893	JB	0.0297	MDL	1.17	PQL	ng/Kg	U	В		
OCDF	7.17	JB	0.0261	MDL	11.7	PQL	ng/Kg	J	Z		

Sample ID: SL-003-SA6-SB-8.5-9.5	Collec	ted: 8/3/201	1 8:44:00 /	 nalysis Ty	pe: RES		Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.67	JB	0.0124	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.521	JB	0.0202	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.0873	JB	0.0228	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.412	JB	0.0179	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.690	JB	0.0240	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.214	JB	0.0157	MDL	5.47	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.263	JB	0.0217	MDL.	5.47	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:41 AM ADR version 1.4.0.111 Page 3 of 14

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	ry: SVOA		
Method:	1613B	Matrix: SO	

Sample ID: SL-003-SA6-SB-8.5-9.5  Analyte	Collec	ted: 8/3/20	)11 8:44:00	AM A	nalysis T	ype: RES		I	Dilution: 1
	Lab Result	Lab Qual	DL	DL Type	RL_	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDF	0.106	JBQ	0.0193	MDL	5.47	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0489	JB	0.0167	MDL,	5.47	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.354	JB	0.0150	MDL	5.47	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.251	JB	0.0161	MDL	5.47	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.715	JB	0.0153	MDL	5.47	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0352	J	0.0121	MDL	1.09	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.264	JB	0.0312	MDL	1.09	PQL	ng/Kg	J	Z
OCDF	7.76	JB	0.0218	MDL	10.9	PQL	ng/Kg	J	Z

Sample ID: SL-004-SA6-SB-1.5-2.5 Collected: 8/3/2011 11:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL	RL	RL Tunn	Units	Data Review Qual	Reason Code
	· <del></del>	<del></del>	<del>'</del>	Type	<del></del>	Туре	1	Quai	
1,2,3,4,6,7,8-HPCDF	2.86	JB	0.0110	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.490	JB	0.0286	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.0871	JB	0.0195	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.199	JB	0.0161	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.722	JB	0.0198	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.143	JBQ	0.0126	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.249	JB	0.0187	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0347	JBQ	0.0204	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0272	JBQ	0.0126	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0840	JB	0.00872	MDL	5.15	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.181	JB	0.0139	MDL	5.15	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.120	JB	0.00955	MDL	5.15	PQL	ng/Kg	υ	В
2,3,7,8-TCDD	0.0138	JQ	0.0113	MDL	1.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0152	JBQ	0.0116	MDL	1.03	PQL	ng/Kg	U	В
OCDF	8.66	JB	0.0304	MDL	10.3	PQL	ng/Kg	J	Z

Sample ID: SL-011-SA6-SB-0.5-1.5 Collected: 8/3/2011 7:54:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.77	JB	0.0162	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.324	JB	0.00697	MDL	5.27	PQL	ng/Kg	j	Z
1,2,3,4,7,8,9-HPCDF	0.0846	JB	0.0126	MDL	5.27	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0570	JB	0.0155	MDL	5.27	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:41 AM ADR version 1.4.0.111 Page 4 of 14

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B Matrix: SO

Sample ID: SL-011-SA6-SB-0.5-1.5 Collected: 8/3/2011 7:54:00 AM Analysis Type: RES Dilution: 1 Data Lab DLRLReview Lab Reason Result DLRLUnits Analyte Qual Type Туре Qual Code 1,2,3,4,7,8-HXCDF 0.165 JΒ 0.0158 MDL 5.27 PQL ng/Kg J Z 1,2,3,6,7,8-HXCDD 0.197 JB 0.0160 MDL 5.27 PQL J Z ng/Kg 1,2,3,6,7,8-HXCDF 0.0916 JΒ 0.0126 MDL 5.27 **PQL** ng/Kg z 1,2,3,7,8,9-HXCDD 0.157 JВ 0.0154 MDL 5.27 PQL J z ng/Kg 1,2,3,7,8,9-HXCDF 0.0612 JB 0.0153 MDL 5.27 PQL ng/Kg Ų В 5.27 1,2,3,7,8-PECDD 0.118 **JBQ** 0.0134 MDL PQL J Z ng/Kg 1,2,3,7,8-PECDF 0.00954 5.27 PQL J Z 0.0907 JB MDL ng/Kg 0.0810 0.0120 U 2,3,4,6,7,8-HXCDF JB MDL 5.27 PQL ng/Kg В z 2,3,4,7,8-PECDF 0.371 JB 0.0101 MDL 5.27 PQL J ng/Kg 2,3,7,8-TCDD 0.0383 0.0108 PQL J Z J MDL 1.05 ng/Kg

Sample ID: SL-185-SA5DN-SB-4.0-5.0 Collected: 8/4/2011 3:20:00 PM Analysis Type: RES Dilution: 1

JΒ

0.0208

MDL

PQL

ng/Kg

10.5

U

В

0.657

	,								
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
0.411	JB	0.0141	MDL	5.72	PQL	ng/Kg	U	В	
0.0610	JBQ	0.00459	MDL	5.72	PQL	ng/Kg	U	В	
0.0534	JB	0.0148	MDL	5.72	PQL	ng/Kg	U	В	
0.0172	JBQ	0.0103	MDL	5.72	PQL	ng/Kg	U	В	
0.0240	JB	0.00781	MDL	5.72	PQL	ng/Kg	U	В	
0.0521	JBQ	0.0108	MDL	5.72	PQL	ng/Kg	U	В	
0.0204	JBQ	0.00586	MDL	5.72	PQL	ng/Kg	U	В	
0.0612	JBQ	0.0102	MDL	5.72	PQL	ng/Kg	U	В	
0.0932	JBQ	0.00999	MDL	5.72	PQL	ng/Kg	U	В	
0.0146	JB	0.0103	MDL	5.72	PQL	ng/Kg	U	В	
0.0223	JBQ	0.00608	MDL	5.72	PQL	ng/Kg	U	В	
0.0216	JB	0.00700	MDL	5.72	PQL	ng/Kg	U	В	
0.0530	JВ	0.00700	MDL	5.72	PQL	ng/Kg	U	В	
0.0159	J	0.0117	MDL	1.14	PQL	ng/Kg	J	Z	
1.18	JB	0.0118	MDL	11.4	PQL	ng/Kg	U	В	
0.194	JBQ	0.0347	MDL	11.4	PQL	ng/Kg	U	В	
	Result  0.411  0.0610  0.0534  0.0172  0.0240  0.0521  0.0204  0.0612  0.0932  0.0146  0.0223  0.0216  0.0530  0.0159  1.18	Result         Qual           0.411         JB           0.0610         JBQ           0.0534         JB           0.0172         JBQ           0.0240         JB           0.0521         JBQ           0.0204         JBQ           0.0612         JBQ           0.0932         JBQ           0.0146         JB           0.0223         JBQ           0.0216         JB           0.0530         JB           0.0159         J           1.18         JB	Result         Qual         DL           0.411         JB         0.0141           0.0610         JBQ         0.00459           0.0534         JB         0.0148           0.0172         JBQ         0.0103           0.0240         JB         0.00781           0.0521         JBQ         0.0108           0.0204         JBQ         0.00586           0.0612         JBQ         0.0102           0.0932         JBQ         0.00999           0.0146         JB         0.0103           0.0223         JBQ         0.00608           0.0216         JB         0.00700           0.0530         JB         0.00700           0.0159         J         0.0117           1.18         JB         0.0118	Result         Qual         DL         Type           0.411         JB         0.0141         MDL           0.0610         JBQ         0.00459         MDL           0.0534         JB         0.0148         MDL           0.0172         JBQ         0.0103         MDL           0.0240         JB         0.00781         MDL           0.0521         JBQ         0.0108         MDL           0.0204         JBQ         0.00586         MDL           0.0612         JBQ         0.0102         MDL           0.0932         JBQ         0.00999         MDL           0.0146         JB         0.0103         MDL           0.0223         JBQ         0.00608         MDL           0.0216         JB         0.00700         MDL           0.0530         JB         0.00700         MDL           0.0159         J         0.0117         MDL           1.18         JB         0.0118         MDL	Result         Qual         DL         Type         RL           0.411         JB         0.0141         MDL         5.72           0.0610         JBQ         0.00459         MDL         5.72           0.0534         JB         0.0148         MDL         5.72           0.0172         JBQ         0.0103         MDL         5.72           0.0240         JB         0.00781         MDL         5.72           0.0521         JBQ         0.0108         MDL         5.72           0.0204         JBQ         0.00586         MDL         5.72           0.0612         JBQ         0.0102         MDL         5.72           0.0932         JBQ         0.00999         MDL         5.72           0.0146         JB         0.0103         MDL         5.72           0.0223         JBQ         0.00608         MDL         5.72           0.0216         JB         0.00700         MDL         5.72           0.0530         JB         0.00700         MDL         5.72           0.0159         J         0.0117         MDL         1.14           1.14         1.14         1.14	Result         Qual         DL         Type         RL         Type           0.411         JB         0.0141         MDL         5.72         PQL           0.0610         JBQ         0.00459         MDL         5.72         PQL           0.0534         JB         0.0148         MDL         5.72         PQL           0.0172         JBQ         0.0103         MDL         5.72         PQL           0.0240         JB         0.00781         MDL         5.72         PQL           0.0521         JBQ         0.0108         MDL         5.72         PQL           0.0204         JBQ         0.00586         MDL         5.72         PQL           0.0612         JBQ         0.0102         MDL         5.72         PQL           0.0932         JBQ         0.00999         MDL         5.72         PQL           0.0146         JB         0.0103         MDL         5.72         PQL           0.0223         JBQ         0.00608         MDL         5.72         PQL           0.0530         JB         0.00700         MDL         5.72         PQL           0.0159         J         0.0117<	Result         Qual         DL         Type         RL         Type         Units           0.411         JB         0.0141         MDL         5.72         PQL         ng/Kg           0.0610         JBQ         0.00459         MDL         5.72         PQL         ng/Kg           0.0534         JB         0.0148         MDL         5.72         PQL         ng/Kg           0.0172         JBQ         0.0103         MDL         5.72         PQL         ng/Kg           0.0240         JB         0.00781         MDL         5.72         PQL         ng/Kg           0.0521         JBQ         0.0108         MDL         5.72         PQL         ng/Kg           0.0204         JBQ         0.00586         MDL         5.72         PQL         ng/Kg           0.0612         JBQ         0.0102         MDL         5.72         PQL         ng/Kg           0.0932         JBQ         0.00999         MDL         5.72         PQL         ng/Kg           0.0146         JB         0.0103         MDL         5.72         PQL         ng/Kg           0.0223         JBQ         0.00608         MDL         5.72	Lab Result         Lab Qual         DL DL Type         RL Type         RL Type         RL Type         RL Units         Review Qual           0.411         JB         0.0141         MDL         5.72         PQL         ng/Kg         U           0.0610         JBQ         0.00459         MDL         5.72         PQL         ng/Kg         U           0.0534         JB         0.0148         MDL         5.72         PQL         ng/Kg         U           0.0172         JBQ         0.0103         MDL         5.72         PQL         ng/Kg         U           0.0240         JB         0.00781         MDL         5.72         PQL         ng/Kg         U           0.0521         JBQ         0.0108         MDL         5.72         PQL         ng/Kg         U           0.0204         JBQ         0.00586         MDL         5.72         PQL         ng/Kg         U           0.0612         JBQ         0.0102         MDL         5.72         PQL         ng/Kg         U           0.0932         JBQ         0.00999         MDL         5.72         PQL         ng/Kg         U           0.0223         JBQ         0	

OCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:41 AM ADR version 1.4.0.111 Page 5 of 14

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Analyte	Collec	ted: 8/4/20	11 3:30:00	PM A	nalysis T	/pe: RES			Dilution: 1	
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.436	JB	0.0149	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0605	JB	0.00411	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0455	JBQ	0.0131	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0288	JBQ	0.00651	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0143	JBQ	0.00926	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0141	JBQ	0.00491	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0348	JBQ	0.00846	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0383	JB	0.00857	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0205	JBQ	0.00926	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0136	JB	0.00526	MDL	5.71	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.0127	JBQ	0.00549	MDL	5.71	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0385	JB	0.00617	MDL	5.71	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0114	JBQ	0.0106	MDL	1.14	PQL	ng/Kg	υ	В	
OCDD	2.94	JB	0.0127	MDL	11.4	PQL	ng/Kg	J	Z	
OCDF	0.303	JB	0.0337	MDL	11.4	PQL	ng/Kg	U	В	

Sample ID: SL-188-SA5DN-SB-4.0-5.0 Collected: 8/3/2011 10:57:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.516	JB	0.0146	MDL	5.73	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.147	JB	0.00529	MDL	5.73	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0849	JB	0.0144	MDL	5.73	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.154	JB	0.0112	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.263	JB	0.0112	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.170	JB	0.0116	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.214	JB	0.00863	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.152	JB	0.0112	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.200	JB	0.0148	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.298	JB	0.0136	MDL	5.73	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.352	JВ	0.00725	MDL	5.73	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.147	JВ	0.0100	MDL	5.73	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.339	JB	0.00806	MDL	5.73	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0952	J	0.0131	MDL	1.15	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.105	JB	0.0139	MDL	1.15	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
12/21/2011 11:55:41 AM ADR version 1.4.0.111

Page 6 of 14

Lab Reporting Batch ID: DX124

Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-188-SA5DN-SB-4.0-5.0	Collec	Collected: 8/3/2011 10:57:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
OCDD	1.93	JB	0.0129	MDL	11.5	PQL	ng/Kg	U	В
OCDF	0.295	JB	0.0255	MDL	11.5	PQL	ng/Kg	U	В

Collected: 8/3/2011 11:58:00 Sample ID: SL-188-SA5DN-SB-9.0-10.0 Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte Result DLQual Туре RL Units Type Qual Code 0.904 1,2,3,4,6,7,8-HPCDD JB 0.0162 MDL 5.57 PQL В U ng/Kg 1,2,3,4,6,7,8-HPCDF 0.203 JΒ 0.00538 MDL 5.57 **PQL** ng/Kg U В 1,2,3,4,7,8,9-HPCDF 0.0855 JB ng/Kg 0.0155 MDL 5.57 PQL U В 1,2,3,4,7,8-HxCDD 0.106 JΒ 0.0115 MDL 5.57 PQL U ng/Kg В 1.2,3,4,7,8-HXCDF 0.239 JB 0.0127 MDL 5.57 PQL ng/Kg J Z 1,2,3,6,7,8-HXCDD J Z 0.153 JB 0.0123 MDL 5.57 **PQL** ng/Kg 1,2,3,6,7,8-HXCDF 0.183 JB 0.00974 MDL 5.57 PQL J z ng/Kg 1,2,3,7,8,9-HXCDD 0.182 JB 0.0118 MDL PQL Z 5.57 ng/Kg J 1,2,3,7,8,9-HXCDF 0.218 JBQ 0.0174 MDL 5.57 PQL J ng/Kg Z 1,2,3,7,8-PECDD 0.192 JВ 0.0129 MDL 5.57 **PQL** J Z ng/Kg 1,2,3,7,8-PECDF 0.431 JB 0.00997 MDL J Z 5.57 PQL ng/Kg 0.121 2,3,4,6,7,8-HXCDF JB 0.0119 MDL 5.57 PQL J Z ng/Kg 2,3,4,7,8-PECDF 0.304 JΒ 0.0112 MDL 5.57 PQL ng/Kg J Z 2,3,7,8-TCDD 0.0764 J 0.0115 Z MDL 1.11 PQL J ng/Kg 2,3,7,8-TCDF 0.137 JB 0.0246 MDL 1.11 PQL ng/Kg J Z OCDD JB 0.0136 MDL POL J 6.68 11.1 Z ng/Kg OCDF 0.445 JB 0.0304 U MDL 11,1 PQL ng/Kg В

Sample ID: SL-189-SA5DN-SB-4.0-5.0	Collected: 8/4/2011 10:52:00	Analysis Type: RES	Dilution: 1
------------------------------------	------------------------------	--------------------	-------------

npic 1D: CE-100-GAGBIT-GB-410-010	Conec	100. 01-1121	, , , , , , , , , , , , , , , , , , ,	· A	ilaiyaia i	pe. Keo			Diauon. j	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.535	JB	0.0142	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0913	JB	0.00418	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0461	JB	0.0142	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0112	JBQ	0.0111	MDL	5.24	PQL	ng/Kg	UJ	B, FD	
1,2,3,4,7,8-HXCDF	0.0910	JB	0.0100	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0686	JB	0.0112	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0249	JB	0.00736	MDL	5.24	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8,9-HXCDD	0.176	JВ	0.0109	MDL	5.24	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:41 AM ADR version 1.4.0.111 Page 7 of 14

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-189-SA5DN-SB-4.0-5.0	Collec	ted: 8/4/20	)11 10:52:0	0 A	nalysis T	/pe: RES		E	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8,9-HXCDF	0.227	JB	0.0138	MDL	5.24	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0182	JB	0.0120	MDL	5.24	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8-PECDF	0.231	JB	0.00978	MDL	5.24	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.0404	JB	0.00868	MDL	5.24	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.115	JB	0.0113	MDL	5.24	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0108	U	0.0108	MDL	1.05	PQL	ng/Kg	UJ	FD	
2,3,7,8-TCDF	0.0754	JB	0.0241	MDL	1.05	PQL	ng/Kg	UJ	B, FD	
OCDD	2.91	JB	0.0100	MDL	10.5	PQL	ng/Kg	J	Z, FD	
OCDF	0.221	JB	0.0284	MDL	10.5	PQL	ng/Kg	U	В	

Sample ID: SL-189-SA5DN-SB-9.0-10.0 Collected: 8/4/2011 11:37:00 Analysis Type: RES Dilution: 1

Sample ID: SL-189-SA5DN-SB-9.0-10.0	Collec	tea: 8/4/20	177 17:37:0	0 A	Analysis Type: RES			Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	1.36	JB	0.0151	MDL	5.67	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	0.261	JB	0.00611	MDL	5.67	PQL	ng/Kg	υ	В	
1,2,3,4,7,8,9-HPCDF	0.133	JB	0.0180	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0690	JBQ	0.0141	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.295	JB	0.0149	MDL	5.67	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.120	JB	0.0146	MDL	5.67	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.129	JB	0.0113	MDL	5.67	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.146	JB	0.0140	MDL	5.67	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.177	JB	0.0176	MDL	5.67	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.120	JB	0.0125	MDL	5.67	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.643	JB	0.0151	MDL	5.67	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.138	JB	0.0131	MDL	5.67	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.237	JB	0.0175	MDL	5.67	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0229	JQ	0.0110	MDL	1.13	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.188	JB	0.0385	MDL	1.13	PQL	ng/Kg	J	Z	
OCDD	8.78	JB	0.0136	MDL	11.3	PQL	ng/Kg	J	Z	
OCDF	0.717	JB	0.0294	MDL	11.3	PQL	ng/Kg	J	Z	

Sample ID: SL-193-SA5DN-SB-4.0-5.0 Collected: 8/3/2011 2:00:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.81	JB	0.00879	MDL	5.56	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:41 AM ADR version 1.4.0.111 Page 8 of 14

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVCA

Method: 1613B Matrix: SO

Collected: 8/3/2011 2:00:00 PM Analysis Type: RES								Dilution: 1		
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
0.357	JB	0.0227	MDL	5.56	PQL	ng/Kg	J	Z		
0.141	JB	0.0203	MDL	5.56	PQL	ng/Kg	j	Z		
0.313	JB	0.0169	MDL	5.56	PQL	ng/Kg	J	Z		
0.542	JВ	0.0215	MDL	5.56	PQL	ng/Kg	J	Z		
0.208	JB	0.0138	MDL	5.56	PQL	ng/Kg	J	Z		
0.307	JB	0.0194	MDL	5.56	PQL	ng/Kg	J	Z		
0.161	JB	0.0203	MDL	5.56	PQL	ng/Kg	J	Z		
0.150	JB	0.0171	MDL	5.56	PQL	ng/Kg	J	Z		
0.588	JB	0.0124	MDL	5.56	PQL	ng/Kg	J	Z		
0.268	JB	0.0154	MDL	5.56	PQL	ng/Kg	J	Z		
0.403	JB	0.0138	MDL	5.56	PQL	ng/Kg	J	Z		
0.0357	J	0.0126	MDL	1.11	PQL	ng/Kg	J	Z		
0.167	JB	0.0345	MDL	1.11	PQL	ng/Kg	J	Z		
8.65	JB	0.0326	MDL	11.1	PQL	ng/Kg	J	Z		
	Lab Result  0.357  0.141  0.313  0.542  0.208  0.307  0.161  0.150  0.588  0.268  0.403  0.0357  0.167	Lab Result         Lab Qual           0.357         JB           0.141         JB           0.313         JB           0.542         JB           0.208         JB           0.307         JB           0.161         JB           0.150         JB           0.588         JB           0.268         JB           0.403         JB           0.0357         J           0.167         JB	Lab Result         Lab Qual         DL           0.357         JB         0.0227           0.141         JB         0.0203           0.313         JB         0.0169           0.542         JB         0.0215           0.208         JB         0.0138           0.307         JB         0.0194           0.161         JB         0.0203           0.150         JB         0.0171           0.588         JB         0.0124           0.268         JB         0.0154           0.403         JB         0.0138           0.0357         J         0.0126           0.167         JB         0.0345	Lab Result         Lab Qual         DL Type           0.357         JB         0.0227         MDL           0.141         JB         0.0203         MDL           0.313         JB         0.0169         MDL           0.542         JB         0.0215         MDL           0.208         JB         0.0138         MDL           0.307         JB         0.0194         MDL           0.161         JB         0.0203         MDL           0.150         JB         0.0171         MDL           0.588         JB         0.0124         MDL           0.268         JB         0.0154         MDL           0.403         JB         0.0138         MDL           0.0357         J         0.0126         MDL           0.167         JB         0.0345         MDL	Lab Result         Lab Qual         DL Type         RL           0.357         JB         0.0227         MDL         5.56           0.141         JB         0.0203         MDL         5.56           0.313         JB         0.0169         MDL         5.56           0.542         JB         0.0215         MDL         5.56           0.208         JB         0.0138         MDL         5.56           0.307         JB         0.0194         MDL         5.56           0.161         JB         0.0203         MDL         5.56           0.150         JB         0.0171         MDL         5.56           0.588         JB         0.0171         MDL         5.56           0.268         JB         0.0154         MDL         5.56           0.403         JB         0.0138         MDL         5.56           0.0357         J         0.0126         MDL         1.11           0.167         JB         0.0345         MDL         1.11	Lab Result         Lab Qual         DL Type         RL Type         RL Type           0.357         JB         0.0227         MDL         5.56         PQL           0.141         JB         0.0203         MDL         5.56         PQL           0.313         JB         0.0169         MDL         5.56         PQL           0.542         JB         0.0215         MDL         5.56         PQL           0.208         JB         0.0138         MDL         5.56         PQL           0.307         JB         0.0194         MDL         5.56         PQL           0.161         JB         0.0203         MDL         5.56         PQL           0.150         JB         0.0171         MDL         5.56         PQL           0.588         JB         0.0124         MDL         5.56         PQL           0.268         JB         0.0154         MDL         5.56         PQL           0.403         JB         0.0138         MDL         5.56         PQL           0.0357         J         0.0126         MDL         1.11         PQL           0.167         JB         0.0345         MDL	Lab Result         Lab Qual         DL Type         RL Type         RL Type         Units           0.357         JB         0.0227         MDL         5.56         PQL         ng/Kg           0.141         JB         0.0203         MDL         5.56         PQL         ng/Kg           0.313         JB         0.0169         MDL         5.56         PQL         ng/Kg           0.542         JB         0.0215         MDL         5.56         PQL         ng/Kg           0.208         JB         0.0138         MDL         5.56         PQL         ng/Kg           0.307         JB         0.0194         MDL         5.56         PQL         ng/Kg           0.161         JB         0.0203         MDL         5.56         PQL         ng/Kg           0.150         JB         0.0171         MDL         5.56         PQL         ng/Kg           0.588         JB         0.0124         MDL         5.56         PQL         ng/Kg           0.268         JB         0.0154         MDL         5.56         PQL         ng/Kg           0.403         JB         0.0138         MDL         5.56         PQL	Lab Result         Lab Qual         DL Type         RL Type         RL Type         RL Type         Units Review Qual           0.357         JB         0.0227         MDL         5.56         PQL         ng/Kg         J           0.141         JB         0.0203         MDL         5.56         PQL         ng/Kg         J           0.313         JB         0.0169         MDL         5.56         PQL         ng/Kg         J           0.542         JB         0.0215         MDL         5.56         PQL         ng/Kg         J           0.208         JB         0.0138         MDL         5.56         PQL         ng/Kg         J           0.307         JB         0.0194         MDL         5.56         PQL         ng/Kg         J           0.161         JB         0.0203         MDL         5.56         PQL         ng/Kg         J           0.150         JB         0.0171         MDL         5.56         PQL         ng/Kg         J           0.588         JB         0.0124         MDL         5.56         PQL         ng/Kg         J           0.403         JB         0.0138         MDL <td< td=""></td<>		

Sample ID: SL-193-SA5DN-SB-9.0-10.0	Collected: 8/3/2011 3:00:00 PM	Analysis Type: RES	Dilution: 1
Outlibic 1D, OE-100-ONODIA-OD-3.0-10.0	Conected, Conected in Control in	Allerysis rype, it-o	Pilaton. I

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5.16	JB	0.0237	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.806	JB	0.00635	MDL	5.57	PQL	ng/Kg	j	Z
1,2,3,4,7,8,9-HPCDF	0.134	JB	0.0210	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0462	JB	0.0157	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.153	JB	0.0126	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.220	JB	0.0166	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0868	JB	0.00947	MDL	5.57	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.127	JB	0.0165	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0417	JBQ	0.0180	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0374	JB	0.0117	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.136	JBQ	0.00970	MDL	5.57	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.104	JB	0.0115	MDL	5.57	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.195	JB	0.0109	MDL	5.57	PQL	ng/Kg	υ	В
OCDF	2.12	JB	0.0358	MDL	11.1	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
12/21/2011 11:55:41 AM ADR version 1.4.0.111 Page 9 of 14

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-204-SA5DN-SB-4.0-5.0	Collec	ted: 8/4/20	11 9:20:00	AM A	nalysis Ty	/pe: RES	Collected: 8/4/2011 9:20:00 AM Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code					
1,2,3,4,6,7,8-HPCDD	3.02	JB	0.0234	MDL	5.51	PQL	ng/Kg	J	Z					
1,2,3,4,6,7,8-HPCDF	0.600	JB	0.00665	MDL	5.51	PQL	ng/Kg	J	Z					
1,2,3,4,7,8,9-HPCDF	0.129	JB	0.0200	MDL	5.51	PQL	ng/Kg	U	В					
1,2,3,4,7,8-HxCDD	0.115	JB	0.0150	MDL	5.51	PQL	ng/Kg	U	В					
1,2,3,4,7,8-HXCDF	0.453	JB	0.0173	MDL	5.51	PQL	ng/Kg	J	Z					
1,2,3,6,7,8-HXCDD	0.291	JB	0.0160	MDL	5.51	PQL	ng/Kg	J	Z					
1,2,3,6,7,8-HXCDF	0.165	JB	0.0129	MDL	5.51	PQL	ng/Kg	J	Z					
1,2,3,7,8,9-HXCDD	0.437	JB	0.0156	MDL	5.51	PQL	ng/Kg	J	Z					
1,2,3,7,8,9-HXCDF	0.404	JB	0.0220	MDL	5.51	PQL	ng/Kg	J	Z					
1,2,3,7,8-PECDD	0.173	JB	0.0159	MDL	5.51	PQL	ng/Kg	J	Z					
1,2,3,7,8-PECDF	0.516	JB	0.0135	MDL	5.51	PQL	ng/Kg	J	Z					
2,3,4,6,7,8-HXCDF	0.168	JB	0.0161	MDL	5.51	PQL	ng/Kg	J	Z					
2,3,4,7,8-PECDF	0.394	JB	0.0154	MDL	5.51	PQL	ng/Kg	J	Z					
2,3,7,8-TCDD	0.0495	J	0.0105	MDL	1.10	PQL	ng/Kg	J	Z					
2,3,7,8-TCDF	0.171	JB	0.0345	MDL	1.10	PQL	ng/Kg	J	Z					
OCDF	1.52	JB	0.0315	MDL	11.0	PQL	ng/Kg	J	Z					

Sample ID: SL-204-SA5DN-SB-9.0-10.0 Collected: 8/4/2011 9:00:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.688	JВ	0.0127	MDL	5.85	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.134	JB	0.00456	MDL	5.85	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0672	JB	0.0137	MDL	5.85	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0929	JB	0.0116	MDL	5.85	PQL	ng/Kg	Ü	В
1,2,3,4,7,8-HXCDF	0.150	JB	0.0106	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.146	JB	0.0122	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.104	JB	0.00760	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.233	JВ	0.0118	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.311	JB	0.0143	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.154	JB	0.0130	MDL	5.85	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.248	JBQ	0.00655	MDL	5.85	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0769	JB	0.00877	MDL	5.85	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.195	JB	0.00737	MDL	5.85	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0436	J	0.00994	MDL	1,17	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:55:41 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Matrix: SO

Sample ID: SL-204-SA5DN-SB-9.0-10.0	Collected: 8/4/2011 9:00:00 AM Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,7,8-TCDF	0.0890	JBQ	0.0119	MDL	1.17	PQL	ng/Kg	U	В	
OCDD	4.26	JB	0.0119	MDL	11.7	PQL	ng/Kg	J	Z	
OCDF	0.274	JB	0.0283	MDL	11.7	PQL	na/Ka	U	В	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX124
EDD Filename: DX124_v1

Laboratory: LL eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
· "	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
<del>-</del>	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Hendine, DV 124_41		EWAFF Name, CDM_SSFL_
F	Equipment Blank Contamination	<del>-</del> -
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	<del>.</del>
Н	Extraction to Analysis Estimation	· · · · · · · · · · · · · · · · · · ·
н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	,
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
I	Internal Standard Estimation	•
1	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	T-1
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
М	Continuing Tune	
M	Initial Tune	
М	Performance Evaluation Mixture	
М	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX124

Laboratory: LL eQAPP Name: CDM_SSFL_110509

Filename: DX124_v1		eQAPP Name: CDM_SSFI
R	Continuing Calibration Verification Percent Recovery Lower Estimation	_
R	Continuing Calibration Verification Percent Recovery Lower Rejection	
R	Continuing Calibration Verification Percent Recovery Upper Estimation	
R	Continuing Calibration Verification Percent Recovery Upper Rejection	
R	Continuing Calibration Verification Relative Response Factor	
R	Initial Calibration Relative Response Factor	
R	Initial Calibration Verification Percent Recovery Lower Estimation	
R	Initial Calibration Verification Percent Recovery Lower Rejection	
R	Initial Calibration Verification Percent Recovery Upper Estimation	<del>.</del>
R	Initial Calibration Verification Percent Recovery Upper Rejection	
R	Initial Calibration Verification Relative Response Factor	
S	Surrogate/Tracer Recovery Lower Estimation	
s	Surrogate/Tracer Recovery Lower Rejection	
S	Surrogate/Tracer Recovery Upper Estimation	
S	Surrogate/Tracer Recovery Upper Rejection	· -
Т	Trip Blank Contamination	
Z	Reporting Limit	
Z	Reporting Limit > Project Maximum Contamination Limit	<del></del>
Z	Reporting Limit Trace Value	

^{*} denotes a non-reportable result

## **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX124

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ					
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples	
BLK2200B371122	8/10/2011 11:22:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD	3,70 pg/L 0.669 pg/L 0.287 pg/L 0.230 pg/L 0.248 pg/L 0.265 pg/L 0.242 pg/L 0.290 pg/L 0.198 pg/L 0.227 pg/L 0.517 pg/L 9.52 pg/L	EB23-SA5DN-SB-080311	

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB23-SA5DN-SB-080311(RES)	1,2,3,4,6,7,8-HPCDD	3.78 pg/L	3.78U pg/L
EB23-SA5DN-SB-080311(RES)	1,2,3,4,6,7,8-HPCDF	0.491 pg/L	0.491U pg/L
EB23-SA5DN-SB-080311(RES)	1,2,3,4,7,8,9-HPCDF	1,2,3,4,7,8,9-HPCDF 0.350 pg/L	
EB23-SA5DN-SB-080311(RES)	1,2,3,4,7,8-HXCDF	0.211 pg/L	
EB23-SA5DN-SB-080311(RES)	1,2,3,6,7,8-HXCDD	0.339 pg/L	0.339U pg/L
EB23-SA5DN-SB-080311(RES)	1,2,3,7,8-PECDD	0.493 pg/L	0.493U pg/L
EB23-SA5DN-SB-080311(RES)	1,2,3,7,8-PECDF	0.557 pg/L	0.557U pg/L
EB23-SA5DN-SB-080311(RES)	2,3,4,6,7,8-HXCDF	0.256 pg/L	0.256U pg/L
EB23-SA5DN-SB-080311(RES)	2,3,4,7,8-PECDF	0.634 pg/L	0.634U pg/L
EB23-SA5DN-SB-080311(RES)	OCDD	8.38 pg/L	8.38U pg/L
EB23-SA5DN-SB-080311(RES)	OCDF	0.812 pg/L	0.812U pg/L

	,			7.0120 pg/c
Method: 1613 Matrix: SO	B			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2290B371948	8/18/2011 7:48:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDF CCDD OCDF	0.0532 ng/Kg 0.0269 ng/Kg 0.0255 ng/Kg 0.0255 ng/Kg 0.0273 ng/Kg 0.0273 ng/Kg 0.0177 ng/Kg 0.0242 ng/Kg 0.0309 ng/Kg 0.0322 ng/Kg 0.0101 ng/Kg 0.0227 ng/Kg 0.0441 ng/Kg 0.0189 ng/Kg 0.0507 ng/Kg 0.138 ng/Kg	DUP23-SA5DN-QC-080411 SL-002-SA6-SB-4.0-5.0 SL-003-SA6-SB-9.0-10.0 SL-003-SA6-SB-9.0-5.0 SL-003-SA6-SB-8.5-9.5 SL-004-SA6-SB-1.5-2.5 SL-011-SA6-SB-0.5-1.5 SL-185-SA5DN-SB-4.0-5.0 SL-185-SA5DN-SB-9.0-10.0 SL-188-SA5DN-SB-4.0-5.0 SL-189-SA5DN-SB-4.0-5.0 SL-189-SA5DN-SB-4.0-5.0 SL-193-SA5DN-SB-9.0-10.0 SL-193-SA5DN-SB-9.0-10.0 SL-193-SA5DN-SB-9.0-10.0 SL-193-SA5DN-SB-9.0-10.0 SL-193-SA5DN-SB-4.0-5.0 SL-193-SA5DN-SB-4.0-5.0 SL-193-SA5DN-SB-9.0-10.0

12/21/2011 11:54:48 AM ADR version 1.4.0.111 Page 1 of 4

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP23-SA5DN-QC-080411(RES)	1,2,3,4,6,7,8-HPCDD	0.553 ng/Kg	0.553U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,4,6,7,8-HPCDF	0.0922 ng/Kg	0,0922U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,4,7,8,9-HPCDF	0.0292 ng/Kg	0.0292U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,4,7,8-HxCDD	0.0395 ng/Kg	0.0395U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,4,7,8-HXCDF	0.0860 ng/Kg	0.0860U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,6,7,8-HXCDD	0.0993 ng/Kg	0.0993U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,6,7,8-HXCDF	0,0697 ng/Kg	0.0697U ng/Kg
DUP23-SA5DN-QC-080411(RES)	1,2,3,7,8-PECDD	0.0762 ng/Kg	0.0762U ng/Kg
DUP23-SA5DN-QC-080411(RES)	2,3,4,6,7,8-HXCDF	0.0467 ng/Kg	0.0467U ng/Kg
DUP23-SA5DN-QC-080411(RES)	2,3,4,7,8-PECDF	0,125 ng/Kg	0.125U ng/Kg
DUP23-SA5DN-QC-080411(RES)	2,3,7,8-TCDF	0.0436 ng/Kg	0.0436U ng/Kg
DUP23-SA5DN-QC-080411(RES)	OCDF	0.251 ng/Kg	0.251U ng/Kg
SL-002-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.126 ng/Kg	0.126U ng/Kg
SL-002-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0984 ng/Kg	0.0984U ng/Kg
SL-002-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0749 ng/Kg	0.0749U ng/Kg
SL-003-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0728 ng/Kg	0.0728U ng/Kg
SL-003-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0997 ng/Kg	0.0997U ng/Kg
SL-003-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0835 ng/Kg	0.0835U ng/Kg
SL-003-SA6-SB-4.0-5,0(RES)	2,3,7,8-TCDF	0.0893 ng/Kg	0.0893U ng/Kg
SL-003-SA6-SB-8.5-9.5(RES)	1,2,3,4,7,8-HxCDD	0.0873 ng/Kg	0.0873U ng/Kg
SL-003-SA6-SB-8.5-9.5(RES)	1,2,3,7,8,9-HXCDF	0.106 ng/Kg	0.106U ng/Kg
SL-003-SA6-SB-8.5-9.5(RES)	1,2,3,7,8-PECDD	0.0489 ng/Kg	0.0489U ng/Kg
SL-004-SA6-SB-1.5-2.5(RES)	1,2,3,4,7,8-HxCDD	0.0871 ng/Kg	0.0871U ng/Kg
SL-004-SA6-SB-1.5-2.5(RES)	1,2,3,7,8,9-HXCDF	0.0347 ng/Kg	0.0347U ng/Kg
SL-004-SA6-SB-1.5-2.5(RES)	1,2,3,7,8-PECDD	0.0272 ng/Kg	0.0272U ng/Kg
SL-004-SA6-SB-1.5-2.5(RES)	2,3,4,7,8-PECDF	0.120 ng/Kg	0.120U ng/Kg
SL-004-SA6-SB-1.5-2.5(RES)	2,3,7,8-TCDF	0,0152 ng/Kg	0.0152U ng/Kg
SL-011-SA6-SB-0.5-1.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0846 ng/Kg	0.0846U ng/Kg
SL-011-SA6-SB-0.5-1,5(RES)	1,2,3,4,7,8-HxCDD	0,0570 ng/Kg	0.0570U ng/Kg
SL-011-SA6-SB-0.5-1.5(RES)	1,2,3,7,8,9-HXCDF	0.0612 ng/Kg	0.0612U ng/Kg
SL-011-SA6-SB-0.5-1.5(RES)	2,3,4,6,7,8-HXCDF	0,0810 ng/Kg	0.0810U ng/Kg
SL-011-SA6-SB-0.5-1.5(RES)	OCDF	0.657 ng/Kg	0.657U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.411 ng/Kg	0.411U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0610 ng/Kg	0.0610U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0,0534 ng/Kg	0.0534U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0172 ng/Kg	0.0172U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0240 ng/Kg	0.0240U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0521 ng/Kg	0.0521U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0204 ng/Kg	0.0204U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0612 ng/Kg	0.0612U ng/Kg

Lab Reporting Batch ID: DX124

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				Alexandrocal posteric
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0932 ng/Kg	0.0932U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0146 ng/Kg	0.0146U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0223 ng/Kg	0.0223U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0216 ng/Kg	0.0216U ng/Kg
SL-185-SA5DN-SB-4,0-5.0(RES)	2,3,4,7,8-PECDF	0.0530 ng/Kg	0.0530U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	OCDD	1.18 ng/Kg	1.18U ng/Kg
SL-185-SA5DN-SB-4.0-5.0(RES)	OCDF	0.194 ng/Kg	0.194U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.436 ng/Kg	0.436U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0605 ng/Kg	0.0605U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0455 ng/Kg	0.0455U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0288 ng/Kg	0.0288U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0143 ng/Kg	0.0143U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0141 ng/Kg	0.0141U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0348 ng/Kg	0.0348U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0383 ng/Kg	0.0383U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0205 ng/Kg	0.0205U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0136 ng/Kg	0.0136U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0,0127 ng/Kg	0.0127U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0385 ng/Kg	0.0385U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0114 ng/Kg	0.0114U ng/Kg
SL-185-SA5DN-SB-9.0-10.0(RES)	OCDF	0.303 ng/Kg	0.303U ng/Kg
SL-188-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.516 ng/Kg	0.516U ng/Kg
SL-188-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.147 ng/Kg	0.147U ng/Kg
SL-188-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0849 ng/Kg	0.0849U ng/Kg
SL-188-SA5DN-SB-4.0-5.0(RES)	OCDD	1.93 ng/Kg	1.93U ng/Kg
SL-188-SA5DN-SB-4.0-5.0(RES)	OCDF	0,295 ng/Kg	0.295U ng/Kg
SL-188-\$A5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.904 ng/Kg	0.904U ng/Kg
SL-188-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0,203 ng/Kg	0.203U ng/Kg
SL-188-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0855 ng/Kg	0.0855U ng/Kg
SL-188-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0,106 ng/Kg	0.106U ng/Kg
SL-188-SA5DN-SB-9.0-10.0(RES)	OCDF	0.445 ng/Kg	0.445U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.535 ng/Kg	0.535U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0913 ng/Kg	0.0913U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0461 ng/Kg	0.0461U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0112 ng/Kg	0.0112U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0910 ng/Kg	0.0910U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0686 ng/Kg	0.0686U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0249 ng/Kg	0.0249U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0182 ng/Kg	0.0182U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0,0404 ng/Kg	0.0404U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 11:54:48 AM

ADR version 1.4.0.111

Laboratory: LL

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B				
Matrix:	SO				ng sanggaran kanagalan sa sa sa sa sa sa sa sa sa sa sa sa sa
Method Blan	k				Associated
Sample ID		Analysis Date	Analyte	Result	Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-189-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.115 ng/Kg	0.115U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	2,3,7,8-TCDF	0.0754 ng/Kg	0.0754U ng/Kg
SL-189-SA5DN-SB-4.0-5.0(RES)	OCDF	0.221 ng/Kg	0.221U ng/Kg
SL-189-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.261 ng/Kg	0,261U ng/Kg
SL-189-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.133 ng/Kg	0.133U ng/Kg
SL-189-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0690 ng/Kg	0.0690U ng/Kg
SL-189-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.120 ng/Kg	0.120U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.134 ng/Kg	0.134U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0462 ng/Kg	0.0462U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0,0868 ng/Kg	0.0868U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0417 ng/Kg	0.0417U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0374 ng/Kg	0.0374U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.104 ng/Kg	0.104U ng/Kg
SL-193-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0,195 ng/Kg	0.195U ng/Kg
SL-204-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0,129 ng/Kg	0.129U ng/Kg
SL-204-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.115 ng/Kg	0.115U ng/Kg
SL-204-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.688 ng/Kg	0.688U ng/Kg
SL-204-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.134 ng/Kg	0.134U ng/Kg
SL-204-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0672 ng/Kg	0.0672U ng/Kg
SL-204-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0929 ng/Kg	0.0929U ng/Kg
SL-204-\$A5DN-\$B-9.0-10.0(RE\$)	2,3,4,6,7,8-HXCDF	0.0769 ng/Kg	0.0769U ng/Kg
SL-204-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.195 ng/Kg	0.195U ng/Kg
SL-204-SA5DN-SB-9.0-10.0(RES)	2,3,7,8-TCDF	0.0890 ng/Kg	0.0890U ng/Kg
SL-204-SA5DN-SB-9.0-10.0(RES)	OCDF	0.274 ng/Kg	0.274U ng/Kg

Page 4 of 4

#### Field Duplicate RPD Report

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509 Method: 1603M

Matrix: SO	Tide to the present about the north section of the presente	The factor was proper at the first feet for the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	. 16-4 secularitansi	edramora and other parameters and sense
	Concenti	Concentration (%)			
Analyte	SL-189-SA5DN-SB-4.0- 5.0	DUP23-SA5DN-QC- 080411	Sample RPD	eQAPP RPD	Flag
MOISTURE	9.0	9.8	9		No Qualifiers Applied

Method: 1613B Matrix: SO		ne literaturate an sitema portuguira			A Marchael Principality	
	Concentrat	ion (ng/Kg)				
Analyte	SL-189-SA5DN-SB-4.0- 5.0	DUP23-SA5DN-QC- 080411	Sample RPD	eQAPP RPD	Flag	
1,2,3,4,6,7,8-HPCDD	0.535	0.553	3	50.00		
1,2,3,4,6,7,8-HPCDF	0.0913	0.0922	1	50.00		
1,2,3,4,7,8,9-HPCDF	0.0461	0.0292	45	50.00		
1,2,3,4,7,8-HXCDF	0.0910	0.0860	6	50.00		
1,2,3,6,7,8-HXCDD	0.0686	0.0993	37	50.00		
1,2,3,7,8,9-HXCDD	0.176	0.163	8	50.00	No Qualifiers Applied	
1,2,3,7,8,9-HXCDF	0.227	0.193	16	50.00		
1,2,3,7,8-PECDF	0.231	0.178	26	50.00		
2,3,4,6,7,8-HXCDF	0.0404	0.0467	14	50.00		
2,3,4,7,8-PECDF	0.115	0.125	8	50.00		
OCDF	0.221	0.251	13	50.00		
1,2,3,4,7,8-HxCDD	0.0112	0.0395	112	50.00		
1,2,3,6,7,8-HXCDF	0.0249	0.0697	95	50.00		
1,2,3,7,8-PECDD	0.0182	0.0762	123	50.00	J(all detects)	
2,3,7,8-TCDD	1.05 U	0.0290	200	50.00	UJ(all non-detects)	
2,3,7,8-TCDF	0.0754	0.0436	53	50.00	1	
OCDD	2.91	5.41	60	50.00	-	

12/21/2011 11:53:27 AM Page 1 of 1

Lab Reporting Batch ID: DX124

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method: 1613B

Matrix: AC

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB23-SA5DN-SB-080311	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF		3.78 0.491 0.350 0.216 0.211 0.339 0.263 0.493 0.557 0.256 0.634 8.38 0.812	11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613B

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
							r-ray
DUP23-SA5DN-QC-080411	1,2,3,4,6,7,8-HPCDD	JB	0.553	5.31	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0922	5.31	PQL	ng/Kg	•
1	1,2,3,4,7,8,9-HPCDF	JB	0.0292	5.31	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0395	5.31	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0860	5.31	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0993	5.31	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0697	5.31	PQL	ng/Kg	
1	1,2,3,7,8,9-HXCDD	JB	0.163	5.31	PQL	ng/Kg	
Ì	1,2,3,7,8,9-HXCDF	JB	0.193	5.31	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0762	5.31	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JΒ	0.178	5.31	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0467	5.31	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JВ	0.125	5.31	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0290	1.06	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0436	1.06	PQL	ng/Kg	
	OCDD	JB	5.41	10.6	PQL	ng/Kg	
	OCDF	JBQ	0.251	10.6	PQL	ng/Kg	
SL-002-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	4.99	5.53	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.983	5.53	PQL	ng/Kg	
•	1,2,3,4,7,8-HxCDD	JB	0.126	5.53	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.521	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.31	5.53	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.305	5.53	PQL	ng/Kg	
,	1,2,3,7,8,9-HXCDD	JB	0.496	5.53	PQL	ng/Kg	17-11-4-4-3
	1,2,3,7,8,9-HXCDF	JB	0.174	5.53	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.209	5.53	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	1.13	5.53	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.358	5.53	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.812	5.53	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0335	1.11	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.256	1.11	PQL	ng/Kg	

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-002-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		3.89 0.773 0.0984 0.681 0.826 0.423 0.295 0.167 0.0749 2.82 0.345 1.67 0.0170 0.323 10.8	5.49 5.49 5.49 5.49 5.49 5.49 5.49 5.49	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-003-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD		2.73 0.560 0.0728 0.319 0.650 0.212 0.268 0.0997 0.0835 0.409 0.229 0.505 0.0327 0.0893 7.17	5.85 5.85 5.85 5.85 5.85 5.85 5.85 5.85	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-003-SA6-SB-8.5-9.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	a a a a a a a a a a a a a a a a a a a	2.67 0.521 0.0873 0.412 0.690 0.214 0.263 0.106 0.0489 0.354 0.251 0.715 0.0352 0.264 7.76	5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX124

EDD Filename: DX124_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix. SU							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-004-SA6-SB-1.5-2.5		ļ <u>.</u>		<u> </u>			
SE-004-3A0-3B-1.5-2.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JB	2.86 0.490	5.15 5.15	PQL PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.490	5.15	PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0071	5.15	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.722	5.15	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.143	5.15	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.249	5.15	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0347	5.15	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0272	5.15	PQL	ng/Kg	o (an acteora)
	1,2,3,7,8-PECDF	JB	0.0840	5.15	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.181	5.15	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.120	5.15	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0138	1.03	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0152	1.03	PQL	лд/Кд	
	OCDF	JB	8.66	10.3	PQL	ng/Kg	
SL-011-SA6-SB-0.5-1.5	1,2,3,4,6,7,8-HPCDD	JB	1.77	5.27	PQL	ng/Kg	··········
	1,2,3,4,6,7,8-HPCDF	JB	0.324	5.27	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0846	5.27	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0570	5.27	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JВ	0.165	5.27	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.197	5.27	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0916	5.27	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.157	5.27	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.0612	5.27	PQL	ng/Kg	, ,
	1,2,3,7,8-PECDD	JBQ	0.118	5.27	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0907	5.27	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0810	5.27	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.371	5.27	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0383	1.05	PQL	ng/Kg	
	OCDF	JB	0.657	10.5	PQL	ng/Kg	
SL-185-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.411	5.72	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0610	5.72	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0534	5.72	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0172	5.72	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0240	5.72	PQL.	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0521	5.72	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0204	5.72	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0612	5.72	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0932	5.72	PQL	ng/Kg	o (an acteora)
	1,2,3,7,8-PECDD	JB	0.0146	5.72	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0223	5.72	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0216	5.72	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0530	5.72	PQL	ng/Kg	
	2,3,7,8-TCDD  OCDD	j	0.0159	1,14	PQL	ng/Kg	
	OCDF	JB JBQ	1.18	11.4	PQL	ng/Kg	
<u>, , , , , , , , , , , , , , , , , , , </u>	TOOD!	שטע	0.194	11.4	PQL	ng/Kg	

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Metriod: 1613E

Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample     Sample			1 - 6		[			
SL-185-SA5DN-SB-9.0-10.0   1,2,3,4,8,7,8-HPCDD	SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
1,2,3,4,7,8+HPCDF	SL-185-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.436	5.71		ng/Kg	
1,2,3,4,7,8,9+RCDF	İ						ng/Kg	
1,2,3,4,7,8-HXCDF								
12,3,6,7,8-HXCDD	i							
12.3.6.7.8-HXCDF					1			
12,3,7,8,9+1XCDF					1			
1,2,3,7,8,9+RXCDF					1			
1,2,3,7,8-PECDF								(all datacta)
1,2,3,7,8-PECDF								J (all delects)
2,3,4,6,7,8-HXCDF		1						
2,3,4,7,8-PECDF								
2,37,8-TCDF   JBQ   0,0114   1,14   PQL   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng								
OCDD OCDF         JB         2.94         11.4         PQL PQL         ng/Kg ng/Kg           SL-188-SA5DN-SB-4.0-5.0         1,2,3,4,6,7,8-HPCDD         JB         0.516         5.73         PQL ng/Kg         ng/Kg           1,2,3,4,6,7,8-HPCDF         JB         0.147         5.73         PQL ng/Kg         ng/Kg           1,2,3,4,7,8-HXCDD         JB         0.164         5.73         PQL ng/Kg         ng/Kg           1,2,3,4,7,8-HXCDF         JB         0.263         5.73         PQL ng/Kg         ng/Kg           1,2,3,6,7,8-HXCDF         JB         0.263         5.73         PQL ng/Kg         ng/Kg           1,2,3,6,7,8-HXCDF         JB         0.214         5.73         PQL ng/Kg         ng/Kg           1,2,3,7,8-HXCDF         JB         0.200         5.73         PQL ng/Kg         ng/Kg           1,2,3,7,8-PECDF         JB         0.200         5.73         PQL ng/Kg         ng/Kg           2,3,4,6,7,8-HXCDF         JB         0.202         5.73         PQL ng/Kg         ng/Kg           2,3,4,7,8-PECDF         JB         0.332         5.73         PQL ng/Kg         ng/Kg           2,3,4,7,8-PECDF         JB         0.147         5.73         PQL ng/Kg         ng/Kg								
SL-188-SA5DN-SB-4.0-5.0    J.2,3,4,6,7,8-HPCDF   JB						-		
SL-188-SA5DN-SB-4.0-5.0  1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,7,8-PCDD 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCD								
1.2.3.4,6.7,8-HPCDF	01 400 045011 00 4 0 5 0							
1.2.3.4,7.8,9-HPCDF	SL-188-SA5DN-SB-4.0-5.0							
1,2,3,4,7,8+HXCDF								
1,2,3,4,7,8+HXCDF								
1,2,3,6,7,8-HXCDD				0.154	5.73	PQL	ng/Kg	
1,2,3,6,7,8,+HXCDF					5.73	PQL	ng/Kg	
1,2,3,7,8,9+HXCDD		1,2,3,6,7,8-HXCDD	JB	0.170	5.73	PQL	ng/Kg	
1,2,3,7,8,9-HXCDF		1,2,3,6,7,8-HXCDF	JB	0.214	5.73	PQL	ng/Kg	
1,2,3,7,8-PECDD		1,2,3,7,8,9-HXCDD	JΒ	0.152	5.73	PQL	ng/Kg	
1,2,3,7,8-PECDD		1,2,3,7,8,9-HXCDF	JB	0.200	5.73	PQL	na/Ka	J (all detects)
1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 3,0,0000000000000000000000000000000000					1			- (
2,3,4,6,7,8-HXCDF		1.2.3.7.8-PECDF	JB	0.352	1		, -	
2,3,4,7,8-PECDF 2,3,7,8-TCDD 3,0,952 1,15 PQL ng/Kg 2,3,7,8-TCDF OCDD DCDF DCDF DCDF DCDF DCDF DCDF D							, -	
2,3,7,8-TCDD 2,3,7,8-TCDF 2,3,7,8-TCDF 3B 0,105 1,15 PQL ng/Kg ng/Kg OCDD JB 1,93 11,5 PQL ng/Kg Ng/Kg OCDF JB 0,295 11,5 PQL ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg Ng/Kg		• • • • •						
2,3,7,8-TCDF					I			
OCDD OCDF         JB JB         1.93 0.295         11.5 11.5         PQL PQL PQL         ng/Kg ng/Kg           SL-188-SA5DN-SB-9.0-10.0         1,2,3,4,6,7,8-HPCDD         JB 1,2,3,4,7,8-HPCDF         JB 1,2,3,4,7,8-HPCDF         JB 1,2,3,4,7,8-HPCDF         JB 1,2,3,4,7,8-HPCDD         JB 1,2,3,4,7,8-HXCDD         JB 1,2,3,4,7,8-HXCDD         JB 1,2,3,6,7,8-HXCDD         JB 1,2,3,6,7,8-HXCDD         JB 1,2,3,6,7,8-HXCDD         JB 1,2,3,7,8,9-HXCDD         JB 1,2,3,7,8,9-HXCDF         JB 1,2,3,7,8,9-HXCDF         JB 1,2,3,7,8-PECDD         JB 1,2,3,7,8-PECDD         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7,8-PECDF         JB 1,2,3,7								
OCDF         JB         0.295         11.5         PQL         ng/Kg           SL-188-SA5DN-SB-9.0-10.0         1,2,3,4,6,7,8-HPCDD         JB         0.904         5.57         PQL         ng/Kg           1,2,3,4,6,7,8-HPCDF         JB         0.0855         5.57         PQL         ng/Kg           1,2,3,4,7,8-HXCDD         JB         0.106         5.57         PQL         ng/Kg           1,2,3,4,7,8-HXCDF         JB         0.239         5.57         PQL         ng/Kg           1,2,3,6,7,8-HXCDD         JB         0.153         5.57         PQL         ng/Kg           1,2,3,6,7,8-HXCDF         JB         0.183         5.57         PQL         ng/Kg           1,2,3,7,8,9-HXCDF         JB         0.182         5.57         PQL         ng/Kg           1,2,3,7,8,9-HXCDF         JB         0.182         5.57         PQL         ng/Kg           1,2,3,7,8,9-HXCDF         JB         0.192         5.57         PQL         ng/Kg           1,2,3,7,8-PECDF         JB         0.431         5.57         PQL         ng/Kg           2,3,4,6,7,8-HXCDF         JB         0.431         5.57         PQL         ng/Kg           2,3,4,8-PECDF         JB </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
SL-188-SA5DN-SB-9.0-10.0 1,2,3,4,6,7,8-HPCDD								
1,2,3,4,6,7,8-HPCDF       JB       0.203       5.57       PQL       ng/kg         1,2,3,4,7,8,9-HPCDF       JB       0.0855       5.57       PQL       ng/kg         1,2,3,4,7,8-HXCDD       JB       0.106       5.57       PQL       ng/kg         1,2,3,4,7,8-HXCDF       JB       0.239       5.57       PQL       ng/kg         1,2,3,6,7,8-HXCDF       JB       0.183       5.57       PQL       ng/kg         1,2,3,7,8,9-HXCDF       JB       0.182       5.57       PQL       ng/kg         1,2,3,7,8,9-HXCDF       JBQ       0.218       5.57       PQL       ng/kg         1,2,3,7,8-PECDD       JB       0.192       5.57       PQL       ng/kg         1,2,3,7,8-PECDF       JB       0.431       5.57       PQL       ng/kg         2,3,4,6,7,8-HXCDF       JB       0.121       5.57       PQL       ng/kg         2,3,4,6,7,8-HXCDF       JB       0.304       5.57       PQL       ng/kg         2,3,4,6,7,8-HXCDF       JB       0.304       5.57       PQL       ng/kg         2,3,4,6,7,8-HXCDF       JB       0.304       5.57       PQL       ng/kg         2,3,7,8-TCDD       J       0.076	CI 100 CAEDNI CD 0 0 10 0							
1,2,3,4,7,8,9-HPCDF       JB       0.0855       5.57       PQL       ng/Kg         1,2,3,4,7,8-HXCDD       JB       0.106       5.57       PQL       ng/Kg         1,2,3,4,7,8-HXCDF       JB       0.239       5.57       PQL       ng/Kg         1,2,3,6,7,8-HXCDD       JB       0.153       5.57       PQL       ng/Kg         1,2,3,7,8,9-HXCDD       JB       0.182       5.57       PQL       ng/Kg         1,2,3,7,8,9-HXCDF       JBQ       0.218       5.57       PQL       ng/Kg         1,2,3,7,8-PECDD       JB       0.192       5.57       PQL       ng/Kg         1,2,3,7,8-PECDF       JB       0.431       5.57       PQL       ng/Kg         2,3,4,6,7,8-HXCDF       JB       0.121       5.57       PQL       ng/Kg         2,3,4,6,7,8-HXCDF       JB       0.304       5.57       PQL       ng/Kg         2,3,4,7,8-PECDF       JB       0.304       5.57       PQL       ng/Kg         2,3,7,8-TCDF       JB       0.304       5.57       PQL       ng/Kg         2,3,7,8-TCDF       JB       0.137       1.11       PQL       ng/Kg         2,3,7,8-TCDF       JB       0.137       <	3L-100-3A3DIN-3D-9.0-10.0							
1,2,3,4,7,8-HxCDD       JB       0.106       5.57       PQL       ng/Kg         1,2,3,4,7,8-HXCDF       JB       0.239       5.57       PQL       ng/Kg         1,2,3,6,7,8-HXCDD       JB       0.153       5.57       PQL       ng/Kg         1,2,3,7,8,9-HXCDD       JB       0.182       5.57       PQL       ng/Kg         1,2,3,7,8,9-HXCDF       JBQ       0.218       5.57       PQL       ng/Kg         1,2,3,7,8-PECDD       JB       0.192       5.57       PQL       ng/Kg         1,2,3,7,8-PECDF       JB       0.431       5.57       PQL       ng/Kg         2,3,4,6,7,8-HXCDF       JB       0.431       5.57       PQL       ng/Kg         2,3,4,6,7,8-HXCDF       JB       0.121       5.57       PQL       ng/Kg         2,3,4,7,8-PECDF       JB       0.304       5.57       PQL       ng/Kg         2,3,7,8-TCDD       J       0.0764       1.11       PQL       ng/Kg         2,3,7,8-TCDF       JB       0.137       1.11       PQL       ng/Kg         0CDD       JB       6.68       11.1       PQL       ng/Kg								
1,2,3,4,7,8-HXCDF       JB       0.239       5.57       PQL       ng/Kg         1,2,3,6,7,8-HXCDD       JB       0.153       5.57       PQL       ng/Kg         1,2,3,6,7,8-HXCDF       JB       0.183       5.57       PQL       ng/Kg         1,2,3,7,8,9-HXCDF       JB       0.182       5.57       PQL       ng/Kg         1,2,3,7,8-PECDD       JB       0.192       5.57       PQL       ng/Kg         1,2,3,7,8-PECDF       JB       0.431       5.57       PQL       ng/Kg         2,3,4,6,7,8-HXCDF       JB       0.121       5.57       PQL       ng/Kg         2,3,4,7,8-PECDF       JB       0.304       5.57       PQL       ng/Kg         2,3,7,8-TCDD       J       0.0764       1.11       PQL       ng/Kg         2,3,7,8-TCDF       JB       0.137       1.11       PQL       ng/Kg         0CDD       JB       6.68       11.1       PQL       ng/Kg								
1,2,3,6,7,8-HXCDD       JB       0.153       5.57       PQL       ng/Kg         1,2,3,6,7,8-HXCDF       JB       0.183       5.57       PQL       ng/Kg         1,2,3,7,8,9-HXCDD       JB       0.182       5.57       PQL       ng/Kg         1,2,3,7,8-PECDD       JB       0.192       5.57       PQL       ng/Kg         1,2,3,7,8-PECDF       JB       0.431       5.57       PQL       ng/Kg         2,3,4,6,7,8-HXCDF       JB       0.121       5.57       PQL       ng/Kg         2,3,4,7,8-PECDF       JB       0.304       5.57       PQL       ng/Kg         2,3,4,7,8-PECDF       JB       0.304       5.57       PQL       ng/Kg         2,3,7,8-TCDD       J       0.0764       1.11       PQL       ng/Kg         2,3,7,8-TCDF       JB       0.137       1.11       PQL       ng/Kg         0CDD       JB       6.68       11.1       PQL       ng/Kg								
1,2,3,6,7,8-HXCDF       JB       0.183       5.57       PQL       ng/Kg         1,2,3,7,8,9-HXCDD       JB       0.182       5.57       PQL       ng/Kg         1,2,3,7,8,9-HXCDF       JBQ       0.218       5.57       PQL       ng/Kg         1,2,3,7,8-PECDD       JB       0.192       5.57       PQL       ng/Kg         1,2,3,7,8-PECDF       JB       0.431       5.57       PQL       ng/Kg         2,3,4,6,7,8-HXCDF       JB       0.121       5.57       PQL       ng/Kg         2,3,4,7,8-PECDF       JB       0.304       5.57       PQL       ng/Kg         2,3,7,8-TCDD       J       0.0764       1.11       PQL       ng/Kg         2,3,7,8-TCDF       JB       0.137       1.11       PQL       ng/Kg         OCDD       JB       6.68       11.1       PQL       ng/Kg								
1,2,3,7,8,9-HXCDD       JB       0.182       5.57       PQL       ng/Kg       ng/Kg       J (all detects)         1,2,3,7,8,9-HXCDF       JB       0.218       5.57       PQL       ng/Kg       ng/Kg       J (all detects)         1,2,3,7,8-PECDF       JB       0.431       5.57       PQL       ng/Kg       ng/Kg         2,3,4,6,7,8-HXCDF       JB       0.121       5.57       PQL       ng/Kg       ng/Kg         2,3,4,7,8-PECDF       JB       0.304       5.57       PQL       ng/Kg       ng/Kg         2,3,7,8-TCDD       J       0.0764       1.11       PQL       ng/Kg       ng/Kg         2,3,7,8-TCDF       JB       0.137       1.11       PQL       ng/Kg         OCDD       JB       6.68       11.1       PQL       ng/Kg								
1,2,3,7,8,9-HXCDF       JBQ       0.218       5.57       PQL       ng/Kg       J (all detects)         1,2,3,7,8-PECDD       JB       0.192       5.57       PQL       ng/Kg       ng/Kg         1,2,3,7,8-PECDF       JB       0.431       5.57       PQL       ng/Kg       ng/Kg         2,3,4,6,7,8-HXCDF       JB       0.121       5.57       PQL       ng/Kg       ng/Kg         2,3,7,8-PECDF       JB       0.304       5.57       PQL       ng/Kg       ng/Kg         2,3,7,8-TCDD       J       0.0764       1.11       PQL       ng/Kg       ng/Kg         0CDD       JB       6.68       11.1       PQL       ng/Kg								
1,2,3,7,8-PECDD       JB       0.192       5.57       PQL       ng/Kg         1,2,3,7,8-PECDF       JB       0.431       5.57       PQL       ng/Kg         2,3,4,6,7,8-HXCDF       JB       0.121       5.57       PQL       ng/Kg         2,3,4,7,8-PECDF       JB       0.304       5.57       PQL       ng/Kg         2,3,7,8-TCDD       J       0.0764       1.11       PQL       ng/Kg         2,3,7,8-TCDF       JB       0.137       1.11       PQL       ng/Kg         OCDD       JB       6.68       11.1       PQL       ng/Kg								
1,2,3,7,8-PECDF       JB       0.431       5.57       PQL       ng/Kg         2,3,4,6,7,8-HXCDF       JB       0.121       5.57       PQL       ng/Kg         2,3,4,7,8-PECDF       JB       0.304       5.57       PQL       ng/Kg         2,3,7,8-TCDD       J       0.0764       1.11       PQL       ng/Kg         2,3,7,8-TCDF       JB       0.137       1.11       PQL       ng/Kg         OCDD       JB       6.68       11.1       PQL       ng/Kg							ng/Kg	J (all detects)
2,3,4,6,7,8-HXCDF		* * * *					ng/Kg	•
2,3,4,6,7,8-HXCDF		1,2,3,7,8-PECDF	JB	0.431	5.57	PQL	ng/Kg	
2,3,4,7,8-PECDF   JB   0.304   5.57   PQL   ng/Kg   ng/Kg   2,3,7,8-TCDD   J   0.0764   1.11   PQL   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg   ng/Kg	į:	2,3,4,6,7,8-HXCDF		0.121	5.57	PQL		
2,3,7,8-TCDD J 0.0764 1.11 PQL ng/Kg 2,3,7,8-TCDF JB 0.137 1.11 PQL ng/Kg OCDD JB 6.68 11.1 PQL ng/Kg			JB	0.304	5.57	PQL		
2,3,7,8-TCDF JB 0.137 1.11 PQL ng/Kg OCDD JB 6.68 11.1 PQL ng/Kg								
OCDD JB 6.68 11.1 PQL ng/Kg								
15 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					. ,			
OCDF JB 0.445   11.1   PQL   ng/Kg		OCDF	JB					

Lab Reporting Batch ID: DX124

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX124_v1

Method: 1613B

		Lab		Reporting	RL	<del></del> _	
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-189-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.535	5.24	PQL	ng/Kg	
3E-103-3A3D14-3D-4.0-3.0	1,2,3,4,6,7,8-HPCDF	JB	0.033	5.24	PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0461	5.24	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0112	5.24	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0910	5.24	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0686	5.24	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0249	5.24	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.176	5.24	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.227	5.24	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.0182	5.24	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.231	5.24	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0404	5.24	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.115	5.24	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0754	1.05	PQL	ng/Kg	
	OCDD	JB	2.91	10.5	PQL	ng/Kg	
	OCDF	JB	0.221	10.5	PQL	ng/Kg	
SL-189-SA5DN-SB-9.0-10.0		JB	1.36	5.67	PQL	<del></del>	
0.01-0.6-dC-MGCAC-601-3C	1,2,3,4,6,7,8-HPCDF					ng/Kg	
	1,2,3,4,0,7,8-HPCDF	JB JB	0.261	5.67	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.133 0.0690	5.67 5.67	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF				PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB JB	0.295 0.120	5.67 5.67	PQL PQL	ng/Kg	
		JB				ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.129	5.67	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD		0.146	5.67	PQL	ng/Kg	1.7-11.4-1-1-3
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD	JB	0.177	5.67	PQL.	ng/Kg	J (all detects)
		JB	0.120	5.67	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.643	5.67	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.138	5.67	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.237	5.67	PQL	ng/Kg	
	2,3,7,8-TCDD 2,3,7,8-TCDF	JQ	0.0229	1.13	PQL	ng/Kg	
	IOCDD	JB JB	0.188	1.13	PQL	ng/Kg	
	OCDF	JB JB	8.78	11.3	PQL	ng/Kg	
			0.717	11.3	PQL	ng/Kg	
SL-193-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	2.81	5.56	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.357	5.56	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.141	5.56	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.313	5.56	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.542	5.56	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.208	5.56	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.307	5.56	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.161	5.56	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.150	5.56	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.588	5.56	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.268	5.56	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.403	5.56	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0357	1.11	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.167	1.11	PQL	ng/Kg	
	OCDF	JB	8.65	11.1	PQL	ng/Kg	

Lab Reporting Batch ID: DX124 Laboratory: LL

EDD Filename: DX124_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613E

Watrix: SU							
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-193-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	5.16	5.57	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.806	5.57	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.134	5.57	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0462	5.57	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.153	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.220	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0868	5.57	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JB	0.127	5.57	PQL	ng/Kg	J (all delects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0417	5.57	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	0.0374	5.57	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.136	5.57	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.104	5.57	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.195	5.57	PQL	ng/Kg	
	OCDF	JB	2.12	11.1	PQL	ng/Kg	
SL-204-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	3.02	5.51	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.600	5.51	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.129	5.51	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.115	5.51	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.453	5.51	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.291	5.51	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.165	5.51	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.437	5.51	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.404	5.51	PQL	ng/Kg	o (an detecto)
	1,2,3,7,8-PECDD	JB	0.173	5.51	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.516	5.51	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.168	5.51	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.394	5.51	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0495	1.10	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.171	1.10	PQL	ng/Kg	
	OCDF	JB	1.52	11.0	PQL	ng/Kg	
SL-204-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.688	5.85	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JВ	0.134	5.85	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0672	5.85	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0929	5.85	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.150	5.85	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.146	5.85	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.104	5.85	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.233	5.85	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.311	5.85	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.154	5.85	PQL	ng/Kg	•
	1,2,3,7,8-PECDF	JBQ	0.248	5.85	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0769	5.85	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.195	5.85	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0436	1.17	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.0890	1.17	PQL	ng/Kg	
	OCDD	JB	4.26	11.7	PQL	ng/Kg	
_	OCDF	JB	0.274	11.7	PQL	ng/Kg	

# **SAMPLE DELIVERY GROUP**

**DX125** 

## Attachment I

Sample ID Cross Reference and Data Review Level

## **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
04-Aug-2011	SL-014-SA6-SB-4.0-5.0	6366548	N	METHOD	1613B	Iff
04-Aug-2011	SL-014-SA6-SB-9.0-10.0	6366549	N	METHOD	1613B	111
04-Aug-2011	SL-025-SA6-SB-4.0-5.0	6366556	N	METHOD	1613B	Ш
04-Aug-2011	SL-025-SA6-SB-9.0-10.0	6366557	N	METHOD	1613B	Ш
04-Aug-2011	SL-019-SA6-SB-4.0-5.0	6366550	N	METHOD	1613B	III
04-Aug-2011	SL-019-SA6-SB-4.0-5.0 MS	6366551	MS	METHOD	1613B	Ш
04-Aug-2011	SL-019-SA6-SB-4.0-5.0 MSD	6366552	MSD	METHOD	1613B	III
04-Aug-2011	DUP11-SA6-QC-080411	6366558	FD	METHOD	1613B	Ш
04-Aug-2011	SL-019-SA6-SB-9.0-10.0	6366553	N	METHOD	1613B	111
04-Aug-2011	SL-006-SA6-SB-4.0-5.0	6366546	N	METHOD	1613B	III
04-Aug-2011	SL-006-SA6-SB-9.0-10.0	6366547	N	METHOD	1613B	11)
04-Aug-2011	SL-024-SA6-SB-4.0-5.0	6366554	N	METHOD	1613B	III
04-Aug-2011	SL-024-SA6-SB-9.0-10.0	6366555	N	METHOD	1613B	Ш
05-Aug-2011	SL-010-SA6-SB-4.0-5.0	6367765	N	METHOD	1613B	111
05-Aug-2011	SL-198-SA5DN-SB-4.0-5.0	6367772	N	METHOD	1613B	Ш
05-Aug-2011	SL-198-SA5DN-SB-9.0-10.0	6367773	N	METHOD	1613B	111
05-Aug-2011	SL-023-SA6-SB-0.0-1.0	6367767	N	METHOD	1613B	111
05-Aug-2011	SL-022-SA6-SB-0.0-1.0	6367766	N	METHOD	1613B	III
05-Aug-2011	SL-060-SA5DN-SB-4.0-5.0	6367770	N	METHOD	1613B	Iti
05-Aug-2011	SL-060-SA5DN-SB-7.0-8.0	6367771	N	METHOD	1613B	111
05-Aug-2011	SL-114-SA6-SB-4.0-5.0	6367768	N	METHOD	1613B	111
05-Aug-2011	SL-114-SA6-SB-9.0-10.0	6367769	N	METHOD	1613B	111

## Attachment II

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	SVOA	kultarika kalendari kundultari kundu	industrija saidra	y no transcribit modern y propincy parameter en accessor de Antifición de antigación (Company), talle (1971) antigación (1971)
Method:	1613B	Matrix:	SO	

Sample ID: DUP11-SA6-QC-080411	Collec	ted: 8/4/20	11 11:10:0	00 A	nalysis T	/pe: RES		4	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Quai	Reason Code
1,2,3,4,7,8,9-HPCDF	2.05	JB	0.113	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.270	JB	0.0981	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.928	J	0.0921	MDL	5.41	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDD	2.23	J	0.101	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.798	J	0.0828	MDL	5.41	PQL	ng/Kg	J	Ž, FD
1,2,3,7,8,9-HXCDD	0.602	JQ	0.0959	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.189	JBQ	0.0928	MDL	5.41	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8-PECDD	0.148	JQ	0.0803	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.755	JQ	0.0574	MDL	5.41	POL	ng/Kg	J	Z, FD
2,3,4,6,7,8-HXCDF	0.967	JQ	0.0854	MDL	5.41	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.603	JBQ	0.0566	MDL	5.41	PQL	ng/Kg	J	Z, FD
2,3,7,8-TCDF	0.274	JQ	0.0996	MDL	1.08	PQL	ng/Kg	J	Z, FD
OCDD	1990	В	0.214	MDL	10.8	PQL	ng/Kg	J	FD
OCDF	25.2	В	0.0788	MDL	10.8	PQL	ng/Kg	J	FD

Analyte	Lab Result	Lab Qual	DL.	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.363	JB	0.0966	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0438	JBQ	0.0420	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0814	JQ	0.0432	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.0770	JQ	0.0570	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0503	JBQ	0.0465	MDL	5.44	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0454	JBQ	0.0430	MDL	5.44	PQL	ng/Kg	υ	В
OCDD	0.691	JB	0.0473	MDL	10.9	PQL	ng/Kg	U	В
OCDF	0.119	JBQ	0.0917	MDL	10.9	PQL	ng/Kg	υ	В

Sample ID: SL-006-SA6-SB-9.0-10.0 Collected: 8/4/2011 11:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.488	JBQ	0.0768	MDL	5.63	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0850	JBQ	0.0277	MDL	5.63	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0465	JBQ	0.0457	MDL	5.63	PQL	ng/Kg	υ	В
I,2,3,6,7,8-HXCDD	0.253	JQ	0.0602	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0651	JQ	0.0408	MDL	5.63	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM ADR version 1.4.0.111 Page 1 of 12

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-006-SA6-SB-9.0-10.0	Collec	ted: 8/4/20	11 11:50:0	0 A	nalysis T	ype: RES	;	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDD	0.437	JQ	0.0584	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.588	JBQ	0.0484	MDL	5.63	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0975	JQ	0.0437	MDL	5.63	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0721	JBQ	0.0448	MDL	5.63	PQL	ng/Kg	U	В
OCDD	1.11	JB	0.0483	MDL	11.3	PQL	ng/Kg	U	В
OCDF	0.205	JBQ	0.0782	MDL	11.3	POL	na/Ka	IJ	В

Sample ID: SL-010-SA6-SB-4.0-5.0 Collected: 8/5/2011 8:05:00 AM Analysis Type: RES Dilution: 1

mpic 15. 02-010-0710-05-4.0-0.0	001100	tou. Office	0.00.00	יר ייירי	naiyara rj	pe. iteo		-	muaom.
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.330	JB	0.0856	MDL	5.58	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0907	JBQ	0.0329	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0765	JQ	0.0611	MDL	5.58	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0506	JQ	0.0308	MDL	5.58	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0469	JBQ	0.0290	MDL	5.58	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0612	JQ	0.0441	MDL	5.58	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0482	JBQ	0.0419	MDL	5.58	PQL	ng/Kg	U	В
OCDD	1.09	JBQ	0.0707	MDL	11.2	PQL	ng/Kg	U	В
OCDF	0.106	JBQ	0.0906	MDL	11.2	PQL	ng/Kg	U	В

Sample ID: SL-014-SA6-SB-4.0-5.0 Collected: 8/4/2011 7:55:00 AM Analysis Type: RES Dilution: 1

Inpre 10: 01-014-0A0-05-4.0-5.0	Conec	(CO. 0/4/20	11 7.55.00	AUI A	naiyaia i	ype. KLJ		Dilation.				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL. Type	Units	Data Review Qual	Reason Code			
1,2,3,4,6,7,8-HPCDF	4.09	JB	0.0578	MDL	5.51	PQL	ng/Kg	J	Z			
1,2,3,4,7,8,9-HPCDF	0.920	JB	0.0909	MDL.	5.51	PQL	ng/Kg	J	Z			
1,2,3,4,7,8-HXCDF	0.452	JQ	0.0821	MDL	5.51	PQL	ng/Kg	J	Z			
1,2,3,6,7,8-HXCDD	0.933	J	0.0997	MDL	5.51	PQL	ng/Kg	J	Z			
1,2,3,6,7,8-HXCDF	0.311	JQ	0.0674	MDL	5.51	PQL	ng/Kg	J	Z			
1,2,3,7,8,9-HXCDD	0.302	J	0.0960	MDL	5.51	PQL	ng/Kg	J	Z			
1,2,3,7,8,9-HXCDF	0.101	JBQ	0.0559	MDL	5.51	PQL	ng/Kg	U	В			
1,2,3,7,8-PECDF	1.67	JQ	0.0677	MDL	5.51	PQL	ng/Kg	J	Z			
2,3,4,6,7,8-HXCDF	0.293	J	0.0716	MDL	5.51	PQL	ng/Kg	J	Z			
2,3,4,7,8-PECDF	0.268	JBQ	0.0652	MDL	5.51	PQL	ng/Kg	U	В			
2,3,7,8-TCDF	0.185	JQ	0.150	MDL	1.10	PQL	ng/Kg	J	Z			
OCDF	9.75	JB	0.0863	MDL.	11.0	PQL	ng/Kg	j	Z			

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM ADR version 1.4.0.111 Page 2 of 12

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-014-SA6-SB-9.0-10.0	Collec	ted: 8/4/20	11 8:00:00	AM A	nalysis Tj	/pe: RES		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.22	JBQ	0.132	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.188	JBQ	0.119	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.684	JQ	0.0989	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.00	J	0.126	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.354	J	0.0828	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.721	J	0.119	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.213	JBQ	0.0642	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.150	JQ	0.0930	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.843	JQ	0.0912	MDL	5.50	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.553	JQ	0.0849	MDL	5.50	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.383	JB	0.0855	MDL	5.50	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.356	JQ	0.183	MDL	1.10	PQL	ng/Kg	J	Z

 Sample ID: SL-019-SA6-SB-4.0-5.0
 Collected: 8/4/2011 11:05:00
 Analysis Type: REA
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	1.79	С	0.0502	MDL	1.08	PQL	ng/Kg	J	FD

Sample ID: SL-019-SA6-SB-4.0-5.0 Collected: 8/4/2011 11:05:00 Analysis Type: RES Dilution: 1

	• • • • • • • • • • • • • • • • • • • •				, 4.4 .,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.54	JB	0.0802	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.230	JBQ	0.0941	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	8.24		0.0919	MDL	5.41	PQL	ng/Kg	J	FD
1,2,3,6,7,8-HXCDD	1.79	J	0.0913	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	2.63	J	0.0838	MDL	5.41	PQL	ng/Kg	J	Z, FD
1,2,3,7,8,9-HXCDD	0.553	J	0.0898	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.717	JB	0.0709	MDL	5.41	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDD	0.170	JQ	0.0993	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.69	J	0.0839	MDL	5.41	PQL	ng/Kg	J	Z, FD
2,3,4,6,7,8-HXCDF	1.52	J	0.0780	MDL	5.41	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	3.13	JB	0.0761	MDL	5.41	PQL	ng/Kg	J	Ž, FD
OCDD	1060	В	0.142	MDL	10.8	PQL	ng/Kg	J	FD
OCDF	14.7	В	0.0664	MDL	10.8	PQL	ng/Kg	J	FD

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM ADR version 1.4.0.111 Page 3 of 12

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	ony biningvola and and a	landetaramational elimination to be a la la la la la la la la la la la la l	a de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de l	
Method:	1613B	Matrix:	so	er i versione i farre per gri

Sample ID: SL-019-SA6-SB-9.0-10.0	Collec	ted: 8/4/20	11 11:15:0	00 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	2.18	JB	0.0576	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.480	JBQ	0.0858	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.153	JBQ	0.0808	MDL	5.48	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HXCDF	0.346	J	0.0765	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.650	J	0.0814	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.328	JQ	0.0675	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.300	JQ	0.0807	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.120	JB	0.0591	MDL	5.48	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.338	JQ	0.0833	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.613	JQ	0.0602	MDL	5.48	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.370	J	0.0699	MDL	5.48	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.430	JBQ	0.0577	MDL	5.48	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.157	JQ	0.122	MDL	1.10	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.138	JQ	0.130	MDL,	1.10	PQL	ng/Kg	L	Z	
OCDF	5.23	JB	0.0819	MDL	11.0	PQL	ng/Kg	J	Z	

Sample ID: SL-022-SA6-SB-0.0-1.0 Collected: 8/5/2011 10:30:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.48	JBQ	0.102	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.353	JQ	0.0763	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.322	JQ	0.0754	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0960	JQ	0.0878	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	4.68	J	0.138	MDL	5.23	PQL	ng/Kg	J	Z

Sample ID: SL-023-SA6-SB-0.0-1.0 Collected: 8/5/2011 10:00:00 Analysis Type: RES Dilution: 1

Analyte	Ləb Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.71	JB	0.0423	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.161	JBQ	0.0630	MDL	5.17	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0862	JBQ	0.0771	MDL	5.17	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.183	JQ	0.0568	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.282	JQ	0.0752	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.152	JQ	0.0459	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.252	JQ	0.0716	MDL	5.17	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM ADR version 1.4.0.111 Page 4 of 12

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	n SVOA	
Method:	1613B	Matrix: SO

Sample ID: SL-023-SA6-SB-0.0-1.0	Collec	ted: 8/5/20	11 10:00:0	00 A	nalysis T	ype: RES		1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDD	0.114	JQ	0.0669	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.522	J	0.0488	MDL	5.17	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.196	JQ	0.0567	MDL	5.17	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.198	JBQ	0.0465	MDL.	5.17	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.106	JQ	0.100	MDL	1.03	PQL	ng/Kg	J	Z

 Sample ID: \$L-024-\$A6-\$B-4.0-5.0
 Collected: 8/4/2011 2:50:00 PM
 Analysis Type: RES
 Dilution: 1

 Lab
 Lab
 DL
 RL
 Data Review
 Reaso

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.355	JBQ	0.0619	MDL	5.39	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.108	JB	0.0250	MDL	5.39	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0710	JB	0.0326	MDL	5.39	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.169	JBQ	0.0502	MDL	5.39	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.158	JQ	0.0342	MDL	5.39	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.170	JQ	0.0517	MDL	5.39	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.209	J	0.0318	MDL	5.39	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.221	JQ	0.0501	MDL	5.39	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.184	JB	0.0303	MDL	5.39	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.317	JQ	0.0622	MDL	5.39	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.312	JQ	0.0386	MDL	5.39	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0956	JQ	0.0317	MDL	5.39	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.409	JB	0.0356	MDL	5.39	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.149	j	0.104	MDL.	1.08	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.120	JQ	0.0810	MDL	1.08	PQL	ng/Kg	J	Z
OCDD	1.21	JB	0.0457	MDL	10.8	PQL	ng/Kg	U	В
OCDF	0.228	JBQ	0.0652	MDL	10.8	PQL	ng/Kg	U	В

Sample ID: SL-024-SA6-SB-9.0-10.0 Collected: 8/4/2011 2:55:00 PM Analysis Type: RES Dilution: 1

•									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.83	JB	0.0794	MDL	5.52	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.412	JB	0.0300	MDL	5.52	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0783	JBQ	0.0484	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.103	JBQ	0.0581	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.129	JQ	0.0594	MDL	5.52	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
12/21/2011 2:46:27 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

ample ID: SL-024-SA6-SB-9.0-10.0	Collec	ted: 8/4/20	11 2:55:00	PM A	nalysis T	pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDF	0.0548	JQ	0.0368	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.110	JQ	0.0568	MDL	5.52	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0652	JBQ	0.0364	MDL	5.52	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0409	JQ	0.0364	MDL	5.52	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.0827	JQ	0.0392	MDL	5.52	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.118	JBQ	0.0392	MDL.	5.52	PQL	ng/Kg	U	В	
OCDF	1.08	JB	0.0666	MDL	11.0	PQL	ng/Kg	J	Z	

Sample ID: SL-025-SA6-SB-4.0-5.0 Collected: 8/4/2011 9:00:00 AM Analysis Type: RES Dilution: 1

Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.349	JB	0.0672	MDL	5.32	PQL	ng/Kg	U	В
0.0725	JBQ	0.0238	MDL	5.32	PQL	ng/Kg	U	В
0.0477	JQ	0.0321	MDL	5.32	PQL	ng/Kg	J	Z
0.0550	JBQ	0.0316	MDL	5.32	PQL	ng/Kg	U	В
0.0485	JQ	0.0413	MDL	5.32	PQL	ng/Kg	J	Z
0.0753	JBQ	0.0373	MDL	5.32	PQL	ng/Kg	U	В
0.0981	JQ	0.0910	MDL	1.06	PQL	ng/Kg	J	Z
3.03	JB	0.0383	MDL.	10.6	PQL	ng/Kg	J	Z
0.123	JBQ	0.0675	MDL	10.6	PQL	ng/Kg	U	В
	Result  0.349  0.0725  0.0477  0.0550  0.0485  0.0753  0.0981  3.03	Result         Qual           0.349         JB           0.0725         JBQ           0.0477         JQ           0.0550         JBQ           0.0485         JQ           0.0753         JBQ           0.0981         JQ           3.03         JB	Result         Qual         DL           0.349         JB         0.0672           0.0725         JBQ         0.0238           0.0477         JQ         0.0321           0.0550         JBQ         0.0316           0.0485         JQ         0.0413           0.0753         JBQ         0.0373           0.0981         JQ         0.0910           3.03         JB         0.0383	Result         Qual         DL         Type           0.349         JB         0.0672         MDL           0.0725         JBQ         0.0238         MDL           0.0477         JQ         0.0321         MDL           0.0550         JBQ         0.0316         MDL           0.0485         JQ         0.0413         MDL           0.0753         JBQ         0.0373         MDL           0.0981         JQ         0.0910         MDL           3.03         JB         0.0383         MDL	Result         Qual         DL         Type         RL           0.349         JB         0.0672         MDL         5.32           0.0725         JBQ         0.0238         MDL         5.32           0.0477         JQ         0.0321         MDL         5.32           0.0550         JBQ         0.0316         MDL         5.32           0.0485         JQ         0.0413         MDL         5.32           0.0753         JBQ         0.0373         MDL         5.32           0.0981         JQ         0.0910         MDL         1.06           3.03         JB         0.0383         MDL         10.6	Result         Qual         DL         Type         RL         Type           0.349         JB         0.0672         MDL         5.32         PQL           0.0725         JBQ         0.0238         MDL         5.32         PQL           0.0477         JQ         0.0321         MDL         5.32         PQL           0.0550         JBQ         0.0316         MDL         5.32         PQL           0.0485         JQ         0.0413         MDL         5.32         PQL           0.0753         JBQ         0.0373         MDL         5.32         PQL           0.0981         JQ         0.0910         MDL         1.06         PQL           3.03         JB         0.0383         MDL         10.6         PQL	Result         Qual         DL         Type         RL         Type         Units           0.349         JB         0.0672         MDL         5.32         PQL         ng/Kg           0.0725         JBQ         0.0238         MDL         5.32         PQL         ng/Kg           0.0477         JQ         0.0321         MDL         5.32         PQL         ng/Kg           0.0550         JBQ         0.0316         MDL         5.32         PQL         ng/Kg           0.0485         JQ         0.0413         MDL         5.32         PQL         ng/Kg           0.0753         JBQ         0.0373         MDL         5.32         PQL         ng/Kg           0.0981         JQ         0.0910         MDL         1.06         PQL         ng/Kg           3.03         JB         0.0383         MDL         10.6         PQL         ng/Kg	Lab Result         Lab Qual         DL Type         RL Type         RL Type         RL Type         RL Type         RL Qual           0.349         JB         0.0672         MDL         5.32         PQL         ng/Kg         U           0.0725         JBQ         0.0238         MDL         5.32         PQL         ng/Kg         U           0.0477         JQ         0.0321         MDL         5.32         PQL         ng/Kg         J           0.0550         JBQ         0.0316         MDL         5.32         PQL         ng/Kg         U           0.0485         JQ         0.0413         MDL         5.32         PQL         ng/Kg         J           0.0753         JBQ         0.0373         MDL         5.32         PQL         ng/Kg         U           0.0981         JQ         0.0910         MDL         1.06         PQL         ng/Kg         J           3.03         JB         0.0383         MDL         10.6         PQL         ng/Kg         J

Dilation.	Sample ID: SL-025-SA6-SB-9.0-10.0	Collected: 8/4/2011 9:05:00 AM	Analysis Type: RES	Dilution: 1
-----------	-----------------------------------	--------------------------------	--------------------	-------------

9-1-1-1										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.348	JBQ	0.0683	MDL	5.45	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0625	JBQ	0.0305	MDL	5.45	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0394	JQ	0.0311	MDL	5.45	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.0782	JQ	0.0489	MDL	5.45	PQL	ng/Kg	j	Z	
2,3,4,7,8-PECDF	0.0667	JB	0.0357	MDL	5.45	PQL	ng/Kg	Ü	В	
OCDD	0.822	JBQ	0.0476	MDL	10.9	PQL	ng/Kg	U	В	
OCDF	0.158	JBQ	0.0661	MDL	10.9	PQL	ng/Kg	U	В	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM ADR version 1.4.0.111 Page 6 of 12

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX125

Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method Categor	ye svoata e	
Method:	1613B	Matrix: SO

Sample ID: SL-060-SA5DN-SB-4.0-5.0	Collec	ted: 8/5/20	11 11:32:0	)0 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.882	JBQ	0.0669	MDL	5.03	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.166	JBQ	0.0191	MDL	5.03	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.111	JBQ	0.0357	MDL	5.03	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HxCDD	0.0699	JBQ	0.0505	MDL	5.03	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0990	J	0.0677	MDL	5.03	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.131	JQ	0.0477	MDL	5.03	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.108	JQ	0.0572	MDL	5.03	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.112	JQ	0.0457	MDL	5.03	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.155	JBQ	0.0583	MDL	5.03	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDF	0.0977	JQ	0.0428	MDL	5.03	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.103	J	0.0618	MDL	5.03	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.0635	JB	0.0440	MDL.	5.03	PQL	ng/Kg	U	В	
OCDD	9.27	JB	0.0567	MDL	10.1	PQL	ng/Kg	J	Z	
OCDF	0.388	JBQ	0.0676	MDL	10.1	PQL	ng/Kg	U	В	

Sample ID: SL-060-SA5DN-SB-7.0-8.0

Collected: 8/5/2011 1:05:00 PM Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.529	JB	0.0693	MDL	5.72	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0815	JBQ	0.0237	MDL	5.72	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0646	JBQ	0.0410	MDL	5.72	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0519	JQ	0.0461	MDL	5.72	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.0781	JQ	0.0535	MDL	5.72	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0929	JBQ	0.0405	MDL	5.72	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0891	JBQ	0.0427	MDL	5.72	PQL	ng/Kg	U	В
OCDD	4.62	JB	0.0424	MDL	11.4	PQL	ng/Kg	J	Z
OCDF	0.350	JBQ	0.0838	MDL	11.4	PQL	ng/Kg	U	В

Sample ID: SL-114-SA6-SB-4.0-5.0

Collected: 8/5/2011 3:05:00 PM Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.443	JB	0.0714	MDL	5.27	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0830	JВ	0.0256	MDL	5.27	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0852	JQ	0.0377	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.0925	J	0.0515	MDL	5.27	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM

ADR version 1.4.0.111

Page 7 of 12

Lab Reporting Batch ID: DX125

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Sample ID: SL-114-SA6-SB-4.0-5.0	Collec	Collected: 8/5/2011 3:05:00 PM Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,6,7,8-HXCDF	0.0316	JQ	0.0305	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.187	J	0.0496	MDL,	5.27	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0780	JBQ	0.0376	MDL	5.27	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.184	J	0.0731	MDL	5.27	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.167	JQ	0.0384	MDL	5.27	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0513	J	0.0352	MDL	5.27	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.160	JBQ	0.0377	MDL	5.27	PQL	ng/Kg	U	В
OCDD	0.935	JBQ	0.0571	MDL	10.5	PQL	ng/Kg	U	В
OCDF	0.156	JBQ	0.0858	MDL	10.5	PQL	ng/Kg	U	В

Sample ID: SL-114-SA6-SB-9.0-10.0	Collected: 8/5/2011 3:15:00 PM	Analysis Type: RES	Dilution: 1
-----------------------------------	--------------------------------	--------------------	-------------

Sample 10. GE-114-0A0-00-3.0-10.0	Conec	Conected, Golzoff 3.13.00 FM Analysis Type. RES							Ditation.		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.222	JB	0.0670	MDL	5.50	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.0777	JBQ	0.0246	MDL	5.50	PQL	ng/Kg	U	В		
1,2,3,4,7,8,9-HPCDF	0.0485	JBQ	0.0399	MDL	5.50	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0397	JQ	0.0310	MDL	5.50	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	0.0860	J	0.0496	MDL	5.50	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.0716	J	0.0268	MDL	5.50	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.0595	JQ	0.0465	MDL	5.50	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.0420	JBQ	0.0254	MDL	5.50	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0870	J	0.0647	MDL	5.50	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.199	JQ	0.0453	MDL	5.50	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.0710	JQ	0.0264	MDL	5.50	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.101	JBQ	0.0447	MDL	5.50	PQL	ng/Kg	υ	В		
2,3,7,8-TCDF	0.110	JQ	0.0773	MDL	1.10	PQL	ng/Kg	J	Z		
OCDD	0.733	JBQ	0.0437	MDL	11.0	PQL	ng/Kg	υ	В		
OCDF	0.127	JBQ	0.0770	MDL	11.0	PQL	ng/Kg	υ	В		

Sample ID: SL-198-SA5DN-SB-4.0-5.0 Collected: 8/5/2011 8:49:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	2.13	JB	0.0392	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.111	JB	0.0760	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.222	JBQ	0.0738	MDL	5.80	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:27 PM ADR version 1.4.0.111 Page 8 of 12

Lab Reporting Batch ID: DX125

Laboratory: LL

EDD Filename: DX125_v1

eQAPP Name: CDM_SSFL_110509

vetic	io Car	erory:	SV(0)	mijetan diku di
		V		

Sample ID: SL-198-SA5DN-SB-4.0-5.0	Collec	ted: 8/5/20	11 8:49:00	AM A	nalysis T	ype: RES		ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	0.211	JQ	0.0769	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.636	J	0.0755	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.147	JQ	0.0620	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.882	JQ	0.0738	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.982	JB	0.0757	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.130	J	0.0686	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.752	J	0.0430	MDL	5.80	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.140	J	0.0699	MDL	5.80	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.161	JBQ	0.0440	MDL	5.80	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.143	JQ	0.0879	MDL	1.16	PQL	ng/Kg	J	Z
OCDF	5.79	JB	0.0773	MDL	11.6	PQL	ng/Kg	J	Z

Sample ID: SL-198-SA5DN-SB-9.0-10.0

Collected: 8/5/2011 9:13:00 AM Analysis Type: RES

Matrix:

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.34	JB	0.0378	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.189	JBQ	0.0808	MDL	5.33	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0875	1Ö	0.0564	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.200	JQ	0.0683	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0874	JQ	0.0438	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.194	JQ	0.0648	MDL	5.33	PQL	ng/Kg	j	Z
2,3,4,6,7,8-HXCDF	0.145	JQ	0.0502	MDL	5.33	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0592	JB	0.0357	MDL	5.33	PQL	ng/Kg	υ	В
OCDF	4.33	JBQ	0.0921	MDL	10.7	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX125 EDD Filename: DX125_v1

Laboratory: LL eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
<del></del>	Duplicate Sample Count = 0
<del></del>	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
c	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
Ę	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX125

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

EDD Filename: DX125_v1

F	Equipment Blank Contamination	COAT Name. OBM_OOTE_
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
н	Temperature Estimation	
Н	Temperature Rejection	
ı	Internal Standard Estimation	
I	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
M	Continuing Tune	
M	Initial Tune	
M	Performance Evaluation Mixture	
М	Resolution Check Mixture	
a	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX125

EDD Filename: DX125_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

#### **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX125

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 1613E <i>Matrix:</i> SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2300B371838	8/19/2011 6:38:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,7,8-HXCDD 1,2,3,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	0.238 ng/Kg 0.0694 ng/Kg 0.0615 ng/Kg 0.103 ng/Kg 0.0418 ng/Kg 0.0660 ng/Kg 0.596 ng/Kg 0.136 ng/Kg	DUP11-SA6-QC-080411 SL-006-SA6-SB-4.0-5.0 SL-006-SA6-SB-9.0-10.0 SL-010-SA6-SB-4.0-5.0 SL-014-SA6-SB-4.0-5.0 SL-014-SA6-SB-9.0-10.0 SL-019-SA6-SB-9.0-10.0 SL-019-SA6-SB-9.0-10.0 SL-022-SA6-SB-0.0-1.0 SL-022-SA6-SB-0.0-1.0 SL-024-SA6-SB-4.0-5.0 SL-024-SA6-SB-4.0-5.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-025-SA6-SB-9.0-10.0 SL-198-SA5DN-SB-4.0-5.0 SL-114-SA6-SB-9.0-10.0 SL-198-SA5DN-SB-4.0-5.0 SL-198-SA5DN-SB-9.0-10.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP11-SA6-QC-080411(RES)	1,2,3,4,7,8-HxCDD	0,270 ng/Kg	0.270U ng/Kg
DUP11-SA6-QC-080411(RES)	1,2,3,7,8,9-HXCDF	0.189 ng/Kg	0.189U ng/Kg
SL-006-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.363 ng/Kg	0.363U ng/Kg
SL-006-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0438 ng/Kg	0.0438U ng/Kg
SL-006-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0503 ng/Kg	0.0503U ng/Kg
SL-006-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0454 ng/Kg	0.0454U ng/Kg
SL-006-SA6-SB-4.0-5.0(RES)	OCDD	0.691 ng/Kg	0.691U ng/Kg
SL-006-SA6-SB-4.0-5.0(RES)	OCDF	0.119 ng/Kg	0.119U ng/Kg
SL-006-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0,488 ng/Kg	0.488U ng/Kg
SL-006-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0850 ng/Kg	0.0850U ng/Kg
SL-006-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0465 ng/Kg	0.0465U ng/Kg
SL-006-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0721 ng/Kg	0.0721U ng/Kg
SL-006-SA6-SB-9.0-10.0(RES)	OCDD	1.11 ng/Kg	1.11U ng/Kg
SL-006-SA6-SB-9.0-10.0(RES)	OCDF	0.205 ng/Kg	0.205U ng/Kg
SL-010-SA6-SB-4,0-5,0(RES)	1,2,3,4,6,7,8-HPCDD	0.330 ng/Kg	0.330U ng/Kg
SL-010-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0907 ng/Kg	0.0907U ng/Kg
SL-010-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0469 ng/Kg	0.0469U ng/Kg
SL-010-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0482 ng/Kg	0.0482U ng/Kg
SL-010-SA6-SB-4.0-5.0(RES)	OCDD	1.09 ng/Kg	1.09U ng/Kg
SL-010-SA6-SB-4.0-5.0(RES)	OCDF	0.106 ng/Kg	0.106U ng/Kg
SL-014-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.101 ng/Kg	0.101U ng/Kg
SL-014-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.268 ng/Kg	0.268U ng/Kg
SL-014-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.188 ng/Kg	0.188U ng/Kg
SL-019-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.230 ng/Kg	0.230U ng/Kg
SL-019-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.153 ng/Kg	0.153U ng/Kg
SL-019-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0,120 ng/Kg	0.120U ng/Kg
SL-023-SA6-SB-0.0-1.0(RES)	1,2,3,4,7,8,9-HPCDF	0.161 ng/Kg	0.161U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

12/21/2011 2:46:08 PM ADR version 1.4.0.111 Page 1 of 3

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B				SANGE OF SURE
Matrix: SO				
Method Blank				Associated
Sample ID A	Analysis Date	Analyte	Result	Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-023-SA6-SB-0.0-1.0(RES)	1,2,3,4,7,8-HxCDD	0.0862 ng/Kg	0.0862U ng/Kg	
SL-023-SA6-SB-0.0-1.0(RES)	2,3,4,7,8-PECDF	0.198 ng/Kg	0.198U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.355 ng/Kg	0.355U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.108 ng/Kg	0.108U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0710 ng/Kg	0.0710U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.169 ng/Kg	0.169U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.184 ng/Kg	0.184U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	OCDD	1.21 ng/Kg	1.21U ng/Kg	
SL-024-SA6-SB-4.0-5.0(RES)	OCDF	0.228 ng/Kg	0.228U ng/Kg	
SL-024-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0783 ng/Kg	0.0783U ng/Kg	
SL-024-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.103 ng/Kg	0.103U ng/Kg	
SL-024-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0652 ng/Kg	0.0652U ng/Kg	
SL-024-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.118 ng/Kg	0.118U ng/Kg	
SL-025-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.349 ng/Kg	0.349U ng/Kg	
SL-025-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0725 ng/Kg	0.0725U ng/Kg	
SL-025-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0550 ng/Kg	0.0550U ng/Kg	
SL-025-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0753 ng/Kg	0.0753U ng/Kg	
SL-025-SA6-SB-4.0-5.0(RES)	OCDF	0.123 ng/Kg	0.123U ng/Kg	
SL-025-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.348 ng/Kg	0.348U ng/Kg	
SL-025-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0625 ng/Kg	0.0625U ng/Kg	
SL-025-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0667 ng/Kg	0.0667U ng/Kg	
SL-025-SA6-SB-9.0-10.0(RES)	OCDD	0.822 ng/Kg	0.822U ng/Kg	
SL-025-SA6-SB-9.0-10.0(RES)	OCDF	0.158 ng/Kg	0.158U ng/Kg	
SL-060-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.882 ng/Kg	0.882U ng/Kg	
SL-060-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.166 ng/Kg	0.166U ng/Kg	
SL-060-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.111 ng/Kg	0.111U ng/Kg	
SL-060-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0699 ng/Kg	0.0699U ng/Kg	
SL-060-SA5DN-SB-4,0-5,0(RES)	1,2,3,7,8,9-HXCDF	0,155 ng/Kg	0.155U ng/Kg	
SL-060-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0635 ng/Kg	0.0635U ng/Kg	
SL-060-SA5DN-SB-4.0-5.0(RES)	OCDF	0,388 ng/Kg	0.388U ng/Kg	
SL-060-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDD	0.529 ng/Kg	0.529U ng/Kg	
SL-060-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0815 ng/Kg	0.0815U ng/Kg	
SL-060-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0646 ng/Kg	0.0646U ng/Kg	
SL-060-SA5DN-SB-7,0-8,0(RES)	1,2,3,7,8,9-HXCDF	0,0929 ng/Kg	0.0929U ng/Kg	
SL-060-SA5DN-SB-7.0-8.0(RES)	2,3,4,7,8-PECDF	0.0891 ng/Kg	0.0891U ng/Kg	
SL-060-SA5DN-SB-7.0-8.0(RES)	OCDF	0,350 ng/Kg	0.350U ng/Kg	
SL-114-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.443 ng/Kg	0.443U ng/Kg	
SL-114-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0830 ng/Kg	0.0830U ng/Kg	
SL-114-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0780 ng/Kg	0.0780U ng/Kg	
SL-114-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.160 ng/Kg	0.160U ng/Kg	

12/21/2011 2:46:08 PM ADR version 1.4.0.111 Page 2 of 3

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO			<b>esticato</b> a d'Alexandre de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la Calenda de la	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-114-SA6-SB-4.0-5.0(RES)	OCDD	0.935 ng/Kg	0.935U ng/Kg
SL-114-SA6-SB-4.0-5.0(RES)	OCDF	0.156 ng/Kg	0.156U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.222 ng/Kg	0.222U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0777 ng/Kg	0.0777U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0,0485 ng/Kg	0.0485U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0420 ng/Kg	0.0420U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.101 ng/Kg	0.101U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	OCDD	0,733 ng/Kg	0.733U ng/Kg
SL-114-SA6-SB-9.0-10.0(RES)	OCDF	0.127 ng/Kg	0.127U ng/Kg
SL-198-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.111 ng/Kg	0.111U ng/Kg
SL-198-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.222 ng/Kg	0.222U ng/Kg
SL-198-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.161 ng/Kg	0.161U ng/Kg
SL-198-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.189 ng/Kg	0.189U ng/Kg
SL-198-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0592 ng/Kg	0.0592U ng/Kg

12/21/2011 2:46:08 PM ADR version 1.4.0.111 Page 3 of 3

#### Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO		a parientant		valibiistori, ex			
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-019-SA6-SB-4.0-5.0 MS SL-019-SA6-SB-4.0-5.0 MSD (SL-019-SA6-SB-4.0-5.0)	OCDD	185	301	40.00-135.00	•	OCDD	No Qual, >4x

12/21/2011 2:44:27 PM ADR version 1.4.0.111 Page 1 of 1

#### Field Duplicate RPD Report

Lab Reporting Batch ID: DX125

Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

	Concent	tration (%)		1	
Analyte	SL-019-SA6-SB-4.0-5.0	DUP11-SA6-QC-080411	Sample RPD	eQAPP RPD	Flag
MOISTURE	8.8	8.4	5		No Qualifiers Applied

WOOTORE		0.0			No Qualifiers Applied	
Method: 1613B Matrix: SO						
	Concentra	tion (ng/Kg)				
Analyte	Analyte SL-019-SA6-SB-4.0-5.0 DUP11-SA6-QC-080411		Sample RPD	eQAPP RPD	Flag	
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF	59.5 10.1 1.54 0.230 1.79 0.553 0.170 1.52	84.1 11.2 2.05 0.270 2.23 0.602 0.148 0.967	34 10 28 16 22 8 14 44	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	No Qualifiers Applied	
1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD	8.24 2.63 0.717 1.69 3.13 1.79 1060 14.7	0.928 0.798 0.189 0.755 0.603 0.274 1990 25.2	160 107 117 76 135 147 61 53	50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects)	

Page 1 of 1

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

					51		
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP11-SA6-QC-080411	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF	18 1 1 1 2 1 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3	2.05 0.270 0.928 2.23 0.798 0.602 0.189 0.148 0.755 0.967 0.603 0.274	5.41 5.41 5.41 5.41 5.41 5.41 5.41 5.41	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-006-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	BE BE BE BE	0.363 0.0438 0.0814 0.0770 0.0503 0.0454 0.691 0.119	5.44 5.44 5.44 5.44 5.44 10.9 10.9	POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-006-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF OCDD OCDF	Se Se Se Se Se Se Se Se Se Se Se Se Se S	0.488 0.0850 0.0465 0.253 0.0651 0.437 0.588 0.0975 0.0721 1.11 0.205	5.63 5.63 5.63 5.63 5.63 5.63 5.63 5.63	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-010-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF OCDD	######################################	0.330 0.0907 0.0765 0.0506 0.0469 0.0612 0.0482 1.09 0.106	5.58 5.58 5.58 5.58 5.58 5.58 5.58 11.2 11.2	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-014-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	<del>ఏ</del> స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్ట్రామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ్ స్టరామ స్టరామ స్టం స్టం స్టం స్ట స్ట స్ట స్ట స్ట స్ట స్ట స్ట స్ట స్ట	4.09 0.920 0.452 0.933 0.311 0.302 0.101 1.67 0.293 0.268 0.185 9.75	5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.51	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-014-SA6-SB-9.0-10.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF	JBQ JBQ JJ J J BQ JQ J J J BQ	1.22 0.188 0.684 2.00 0.354 0.721 0.213 0.150 0.843 0.553 0.383 0.356	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-019-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	387778773 387778	1.54 0.230 1.79 2.63 0.553 0.717 0.170 1.69 1.52 3.13	5.41 5.41 5.41 5.41 5.41 5.41 5.41 5.41	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-019-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 0CDF	######################################	2.18 0.480 0.153 0.346 0.650 0.328 0.300 0.120 0.338 0.613 0.370 0.430 0.157 0.138 5.23	5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.48	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-022-SA6-SB-0.0-1.0	1,2,3,4,6,7,8-HPCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF	BGGG-	3.48 0.353 0.322 0.0960 4.68	5.23 5.23 5.23 5.23 5.23	PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-023-SA6-SB-0.0-1.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	<b>585-5555</b> 88	2.71 0.161 0.0862 0.183 0.282 0.152 0.252 0.114 0.522 0.196 0.198 0.106	5.17 5.17 5.17 5.17 5.17 5.17 5.17 5.17	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX125 Laboratory: LL

EDD Filename: DX125_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-024-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	5-6-5-5-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6	0.355 0.108 0.0710 0.169 0.158 0.170 0.209 0.221 0.184 0.317 0.312 0.0956 0.409 0.149 0.120	5.39 5.39 5.39 5.39 5.39 5.39 5.39 5.39	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-024-SA6-SB-9.0-10.0	OCDF  1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0CDF	# # # # # # # # # # # # # # # # # # #	1.21 0.228 2.83 0.412 0.0783 0.103 0.129 0.0548 0.110 0.0652 0.0409 0.0827 0.118 1.08	10.8 10.8 5.52 5.52 5.52 5.52 5.52 5.52 5.52 5.	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-025-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	# # # # # # # # # # # # # # # # # # #	0.349 0.0725 0.0477 0.0550 0.0485 0.0753 0.0981 3.03 0.123	5.32 5.32 5.32 5.32 5.32 5.32 1.06 10.6	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-025-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD 2,3,4,7,8-PECDF OCDD OCDF	JBQ JBQ JQ JQ JB JBQ JBQ	0.348 0.0625 0.0394 0.0782 0.0667 0.822 0.158	5.45 5.45 5.45 5.45 5.45 10.9 10.9	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

12/21/2011 2:46:17 PM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX125

Laboratory: LL eQAPP Name: CDM_SSFL_110509

**PQL** 

PQL

ng/Kg ng/Kg

ng/Kg

11.0

11.0

0.127

**JBQ** 

JBQ

EDD Filename: DX125_v1

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-060-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF OCDD OCDF	######################################	0.882 0.166 0.111 0.0699 0.0990 0.131 0.108 0.112 0.155 0.0977 0.103 0.0635 9.27 0.388	5.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-060-SA5DN-SB-7.0-8.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	E E E E E E E E E E E E E E E E E E E	0.529 0.0815 0.0646 0.0519 0.0781 0.0929 0.0891 4.62 0.350	5.72 5.72 5.72 5.72 5.72 5.72 5.72 11.4 11.4	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-114-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	##G-G-B-G-B##	0.443 0.0830 0.0852 0.0925 0.0316 0.187 0.0780 0.184 0.167 0.0513 0.160 0.935 0.156	5.27 5.27 5.27 5.27 5.27 5.27 5.27 5.27	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-114-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD	క్రాప్ట్రాల్లో	0.222 0.0777 0.0485 0.0397 0.0860 0.0716 0.0595 0.0420 0.0870 0.199 0.0710 0.101 0.110	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

OCDF

Lab Reporting Batch ID: DX125

Laboratory: LL

EDD Filename: DX125_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-198-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	2.13	5.80	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.111	5.80	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.222	5.80	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JQ	0.211	5.80	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	J	0.636	5.80	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JQ	0.147	5.80	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JQ	0.882	5.80	PQL	ng/Kg	14-11-2-4 4 3
	1,2,3,7,8,9-HXCDF	JB	0.982	5.80	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	j	0.130	5.80	PQL	ng/Kg	
	1,2,3,7,8-PECDF	J	0.752	5.80	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	J	0.140	5.80	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.161	5.80	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.143	1.16	PQL	ng/Kg	
	OCDF	JB	5.79	11.6	PQL	ng/Kg	
SL-198-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF	JB	1.34	5.33	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.189	5.33	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JQ	0.0875	5.33	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JQ	0.200	5.33	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JQ	0.0874	5.33	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JQ	0.194	5.33	PQL	ng/Kg	,
	2,3,4,6,7,8-HXCDF	JQ	0.145	5.33	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0592	5.33	PQL	ng/Kg	
	OCDF	JBQ	4.33	10.7	PQL	ng/Kg	

12/21/2011 2:46:17 PM ADR version 1.4.0.111 Page 5 of 5

# **SAMPLE DELIVERY GROUP**

**DX126** 

# Attachment I

Sample ID Cross Reference and Data Review Level

#### **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
08-Aug-2011	SL-273-SA6-SB-4.0-5.0	6369644	N	METHOD	1613B	IV
08-Aug-2011	SL-273-SA6-SB-9.0-10.0	6369645	N	METHOD	1613B	IV
08-Aug-2011	SL-153-SA5DN-SB-4.0-5.0	6369642	N	METHOD	1613B	IV
08-Aug-2011	SL-153-SA5DN-SB-7.0-8.0	6369643	N	METHOD	1613B	IV
08-Aug-2011	SL-083-SA5DN-SB-4.0-5.0	6369641	N	METHOD	1613B	IV
08-Aug-2011	SL-031-SA6-SB-4.0-5.0	6369646	N	METHOD	1613B	īV
08-Aug-2011	SL-031-SA6-SB-9.0-10.0	6369647	N	METHOD	1613B	IV
09-Aug-2011	SL-044-SA6-SB-2.5-3.5	6371379	N	METHOD	1613B	IV
09-Aug-2011	SL-012-SA5DN-SB-4.0-5.0	6371383	N	METHOD	1613B	IV
09-Aug-2011	SL-012-SA5DN-SB-9.0-10.0	6371384	N	METHOD	1613B	iV
09-Aug-2011	SL-042-SA6-SB-2.5-3.5	6371378	N	METHOD	1613B	IV
09-Aug-2011	SL-011-SA5DN-SB-4.0-5.0	6371382	N	METHOD	1613B	IV
09-Aug-2011	EB-SA6-SB-080911	6371381	EB	METHOD	1613B	IV
09-Aug-2011	SL-049-SA6-SB-2.5-3.5	6371380	N	METHOD	1613B	IV
09-Aug-2011	SL-009-SA5DN-SB-4.0-5.0	6371385	N	METHOD	1613B	IV
09-Aug-2011	SL-009-SA5DN-SB-4.0-5.0MS	6371386	MS	METHOD	1613B	IV
09-Aug-2011	DUP24-SA5DN-QC-080911	6371389	FD	METHOD	1613B	IV
09-Aug-2011	SL-009-SA5DN-SB-9.0-10.0	6371388	N	METHOD	1613B	IV

#### **Attachment II**

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method Category, Ray C		inii ja ja ja katara ja ja ja ja ja ja ja ja ja ja ja ja ja	tinghilasillisityassa s	
Method: 1	613B	Matrix:	AQ	

Sample ID: EB-SA6-SB-080911	Collec	ted: 8/9/20	11 1:00:00	PM A	nalysis Ty	pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	4.38	JB	0.137	MDL	9.59	PQL	pg/L	U	В	
1,2,3,4,6,7,8-HPCDF	0.650	JB	0.0665	MDL	9.59	PQL	pg/L	U	В	
1,2,3,4,7,8,9-HPCDF	0.550	JBQ	0.0789	MDL	9.59	PQL	pg/L	Ü	В	
1,2,3,4,7,8-HXCDF	0.216	JBQ	0.0682	MDL	9.59	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDD	0.366	JBQ	0.116	MDL	9.59	PQL	pg/L	Ü	В	
1,2,3,6,7,8-HXCDF	0.223	JBQ	0.0665	MDL	9.59	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDD	0.452	JBQ	0.115	MDL	9.59	PQL	pg/L	U	В	
1,2,3,7,8-PECDD	0.238	JBQ	0.115	MDL	9.59	PQL	pg/L	U	В	
1,2,3,7,8-PECDF	0.163	JBQ	0.0657	MDL	9.59	PQL	pg/L	U	В	
2,3,4,6,7,8-HXCDF	0.162	JBQ	0.0603	MDL.	9.59	PQL	pg/L	υ	В	
2,3,4,7,8-PECDF	0.292	JBQ	0.0549	MDL	9.59	PQL	pg/L	U	B	
2,3,7,8-TCDD	0.344	JBQ	0.112	MDL	1.92	PQL	pg/L	U	В	
OCDD	7.99	JBQ	0.139	MDL	19.2	PQL	pg/L	υ	В	
OCDF	1.02	JB	0.121	MDL	19.2	PQL	pg/L	U	В	

Method Category: GENCHEM		tanin kanggan panggapan kanggan panggapan panggapan Taninggapan
Method: 1613B	Matrix: SO	

Sample ID: DUP24-SA5DN-QC-080911	Collec	Collected: 8/9/2011 3:28:00 PM Analysis Type: RES									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.699	JB	0.0455	MDL	5.51	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.122	JB	0.0220	MDL	5.51	PQL	ng/Kg	U	В		
1,2,3,4,7,8,9-HPCDF	0.0441	JBQ	0.0279	MDL	5.51	PQL	ng/Kg	ÜJ	B, FD		
1,2,3,4,7,8-HxCDD	0.0520	JQ	0.0365	MDL	5.51	PQL	ng/Kg	J	Z, FD		
1,2,3,4,7,8-HXCDF	0.0763	JBQ	0.0255	MDL	5.51	PQL	ng/Kg	UJ	B, FD		
1,2,3,6,7,8-HXCDD	0.0589	JBQ	0.0366	MDL	5.51	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDF	0.0357	JBQ	0.0231	MDL	5.51	PQL	пg/Kg	UJ	B, FD		
1,2,3,7,8,9-HXCDD	0.0440	JB	0.0355	MDL	5.51	PQL	ng/Kg	UJ	B, FD		
1,2,3,7,8,9-HXCDF	0.0396	JQ	0.0195	MDL	5.51	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.140	JBQ	0.0519	MDL	5.51	PQL	ng/Kg	ŲJ	B, FD		
1,2,3,7,8-PECDF	0.0543	JQ	0.0257	MDL	5.51	PQL	ng/Kg	J	Z, FD		
2,3,4,6,7,8-HXCDF	0.0279	JBQ	0.0201	MDL	5.51	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.121	JQ	0.0258	MDL	5.51	PQL	ng/Kg	J	Z		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 7:10:52 AM ADR version 1.4.0.111 Page 1 of 11

Lab Reporting Batch ID: DX126

Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	ry: GENCHEM				
Method:	1613B	Matrix:	SO	ing and the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the pr	
	04504 00 00044	 		=-	

Sample ID: DUP24-SA5DN-QC-080911	Collec	Collected: 8/9/2011 3:28:00 PM Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
OCDD	4.76	JB	0.0378	MDL	11.0	PQL	ng/Kg	J	Z	
OCDF	0.273	JQ	0.0532	MDL	11.0	PQL	ng/Kg	J	Z, FD	

Sample ID: SL-009-SA5DN-SB-4.0-5.0 Collected: 8/9/2011 3:25:00 PM Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte Result DLRL Units Qual Type Type Qual Code 1,2,3,4,6,7,8-HPCDD 0.555 JBQ 0.0646 MDL 5.51 **PQL** ng/Kg U В 1,2,3,4,6,7,8-HPCDF 0.0752 JB 0.0263 MDL 5.51 **PQL** U ng/Kg В 1,2,3,4,7,8,9-HPCDF 0.0371 U 0.0371 MDL 5.51 **PQL** IJ ng/Kg FD U 1,2,3,4,7,8-HxCDD 0.0410 0.0410 MDL 5.51 PQL IJ FD ng/Kg 1,2,3,4,7,8-HXCDF 0.0284 U 0.0284 MDL 5.51 **PQL** ng/Kg IJ FD 1,2,3,6,7,8-HXCDD 0.0715 JBQ 0.0427 MDL 5.51 **PQL** ng/Kg U 1,2,3,6,7,8-HXCDF 0.0234 U 0.0234 MDL PQL IJ 5.51 ng/Kg FD 1,2,3,7,8,9-HXCDD 0.0813 JB 0.0427 MDL 5.51 **PQL** ng/Kg UJ B, FD 5.51 1,2,3,7,8,9-HXCDF 0.0413 J 0.0222 MDL **PQL** J Z ng/Kg 1,2,3,7,8-PECDD U UJ 0.0639 0.0639 MDL 5.51 **PQL** ng/Kg FD 1,2,3,7,8-PECDF 0.125 JQ 0.0371 MDL PQL J Z, FD 5.51 ng/Kg 2,3,4,6,7,8-HXCDF 0.0278 JBQ 0.0224 PQL U MDL 5.51 ng/Kg В 2,3,4,7,8-PECDF 0.100 J 0.0360 MDL 5.51 POL пд/Кд J Z OCDD Z 4.04 JB 0.0486 MDL 11.0 PQL ng/Kg OCDF 0.140 JQ 0.0598 11.0 MDL **PQL** ng/Kg J Z, FD

Sample ID: SL-009-SA5DN-SB-9.0-10.0	Collected: 8/9/2011 4:15:00 PM	Analysis Type: RES	Dilution: 1
-------------------------------------	--------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
		1	-		· · · · · · · · · · · · · · · · · · ·		<u> </u>	Quai	
1,2,3,4,6,7,8-HPCDD	1.08	JBQ	0.0626	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.187	JBQ	0.0296	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.127	JQ	0.0408	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.135	JB	0.0317	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.194	JBQ	0.0401	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.129	JB	0.0413	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0954	JQ	0.0253	MDL	5.56	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.277	JB	0.0557	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.221	JQ	0.0311	MDL	5.56	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.142	JBQ	0.0245	MDL	5.56	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 7:10:52 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B		Matrix:	SO		
					rectors and the significant	
wearon caregor	Y GENUTEW					
THE PARTY HAVE A PROPERTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH	ALMAN ELEVANORIES MANAGES	Charles and the State of Contract of	a National Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of	elimina and	aktivi firetorio esperatorio espera	ur likabasak adhirida

Sample ID: SL-009-SA5DN-SB-9.0-10.0	Collec	Dilution: 1							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,7,8-PECDF	0.186	J	0.0277	MDL	5.56	PQL	ng/Kg	J	Z
OCDD	9.81	JB	0.0374	MDL	11.1	PQL	ng/Kg	J	Z
OCDF	0.381	J	0.0506	MDL	11.1	PQL	ng/Kg	J	Z

 Sample ID: SL-011-SA5DN-SB-4.0-5.0
 Collected: 8/9/2011 11:40:00
 Analysis Type: RES
 Dilution: 1

•									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.429	JB	0.0674	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0885	JBQ	0.0261	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0521	JQ	0.0507	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.0755	JBQ	0.0494	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0752	JBQ	0.0478	MDL	5.60	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0395	JBQ	0.0287	MDL	5.60	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0642	JQ	0.0344	MDL	5.60	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.105	J	0.102	MDL	1.12	PQL	ng/Kg	J	Z
OCDD	3.03	JB	0.0524	MDL	11.2	PQL	ng/Kg	j	Z
OCDF	0.225	JQ	0.0789	MDL	11.2	PQL	ng/Kg	J	Z
					·	<u> </u>		·	

Sample ID: SL-012-SA5DN-SB-4.0-5.0 Collected: 8/9/2011 8:50:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.13	JB	0.0689	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.148	JB	0.0320	MDL	5.04	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.102	JB	0.0456	MDL	5.04	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.108	JBQ	0.0445	MDL	5.04	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.104	JQ	0.0308	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0749	JBQ	0.0631	MDL	5.04	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0624	JQ	0.0356	MDL	5.04	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0374	JQ	0.0343	MDL	5.04	PQL	ng/Kg	J	Z
OCDD	8.10	JB	0.0548	MDL	10.1	PQL	ng/Kg	J	Z
OCDF	0.534	J	0.0791	MDL	10.1	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX126

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Sample ID: SL-012-SA5DN-SB-9.0-10.0	Collec		Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.913	JB	0.0508	MDL	5.80	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.110	JB	0.0221	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0600	JBQ	0.0364	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0380	JBQ	0.0287	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0236	JBQ	0.0236	MDL	5.80	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0566	JBQ	0.0387	MDL	5.80	PQL	ng/Kg	Ų	В
1,2,3,7,8,9-HXCDF	0.0363	JQ	0.0274	MDL	5.80	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0404	JQ	0.0328	MDL	5.80	PQL	ng/Kg	J	Z
OCDD	6.21	JB	0.0457	MDL.	11.6	PQL	ng/Kg	J	Z
OCDF	0.182	JQ	0.0643	MDL	11.6	PQL	ng/Kg	J	Z

Sample ID: SL-031-SA6-SB-4.0-5.0	Collected: 8/8/2011 2:50:00 PM	Analysis Type: RES	Dilution: 1
Oampic 15. OE-001-0A0-0B-4.0-3.0	Conected. Didizoti 2.30.00 Fig.	Allalysis type, NEO	Diluuon.

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.459	JBQ	0.0648	MDL	5.28	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.209	JBQ	0.0230	MDL	5.28	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0388	JB	0.0364	MDL	5.28	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0585	JQ	0.0531	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.106	JBQ	0.0472	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.197	JBQ	0.0537	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.101	JBQ	0.0398	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.316	JBQ	0.0510	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.232	J	0.0400	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.155	JBQ	0.0731	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.273	JQ	0.0410	MDL	5.28	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0634	JB	0.0357	MDL	5.28	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.216	J	0.0411	MDL	5.28	PQL	лд/Кд	J	Z
OCDD	2.31	JB	0.0460	MDL	10.6	PQL	лд/Кд	J	Z
OCDF	0.448	JQ	0.0752	MDL	10.6	PQL	ng/Kg	J	Z

Sample ID: SL-031-SA6-SB-9.0-10.0 Collected: 8/8/2011 3:00:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.321	JBQ	0.0577	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0700	JBQ	0.0202	MDL	5.44	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 7:10:52 AM ADR version 1.4.0.111 Page 4 of 11

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Collected: 8/8/2011 3:00:00 PM Analysis Type: RES										
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
0.0586	JB	0.0317	MDL	5.44	PQL	ng/Kg	Ų	В		
0.189	JBQ	0.0413	MDL	5.44	PQL	ng/Kg	υ	В		
0.227	JB	0.0420	MDL	5.44	PQL	ng/Kg	U	В		
0.190	JBQ	0.0338	MDL	5.44	PQL	ng/Kg	υ	В		
0.282	JBQ	0.0406	MDL	5.44	PQL	ng/Kg	J	Z		
0.224	J	0.0310	MDL	5.44	PQL	ng/Kg	j	Z		
0.333	JB	0.0681	MDL	5.44	PQL	ng/Kg	U	В		
0.300	J	0.0364	MDL	5.44	PQL	ng/Kg	J	Z		
0.0811	JBQ	0.0300	MDL	5.44	PQL	ng/Kg	U	В		
0.280	JQ	0.0368	MDL	5.44	PQL	ng/Kg	J	Z		
0.0974	JQ	0.0824	MDL	1.09	PQL	ng/Kg	J	Z		
1.45	JB	0.0385	MDL	10.9	PQL	ng/Kg	J	Z		
0.145	J	0.0581	MDL	10.9	PQL	ng/Kg	J	Z		
	Lab Result  0.0586  0.189  0.227  0.190  0.282  0.224  0.333  0.300  0.0811  0.280  0.0974  1.45	Lab Result         Lab Qual           0.0586         JB           0.189         JBQ           0.227         JB           0.190         JBQ           0.282         JBQ           0.224         J           0.333         JB           0.300         J           0.0811         JBQ           0.280         JQ           0.0974         JQ           1.45         JB	Lab Result         Lab Qual         DL           0.0586         JB         0.0317           0.189         JBQ         0.0413           0.227         JB         0.0420           0.190         JBQ         0.0338           0.282         JBQ         0.0406           0.224         J         0.0310           0.333         JB         0.0681           0.300         J         0.0364           0.0811         JBQ         0.0300           0.280         JQ         0.0368           0.0974         JQ         0.0824           1.45         JB         0.0385	Lab Result         Lab Qual         DL DL Type           0.0586         JB         0.0317         MDL           0.189         JBQ         0.0413         MDL           0.227         JB         0.0420         MDL           0.190         JBQ         0.0338         MDL           0.282         JBQ         0.0406         MDL           0.224         J         0.0310         MDL           0.333         JB         0.0681         MDL           0.300         J         0.0364         MDL           0.0811         JBQ         0.0300         MDL           0.280         JQ         0.0368         MDL           0.0974         JQ         0.0824         MDL           1.45         JB         0.0385         MDL	Lab Result         Lab Qual         DL DL         Type         RL           0.0586         JB         0.0317         MDL         5.44           0.189         JBQ         0.0413         MDL         5.44           0.227         JB         0.0420         MDL         5.44           0.190         JBQ         0.0338         MDL         5.44           0.282         JBQ         0.0406         MDL         5.44           0.224         J         0.0310         MDL         5.44           0.333         JB         0.0681         MDL         5.44           0.300         J         0.0364         MDL         5.44           0.0811         JBQ         0.0300         MDL         5.44           0.280         JQ         0.0368         MDL         5.44           0.0974         JQ         0.0824         MDL         1.09           1.45         JB         0.0385         MDL         10.9	Lab Result         Lab Qual         DL Type         RL Type         RL Type           0.0586         JB         0.0317         MDL         5.44         PQL           0.189         JBQ         0.0413         MDL         5.44         PQL           0.227         JB         0.0420         MDL         5.44         PQL           0.190         JBQ         0.0338         MDL         5.44         PQL           0.282         JBQ         0.0406         MDL         5.44         PQL           0.224         J         0.0310         MDL         5.44         PQL           0.333         JB         0.0681         MDL         5.44         PQL           0.300         J         0.0364         MDL         5.44         PQL           0.0811         JBQ         0.0300         MDL         5.44         PQL           0.280         JQ         0.0368         MDL         5.44         PQL           0.0974         JQ         0.0824         MDL         1.09         PQL           1.45         JB         0.0385         MDL         10.9         PQL	Lab Result         Lab Qual         DL DL Type         RL Type         RL Type         Units           0.0586         JB 0.0317         MDL 5.44         PQL ng/Kg           0.189         JBQ 0.0413         MDL 5.44         PQL ng/Kg           0.227         JB 0.0420         MDL 5.44         PQL ng/Kg           0.190         JBQ 0.0338         MDL 5.44         PQL ng/Kg           0.282         JBQ 0.0406         MDL 5.44         PQL ng/Kg           0.224         J 0.0310         MDL 5.44         PQL ng/Kg           0.333         JB 0.0681         MDL 5.44         PQL ng/Kg           0.300         J 0.0364         MDL 5.44         PQL ng/Kg           0.0811         JBQ 0.0300         MDL 5.44         PQL ng/Kg           0.280         JQ 0.0368         MDL 5.44         PQL ng/Kg           0.0974         JQ 0.0824         MDL 1.09         PQL ng/Kg           1.45         JB 0.0385         MDL 10.9         PQL ng/Kg	Lab Result         Lab Qual         DL Type         RL Type         RL Type         RL Type         Data Review Qual           0.0586         JB         0.0317         MDL         5.44         PQL         ng/Kg         U           0.189         JBQ         0.0413         MDL         5.44         PQL         ng/Kg         U           0.227         JB         0.0420         MDL         5.44         PQL         ng/Kg         U           0.190         JBQ         0.0338         MDL         5.44         PQL         ng/Kg         U           0.282         JBQ         0.0406         MDL         5.44         PQL         ng/Kg         J           0.224         J         0.0310         MDL         5.44         PQL         ng/Kg         J           0.333         JB         0.0681         MDL         5.44         PQL         ng/Kg         J           0.300         J         0.0364         MDL         5.44         PQL         ng/Kg         J           0.0811         JBQ         0.0300         MDL         5.44         PQL         ng/Kg         U           0.280         JQ         0.0368         MDL		

Sample ID: SL-042-SA6-SB-2.5-3.5 Collected: 8/9/2011 9:56:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.451	JBQ	0.0504	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0336	JBQ	0.0252	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.305	JBQ	0.0497	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0525	JBQ	0.0328	MDL	5.28	PQL	ng/Kg	U	B
1,2,3,7,8,9-HXCDD	0.938	JB	0.0485	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.231	J	0.0262	MDŁ	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.134	JB	0.0759	MDL	5.28	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.117	J	0.0347	MDL	5.28	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0338	JBQ	0.0242	MDL	5.28	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0695	JQ	0.0345	MDL	5.28	PQL	ng/Kg	J	Z
OCDD	1.71	JBQ	0.0367	MDL	10.6	PQL	ng/Kg	J	Z
OCDF	0.152	J	0.0654	MDL,	10.6	PQL	ng/Kg	J	Z

Sample ID: SL-044-SA6-SB-2.5-3.5 Collected: 8/9/2011 8:09:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.73	JB	0.0571	MDL	5.93	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0642	JBQ	0.0572	MDL	5.93	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 7:10:52 AM ADR version 1.4.0.111 Page 5 of 11

Lab Reporting Batch ID: DX126

Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-044-SA6-SB-2.5-3.5	Collec	ted: 8/9/20	11 8:09:00	AM A	nalysis Ty	ype: RES	i	I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	0.221	JBQ	0.0912	MDL	5.93	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.626	JB	0.0731	MDL	5.93	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.160	JBQ	0.0721	MDL	5.93	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.420	JBQ	0.0701	MDL	5.93	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.122	JBQ	0.0700	MDL	5.93	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0862	JQ	0.0370	MDL	5.93	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.177	JBQ	0.0384	MDL	5.93	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0891	J	0.0342	MDL	5.93	PQL	ng/Kg	J	Z
OCDF	2.00	J	0.0700	MDL	11.9	PQL	ng/Kg	J	Z

Sample ID: SL-049-SA6-SB-2.5-3.5 Collected: 8/9/2011 2:15:00 PM Analysis Type: RES Dilution: 1

	00,,00	Concorded, Close 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.								
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.596	JBQ	0.0565	MDL	5.34	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0463	JB	0.0213	MDL	5.34	PQL	ng/Kg	U	8	
1,2,3,6,7,8-HXCDD	0.153	JBQ	0.0492	MDL	5.34	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0324	JBQ	0.0274	MDL	5.34	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.318	JB	0.0467	MDL,	5.34	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0880	JQ	0.0296	MDL	5.34	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0684	JBQ	0.0615	MDL	5.34	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0455	J	0.0336	MDL	5.34	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.0657	JQ	0.0326	MDL	5.34	PQL	ng/Kg	J	Z	
OCDD	1.49	JBQ	0.0521	MDL	10.7	PQL	ng/Kg	J	Z	
OCDF	0.126	J	0.0722	MDL	10.7	PQL	ng/Kg	J	Z	

Sample ID: SL-083-SA5DN-SB-4.0-5.0 Collected: 8/8/2011 11:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	2.91	JB	0.0637	MDL	5.56	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	0.190	JB	0.0151	MDL	5.56	PQL	ng/Kg	υ	В	
1,2,3,4,7,8,9-HPCDF	0.0449	JQ	0.0342	MDL.	5.56	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.0584	JQ	0.0424	MDL	5.56	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0504	JBQ	0.0251	MDL	5.56	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.191	JBQ	0.0445	MDL	5.56	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.231	JBQ	0.0444	MDL	5.56	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 7:10:52 AM

ADR version 1.4.0.111

Page 6 of 11

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM	e ta pjagti se gjeddisto pa ejeger		
Method:	1613B		Matrix: SC	in the first man in the second of

Sample ID: SL-083-SA5DN-SB-4.0-5.0	Collec	Collected: 8/8/2011 11:45:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8,9-HXCDF	0.0701	JBQ	0.0314	MDL	5.56	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.111	JBQ	0.0298	MDL	5.56	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0369	JBQ	0.0237	MDL	5.56	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0869	JBQ	0.0288	MDL	5.56	PQL	ng/Kg	U	В
OCDF	0.751	J	0.0753	MDL	11.1	PQL	ng/Kg	J	Z

Sample ID: SL-153-SA5DN-SB-4.0-5.0 Collected: 8/8/2011 8:34:00 AM Analysis Type: RES Dilution: 1 Data Lab Review Lab DLRLReason Analyte Result DL RLQual Type Type Units Qual Code 1,2,3,4,6,7,8-HPCDD 0.195 JВ 0.0709 MDL 5.67 PQL υ ng/Kg В 1,2,3,4,6,7,8-HPCDF 0.0366 JBQ 0.0313 MDL 5.67 **PQL** ng/Kg U В 1,2,3,6,7,8-HXCDD 0.271 JBQ 0.0578 MDL 5.67 PQL ng/Kg J Z 1,2,3,7,8,9-HXCDD JBQ PQL 0.383 0.0555 MDL 5.67 ng/Kg J Z 1,2,3,7,8,9-HXCDF 0.849 J 0.0380 MDL 5.67 **PQL** ng/Kg J z 1,2,3,7,8-PECDF 0.109 0.0475 MDL PQL J 5.67 J ng/Kg Z 2,3,4,6,7,8-HXCDF ng/Kg 0.0387 JBQ 0.0373 MDL 5.67 PQL U В OCDD 0.939 JB U 0.0493 MDL 11.3 **PQL** ng/Kg В

Sample ID: SL-153-SA5DN-SB-7.0-8.0	Collec	ted: 8/8/20	9:50:00	AM A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.344	JB	0.0541	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0684	JBQ	0.0206	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0970	JQ	0.0529	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0418	JBQ	0.0386	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0802	JBQ	0.0517	MDL	5.55	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.149	JQ	0.0273	MDL	5.55	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0512	JQ	0.0371	MDL	5.55	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0619	J	0.0371	MDL	5.55	PQL	ng/Kg	J	Z
OCDD	0.999	JB	0.0421	MDL,	11.1	PQL	ng/Kg	U	В
OCDF	0.141	JQ	0.0637	MDL	11.1	PQL	ng/Kg	J	Z

. .. .. .. ...

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/4/2012 7:10:52 AM ADR version 1.4.0.111 Page 7 of 11

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX126

Laboratory: LL

EDD Filename: DX126_v1

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

Matrix:

Sample ID	: SL	-273-5	SA6-S	B-4.	0-5.0
-----------	------	--------	-------	------	-------

Sample ID: SL-273-SA6-SB-4.0-5.0	Collec	ected: 8/8/2011 8:20:00 AM				E	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.402	JB	0.0617	MDL	5.25	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0392	JB	0.0244	MDL	5.25	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0470	JBQ	0.0338	MDL	5.25	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0695	JBQ	0.0496	MDL	5.25	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0470	JBQ	0.0274	MDL	5.25	PQL	ng/Kg	U	B
1,2,3,7,8,9-HXCDF	0.0550	JQ	0.0285	MDL	5.25	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0845	JQ	0.0398	MDL	5.25	PQL	ng/Kg	J	Z
OCDD	0.616	JBQ	0.0383	MDL	10.5	PQL	пд/Кд	U	В
OCDF	0.183	.10	0.0677	MDI	10.5	POL	na/Ka	,,	7

Sample ID: SL-273-SA6-SB-9.0-10.0

Collected: 8/8/2011 8:30:00 AM Analysis Type: RES

Dilution: 1

Jampic ID. OL-210-070-0D-0.0-10.0	Oonec	160. 0/0/20	1 1 0.00.00	(A)	naiyana i	ype. ILLO		-	muaon. L
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.478	JB	0.0663	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.131	JBQ	0.0247	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0495	JB	0.0352	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.109	JBQ	0.0541	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0856	JBQ	0.0370	MDL	5.65	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.226	JBQ	0.0528	MDL	5.65	PQL	ng/Kg	U .	В
1,2,3,7,8,9-HXCDF	0.129	J	0.0353	MDL	5.65	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0992	JQ	0.0389	MDL	5.65	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0332	JBQ	0.0296	MDL	5.65	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0772	JQ	0.0389	MDL	5.65	PQL	ng/Kg	J	Z
OCDD	1.09	JBQ	0.0381	MDL	11.3	PQL	ng/Kg	U	В
OCDF	0.228	JQ	0.0748	MDL	11.3	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/4/2012 7:10:52 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX126

Laboratory: LL

EDD Filename: DX126_v1

eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
<del></del>	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
-	Laboratory Triplicate Precision
<del></del>	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX126 Laboratory: LL EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination
F	Field Blank Contamination
FD	Field Duplicate Precision
FT	Field Triplicate Precision
Н	Extraction to Analysis Estimation
Н	Extraction to Analysis Rejection
H	Preservation
Н	Sampling to Analysis Estimation
Н	Sampling to Analysis Rejection
Н	Sampling to Extraction Estimation
Н	Sampling to Extraction Rejection
Н	Sampling to Leaching Estimation
Н	Sampling to Leaching Rejection
Н	Temperature Estimation
Н	Temperature Rejection
1	Internal Standard Estimation
I	Internal Standard Rejection
L	Laboratory Control Precision
L	Laboratory Control Spike Lower Estimation
L	Laboratory Control Spike Lower Rejection
L	Laboratory Control Spike Upper Estimation
L	Laboratory Control Spike Upper Rejection
М	Continuing Tune
М	Initial Tune
М	Performance Evaluation Mixture
M	Resolution Check Mixture
Q	Laboratory Duplicate Precision
Q	Matrix Spike Lower Estimation
Q	Matrix Spike Lower Rejection
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 7:10:52 AM ADR version 1.4.0.111 Page 10 of 11

Lab Reporting Batch ID: DX126

EDD Filename: DX126_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value
<del></del>	***************************************

^{*} denotes a non-reportable result

#### Enclosure I

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX126

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613E Matrix: AQ	THE CHARLES AND THE WAR AND A SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND		oloba Thi shika Debila ya kasa	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2240B371404	8/16/2011 2:04:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD OCDD OCDF	3.99 pg/L 0.817 pg/L 0.551 pg/L 0.551 pg/L 0.200 pg/L 0.405 pg/L 0.373 pg/L 0.218 pg/L 0.458 pg/L 0.458 pg/L 0.595 pg/L 0.437 pg/L 0.268 pg/L 0.268 pg/L 0.450 pg/L 0.457 pg/L 0.457 pg/L 0.457 pg/L 0.457 pg/L 1.57 pg/L 1.57 pg/L	EB-SA6-SB-080911

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-080911(RES)	1,2,3,4,6,7,8-HPCDD	4.38 pg/L	4.38U pg/L
EB-SA6-SB-080911(RES)	1,2,3,4,6,7,8-HPCDF	0.650 pg/L	0.650U pg/L
EB-SA6-SB-080911(RES)	1,2,3,4,7,8,9-HPCDF	0.550 pg/L	0.550U pg/L
EB-SA6-SB-080911(RES)	1,2,3,4,7,8-HXCDF	0.216 pg/L	0.216U pg/L
EB-SA6-SB-080911(RES)	1,2,3,6,7,8-HXCDD	0.366 pg/L	0.366U pg/L
EB-SA6-SB-080911(RES)	1,2,3,6,7,8-HXCDF	0.223 pg/L	0.223U pg/L
EB-SA6-SB-080911(RES)	1,2,3,7,8,9-HXCDD	0.452 pg/L	0.452U pg/L
EB-SA6-SB-080911(RES)	1,2,3,7,8-PECDD	0.238 pg/L	0.238U pg/L
E8-SA6-SB-080911(RES)	1,2,3,7,8-PECDF	0.163 pg/L	0.163U pg/L
EB-SA6-SB-080911(RES)	2,3,4,6,7,8-HXCDF	0.162 pg/L	0.162U pg/L
EB-SA6-SB-080911(RES)	2,3,4,7,8-PECDF	0.292 pg/L	0.292U pg/L
EB-SA6-SB-080911(RES)	2,3,7,8-TCDD	0.344 pg/L	0.344U pg/L
EB-SA6-SB-080911(RES)	OCDD	7.99 pg/L	7.99U pg/L
EB-SA6-SB-080911(RES)	OCDF	1.02 pg/L	1.02U pg/L

<i>Method:</i> 161: <i>Matrix:</i> SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2310B371554	8/22/2011 3:54:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF OCDD	0.206 ng/Kg 0.0461 ng/Kg 0.0425 ng/Kg 0.0624 ng/Kg 0.0497 ng/Kg 0.0816 ng/Kg 0.0511 ng/Kg 0.0911 ng/Kg 0.0440 ng/Kg 0.280 ng/Kg	DUP24-SA5DN-QC-080911 SL-009-SA5DN-SB-4.0-5.0 SL-009-SA5DN-SB-9.0-10.0 SL-011-SA5DN-SB-4.0-5.0 SL-012-SA5DN-SB-9.0-10.0 SL-012-SA5DN-SB-9.0-10.0 SL-031-SA6-SB-4.0-5.0 SL-031-SA6-SB-2.5-3.5 SL-042-SA6-SB-2.5-3.5 SL-049-SA6-SB-2.5-3.5 SL-153-SA5DN-SB-4.0-5.0 SL-153-SA5DN-SB-7.0-8.0 SL-273-SA6-SB-4.0-5.0 SL-273-SA6-SB-9.0-10.0

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2380B370305	8/30/2011 3:05:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF	0.236 ng/Kg 0.0494 ng/Kg 0.0519 ng/Kg 0.0513 ng/Kg 0.0537 ng/Kg 0.0428 ng/Kg 0.0356 ng/Kg 0.0356 ng/Kg 0.0365 ng/Kg 0.0344 ng/Kg 0.426 ng/Kg	SL-083-SA5DN-SB-4.0-5.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP24-SA5DN-QC-080911(RES)	1,2,3,4,6,7,8-HPCDD	0.699 ng/Kg	0.699U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,4,6,7,8-HPCDF	0.122 ng/Kg	0.122U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,4,7,8,9-HPCDF	0.0441 ng/Kg	0.0441U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,4,7,8-HXCDF	0.0763 ng/Kg	0,0763U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,6,7,8-HXCDD	0.0589 ng/Kg	0.0589U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,6,7,8-HXCDF	0.0357 ng/Kg	0,0357U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,7,8,9-HXCDD	0.0440 ng/Kg	0.0440U ng/Kg
DUP24-SA5DN-QC-080911(RES)	1,2,3,7,8-PECDD	0.140 ng/Kg	0.140U ng/Kg
DUP24-SA5DN-QC-080911(RES)	2,3,4,6,7,8-HXCDF	0.0279 ng/Kg	0.0279U ng/Kg
SL-009-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,555 ng/Kg	0.555U ng/Kg
SL-009-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0752 ng/Kg	0.0752U ng/Kg
SL-009-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0,0715 ng/Kg	0.0715U ng/Kg
SL-009-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0813 ng/Kg	0.0813U ng/Kg
SL-009-SA5DN-SB-4,0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0278 ng/Kg	0.0278U ng/Kg
SL-009-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.187 ng/Kg	0.187U ng/Kg
SL-009-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.135 ng/Kg	0.135U ng/Kg
SL-009-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.194 ng/Kg	0.194U ng/Kg
SL-009-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.129 ng/Kg	0.129U ng/Kg
SL-009-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.277 ng/Kg	0.277U ng/Kg
SL-009-SA5DN-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.142 ng/Kg	0.142U ng/Kg
SL-011-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.429 ng/Kg	0.429U ng/Kg
SL-011-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0885 ng/Kg	0.0885U ng/Kg
SL-011-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0755 ng/Kg	0.0755U ng/Kg
SL-011-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0752 ng/Kg	0.0752U ng/Kg
SL-011-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0395 ng/Kg	0.0395U ng/Kg
SL-012-SA5DN-S8-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.148 ng/Kg	0.148U ng/Kg
SL-012-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.102 ng/Kg	0.102U ng/Kg
SL-012-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.108 ng/Kg	0.108U ng/Kg
SL-012-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0749 ng/Kg	0.0749U ng/Kg
SL-012-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.913 ng/Kg	0.913U ng/Kg
SL-012-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.110 ng/Kg	0.110U ng/Kg
SL-012-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0600 ng/Kg	0.0600U ng/Kg

1/4/2012 7:10:07 AM ADR version 1.4.0.111 Page 2 of 4

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method Blank		9.101010	Associated
Metrioa: 161 Matrix: SO	Paris in an american it and it and interior forms	ika ili ang dia disebuah persampada alam pe	

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-012-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0380 ng/Kg	0.0380U ng/Kg
SL-012-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0236 ng/Kg	0.0236U ng/Kg
SL-012-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0566 ng/Kg	0.0566U ng/Kg
SL-031-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.459 ng/Kg	0.459U ng/Kg
SL-031-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.209 ng/Kg	0.209U ng/Kg
SL-031-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0388 ng/Kg	0.0388U ng/Kg
SL-031-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.106 ng/Kg	0.106U ng/Kg
SL-031-SA6-SB-4,0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.197 ng/Kg	0.197U ng/Kg
SL-031-SA6-SB-4.0-5.0(RE\$)	1,2,3,6,7,8-HXCDF	0.101 ng/Kg	0.101U ng/Kg
SL-031-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.155 ng/Kg	0.155U ng/Kg
SL-031-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0634 ng/Kg	0.0634U ng/Kg
SL-031-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.321 ng/Kg	0.321U ng/Kg
SL-031-SA6-SB-9,0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0700 ng/Kg	0.0700U ng/Kg
SL-031-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0586 ng/Kg	0.0586U ng/Kg
SL-031-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.189 ng/Kg	0.189U ng/Kg
SL-031-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.227 ng/Kg	0.227U ng/Kg
SL-031-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.190 ng/Kg	0.190U ng/Kg
SL-031-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.333 ng/Kg	0.333U ng/Kg
SL-031-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0811 ng/Kg	0.0811U ng/Kg
SL-042-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	0.451 ng/Kg	0.451U ng/Kg
SL-042-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0336 ng/Kg	0.0336U ng/Kg
SL-042-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.0525 ng/Kg	0.0525U ng/Kg
SL-042-SA6-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.134 ng/Kg	0.134U ng/Kg
SL-042-SA6-SB-2.5-3.5(RES)	2,3,4,6,7,8-HXCDF	0.0338 ng/Kg	0.0338U ng/Kg
SL-044-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0642 ng/Kg	0.0642U ng/Kg
SL-044-\$A6-\$B-2.5-3.5(RE\$)	1,2,3,4,7,8-HXCDF	0,221 ng/Kg	0.221U ng/Kg
SL-044-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.160 ng/Kg	0.160U ng/Kg
SL-044-SA6-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.122 ng/Kg	0.122U ng/Kg
SL-044-SA6-SB-2.5-3.5(RES)	2,3,4,6,7,8-HXCDF	0.177 ng/Kg	0.177U ng/Kg
SL-049-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	0.596 ng/Kg	0.596U ng/Kg
SL-049-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0463 ng/Kg	0.0463U ng/Kg
SL-049-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDD	0.153 ng/Kg	0.153U ng/Kg
SL-049-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.0324 ng/Kg	0.0324U ng/Kg
SL-049-SA6-SB-2,5-3,5(RES)	1,2,3,7,8-PECDD	0.0684 ng/Kg	0.0684U ng/Kg
SL-083-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.190 ng/Kg	0.190U ng/Kg
SL-083-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0504 ng/Kg	0.0504U ng/Kg
SL-083-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.191 ng/Kg	0.191U ng/Kg
SL-083-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0701 ng/Kg	0.0701U ng/Kg
SL-083-\$A5DN-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.111 ng/Kg	0.111U ng/Kg
SL-083-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0369 ng/Kg	0.0369U ng/Kg

1/4/2012 7:10:07 AM ADR version 1.4.0.111 Page 3 of 4

### Method Blank Outlier Report

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	dente (les sais de la les les les les les les les les les les			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-083-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0869 ng/Kg	0.0869U ng/Kg
SL-153-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.195 ng/Kg	0.195U ng/Kg
SL-153-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0366 ng/Kg	0.0366U ng/Kg
SL-153-SA5DN-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0387 ng/Kg	0.0387U ng/Kg
SL-153-SA5DN-SB-4.0-5.0(RES)	OCDD	0.939 ng/Kg	0.939U ng/Kg
SL-153-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDD	0.344 ng/Kg	0.344U ng/Kg
SL-153-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0684 ng/Kg	0,0684U ng/Kg
SL-153-SA5DN-SB-7.0-8.0(RES)	1,2,3,4,7,8-HXCDF	0.0418 ng/Kg	0.0418U ng/Kg
SL-153-SA5DN-SB-7,0-8,0(RES)	1,2,3,6,7,8-HXCDD	0.0802 ng/Kg	0.0802U ng/Kg
SL-153-SA5DN-SB-7.0-8.0(RES)	OCDD	0.999 ng/Kg	0.999U ng/Kg
SL-273-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,402 ng/Kg	0.402U ng/Kg
SL-273-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0392 ng/Kg	0.0392U ng/Kg
SL-273-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0470 ng/Kg	0.0470U ng/Kg
SL-273-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0695 ng/Kg	0.0695U ng/Kg
SL-273-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0470 ng/Kg	0.0470U ng/Kg
SL-273-SA6-SB-4.0-5.0(RES)	OCDD	0,616 ng/Kg	0.616U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.478 ng/Kg	0.478U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.131 ng/Kg	0.131U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0495 ng/Kg	0.0495U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.109 ng/Kg	0.109U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0856 ng/Kg	0.0856U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.226 ng/Kg	0,226U ng/Kg
SL-273-SA6-SB-9,0-10,0(RES)	2,3,4,6,7,8-HXCDF	0.0332 ng/Kg	0.0332U ng/Kg
SL-273-SA6-SB-9.0-10.0(RES)	OCDD	1.09 ng/Kg	1.09U ng/Kg

1/4/2012 7:10:07 AM ADR version 1.4.0.111 Page 4 of 4

### Field Duplicate RPD Report

Lab Reporting Batch ID: DX126

Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO		iki di Aliku ili Kejing pada ili ka	ing (company) series		Salas il Martini di Caldina di Ca
	Concentr	ation (%)			
Analyte	SL-009-SA5DN-SB-4.0- 5.0	DUP24-SA5DN-QC- 080911	Sample RPD	eQAPP RPD	Flag
MOISTURE	9.8	10.9	11		No Qualifiers Applied

	Concentrati	ion (ng/Kg)			
Analyte	SL-009-SA5DN-SB-4.0- 5.0	DUP24-SA5DN-QC- 080911	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD	0.555	0.699	23	50.00	
1,2,3,4,6,7,8-HPCDF	0.0752	0.122	47	50.00	
1,2,3,6,7,8-HXCDD	0.0715	0.0589	19	50.00	
,2,3,7,8,9-HXCDF	0.0413	0.0396	4	50.00	No Qualifiers Applie
2,3,4,6,7,8-HXCDF	0.0278	0.0279	0	50.00	
2,3,4,7,8-PECDF	0.100	0.121	19	50.00	
OCDD	4.04	4.76	16	50.00	
,2,3,4,7,8,9-HPCDF	5.51 U	0.0441	200	50.00	
,2,3,4,7,8-HxCDD	5.51 U	0.0520	200	50.00	
,2,3,4,7,8-HXCDF	5.51 U	0.0763	200	50.00	
,2,3,6,7,8-HXCDF	5.51 U	0.0357	200	50.00	J(all detects)
,2,3,7,8,9-HXCDD	0.0813	0.0440	60	50.00	UJ(all non-detects
,2,3,7,8-PECDD	5.51 U	0.140	200	50.00	1
1,2,3,7,8-PECDF	0.125	0.0543	79	50.00	
OCDF	0.140	0.273	64	50.00	

1/4/2012 7:09:21 AM ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

### Method: 1613B

Matrix: AC

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-080911	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	4.38 0.650 0.550 0.216 0.366 0.223 0.452 0.238 0.163 0.162 0.292 0.344 7.99 1.02	9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Methoda 1613

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP24-SA5DN-QC-080911	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	5 to 5 to 5 to 5 to 5 to 5 to 5 to 5 to	0.699 0.122 0.0441 0.0520 0.0763 0.0589 0.0357 0.0440 0.0396 0.140 0.0543 0.0279 0.121 4.76 0.273	5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.51	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-009-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	g g g g g g g g g g g g g g g g g g g	0.555 0.0752 0.0715 0.0813 0.0413 0.125 0.0278 0.100 4.04 0.140	5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.51	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/4/2012 7:10:14 AM ADR version 1.4.0.111 Page 1 of 4

Lab Reporting Batch ID: DX126

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method: 1613B

Matrix: SO				•	*.		
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL. Type	Units	Flag
SL-009-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	BC BC BC BC BC BC BC BC BC BC BC BC BC B	1.08 0.187 0.127 0.135 0.194 0.129 0.0954 0.277 0.221 0.142 0.186 9.81 0.381	5.56 5.56 5.56 5.56 5.56 5.56 5.56 5.56	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-011-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	5 to 5 to 5 to 5 to 5 to 5 to 5 to 5 to	0.429 0.0885 0.0521 0.0755 0.0752 0.0395 0.0642 0.105 3.03 0.225	5.60 5.60 5.60 5.60 5.60 5.60 5.60 1.12 11.2	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-012-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 0CDD 0CDF	- #55858 ###866868	1.13 0.148 0.102 0.108 0.104 0.0749 0.0624 0.0374 8.10 0.534	5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-012-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF OCDD OCDF	B B B C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C J C B C B	0.913 0.110 0.0600 0.0380 0.0236 0.0566 0.0363 0.0404 6.21 0.182	5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-031-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF 0,3,4,7,8-PECDF	58-888889858888888888888888888888888888	0.459 0.209 0.0388 0.0585 0.106 0.197 0.101 0.316 0.232 0.155 0.273 0.0634 0.216 2.31 0.448	5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX126 Laboratory: LL

EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

Watrix: 50							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL. Type	Units	Flag
SL-031-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	BC   B	0.321 0.0700 0.0586 0.189 0.227 0.190 0.282 0.224 0.333 0.300 0.0811 0.280 0.0974 1.45 0.145	5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-042-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	- Bobara-asasasa Bobbara-asasasasa	0.451 0.0336 0.305 0.0525 0.938 0.231 0.134 0.117 0.0338 0.0695 1.71 0.152	5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-044-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDF	1	1.73 0.0642 0.221 0.626 0.160 0.420 0.122 0.0862 0.177 0.0891 2.00	5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-049-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF OCDD OCDF	- 85 - 85 - 85 - 85 - 85 - 85 - 85 - 85	0.596 0.0463 0.153 0.0324 0.318 0.0880 0.0684 0.0455 0.0657 1.49 0.126	5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/4/2012 7:10:14 AM ADR version 1.4.0.111 Page 3 of 4

Lab Reporting Batch ID: DX126

Laboratory: LL EDD Filename: DX126_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

iviatrix: 50						Υ	
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-083-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF CODF	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.91 0.190 0.0449 0.0584 0.0504 0.191 0.231 0.0701 0.111 0.0369 0.0869 0.751	5.56 5.56 5.56 5.56 5.56 5.56 5.56 5.56	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-153-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF OCDD	JB JBQ JBQ JBQ JBQ JBQ JBQ	0.195 0.0366 0.271 0.383 0.849 0.109 0.0387 0.939	5.67 5.67 5.67 5.67 5.67 5.67 5.67 11.3	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-153-SA5DN-SB-7.0-8.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF OCDD OCDF	18 JBQ JQ JQ J JB JQ JQ JBQ JQ JBQ JBQ JBQ	0.344 0.0684 0.0970 0.0418 0.0802 0.149 0.0512 0.0619 0.999 0.141	5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.5	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-273-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JB JBQ JBQ JBQ JQ JQ JBQ JBQ	0.402 0.0392 0.0470 0.0695 0.0470 0.0550 0.0845 0.616 0.183	5.25 5.25 5.25 5.25 5.25 5.25 5.25 10.5 10.5	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-273-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0CDD 0CDF	# # # # # # # # # # # # # # # # # # #	0.478 0.131 0.0495 0.109 0.0856 0.226 0.129 0.0992 0.0332 0.0772 1.09 0.228	5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.65	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

ADR version 1.4.0.111 1/4/2012 7:10:14 AM Page 4 of 4

### **Enclosure II**

### **Level IV Validation Reports**

### Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Santa Susana Field Laboratory

Collection Date: August 8 through August 9, 2011

LDC Report Date: December 28, 2011

Matrix: Soil/Water

Parameters: Dioxins/Dibenzofurans

Validation Level: Level IV

Laboratory: Lancaster Laboratories

Sample Delivery Group (SDG): DX126

### Sample Identification

SL-083-SA5DN-SB-4.0-5.0

SL-153-SA5DN-SB-4.0-5.0

SL-153-SA5DN-SB-7.0-8.0

SL-273-SA6-SB-4.0-5.0

SL-273-SA6-SB-9.0-10.0

SL-031-SA6-SB-4.0-5.0

SL-031-SA6-SB-9.0-10.0

SL-042-SA6-SB-2.5-3.5

SL-044-SA6-SB-2.5-3.5

SL-049-SA6-SB-2.5-3.5

EB-SA6-SB-080911

SL-011-SA5DN-SB-4.0-5.0

SL-012-SA5DN-SB-4.0-5.0

SL-012-SA5DN-SB-9.0-10.0

SL-009-SA5DN-SB-4.0-5.0

SL-009-SA5DN-SB-9.0-10.0

DUP24-SA5DN-QC-080911

SL-009-SA5DN-SB-4.0-5.0MS

SL-009-SA5DN-SB-4.0-5.0MSD

### Introduction

This data review covers 18 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1613B for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Quality Assurance Project Plan for Santa Susana Field Laboratory (SSFL), RCRA Facility Investigation, Surficial Media Operable Unit (March 2009, Revision 4) and the USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

The chromatographic resolution between 2,3,7,8-TCDD and the peaks representing any other unlabeled TCDD isomers was resolved with a valley of less than or equal to 25%.

PFK and static resolving power were within validation criteria.

### III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

### IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were within QC limits.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

### V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BLK224001	8/12/11	2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDD OCDF	0.139 pg/L 0.457 pg/L 0.280 pg/L 0.450 pg/L 0.450 pg/L 0.405 pg/L 0.218 pg/L 0.268 pg/L 0.200 pg/L 0.373 pg/L 0.458 pg/L 0.595 pg/L 0.817 pg/L 0.591 pg/L 0.595 pg/L 1.57 pg/L	All water samples in SDG DX126
BLK231004	8/19/11	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD	0.0911 ng/Kg 0.0624 ng/Kg 0.0816 ng/Kg 0.0440 ng/Kg 0.0497 ng/Kg 0.0511 ng/Kg 0.0461 ng/Kg 0.206 ng/Kg 0.0425 ng/Kg 0.280 ng/Kg	SL-153-SA5DN-SB-4.0-5.0 SL-153-SA5DN-SB-7.0-8.0 SL-273-SA6-SB-4.0-5.0 SL-273-SA6-SB-9.0-10.0 SL-031-SA6-SB-9.0-10.0 SL-031-SA6-SB-9.0-10.0 SL-042-SA6-SB-2.5-3.5 SL-044-SA6-SB-2.5-3.5 SL-049-SA6-SB-2.5-3.5 SL-011-SA5DN-SB-4.0-5.0 SL-012-SA5DN-SB-4.0-5.0 SL-012-SA5DN-SB-9.0-10.0 SL-009-SA5DN-SB-9.0-10.0 DUP24-SA5DN-QC-080911
BLK238001	8/19/11	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDD	0.0365 ng/Kg 0.0544 ng/Kg 0.0682 ng/Kg 0.0519 ng/Kg 0.0537 ng/Kg 0.0234 ng/Kg 0.0513 ng/Kg 0.0428 ng/Kg 0.0356 ng/Kg 0.0494 ng/Kg 0.236 ng/Kg 0.426 ng/Kg	SL-083-SA5DN-SB-4.0-5.0

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
EB-SA6-SB-080911	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD OCDD OCDF	0.344 pg/L 0.163 pg/L 0.292 pg/L 0.298 pg/L 0.216 pg/L 0.223 pg/L 0.162 pg/L 0.366 pg/L 0.452 pg/L 0.650 pg/L 4.38 pg/L 0.550 pg/L 7.99 pg/L 1.02 pg/L	0.344U pg/L 0.163U pg/L 0.292U pg/L 0.238U pg/L 0.216U pg/L 0.223U pg/L 0.162U pg/L 0.366U pg/L 0.452U pg/L 0.650U pg/L 4.38U pg/L 0.550U pg/L 7.99U pg/L 1.02U pg/L
SL-153-SA5DN-SB-4.0-5.0	2,3,4,6,7,8-HxCDF	0.0387 ng/Kg	0.0387U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0366 ng/Kg	0.0366U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.195 ng/Kg	0.195U ng/Kg
	OCDD	0.939 ng/Kg	0.939U ng/Kg
SL-153-SA5DN-SB-7.0-8.0	1,2,3,4,7,8-HxCDF	0.0418 ng/Kg	0.0418U ng/Kg
	1,2,3,6,7,8-HxCDD	0.0802 ng/Kg	0.0802U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0684 ng/Kg	0.0684U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.344 ng/Kg	0.344U ng/Kg
	OCDD	0.999 ng/Kg	0.999U ng/Kg
SL-273-SA6-SB-4.0-5.0	1,2,3,4,7,8-HxCDF	0.0470 ng/Kg	0.0470U ng/Kg
	1,2,3,6,7,8-HxCDF	0.0470 ng/Kg	0.0470U ng/Kg
	1,2,3,6,7,8-HxCDD	0.0695 ng/Kg	0.0695U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0392 ng/Kg	0.0392U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.402 ng/Kg	0.402U ng/Kg
	OCDD	0.616 ng/Kg	0.616U ng/Kg
SL-273-SA6-SB-9.0-10.0	1,2,3,6,7,8-HxCDF	0.0856 ng/Kg	0.0856U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0332 ng/Kg	0.0332U ng/Kg
	1,2,3,6,7,8-HxCDD	0.109 ng/Kg	0.109U ng/Kg
	1,2,3,7,8,9-HxCDD	0.226 ng/Kg	0.226U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.131 ng/Kg	0.131U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.478 ng/Kg	0.478U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.0495 ng/Kg	0.0495U ng/Kg
	OCDD	1.09 ng/Kg	1.09U ng/Kg
SL-031-SA6-SB-4.0-5.0	1,2,3,7,8-PeCDD	0.155 ng/Kg	0.155U ng/Kg
	1,2,3,4,7,8-HxCDF	0.106 ng/Kg	0.106U ng/Kg
	1,2,3,6,7,8-HxCDF	0.101 ng/Kg	0.101U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0634 ng/Kg	0.0634U ng/Kg
	1,2,3,6,7,8-HxCDD	0.197 ng/Kg	0.197U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.209 ng/Kg	0.209U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.459 ng/Kg	0.459U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.0388 ng/Kg	0.0388U ng/Kg
SL-031-SA6-SB-9.0-10.0	1,2,3,7,8-PeCDD	0.333 ng/Kg	0.333U ng/Kg
	1,2,3,4,7,8-HxCDF	0.189 ng/Kg	0.189U ng/Kg
	1,2,3,6,7,8-HxCDF	0.190 ng/Kg	0.190U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0811 ng/Kg	0.0811U ng/Kg
	1,2,3,6,7,8-HxCDD	0.227 ng/Kg	0.227U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0700 ng/Kg	0.0700U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.321 ng/Kg	0.321U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.0586 ng/Kg	0.0586U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-042-SA6-SB-2.5-3.5	1,2,3,7,8-PeCDD	0.134 ng/Kg	0.134U ng/Kg
	1,2,3,6,7,8-HxCDF	0.0525 ng/Kg	0.0525U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0338 ng/Kg	0.0338U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0336 ng/Kg	0.0336U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.451 ng/Kg	0.451U ng/Kg
SL-044-SA6-SB-2.5-3.5	1,2,3,7,8-PeCDD	0.122 ng/Kg	0.122U ng/Kg
	1,2,3,4,7,8-HxCDF	0.221 ng/Kg	0.221U ng/Kg
	1,2,3,6,7,8-HxCDF	0.160 ng/Kg	0.160U ng/Kg
	2,3,4,6,7,8-HxCDF	0.177 ng/Kg	0.177U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.0642 ng/Kg	0.0642U ng/Kg
SL-049-SA6-SB-2.5-3.5	1,2,3,7,8-PeCDD	0.0684 ng/Kg	0.0684U ng/Kg
	1,2,3,6,7,8-HxCDF	0.0324 ng/Kg	0.0324U ng/Kg
	1,2,3,6,7,8-HxCDD	0.153 ng/Kg	0.153U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0463 ng/Kg	0.0463U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.596 ng/Kg	0.596U ng/Kg
SL-011-SA5DN-SB-4.0-5.0	2,3,4,6,7,8-HxCDF	0.0395 ng/Kg	0.0395U ng/Kg
	1,2,3,6,7,8-HxCDD	0.0755 ng/Kg	0.0755U ng/Kg
	1,2,3,7,8,9-HxCDD	0.0752 ng/Kg	0.0752U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.429 ng/Kg	0.429U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0885 ng/Kg	0.0885U ng/Kg
SL-012-SA5DN-SB-4.0-5.0	1,2,3,7,8-PeCDD	0.0749 ng/Kg	0.0749U ng/Kg
	1,2,3,6,7,8-HxCDD	0.102 ng/Kg	0.102U ng/Kg
	1,2,3,7,8,9-HxCDD	0.108 ng/Kg	0.108U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.148 ng/Kg	0.148U ng/Kg
SL-012-SA5DN-SB-9.0-10.0	1,2,3,4,7,8-HxCDF	0.0380 ng/Kg	0.0380U ng/Kg
	1,2,3,6,7,8-HxCDF	0.0236 ng/Kg	0.0236U ng/Kg
	1,2,3,7,8,9-HxCDD	0.0566 ng/Kg	0.0566U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.110 ng/Kg	0.110U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.913 ng/Kg	0.913U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.0600 ng/Kg	0.0600U ng/Kg
SL-009-SA5DN-SB-4.0-5.0	2,3,4,6,7,8-HxCDF	0.0278 ng/Kg	0.0278U ng/Kg
	1,2,3,6,7,8-HxCDD	0.0715 ng/Kg	0.0715U ng/Kg
	1,2,3,7,8,9-HxCDD	0.0813 ng/Kg	0.0813U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0752 ng/Kg	0.0752U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.555 ng/Kg	0.555U ng/Kg
SL-009-SA5DN-SB-9.0-10.0	1,2,3,7,8-PeCDD	0.277 ng/Kg	0.277U ng/Kg
	1,2,3,4,7,8-HxCDF	0.135 ng/Kg	0.135U ng/Kg
	2,3,4,6,7,8-HxCDF	0.142 ng/Kg	0.142U ng/Kg
	1,2,3,6,7,8-HxCDD	0.194 ng/Kg	0.194U ng/Kg
	1,2,3,7,8,9-HxCDD	0.129 ng/Kg	0.129U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.187 ng/Kg	0.187U ng/Kg
DUP24-SA5DN-QC-080911	1,2,3,7,8-PeCDD	0.140 ng/Kg	0.140U ng/Kg
	1,2,3,4,7,8-HxCDF	0.0763 ng/Kg	0.0763U ng/Kg
	1,2,3,6,7,8-HxCDF	0.0357 ng/Kg	0.0357U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0279 ng/Kg	0.0279U ng/Kg
	1,2,3,6,7,8-HxCDD	0.0589 ng/Kg	0.0589U ng/Kg
	1,2,3,7,8,9-HxCDD	0.0440 ng/Kg	0.0440U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.122 ng/Kg	0.122U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.699 ng/Kg	0.699U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.0441 ng/Kg	0.0441U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-083-SA5DN-SB-4.0-5.0	1,2,3,7,8-PeCDF	0.111 ng/Kg	0.111U ng/Kg
	2,3,4,7,8-PeCDF	0.0869 ng/Kg	0.0869U ng/Kg
	1,2,3,4,7,8-HxCDF	0.0504 ng/Kg	0.0504U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0369 ng/Kg	0.0369U ng/Kg
	1,2,3,6,7,8-HxCDD	0.191 ng/Kg	0.191U ng/Kg
	1,2,3,7,8,9-HxCDF	0.0701 ng/Kg	0.0701U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.190 ng/Kg	0.190U ng/Kg

Sample EB-SA6-SB-080911 was identified as an equipment blank. No polychlorinated dioxin/dibenzofuran contaminants were found with the following exceptions:

Equipment Blank ID	Sampling Date	Compound	Concentration	Associated Samples
EB-SA6-SB-080911	8/9/11	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD OCDD	0.344 pg/L 0.163 pg/L 0.292 pg/L 0.238 pg/L 0.216 pg/L 0.223 pg/L 0.162 pg/L 0.366 pg/L 0.452 pg/L 0.650 pg/L 4.38 pg/L 0.550 pg/L 7.99 pg/L 1.02 pg/L	SL-042-SA6-SB-2.5-3.5 SL-044-SA6-SB-2.5-3.5 SL-049-SA6-SB-2.5-3.5

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X for other contaminants) than the concentrations found in the associated field blanks.

### VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within the QC limits.

### VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits.

### VIII. Regional Quality Assurance and Quality Control

Not applicable.

### IX. Internal Standards

All internal standard recoveries were within QC limits.

### X. Target Compound Identifications

All target compound identifications were within validation criteria.

### XI. Compound Quantitation and RLs

All compound quantitation and RLs were within validation criteria.

All compounds reported below the RL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG DX126	All compounds reported below the RL.	J (all detects)	Α

### XII. System Performance

The system performance was acceptable.

### XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

### XIV. Field Duplicates

Samples SL-009-SA5DN-SB-4.0-5.0 and DUP24-SA5DN-QC-080911 were identified as field duplicates. No polychlorinated dioxins/dibenzofurans were detected in any of the samples with the following exceptions:

	Concentra	tion (ng/Kg)			
Compound	SL-009-SA5DN-SB-4.0-5.0	DUP24-SA5DN-QC-080911	RPD (Limits)	Flags	A or P
1,2,3,7,8-PeCDF	0.125	0.0543	79 (≤50)	J (all detects)	А
2,3,4,7,8-PeCDF	0.100	0.121	19 (≤50)	-	-
1,2,3,7,8-PeCDD	5.51U	0.140	200 (≤50)	J (all detects) UJ (all non-detects)	Α
1,2,3,4,7,8-HxCDF	5.51U	0.0763	200 (≤50)	J (all detects) UJ (all non-detects)	A

	Concentra	tion (ng/Kg)			
Compound	SL-009-SA5DN-SB-4.0-5.0	DUP24-SA5DN-QC-080911	RPD (Limits)	Flags	A or P
1,2,3,6,7,8-HxCDF	5.51U	0.0357	200 (≤50)	J (all detects) UJ (all non-detects)	Α
2,3,4,6,7,8-HxCDF	0.0278	0.0279	0 (≤50)	-	-
1,2,3,4,7,8-HxCDD	5.51U	0.0520	200 (≤50)	J (all detects) UJ (all non-detects)	Α
1,2,3,6,7,8-HxCDD	0.0715	0.0589	19 (≤50)	-	-
1,2,3,7,8,9-HxCDD	0.0813	0.0440	60 (≤50)	J (all detects)	A
1,2,3,7,8,9-HxCDF	0.0413	0.0396	4 (≤50)	-	-
1,2,3,4,6,7,8-HpCDF	0.0752	0.122	47 (≤50)	-	-
1,2,3,4,6,7,8-HpCDD	0.555	0.699	23 (≤50)	-	-
1,2,3,4,7,8,9-HpCDF	5.51U	0.0441	200 (≤50)	J (all detects) UJ (all non-detects)	Α
OCDD	4.04	4.76	16 (≤50)	-	-
OCDF	0.140	0.273	64 (≤50)	J (all detects)	Α

### Santa Susana Field Laboratory Dioxins/Dibenzofurans - Data Qualification Summary - SDG DX126

SDG	Sample	Compound	Flag	A or P	Reason (Code)
DX126	SL-083-SA5DN-SB-4.0-5.0 SL-153-SA5DN-SB-4.0-5.0 SL-153-SA5DN-SB-7.0-8.0 SL-273-SA6-SB-4.0-5.0 SL-273-SA6-SB-9.0-10.0 SL-031-SA6-SB-9.0-10.0 SL-031-SA6-SB-9.0-10.0 SL-042-SA6-SB-2.5-3.5 SL-044-SA6-SB-2.5-3.5 SL-049-SA6-SB-2.5-3.5 SL-049-SA6-SB-2.5-3.5 EB-SA6-SB-080911 SL-011-SA5DN-SB-4.0-5.0 SL-012-SA5DN-SB-4.0-5.0 SL-012-SA5DN-SB-9.0-10.0 SL-009-SA5DN-SB-9.0-10.0 DUP24-SA5DN-SB-9.0-10.0	All compounds reported below the RL.	J (all detects)	A	Compound quantitation and RLs (Z)
DX126	SL-009-SA5DN-SB-4.0-5.0 DUP24-SA5DN-QC-080911	1,2,3,7,8-PeCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF	J (all detects) J (all detects) J (all detects)	А	Field duplicates (RPD) (FD)
DX126	SL-009-SA5DN-SB-4.0-5.0 DUP24-SA5DN-QC-080911	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8,9-HpCDF	J (all detects) UJ (all non-detects)	А	Field duplicates (RPD) (FD)

### Santa Susana Field Laboratory Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG DX126

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX126	EB-SA6-SB-080911	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 0CDD	0.344U pg/L 0.163U pg/L 0.292U pg/L 0.238U pg/L 0.216U pg/L 0.162U pg/L 0.366U pg/L 0.452U pg/L 0.650U pg/L 4.38U pg/L 0.550U pg/L 7.99U pg/L 1.02U pg/L	A	В
DX126	SL-153-SA5DN-SB-4.0-5.0	2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDD	0.0387U ng/Kg 0.0366U ng/Kg 0.195U ng/Kg 0.939U ng/Kg	А	В

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX126	SL-153-SA5DN-SB-7.0-8.0	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDD	0.0418U ng/Kg 0.0802U ng/Kg 0.0684U ng/Kg 0.344U ng/Kg 0.999U ng/Kg	A	В
DX126	SL-273-SA6-SB-4.0-5.0	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDD	0.0470U ng/Kg 0.0470U ng/Kg 0.0695U ng/Kg 0.0392U ng/Kg 0.402U ng/Kg 0.616U ng/Kg	А	В
DX126	SL-273-SA6-SB-9.0-10.0	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF	0.0856U ng/Kg 0.0332U ng/Kg 0.109U ng/Kg 0.226U ng/Kg 0.131U ng/Kg 0.478U ng/Kg 0.0495U ng/Kg 1.09U ng/Kg	А	В
DX126	SL-031-SA6-SB-4.0-5.0	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD	0.155U ng/Kg 0.106U ng/Kg 0.101U ng/Kg 0.0634U ng/Kg 0.197U ng/Kg 0.209U ng/Kg 0.459U ng/Kg 0.0388U ng/Kg	А	В
DX126	SL-031-SA6-SB-9.0-10.0	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF	0.333U ng/Kg 0.189U ng/Kg 0.190U ng/Kg 0.0811U ng/Kg 0.227U ng/Kg 0.0700U ng/Kg 0.321U ng/Kg 0.0586U ng/Kg	А	В
DX126	SL-042-SA6-SB-2.5-3.5	1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD	0.134U ng/Kg 0.0525U ng/Kg 0.0338U ng/Kg 0.0336U ng/Kg 0.451U ng/Kg	А	В
DX126	SL-044-SA6-SB-2.5-3.5	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,7,8,9-HpCDF	0.122U ng/Kg 0.221U ng/Kg 0.160U ng/Kg 0.177U ng/Kg 0.0642U ng/Kg	A	В
DX126	SL-049-SA6-SB-2.5-3.5	1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD	0.0684U ng/Kg 0.0324U ng/Kg 0.153U ng/Kg 0.0463U ng/Kg 0.596U ng/Kg	А	В

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX126	SL-011-SA5DN-SB-4.0-5.0	2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF	0.0395U ng/Kg 0.0755U ng/Kg 0.0752U ng/Kg 0.429U ng/Kg 0.0885U ng/Kg	A	В
DX126	SL-012-SA5DN-SB-4.0-5.0	1,2,3,7,8-PeCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF	0.0749U ng/Kg 0.102U ng/Kg 0.108U ng/Kg 0.148U ng/Kg	А	В
DX126	SL-012-SA5DN-SB-9.0-10.0	1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF	0.0380U ng/Kg 0.0236U ng/Kg 0.0566U ng/Kg 0.110U ng/Kg 0.913U ng/Kg 0.0600U ng/Kg	А	8
DX126	SL-009-SA5DN-SB-4.0-5.0	2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD	0.0278U ng/Kg 0.0715U ng/Kg 0.0813U ng/Kg 0.0752U ng/Kg 0.555U ng/Kg	А	В
DX126	SL-009-SA5DN-SB-9.0-10.0	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF	0.277U ng/Kg 0.135U ng/Kg 0.142U ng/Kg 0.194U ng/Kg 0.129U ng/Kg 0.187U ng/Kg	А	В
DX126	DUP24-SA5DN-QC-080911	1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF	0.140U ng/Kg 0.0763U ng/Kg 0.0357U ng/Kg 0.0279U ng/Kg 0.0589U ng/Kg 0.0440U ng/Kg 0.122U ng/Kg 0.699U ng/Kg 0.0441U ng/Kg	А	В
DX126	SL-083-SA5DN-SB-4.0-5.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	0.111U ng/Kg 0.0869U ng/Kg 0.0504U ng/Kg 0.0369U ng/Kg 0.191U ng/Kg 0.0701U ng/Kg 0.190U ng/Kg	А	В

Santa Susana Field Laboratory Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG DX126

No Sample Data Qualified in this SDG

SDG	#: <u>26850C21</u> #: <u>DX126</u> ratory: <u>Lancaster Labora</u>		N COMPLE Leve		ESS WORKSHEE		Date:_/ Page:_/ Reviewer:	
METI	HOD: HRGC/HRMS Diox	ins/Dibenzofurar	ns (EPA Metho	d 161	13B)	2r	nd Reviewer:	<u> </u>
The s	samples listed below were ation findings worksheets	e reviewed for ea	•		•	ation findings a	are noted in atta	ached
	Validation	Area			Con	nments		
l.	Technical holding times		A Sam	npling (	dates: 8/8	8/9/11		
II.	HRGC/HRMS Instrument po	erformance check	A					
111.	Initial calibration		Δ	0/	6 PSD = 20/3	5		
IV.	Routine calibration/ICV		A	co	v = ac limi-	+-		
V.	Blanks		34					
VI.	Matrix spike/Matrix spike du	plicates	-\					
VII.	Laboratory control samples		A	OP	R			
VIII.	Regional quality assurance	and quality control	N					
IX.	Internal standards		A 8	(	limi +			
Х.	Target compound identificat	tions	Δ					
XI.	Compound quantitation and	CRQLs	Δ				<del></del>	
XII.	System performance		Α					
XIII.	Overall assessment of data		A					1
XIV.	Field duplicates		SW	D =	15, 17			
XV.	Field blanks		SW E	B=	11			
Note: Validat	A = Acceptable N = Not provided/applicable SW = See worksheet ed Samples:	R = Rin FB = Fid	o compounds dete sate eld blank	ected	D = Duplicate TB = Trip blank EB = Equipment b	lank		
	\$011 + wal	l , l		Ι.				<del></del>
13	SL-083-SA5DN-SB-4.0-5.0	11 EB-SA6-SB-0	80911 W		Blank 224001	31		
2 2	SL-153-SA5DN-SB-4.0-5.0	12 <b>2</b> SL-011-SA5D	N-SB-4.0-5.0		Blank 231004	32		
3 2	SL-153-SA5DN-SB-7.0-8.0	13 2 SL-012-SA5D		237	Blank 23800 1	33		
4 2	SL-273-SA6-SB-4.0-5.0	14 2 SL-012-SA5D	_	24		34	*1	
	SL-273-SA6-SB-9.0-10.0	15 2 SL-009-SA5D		25		35		
$\Box$	SL-031-SA6-SB-4.0-5.0	16 ⁷ SL-009-SA5D		26		36	<del>'</del>	
	SL-031-SA6-SB-9.0-10.0	177 DUP24-SA5D		27		37		
87	SL-042-SA6-SB-2.5-3.5	18 Z SL-009-SA5D	N-SB-4.0-5.0MS	28	1	38		

Notes:			
•	 	 	

30

39

40

19 1/SL-009-SA5DN-SB-4.0-5.0MSD 29

20

SL-044-SA6-SB-2.5-3.5

SL-049-SA6-SB-2.5-3.5

102

Page:_/_of_	2
Reviewer: FT	
2nd Reviewer: 🖊	
<i>i</i> '_ '	

Method: Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times			77.38 30.17	
All technical holding times were met.				
Cooler temperature criteria was met.				
II. GC/MS Instrument performance check	10.57 18.75			
Was PFK exact mass 380.9760 verified?	_		ļ	
Were the retention time windows established for all homologues?	_			
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers ≤ 25% ?	_			
Is the static resolving power at least 10,000 (10% valley definition)?				
Was the mass resolution adequately check with PFK?	<u>                                     </u>			
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?		TO THE WAY THE BE	ा सह	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
III. Initial calibration				
Was the initial calibration performed at 5 concentration levels?				
Were all percent relative standard deviations (%RSD) ≤ 20% for unlabeled compounds and ≤ 35% for labeled compounds?	-			
Did all calibration standards meet the Ion Abundance Ratio criteria?	_			
Was the signal to noise ratio for each target compound ≥ 2.5 and for each recovery and internal standard ≥ 10?	-			
IV. Continuing calibration				
Was a routine calibration performed at the beginning and end of each 12 hour period?	_			
Were all the concentrations for the unlabeled compounds and labeled compounds within the QC limits (Method 1613B, Table 6)?	_			
Did all routine calibration standards meet the Ion Abundance Ratio criteria?	201.0			
V. Blanks		NEW YORK		
Was a method blank associated with every sample in this SDG?				
Was a method blank performed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet?		- Attention		
VI. Mátrix spike/Mátrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	_			
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VII. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

LDC #: 2685 OCZ

### VALIDATION FINDINGS CHECKLIST

Page: 2 of 2
Reviewer: FT
2nd Reviewer: _____

Validation Area	Yes	No	NA	Findings/Comments
VIII. Regional Quality Assurance and Quality Control		i silent		
Were performance evaluation (PE) samples performed?			_	
Were the performance evaluation (PE) samples within the acceptance limits?			_	
IX: Internal standards	( ev			
Were internal standard recoveries within the 25-150% criteria?				
Was the minimum S/N ratio of all internal standard peaks > 10?		<u>}                                    </u>		
X. Target compound identification				
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?				
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?	/			
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?	/			
Did compound spectra contain all characteristic ions listed in the table attached?				
Was the Ion Abundance Ratio for the two quantitation ions within criteria?				
Was the signal to noise ratio for each target compound and labeled standard <u>&gt;</u> 2.5?	_			
Does the maximum intensity of each specified characteristic ion coincide within $\pm2$ seconds (includes labeled standards)?	_			
For PCDF identification, was any signal (S/N $\geq$ 2.5, at $\pm$ seconds RT) detected in the corresponding PCDPE channel?		-		
Was an acceptable lock mass recorded and monitored?	<u></u>	P. X. 5 -4 -		
XI. Compound quantitation/CRQLs	1007 x Av. 50			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XII: System performance				
System performance was found to be acceptable.				
XIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XIV. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				
XV: Field blanks		1044.2.2 14.2.2.2 14.2.2.2		
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	1. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

<del>-</del>
$\aleph$
8
33
268
$\sim$
#
8
닠

Reviewer:_ 2nd Reviewer:

 $\omega$ 

Page:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed? *EMPC N/A

YN X

Conc. units: pg/L

Blank analysis date: 8/16/11 Was the method blank contaminated? Brank extraction date: 8/12/11

Associated samples: ALL WATER

							:	
Compound	Blank ID			Sa	Sample Identification	tion		
	BLK224001	5X	11					
I	0.139	0.695						
А	0.457*	2.285	0.344*∪					
	0.280*	1.4	0.163*U					
ņ	0.450*	2.25	0.292*U					
В	0.437*	2.185	0.238*U					
¥	0.405	2.025	0.216*U					
الد	0.218*	1.09	0.223*U	,				
M	0.268	1.34	0.162*U					
S	0.200*	1						
D	0.373*	1.865	0.366*U					
Ш	0.458	2.29	0.452*U			:		
Z	0.595*	2.975						
0	0.817*	4.085	0.650U					
L	3.99	19.95	4.38U					
Ь	0.551*	2.755	0.550*U					
9	8.97	44.85	7.99*U					
	į	i C						

7	
$^{\circ}$	J
C	)
C	٥
Ğ	)
α	١
Ü	j
C	Į
٠.	
#	
Ç.	J
$\overline{}$	١
_	1

Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? N/A V V V

Was a method blank performed for each matrix and whenever a sample extraction was performed? *EMPC

∀N K

Was the method blank contaminated?

Associated samples: 2-10, 12-17 Blank analysis date: 8/22/11 Blank extraction date: 8/19/11 Conc. units: ng/kg

Compound	Blank ID				Ş	Sample Identification	tion			
	BLK231004	2X	2	3	4	5	9	7	· c	σ
В	0.0911*	0.4555					0.155*U	0.333U	0.134U	0.122*U
<b>Y</b>	0.0624*	0.312		0.0418*U	0.0470*U		0.106*U	0.189*∪		0.221*U
F	0.0816*	0.408			0.0470*U	0.0856*U	0.101*U	0.190*∪	0.0525*U	0.160*U
M	0.0440*	0.22	0.0387*U			0.0332*U	0.0634U	0.0811*U	0.0338*U	0.177*U
a	0.0497*	0.2485		0.0802*U	0.0695*U	0.109*U	0.197*U	0.227U		Į.
ш	0.0511*	0.2555				0.226*U				
0	0.0461*	0.2305	0.0366*U	0.0684*U	0.0392U	0.131*U	0.209*U	0.0700*∪	0.0336*U	
ĮĮ,	0.206	1.03	0.195U	0.344∪	0.402U	0.478U	0.459*U	0.321*U	0.451*U	
d.	0.0425*	0.2125				0.0495U	0.0388U	0.0586U		0.0642*U
	0	,								

$\overline{}$	
?	Į
$\mathcal{C}$	ļ
Č	١
LC,	)
α	Ì
268!	)
3	Į
#	
C	)
$\Box$	١

Blanks

Reviewer: 2nd Reviewer:

, 20

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed? *EMPC

Was the method blank contaminated? YN X

N/A

Associated samples: 2-10, 12-17 Blank analysis date: 8/22/11 Blank extraction date: 8/19/11 Conc. units: na/ka

Sollo: dillio:										
Compound	Blank ID				Š	Sample Identification	ıtion		;	
-	BLK231004	2X	10	12	13	14	15	16	17	
В	0.0911*	0.4555	0.0684*U		0.0749*U			0.277U	0.140*U	
×	0.0624*	0.312				0.0380*U		0.135U	0.0763*U	
ſ	0.0816*	0.408	0.0324*U			0.0236*U			0.0357*U	
M	0.0440*	0.22		0.0395*U			0.0278*U	0.142*U	0.0279*U	
۵	0.0497*	0.2485	0.153*U	0.0755*U	0.102U		0.0715*U	0.194*U	0.0589*U	
Ш	0.0511*	0.2555		0.0752*U	0.108*U	0.0566*U	0.0813U	0.129U	0.0440U	
0	0.0461*	0.2305	0.0463U	ወ. ዕያዩታ"	0.148U	0.110U	0.0752U	0.187*U	0.122U	
ш.	0.208	1.03	0.596*U	0.424.0 0.0885.1L		0.913U	0.555*U		0.699	
Р	0.0425*	0.2125				0.0600*U			0.0441*U	
(	000	,								

Ψ.
Ņ
8
3
ö
2
#
$\circ$

Blanks

Reviewer: 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? N N N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed? *EMPC

Was the method blank contaminated? Blank extraction date: 8/19/11

∀W V/

Blank analysis date: 8/22/11

Associated samples:_



Conc. units: ng/kg							-[	,	
Compound	Blank ID			Sa	Sample Identification	tion			
	BI K238001	2X	ţ.						
_	0.0365*	0.1825	0.111*U						
· 0	0.0544*	0.272	0.0869*∪						
В	0.0682*	0.341							
¥	0.0519*	0.2595	0.0504*U						
Ţ	0.0537*	0.2685							
M	0.0234*	0.117	0.0369*∪						
D	0.0513*	0.2565	0.191*U	:					
Ш	0.0428*	0.214							
Z	0.0356*	0.178	0.0701*U						
0	0.0494*	0.247	0.190U						
ш	0.236*	1.18		 :					
9	0.426*	2.13							

Ξ
$\tilde{S}$
Š
9
÷.
# ()
Ď
_

### VALIDATION FINDINGS WORKSHEET Field Blank

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

N/A Were field blank identified in this SDG?

Y N N/A Were target compounds detected in the field blank?

Blank unit: pg/L Associated sample unit: pg/Kg

Blank unit: pg/L Associated sample unit: ng/Kg Sampling date : 8/9/11

Associated samples: 8-10, 12-17 >5x

#

2nd Reviewer:

and and and				
Compound	Blank ID		Sample Identification	
	11	Σς		
А	0.344*	1.72		T
	0.163*	0.815		1
7	0.292*	1.46		
8	0.238*	1.19		
¥	0.216*	1.08		<u> </u>
_1	0.223*	1.115		
M	0.162*	0.81		
9		0		
D	0.366*	1.83		
ш	0.452*	2.26		
V		0		
0	0.650	3.25		
ĹĿ	4.38	21.9		
۵.	0.550*	2.75		
g	7.99*	39.95		
Q	1 02	5.1		<u> </u>

LDC#: 26850 C2

### VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:	1 of
Reviewer:	ħ
2nd Reviewer:	, i
`	

Y N NA Were field duplicate pairs identified in this SDG?

Y N NA Were target analytes detected in the field duplicate pairs?

* enpc

(fd

	Concentration	(ng/kg)	<u> </u>	
Compound	15	17	RPD	
1	0.125*	0.0543*	79	J/Adit
J	0.100	0.121*	19	
В	<del>०.००३९८-</del> उ.८१ <i>७</i>	0.140*	200	V/W/L
К	<del>0.0284U -</del> ららし	0.0763*	200	1
L	<del>0.0234U−</del> ≤.5(∪	0.0357*	200	1
М	0.0278*	0.0279*	0	
С	<del>-0.0410U</del> S.51 U	0.0520*	200	1/N/L
D	0.0715*	0.0589*	19	
E	0.0813	0.0440	60	J/Adu
N	0.0413	0.0396*	4	
0	0.0752	0.122	47	
F	0.555*	0,699	23	
Р	0.0371U5.5[V	0.0441*	200	J/M/V
G	4.04	4.76	16	
Q	0.140*	0.273*	64	1/Ada

V:\FIELD DUPLICATES\templates\26850C21.wpd

## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: /of / Reviewer: FT

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

RRF =  $(A_x)(C_{s_2})/(A_{s_3})(C_{x_4})$  average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

			-	Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF (CX-x std)	RRF	%RSD	%RSD
_	KA L	115/2	2.3.7.8-TCDF ( ¹³ C-2.3.7.8-TCDF)	101	1.017	650-1	1,033	£ + 9	4.79
		<del>-</del>	2,3,7,8-TCDD ( ¹³ C-2,3,7,8-TCDD)	-182	- <del>  </del>	781.1	1.186	5.5%	5.26
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	0.995	1660	1001	1.001	3.43	3.43
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	1.077	1.017	. 1 01 1	101.1	4.02	4.02
			OCDF (13C-OCDF)	0.945	Stoo	6-974	476.0	3.2	3.54
7	14)	(1/1/4/9	2,3,7,8-TCDF (¹3C-2,3,7,8-TCDF)	1027	7101	1.02%	-0xk	7:1	777
	,	<b></b>	2,3,7,8-TCDD ( ¹³ C-2,3,7,8-TCDD)	1.133	561.1	1.142	1.17.7	3.52	352
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	0.971	1260	1.018	1.08	4.32	4.32
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	7.00.1	1.053	1.087	1.087	4.49	4.49
			ocde (13c-ocde)	0.950	Crisio	1.001	1.001	5.01	10-2
က			2.3,7,8-TCDF ( ¹³ C-2.3,7,8-TCDF)						
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)						
			OCDF (13C-OCDF)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10,0% of the recalculated results.

### LDC# 268500 2/

## VALIDATION FINDINGS WORKSHEET Routine Calibration Results Verification

Page: of Z Reviewer: FT 2nd Reviewer:

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF =  $\{A_x\}(C_s)/(A_s)(C_s)$ 

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF

 $A_x = Area$  of compound,  $C_x = Concentration$  of compound,

 $A_s = Area$  of associated internal standard  $C_s = Concentration of internal standard$ 

		, <u> </u>		, )04)	Reported	Recalculated	Reported	Recalculated
		Calibration	. !	Average RRF	ENC. PRF	CONC. RRF		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
#	Standard ID	Date	Compound (Reference Internal Standard)	(initial)	(၁၁)	(CC)	₹.	₫%
~-	Ged 10:16	(1/9) 8	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	0.0	9.140	9-140	76	6
		• •	2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	10.0	9-150	(PRI-6	92	4
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	50.0	50.360	025:05	[0]	101
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	50.0	281.05	081.05	10 C	901
			OCDF (13C-OCDF)	100.00	107.420	024-201	107	[0]
7	Cest 13:04	8 22 11	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	1	9.970	077.6	001	901
			2,3,7,8-TCDD ( ¹³ C-2,3,7,8-TCDD)		10.640	01-9-01	2	20
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)		52.00	29.00	401	ha)
			1,2,3,4,6,7,8-HpCDD ( ¹³ C-1,2,4,6,7,8,-HpCDD)		53.430	05h.4S	201	Soi
			OCDF (*3C-OCDF)		104. \$\$0	104 8/20	105	<u>ا</u> مد
ო	cen 0133	8 23 11	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)		10.330	10.330	103	<u>80</u>
		•	2,3,7,8-TCDD (13C-2,3,7,8-TCDD)		10.720	022.01	101	[4]
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)		51.920	026.12	hol	<i>50</i> 2
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)		5]. 370	01.370	601	603
			OCDF (13C-OCDF)		106.120	106.127	90	201

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the results. recalculated

125
200
26
LDC #:

### Routine Calibration Results Verification VALIDATION FINDINGS WORKSHEET

/of/	FI	1
Page:_	Reviewer:	2nd Reviewer:_

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 8298) 16 1 ろ 1ろ

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF =  $(A_a)(C_b)/(A_b)(C_x)$ 

ave. RRF = initial calibration average RRF RRF = continuing calibration RRF A_x = Area of compound, A_x = Concentration of compound, C_x = Concentration of compound, C_x Where:

 $A_{\rm s}$  = Area of associated internal standard  $C_{\rm s}$  = Concentration of internal standard

				con c.	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Conc RRF (CC)	COJC FRF (CC)	₩	ď%
<u>-</u>	200 CD	8 30/11	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	0.01	10.3	ર∙ ૦ો	401	103
		- 	2,3,7,8-TCDD ( ¹³ C-2,3,7,8-TCDD)	O ot	1044	/hr.0]	hol	ροl
			1,2,3,6,7,8-HxCDD ('3C-1,2,3,6,7,8-HxCDD)	50.05	51.120	C1.12	701	رما
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	O.as	50.9५७	arbas	7 01	70]
			OCDE (13C-OCDD)	100.00	100,00	(0.00)	001	00
2		·	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD (¹³C-2,3,7,8-TCDD)					
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)					
			Cocne (13c-ocnn)		•			
3			2,3,7,8-TCDF (13C-2,3,7,8-TCDF)					
			2,3,7,8-TCDD ( ¹³ C-2,3,7,8-TCDD)					·
]			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)					
			1,2,3,4,6,7,8-HpCDD ( ¹³ C-1,2,4,6,7,8,-HpCDD)					
			OCDF (3C-OCDD)					

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

### Matrix Spike/Matrix Spike Duplicates Results Verification VALIDATION FINDINGS WORKSHEET

Page: of 2nd Reviewer: Reviewer: FT

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSR - SR)/SA

Where: SSR = Spiked sample result, SR = Sample result SA = Spike added

MSR = Matrix spike percent recovery MSDR = Matrix spike duplicate percent recovery

MS/MSD samples:

RPD = 1 MSR - MSDR I * 2/(MSR + MSDR)

Ī 7

alculated	RPD		ما		٥	3	/								
Rec															
Reported	RPD	1000	(Z)		0	ħ	7								
Sample	Percent Recovery			nt Recovery		Recalc	<u>ام</u>	104	lor	(0)	رم م	,			
Matrix Spik	Percent	Reported	Ool	401	20	101	701								
Spike	Percent Recovery	Recalc	Jol.	101	_		اه ا اه ما								
Matrix	Percent	Reported	امد	امر	101	101	ħοI								
Spiked Sample Matrix Spike Matrix Spike Duplicate Reported	Spiked Sample Concentration		21.9	113	115	110	222								
	Spiked S	Concen ( Ps	MS	22.9	115	114	114	727							
Sample	Concentration ( Pre   Pa	)	Se Se	ND	СN	C 2	0-140								
ke	Ke K	MSD	21.8	109	10 0	601	816			•					
Spi	Adç 39	MS	21.8	6 0	6 01	109	218			-					
Sample Spiked Sample Matrix Spike Duplicate Reported	Compound		2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8,9-HpCDF	OCDF								

Comments: Refer to Matrix Spike/Matrix Spike Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

_	
N	
0	ı
B	
$Z_{2}^{o}$	
Š	
N	
	l
#	
$\circ$	

# VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: of	Reviewer: FT	2nd Reviewer:	

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery ≈ 100 * SSC/SA Where

Where: SSC = Spiked sample concentration SA = Spike added

RPD = I LCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

LCS ID: 0PR 231004

LCSD = Laboratory control sample duplicate percent recovery

		Receiption	\								
080 180	RPD										
-	ecovery	Recalc									
uso i	Percent Recovery	Reported					A 5				
S	tecovery	Recalc	301	(0 X	₹d	Tol	19	,			
1.08	Percent Recovery	Reported	७५	801	801	301	اهي				
Sample	tration	CSD	7								
Spiked (	Concentration ( NA )	O SOI	1.10	8 01	90	10 ک	210				
ike	Added (ng Ke)	) Q	Δ'n	-							
Sp	Ad )	l CS	20.0	0.00	100.0	0.00	2002				
	Compound		2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8,9-HpCDF	OCDF				

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 26800 CZ/

### **VALIDATION FINDINGS WORKSHEET**

Sample Calculation Verification

6f_	_
F	7
<u> </u>	
	_6f_ F

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

<u>Y/N N/A</u> <u>Y N N/A</u>

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration =  $(A_x)(I_s)(DF)$  $(A_{ls})(RRF)(V_o)(\%S)$ Area of the characteristic ion (EICP) for the compound Area of the characteristic ion (EICP) for the specific  $A_{is}$ internal standard Amount of internal standard added in nanograms (ng) = V_o Volume or weight of sample extract in milliliters (ml) or grams (g). RRF Relative Response Factor (average) from the initial calibration Df Dilution Factor. %S Percent solids, applicable to soil and solid matrices

Example:

Sample I.D. #1123440

Conc. = (111189) (4000) (99351) (1.041) (10.2) (0.878

\$86655

	,				
#	Sample ID	Compound	Reported Concentration ( )	Calculated Concentration ( )	Qualification
-					
				, ,	
<b> </b>					<u> </u>
<u> </u>				<u> </u>	<u> </u>
L					
			<del> </del>		<del></del>
		•			
			j		

### **SAMPLE DELIVERY GROUP**

**DX127** 

# Attachment I

Sample ID Cross Reference and Data Review Level

### **Sample Cross Reference**

Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
SL-185-SA6-SB-4.0-5.0	6372859	N	METHOD	1613B	111
SL-185-SA6-SB-9.0-10.0	6372860	N	METHOD	1613B	Ш
SL-151-SA6-SB-4.0-5.0	6372853	N	METHOD	1613B	Ш
SL-151-SA6-SB-9.0-10.0	6372854	N	METHOD	1613B	III
SL-007-SA5DN-SB-4.0-5.0	6372849	N	METHOD	1613B	111
SL-183-SA6-SB-4.0-5.0	6372857	N	METHOD	1613B	III
SL-183-SA6-SB-9.0-10.0	6372858	N	METHOD	16 <b>1</b> 3B	111
SL-071-SA5DN-SB-4.0-5.0	6372850	N	METHOD	1613B	111
SL-071-SA5DN-SB-9.0-10.0	6372851	N	METHOD	1613B	III
SL-182-SA6-SB-4.0-5.0	6372855	N	METHOD	16 <b>1</b> 3B	111
SL-182-SA6-SB-9.0-10.0	6372856	N	METHOD	1613B	HI
SL-072-SA5DN-SB-4.0-5.0	6372852	N	METHOD	1613B	III
SL-006-SA5DN-SB-4.0-5.0	6374029	N	METHOD	1613B	Ш
SL-006-SA5DN-SB-9.0-10.0	6374030	N	METHOD	1613B	Ш
SL-155-SA6-SB-4.0-5.0	6374032	N	METHOD	1613B	Ш
SL-155-SA6-SB-4.0-5.0MS	6374033	MS	METHOD	1613B	III
SL-155-SA6-SB-4.0-5.0MSD	6374034	MSD	METHOD	1613B	111
DUP24-SA6-QC-081111	6374037	FD	METHOD	1613B	111
SL-207-SA5DN-SB-4.0-5.0	6374031	N	METHOD	1613B	111
EB-SA5DN-SB-081111	6374038	EB	METHOD	1613B	111
SL-033-SA6-SB-2.5-3.5	6374036	N	METHOD	1613B	111
SL-174-SA6-SB-2.0-3.0	6374035	N	METHOD	1613B	111
	SL-185-SA6-SB-4.0-5.0 SL-185-SA6-SB-9.0-10.0 SL-151-SA6-SB-9.0-10.0 SL-007-SA5DN-SB-4.0-5.0 SL-183-SA6-SB-9.0-10.0 SL-071-SA5DN-SB-4.0-5.0 SL-071-SA5DN-SB-9.0-10.0 SL-071-SA5DN-SB-9.0-10.0 SL-182-SA6-SB-4.0-5.0 SL-182-SA6-SB-9.0-10.0 SL-072-SA5DN-SB-4.0-5.0 SL-006-SA5DN-SB-4.0-5.0 SL-155-SA6-SB-4.0-5.0	SL-185-SA6-SB-4.0-5.0       6372859         SL-185-SA6-SB-9.0-10.0       6372860         SL-151-SA6-SB-4.0-5.0       6372853         SL-151-SA6-SB-9.0-10.0       6372854         SL-007-SA5DN-SB-4.0-5.0       6372849         SL-183-SA6-SB-4.0-5.0       6372857         SL-183-SA6-SB-9.0-10.0       6372858         SL-071-SA5DN-SB-9.0-10.0       6372850         SL-071-SA5DN-SB-9.0-10.0       6372851         SL-182-SA6-SB-9.0-10.0       6372855         SL-182-SA6-SB-9.0-10.0       6372856         SL-072-SA5DN-SB-4.0-5.0       6372852         SL-006-SA5DN-SB-4.0-5.0       6374029         SL-006-SA5DN-SB-9.0-10.0       6374030         SL-155-SA6-SB-4.0-5.0       6374032         SL-155-SA6-SB-4.0-5.0MSD       6374034         DUP24-SA6-QC-081111       6374037         SL-207-SA5DN-SB-4.0-5.0       6374031         EB-SA5DN-SB-081111       6374038         SL-033-SA6-SB-2.5-3.5       6374036	Field Sample ID         Lab Sample ID         Type           SL-185-SA6-SB-4.0-5.0         6372859         N           SL-185-SA6-SB-9.0-10.0         6372860         N           SL-151-SA6-SB-4.0-5.0         6372853         N           SL-161-SA6-SB-9.0-10.0         6372854         N           SL-007-SA5DN-SB-4.0-5.0         6372849         N           SL-183-SA6-SB-4.0-5.0         6372857         N           SL-183-SA6-SB-9.0-10.0         6372858         N           SL-071-SA5DN-SB-4.0-5.0         6372858         N           SL-071-SA5DN-SB-4.0-5.0         6372850         N           SL-182-SA6-SB-9.0-10.0         6372851         N           SL-182-SA6-SB-4.0-5.0         6372855         N           SL-182-SA6-SB-9.0-10.0         6372855         N           SL-182-SA6-SB-9.0-10.0         6372856         N           SL-006-SA5DN-SB-4.0-5.0         6372852         N           SL-006-SA5DN-SB-4.0-5.0         6374029         N           SL-155-SA6-SB-4.0-5.0         6374030         N           SL-155-SA6-SB-4.0-5.0MS         6374033         MS           SL-155-SA6-SB-4.0-5.0MSD         6374034         MSD           DUP24-SA6-QC-081111         6374037	Field Sample ID         Lab Sample ID         Type         Method           SL-185-SA6-SB-4.0-5.0         6372859         N         METHOD           SL-185-SA6-SB-9.0-10.0         6372860         N         METHOD           SL-151-SA6-SB-4.0-5.0         6372853         N         METHOD           SL-161-SA6-SB-9.0-10.0         6372854         N         METHOD           SL-007-SA5DN-SB-4.0-5.0         6372857         N         METHOD           SL-183-SA6-SB-9.0-10.0         6372857         N         METHOD           SL-071-SA5DN-SB-4.0-5.0         6372858         N         METHOD           SL-071-SA5DN-SB-4.0-5.0         6372850         N         METHOD           SL-071-SA5DN-SB-4.0-5.0         6372851         N         METHOD           SL-182-SA6-SB-4.0-5.0         6372855         N         METHOD           SL-182-SA6-SB-9.0-10.0         6372855         N         METHOD           SL-006-SA5DN-SB-4.0-5.0         6372852         N         METHOD           SL-006-SA5DN-SB-4.0-5.0         6374039         N         METHOD           SL-155-SA6-SB-4.0-5.0         6374030         N         METHOD           SL-155-SA6-SB-4.0-5.0MSD         6374031         MSD         METHOD	Field Sample ID         Lab Sample ID         Type         Method         Method           SL-185-SA6-SB-4.0-5.0         6372859         N         METHOD         1613B           SL-185-SA6-SB-9.0-10.0         6372860         N         METHOD         1613B           SL-151-SA6-SB-4.0-5.0         6372853         N         METHOD         1613B           SL-151-SA6-SB-4.0-5.0         6372854         N         METHOD         1613B           SL-007-SA5DN-SB-4.0-5.0         6372849         N         METHOD         1613B           SL-183-SA6-SB-4.0-5.0         6372857         N         METHOD         1613B           SL-183-SA6-SB-9.0-10.0         6372858         N         METHOD         1613B           SL-071-SA5DN-SB-4.0-5.0         6372850         N         METHOD         1613B           SL-071-SA5DN-SB-9.0-10.0         6372851         N         METHOD         1613B           SL-182-SA6-SB-4.0-5.0         6372855         N         METHOD         1613B           SL-182-SA6-SB-9.0-10.0         6372856         N         METHOD         1613B           SL-002-SA5DN-SB-4.0-5.0         6374029         N         METHOD         1613B           SL-006-SA5DN-SB-9.0-10.0         6374032         N </td

### **Attachment II**

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX127

Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM ...

Method: 1613B Matrix: AQ

Sample ID: EB-SA5DN-SB-081111 Collected: 8/11/2011 12:30:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.76	JB	0.144	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,6,7,8-HPCDF	0.446	JBQ	0.0483	MDL	10.6	PQL	pg/L	U	В
1,2,3,4,7,8,9-HPCDF	0.161	JB	0.0600	MDL	10.6	PQL	pg/L	υ	В
1,2,3,4,7,8-HXCDF	0.217	JBQ	0.0554	MDL	10.6	PQL	pg/L	υ	В
1,2,3,6,7,8-HXCDD	0.274	JBQ	0.0995	MDL	10.6	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDF	0.164	JB	0.0551	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDD	0.193	JBQ	0.0992	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDF	0.200	JBQ	0.0589	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8-PECDD	0.136	JB	0.110	MDL	10.6	PQL	pg/L	U	В
1,2,3,7,8-PECDF	0.0761	JBQ	0.0581	MDL	10.6	PQL	pg/L	U	В
2,3,4,6,7,8-HXCDF	0.126	JBQ	0.0538	MDL	10.6	PQL	pg/L	U	В
2,3,4,7,8-PECDF	0.273	JB	0.0507	MDL	10.6	PQL	pg/L	U	В
2,3,7,8-TCDD	0.152	JBQ	0.118	MDL	2.11	PQL	pg/L	U	В
OCDD	4.40	JB	0.106	MDL	21.1	PQL	pg/L	U	В
OCDF	0.433	JB	0.143	MDL	21.1	PQL	pg/L	U	В

Method Category: GENCHEM Method: 1613B

Matrix: SO

Dilution: 1 Sample ID: DUP24-SA6-QC-081111 Collected: 8/11/2011 10:15:00 Analysis Type: RES

		Tinaryolo i						Diagon.	
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.232	JB	0.0769	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0533	JBQ	0.0281	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0533	U	0.0533	MDL	5.18	PQL	ng/Kg	ÛĴ	FD
1,2,3,4,7,8-HXCDF	0.0326	U	0.0326	MDL	5.18	PQL	ng/Kg	UJ	FD
1,2,3,6,7,8-HXCDD	0.0529	U	0.0529	MDL	5.18	PQL	ng/Kg	UJ	FD
1,2,3,6,7,8-HXCDF	0.0558	JB	0.0288	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0534	JBQ	0.0513	MDL	5.18	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8,9-HXCDF	0.0562	JBQ	0.0296	MDL	5.18	PQL	ng/Kg	บม	B, FD
1,2,3,7,8-PECDD	0.0893	JQ	0.0781	MDL	5.18	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDF	0.0374	Ų	0.0374	MDL	5.18	PQL	ng/Kg	UJ	FD
2,3,4,6,7,8-HXCDF	0.0298	U	0.0298	MDL	5.18	PQL	ng/Kg	UJ	FD
2,3,4,7,8-PECDF	0.0707	JBQ	0.0386	MDL	5.18	PQL	ng/Kg	UJ	B, FD

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

ADR version 1.4.0.111 1/3/2012 10:07:06 AM Page 1 of 13

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM			na periodi de la composition La composition de la composition de la composition de la composition de la composition de la composition de la
Method:	1613B	Matrix:	so	

Sample ID: DUP24-SA6-QC-081111	Collec	Collected: 8/11/2011 10:15:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDD	0.660	JB	0.0502	MDL	10.4	PQL	ng/Kg	U	В
OCDF	0.226	JBQ	0.0869	MDL	10.4	PQL	ng/Kg	UJ	B, FD

Sample ID: SL-006-SA5DN-SB-4.0-5.0 Collected: 8/11/2011 8:20:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte DLRL Result Qual Units Qual Type Type Code JΒ z 1,2,3,4,6,7,8-HPCDD 1.55 0.0904 MDL 5.66 **PQL** ng/Kg Z 1,2,3,4,6,7,8-HPCDF 0.319 JΒ 0.0264 MDL 5.66 **PQL** ng/Kg 1,2,3,4,7,8-HxCDD 0.0768 JBQ 0.0486 MDL 5.66 **PQL** ng/Kg U В 1,2,3,4,7,8-HXCDF 0.0663 JB 0.0400 MDL 5.66 **PQL** ng/Kg υ В 0.0477 J Z 1,2,3,6,7,8-HXCDD 0.105 J MDL 5.66 **PQL** ng/Kg JBQ U 1,2,3,6,7,8-HXCDF 0.0327 0.0326 MDL 5.66 **PQL** ng/Kg В 1,2,3,7,8,9-HXCDD 0.135 0.0499 MDL PQL ng/Kg U JB 5.66 В 0.0453 1,2,3,7,8,9-HXCDF 0.0986 JBQ PQL U В MDL 5.66 ng/Kg 1,2,3,7,8-PECDD 0.0828 0.0740 J z JQ MDL 5.66 **PQL** ng/Kg 1,2,3,7,8-PECDF 0.0468 JQ 0.0374 MDL Z 5.66 PQL ng/Kg 2,3,4,6,7,8-HXCDF 0.0584 JQ 0.0364 PQL J MDL 5.66 ng/Kg Z OCDF z JBQ J 0.827 0.112 MDL 11.3 PQL ng/Kg

Sample ID: SL-006-SA5DN-SB-9.0-10.0	Collec	Collected: 8/11/2011 9:10:00 Analysis Type: RES						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.361	JB	0.0641	MDL.	5.57	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0869	JBQ	0.0273	MDL	5.57	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0536	JB	0.0442	MDL	5.57	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0477	JB	0.0449	MDL	5.57	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.106	JB	0.0332	MDL	5.57	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0590	JQ	0.0452	MDL	5.57	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0769	JB	0.0296	MDL	5.57	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0945	JBQ	0.0454	MDL	5.57	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0605	JBQ	0.0370	MDL	5.57	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.116	JQ	0.0753	MDL	5.57	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0939	JQ	0.0329	MDL	5.57	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.0503	J	0.0314	MDL	5.57	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.112	JBQ	0.0317	MDL	5.57	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:07:06 AM ADR version 1.4.0.111 Page 2 of 13

Lab Reporting Batch ID: DX127

Laboratory: LL

EDD Filename: DX127_v1

eQAPP Name: CDM_SSFL_110509

Sample ID: SL-006-SA5DN-SB-9.0-10.0	Collec	Collected: 8/11/2011 9:10:00			Analysis Type: RES				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
OCDD	2.44	JB	0.0552	MDL	11.1	PQL	ng/Kg	U	В		
OCDF	0.263	JB	0.0831	MDL	11.1	PQL	ng/Kg	U	В		

Collec	ted: 8/10/2	10 A	Analysis Type: RES				Dilution: 1	
Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.367	JB	0.0950	MDL	5.82	PQL	ng/Kg	U	В
0.0691	JВ	0.0298	MDL	5.82	PQL	ng/Kg	U	В
0.0606	JBQ	0.0557	MDL	5.82	PQL	ng/Kg	U	В
0.0813	JBQ	0.0449	MDL	5.82	PQL	ng/Kg	U	В
0.219	JQ	0.0641	MDL	5.82	PQL	ng/Kg	J	Z
0.0976	JBQ	0.0398	MDL	5.82	PQL	ng/Kg	U	В
0.375	JBQ	0.0591	MDL	5.82	PQL	ng/Kg	J	Z
0.0843	JQ	0.0497	MDL	5.82	PQL	ng/Kg	J	Z
0.0768	JQ	0.0411	MDL	5.82	PQL	ng/Kg	J	Z
0.0923	JBQ	0.0501	MDL	5.82	PQL	ng/Kg	υ	В
1.40	JBQ	0.0568	MDL,	11.6	PQL	ng/Kg	U	В
0.210	JBQ	0.112	MDL	11.6	PQL	ng/Kg	U	В
	Lab Result  0.367  0.0691  0.0606  0.0813  0.219  0.0976  0.375  0.0843  0.0768  0.0923  1.40	Lab Result         Lab Qual           0.367         JB           0.0691         JB           0.0606         JBQ           0.0813         JBQ           0.219         JQ           0.0976         JBQ           0.375         JBQ           0.0843         JQ           0.0768         JQ           0.0923         JBQ           1.40         JBQ	Lab Result         Lab Qual         DL           0.367         JB         0.0950           0.0691         JB         0.0298           0.0606         JBQ         0.0557           0.0813         JBQ         0.0449           0.219         JQ         0.0641           0.0976         JBQ         0.0398           0.375         JBQ         0.0591           0.0843         JQ         0.0497           0.0768         JQ         0.0411           0.0923         JBQ         0.0501           1.40         JBQ         0.0568	Lab Result         Lab Qual         DL Type           0.367         JB         0.0950         MDL           0.0691         JB         0.0298         MDL           0.0606         JBQ         0.0557         MDL           0.0813         JBQ         0.0449         MDL           0.219         JQ         0.0641         MDL           0.0976         JBQ         0.0398         MDL           0.375         JBQ         0.0591         MDL           0.0843         JQ         0.0497         MDL           0.0768         JQ         0.0411         MDL           0.0923         JBQ         0.0501         MDL           1.40         JBQ         0.0568         MDL	Lab Result         Lab Qual         DL Type         RL           0.367         JB         0.0950         MDL         5.82           0.0691         JB         0.0298         MDL         5.82           0.0606         JBQ         0.0557         MDL         5.82           0.0813         JBQ         0.0449         MDL         5.82           0.219         JQ         0.0641         MDL         5.82           0.0976         JBQ         0.0398         MDL         5.82           0.375         JBQ         0.0591         MDL         5.82           0.0843         JQ         0.0497         MDL         5.82           0.0768         JQ         0.0411         MDL         5.82           0.0923         JBQ         0.0501         MDL         5.82           1.40         JBQ         0.0568         MDL         11.6	Lab Result         Lab Qual         DL Type         RL Type         RL Type           0.367         JB         0.0950         MDL         5.82         PQL           0.0691         JB         0.0298         MDL         5.82         PQL           0.0606         JBQ         0.0557         MDL         5.82         PQL           0.0813         JBQ         0.0449         MDL         5.82         PQL           0.219         JQ         0.0641         MDL         5.82         PQL           0.0976         JBQ         0.0398         MDL         5.82         PQL           0.375         JBQ         0.0591         MDL         5.82         PQL           0.0843         JQ         0.0497         MDL         5.82         PQL           0.0768         JQ         0.0411         MDL         5.82         PQL           0.0923         JBQ         0.0501         MDL         5.82         PQL           1.40         JBQ         0.0568         MDL         11.6         PQL	Lab Result         Lab Qual         DL DL DL         Type         RL Type         RL Type         Units           0.367         JB         0.0950         MDL         5.82         PQL         ng/kg           0.0691         JB         0.0298         MDL         5.82         PQL         ng/kg           0.0606         JBQ         0.0557         MDL         5.82         PQL         ng/kg           0.0813         JBQ         0.0449         MDL         5.82         PQL         ng/kg           0.219         JQ         0.0641         MDL         5.82         PQL         ng/kg           0.0976         JBQ         0.0398         MDL         5.82         PQL         ng/kg           0.375         JBQ         0.0591         MDL         5.82         PQL         ng/kg           0.0843         JQ         0.0497         MDL         5.82         PQL         ng/kg           0.0923         JBQ         0.0501         MDL         5.82         PQL         ng/kg           1.40         JBQ         0.0568         MDL         11.6         PQL         ng/kg	Lab Result         Lab Qual         DL Type         RL Type         RL Type         Lab Review Qual           0.367         JB         0.0950         MDL         5.82         PQL ng/Kg         U           0.0691         JB         0.0298         MDL         5.82         PQL ng/Kg         U           0.0606         JBQ         0.0557         MDL         5.82         PQL ng/Kg         U           0.0813         JBQ         0.0449         MDL         5.82         PQL ng/Kg         U           0.219         JQ         0.0641         MDL         5.82         PQL ng/Kg         J           0.0976         JBQ         0.0398         MDL         5.82         PQL ng/Kg         U           0.375         JBQ         0.0591         MDL         5.82         PQL ng/Kg         J           0.0843         JQ         0.0497         MDL         5.82         PQL ng/Kg         J           0.0768         JQ         0.0501         MDL         5.82         PQL ng/Kg         U           0.0923         JBQ         0.0568         MDL         11.6         PQL ng/Kg         U

Sample ID: SL-033-SA6-SB-2.5-3.5	Collec	ted: 8/11/2	:011 2:40:0	0 A	nalysis Ty	/pe: RES		Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	4.60	JB	0.107	MDL	5.18	PQL	ng/Kg	J	Z		
1,2,3,4,6,7,8-HPCDF	0.947	JB	0.0318	MDL	5.18	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.0637	JB	0.0589	MDL	5.18	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0799	JB	0.0480	MDL	5.18	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.196	JQ	0.0750	MDL	5.18	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.114	JB	0.0418	MDL	5.18	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.237	JBQ	0.0731	MDL	5.18	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.135	JBQ	0.0474	MDL	5.18	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0952	J	0.0833	MDL	5.18	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.134	JQ	0.0451	MDL	5.18	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.248	JBQ	0.0470	MDL	5.18	PQL	ng/Kg	U	В		
2,3,7,8-TCDD	0.112	JQ	0.102	MDL	1.04	PQL	ng/Kg	J	Z		
OCDF	2.48	JB	0.0999	MDL	10.4	PQL	ng/Kg	J	Z		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:07:06 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Categ	ary: GENCHEM			PROGRAMMA ZWYSOW.
Method:	1613B	Matrix:	so	

Sample ID: SL-071-SA5DN-SB-4.0-5.0  Analyte	Collec	Collected: 8/10/2011 11:19:00 Analysis Type: RES						Dilution: 1		
	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	1.32	JBQ	0.121	MDL	5.71	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.0633	JBQ	0.0627	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0419	JB	0.0410	MDL	5.71	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0705	J	0.0656	MDL	5.71	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.0720	JBQ	0.0479	MDL	5.71	PQL	ng/Kg	U	В	
OCDF	0.189	JB	0.143	MDL	11.4	PQL	ng/Kg	U	В	

Sample ID: SL-071-SA5DN-SB-9.0-10.0	Collec	ted: 8/10/2	011 11:57	:00 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.729	JB	0.0812	MDL	5.53	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HxCDD	0.0563	JBQ	0.0527	MDL	5.53	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.0310	JB	0.0308	MDL	5.53	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0528	JQ	0.0399	MDL	5.53	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.0557	JQ	0.0327	MDL	5.53	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.0430	JB	0.0395	MDL,	5.53	PQL	ng/Kg	U	В	
OCDD	2.98	JB	0.0491	MDL	11.1	PQL	ng/Kg	J	Z	
OCDF	0.163	JB	0.104	MDL	11.1	PQL	ng/Kg	U	В	

Sample ID: SL-072-SA5DN-SB-4.0-5.0	Collec	ted: 8/10/2	011 2:35:0	0 A	nalysis Ty	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL_	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	2.30	JB	0.0612	MDL	5.93	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.287	JBQ	0.128	MDL	5.93	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDD	0.950	J	0.120	MDL	5.93	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0878	JBQ	0.0577	MDL	5.93	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	0.477	JBQ	0.110	MDL	5.93	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.120	JB	0.0794	MDL	5.93	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0947	JQ	0.0571	MDL	5.93	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.220	JQ	0.0628	MDL	5.93	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.0802	JBQ	0.0589	MDL	5.93	PQL	ng/Kg	U	В	
OCDF	5.56	JB	0.153	MDL	11.9	PQL	ng/Kg	J	Z	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:07:06 AM ADR version 1.4.0.111 Page 4 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B

Matrix: SO

Sample ID: SL-151-SA6-SB-4.0-5.0 Collected: 8/10/2011 8:59:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason Analyte Result Qual DLТуре RLТуре Units Qual Code 1,2,3,4,6,7,8-HPCDD 0.281 0.0739 MDL. 5.20 **PQL** ₿ ng/Kg 1,2,3,4,6,7,8-HPCDF 0.0582 JBQ 0.0186 MDL, 5.20 PQL ng/Kg U В 1,2,3,4,7,8-HXCDF 0.0441 **JBQ** 0.0351 MDL 5.20 **PQL** ng/Kg U В 1,2,3,6,7,8-HXCDD 0.0504 0.0477 JQ MDL. 5.20 PQL J Z ng/Kg U 1,2,3,6,7,8-HXCDF 0.0497 JBQ 0.0303 MDL 5.20 PQL ng/Kg В 1,2,3,7,8,9-HXCDD JBQ 0.0479 MDL 5.20 PQL U 0.126 ng/Kg В 1,2,3,7,8-PECDF 0.0458 JQ 0.0357 MDL 5.20 **PQL** J Z ng/Kg 2,3,4,6,7,8-HXCDF 0.0398 J 0.0320 MDL 5.20 PQL ng/Kg J z 2,3,4,7,8-PECDF U 0.0481 **JBQ** 0.0345 MDL 5.20 PQL ng/Kg В OCDD 1.13 JΒ 0.0440 MDL 10.4 PQL U В ng/Kg OCDF 0.181 JB 0.103 MDL 10.4 PQL U В ng/Kg

	Lab	Lab		DL Type	RL	RL.	Units	Data Review	Reason Code
Analyte	Result	Qual	DL			Туре		Qual	
1,2,3,4,6,7,8-HPCDD	0.313	JBQ	0.0778	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0921	JB	0.0232	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0649	JB	0.0509	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0891	JBQ	0.0517	MDL	5.59	PQL	ng/Kg	Ü	В
1,2,3,4,7,8-HXCDF	0.114	JBQ	0.0336	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0887	JQ	0.0513	MDL	5.59	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0958	JB	0.0287	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.102	JB	0.0517	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.127	JBQ	0.0413	MDL	5.59	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.274	JQ	0.0780	MDL	5.59	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.213	JQ	0.0371	MDL	5.59	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0772	JQ	0.0317	MDL	5.59	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.218	JB	0.0390	MDL	5.59	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.128	J	0.0854	MDL	1.12	PQL	ng/Kg	J	Z
OCDD	0.891	JBQ	0.0406	MDL	11.2	PQL	ng/Kg	U	В
OCDF	0.181	JB	0.104	MDL	11.2	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX127

Laboratory: LL

UJ

B, FD

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B Matrix: SO

Sample ID: SL-155-SA6-SB-4.0-5.0 Collected: 8/11/2011 10:09:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL. RLReview Reason Analyte Result Qual DLType RLТуре Units Qual Code 1,2,3,4,6,7,8-HPCDD 0.0702 0.232 MDL. 5.28 PQL ng/Kg В 1,2,3,4,6,7,8-HPCDF 0.0664 JBQ 0.0227 MDL 5.28 PQL ng/Kg U В 1,2,3,4,7,8-HxCDD 0.0694 JB 0.0469 MDL 5.28 **PQL** ng/Kg IJ B, FD 1,2,3,4,7,8-HXCDF 0.0905 JBQ 0.0324 MDL, UJ 5.28 **PQL** ng/Kg B. FD 1,2,3,6,7,8-HXCDD 0.0909 J 0.0480 MDL J Z, FD 5.28 **PQL** ng/Kg 1,2,3,6,7,8-HXCDF 0.0916 JB 0.0302 MDL 5.28 **PQL** U В ng/Kg 1,2,3,7,8,9-HXCDD 0.150 JΒ 0.0485 MDL 5.28 PQL ng/Kg UJ B, FD 1,2,3,7,8,9-HXCDF 0.110 JBQ 0.0367 MDL 5.28 PQL ng/Kg IJ B. FD 1,2,3,7,8-PECDD 0.185 JQ 0.0706 MDL 5.28 PQL ng/Kg J Z, FD 1,2,3,7,8-PECDF JQ 0.0357 ng/Kg 0.164 MDL 5.28 **PQL** J Z, FD 0.0675 Z, FD 2,3,4,6,7,8-HXCDF J 0.0319 MDL 5.28 PQL J ng/Kg 2,3,4,7,8-PECDF 0.139 JBQ 5.28 PQL ŲJ 0.0352 MDL ng/Kg B, FD OCDD 0.725 JΒ 0.0449 MDL 10.6 **PQL** U В ng/Kg OCDF

0.0857

MDL

10.6

**PQL** 

ng/Kg

**JBQ** 

0.112

		,	· · · — · · · · ·		, 0.0 .	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Dilucoii.		
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.395	JB	0.0706	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.102	JBQ	0.0260	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0881	JBQ	0.0409	MDL.	5.21	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.128	JBQ	0.0373	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.154	JQ	0.0547	MDL	5.21	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.117	JBQ	0.0329	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.144	JB	0.0520	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.119	J	0.0846	MDL	5.21	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.103	J	0.0463	MDL	5.21	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.113	J	0.0332	MDL	5.21	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.163	JB	0.0447	MDL	5.21	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.101	JQ	0.0967	MDL	1.04	PQL	ng/Kg	J	Z	
OCDD	1.06	JB	0.0507	MDL	10.4	PQL	ng/Kg	U	В	
OCDF	0.147	JBQ	0.0860	MDL	10.4	PQL	ng/Kg	U	В	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-182-SA6-SB-4.0-5.0 Collected: 8/10/2011 12:45:00 Analysis Type: RES Dilution: 1 Data DLLab Lab RL Review Reason Analyte Result Qual DL Туре RL Туре Units Qual Code 1,2,3,4,6,7,8-HPCDD 0.362 JB 0.0707 MDL 5.25 PQL ng/Kg В 1,2,3,4,6,7,8-HPCDF 0.0898 JBQ 0.0202 MDL 5.25 PQL U ng/Kg В 1,2,3,4,7,8,9-HPCDF 0.0699 JBQ 0.0481 MDL 5.25 PQL ng/Kg U В 1,2,3,4,7,8-HxCDD 0.201 JBQ 0.0549 MDL 5.25 PQL ng/Kg U В 1,2,3,4,7,8-HXCDF 0.202 PQL **JBQ** 0.0350 MDL 5.25 ng/Kg U В 1,2,3,6,7,8-HXCDD 0.131 0.0527 MDL 5.25 PQL J Z ng/Kg 1,2,3,6,7,8-HXCDF 5.25 0.151 JB 0.0278 MDL **PQL** ng/Kg В 1,2,3,7,8,9-HXCDD 0.170 JBQ 0.0508 MDL 5.25 PQL υ В ng/Kg 1,2,3,7,8,9-HXCDF 0.163 JB 0.0398 MDL 5.25 PQL U ng/Kg В 1,2,3,7,8-PECDD 0.146 J 0.0746 MDL 5.25 PQL J Z ng/Kg 1,2,3,7,8-PECDF 0.325 JQ 0.0355 MDL 5.25 **PQL** J ng/Kg Z 2,3,4,6,7,8-HXCDF 0.126 JQ 0.0314 MDL PQL J 5.25 ng/Kg Z 2,3,4,7,8-PECDF 0.244 JBQ 0.0382 MDL U 5.25 **PQL** В ng/Kg 2,3,7,8-TCDF 0.128 JQ 0.0834 MDL 1.05 **PQL** J z ng/Kg OCDD 3.62 JΒ 0.0402 MDL PQL J 10.5 Z ng/Kg

Sample ID: SL-182-SA6-SB-9.0-10.0	Collected: 8/10/2011 12:49:00	Analysis Type: RES	Dilution: 1
3amble ID; 3L-102-3A0-3D-9.0-10.0	Gollectea: 8/10/2011 12:49:00	Anaivsis ivpe: K⊑5	Dilution: 1

0.104

MDL

10.5

PQL

ng/Kg

U

В

0.232

	Lab	Lab	DL.	DL Type	RL	RL Type		Data Review Qual	Reason
Analyte	Result	Qual					Units		Code
1,2,3,4,6,7,8-HPCDD	0.205	JB	0.0814	MDL	5.60	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0749	JB	0.0446	MDL	5.60	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.108	JBQ	0.0606	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.154	JB	0.111	MDL.	5.60	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0984	JQ	0.0737	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.197	JB	0.0914	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.121	JB	0.0661	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.183	JBQ	0.0595	MDL	5.60	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.287	JQ	0.0894	MDL	5.60	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.159	JQ	0.0490	MDL	5.60	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0407	J	0.0401	MDL	5.60	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.242	JBQ	0.0506	MDL	5.60	PQL	ng/Kg	Ų	В
OCDD	0.713	JBQ	0.0653	MDL	11.2	PQL	ng/Kg	U	В
OCDF	0.214	JBQ	0.163	MDL	11.2	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

OCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:07:06 AM ADR version 1.4.0.111 Page 7 of 13

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	ory: GENCHEM	TO SECURE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF T	ie spanie <u>– a ie e</u>	edigram, producer producer producer in the second
Method:	1613B	Matrix:	so	

Sample ID: SL-183-SA6-SB-4.0-5.0	Collec	ted: 8/10/2	011 10:25	:00 A	nalysis T	/pe: RES		i	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.505	JB	0.0667	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.143	JB	0.0254	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0969	JBQ	0.0487	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.131	JB	0.0295	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.136	JQ	0.0497	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0731	JBQ	0.0268	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.123	JB	0.0504	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0788	JBQ	0.0334	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.203	JQ	0.0744	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.233	JQ	0.0382	MDL	5.48	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0800	JQ	0.0285	MDL	5.48	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.142	JB	0.0375	MDL	5.48	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.136	J	0.0861	MDL	1.10	PQL	ng/Kg	J	Z
OCDD	3.53	JB	0.0552	MDL	11.0	PQL	ng/Kg	J	Z
OCDF	0.172	JB	0.0978	MDL	11.0	PQL	ng/Kg	U	В

Sample ID: SL-183-SA6-SB-9.0-10.0	Collected: 8/10/2011 10:30:00	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.319	JBQ	0.0646	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0403	JBQ	0.0185	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0560	JBQ	0.0466	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0561	JBQ	0.0447	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0576	JBQ	0.0396	MDL	5.53	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0399	J	0.0309	MDL	5.53	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0471	JBQ	0.0391	MDL	5.53	PQL	ng/Kg	U	В
OCDD	0.572	JB	0.0390	MDL	11.1	PQL	ng/Kg	U	В
OCDF	0.307	JB	0.119	MDL	11.1	PQL	ng/Kg	U	В

Sample ID: SL-185-SA6-SB-4.0-5.0 Collected: 8/10/2011 7:49:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.512	JBQ	0.0700	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0569	JBQ	0.0200	MDL	5.52	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0581	JBQ	0.0374	MDL	5.52	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/3/2012 10:07:06 AM ADR version 1.4.0.111

Page 8 of 13

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B		Matrix:	so
Method Categ	ory: GENCHEM	eneral Court of the second second		an di di

Sample ID: SL-185-SA6-SB-4.0-5.0	Collec	Collected: 8/10/2011 7:49:00			Analysis Type: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	0.475	JB	0.0468	MDL	5.52	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0631	JQ	0.0604	MDL	5.52	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0752	JQ	0.0292	MDL	5.52	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0495	JBQ	0.0307	MDL	5.52	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0786	J	0.0646	MDL	1.10	PQL	ng/Kg	J	Ž
OCDD	3.90	JB	0.0459	MDL	11.0	PQL	ng/Kg	J	Z
OCDF	0.133	JBQ	0.0849	MDL	11.0	PQL	ng/Kg	U	В

Sample ID: SL-185-SA6-SB-9.0-10.0	Collec	Collected: 8/10/2011 7:50:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.159	JB	0.0658	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0381	JBQ	0.0193	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0597	JB	0.0437	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0760	JQ	0.0503	MDL	5.57	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.0768	JBQ	0.0491	MDL	5.57	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.120	JBQ	0.0338	MDL	5.57	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0961	J	0.0935	MDL	1.11	PQL	ng/Kg	J	Z
OCDD	1.04	JB	0.0438	MDL	11.1	PQL	ng/Kg	U	В
OCDE	0.214	IPO	0.100	MDI	111	DOL	nalla.	111	

Sample ID: SL-207-SA5DN-SB-4.0-5.0	Collec	Collected: 8/11/2011 10:55:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.287	JB	0.0704	MDL	5.66	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.0816	JB	0.0224	MDL	5.66	PQL	ng/Kg	U	В		
1,2,3,4,7,8,9-HPCDF	0.0557	JB	0.0392	MDL	5.66	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.0579	JB	0.0518	MDL	5.66	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0791	JВ	0.0324	MDL	5.66	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.106	J	0.0531	MDL	5.66	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.0982	JBQ	0.0290	MDL	5.66	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.0769	JB	0.0555	MDL	5.66	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.0923	JBQ	0.0372	MDL	5.66	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.180	J	0.0676	MDL	5.66	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.218	JQ	0.0426	MDL	5.66	PQL	ng/Kg	J	Z		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:07:06 AM ADR version 1.4.0.111 Page 9 of 13

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Category	GENCHEM	strend consider to the second constant of the second constant of the second constant of the second constant of
Method:	1613B	Matrix: SO

Sample ID: SL-207-SA5DN-SB-4.0-5.0	Collec	Collected: 8/11/2011 10:55:00 Analysis Type: RES						Dilution: 1		
<i>Analyt</i> e	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,4,6,7,8-HXCDF	0.0740	JQ	0.0317	MDL	5.66	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.163	JB	0.0405	MDL	5.66	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.105	J	0.0756	MDL	1.13	PQL	ng/Kg	J	Z	
OCDD	1.21	JB	0.0434	MDL	11.3	PQL	ng/Kg	U	В	
OCDF	0.162	JB	0.0808	MDL	11.3	PQL	ng/Kg	U	В	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX127

EDD Filename: DX127_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

### Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
-	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
É	Laboratory Control Precision
É	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX127

EDD Filename: DX127_v1

EQAPP Name: CDM_SSFL_110509

Honamic. Dit.	'@'T'	COOM I HUME. ODM_OOI E
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
н	Extraction to Analysis Estimation	
н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	.,-
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
н	Temperature Estimation	
Н	Temperature Rejection	
1	Internal Standard Estimation	
Ī	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	*****
L	Laboratory Control Spike Upper Rejection	
M	Continuing Tune	
М	Initial Tune	
М	Performance Evaluation Mixture	
M	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	
·	·	<del>-</del>

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/3/2012 10:07:06 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX127

Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

# **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX127

Lab Reporting Batch ID: DX127

Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ							
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples			
BLK2290B371851	8/18/2011 6:51:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDD	3.13 pg/L 1.11 pg/L 0.553 pg/L 0.355 pg/L 0.346 pg/L 0.414 pg/L 0.546 pg/L 0.547 pg/L 0.546 pg/L 0.546 pg/L 0.548 pg/L 0.400 pg/L 0.400 pg/L 0.441 pg/L 0.680 pg/L 0.247 pg/L 5.33 pg/L 0.962 pg/L	EB-SA5DN-SB-081111			

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-\$A5DN-SB-081111(RES)	1,2,3,4,6,7,8-HPCDD	2.76 pg/L	2.76U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,4,6,7,8-HPCDF	0.446 pg/L	0.446U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,4,7,8,9-HPCDF	0.161 pg/L	0.161U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,4,7,8-HXCDF	0.217 pg/L	0.217U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,6,7,8-HXCDD	0.274 pg/L	0.274U pg/L
EB-\$A5DN-SB-081111(RES)	1,2,3,6,7,8-HXCDF	0.164 pg/L	0.164U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,7,8,9-HXCDD	0.193 pg/L	0.193U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,7,8,9-HXCDF	0.200 pg/L	0.200U pg/L
EB-SA5DN-SB-081111(RES)	1,2,3,7,8-PECDD	0.136 pg/L	0.136U pg/L
EB-\$A5DN-\$B-081111(RES)	1,2,3,7,8-PECDF	0.0761 pg/L	0.0761U pg/L
EB-SA5DN-SB-081111(RES)	2,3,4,6,7,8-HXCDF	0.126 pg/L	0.126U pg/L
EB-SA5DN-SB-081111(RES)	2,3,4,7,8-PECDF	0.273 pg/L	0.273U pg/L
EB-SA5DN-SB-081111(RES)	2,3,7,8-TCDD	0.152 pg/L	0.152U pg/L
EB-SA5DN-SB-081111(RES)	OCDD	4.40 pg/L	4.40U pg/L
EB-SA5DN-SB-081111(RES)	OCDF	0.433 pg/L	0.433U pg/L

1/3/2012 9:47:42 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO Method Blank	Analysis Pote	Analysis	DIt	Associated
Sample ID	Analysis Date	Analyte	Result	Samples
BLK2340B371616	8/24/2011 4:16:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	0.259 ng/Kg 0.0585 ng/Kg 0.0765 ng/Kg 0.0560 ng/Kg 0.0487 ng/Kg 0.0380 ng/Kg 0.0465 ng/Kg 0.0390 ng/Kg 0.0865 ng/Kg 0.515 ng/Kg 0.109 ng/Kg	DUP24-SA6-QC-081111 SL-006-SA5DN-SB-4.0-5.0 SL-006-SA5DN-SB-9.0-10.0 SL-007-SA5DN-SB-4.0-5.0 SL-033-SA6-SB-2.5-3.5 SL-071-SA5DN-SB-4.0-5.0 SL-071-SA5DN-SB-4.0-5.0 SL-151-SA6-SB-4.0-5.0 SL-151-SA6-SB-9.0-10.0 SL-155-SA6-SB-9.0-10.0 SL-182-SA6-SB-9.0-10.0 SL-183-SA6-SB-9.0-10.0 SL-183-SA6-SB-4.0-5.0 SL-183-SA6-SB-9.0-10.0 SL-185-SA6-SB-9.0-10.0 SL-185-SA6-SB-9.0-10.0 SL-185-SA6-SB-9.0-10.0 SL-185-SA6-SB-9.0-10.0 SL-185-SA6-SB-9.0-10.0 SL-185-SA6-SB-9.0-10.0 SL-185-SA6-SB-9.0-10.0 SL-185-SA6-SB-9.0-10.0 SL-185-SA6-SB-9.0-10.0 SL-207-SA5DN-SB-4.0-5.0

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
DUP24-SA6-QC-081111(RES)	1,2,3,4,6,7,8-HPCDD	0.232 ng/Kg	0.232U ng/Kg	
DUP24-SA6-QC-081111(RES)	1,2,3,4,6,7,8-HPCDF	0.0533 ng/Kg	0.0533U ng/Kg	
DUP24-SA6-QC-081111(RES)	1,2,3,6,7,8-HXCDF	0.0558 ng/Kg	0.0558U ng/Kg	
DUP24-SA6-QC-081111(RES)	1,2,3,7,8,9-HXCDD	0.0534 ng/Kg	0.0534U ng/Kg	
DUP24-SA6-QC-081111(RES)	1,2,3,7,8,9-HXCDF	0,0562 ng/Kg	0.0562U ng/Kg	
DUP24-\$A6-QC-081111(RE\$)	2,3,4,7,8-PECDF	0.0707 ng/Kg	0.0707U ng/Kg	
DUP24-SA6-QC-081111(RES)	OCDD	0.660 ng/Kg	0.660U ng/Kg	
DUP24-SA6-QC-081111(RES)	OCDF	0.226 ng/Kg	0.226U ng/Kg	
SL-006-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0768 ng/Kg	0.0768U ng/Kg	
SL-006-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0663 ng/Kg	0.0663U ng/Kg	
SL-006-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0327 ng/Kg	0.0327U ng/Kg	
SL-006-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.135 ng/Kg	0.135U ng/Kg	
SL-006-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0986 ng/Kg	0.0986U ng/Kg	
SL-006-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.361 ng/Kg	0.361U ng/Kg	
SL-006-SA5DN-SB-9,0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0869 ng/Kg	0.0869U ng/Kg	
SL-006-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0536 ng/Kg	0.0536U ng/Kg	
SL-006-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0477 ng/Kg	0.0477U ng/Kg	
SL-006-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.106 ng/Kg	0.106U ng/Kg	
SL-006-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0769 ng/Kg	0.0769U ng/Kg	
SL-006-SA5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0945 ng/Kg	0.0945U ng/Kg	
SL-006-\$A5DN-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0605 ng/Kg	0.0605U ng/Kg	
SL-006-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.112 ng/Kg	0.112U ng/Kg	
SL-006-SA5DN-SB-9.0-10.0(RES)	OCDD	2.44 ng/Kg	2.44U ng/Kg	
SL-006-SA5DN-SB-9.0-10.0(RES)	OCDF	0.263 ng/Kg	0.263U ng/Kg	
SL-007-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.367 ng/Kg	0.367U ng/Kg	
SL-007-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0691 ng/Kg	0.0691U ng/Kg	
SL-007-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0606 ng/Kg	0.0606U ng/Kg	

1/3/2012 9:47:42 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated
Method: Matrix:	1613B SO	arakan yaki alim cahan akin da banan			

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-007-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0813 ng/Kg	0.0813U ng/Kg	
SL-007-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0976 ng/Kg	0.0976U ng/Kg	
SL-007-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0923 ng/Kg	0.0923U ng/Kg	
SL-007-SA5DN-\$B-4.0-5.0(RE\$)	OCDD	1,40 ng/Kg	1.40U ng/Kg	
SL-007-SA5DN-SB-4.0-5.0(RES)	OCDF	0.210 ng/Kg	0.210U ng/Kg	
SL-033-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0637 ng/Kg	0.0637U ng/Kg	
SL-033-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8-HXCDF	0.0799 ng/Kg	0.0799U ng/Kg	
SL-033-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.114 ng/Kg	0.114U ng/Kg	
SL-033-SA6-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDF	0.135 ng/Kg	0.135U ng/Kg	
SL-033-SA6-SB-2.5-3.5(RES)	2,3,4,7,8-PECDF	0.248 ng/Kg	0.248U ng/Kg	
SL-071-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0633 ng/Kg	0.0633U ng/Kg	
SL-071-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0419 ng/Kg	0.0419U ng/Kg	
SL-071-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0720 ng/Kg	0.0720U ng/Kg	
SL-071-SA5DN-SB-4.0-5.0(RES)	OCDF	0.189 ng/Kg	0.189U ng/Kg	
SL-071-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.729 ng/Kg	0.729U ng/Kg	
SL-071-SA5DN-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0563 ng/Kg	0.0563U ng/Kg	
SL-071-SA5DN-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0310 ng/Kg	0.0310U ng/Kg	
SL-071-SA5DN-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0430 ng/Kg	0.0430U ng/Kg	
SL-071-SA5DN-SB-9.0-10.0(RES)	OCDF	0.163 ng/Kg	0.163U ng/Kg	
SL-072-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.287 ng/Kg	0.287U ng/Kg	
SL-072-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0878 ng/Kg	0.0878U ng/Kg	
SL-072-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.120 ng/Kg	0.120U ng/Kg	
SL-072-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0802 ng/Kg	0.0802U ng/Kg	
SL-151-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.281 ng/Kg	0.281U ng/Kg	
SL-151-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0582 ng/Kg	0.0582U ng/Kg	
SL-151-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0441 ng/Kg	0.0441U ng/Kg	
SL-151-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0497 ng/Kg	0.0497U ng/Kg	
SL-151-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.126 ng/Kg	0.126U ng/Kg	
SL-151-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0481 ng/Kg	0.0481U ng/Kg	
SL-151-SA6-SB-4.0-5.0(RES)	OCDD	1.13 ng/Kg	1.13U ng/Kg	
GL-151-SA6-SB-4.0-5.0(RES)	OCDF	0.181 ng/Kg	0.181U ng/Kg	
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.313 ng/Kg	0.313U ng/Kg	
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0921 ng/Kg	0.0921U ng/Kg	
GL-151-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0649 ng/Kg	0.0649U ng/Kg	
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0891·ng/Kg	0.0891U ng/Kg	
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.114 ng/Kg	0.114U ng/Kg	
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0958 ng/Kg	0.0958U ng/Kg	
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.102 ng/Kg	0.102U ng/Kg	
SL-151-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.127 ng/Kg	0.127U ng/Kg	
SL-151-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.218 ng/Kg	0.218U ng/Kg	

1/3/2012 9:47:42 AM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B		vinaministration in the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contra	ations because it is	a a Chaile a la Chaile a
Matrix: SO				
Method Blank				Associated
Sample ID	Analysis Date	Analyte	Result	Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-151-SA6-SB-9.0-10.0(RES)	OCDD	0.891 ng/Kg	0.891U ng/Kg	
SL-151-SA6-SB-9.0-10.0(RES)	OCDF	0,181 ng/Kg	0.181U ng/Kg	
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.232 ng/Kg	0.232U ng/Kg	
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0664 ng/Kg	0.0664U ng/Kg	
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0694 ng/Kg	0.0694U ng/Kg	
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0905 ng/Kg	0.0905U ng/Kg	
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0916 ng/Kg	0.0916U ng/Kg	
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.150 ng/Kg	0.150U ng/Kg	
SL-155-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.110 ng/Kg	0.110U ng/Kg	
SL-155-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.139 ng/Kg	0.139U ng/Kg	
SL-155-SA6-SB-4.0-5.0(RES)	OCDD	0.725 ng/Kg	0.725U ng/Kg	
SL-155-SA6-SB-4.0-5.0(RES)	OCDF	0.112 ng/Kg	0.112U ng/Kg	
SL-174-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDD	0,395 ng/Kg	0.395U ng/Kg	
SL-174-SA6-SB-2.0-3,0(RES)	1,2,3,4,6,7,8-HPCDF	0.102 ng/Kg	0.102U ng/Kg	
SL-174-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0881 ng/Kg	0.0881U ng/Kg	
SL-174-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HXCDF	0.128 ng/Kg	0.128U ng/Kg	
SL-174-\$A6-\$B-2.0-3.0(RE\$)	1,2,3,6,7,8-HXCDF	0.117 ng/Kg	0.117U ng/Kg	
SL-174-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDD	0.144 ng/Kg	0.144U ng/Kg	
SL-174-SA6-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0.163 ng/Kg	0.163U ng/Kg	
SL-174-SA6-SB-2.0-3.0(RES)	OCDD	1,06 ng/Kg	1.06U ng/Kg	
SL-174-SA6-SB-2.0-3.0(RES)	OCDF	0.147 ng/Kg	0.147U ng/Kg	
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.362 ng/Kg	0.362U ng/Kg	
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0898 ng/Kg	0.0898U ng/Kg	
SL-182-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,4,7,8,9-HPCDF	0.0699 ng/Kg	0.0699U ng/Kg	
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.201 ng/Kg	0.201U ng/Kg	
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.202 ng/Kg	0.202U ng/Kg	
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.151 ng/Kg	0.151U ng/Kg	
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.170 ng/Kg	0.170U ng/Kg	
SL-182-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.163 ng/Kg	0.163U ng/Kg	
SL-182-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.244 ng/Kg	0.244U ng/Kg	
SL-182-SA6-SB-4.0-5.0(RES)	OCDF	0.232 ng/Kg	0.232U ng/Kg	
SL-182-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.205 ng/Kg	0.205U ng/Kg	
SL-182-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0749 ng/Kg	0.0749U ng/Kg	
SL-182-SA6-S8-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.108 ng/Kg	0.108U ng/Kg	
SL-182-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.154 ng/Kg	0.154U ng/Kg	
SL-182-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.121 ng/Kg	0.121U ng/Kg	
SL-182-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.183 ng/Kg	0.183U ng/Kg	
SL-182-\$A6-\$B-9,0-10.0(RES)	2,3,4,7,8-PECDF	0.242 ng/Kg	0.242U ng/Kg	
SL-182-SA6-SB-9.0-10.0(RES)	OCDD	0.713 ng/Kg	0.713U ng/Kg	
SL-182-SA6-SB-9.0-10.0(RES)	OCDF	0.214 ng/Kg	0.214U ng/Kg	

1/3/2012 9:47:42 AM ADR version 1.4.0.111 Page 4 of 5

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	i kii ilikkii ini ini avenoadeinin	k Angli (Balkar 2) and kangkar kangkar birah Kulikana da kang di ang makapang birah	Kalundhullumiki/tablandhum	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.505 ng/Kg	0.505U ng/Kg	
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.143 ng/Kg	0.143U ng/Kg	
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0969 ng/Kg	0.0969U ng/Kg	
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.131 ng/Kg	0.131U ng/Kg	
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0731 ng/Kg	0.0731U ng/Kg	
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.123 ng/Kg	0.123U ng/Kg	
SL-183-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0788 ng/Kg	0.0788U ng/Kg	
SL-183-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.142 ng/Kg	0.142U ng/Kg	
SL-183-SA6-SB-4.0-5.0(RES)	OCDF	0.172 ng/Kg	0.172U ng/Kg	
SL-183-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.319 ng/Kg	0.319U ng/Kg	
SL-183-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0403 ng/Kg	0.0403U ng/Kg	
SL-183-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0560 ng/Kg	0.0560U ng/Kg	
SL-183-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0561 ng/Kg	0.0561U ng/Kg	
SL-183-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0576 ng/Kg	0.0576U ng/Kg	
SL-183-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0471 ng/Kg	0.0471U ng/Kg	
SL-183-SA6-SB-9.0-10.0(RES)	OCDD	0.572 ng/Kg	0.572U ng/Kg	
SL-183-SA6-SB-9.0-10.0(RES)	OCDF	0.307 ng/Kg	0.307U ng/Kg	
SL-185-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.512 ng/Kg	0.512U ng/Kg	
SL-185-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0569 ng/Kg	0.0569U ng/Kg	
SL-185-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0581 ng/Kg	0.0581U ng/Kg	
SL-185-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0495 ng/Kg	0.0495U ng/Kg	
SL-185-SA6-SB-4.0-5.0(RES)	OCDF	0.133 ng/Kg	0.133U ng/Kg	
SL-185-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.159 ng/Kg	0.159U ng/Kg	
SL-185-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0381 ng/Kg	0.0381U ng/Kg	
SL-185-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0597 ng/Kg	0.0597U ng/Kg	
SL-185-SA6-SB-9,0-10,0(RES)	1,2,3,7,8,9-HXCDD	0.0768 ng/Kg	0.0768U ng/Kg	
SL-185-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.120 ng/Kg	0.120U ng/Kg	
SL-185-SA6-SB-9,0-10,0(RES)	OCDD	1.04 ng/Kg	1.04U ng/Kg	
SL-185-SA6-SB-9.0-10.0(RES)	OCDF	0.214 ng/Kg	0.214U ng/Kg	
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.287 ng/Kg	0.287U ng/Kg	
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0816 ng/Kg	0.0816U ng/Kg	
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0557 ng/Kg	0.0557U ng/Kg	
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0579 ng/Kg	0.0579U ng/Kg	
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0791 ng/Kg	0.0791U ng/Kg	
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0982 ng/Kg	0.0982U ng/Kg	
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0769 ng/Kg	0.0769U ng/Kg	
SL-207-SA5DN-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0923 ng/Kg	0.0923U ng/Kg	
SL-207-SA5DN-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.163 ng/Kg	0.163U ng/Kg	
SL-207-SA5DN-SB-4.0-5.0(RES)	OCDD	1.21 ng/Kg	1.21U ng/Kg	
SL-207-SA5DN-SB-4,0-5.0(RES)	OCDF	0.162 ng/Kg	0.162U ng/Kg	

1/3/2012 9:47:42 AM ADR version 1.4.0.111 Page 5 of 5

### Field Duplicate RPD Report

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO		ALT IN THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY O	egilijatek ikun	en en en en en en Planten Barrison	
	Concen	Concentration (%)			
Analyte	SL-155-SA6-SB-4.0-5.0	DUP24-SA6-QC-081111	Sample RPD	eQAPP RPD	Flag
MOISTURE	5.6	5.0	11		No Qualifiers Applied

	Concentra	tion (ng/Kg)				
Analyte	SL-155-SA6-SB-4.0-5.0	DUP24-SA6-QC-081111	Sample RPD	eQAPP RPD	Flag	
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDF OCDD	0.232 0.0664 0.0916 0.725	0.232 0.0533 0.0558 0.660	0 22 49 9	50.00 50.00 50.00 50.00	No Qualifiers Applied	
1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDF	0.0694 0.0905 0.0909 0.150 0.110 0.185 0.164 0.0675 0.139 0.112	5.18 U 5.18 U 5.18 U 0.0534 0.0562 0.0893 5.18 U 5.18 U 0.0707 0.226	200 200 200 95 65 70 200 200 65 67	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)	

Page 1 of 1

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: AQ

SampleID Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA5DN-SB-081111  1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	2.76 0.446 0.161 0.217 0.274 0.164 0.193 0.200 0.136 0.0761 0.126 0.273 0.152 4.40 0.433	10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP24-SA6-QC-081111	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,7,8-PECDF OCDD OCDF	38 38 38 38 38 38 38 38 38 38 38 38 38 3	0.232 0.0533 0.0558 0.0534 0.0562 0.0893 0.0707 0.660 0.226	5.18 5.18 5.18 5.18 5.18 5.18 5.18 10.4 10.4	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-006-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.55 0.319 0.0768 0.0663 0.105 0.0327 0.135 0.0986 0.0828 0.0468 0.0584 0.827	5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Ky ng/Ky ng/Ky ng/Ky ng/Ky ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 9:47:52 AM ADR version 1.4.0.111 Page 1 of 6

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method:	16138	Transition a Conference Contraction of a	Budy Water and addition.	li Cala di Assassa			
Matrix:	so					erine Aufter Herry We	
			Lat	Reporting	RL		

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-006-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0CDD 0CDF	H H H H C D C H H H H H H H H H H H H H	0.361 0.0869 0.0536 0.0477 0.106 0.0590 0.0769 0.0945 0.0605 0.116 0.0939 0.0503 0.112 2.44 0.263	5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-007-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	18 18 20 20 20 20 20 20 20 20 20 20 20 20 20	0.367 0.0691 0.0606 0.0813 0.219 0.0976 0.375 0.0843 0.0768 0.0923 1.40 0.210	5.82 5.82 5.82 5.82 5.82 5.82 5.82 5.82	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-033-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	JB JB JB JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ	4.60 0.947 0.0637 0.0799 0.196 0.114 0.237 0.135 0.0952 0.134 0.248 0.112 2.48	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-071-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 2,3,4,7,8-PECDF OCDF	JBQ JBQ JB J JBQ JB	1.32 0.0633 0.0419 0.0705 0.0720 0.189	5.71 5.71 5.71 5.71 5.71 11.4	PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-071-SA5DN-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JB JBQ JB JQ JQ JB JB	0.729 0.0563 0.0310 0.0528 0.0557 0.0430 2.98 0.163	5.53 5.53 5.53 5.53 5.53 5.53 11.1 11.1	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-072-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0CDF	а Бърава с В в	2.30 0.287 0.950 0.0878 0.477 0.120 0.0947 0.220 0.0802 5.56	5.93 5.93 5.93 5.93 5.93 5.93 5.93 5.93	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-151-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	ਜ਼ਜ਼ <u>ਜ਼</u> ਜ਼ਜ਼ਜ਼ ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼ਜ਼	0.281 0.0582 0.0441 0.0504 0.0497 0.126 0.0458 0.0398 0.0481 1.13 0.181	5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-151-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HCDF 0CDD 0CDF	ងគ្លឹកធ្ងង់កង្គង្គង់គង់	0.313 0.0921 0.0649 0.0891 0.114 0.0887 0.0958 0.102 0.127 0.274 0.213 0.0772 0.218 0.128 0.891 0.181	5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.59	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-155-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0CDD 0CDF	######################################	0.232 0.0664 0.0694 0.0905 0.0909 0.0916 0.150 0.110 0.185 0.164 0.0675 0.139 0.725 0.112	5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 9:47:52 AM ADR version 1.4.0.111 Page 3 of 6

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613E

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-174-SA6-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-TCDF OCDD OCDF	# # # # # # # # # # # # # # # # # # #	0.395 0.102 0.0881 0.128 0.154 0.117 0.144 0.119 0.103 0.113 0.163 0.101 1.06 0.147	5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-182-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-TCDF 0CDD 0CDF	ਜ਼ੑਜ਼ੑਜ਼ੑਜ਼ੑਜ਼ ਜ਼ੑਜ਼ੑਜ਼ੑਜ਼ੑਜ਼ ਜ਼ੑਜ਼ੑਜ਼ੑਜ਼ਜ਼	0.362 0.0898 0.0699 0.201 0.202 0.131 0.151 0.170 0.163 0.146 0.325 0.126 0.244 0.128 3.62 0.232	5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-182-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	######################################	0.205 0.0749 0.108 0.154 0.0984 0.197 0.121 0.183 0.287 0.159 0.0407 0.242 0.713 0.214	5.60 5.60 5.60 5.60 5.60 5.60 5.60 5.60	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

ADR version 1.4.0.111 Page 4 of 6

Lab Reporting Batch ID: DX127

EDD Filename: DX127_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Metrod: 1613B

flatrix: SO

Matrix: SO							· · · · · · · · · · · · · · · · · · ·
SampleID	Amakuta	Lab Qual	Result	Reporting Limit	RL Turns	Units	Eta o
	Analyte		Resuit	Liiiit	Туре		Flag
SL-183-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF	JB JBQ JB JQ JBQ	0.505 0.143 0.0969 0.131 0.136 0.0731	5.48 5.48 5.48 5.48 5.48 5.48	PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	JB JBQ JQ JQ JQ JB JB	0.123 0.0788 0.203 0.233 0.0800 0.142 0.136 3.53	5.48 5.48 5.48 5.48 5.48 5.48 1.10	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
	OCDF	JB	0.172	11.0	PQL	ng/Kg	
SL-183-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JBQ JBQ JBQ JBQ JBQ JBB JBJ JBJ	0.319 0.0403 0.0560 0.0561 0.0576 0.0399 0.0471 0.572 0.307	5.53 5.53 5.53 5.53 5.53 5.53 5.53 11.1 11.1	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-185-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	######################################	0.512 0.0569 0.0581 0.475 0.0631 0.0752 0.0495 0.0786 3.90 0.133	5.52 5.52 5.52 5.52 5.52 5.52 5.52 1.10 11.0	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-185-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	JB JBQ JB JQ JBQ JBQ JBQ JBQ	0.159 0.0381 0.0597 0.0760 0.0768 0.120 0.0961 1.04 0.214	5.57 5.57 5.57 5.57 5.57 5.57 5.57 1.11 11.1	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 9:47:52 AM ADR version 1.4.0.111 Page 5 of 6

Lab Reporting Batch ID: DX127 Laboratory: LL

EDD Filename: DX127_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-207-SA5DN-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF	JB JB JB JB JB JB JQ JQ JQ JB JB JB	0.287 0.0816 0.0557 0.0579 0.0791 0.106 0.0982 0.0769 0.0923 0.180 0.218 0.0740 0.163 0.105 1,21	5.66 5.66 5.66 5.66 5.66 5.66 5.66 5.66	Pal Pal Pal Pal Pal Pal Pal Pal Pal Pal	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 9:47:52 AM ADR version 1.4.0.111 Page 6 of 6

# **SAMPLE DELIVERY GROUP**

**DX128** 

# Attachment I

Sample ID Cross Reference and Data Review Level

### Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
17-Aug-2011	SL-154-SA6-SB-3.0-4.0	6380503	N	METHOD	1613B	[1]
17-Aug-2011	SL-224-SA6-SB-3.0-4.0	6380506	N	METHOD	1613B	111
17-Aug-2011	SL-224-SA6-SB-3.0-4.0MS	6380507	MS	METHOD	1613B	III
17-Aug-2011	SL-224-SA6-SB-3.0-4.0MSD	6380508	MSD	METHOD	1613B	lti
17-Aug-2011	DUP12-SA6-QC-081711	6380510	FD	METHOD	1613B	Ш
17-Aug-2011	SL-221-SA6-SB-1.0-2.0	6380504	N	METHOD	16 <b>1</b> 3B	111
17-Aug-2011	SL-223-SA6-SB-2.5-3.5	6380505	N	METHOD	1613B	111
17-Aug-2011	EB-SA6-SB-081711	6380511	EΒ	METHOD	16 <b>1</b> 3B	111
17-Aug-2011	SL-226-SA6-SB-3.5-4.5	6380509	N	METHOD	1613B	111
19-Aug-2011	SL-315-SA6-SB-3.0-4.0	6382932	N	METHOD	1613B	111
19-Aug-2011	SL-214-SA6-SB-1.0-2.0	6382933	N	METHOD	1613B	III
22-Aug-2011	SL-007-SA5DN-SS-0.0-0.5	6384486	N	METHOD	1613B	<b>111</b>
22-Aug-2011	SL-215-SA6-SB-4.0-5.0	6384477	N	METHOD	1613B	111
22-Aug-2011	SL-310-SA6-SB-4.0-5.0	6384485	N	METHOD	1613B	IH
22-Aug-2011	SL-279-SA6-SB-1.0-2.0	6384482	N	METHOD	1613B	Ш
22-Aug-2011	SL-279-SA6-SB-4.0-5.0	6384483	N	METHOD	1613B	111
22-Aug-2011	SL-242-SA6-SB-9.0-10.0	6384481	N	METHOD	1613B	111
22-Aug-2011	SL-242-SA6-SB-4.0-5.0	6384480	N	METHOD	16 <b>1</b> 3B	111
22-Aug-2011	SL-279-SA6-SB-9.0-10.0	6384484	N	METHOD	1613B	111
22-Aug-2011	SL-241-SA6-SB-4.0-5.0	6384478	N	METHOD	1613B	111
22-Aug-2011	SL-241-SA6-SB-9.0-10.0	6384479	N	METHOD	1613B	111

### **Attachment II**

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: Matrix: AQ

Sample ID: EB-SA6-SB-081711	Collec	ted: 8/17/2	011 1:00:0	00 A	Analysis Type: RES				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	2.81	JBQ	0.554	MDL	9.56	PQL	pg/L	U	В		
1,2,3,4,6,7,8-HPCDF	0.562	JBQ	0.236	MDL	9.56	PQL	pg/L	U	В		
1,2,3,4,7,8,9-HPCDF	0.367	JBQ	0.274	MDL	9.56	PQL	pg/L	U	В		
1,2,3,4,7,8-HxCDD	0.405	JBQ	0.372	MDL	9.56	PQL	pg/L	U	В		
1,2,3,6,7,8-HXCDF	0.277	JBQ	0.185	MDL	9.56	PQL	pg/L	U	В		
1,2,3,7,8,9-HXCDD	0.522	JBQ	0.373	MDL	9.56	PQL	pg/L	U	В		
1,2,3,7,8,9-HXCDF	0.316	JBQ	0.186	MDL	9.56	PQL	pg/L	U	В		
1,2,3,7,8-PECDD	0.710	JBQ	0.490	MDL	9.56	PQL	pg/L	U	В		
2,3,4,6,7,8-HXCDF	0.303	JBQ	0.172	MDL	9.56	PQL	pg/L	U	В		
2,3,4,7,8-PECDF	0.740	JB	0.233	MDL	9.56	PQL	pg/L	U	В		
OCDD	4.18	JBQ	0.374	MDL	19.1	PQL	pg/L	U	В		
OCDF	0.569	JBQ	0.553	MDL	19.1	PQL	pg/L	U	В		

Method Categ	ory: GENCHEM	
Method:	1613B	Matrix: SO

Analysis Type: RES

Collected: 8/17/2011 10:10:00

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.310	JBQ	0.0390	MDL	5.30	PQL	ng/Kg	UJ	B, FD
1,2,3,4,6,7,8-HPCDF	0.156	JB	0.0139	MDL	5.30	PQL	ng/Kg	UJ	B, FD
1,2,3,4,7,8-HxCDD	0.230	J	0.0482	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	0.339	JB	0.0299	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDD	0.244	JBQ	0.0475	MDL	5.30	PQL	ng/Kg	UJ	B, FD
1,2,3,6,7,8-HXCDF	0.344	JB	0.0276	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,7,8,9-HXCDD	0.230	JB	0.0452	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,7,8,9-HXCDF	0.229	JB	0.0307	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDD	0.483	JBQ	0.0624	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDF	0.585	JB	0.0344	MDL	5.30	PQL	ng/Kg	J	Z, FD
2,3,4,6,7,8-HXCDF	0.190	JBQ	0.0277	MDL	5.30	PQL	ng/Kg	J	Ž, FD
2,3,4,7,8-PECDF	0.442	JB	0.0332	MDL	5.30	PQL	ng/Kg	J	Z, FD
2,3,7,8-TCDD	0.0807	JQ	0.0802	MDL	1.06	PQL	ng/Kg	j	Z, FD

2,3,7,8-TCDF

OCDD

Sample ID: DUP12-SA6-QC-081711

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/3/2012 10:32:56 AM ADR version 1.4.0.111

0.110

0.299

JQ

JBQ

0.0573

0.0365

MDL

MDL

1.06

10.6

PQL

PQL

ng/Kg

ng/Kg

J

U

Z, FD

В

Dilution: 1

Data

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category	: GENCHEM		a. Educati
Method:	1613B	Matrix: SO	

Sample ID: DUP12-SA6-QC-081711	Collec	Collected: 8/17/2011 10:10:00				ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
OCDF	0.208	J	0.0569	MDL	10.6	PQL	ng/Kg	J	Z	

Sample ID: St007-SA5DN-SS-0.0-0.5	Collec	ted: 8/22/2	011 8:00:0	10 A	nalysis T	ype: RES		E	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	3.19	JB	0.0378	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	1.57	J	0.0433	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.304	JQ	0.0642	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.739	JB	0.0634	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	3.15	JB	0.0751	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.621	JB	0.0629	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	2.04	JB	0.0807	MDL	5.55	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.94	JB	0.0746	MDL	5.55	PQL	ng/Kg	J	Z	
OCDF	4.88	J	0.0558	MDL	11.1	PQL	ng/Kg	J	Z	

Sample ID: SL-154-SA6-SB-3.0-4.0  Analyte	Collected: 8/17/2011 7:45:00				Analysis Type: RES			Dilution: 1		
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.382	JB	0.0461	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0307	JBQ	0.0121	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0300	JQ	0.0263	MDL	5.24	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0301	JB	0.0197	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0292	JBQ	0.0169	MDL	5.24	PQL	ng/Kg	U `	В	
1,2,3,7,8,9-HXCDD	0.0723	JBQ	0.0342	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0295	JBQ	0.0233	MDL	5.24	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.0293	JBQ	0.0186	MDL	5.24	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0537	JBQ	0.0241	MDL	5.24	PQL	ng/Kg	U	В	

Sample ID: St214-SA6-SB-1.0-2.0  Analyte	Collec	Collected: 8/19/2011 11:32:00				ype: RES	Dilution: 1		
	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.443	JB	0.0448	MDL	5.34	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.133	JBQ	0.0139	MDL	5.34	PQL	ng/Kg	υ	В

0.0432

0.0708

MDL

MDL

10.5

10.5

PQL

PQL

ng/Kg

ng/Kg

J

JВ

JQ

OCDD

OCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/3/2012 10:32:56 AM ADR version 1.4.0.111

4.14

0.0760

Z

z

Laboratory: LL

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-214-SA6-SB-1.0-2.0 Collected: 8/19/2011 11:32:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Analyte Result Qual DL Туре RLТуре Units Qual Code 1,2,3,4,7,8,9-HPCDF 0.0450 0.0232 MDL 5.34 **PQL** ng/Kg Z 1,2,3,4,7,8-HxCDD 0.159 JQ 0.0446 MDL 5.34 PQL Z ng/Kg J 1,2,3,4,7,8-HXCDF 0.210 JB 0.0271 MDL 5.34 PQL ng/Kg U В 1,2,3,6,7,8-HXCDD 0.142 JBQ 0.0432 MDL 5.34 PQL U ng/Kg В 1,2,3,6,7,8-HXCDF JΒ 0.0248 MDL 5.34 **PQL** υ 0.186 ng/Kg В 1,2,3,7,8,9-HXCDD 0.229 0.0432 J JB MDL 5.34 PQL ng/Kg z 1,2,3,7,8,9-HXCDF 0.137 0.0278 MDL JΒ 5.34 **PQL** ng/Kg В 1,2,3,7,8-PECDD 0.212 JВ 0.0727 MDL 5.34 PQL ng/Kg U В 2,3,4,6,7,8-HXCDF 0.0933 **JBQ** 0.0248 MDL 5.34 PQL U ng/Kg В 2,3,4,7,8-PECDF 0.313 **JBQ** 0.0288 MDL 5.34 **PQL** J Z ng/Kg 2,3,7,8-TCDD 0.0910 JQ 0.0841 MDL 1.07 PQL J ng/Kg Z 2,3,7,8-TCDF 0.0765 JQ 0.0530 MDL 1.07 PQL J ng/Kg Z OCDD 1.07 JB U 0.0335 MDL 10.7 PQL В ng/Kg

Sample ID: SL-215-SA6-SB-4.0-5.0 Collected: 8/22/2011 8:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.27	JB	0.0609	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.539	JB	0.0189	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0675	JQ	0.0287	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.119	J	0.0444	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0803	JBQ	0.0287	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.193	JB	0.0450	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0649	JBQ	0.0257	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.212	JB	0.0434	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0339	JBQ	0.0322	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0891	JB	0.0608	MDL	5.53	PQL	ng/Kg	U	B
2,3,4,6,7,8-HXCDF	0.0542	JB	0.0263	MDL	5.53	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0727	JBQ	0.0292	MDL	5.53	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0689	JQ	0.0617	MDL	1.11	PQL	ng/Kg	J	Z
OCDF	1.81	JQ	0.0649	MDL	11.1	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 3 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-221-SA6-SB-1.0-2.0 Collected: 8/17/2011 10:55:00 Analysis Type: RES Dilution: 1

•										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	2.06	JBQ	0.0597	MDL	5.29	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	0.170	JB	0.0163	MDL	5.29	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0420	JBQ	0.0230	MDL	5.29	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.102	JBQ	0.0381	MDL	5.29	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDF	0.0361	JBQ	0.0209	MDL	5.29	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDD	0.0801	JBQ	0.0409	MDL	5.29	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0409	JBQ	0.0278	MDL	5.29	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0302	JBQ	0.0221	MDL	5.29	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0437	JBQ	0.0256	MDL	5.29	PQL	ng/Kg	U	В	
OCDF	0.512	JQ	0.0683	MDL	10.6	PQL	ng/Kg	J	Ž	

Sample ID: SL-223-SA6-SB-2.5-3.5 Collected: 8/17/2011 11:56:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.358	JB	0.0611	MDL	5.00	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0574	JBQ	0.0180	MDL	5.00	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0303	JB	0.0270	MDL	5.00	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0970	JBQ	0.0389	MDL	5.00	PQL	ng/Kg	υ	В	
1,2,3,7,8,9-HXCDF	0.0868	JBQ	0.0279	MDL	5.00	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0875	JBQ	0.0742	MDL	5.00	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0888	JB	0.0347	MDL	5.00	PQL	ng/Kg	U	В	
OCDD	2.16	JB	0.0413	MDL	10.0	PQL	ng/Kg	J	Z	
OCDF	0.367	JQ	0.0953	MDL	10.0	PQL	ng/Kg	J	Z	
		·								

Sample ID: SL-224-SA6-SB-3.0-4.0 Collected: 8/17/2011 10:06:00 Analysis Type: RES Dilution: 1

Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.131	JBQ	0.0533	MDL	5.26	PQL	ng/Kg	UJ	B, FD
0.0332	JB	0.0182	MDL	5.26	PQL	ng/Kg	UJ	B, FD
0.0433	U	0.0433	MDL	5.26	PQL	ng/Kg	UJ	FD
0.0268	U	0.0268	MDL	5.26	PQL	ng/Kg	υJ	FD
0.0414	U	0.0414	MDL	5.26	PQL	ng/Kg	บู	FD
0.0232	U	0.0232	MDL	5.26	PQL	ng/Kg	บม	FD
0.0949	JBQ	0.0389	MDL	5.26	PQL	ng/Kg	เก	B, FD
0.0239	U	0.0239	MDL	5.26	PQL	ng/Kg	UJ	FD
	Result  0.131  0.0332  0.0433  0.0268  0.0414  0.0232  0.0949	Result         Qual           0.131         JBQ           0.0332         JB           0.0433         U           0.0268         U           0.0414         U           0.0232         U           0.0949         JBQ	Result         Qual         DL           0.131         JBQ         0.0533           0.0332         JB         0.0182           0.0433         U         0.0433           0.0268         U         0.0268           0.0414         U         0.0414           0.0232         U         0.0232           0.0949         JBQ         0.0389	Lab Result         Lab Qual         DL DL Type           0.131         JBQ         0.0533         MDL           0.0332         JB         0.0182         MDL           0.0433         U         0.0433         MDL           0.0268         U         0.0268         MDL           0.0414         U         0.0414         MDL           0.0232         U         0.0232         MDL           0.0949         JBQ         0.0389         MDL	Lab Result         Lab Qual         DL DL         Type         RL           0.131         JBQ         0.0533         MDL         5.26           0.0332         JB         0.0182         MDL         5.26           0.0433         U         0.0433         MDL         5.26           0.0268         U         0.0268         MDL         5.26           0.0414         U         0.0414         MDL         5.26           0.0232         U         0.0232         MDL         5.26           0.0949         JBQ         0.0389         MDL         5.26	Result         Qual         DL         Type         RL         Type           0.131         JBQ         0.0533         MDL         5.26         PQL           0.0332         JB         0.0182         MDL         5.26         PQL           0.0433         U         0.0433         MDL         5.26         PQL           0.0268         U         0.0268         MDL         5.26         PQL           0.0414         U         0.0414         MDL         5.26         PQL           0.0232         U         0.0232         MDL         5.26         PQL           0.0949         JBQ         0.0389         MDL         5.26         PQL	Lab Result         Lab Qual         DL DL DL         DL Type         RL RL         RL Type         Units           0.131         JBQ         0.0533         MDL         5.26         PQL         ng/Kg           0.0332         JB         0.0182         MDL         5.26         PQL         ng/Kg           0.0433         U         0.0433         MDL         5.26         PQL         ng/Kg           0.0268         U         0.0268         MDL         5.26         PQL         ng/Kg           0.0414         U         0.0414         MDL         5.26         PQL         ng/Kg           0.0232         U         0.0232         MDL         5.26         PQL         ng/Kg           0.0949         JBQ         0.0389         MDL         5.26         PQL         ng/Kg	Lab Result         Lab Qual         DL Type         RL Type         RL Type         Units         Data Review Qual           0.131         JBQ         0.0533         MDL         5.26         PQL         ng/Kg         UJ           0.0332         JB         0.0182         MDL         5.26         PQL         ng/Kg         UJ           0.0433         U         0.0433         MDL         5.26         PQL         ng/Kg         UJ           0.0268         U         0.0268         MDL         5.26         PQL         ng/Kg         UJ           0.0414         U         0.0414         MDL         5.26         PQL         ng/Kg         UJ           0.0232         U         0.0232         MDL         5.26         PQL         ng/Kg         UJ           0.0949         JBQ         0.0389         MDL         5.26         PQL         ng/Kg         UJ

Page 4 of 13

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

A District of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Con

0.263

0.133

0.314

0.170

0.539

Sample ID: SL-224-SA6-SB-3.0-4.0	Collected: 8/17/2011 10:06:00 Analysis Type: RES								Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,7,8-PECDD	0.0659	U	0.0659	MDL	5.26	PQL	ng/Kg	บม	FD		
1,2,3,7,8-PECDF	0.0312	JB	0.0292	MDL	5.26	PQL	ng/Kg	UJ	B, FD		
2,3,4,6,7,8-HXCDF	0.0209	U	0.0209	MDL	5.26	PQL	ng/Kg	UJ	FD		
2,3,4,7,8-PECDF	0.0298	JBQ	0.0287	MDL	5.26	PQL	ng/Kg	υJ	B, FD		
2,3,7,8-TCDD	0.0769	U	0.0769	MDL	1.05	PQL	ng/Kg	υJ	FD		
2,3,7,8-TCDF	0.0635	U	0.0635	MDL	1.05	PQL	ng/Kg	บม	FD		

0.0435

0.0823

MDL

MDL

10.5

10.5

PQL

PQL

ng/Kg

ng/Kg

J

J

J

J

В

z

Z

z

Z

Sample ID: SL-226-SA6-SB-3.5-4.5	Collec		Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.946	JB	0.0518	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.219	JB	0.0157	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0948	J	0.0255	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.165	J	0.0376	MDL	5.18	PQL	ng/Kg	J	Z

JBQ

JQ

1,2,3,4,7,8-HXCDF 0.0298 0.196 JΒ MDL 5.18 PQL ng/Kg U В 1,2,3,6,7,8-HXCDD 0.230 JB 0.0376 MDL 5.18 **PQL** ng/Kg U В 1,2,3,6,7,8-HXCDF 0.189 JBQ 0.0272 MDL 5.18 PQL U В ng/Kg 1,2,3,7,8,9-HXCDD 0.233 **JBQ** 0.0357 PQL J z MDL 5.18 ng/Kg 1,2,3,7,8,9-HXCDF 0.225 JB 0.0307 MDL PQL ng/Kg z 5.18 J 1,2,3,7,8-PECDD 0.229 U JΒ 0.0620 MDL 5.18 **PQL** ng/Kg В 1,2,3,7,8-PECDF 0.344 JB 0.0310 MDL. 5.18 **PQL** ng/Kg J z 2,3,4,6,7,8-HXCDF 0.128 JBQ 0.0275 MDL, 5.18 PQL J Z ng/Kg

0.0289

0.0763

0.0608

MDL

MDL

MDL

5.18

1.04

10.4

PQL

**PQL** 

PQL

ng/Kg

ng/Kg

ng/Kg

Sample ID: SL-241-SA6-SB-4.0-5.0 Collected: 8/22/2011 12:12:00 Analysis Type: RES Dilution: 1

JB

JQ

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.282	JBQ	0.0363	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0463	JBQ	0.0109	MDL	5.21	PQL	пд/Кд	υ	В
1,2,3,4,7,8,9-HPCDF	0.0399	J	0.0165	MDL	5.21	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0506	JB	0.0187	MDL	5.21	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

2,3,4,7,8-PECDF

2,3,7,8-TCDD

OCDF

OCDD

OCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 5 of 13

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	y: GENCHEM	es na dinaria di la parez de placa di especialista di el constitución de la constitución de la constitución de	
Method:	1613B	Matrix: SO	

Sample ID: SL-241-SA6-SB-4.0-5.0	Collec	ted: 8/22/2	011 12:12	:00 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDD	0.0570	JB	0.0255	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0240	JB	0.0168	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0388	JBQ	0.0248	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0320	JBQ	0.0194	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0225	JBQ	0.0218	MDL	5.21	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0267	JBQ	0.0162	MDL	5.21	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0522	JB	0.0206	MDL	5.21	PQL	ng/Kg	U	В	
OCDD	1.56	JB	0.0329	MDL	10.4	PQL	ng/Kg	U	В	
OCDF	0.107	J	0.0465	MDL	10.4	PQL	ng/Kg	J	Z	

· · · · · · · · · · · · · · · · · · ·										
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.283	JB	0.0420	MDL	5.37	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0462	JB	0.0103	MDL	5.37	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0313	JQ	0.0155	MDL	5.37	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0239	JBQ	0.0190	MDL	5.37	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0483	JB	0.0293	MDL	5.37	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0221	JBQ	0.0172	MDL	5.37	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0861	JBQ	0.0221	MDL	5.37	PQL	ng/Kg	U	В	
OCDD	0.480	JB	0.0321	MDL	10.7	PQL	ng/Kg	U	В	
OCDF	0.147	JQ	0.0565	MDL	10.7	PQL	ng/Kg	J	Z	

Sample ID: SL-242-SA6-SB-4.0-5.0 Collected: 8/22/2011 11:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.315	JB	0.0422	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0498	JB	0.0109	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0427	JQ	0.0183	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0257	JB	0.0196	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.114	JBQ	0.0288	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0239	JBQ	0.0175	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.218	JB	0.0276	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.216	JB	0.0206	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0640	JBQ	0.0218	MDL	5.29	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 6 of 13

Lab Reporting Batch ID: DX129

Laboratory: LL

EDD Filename: DX129_v1

eQAPP Name: CDM_SSFL_110509

Sample ID: SL-242-SA6-SB-4.0-5.0	Collec	ted: 8/22/2	2011 11:05	:00 A	nalysis T	ype: RES		1	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
2,3,4,6,7,8-HXCDF	0.0301	JBQ	0.0179	MDL	5.29	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0342	JB	0.0213	MDL	5.29	PQL	ng/Kg	U	В	
OCDD	2.25	JB	0.0320	MDL	10.6	PQL	ng/Kg	J	Z	
OCDF	0.100	JQ	0.0536	MDL	10.6	PQL	ng/Kg	J	Z	

Sample ID: SL-242-SA6-SB-9.0-10.0 Collected: 8/22/2011 11:04:00 Analysis Type: RES Dilution: 1 Data DL RL Lab Lab Review Reason DL Analyte Result Qual Type RLUnits Qual Code Type 1,2,3,4,6,7,8-HPCDD 0.365 JВ 0.0421 MDL, 5.25 PQL ng/Kg U В 1,2,3,4,6,7,8-HPCDF 0.122 **JBQ** 0.0137 MDL 5.25 **PQL** ng/Kg U В 1,2,3,4,7,8,9-HPCDF 0.0507 JQ 0.0223 MDL 5.25 **PQL** ng/Kg J Z 1,2,3,4,7,8-HxCDD 0.0342 JQ 0.0341 MDL 5.25 **PQL** ng/Kg J Z 0.0763 0.0253 MDL PQL U 1,2,3,4,7,8-HXCDF **JBQ** 5.25 ng/Kg В 1,2,3,6,7,8-HXCDD 0.0837 JBQ 0.0348 U MDL, 5.25 **PQL** ng/Kg В 1,2,3,6,7,8-HXCDF 0.0473 **JBQ** 0.0232 MDL 5.25 PQL ng/Kg U В 1,2,3,7,8,9-HXCDD 0.0946 JBQ 0.0344 MDL U 5.25 PQL ng/Kg В 0.0529 JBQ 0.0264 5.25 PQL υ 1,2,3,7,8,9-HXCDF MDL ng/Kg В 1,2,3,7,8-PECDD 0.0885 JBQ 0.0537 MDL 5.25 PQL ng/Kg Ų В 0.195 JBQ 0.0292 5.25 **PQL** J Z 1,2,3,7,8-PECDF MDL ng/Kg 2,3,4,6,7,8-HXCDF 0.0765 **JBQ** 0.0232 MDL 5.25 PQL U В ng/Kg 2,3,4,7,8-PECDF 0.170 JB 0.0264 MDL 5.25 **PQL** U В ng/Kg 2,3,7,8-TCDD 0.0834 J 0.0686 MDL PQL J Z 1.05 ng/Kg 2,3,7,8-TCDF 0.0563 JQ 0.0512 MDL 1.05 PQL ng/Kg Z OCDD 1.41 JΒ 0.0368 MDL PQL U В 10.5 ng/Kg OCDF JQ 0,166 0.0489 MDL 10.5 **PQL** ng/Kg Z

Samble ID: Str219-3A0-3D-1.0-2.0 Collected: 0/22/2011 10:25:00 Analysis Tybe: Rc3 Dilluid	Sample ID: SL-279-SA6-SB-1.0-2.0	Collected: 8/22/2011 10:25:00	Analysis Type: RES	Dilution: 1
-------------------------------------------------------------------------------------------	----------------------------------	-------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.969	JB	0.0452	MDL	5.08	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.166	JB	0.0120	MDL	5.08	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0667	J	0.0254	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.0900	J	0.0345	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.196	JB	0.0269	MDL	5.08	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.156	JB	0.0362	MDL	5.08	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

 Sample ID: SL-279-SA6-SB-1.0-2.0
 Collected: 8/22/2011 10:25:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDF	0.169	JBQ	0.0233	MDL	5.08	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.151	JB	0.0351	MDL	5.08	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.162	JB	0.0289	MDL	5.08	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.222	JB	0.0450	MDL	5.08	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.324	JB	0.0250	MDL	5.08	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.111	JBQ	0.0240	MDL	5.08	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.301	JB	0.0249	MDL	5.08	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0657	J	0.0533	MDL	1.02	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0889	J	0.0408	MDL	1.02	PQL	ng/Kg	J	Z	
OCDD	9.19	JB	0.0400	MDL	10.2	PQL	ng/Kg	J	Z	
OCDF	0.372	JQ	0.0524	MDL	10.2	PQL	ng/Kg	J	Z	

Sample ID: SL-279-SA6-SB-4.0-5.0 Collected: 8/22/2011 11:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.389	JBQ	0.0458	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.157	JB	0.0144	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0531	JQ	0.0258	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.138	JQ	0.0376	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.178	JB	0.0270	MDL	5.13	PQL	ng/Kg	U	B
1,2,3,6,7,8-HXCDD	0.150	JBQ	0.0383	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.142	JBQ	0.0234	MDL	5.13	PQL	ng/Kg	U	В
,2,3,7,8,9-HXCDD	0.131	JBQ	0.0382	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.153	JBQ	0.0259	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.315	JBQ	0.0619	MDL	5.13	PQL	ng/Kg	υ	В
,2,3,7,8-PECDF	0.334	JB	0.0293	MDL	5.13	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.119	JBQ	0.0243	MDL,	5.13	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.320	JB	0.0278	MDL	5.13	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.121	J	0.0741	MDL	1.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0977	JQ	0.0489	MDL	1.03	PQL	ng/Kg	J	Z
OCDD	1.95	JB	0.0362	MDL	10.3	PQL	ng/Kg	U	В
OCDF	0.161	JQ	0.0628	MDL	10.3	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-279-SA6-SB-9.0-10.0 Collected: 8/22/2011 11:50:00 Analysis Type: RES Dilution: 1 Data DL Lab Lab RL Review Reason Analyte Result Qual DL Туре RLТуре Units Qual Code 1,2,3,4,6,7,8-HPCDD 1.57 JB 0.0484 MDL 5.39 **PQL** ng/Kg J z 1,2,3,4,6,7,8-HPCDF 0.271 JBQ 0.0158 MDL PQL 5.39 ng/Kg J Z 1,2,3,4,7,8,9-HPCDF 0.0889 J 0.0316 MDL 5.39 PQL ng/Kg J z 1,2,3,4,7,8-HxCDD 0.116 JQ 0.0368 MDL PQL 5.39 ng/Kg J Z 1,2,3,4,7,8-HXCDF 0.211 JΒ 0.0243 MDL 5.39 PQL ng/Kg U В JB 1,2,3,6,7,8-HXCDD 0.146 0.0368 MDL 5.39 **PQL** U В ng/Kg 1,2,3,6,7,8-HXCDF JBQ 0.145 0.0213 MDL 5.39 **PQL** ng/Kg U В 1,2,3,7,8,9-HXCDD 0.125 JBQ 0.0370 MDL 5.39 PQL U В ng/Kg 1,2,3,7,8,9-HXCDF 0.124 JB 0.0274 MDL **PQL** U 5.39 ng/Kg В 1,2,3,7,8-PECDD 0.126 JBQ 0.0511 MDL PQL U В 5.39 ng/Kg 1,2,3,7,8-PECDF 0.230 JΒ 0.0270 MDL 5.39 **PQL** J ng/Kg Z, 2,3,4,6,7,8-HXCDF 0.0814 JΒ 0.0232 MDL PQL U 5.39 ng/Kg В 2,3,4,7,8-PECDF 0.224 JBQ 0.0258 MDL PQL U 5.39 ng/Kg В

Sample ID: SL-310-SA6-SB-4.0-5.0 Collected: 8/22/2011 9:15:00 Analysis Type: RES Dilution: 1

0.0621

MDL

10.8

**PQL** 

ng/Kg

J

z

JQ

0.654

	Lab	Lab		DL.		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	2.28	JB	0.0348	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.301	JB	0.0139	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0415	JB	0.0205	MDL.	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0491	JB	0.0154	MDL	5.48	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.170	JBQ	0.0246	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0273	JB	0.0135	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.210	JBQ	0.0230	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.113	JBQ	0.0163	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0304	JBQ	0.0181	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0750	JBQ	0.0135	MDL	5.48	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0322	JBQ	0.0138	MDL	5.48	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0637	JBQ	0.0138	MDL	5.48	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0246	J	0.0218	MDL	1.10	PQL	ng/Kg	J	Z
OCDF	0.781	JB	0.0285	MDL	11.0	PQL	ng/Kg	J	Z

OCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 9 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENGHEM

Method: 1613B Matrix: SO

Collected: 8/19/2011 8:14:00 Sample ID: SL-315-SA6-SB-3.0-4.0 Analysis Type: RES Dilution: 1 Data Lab DLRLReview Lab Reason Analyte Result Qual DL Туре RL. Туре Units Qual Code 1,2,3,4,6,7,8-HPCDF 2.46 0.0315 MDL **PQL** 5.18 ng/Kg J Ζ 1,2,3,4,7,8,9-HPCDF 0.491 J 0.0494 MDL 5.18 PQL J z ng/Kg 1,2,3,4,7,8-HxCDD 0.458 JQ 0.0561 MDL. 5.18 PQL ng/Kg J Z JB 0.0351 J 1,2,3,4,7,8-HXCDF 0.353 MDL 5.18 PQL ng/Kg Z J Z 1,2,3,6,7,8-HXCDD 0.537 JBQ 0.0545 MDL 5.18 **PQL** ng/Kg 1,2,3,6,7,8-HXCDF 0.280 JB 0.0316 MDL. 5.18 **PQL** J z ng/Kg JΒ PQL J z 1,2,3,7,8,9-HXCDD 0.370 0.0523 MDL 5.18 ng/Kg 1,2,3,7,8,9-HXCDF 0.226 JBQ 0.0343 MDL 5.18 PQL ng/Kg J z JВ 0.0524 MDL **PQL** J Z 1,2,3,7,8-PECDD 0.615 5.18 ng/Kg 0.516 JBQ MDL PQL J Z 1,2,3,7,8-PECDF 0.0277 5.18 ng/Kg 0.264 JΒ 0.0306 MDL 5.18 **PQL** J Z 2,3,4,6,7,8-HXCDF ng/Kg 2,3,4,7,8-PECDF 0.464 JB 0.0256 MDL 5.18 PQL J ng/Kg Z JQ PQL J Z 2,3,7,8-TCDD 0.163 0.0548 MDL 1.04 ng/Kg 2,3,7,8-TCDF 8080.0 J 0.0416 MDL 1.04 **PQL** J z ng/Kg OCDF 4.83 0.0503 MDL **PQL** J z 10.4 ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 10 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129

Laboratory: LL

EDD Filename: DX129_v1

eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	Duplicate Sample Count = 0
<del></del>	Duplicate Sample Count > 1
<del></del>	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision
	· · · · · · · · · · · · · · · · · · ·

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129

EDD Filename: DX129_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Flichaille, DX 123	<u></u>	eQAPP Name: CDM_SSFL_
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	National Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Co
Н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
н	Sampling to Analysis Estimation	
H	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
ı	Internal Standard Estimation	
I	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
Ļ	Laboratory Control Spike Upper Rejection	
M	Continuing Tune	
М	Initial Tune	
M	Performance Evaluation Mixture	
М	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL EDD Filename: DX129_v1

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/3/2012 10:32:56 AM

eQAPP Name: CDM_SSFL_110509

^{*} denotes a non-reportable result

## **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX129

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2340B371734	8/23/2011 5:34:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-PECDD 2,3,4,6,7,8-PECDF OCDD OCDF	2.80 pg/L 0.632 pg/L 0.512 pg/L 0.765 pg/L 0.547 pg/L 0.856 pg/L 0.489 pg/L 0.876 pg/L 0.588 pg/L 0.588 pg/L 0.562 pg/L 1.02 pg/L 6.56 pg/L	EB-SA6-SB-081711

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-081711(RES)	1,2,3,4,6,7,8-HPCDD	2.81 pg/L	2.81U pg/L
EB-SA6-SB-081711(RES)	1,2,3,4,6,7,8-HPCDF	0.562 pg/L	0.562U pg/L
EB-SA6-SB-081711(RES)	1,2,3,4,7,8,9-HPCDF	0.367 pg/L	0.367U pg/L
EB-SA6-SB-081711(RES)	1,2,3,4,7,8-HxCDD	0.405 pg/L	0.405U pg/L
EB-SA6-SB-081711(RES)	1,2,3,6,7,8-HXCDF	0.277 pg/L	0.277U pg/L
EB-SA6-SB-081711(RES)	1,2,3,7,8,9-HXCDD	0.522 pg/L	0.522U pg/L
EB-SA6-SB-081711(RES)	1,2,3,7,8,9-HXCDF	0.316 pg/L	0.316U pg/L
EB-SA6-SB-081711(RES)	1,2,3,7,8-PECDD	0.710 pg/L	0.710U pg/L
EB-SA6-SB-081711(RES)	2,3,4,6,7,8-HXCDF	0.303 pg/L	0.303U pg/L
EB-SA6-SB-081711(RES)	2,3,4,7,8-PECDF	0.740 pg/L	0.740U pg/L
EB-SA6-SB-081711(RES)	OCDD	4.18 pg/L	4.18U pg/L
EB-SA6-SB-081711(RES)	OCDF	0.569 pg/L	0.569U pg/L

#### Method: 1613B Matrix: SO

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2380B370305	8/30/2011 3:05:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD	0.236 ng/Kg 0.0494 ng/Kg 0.0519 ng/Kg 0.0513 ng/Kg 0.0537 ng/Kg 0.0428 ng/Kg 0.0356 ng/Kg 0.0682 ng/Kg 0.0365 ng/Kg 0.0234 ng/Kg 0.0544 ng/Kg 0.426 ng/Kg	DUP12-SA6-QC-081711 SL-007-SA5DN-SS-0.0-0.5 SL-154-SA6-SB-3.0-4.0 SL-214-SA6-SB-1.0-2.0 SL-215-SA6-SB-1.0-2.0 SL-221-SA6-SB-1.0-2.0 SL-221-SA6-SB-2.5-3.5 SL-224-SA6-SB-3.0-4.0 SL-226-SA6-SB-3.5-4.5 SL-241-SA6-SB-4.0-5.0 SL-241-SA6-SB-9.0-10.0 SL-242-SA6-SB-4.0-5.0 SL-242-SA6-SB-4.0-5.0 SL-279-SA6-SB-4.0-5.0 SL-279-SA6-SB-9.0-10.0 SL-279-SA6-SB-9.0-10.0 SL-279-SA6-SB-9.0-10.0 SL-315-SA6-SB-3.0-4.0

1/3/2012 10:32:01 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO						
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples		
BLK2410B372134	8/30/2011 9:34:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0,0CDD 0CDF	0.173 ng/Kg 0.0734 ng/Kg 0.0294 ng/Kg 0.0282 ng/Kg 0.0284 ng/Kg 0.0284 ng/Kg 0.0221 ng/Kg 0.0303 ng/Kg 0.0198 ng/Kg 0.0300 ng/Kg 0.0366 ng/Kg 0.0245 ng/Kg 0.0368 ng/Kg 0.0369 ng/Kg 0.0369 ng/Kg	SL-310-SA6-SB-4.0-5.0		

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	D Analyte		Modified Final Result	
DUP12-SA6-QC-081711(RES)	1,2,3,4,6,7,8-HPCDD	0.310 ng/Kg	0.310U ng/Kg	
DUP12-SA6-QC-081711(RES)	1,2,3,4,6,7,8-HPCDF	0.156 ng/Kg	0.156U ng/Kg	
DUP12-SA6-QC-081711(RES)	1,2,3,6,7,8-HXCDD	0.244 ng/Kg	0.244U ng/Kg	
DUP12-SA6-QC-081711(RES)	OCDD	0.299 ng/Kg	0.299U ng/Kg	
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDD	0.382 ng/Kg	0.382U ng/Kg	
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0307 ng/Kg	0.0307U ng/Kg	
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,4,7,8-HXCDF	0.0301 ng/Kg	0.0301U ng/Kg	
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDF	0.0292 ng/Kg	0.0292U ng/Kg	
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDD	0.0723 ng/Kg	0.0723U ng/Kg	
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDF	0.0295 ng/Kg	0.0295U ng/Kg	
SL-154-SA6-SB-3.0-4.0(RES)	2,3,4,6,7,8-HXCDF	0.0293 ng/Kg	0.0293U ng/Kg	
SL-154-SA6-SB-3.0-4.0(RES)	2,3,4,7,8-PECDF	0.0537 ng/Kg	0.0537U ng/Kg	
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDD	0.443 ng/Kg	0.443U ng/Kg	
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDF	0.133 ng/Kg	0.133U ng/Kg	
SL-214-\$A6-SB-1.0-2.0(RE\$)	1,2,3,4,7,8-HXCDF	0.210 ng/Kg	0.210U ng/Kg	
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDD	0.142 ng/Kg	0.142U ng/Kg	
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDF	0.186 ng/Kg	0.186U ng/Kg	
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDF	0.137 ng/Kg	0.137U ng/Kg	
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,7,8-PECDD	0.212 ng/Kg	0.212U ng/Kg	
SL-214-SA6-SB-1.0-2.0(RES)	2,3,4,6,7,8-HXCDF	0.0933 ng/Kg	0.0933U ng/Kg	
SL-214-SA6-SB-1.0-2.0(RES)	OCDD	1.07 ng/Kg	1.07U ng/Kg	
SL-215-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,4,7,8-HXCDF	0.0803 ng/Kg	0.0803U ng/Kg	
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.193 ng/Kg	0.193U ng/Kg	
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0649 ng/Kg	0.0649U ng/Kg	
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.212 ng/Kg	0,212U ng/Kg	
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0339 ng/Kg	0.0339U ng/Kg	
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0891 ng/Kg	0.0891U ng/Kg	
SL-215-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0542 ng/Kg	0.0542U ng/Kg	
SL-215-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0727 ng/Kg	0.0727U ng/Kg	
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDF	0.170 ng/Kg	0.170U ng/Kg	

1/3/2012 10:32:01 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO			Phillips of the second of the second	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,4,7,8-HXCDF	0.0420 ng/Kg	0.0420U ng/Kg	
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDD	0.102 ng/Kg	0.102U ng/Kg	
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDF	0.0361 ng/Kg	0.0361U ng/Kg	
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDD	0.0801 ng/Kg	0.0801U ng/Kg	
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDF	0.0409 ng/Kg	0.0409U ng/Kg	
SL-221-SA6-SB-1.0-2.0(RES)	2,3,4,6,7,8-HXCDF	0.0302 ng/Kg	0.0302U ng/Kg	
SL-221-SA6-SB-1.0-2.0(RES)	2,3,4,7,8-PECDF	0.0437 ng/Kg	0.0437U ng/Kg	
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	0,358 ng/Kg	0.358U ng/Kg	
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0574 ng/Kg	0.0574U ng/Kg	
SL-223-SA6-SB-2,5-3,5(RES)	1,2,3,4,7,8-HXCDF	0.0303 ng/Kg	0.0303U ng/Kg	
SL-223-SA6-SB-2,5-3.5(RE\$)	1,2,3,7,8,9-HXCDD	0.0970 ng/Kg	0.0970U ng/Kg	
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDF	0.0868 ng/Kg	0.0868U ng/Kg	
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.0875 ng/Kg	0.0875U ng/Kg	
SL-223-SA6-SB-2,5-3,5(RES)	2,3,4,7,8-PECDF	0.0888 ng/Kg	0.0888U ng/Kg	
SL-224-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDD	0.131 ng/Kg	0.131U ng/Kg	
SL-224-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0332 ng/Kg	0.0332U ng/Kg	
SL-224-SA6-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDD	0.0949 ng/Kg	0.0949U ng/Kg	
SL-224-SA6-SB-3.0-4.0(RES)	1,2,3,7,8-PECDF	0.0312 ng/Kg	0.0312U ng/Kg	
SL-224-SA6-SB-3.0-4.0(RES)	2,3,4,7,8-PECDF	0.0298 ng/Kg	0.0298U ng/Kg	
SL-224-SA6-SB-3.0-4.0(RES)	OCDD	0,263 ng/Kg	0.263U ng/Kg	
SL-226-\$A6-\$B-3,5-4.5(RE\$)	1,2,3,4,6,7,8-HPCDD	0.946 ng/Kg	0,946U ng/Kg	
SL-226-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDF	0.219 ng/Kg	0.219U ng/Kg	
SL-226-\$A6-\$B-3.5-4.5(RE\$)	1,2,3,4,7,8-HXCDF	0.196 ng/Kg	0.196U ng/Kg	
SL-226-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDD	0.230 ng/Kg	0.230U ng/Kg	
SL-226-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDF	0.189 ng/Kg	0.189U ng/Kg	
SL-226-SA6-SB-3.5-4.5(RES)	1,2,3,7,8-PECDD	0.229 ng/Kg	0.229U ng/Kg	
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,282 ng/Kg	0.282U ng/Kg	
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0463 ng/Kg	0.0463U ng/Kg	
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0506 ng/Kg	0.0506U ng/Kg	
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0570 ng/Kg	0.0570U ng/Kg	
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0,0240 ng/Kg	0.0240U ng/Kg	
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0388 ng/Kg	0.0388U ng/Kg	
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0320 ng/Kg	0.0320U ng/Kg	
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0225 ng/Kg	0.0225U ng/Kg	
SL-241-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0267 ng/Kg	0.0267U ng/Kg	
SL-241-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0522 ng/Kg	0.0522U ng/Kg	
SL-241-SA6-SB-4.0-5.0(RES)	OCDD	1.56 ng/Kg	1.56U ng/Kg	
SL-241-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.283 ng/Kg	0.283U ng/Kg	
SL-241-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0462 ng/Kg	0.0462U ng/Kg	
SL-241-\$A6-\$B-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0239 ng/Kg	0.0239U ng/Kg	

1/3/2012 10:32:01 AM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B	raiskis, kirjos karingis karin	enti airakkaisa jahinka pahabaskiika	Projectivi Enicker esperantizial kertelegi dikurili Kilon (1932).	
Matrix:	so				
Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-241-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0483 ng/Kg	0.0483U ng/Kg	
SL-241-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0221 ng/Kg	0.0221U ng/Kg	
SL-241-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0861 ng/Kg	0.0861U ng/Kg	
SL-241-SA6-SB-9.0-10.0(RES)	OCDD	0.480 ng/Kg	0.480U ng/Kg	
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.315 ng/Kg	0,315U ng/Kg	
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0498 ng/Kg	0.0498U ng/Kg	
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0257 ng/Kg	0.0257U ng/Kg	
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.114 ng/Kg	0.114U ng/Kg	
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0239 ng/Kg	0.0239U ng/Kg	
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0640 ng/Kg	0.0640U ng/Kg	
SL-242-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0301 ng/Kg	0.0301U ng/Kg	
SL-242-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0342 ng/Kg	0.0342U ng/Kg	
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.365 ng/Kg	0.365U ng/Kg	
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.122 ng/Kg	0.122U ng/Kg	
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0763 ng/Kg	0.0763U ng/Kg	
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0837 ng/Kg	0.0837U ng/Kg	
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0473 ng/Kg	0.0473U ng/Kg	
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0946 ng/Kg	0.0946U ng/Kg	
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0529 ng/Kg	0.0529U ng/Kg	
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0885 ng/Kg	0.0885U ng/Kg	
SL-242-\$A6-\$B-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0765 ng/Kg	0.0765U ng/Kg	
SL-242-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.170 ng/Kg	0.170U ng/Kg	
SL-242-\$A6-\$B-9.0-10.0(RES)	OCDD	1.41 ng/Kg	1.41U ng/Kg	
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDD	0.969 ng/Kg	0.969U ng/Kg	
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDF	0.166 ng/Kg	0.166U ng/Kg	
SL-279-\$A6-SB-1.0-2.0(RES)	1,2,3,4,7,8-HXCDF	0.196 ng/Kg	0.196U ng/Kg	
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDD	0.156 ng/Kg	0.156U ng/Kg	
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDF	0.169 ng/Kg	0.169U ng/Kg	
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDD	0.151 ng/Kg	0.151U ng/Kg	
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDF	0.162 ng/Kg	0.162U ng/Kg	
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,7,8-PECDD	0.222 ng/Kg	0.222U ng/Kg	
SL-279-\$A6-\$B-1.0-2.0(RES)	2,3,4,6,7,8-HXCDF	0.111 ng/Kg	0.111U ng/Kg	
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.389 ng/Kg	0.389U ng/Kg	
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.157 ng/Kg	0.157U ng/Kg	
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.178 ng/Kg	0.178U ng/Kg	
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.150 ng/Kg	0.150U ng/Kg	
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.142 ng/Kg	0.142U ng/Kg	
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.131 ng/Kg	0.131U ng/Kg	
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.153 ng/Kg	0.153U ng/Kg	
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.315 ng/Kg	0.315U ng/Kg	

1/3/2012 10:32:01 AM ADR version 1.4.0.111 Page 4 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	sinung di panggang di Araba	istinaidelle alt trebet de la late de la late de la late de la production de la late de la late de la late de l La late de la late de la late de la late de la late de la late de la late de la late de la late de la late de		
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-279-SA6-SB-4.0-5.0(RES)	OCDD	1.95 ng/Kg	1.95U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.211 ng/Kg	0.211U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.146 ng/Kg	0.146U ng/Kg
SL-279-SA6-SB-9,0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.145 ng/Kg	0.145U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.125 ng/Kg	0.125U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.124 ng/Kg	0.124U ng/Kg
SL-279-SA6-SB-9,0-10,0(RES)	1,2,3,7,8-PECDD	0.126 ng/Kg	0,126U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0814 ng/Kg	0.0814U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.224 ng/Kg	0.224U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.301 ng/Kg	0.301U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0415 ng/Kg	0.0415U ng/Kg
SL-310-SA6-SB-4,0-5,0(RES)	1,2,3,4,7,8-HXCDF	0.0491 ng/Kg	0.0491U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0273 ng/Kg	0.0273U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.113 ng/Kg	0.113U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0304 ng/Kg	0.0304U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,0750 ng/Kg	0.0750U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0322 ng/Kg	0.0322U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0637 ng/Kg	0.0637U ng/Kg

#### Field Duplicate RPD Report

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO	ining a managaman ang ing mang panghing panggan				
	Concent	ration (%)			
Analyte	SL-224-SA6-SB-3.0-4.0	DUP12-SA6-QC-081711	Sample RPD	eQAPP RPD	Flag
MOISTURE	9.2	6.4	36		No Qualifiers Applie

Method: 1613B Matrix: SO

	Concentra	tion (ng/Kg)			
Analyte	SL-224-SA6-SB-3.0-4.0	DUP12-SA6-QC-081711	Sample RPD	eQAPP RPD	Flag
OCDD OCDF	0.263 0.133	0.299 0.208	13 44	50.00 50.00	No Qualifiers Applied
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	0.131 0.0332 5.26 U 5.26 U 5.26 U 5.26 U 0.0949 5.26 U 0.0312 5.26 U 0.0312 5.26 U 0.0298 1.05 U	0.310 0.156 0.230 0.339 0.244 0.344 0.230 0.229 0.483 0.585 0.190 0.442 0.0807 0.110	81 130 200 200 200 200 83 200 200 180 200 175 200 200	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

THE CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY

Method: 1613B

AQ

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-081711	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	2.81 0.562 0.367 0.405 0.277 0.522 0.316 0.710 0.303 0.740 4.18 0.569	9.56 9.56 9.56 9.56 9.56 9.56 9.56 9.56	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613E

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
			Nesun	LIIIIC	Type		гау
DUP12-SA6-QC-081711	1,2,3,4,6,7,8-HPCDD	JBQ	0.310	5.30	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.156	5.30	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.230	5.30	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.339	5.30	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.244	5.30	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.344	5.30	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.230	5.30	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.229	5.30	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.483	5.30	PQL	ng/Kg	o (all delects)
	1,2,3,7,8-PECDF	JB	0.585	5.30	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.190	5.30	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.442	5.30	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0807	1.06	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.110	1.06	PQL	ng/Kg	
	OCDD	JBQ	0.299	10.6	PQL	ng/Kg	
	OCDF	J	0.208	10.6	PQL	ng/Kg	
SL-007-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	3.19	5.55	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	J	1.57	5.55	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.304	5.55	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.739	5.55	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	3.15	5.55	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JB	0.621	5.55	PQL	ng/Kg	` '
	1,2,3,7,8,9-HXCDF	JB	2.04	5.55	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.94	5.55	PQL	ng/Kg	
	OCDF	J	4.88	11.1	PQL	ng/Kg	
SL-154-SA6-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDD	JB	0.382	5.24	PQL	ng/Kg	<u> </u>
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0307	5.24	PQL	ng/Kg	
İ	1,2,3,4,7,8,9-HPCDF	JQ	0.0300	5.24	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0301	5.24	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0292	5.24	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0723	5.24	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0295	5.24	PQL	ng/Kg	
1	2,3,4,6,7,8-HXCDF	JBQ	0.0293	5.24	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0537	5.24	PQL	ng/Kg	
	OCDD	JB	4.14	10.5	PQL	ng/Kg	
	OCDF	JQ	0.0760	10.5	PQL	ng/Kg	

1/3/2012 10:32:12 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-214-SA6-SB-1.0-2.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	まちかないままままないというない	0.443 0.133 0.0450 0.159 0.210 0.142 0.186 0.229 0.137 0.212 0.0933 0.313 0.0910 0.0765 1.07	5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-215-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	<b>පිපිළිසසියම්යම්ය</b> පිසස	3.27 0.539 0.0675 0.119 0.0803 0.193 0.0649 0.212 0.0339 0.0891 0.0542 0.0727 0.0689 1.81	5.53 5.53 5.53 5.53 5.53 5.53 5.53 5.53	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-221-SA6-SB-1.0-2.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDF	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.06 0.170 0.0420 0.102 0.0361 0.0801 0.0409 0.0302 0.0437 0.512	5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.29	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-223-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,7,8-PECDF OCDD OCDF	B G B G B B B G B B B G	0.358 0.0574 0.0303 0.0970 0.0868 0.0875 0.0888 2.16 0.367	5.00 5.00 5.00 5.00 5.00 5.00 5.00 10.0	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-224-SA6-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF OCDD OCDF	JBQ JB JBQ JB JBQ JBQ JQ	0.131 0.0332 0.0949 0.0312 0.0298 0.263 0.133	5.26 5.26 5.26 5.26 5.26 5.26 10.5	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 10:32:12 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

watrix: 50		,		· · · · · · · · · · · · · · · · · · ·			
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-226-SA6-SB-3.5-4.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	HE THE BEST TO THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF T	0.946 0.219 0.0948 0.165 0.196 0.230 0.189 0.233 0.225 0.229 0.344 0.128 0.314 0.170 0.539	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-241-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0,0DD 0,0DF	SC BB BB BB BB BB BB BB BB BB BB BB BB BB	0.282 0.0463 0.0399 0.0506 0.0570 0.0240 0.0388 0.0320 0.0225 0.0267 0.0522 1.56 0.107	5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-241-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	## ## ## ## ## ## ## ## ## ## ## ## ##	0.283 0.0462 0.0313 0.0239 0.0483 0.0221 0.0861 0.480 0.147	5.37 5.37 5.37 5.37 5.37 5.37 5.37 10.7	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-242-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	99999999999	0.315 0.0498 0.0427 0.0257 0.114 0.0239 0.218 0.216 0.0640 0.0301 0.0342 2.25 0.100	5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.29	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 10:32:12 AM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX129

Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-242-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 0CDD 0CDF	B	0.365 0.122 0.0507 0.0342 0.0763 0.0837 0.0473 0.0946 0.0529 0.0885 0.195 0.0765 0.170 0.0834 0.0563 1.41 0.166	5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-279-SA6-SB-1.0-2.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 0CDF	5aagaaaagaag	0.969 0.166 0.0667 0.0900 0.196 0.156 0.159 0.151 0.162 0.222 0.324 0.111 0.301 0.0657 0.0889 9.19 0.372	5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-279-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDD OCDF	Sacanda a a a a a a a a a a a a a a a a a a	0.389 0.157 0.0531 0.138 0.178 0.150 0.142 0.131 0.153 0.315 0.334 0.119 0.320 0.121 0.0977 1.95 0.161	5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-279-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF CODF	JB JBQ JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JB	1.57 0.271 0.0889 0.116 0.211 0.146 0.145 0.125 0.124 0.126 0.230 0.0814 0.224 0.654	5.39 5.39 5.39 5.39 5.39 5.39 5.39 5.39	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-310-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	JB JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JB	2.28 0.301 0.0415 0.0491 0.170 0.0273 0.210 0.113 0.0304 0.0750 0.0322 0.0637 0.0246 0.781	5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.48	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-315-SA6-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDF	JB JG JB JB JB JB JB JB JB JB JB JB JB JB JB	2.46 0.491 0.458 0.353 0.537 0.280 0.370 0.226 0.615 0.516 0.264 0.464 0.163 0.0808 4.83	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 10:32:12 AM ADR version 1.4.0.111 Page 5 of 5

# **SAMPLE DELIVERY GROUP**

**DX129** 

## Attachment I

Sample ID Cross Reference and Data Review Level

## Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
17-Aug-2011	SL-154-SA6-SB-3.0-4.0	6380503	N	METHOD	1613B	[1]
17-Aug-2011	SL-224-SA6-SB-3.0-4.0	6380506	N	METHOD	1613B	111
17-Aug-2011	SL-224-SA6-SB-3.0-4.0MS	6380507	MS	METHOD	1613B	III
17-Aug-2011	SL-224-SA6-SB-3.0-4.0MSD	6380508	MSD	METHOD	1613B	lti
17-Aug-2011	DUP12-SA6-QC-081711	6380510	FD	METHOD	1613B	Ш
17-Aug-2011	SL-221-SA6-SB-1.0-2.0	6380504	N	METHOD	16 <b>1</b> 3B	111
17-Aug-2011	SL-223-SA6-SB-2.5-3.5	6380505	N	METHOD	1613B	111
17-Aug-2011	EB-SA6-SB-081711	6380511	EΒ	METHOD	16 <b>1</b> 3B	111
17-Aug-2011	SL-226-SA6-SB-3.5-4.5	6380509	N	METHOD	1613B	111
19-Aug-2011	SL-315-SA6-SB-3.0-4.0	6382932	N	METHOD	1613B	111
19-Aug-2011	SL-214-SA6-SB-1.0-2.0	6382933	N	METHOD	1613B	III
22-Aug-2011	SL-007-SA5DN-SS-0.0-0.5	6384486	N	METHOD	1613B	<b>111</b>
22-Aug-2011	SL-215-SA6-SB-4.0-5.0	6384477	N	METHOD	1613B	111
22-Aug-2011	SL-310-SA6-SB-4.0-5.0	6384485	N	METHOD	1613B	IH
22-Aug-2011	SL-279-SA6-SB-1.0-2.0	6384482	N	METHOD	1613B	Ш
22-Aug-2011	SL-279-SA6-SB-4.0-5.0	6384483	N	METHOD	1613B	111
22-Aug-2011	SL-242-SA6-SB-9.0-10.0	6384481	N	METHOD	1613B	111
22-Aug-2011	SL-242-SA6-SB-4.0-5.0	6384480	N	METHOD	16 <b>1</b> 3B	111
22-Aug-2011	SL-279-SA6-SB-9.0-10.0	6384484	N	METHOD	1613B	111
22-Aug-2011	SL-241-SA6-SB-4.0-5.0	6384478	N	METHOD	1613B	111
22-Aug-2011	SL-241-SA6-SB-9.0-10.0	6384479	N	METHOD	1613B	111

## **Attachment II**

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: Matrix: AQ

Sample ID: EB-SA6-SB-081711	Collec	ted: 8/17/2	011 1:00:0	00 A	nalysis T	pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	2.81	JBQ	0.554	MDL	9.56	PQL	pg/L	U	В	
1,2,3,4,6,7,8-HPCDF	0.562	JBQ	0.236	MDL	9.56	PQL	pg/L	U	В	
1,2,3,4,7,8,9-HPCDF	0.367	JBQ	0.274	MDL	9.56	PQL	pg/L	U	В	
1,2,3,4,7,8-HxCDD	0.405	JBQ	0.372	MDL	9.56	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDF	0.277	JBQ	0.185	MDL	9.56	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDD	0.522	JBQ	0.373	MDL	9.56	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDF	0.316	JBQ	0.186	MDL	9.56	PQL	pg/L	U	В	
1,2,3,7,8-PECDD	0.710	JBQ	0.490	MDL	9.56	PQL	pg/L	U	В	
2,3,4,6,7,8-HXCDF	0.303	JBQ	0.172	MDL	9.56	PQL	pg/L	U	В	
2,3,4,7,8-PECDF	0.740	JB	0.233	MDL	9.56	PQL	pg/L	U	В	
OCDD	4.18	JBQ	0.374	MDL	19.1	PQL	pg/L	U	В	
OCDF	0.569	JBQ	0.553	MDL	19.1	PQL	pg/L	U	В	

Method Categ	ory: GENCHEM	
Method:	1613B	Matrix: SO

Analysis Type: RES

Collected: 8/17/2011 10:10:00

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.310	JBQ	0.0390	MDL	5.30	PQL	ng/Kg	UJ	B, FD
1,2,3,4,6,7,8-HPCDF	0.156	JB	0.0139	MDL	5.30	PQL	ng/Kg	UJ	B, FD
1,2,3,4,7,8-HxCDD	0.230	J	0.0482	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	0.339	JB	0.0299	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,6,7,8-HXCDD	0.244	JBQ	0.0475	MDL	5.30	PQL	ng/Kg	UJ	B, FD
1,2,3,6,7,8-HXCDF	0.344	JB	0.0276	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,7,8,9-HXCDD	0.230	JB	0.0452	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,7,8,9-HXCDF	0.229	JB	0.0307	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDD	0.483	JBQ	0.0624	MDL	5.30	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDF	0.585	JB	0.0344	MDL	5.30	PQL	ng/Kg	J	Z, FD
2,3,4,6,7,8-HXCDF	0.190	JBQ	0.0277	MDL	5.30	PQL	ng/Kg	J	Ž, FD
2,3,4,7,8-PECDF	0.442	JB	0.0332	MDL	5.30	PQL	ng/Kg	J	Z, FD
2,3,7,8-TCDD	0.0807	JQ	0.0802	MDL	1.06	PQL	ng/Kg	j	Z, FD

2,3,7,8-TCDF

OCDD

Sample ID: DUP12-SA6-QC-081711

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/3/2012 10:32:56 AM ADR version 1.4.0.111

0.110

0.299

JQ

JBQ

0.0573

0.0365

MDL

MDL

1.06

10.6

PQL

PQL

ng/Kg

ng/Kg

J

U

Z, FD

В

Dilution: 1

Data

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129

eQAPP Name: CDM_SSFL_110509

Laboratory: LL

Method Category:	GENCHEM		musika (2002) kata kata kata da maranga. Katan manaka kata da manaka kata da manaka kata da manaka kata da manaka kata da manaka kata da manaka kata d
Method:	1613B	Matrix: SO	

Sample ID: DUP12-SA6-QC-081711	Collected: 8/17/2011 10:10:00 Analysis Type					ype: RES	e: RES Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
OCDF	0.208	J	0.0569	MDL	10.6	PQL	ng/Kg	J	Z	

Sample ID: St007-SA5DN-SS-0.0-0.5	Collec	ted: 8/22/2	011 8:00:0	10 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	3.19	JB	0.0378	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	1.57	J	0.0433	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.304	JQ	0.0642	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.739	JB	0.0634	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	3.15	JB	0.0751	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.621	JB	0.0629	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	2.04	JB	0.0807	MDL	5.55	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	1.94	JB	0.0746	MDL	5.55	PQL	ng/Kg	J	Z	
OCDF	4.88	J	0.0558	MDL	11.1	PQL	ng/Kg	J	Ž	

Sample ID: SL-154-SA6-SB-3.0-4.0	Collec	ted: 8/17/2	011 7:45:0	00 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.382	JB	0.0461	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.0307	JBQ	0.0121	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0300	JQ	0.0263	MDL	5.24	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0301	JB	0.0197	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0292	JBQ	0.0169	MDL	5.24	PQL	ng/Kg	U T	В	
1,2,3,7,8,9-HXCDD	0.0723	JBQ	0.0342	MDL	5.24	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0295	JBQ	0.0233	MDL	5.24	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0293	JBQ	0.0186	MDL	5.24	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0537	JBQ	0.0241	MDL	5.24	PQL	ng/Kg	U	В	
OCDD	4.14	JB	0.0432	MDL	10.5	PQL	ng/Kg	J	Z	
OCDF	0.0760	JQ	0.0708	MDL	10.5	PQL	ng/Kg	J	Z	

Sample ID: SL-214-SA6-SB-1.0-2.0	Collec	Collected: 8/19/2011 11:32:00 A					;	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.443	JB	0.0448	MDL	5.34	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.133	JBQ	0.0139	MDL	5.34	PQL	ng/Kg	υ	В	

^{*} denotes a non-reportable result

EDD Filename: DX129_v1

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/3/2012 10:32:56 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-214-SA6-SB-1.0-2.0 Collected: 8/19/2011 11:32:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL RLReview Reason Analyte Result Qual DL Туре RLТуре Units Qual Code 1,2,3,4,7,8,9-HPCDF 0.0450 0.0232 MDL 5.34 **PQL** ng/Kg Z 1,2,3,4,7,8-HxCDD 0.159 JQ 0.0446 MDL 5.34 PQL Z ng/Kg J 1,2,3,4,7,8-HXCDF 0.210 JB 0.0271 MDL 5.34 PQL ng/Kg U В 1,2,3,6,7,8-HXCDD 0.142 JBQ 0.0432 MDL 5.34 PQL U ng/Kg В 1,2,3,6,7,8-HXCDF JΒ 0.0248 MDL 5.34 **PQL** υ 0.186 ng/Kg В 1,2,3,7,8,9-HXCDD 0.229 0.0432 J JB MDL 5.34 PQL ng/Kg z 1,2,3,7,8,9-HXCDF 0.137 0.0278 MDL JΒ 5.34 **PQL** ng/Kg В 1,2,3,7,8-PECDD 0.212 JВ 0.0727 MDL 5.34 PQL ng/Kg U В 2,3,4,6,7,8-HXCDF 0.0933 **JBQ** 0.0248 MDL 5.34 PQL U ng/Kg В 2,3,4,7,8-PECDF 0.313 **JBQ** 0.0288 MDL 5.34 **PQL** J Z ng/Kg 2,3,7,8-TCDD 0.0910 JQ 0.0841 MDL 1.07 PQL J ng/Kg Z 2,3,7,8-TCDF 0.0765 JQ 0.0530 MDL 1.07 PQL J ng/Kg Z OCDD 1.07 JB U 0.0335 MDL 10.7 PQL В ng/Kg

Sample ID: SL-215-SA6-SB-4.0-5.0 Collected: 8/22/2011 8:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.27	JB	0.0609	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.539	JB	0.0189	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0675	JQ	0.0287	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.119	J	0.0444	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0803	JBQ	0.0287	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.193	JB	0.0450	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0649	JBQ	0.0257	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.212	JB	0.0434	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0339	JBQ	0.0322	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0891	JB	0.0608	MDL	5.53	PQL	ng/Kg	U	B
2,3,4,6,7,8-HXCDF	0.0542	JB	0.0263	MDL	5.53	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0727	JBQ	0.0292	MDL	5.53	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0689	JQ	0.0617	MDL	1.11	PQL	ng/Kg	J	Z
OCDF	1.81	JQ	0.0649	MDL	11.1	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

SO

Method Category: GENCHEM

Method: 1613B Matrix:

Sample ID: SL-221-SA6-SB-1.0-2.0 Collected: 8/17/2011 10:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.06	JBQ	0.0597	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.170	JB	0.0163	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0420	JBQ	0.0230	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.102	JBQ	0.0381	MDL	5.29	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.0361	JBQ	0.0209	MDL.	5.29	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0801	JBQ	0.0409	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0409	JBQ	0.0278	MDL	5.29	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0302	JBQ	0.0221	MDL	5.29	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0437	JBQ	0.0256	MDL	5.29	PQL	ng/Kg	U	В
OCDF	0.512	JQ	0.0683	MDL	10.6	PQL	ng/Kg	J	Z

Sample ID: SL-223-SA6-SB-2.5-3.5 Collected: 8/17/2011 11:56:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,4,6,7,8-HPCDD	0.358	JB	0.0611	MDL	5.00	PQL	ng/Kg	U	В			
1,2,3,4,6,7,8-HPCDF	0.0574	JBQ	0.0180	MDL	5.00	PQL	ng/Kg	U	В			
1,2,3,4,7,8-HXCDF	0.0303	JB	0.0270	MDL	5.00	PQL	ng/Kg	U	В			
1,2,3,7,8,9-HXCDD	0.0970	JBQ	0.0389	MDL	5.00	PQL	ng/Kg	υ	В			
1,2,3,7,8,9-HXCDF	0.0868	JBQ	0.0279	MDL	5.00	PQL	ng/Kg	U	В			
1,2,3,7,8-PECDD	0.0875	JBQ	0.0742	MDL	5.00	PQL	ng/Kg	U	В			
2,3,4,7,8-PECDF	0.0888	JB	0.0347	MDL	5.00	PQL	ng/Kg	U	В			
OCDD	2.16	JB	0.0413	MDL	10.0	PQL	ng/Kg	J	Z			
OCDF	0.367	JQ	0.0953	MDL	10.0	PQL	ng/Kg	J	Z			
		·										

Sample ID: SL-224-SA6-SB-3.0-4.0 Collected: 8/17/2011 10:06:00 Analysis Type: RES Dilution: 1

	Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Silver Si									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.131	JBQ	0.0533	MDL	5.26	PQL	ng/Kg	UJ	B, FD	
1,2,3,4,6,7,8-HPCDF	0.0332	JB	0.0182	MDL	5.26	PQL	ng/Kg	Π'n	B, FD	
1,2,3,4,7,8-HxCDD	0.0433	U	0.0433	MDL	5.26	PQL	ng/Kg	UJ	FD	
1,2,3,4,7,8-HXCDF	0.0268	U	0.0268	MDL	5.26	PQL	ng/Kg	UJ	FD	
1,2,3,6,7,8-HXCDD	0.0414	U	0.0414	MDL	5.26	PQL	ng/Kg	บูป	FD	
1,2,3,6,7,8-HXCDF	0.0232	U	0.0232	MDL	5.26	PQL	ng/Kg	เก	FD	
1,2,3,7,8,9-HXCDD	0.0949	JBQ	0.0389	MDL	5.26	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8,9-HXCDF	0.0239	U	0.0239	MDL	5.26	PQL	ng/Kg	UJ	FD	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 4 of 13

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

A District of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Con

0.263

0.133

0.314

0.170

0.539

Sample ID: SL-224-SA6-SB-3.0-4.0	Collec	ted: 8/17/2	011 10:06	:00 A	nalysis Ty	/pe: RES		Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDD	0.0659	U	0.0659	MDL	5.26	PQL	ng/Kg	บม	FD
1,2,3,7,8-PECDF	0.0312	JB	0.0292	MDL	5.26	PQL	ng/Kg	UJ	B, FD
2,3,4,6,7,8-HXCDF	0.0209	U	0.0209	MDL	5.26	PQL	ng/Kg	UJ	FD
2,3,4,7,8-PECDF	0.0298	JBQ	0.0287	MDL	5.26	PQL	ng/Kg	υJ	B, FD
2,3,7,8-TCDD	0.0769	U	0.0769	MDL	1.05	PQL	ng/Kg	υJ	FD
2,3,7,8-TCDF	0.0635	U	0.0635	MDL	1.05	PQL	ng/Kg	บม	FD

0.0435

0.0823

MDL

MDL

10.5

10.5

PQL

PQL

ng/Kg

ng/Kg

J

J

J

J

В

z

Z

z

Z

Sample ID: SL-226-SA6-SB-3.5-4.5	Collec		Dilution: 1						
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.946	JB	0.0518	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.219	JB	0.0157	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0948	J	0.0255	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.165	J	0.0376	MDL	5.18	PQL	ng/Kg	J	Z

JBQ

JQ

1,2,3,4,7,8-HXCDF 0.0298 0.196 JΒ MDL 5.18 PQL ng/Kg U В 1,2,3,6,7,8-HXCDD 0.230 JB 0.0376 MDL 5.18 **PQL** ng/Kg U В 1,2,3,6,7,8-HXCDF 0.189 JBQ 0.0272 MDL 5.18 PQL U В ng/Kg 1,2,3,7,8,9-HXCDD 0.233 **JBQ** 0.0357 PQL J z MDL 5.18 ng/Kg 1,2,3,7,8,9-HXCDF 0.225 JB 0.0307 MDL PQL ng/Kg z 5.18 J 1,2,3,7,8-PECDD 0.229 U JΒ 0.0620 MDL 5.18 **PQL** ng/Kg В 1,2,3,7,8-PECDF 0.344 JB 0.0310 MDL. 5.18 **PQL** ng/Kg J z 2,3,4,6,7,8-HXCDF 0.128 JBQ 0.0275 MDL, 5.18 PQL J Z ng/Kg

0.0289

0.0763

0.0608

MDL

MDL

MDL

5.18

1.04

10.4

PQL

**PQL** 

PQL

ng/Kg

ng/Kg

ng/Kg

Sample ID: SL-241-SA6-SB-4.0-5.0 Collected: 8/22/2011 12:12:00 Analysis Type: RES Dilution: 1

JB

JQ

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.282	JBQ	0.0363	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0463	JBQ	0.0109	MDL	5.21	PQL	пд/Кд	υ	В
1,2,3,4,7,8,9-HPCDF	0.0399	J	0.0165	MDL	5.21	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0506	JB	0.0187	MDL	5.21	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

2,3,4,7,8-PECDF

2,3,7,8-TCDD

OCDF

OCDD

OCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 5 of 13

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	y: GENCHEM	es na dinaria di la parez de placa di especialista di el constitución de la constitución de la constitución de	
Method:	1613B	Matrix: SO	

Sample ID: SL-241-SA6-SB-4.0-5.0	Collec	ted: 8/22/2	011 12:12	:00 A	nalysis T	ype: RES		i	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,6,7,8-HXCDD	0.0570	JB	0.0255	MDL	5.21	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDF	0.0240	JB	0.0168	MDL	5.21	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.0388	JBQ	0.0248	MDL	5.21	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.0320	JBQ	0.0194	MDL	5.21	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.0225	JBQ	0.0218	MDL	5.21	PQL	ng/Kg	U	В		
2,3,4,6,7,8-HXCDF	0.0267	JBQ	0.0162	MDL	5.21	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0522	JB	0.0206	MDL	5.21	PQL	ng/Kg	U	В		
OCDD	1.56	JB	0.0329	MDL	10.4	PQL	ng/Kg	U	В		
OCDF	0.107	J	0.0465	MDL	10.4	PQL	ng/Kg	J	Z		

· · · · · · · · · · · · · · · · · · ·						<del></del>			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.283	JB	0.0420	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0462	JB	0.0103	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0313	JQ	0.0155	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0239	JBQ	0.0190	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0483	JB	0.0293	MDL	5.37	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0221	JBQ	0.0172	MDL	5.37	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0861	JBQ	0.0221	MDL	5.37	PQL	ng/Kg	U	В
OCDD	0.480	JB	0.0321	MDL	10.7	PQL	ng/Kg	U	В
OCDF	0.147	JQ	0.0565	MDL	10.7	PQL	ng/Kg	J	Z

Sample ID: SL-242-SA6-SB-4.0-5.0 Collected: 8/22/2011 11:05:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.315	JB	0.0422	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0498	JB	0.0109	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0427	JQ	0.0183	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0257	JB	0.0196	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.114	JBQ	0.0288	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0239	JBQ	0.0175	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.218	JB	0.0276	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.216	JB	0.0206	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0640	JBQ	0.0218	MDL	5.29	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 6 of 13

Lab Reporting Batch ID: DX129

Laboratory: LL

EDD Filename: DX129_v1

eQAPP Name: CDM_SSFL_110509

Sample ID: SL-242-SA6-SB-4.0-5.0	Collec	ted: 8/22/2	2011 11:05	:00 A	nalysis T	ype: RES		1	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,6,7,8-HXCDF	0.0301	JBQ	0.0179	MDL	5.29	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0342	JB	0.0213	MDL	5.29	PQL	ng/Kg	U	В
OCDD	2.25	JB	0.0320	MDL	10.6	PQL	ng/Kg	J	Z
OCDF	0.100	JQ	0.0536	MDL	10.6	PQL	ng/Kg	J	Z

Sample ID: SL-242-SA6-SB-9.0-10.0 Collected: 8/22/2011 11:04:00 Analysis Type: RES Dilution: 1 Data DL RL Lab Lab Review Reason DL Analyte Result Qual Type RLUnits Qual Code Type 1,2,3,4,6,7,8-HPCDD 0.365 JВ 0.0421 MDL, 5.25 PQL ng/Kg U В 1,2,3,4,6,7,8-HPCDF 0.122 **JBQ** 0.0137 MDL 5.25 **PQL** ng/Kg U В 1,2,3,4,7,8,9-HPCDF 0.0507 JQ 0.0223 MDL 5.25 **PQL** ng/Kg J Z 1,2,3,4,7,8-HxCDD 0.0342 JQ 0.0341 MDL 5.25 **PQL** ng/Kg J Z 0.0763 0.0253 MDL PQL U 1,2,3,4,7,8-HXCDF **JBQ** 5.25 ng/Kg В 1,2,3,6,7,8-HXCDD 0.0837 JBQ 0.0348 U MDL, 5.25 **PQL** ng/Kg В 1,2,3,6,7,8-HXCDF 0.0473 **JBQ** 0.0232 MDL 5.25 PQL ng/Kg U В 1,2,3,7,8,9-HXCDD 0.0946 JBQ 0.0344 MDL U 5.25 PQL ng/Kg В 0.0529 JBQ 0.0264 5.25 PQL υ 1,2,3,7,8,9-HXCDF MDL ng/Kg В 1,2,3,7,8-PECDD 0.0885 JBQ 0.0537 MDL 5.25 PQL ng/Kg Ų В 0.195 JBQ 0.0292 5.25 **PQL** J Z 1,2,3,7,8-PECDF MDL ng/Kg 2,3,4,6,7,8-HXCDF 0.0765 **JBQ** 0.0232 MDL 5.25 PQL U В ng/Kg 2,3,4,7,8-PECDF 0.170 JB 0.0264 MDL 5.25 **PQL** U В ng/Kg 2,3,7,8-TCDD 0.0834 J 0.0686 MDL PQL J Z 1.05 ng/Kg 2,3,7,8-TCDF 0.0563 JQ 0.0512 MDL 1.05 PQL ng/Kg Z OCDD 1.41 JΒ 0.0368 MDL PQL U В 10.5 ng/Kg OCDF JQ 0,166 0.0489 MDL 10.5 **PQL** ng/Kg Z

Samble ID: Str219-3A0-3D-1.0-2.0 Collected: 0/22/2011 10:25:00 Analysis Tybe: Rc3 Dilluid	Sample ID: SL-279-SA6-SB-1.0-2.0	Collected: 8/22/2011 10:25:00	Analysis Type: RES	Dilution: 1
-------------------------------------------------------------------------------------------	----------------------------------	-------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.969	ЈВ	0.0452	MDL	5.08	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.166	JB	0.0120	MDL	5.08	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0667	J	0.0254	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.0900	J	0.0345	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.196	JB	0.0269	MDL	5.08	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.156	JB	0.0362	MDL	5.08	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-279-SA6-SB-1.0-2.0 Collected: 8/22/2011 10:25:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,6,7,8-HXCDF	0.169	JBQ	0.0233	MDL	5.08	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.151	JB	0.0351	MDL	5.08	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.162	JB	0.0289	MDL	5.08	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.222	JB	0.0450	MDL	5.08	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.324	JB	0.0250	MDL	5.08	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.111	JBQ	0.0240	MDL	5.08	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.301	JB	0.0249	MDL	5.08	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0657	J	0.0533	MDL	1.02	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0889	J	0.0408	MDL	1.02	PQL	ng/Kg	J	Z	
OCDD	9.19	JB	0.0400	MDL	10.2	PQL	ng/Kg	J	Z	
OCDF	0.372	JQ	0.0524	MDL	10.2	PQL	ng/Kg	J	Z	

Sample ID: SL-279-SA6-SB-4.0-5.0 Collected: 8/22/2011 11:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.389	JBQ	0.0458	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.157	JB	0.0144	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0531	JQ	0.0258	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.138	JQ	0.0376	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.178	JB	0.0270	MDL	5.13	PQL	ng/Kg	U	B
1,2,3,6,7,8-HXCDD	0.150	JBQ	0.0383	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.142	JBQ	0.0234	MDL	5.13	PQL	ng/Kg	U	В
,2,3,7,8,9-HXCDD	0.131	JBQ	0.0382	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.153	JBQ	0.0259	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.315	JBQ	0.0619	MDL	5.13	PQL	ng/Kg	υ	В
,2,3,7,8-PECDF	0.334	JB	0.0293	MDL	5.13	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.119	JBQ	0.0243	MDL,	5.13	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.320	JB	0.0278	MDL	5.13	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.121	J	0.0741	MDL	1.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0977	JQ	0.0489	MDL	1.03	PQL	ng/Kg	J	Z
OCDD	1.95	JB	0.0362	MDL	10.3	PQL	ng/Kg	U	В
OCDF	0.161	JQ	0.0628	MDL	10.3	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-279-SA6-SB-9.0-10.0 Collected: 8/22/2011 11:50:00 Analysis Type: RES Dilution: 1 Data DL Lab Lab RL Review Reason Analyte Result Qual DL Туре RLТуре Units Qual Code 1,2,3,4,6,7,8-HPCDD 1.57 JB 0.0484 MDL 5.39 **PQL** ng/Kg J z 1,2,3,4,6,7,8-HPCDF 0.271 JBQ 0.0158 MDL PQL 5.39 ng/Kg J Ζ 1,2,3,4,7,8,9-HPCDF 0.0889 J 0.0316 MDL 5.39 PQL ng/Kg J z 1,2,3,4,7,8-HxCDD 0.116 JQ 0.0368 MDL PQL 5.39 ng/Kg J Z 1,2,3,4,7,8-HXCDF 0.211 JΒ 0.0243 MDL 5.39 PQL ng/Kg U В JB 1,2,3,6,7,8-HXCDD 0.146 0.0368 MDL 5.39 **PQL** U В ng/Kg 1,2,3,6,7,8-HXCDF JBQ 0.145 0.0213 MDL 5.39 **PQL** ng/Kg U В 1,2,3,7,8,9-HXCDD 0.125 JBQ 0.0370 MDL 5.39 PQL U В ng/Kg 1,2,3,7,8,9-HXCDF 0.124 JB 0.0274 MDL **PQL** U 5.39 ng/Kg В 1,2,3,7,8-PECDD 0.126 JBQ 0.0511 MDL PQL U В 5.39 ng/Kg 1,2,3,7,8-PECDF 0.230 JΒ 0.0270 MDL 5.39 **PQL** J ng/Kg Z, 2,3,4,6,7,8-HXCDF 0.0814 JΒ 0.0232 MDL PQL U 5.39 ng/Kg В 2,3,4,7,8-PECDF 0.224 JBQ 0.0258 MDL PQL U 5.39 ng/Kg В

Sample ID: SL-310-SA6-SB-4.0-5.0 Collected: 8/22/2011 9:15:00 Analysis Type: RES Dilution: 1

0.0621

MDL

10.8

**PQL** 

ng/Kg

J

z

JQ

0.654

	Lab	Lab		DL.		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	2.28	JB	0.0348	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.301	JB	0.0139	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0415	JB	0.0205	MDL.	5.48	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0491	JB	0.0154	MDL	5.48	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.170	JBQ	0.0246	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0273	JB	0.0135	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.210	JBQ	0.0230	MDL	5.48	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.113	JBQ	0.0163	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0304	JBQ	0.0181	MDL	5.48	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0750	JBQ	0.0135	MDL	5.48	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0322	JBQ	0.0138	MDL	5.48	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0637	JBQ	0.0138	MDL	5.48	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0246	J	0.0218	MDL	1.10	PQL	ng/Kg	J	Z
OCDF	0.781	JB	0.0285	MDL	11.0	PQL	ng/Kg	J	Z

OCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 9 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENGHEM

Method: 1613B Matrix: SO

Collected: 8/19/2011 8:14:00 Sample ID: SL-315-SA6-SB-3.0-4.0 Analysis Type: RES Dilution: 1 Data Lab DLRLReview Lab Reason Analyte Result Qual DL Туре RL. Туре Units Qual Code 1,2,3,4,6,7,8-HPCDF 2.46 0.0315 MDL **PQL** 5.18 ng/Kg J Ζ 1,2,3,4,7,8,9-HPCDF 0.491 J 0.0494 MDL 5.18 PQL J z ng/Kg 1,2,3,4,7,8-HxCDD 0.458 JQ 0.0561 MDL. 5.18 PQL ng/Kg J Z JB 0.0351 J 1,2,3,4,7,8-HXCDF 0.353 MDL 5.18 PQL ng/Kg Z J Z 1,2,3,6,7,8-HXCDD 0.537 JBQ 0.0545 MDL 5.18 **PQL** ng/Kg 1,2,3,6,7,8-HXCDF 0.280 JB 0.0316 MDL. 5.18 **PQL** J z ng/Kg JΒ PQL J z 1,2,3,7,8,9-HXCDD 0.370 0.0523 MDL 5.18 ng/Kg 1,2,3,7,8,9-HXCDF 0.226 JBQ 0.0343 MDL 5.18 PQL ng/Kg J z JВ 0.0524 MDL **PQL** J Z 1,2,3,7,8-PECDD 0.615 5.18 ng/Kg 0.516 JBQ MDL PQL J Z 1,2,3,7,8-PECDF 0.0277 5.18 ng/Kg 0.264 JΒ 0.0306 MDL 5.18 **PQL** J Z 2,3,4,6,7,8-HXCDF ng/Kg 2,3,4,7,8-PECDF 0.464 JB 0.0256 MDL 5.18 PQL J ng/Kg Z JQ PQL J Z 2,3,7,8-TCDD 0.163 0.0548 MDL 1.04 ng/Kg 2,3,7,8-TCDF 8080.0 J 0.0416 MDL 1.04 **PQL** J z ng/Kg OCDF 4.83 0.0503 MDL **PQL** J z 10.4 ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 10:32:56 AM ADR version 1.4.0.111 Page 10 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129

Laboratory: LL

EDD Filename: DX129_v1

eQAPP Name: CDM_SSFL_110509

## Reason Code Legend

Reason Code	Description
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	Duplicate Sample Count = 0
<del></del>	Duplicate Sample Count > 1
<del></del>	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision
	· · · · · · · · · · · · · · · · · · ·

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129

EDD Filename: DX129_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Flichaille, DX 123	<u></u>	eQAPP Name: CDM_SSFL_
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	N. Braham
Н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
н	Sampling to Analysis Estimation	
H	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
ı	Internal Standard Estimation	
I	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
Ļ	Laboratory Control Spike Upper Rejection	
M	Continuing Tune	
М	Initial Tune	
M	Performance Evaluation Mixture	
М	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX129 Laboratory: LL EDD Filename: DX129_v1

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
Т	Trip Blank Contamination
z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/3/2012 10:32:56 AM

eQAPP Name: CDM_SSFL_110509

^{*} denotes a non-reportable result

# **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX129

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ							
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples			
BLK2340B371734	8/23/2011 5:34:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	2.80 pg/L 0.632 pg/L 0.512 pg/L 0.765 pg/L 0.547 pg/L 0.856 pg/L 0.489 pg/L 0.588 pg/L 0.588 pg/L 0.562 pg/L 1.02 pg/L 6.56 pg/L	EB-SA6-SB-081711			

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-081711(RES)	1,2,3,4,6,7,8-HPCDD	2.81 pg/L	2.81U pg/L
EB-SA6-SB-081711(RES)	1,2,3,4,6,7,8-HPCDF	0.562 pg/L	0.562U pg/L
EB-SA6-SB-081711(RES)	1,2,3,4,7,8,9-HPCDF	0.367 pg/L	0.367U pg/L
EB-SA6-SB-081711(RES)	1,2,3,4,7,8-HxCDD	0.405 pg/L	0.405U pg/L
EB-SA6-SB-081711(RES)	1,2,3,6,7,8-HXCDF	0.277 pg/L	0.277U pg/L
EB-SA6-SB-081711(RES)	1,2,3,7,8,9-HXCDD	0.522 pg/L	0.522U pg/L
EB-SA6-SB-081711(RES)	1,2,3,7,8,9-HXCDF	0.316 pg/L	0.316U pg/L
EB-SA6-SB-081711(RES)	1,2,3,7,8-PECDD	0.710 pg/L	0.710U pg/L
EB-SA6-SB-081711(RES)	2,3,4,6,7,8-HXCDF	0.303 pg/L	0.303U pg/L
EB-SA6-SB-081711(RES)	2,3,4,7,8-PECDF	0.740 pg/L	0.740U pg/L
EB-SA6-SB-081711(RES)	OCDD	4.18 pg/L	4.18U pg/L
EB-SA6-SB-081711(RES)	OCDF	0.569 pg/L	0.569U pg/L

## Method: 1613B Matrix: SO

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2380B370305	8/30/2011 3:05:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD	0.236 ng/Kg 0.0494 ng/Kg 0.0519 ng/Kg 0.0513 ng/Kg 0.0537 ng/Kg 0.0428 ng/Kg 0.0356 ng/Kg 0.0682 ng/Kg 0.0365 ng/Kg 0.0234 ng/Kg 0.0544 ng/Kg 0.426 ng/Kg	DUP12-SA6-QC-081711 SL-007-SA5DN-SS-0.0-0.5 SL-154-SA6-SB-3.0-4.0 SL-214-SA6-SB-1.0-2.0 SL-215-SA6-SB-1.0-2.0 SL-221-SA6-SB-1.0-2.0 SL-221-SA6-SB-2.5-3.5 SL-224-SA6-SB-3.0-4.0 SL-226-SA6-SB-3.5-4.5 SL-241-SA6-SB-4.0-5.0 SL-241-SA6-SB-9.0-10.0 SL-242-SA6-SB-4.0-5.0 SL-242-SA6-SB-4.0-5.0 SL-279-SA6-SB-4.0-5.0 SL-279-SA6-SB-9.0-10.0 SL-279-SA6-SB-9.0-10.0 SL-279-SA6-SB-9.0-10.0 SL-315-SA6-SB-3.0-4.0

1/3/2012 10:32:01 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO							
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples			
BLK2410B372134	8/30/2011 9:34:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0,0CDD 0CDF	0.173 ng/Kg 0.0734 ng/Kg 0.0294 ng/Kg 0.0282 ng/Kg 0.0284 ng/Kg 0.0284 ng/Kg 0.0221 ng/Kg 0.0303 ng/Kg 0.0198 ng/Kg 0.0300 ng/Kg 0.0366 ng/Kg 0.0245 ng/Kg 0.0368 ng/Kg 0.0369 ng/Kg 0.0369 ng/Kg 0.0369 ng/Kg	SL-310-SA6-SB-4.0-5.0			

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP12-SA6-QC-081711(RES)	1,2,3,4,6,7,8-HPCDD	0.310 ng/Kg	0.310U ng/Kg
DUP12-SA6-QC-081711(RES)	1,2,3,4,6,7,8-HPCDF	0.156 ng/Kg	0.156U ng/Kg
DUP12-SA6-QC-081711(RES)	1,2,3,6,7,8-HXCDD	0.244 ng/Kg	0.244U ng/Kg
DUP12-SA6-QC-081711(RES)	OCDD	0.299 ng/Kg	0.299U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDD	0.382 ng/Kg	0.382U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0307 ng/Kg	0.0307U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,4,7,8-HXCDF	0.0301 ng/Kg	0.0301U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDF	0.0292 ng/Kg	0.0292U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDD	0.0723 ng/Kg	0.0723U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDF	0.0295 ng/Kg	0.0295U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	2,3,4,6,7,8-HXCDF	0.0293 ng/Kg	0.0293U ng/Kg
SL-154-SA6-SB-3.0-4.0(RES)	2,3,4,7,8-PECDF	0.0537 ng/Kg	0.0537U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDD	0.443 ng/Kg	0.443U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDF	0.133 ng/Kg	0.133U ng/Kg
SL-214-\$A6-SB-1.0-2.0(RE\$)	1,2,3,4,7,8-HXCDF	0.210 ng/Kg	0.210U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDD	0.142 ng/Kg	0.142U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDF	0.186 ng/Kg	0.186U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDF	0.137 ng/Kg	0.137U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	1,2,3,7,8-PECDD	0.212 ng/Kg	0.212U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	2,3,4,6,7,8-HXCDF	0.0933 ng/Kg	0.0933U ng/Kg
SL-214-SA6-SB-1.0-2.0(RES)	OCDD	1.07 ng/Kg	1.07U ng/Kg
SL-215-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,4,7,8-HXCDF	0.0803 ng/Kg	0.0803U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.193 ng/Kg	0.193U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0649 ng/Kg	0.0649U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.212 ng/Kg	0,212U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0339 ng/Kg	0.0339U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0891 ng/Kg	0.0891U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0542 ng/Kg	0.0542U ng/Kg
SL-215-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0727 ng/Kg	0.0727U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDF	0.170 ng/Kg	0.170U ng/Kg

1/3/2012 10:32:01 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO			in Environment befolk	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,4,7,8-HXCDF	0.0420 ng/Kg	0.0420U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDD	0.102 ng/Kg	0.102U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDF	0.0361 ng/Kg	0.0361U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDD	0.0801 ng/Kg	0.0801U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDF	0.0409 ng/Kg	0.0409U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	2,3,4,6,7,8-HXCDF	0.0302 ng/Kg	0.0302U ng/Kg
SL-221-SA6-SB-1.0-2.0(RES)	2,3,4,7,8-PECDF	0.0437 ng/Kg	0.0437U ng/Kg
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	0,358 ng/Kg	0.358U ng/Kg
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0574 ng/Kg	0.0574U ng/Kg
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8-HXCDF	0.0303 ng/Kg	0.0303U ng/Kg
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDD	0.0970 ng/Kg	0.0970U ng/Kg
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDF	0.0868 ng/Kg	0.0868U ng/Kg
SL-223-SA6-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.0875 ng/Kg	0.0875U ng/Kg
SL-223-SA6-SB-2.5-3.5(RES)	2,3,4,7,8-PECDF	0.0888 ng/Kg	0.0888U ng/Kg
SL-224-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDD	0.131 ng/Kg	0.131U ng/Kg
SL-224-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0332 ng/Kg	0.0332U ng/Kg
SL-224-SA6-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDD	0.0949 ng/Kg	0.0949U ng/Kg
SL-224-SA6-SB-3.0-4.0(RES)	1,2,3,7,8-PECDF	0.0312 ng/Kg	0.0312U ng/Kg
SL-224-SA6-SB-3.0-4.0(RES)	2,3,4,7,8-PECDF	0.0298 ng/Kg	0.0298U ng/Kg
SL-224-SA6-SB-3.0-4.0(RES)	OCDD	0.263 ng/Kg	0.263U ng/Kg
SL-226-\$A6-\$B-3.5-4.5(RE\$)	1,2,3,4,6,7,8-HPCDD	0.946 ng/Kg	0.946U ng/Kg
SL-226-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDF	0.219 ng/Kg	0.219U ng/Kg
SL-226-\$A6-\$B-3.5-4.5(RE\$)	1,2,3,4,7,8-HXCDF	0.196 ng/Kg	0.196U ng/Kg
SL-226-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDD	0.230 ng/Kg	0.230U ng/Kg
SL-226-SA6-SB-3.5-4.5(RES)	1,2,3,6,7,8-HXCDF	0.189 ng/Kg	0.189U ng/Kg
SL-226-SA6-SB-3.5-4.5(RES)	1,2,3,7,8-PECDD	0.229 ng/Kg	0.229U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.282 ng/Kg	0.282U ng/Kg
SL-241-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,4,6,7,8-HPCDF	0.0463 ng/Kg	0.0463U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0506 ng/Kg	0.0506U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0570 ng/Kg	0.0570U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0,0240 ng/Kg	0.0240U ng/Kg
SL-241-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,7,8,9-HXCDD	0.0388 ng/Kg	0.0388U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0320 ng/Kg	0.0320U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0225 ng/Kg	0.0225U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0267 ng/Kg	0.0267U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0522 ng/Kg	0.0522U ng/Kg
SL-241-SA6-SB-4.0-5.0(RES)	OCDD	1.56 ng/Kg	1.56U ng/Kg
SL-241-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.283 ng/Kg	0.283U ng/Kg
SL-241-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0462 ng/Kg	0.0462U ng/Kg
SL-241-\$A6-\$B-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0239 ng/Kg	0.0239U ng/Kg

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B	raiskis, kirjos karantaria	enti airakkaisa jahinka pahabaskiika	Projectivi Enicker esperantizial kertaigi dikurili Kilon (1932).	
Matrix:	so				
Method Bla Sample ID	nk	Analysis Date	Analyte	Result	Associated Samples

## The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-241-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0483 ng/Kg	0.0483U ng/Kg
SL-241-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0221 ng/Kg	0.0221U ng/Kg
SL-241-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0861 ng/Kg	0.0861U ng/Kg
SL-241-SA6-SB-9.0-10.0(RES)	OCDD	0.480 ng/Kg	0.480U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.315 ng/Kg	0,315U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0498 ng/Kg	0.0498U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0257 ng/Kg	0.0257U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.114 ng/Kg	0.114U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0239 ng/Kg	0.0239U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0640 ng/Kg	0.0640U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0301 ng/Kg	0.0301U ng/Kg
SL-242-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0342 ng/Kg	0.0342U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.365 ng/Kg	0.365U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.122 ng/Kg	0.122U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0763 ng/Kg	0.0763U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0837 ng/Kg	0.0837U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0473 ng/Kg	0.0473U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0946 ng/Kg	0.0946U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0529 ng/Kg	0.0529U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.0885 ng/Kg	0.0885U ng/Kg
SL-242-\$A6-\$B-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0765 ng/Kg	0.0765U ng/Kg
SL-242-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.170 ng/Kg	0.170U ng/Kg
SL-242-\$A6-\$B-9.0-10.0(RES)	OCDD	1.41 ng/Kg	1.41U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDD	0.969 ng/Kg	0.969U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDF	0.166 ng/Kg	0.166U ng/Kg
SL-279-\$A6-SB-1.0-2.0(RES)	1,2,3,4,7,8-HXCDF	0.196 ng/Kg	0.196U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDD	0.156 ng/Kg	0.156U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDF	0.169 ng/Kg	0.169U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDD	0.151 ng/Kg	0.151U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDF	0.162 ng/Kg	0.162U ng/Kg
SL-279-SA6-SB-1.0-2.0(RES)	1,2,3,7,8-PECDD	0.222 ng/Kg	0.222U ng/Kg
SL-279-\$A6-\$B-1.0-2.0(RES)	2,3,4,6,7,8-HXCDF	0.111 ng/Kg	0.111U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.389 ng/Kg	0.389U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.157 ng/Kg	0.157U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.178 ng/Kg	0.178U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.150 ng/Kg	0.150U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.142 ng/Kg	0.142U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.131 ng/Kg	0.131U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.153 ng/Kg	0.153U ng/Kg
SL-279-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.315 ng/Kg	0.315U ng/Kg

1/3/2012 10:32:01 AM ADR version 1.4.0.111 Page 4 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	sinung di panggang di Araba	istinaidelle alt trebet de la late de la late de la late de la production de la late de la late de la late de l La late de la late de la late de la late de la late de la late de la late de la late de la late de la late de		
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-279-SA6-SB-4.0-5.0(RES)	OCDD	1.95 ng/Kg	1.95U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.211 ng/Kg	0.211U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.146 ng/Kg	0.146U ng/Kg
SL-279-SA6-SB-9,0-10,0(RES)	1,2,3,6,7,8-HXCDF	0.145 ng/Kg	0.145U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.125 ng/Kg	0.125U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.124 ng/Kg	0.124U ng/Kg
SL-279-SA6-SB-9,0-10,0(RES)	1,2,3,7,8-PECDD	0.126 ng/Kg	0,126U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0814 ng/Kg	0.0814U ng/Kg
SL-279-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.224 ng/Kg	0.224U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.301 ng/Kg	0.301U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0415 ng/Kg	0.0415U ng/Kg
SL-310-SA6-SB-4,0-5,0(RES)	1,2,3,4,7,8-HXCDF	0.0491 ng/Kg	0.0491U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0273 ng/Kg	0.0273U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.113 ng/Kg	0.113U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0304 ng/Kg	0.0304U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0,0750 ng/Kg	0.0750U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0322 ng/Kg	0.0322U ng/Kg
SL-310-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0,0637 ng/Kg	0.0637U ng/Kg

## Field Duplicate RPD Report

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Matrix: SO	ining a managaran na in ining panglipanggaran				
	Concent	Concentration (%)			
Analyte	SL-224-SA6-SB-3.0-4.0	DUP12-SA6-QC-081711	Sample RPD	eQAPP RPD	Flag
MOISTURE	9.2	6.4	36		No Qualifiers Applie

Method: 1613B Matrix: SO

	Concentra	tion (ng/Kg)			
Analyte	SL-224-SA6-SB-3.0-4.0	SL-224-SA6-SB-3.0-4.0 DUP12-SA6-QC-081711		eQAPP RPD	Flag
OCDD OCDF	0.263 0.133	0.299 0.208	13 44	50.00 50.00	No Qualifiers Applied
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	0.131 0.0332 5.26 U 5.26 U 5.26 U 5.26 U 0.0949 5.26 U 0.0312 5.26 U 0.0312 5.26 U 0.0298 1.05 U	0.310 0.156 0.230 0.339 0.244 0.344 0.230 0.229 0.483 0.585 0.190 0.442 0.0807 0.110	81 130 200 200 200 200 83 200 200 180 200 175 200 200	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

THE CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY

Method: 1613B

AQ

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-081711	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	2.81 0.562 0.367 0.405 0.277 0.522 0.316 0.710 0.303 0.740 4.18 0.569	9.56 9.56 9.56 9.56 9.56 9.56 9.56 9.56	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613E

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
			Nesun	LIIIIC	Type		гау
DUP12-SA6-QC-081711	1,2,3,4,6,7,8-HPCDD	JBQ	0.310	5.30	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.156	5.30	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.230	5.30	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.339	5.30	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.244	5.30	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.344	5.30	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.230	5.30	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.229	5.30	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.483	5.30	PQL	ng/Kg	o (all delects)
	1,2,3,7,8-PECDF	JB	0.585	5.30	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.190	5.30	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.442	5.30	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0807	1.06	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.110	1.06	PQL	ng/Kg	
	OCDD	JBQ	0.299	10.6	PQL	ng/Kg	
	OCDF	J	0.208	10.6	PQL	ng/Kg	
SL-007-SA5DN-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF	JB	3.19	5.55	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	J	1.57	5.55	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.304	5.55	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.739	5.55	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	3.15	5.55	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JB	0.621	5.55	PQL	ng/Kg	` '
	1,2,3,7,8,9-HXCDF	JB	2.04	5.55	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.94	5.55	PQL	ng/Kg	
	OCDF	J	4.88	11.1	PQL	ng/Kg	
SL-154-SA6-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDD	JB	0.382	5.24	PQL	ng/Kg	<u> </u>
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0307	5.24	PQL	ng/Kg	
İ	1,2,3,4,7,8,9-HPCDF	JQ	0.0300	5.24	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0301	5.24	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0292	5.24	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0723	5.24	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0295	5.24	PQL	ng/Kg	
1	2,3,4,6,7,8-HXCDF	JBQ	0.0293	5.24	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0537	5.24	PQL	ng/Kg	
	OCDD	JB	4.14	10.5	PQL	ng/Kg	
	OCDF	JQ	0.0760	10.5	PQL	ng/Kg	

1/3/2012 10:32:12 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-214-SA6-SB-1.0-2.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	まちかないままままないというない	0.443 0.133 0.0450 0.159 0.210 0.142 0.186 0.229 0.137 0.212 0.0933 0.313 0.0910 0.0765 1.07	5.34 5.34 5.34 5.34 5.34 5.34 5.34 5.34	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-215-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	<b>පිපිළිසසියම්යම්ය</b> පිසස	3.27 0.539 0.0675 0.119 0.0803 0.193 0.0649 0.212 0.0339 0.0891 0.0542 0.0727 0.0689 1.81	5.53 5.53 5.53 5.53 5.53 5.53 5.53 5.53	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-221-SA6-SB-1.0-2.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDF	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2.06 0.170 0.0420 0.102 0.0361 0.0801 0.0409 0.0302 0.0437 0.512	5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.29	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-223-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,7,8-PECDF OCDD OCDF	B G B G B B B G B B B G	0.358 0.0574 0.0303 0.0970 0.0868 0.0875 0.0888 2.16 0.367	5.00 5.00 5.00 5.00 5.00 5.00 5.00 10.0	PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-224-SA6-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF OCDD OCDF	JBQ JB JBQ JB JBQ JBQ JQ	0.131 0.0332 0.0949 0.0312 0.0298 0.263 0.133	5.26 5.26 5.26 5.26 5.26 5.26 10.5	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 10:32:12 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

watrix: 50		,		· · · · · · · · · · · · · · · · · · ·			
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-226-SA6-SB-3.5-4.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	HE THE BEST TO THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF T	0.946 0.219 0.0948 0.165 0.196 0.230 0.189 0.233 0.225 0.229 0.344 0.128 0.314 0.170 0.539	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-241-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 0,0DD 0,0DF	SCO BE BE BE BE BE BE BE BE BE BE BE BE BE	0.282 0.0463 0.0399 0.0506 0.0570 0.0240 0.0388 0.0320 0.0225 0.0267 0.0522 1.56 0.107	5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-241-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	## ## ## ## ## ## ## ## ## ## ## ## ##	0.283 0.0462 0.0313 0.0239 0.0483 0.0221 0.0861 0.480 0.147	5.37 5.37 5.37 5.37 5.37 5.37 5.37 10.7	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-242-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	## \$###################################	0.315 0.0498 0.0427 0.0257 0.114 0.0239 0.218 0.216 0.0640 0.0301 0.0342 2.25 0.100	5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.29	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 10:32:12 AM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX129

Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-242-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 0CDD 0CDF	B	0.365 0.122 0.0507 0.0342 0.0763 0.0837 0.0473 0.0946 0.0529 0.0885 0.195 0.0765 0.170 0.0834 0.0563 1.41 0.166	5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-279-SA6-SB-1.0-2.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 0CDF	5aagaaaagaag	0.969 0.166 0.0667 0.0900 0.196 0.156 0.159 0.151 0.162 0.222 0.324 0.111 0.301 0.0657 0.0889 9.19 0.372	5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-279-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDD OCDF	Sacanda a a a a a a a a a a a a a a a a a a	0.389 0.157 0.0531 0.138 0.178 0.150 0.142 0.131 0.153 0.315 0.334 0.119 0.320 0.121 0.0977 1.95 0.161	5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX129 Laboratory: LL

EDD Filename: DX129_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-279-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF CODF	JB JBQ JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JB	1.57 0.271 0.0889 0.116 0.211 0.146 0.145 0.125 0.124 0.126 0.230 0.0814 0.224 0.654	5.39 5.39 5.39 5.39 5.39 5.39 5.39 5.39	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-310-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF	JB JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ JB	2.28 0.301 0.0415 0.0491 0.170 0.0273 0.210 0.113 0.0304 0.0750 0.0322 0.0637 0.0246 0.781	5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.48	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-315-SA6-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDF	JB JG JB JB JB JB JB JB JB JB JB JB JB JB JB	2.46 0.491 0.458 0.353 0.537 0.280 0.370 0.226 0.615 0.516 0.264 0.464 0.163 0.0808 4.83	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 10:32:12 AM ADR version 1.4.0.111 Page 5 of 5

# **SAMPLE DELIVERY GROUP**

**DX130** 

# Attachment I

Sample ID Cross Reference and Data Review Level

## **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
23-Aug-2011	SL-030-SA6-SB-4.0-5.0	6385543	N	METHOD	1613B	111
23-Aug-2011	SL-030-SA6-SB-9.0-10.0	6385544	N	METHOD	1613B	Ш
23-Aug-2011	SL-035-SA6-SB-2.5-3.5	6385545	N	METHOD	1613B	Ш
23-Aug-2011	EB-SA6-SB-082311	6385547	ЕВ	METHOD	1613B	181
23-Aug-2011	SL-040-SA6-SB-4.0-5.0	6385546	N	METHOD	1613B	111
24-Aug-2011	SL-066-SA6-SB-2.0-3.0	6387049	N	METHOD	1613B	111
24-Aug-2011	SL-197-SA6-SB-4.0-5.0	6387050	N	METHOD	1613B	III
24-Aug-2011	SL-208-SA6-SB-4.0-5.0	6387051	N	METHOD	1613B	111
24-Aug-2011	EB-SA6-SB-082411	6387052	EB	METHOD	1613B	HI
25-Aug-2011	SL-246-SA6-SB-4.0-5.0	6388749	N	METHOD	1613B	III
25-Aug-2011	SL-041-SA6-SB-3.0-4.0	6388747	N	METHOD	1613B	Ш
25-Aug-2011	SL-257-SA6-SB-1.5-2.5	6388751	N	METHOD	1613B	III
25-Aug-2011	SL-195-SA6-SB-1.0-2.0	6388748	N	METHOD	1613B	111
25-Aug-2011	SL-247-SA6-SB-4.0-5.0	6388750	N	METHOD	1613B	111
26-Aug-2011	SL-252-SA6-SB-4.0-5.0	6389728	N	METHOD	1613B	111
26-Aug-2011	SL-252-SA6-SB-4.0-5.0MS	6389729	MS	METHOD	1613B	Ш
26-Aug-2011	SL-252-SA6-SB-4.0-5.0MSD	6389730	MSD	METHOD	1613B	111
26-Aug-2011	DUP13-SA6-QC-082611	6389734	FD	METHOD	1613B	Ш
26-Aug-2011	SL-291-SA6-SB-2.0-3.0	6389726	N	METHOD	1613B	Ш
26-Aug-2011	SL-250-SA6-SB-3.0-4.0	6389727	N	METHOD	1613B	Ш
26-Aug-2011	SL-256-SA6-SB-2.5-3.5	6389731	N	METHOD	1613B	Ш
26-Aug-2011	SL-113-SA6-SB-4.0-5.0	6389732	N	METHOD	1613B	111
26-Aug-2011	SL-113-SA6-SB-7.0-8.0	6389733	N	METHOD	1613B	111

# **Attachment II**

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method Categor	y: GENCHEM	en en de la companya de la companya de la companya de la companya de la companya de la companya de la companya
Method:	1613B	Matrix: AQ

Sample ID: EB-SA6-SB-082311	Collec	Collected: 8/23/2011 1:00:00 Analysis Type: RES							Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code			
1,2,3,4,6,7,8-HPCDD	3.48	JB	0.814	MDL	9.95	PQL	pg/L	U	В			
1,2,3,4,6,7,8-HPCDF	1.35	JB	0.381	MDL	9.95	PQL	pg/L	U	В			
1,2,3,4,7,8-HXCDF	0.961	JBQ	0.427	MDL	9.95	PQL	pg/L	U	В			
1,2,3,6,7,8-HXCDD	0.623	JBQ	0.520	MDL	9.95	PQL	pg/L	U	В			
1,2,3,7,8,9-HXCDF	0.402	JB	0.370	MDL	9.95	PQL	pg/L	U	В			
2,3,4,6,7,8-HXCDF	0.554	JQ	0.325	MDL	9.95	PQL	pg/L	J	Z			
2,3,4,7,8-PECDF	0.643	JBQ	0.338	MDL	9.95	PQL	pg/L	U	В			
OCDD	4.48	JB	0.603	MDL	19.9	PQL	pg/L	U	В			
OCDE	2.93	JB	0.876	MDI	19.9	POI	no/l	11	B			

Sample ID: EB-SA6-SB-082411	Collected: 8/24/2011 1:00:00	Analysis Type: RES	Dilution: 1
-----------------------------	------------------------------	--------------------	-------------

+ vo	00,,00	Diddon 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	3.67	JBQ	0.541	MDL	10.3	PQL	pg/L	U	В	
1,2,3,4,6,7,8-HPCDF	2.64	JB	0.253	MDL	10.3	PQL	pg/L	U	В	
1,2,3,4,7,8,9-HPCDF	0.489	JBQ	0.311	MDL	10.3	PQL	pg/L	U	В	
1,2,3,4,7,8-HXCDF	0.320	JB	0.258	MDL	10.3	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDD	0.632	JBQ	0.376	MDL	10.3	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDF	0.522	JBQ	0.264	MDL	10.3	PQL	pg/L	U	В	
2,3,4,7,8-PECDF	0.442	JBQ	0.265	MDL	10.3	PQL	pg/L	U	В	
OCDD	7.16	JB	0.438	MDL	20.7	PQL	pg/L	U	В	
OCDF	2.09	JB	0.745	MDL	20.7	PQL	pg/L	Ü	В	

Method Ca	tegory: GENCHEM		
Method:	1613B	Matrix: SO	

Sample ID: DUP13-SA6-QC-082611	Collec	Collected: 8/26/2011 8:55:00 Analysis Type: RES							
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	270	В	0.154	MDL	5.11	PQL	ng/Kg	J	FD
1,2,3,4,6,7,8-HPCDF	63.2	В	0.0848	MDL	5.11	PQL	ng/Kg	J	FD
1,2,3,4,7,8-HxCDD	2.64	JB	0.106	MDL	5.11	PQL	ng/Kg	J	Z, FD
1,2,3,4,7,8-HXCDF	28.9	В	0.127	MDL	5.11	PQL	ng/Kg	J	FD
1,2,3,6,7,8-HXCDD	11.5	В	0.108	MDL	5.11	PQL	ng/Kg	J	FD

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:08:09 AM ADR version 1.4.0.111 Page 1 of 13

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM	ionen 2014aan 1911 oli maganista kaika 2012 ka ka kalimpia artii ja ka ka ka ka ka ka ka ka ka ka ka ka ka	
Method:	1613B	Matrix: SO	

Sample ID: DUP13-SA6-QC-082611	Collec	Collected: 8/26/2011 8:55:00 Analysis Type: RES									
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,7,8,9-HXCDD	5.65	В	0.0959	MDL	5.11	PQL	ng/Kg	J	FD		
1,2,3,7,8,9-HXCDF	8.87	В	0.124	MDL	5.11	PQL	ng/Kg	J	FD		
1,2,3,7,8-PECDD	0.161	U	0.161	MDL	5.11	PQL	ng/Kg	UJ	FD		
2,3,4,7,8-PECDF	9.42	В	0.245	MDL	5.11	PQL	ng/Kg	J	FD		
2,3,7,8-TCDD	0.134	J	0.0372	MDL	1.02	PQL	ng/Kg	J	Z, FD		
2,3,7,8-TCDF	4.76	С	0.651	MDL	1.02	PQL	ng/Kg	J	FD		
OCDD	3690	В	0.0932	MDL	10.2	PQL	ng/Kg	J	FD		
OCDF	109	В	0.0461	MDL	10.2	PQL	ng/Kg	J	FD		

Sample ID: SL-030-SA6-SB-4.0-5.0 Collected: 8/23/2011 8:14:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	5.38	JB	0.162	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	1.07	JB	0.155	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	3.09	JB	0.288	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.69	JB	0.0759	MDL	5.50	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.33	JB	0.0718	MDL	5.50	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.777	J	0.116	MDL	1.10	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.850	J	0.108	MDL	1.10	PQL	ng/Kg	J	Z

Sample ID: SL-030-SA6-SB-9.0-10.0 Collected: 8/23/2011 8:40:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HXCDF	4.51	JB	0.165	MDL	5.81	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.900	JB	0.169	MDL	5.81	PQL	ng/Kg	J	Z
i,2,3,7,8-PECDD	4.89	JB	0.311	MDL	5.81	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	2.35	JB	0.0900	MDL	5.81	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.11	JB	0.0930	MDL	5.81	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	1.06	J	0.0829	MDL	1.16	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.687	J	0.120	MDL	1.16	PQL	ng/Kg	J	Z

Sample ID: SL-035-SA6-SB-2.5-3.5 Collected: 8/23/2011 10:30:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.05	JBQ	0.115	MDL	5.10	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:08:09 AM ADR version 1.4.0.111 Page 2 of 13

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-035-SA6-SB-2.5-3.5	Collec	ted: 8/23/2	2011 10:30	:00 A	nalysis T	ype: RES		I	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	0.761	JB	0.0802	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.365	JB	0.0504	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.33	JB	0.0829	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.437	JB	0.0469	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.699	JB	0.0755	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.111	JB	0.0534	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.134	JB	0.0241	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.225	JB	0.0190	MDL	5.10	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.526	JB	0.0476	MDL	5.10	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.210	JB	0.0197	MDL	5.10	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0353	J	0.0170	MDL	1.02	PQL	ng/Kg	J	Z

Sample ID: SL-040-SA6-SB-4.0-5.0 Collected: 8/23/2011 2:26:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.99	JB	0.0414	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.226	JBQ	0.0572	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.0597	JB	0.0400	MDL	5.08	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.180	JBQ	0.0382	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.280	JB	0.0406	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.100	JB	0.0344	MDL	5.08	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.163	JB	0.0371	MDL	5.08	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0820	JB	0.0376	MDL	5.08	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0425	JBQ	0.0252	MDL	5.08	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.371	JB	0.0215	MDL	5.08	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.125	JB	0.0377	MDL,	5.08	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.163	JB	0.0201	MDL	5.08	PQL	ng/Kg	U	В
OCDF	4.51	JB	0.0258	MDL	10.2	PQL	ng/Kg	J	Z

Sample ID: SL-041-SA6-SB-3.0-4.0 Collected: 8/25/2011 9:35:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.976	JB	0.0157	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0607	JBQ	0.0215	MDL.	5.14	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.106	JB	0.0439	MDL	5.14	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/3/2012 11:08:09 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-041-SA6-SB-3.0-4.0	Collec	ted: 8/25/2	2011 9:35:0	00 A	nalysis T	/pe: RES	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HXCDF	0.0852	JB	0.0279	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.456	JB	0.0438	MDL	5.14	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.125	JB	0.0253	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.360	JB	0.0408	MDL	5.14	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.157	JB	0.0287	MDL	5.14	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0636	JBQ	0.0169	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0773	JBQ	0.0120	MDL	5.14	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.0659	JB	0.0267	MDL	5.14	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.100	JB	0.0117	MDL	5.14	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0180	JQ	0.0168	MDL	1.03	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0238	JQ	0.0222	MDL	1.03	PQL	ng/Kg	J	Z	
OCDF	1.34	JB	0.0252	MDL	10.3	PQL	ng/Kg	J	Z	

Sample ID: SL-066-SA6-SB-2.0-3.0 Collected: 8/24/2011 10:30:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.37	JB	0.0363	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.251	JB	0.0457	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.135	JBQ	0.0327	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.148	JB	0.0267	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.369	JB	0.0332	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.122	JB	0.0248	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.160	JB	0.0324	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.124	JB	0.0255	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.144	JВ	0.0174	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.177	JB	0.0120	MDL	5.18	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.134	JB	0.0249	MDL	5.18	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.186	JB	0.0112	MDL	5.18	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0526	J	0.0156	MDL	1.04	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0468	JQ	0.0154	MDL	1.04	PQL	ng/Kg	J	Z
OCDF	3.20	JB	0.0224	MDL	10.4	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	ory: GENCHEM	Continues a delegación delegación de la continue de la continue de la continue de la continue de la continue d	
Method:	1613B	Matrix: SO	

Sample ID: SL-113-SA6-SB-4.0-5.0	Collec	ted: 8/26/2	1011 1:50:0	0 A	naiysis T	ype: RES	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	2.98	JB	0.0717	MDL	5.23	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	4.64	JB	0.0735	MDL	5.23	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.941	JB	0.0520	MDL	5.23	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.831	JB	0.0495	MDL	5.23	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	1.82	JB	0.0684	MDL	5.23	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.236	JB	0.0188	MDL	5.23	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.977	JB	0.0487	MDL,	5.23	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.312	JB	0.0178	MDL	5.23	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.319	J	0.0178	MDL	1.05	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0679	J	0.0261	MDL	1.05	PQL	ng/Kg	J	Z	

Sample ID: SL-113-SA6-SB-7.0-8.0 Collec	ted: 8/26/2011 2:15:00	Analysis Type: RES	Dilution: 1
-----------------------------------------	------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.769	JB	0.0610	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.08	JB	0.0676	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.282	JB	0.0335	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.79	JB	0.0673	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.227	JВ	0.0313	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.43	JВ	0.0632	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0656	JB	0.0323	MDL	5.30	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.413	JB	0.0264	MDL	5.30	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0641	JBQ	0.0110	MDL	5.30	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.274	JB	0.0313	MDL	5.30	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0638	JB	0.0109	MDL	5.30	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0418	JQ	0.0132	MDL,	1.06	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0211	J	0.0145	MDL	1.06	PQL	ng/Kg	J	Z

Sample ID: SL-195-SA6-SB-1.0-2.0 Collected: 8/25/2011 12:22:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.04	JB	0.0406	MDL	5.16	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.326	JB	0.0134	MDL	5.16	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0404	JB	0.0192	MDL	5.16	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0297	JBQ	0.0201	MDL	5.16	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-195-SA6-SB-1.0-2.0 Collected: 8/25/2011 12:22:00 Analysis Type: RES Dilution: 1 Data Lab Lab RLReview Reason Analyte Result Qual DL Type RL. Туре Units Qual Code 1,2,3,4,7,8-HXCDF 0.111 0.0209 MDL JB 5.16 PQL ng/Kg U В 1,2,3,6,7,8-HXCDD 0.135 JΒ 0.0214 MDL 5.16 z **PQL** ng/Kg J 1,2,3,6,7,8-HXCDF 0.0546 0.0189 MDL JBQ 5.16 **PQL** ng/Kg U В 1,2,3,7,8,9-HXCDD 0.124 JBQ 0.0185 MDL 5.16 **PQL** J z ng/Kg 1,2,3,7,8,9-HXCDF 0.108 JB 0.0209 MDL 5.16 PQL U ng/Kg В 1,2,3,7,8-PECDD 0.0264 JB 0.0169 MDL 5.16 PQL ng/Kg U В 1,2,3,7,8-PECDF 0.188 JВ 0.0209 MDL 5.16 PQL J z ng/Kg 2,3,4,6,7,8-HXCDF 0.0924 JB 0.0186 MDL. 5.16 **PQL** ng/Kg U В 2,3,4,7,8-PECDF 0.504 JB 0.0218 MDL 5.16 PQL J ng/Kg Z 2,3,7,8-TCDF 0.0478 JQ 0.0452 1.03 **PQL** J z **MDL** ng/Kg OCDD 7.21 JB 0.0248 MDL 10.3 POL Z ng/Kg J OCDF 0.556 JΒ J 0.0200 MDL 10.3 PQL ng/Kg Z

Sample ID: SL-197-SA6-SB-4.0-5.0 Collected: 8/24/2011 11:06:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.643	JB	0.0274	MDL	5.42	PQL	ng/Kg	U.	В
1,2,3,4,6,7,8-HPCDF	0.207	JB	0.0171	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0817	JB	0.0228	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.137	JB	0.0263	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.234	JB	0.0225	MDL	5.42	PQL	ng/Kg	j	Z
1,2,3,6,7,8-HXCDD	0.188	JB	0.0265	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.215	JB	0.0202	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.246	JB	0.0232	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.246	JB	0.0219	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.275	JB	0.0219	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.382	JB	0.0149	MDL	5.42	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.134	JBQ	0.0211	MDL	5.42	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.329	JB	0.0143	MDL	5.42	PQL	ng/Kg	J	Z
OCDD	3.67	JB	0.0239	MDL	10.8	PQL	ng/Kg	J	Z
OCDF	0.239	JB	0.0236	MDL	10.8	PQL	ng/Kg	υ	В

Page 6 of 13

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/3/2012 11:08:09 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX130

Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-208-SA6-SB-4.0-5.0	Collec	ted: 8/24/2	011 12:06	:00 A	nalysis T	ype: RES	E	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.568	JB	0.0392	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.256	JB	0.0566	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.253	JB	0.0479	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.989	JB	0.0571	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.302	JB	0.0427	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.566	JB	0.0564	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.148	JB	0.0453	MDL	5.42	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.138	JB	0.0223	MDL	5.42	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.118	JB	0.0126	MDL	5.42	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.450	JB	0.0423	MDL	5.42	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.126	JB	0.0131	MDL	5.42	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0339	J	0.0166	MDL	1.08	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0271	J	0.0184	MDL	1.08	PQL	ng/Kg	J	Z

Sample ID: SL-246-SA6-SB-4.0-5.0

Collected: 8/25/2011 9:09:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.26	JB	0.0698	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.37	JB	0.111	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.853	JB	0.0625	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	4.07	JB	0.109	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.638	JB	0.0546	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.24	JB	0.110	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.452	JB	0.0633	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.499	JB	0.0521	MDL	5.46	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.903	JB	0.0608	MDL	5.46	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.386	JB	0.0426	MDL	5.46	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0612	J	0.0168	MDL	1.09	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.349	J	0.0673	MDL	1.09	PQL	ng/Kg	J	Z

Sample ID: SL-247-SA6-SB-4.0-5.0

Collected: 8/25/2011 2:45:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.307	JB	0.0177	MDL	5.32	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0487	JB	0.00585	MDL	5.32	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:08:09 AM

ADR version 1.4.0.111

Page 7 of 13

Lab Reporting Batch ID: DX130

Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Sample ID: SL-247-SA6-SB-4.0-5.0	Collec	ted: 8/25/2	2011 2:45:0	0 <i>A</i>	nalysis Ty	/pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	0.0151	JBQ	0.00845	MDL	5.32	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0264	JB	0.00813	MDL	5.32	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0243	JB	0.0139	MDL	5.32	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.00778	JBQ	0.00726	MDL	5.32	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0213	JB	0.0129	MDL	5.32	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0144	JBQ	0.00878	MDL	5.32	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0155	JBQ	0.0108	MDL	5.32	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0107	JBQ	0.00715	MDL	5.32	PQL	ng/Kg	U	₿	
2,3,4,7,8-PECDF	0.0312	JB	0.0101	MDL	5.32	PQL	ng/Kg	U	В	
OCDD	1.32	JB	0.0321	MDL	10.6	PQL	ng/Kg	U	В	
OCDF	0.103	JBQ	0.0153	MDL	10.6	PQL	ng/Kg	U	В	

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL_	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.60	JB	0.0623	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.876	JB	0.0759	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.50	JB	0.0859	MDL	5.12	PQL	ng/Kg	J	Ž
1,2,3,6,7,8-HXCDD	3.28	JB	0.0783	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.22	JB	0.0821	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.71	JB	0.0784	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.373	JВ	0.0820	MDL	5.12	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.557	JB	0.0440	MDL	5.12	PQL	пд/Кд	J	Z
2,3,4,6,7,8-HXCDF	1.13	JB	0.0832	MDL	5.12	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.83	JB	0.0925	MDL	5.12	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.119	J	0.0177	MDL,	1.02	PQL	ng/Kg	J	Z

Sample ID: SL-252-SA6-SB-4.0-5.0 Collected: 8/26/2011 8:49:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2210	EB	0.468	MDL	5.26	PQL	ng/Kg	J	FD
1,2,3,4,6,7,8-HPCDF	214	В	0.165	MDL	5.26	PQL	ng/Kg	J	Q, FD
1,2,3,4,7,8-HxCDD	7.11	В	0.185	MDL	5.26	PQL	ng/Kg	J	FD
1,2,3,4,7,8-HXCDF	17.0	В	0.187	MDL	5.26	PQL	ng/Kg	J	FD
1,2,3,6,7,8-HXCDD	56.2	В	0.193	MDL.	5.26	PQL	ng/Kg	J	FD

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area iV Collocated Soil Sampling

1/3/2012 11:08:09 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX130

Laboratory: LL

EDD Filename: DX130_v1

eQAPP Name: CDM_SSFL_110509

Sample ID: SL-252-SA6-SB-4.0-5.0	Collec	ted: 8/26/2	2011 8:49:0	10 A	nalysis T	ype: RES		Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,7,8,9-HXCDD	20.6	В	0.177	MDL	5.26	PQL	ng/Kg	J	FD		
1,2,3,7,8,9-HXCDF	0.201	U	0.201	MDL	5.26	PQL	ng/Kg	UJ	FD		
1,2,3,7,8-PECDD	3.95	JB	0.224	MDL	5.26	PQL	ng/Kg	J	Z, FD		
2,3,4,7,8-PECDF	5.56	В	0.222	MDL	5.26	PQL	ng/Kg	J	FD		
2,3,7,8-TCDD	0.727	J	0.0748	MDL	1.05	PQL	ng/Kg	J	Z, FD		
2,3,7,8-TCDF	8.25	С	0.600	MDL	1.05	PQL	ng/Kg	J	FD		
OCDD	26000	EB	0.246	MDL	10.5	PQL	ng/Kg	J	FD		
OCDF	452	В	0.0709	MDL	10.5	PQL	ng/Kg	J	Q, FD		

	Conco	ICU. OILUIL		.00	Analysis Type: 1120				Distroit. 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	3.70	JB	0.0281	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	1.01	JB	0.0184	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.124	JB	0.0292	MDL	5.31	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0829	JB	0.0318	MDL	5.31	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.133	JB	0.0266	MDL	5.31	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.439	JB	0.0333	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.155	JB	0.0238	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.422	JB	0.0314	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.158	JB	0.0284	MDL	5.31	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0719	JBQ	0.0168	MDL	5.31	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.146	JB	0.0130	MDL	5.31	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.120	JB	0.0237	MDL	5.31	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.181	JB	0.0128	MDL	5.31	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0159	J	0.0142	MDL	1.06	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0601	J	0.0255	MDL	1.06	PQL	ng/Kg	J	Z	
OCDF	1.95	JB	0.0260	MDL	10.6	PQL	ng/Kg	J	Z	

Sample ID: SL-257-SA6-SB-1.5-2.5 Collected: 8/25/2011 10:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.465	JB	0.0493	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.525	JB	0.0874	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.635	JB	0.0566	MDL	5.17	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:08:09 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX130

Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-257-SA6-SB-1.5-2.5	Collec	ted: 8/25/2	011 10:10	:00 A	nalysis T	ype; RES		L	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,6,7,8-HXCDD	1.47	JB	0.0857	MDL	5.17	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.314	JB	0.0527	MDL	5.17	PQL	ng/Kg	J	Ž		
1,2,3,7,8,9-HXCDD	0.885	JB	0.0781	MDL	5.17	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.125	JВ	0.0601	MDL	5.17	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.236	JB	0.0353	MDL	5.17	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.367	JB	0.0547	MDL	5.17	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.366	JB	0.0850	MDL	5.17	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.512	J	0.110	MDL	1.03	PQL	ng/Kg	J	Z		

Sample ID: SL-291-SA6-SB-2.0-3.0 Collected: 8/26/2011 9:35:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL_	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.05	ЈВ	0.0683	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.55	JB	0.0798	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	2.80	JB	0.112	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.92	JB	0.0733	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.687	JB	0.110	MDL	5.04	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.971	JB	0.0933	MDL	5.04	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	2.59	JB	0.110	MDL	5.04	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.36	JB	0.151	MDL	5.04	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/3/2012 11:08:09 AM

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX130
EDD Filename: DX130_v1

Laboratory: LL eQAPP Name: CDM_SSFL_110509

## Reason Code Legend

Reason Code	Description						
	Duplicate Sample Count = 0						
	Duplicate Sample Count > 1						
	Illogical Fraction						
	Laboratory Control Sample Count = 0						
	Laboratory Control Sample Count > 1						
	Laboratory Triplicate Precision						
	Matrix Spike Sample Count = 0						
	Matrix Spike Sample Count > 1						
	Method Blank Sample Count = 0						
	Method Blank Sample Count > 1						
	Percent Moisture						
*#	Professional Judgment						
A	ICP Serial Dilution						
В	Calibration Blank Contamination						
В	Method Blank Contamination						
С	Continuing Calibration Verification Correlation Coefficient						
С	Continuing Calibration Verification Percent Difference Lower Estimation						
С	Continuing Calibration Verification Percent Difference Lower Rejection						
С	Continuing Calibration Verification Percent Difference Upper Estimation						
С	Continuing Calibration Verification Percent Difference Upper Rejection						
С	Initial Calibration Correlation Coefficient						
С	Initial Calibration Percent Relative Standard Deviation						
С	Initial Calibration Verification Correlation Coefficient						
С	Initial Calibration Verification Percent Difference Lower Estimation						
С	Initial Calibration Verification Percent Difference Lower Rejection						
С	Initial Calibration Verification Percent Difference Upper Estimation						
С	Initial Calibration Verification Percent Difference Upper Rejection						
Ę	Laboratory Control Precision						
E	Laboratory Duplicate Precision						
E	Matrix Spike Precision						

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX130 Laboratory: LL EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

F Field Blank Contamination  FD Field Duplicate Precision  FT Field Triplicate Precision  FT Field Triplicate Precision  H Extraction to Analysis Estimation  H Extraction to Analysis Rejection  H Preservation  H Sampling to Analysis Rejection  H Sampling to Analysis Rejection  H Sampling to Extraction Estimation  H Sampling to Extraction Estimation  H Sampling to Extraction Rejection  H Sampling to Leaching Rejection  H Sampling to Leaching Rejection  H Sampling to Leaching Rejection  H Temperature Estimation  H Temperature Estimation  I Internal Standard Estimation  I Internal Standard Rejection  L Laboratory Control Spike Lower Estimation  L Laboratory Control Spike Lower Estimation  L Laboratory Control Spike Lower Rejection  L Laboratory Control Spike Upper Rejection  L Laboratory Control Spike Upper Rejection  M Continuing Tune  M Initial Tune  M Performance Evaluation Mixture  Q Laboratory Duplicate Precision  Q Matrix Spike Lower Rejection  Q Matrix Spike Lower Rejection  Q Matrix Spike Upper Estimation	F	Equipment Blank Contamination
FT Field Triplicate Precision H Extraction to Analysis Estimation H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	F	Field Blank Contamination
H Extraction to Analysis Estimation H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Estimation H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	FD	Field Duplicate Precision
H Extraction to Analysis Rejection H Preservation H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Rejection I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	FT	Field Triplicate Precision
H Preservation H Sampling to Analysis Estimation H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	н	Extraction to Analysis Estimation
H Sampling to Analysis Estimation H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	н	Extraction to Analysis Rejection
H Sampling to Analysis Rejection H Sampling to Extraction Estimation H Sampling to Extraction Rejection H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Deper Estimation	Н	Preservation
H Sampling to Extraction Estimation H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Estimation L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Sampling to Analysis Estimation
H Sampling to Leaching Estimation H Sampling to Leaching Rejection H Temperature Estimation H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Sampling to Analysis Rejection
H Sampling to Leaching Estimation H Temperature Estimation H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Sampling to Extraction Estimation
H Sampling to Leaching Rejection H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection	Н	Sampling to Extraction Rejection
H Temperature Estimation H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Precision	Н	Sampling to Leaching Estimation
H Temperature Rejection I Internal Standard Estimation I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Precision Q Matrix Spike Precision	Н	Sampling to Leaching Rejection
Internal Standard Estimation Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection L Laboratory Control Spike Upper Rejection M Continuing Tune M InItial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Precision Q Matrix Spike Precision	Н	Temperature Estimation
I Internal Standard Rejection L Laboratory Control Precision L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Rejection Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Precision	Н	Temperature Rejection
L Laboratory Control Spike Lower Estimation  L Laboratory Control Spike Lower Rejection  L Laboratory Control Spike Upper Estimation  L Laboratory Control Spike Upper Rejection  L Laboratory Control Spike Upper Rejection  M Continuing Tune  M Initial Tune  M Performance Evaluation Mixture  M Resolution Check Mixture  Q Laboratory Duplicate Precision  Q Matrix Spike Lower Estimation  Q Matrix Spike Lower Rejection  Q Matrix Spike Precision  Q Matrix Spike Upper Estimation	1	Internal Standard Estimation
L Laboratory Control Spike Lower Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Precision Q Matrix Spike Upper Estimation	I	Internal Standard Rejection
L Laboratory Control Spike Lower Rejection L Laboratory Control Spike Upper Estimation L Laboratory Control Spike Upper Rejection M Continuing Tune M Initial Tune M Performance Evaluation Mixture M Resolution Check Mixture Q Laboratory Duplicate Precision Q Matrix Spike Lower Estimation Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Precision Q Matrix Spike Precision	L	Laboratory Control Precision
L Laboratory Control Spike Upper Estimation  L Laboratory Control Spike Upper Rejection  M Continuing Tune  M Initial Tune  M Performance Evaluation Mixture  M Resolution Check Mixture  Q Laboratory Duplicate Precision  Q Matrix Spike Lower Estimation  Q Matrix Spike Lower Rejection  Q Matrix Spike Precision  Q Matrix Spike Precision	L	Laboratory Control Spike Lower Estimation
L Laboratory Control Spike Upper Rejection  M Continuing Tune  M Initial Tune  M Performance Evaluation Mixture  M Resolution Check Mixture  Q Laboratory Duplicate Precision  Q Matrix Spike Lower Estimation  Q Matrix Spike Lower Rejection  Q Matrix Spike Precision  Q Matrix Spike Upper Estimation	L	Laboratory Control Spike Lower Rejection
M Continuing Tune  M Initial Tune  M Performance Evaluation Mixture  M Resolution Check Mixture  Q Laboratory Duplicate Precision  Q Matrix Spike Lower Estimation  Q Matrix Spike Lower Rejection  Q Matrix Spike Precision  Q Matrix Spike Upper Estimation	L	Laboratory Control Spike Upper Estimation
M Performance Evaluation Mixture  M Resolution Check Mixture  Q Laboratory Duplicate Precision  Q Matrix Spike Lower Estimation  Q Matrix Spike Lower Rejection  Q Matrix Spike Precision  Q Matrix Spike Precision	L	Laboratory Control Spike Upper Rejection
M Performance Evaluation Mixture  M Resolution Check Mixture  Q Laboratory Duplicate Precision  Q Matrix Spike Lower Estimation  Q Matrix Spike Lower Rejection  Q Matrix Spike Precision  Q Matrix Spike Precision	М	Continuing Tune
M Resolution Check Mixture  Q Laboratory Duplicate Precision  Q Matrix Spike Lower Estimation  Q Matrix Spike Lower Rejection  Q Matrix Spike Precision  Q Matrix Spike Precision	М	Initial Tune
Q Laboratory Duplicate Precision  Q Matrix Spike Lower Estimation  Q Matrix Spike Lower Rejection  Q Matrix Spike Precision  Q Matrix Spike Precision	М	Performance Evaluation Mixture
Q Matrix Spike Lower Estimation  Q Matrix Spike Lower Rejection  Q Matrix Spike Precision  Q Matrix Spike Upper Estimation	М	Resolution Check Mixture
Q Matrix Spike Lower Rejection Q Matrix Spike Precision Q Matrix Spike Upper Estimation	Q	Laboratory Duplicate Precision
Q Matrix Spike Precision  Q Matrix Spike Upper Estimation	Q	Matrix Spike Lower Estimation
Q Matrix Spike Upper Estimation	Q	Matrix Spike Lower Rejection
	Q	Matrix Spike Precision
Q Matrix Spike Upper Rejection	Q	Matrix Spike Upper Estimation
	Q	Matrix Spike Upper Rejection

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX130 Laboratory: LL EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
z	Reporting Limit Trace Value

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:08:09 AM ADR version 1.4.0.111 Page 13 of 13

^{*} denotes a non-reportable result

# **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

**DX130** 

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2410B372003	9/1/2011 8:03:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF OCDD OCDF	2.36 pg/L 1.16 pg/L 0.324 pg/L 0.491 pg/L 0.365 pg/L 0.571 pg/L 0.454 pg/L 0.726 pg/L 0.623 pg/L 0.618 pg/L 0.451 pg/L 0.691 pg/L 5.87 pg/L 1.28 pg/L	EB-SA6-SB-082311 EB-SA6-SB-082411

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-082311(RES)	1,2,3,4,6,7,8-HPCDD	3.48 pg/L	3.48U pg/L
EB-SA6-SB-082311(RES)	1,2,3,4,6,7,8-HPCDF	1.35 pg/L	1.35U pg/L
EB-SA6-SB-082311(RES)	1,2,3,4,7,8-HXCDF	0.961 pg/L	0.961U pg/L
EB-SA6-SB-082311(RES)	1,2,3,6,7,8-HXCDD	0.623 pg/L	0.623U pg/L
EB-SA6-SB-082311(RES)	1,2,3,7,8,9-HXCDF	0.402 pg/L	0.402U pg/L
EB-SA6-SB-082311(RES)	2,3,4,7,8-PECDF	0.643 pg/L	0.643U pg/L
EB-SA6-SB-082311(RES)	OCDD	4.48 pg/L	4.48U pg/L
EB-SA6-SB-082311(RES)	OCDF	2.93 pg/L	2.93U pg/L
EB-\$A6-SB-082411(RES)	1,2,3,4,6,7,8-HPCDD	3.67 pg/L	3.67U pg/L
EB-SA6-SB-082411(RES)	1,2,3,4,6,7,8-HPCDF	2.64 pg/L	2.64U pg/L
EB-SA6-SB-082411(RES)	1,2,3,4,7,8,9-HPCDF	0.489 pg/L	0.489U pg/L
EB-SA6-SB-082411(RES)	1,2,3,4,7,8-HXCDF	0.320 pg/L	0.320U pg/L
EB-SA6-SB-082411(RES)	1,2,3,7,8,9-HXCDD	0.632 pg/L	0.632U pg/L
EB-SA6-SB-082411(RES)	1,2,3,7,8,9-HXCDF	0.522 pg/L	0,522U pg/L
EB-SA6-SB-082411(RES)	2,3,4,7,8-PECDF	0.442 pg/L	0.442U pg/L
EB-SA6-SB-082411(RES)	OCDD	7.16 pg/L	7.16U pg/L
EB-SA6-SB-082411(RES)	OCDF	2.09 pg/L	2.09U pg/L

1/3/2012 11:07:41 AM ADR version 1.4.0.111 Page 1 of 3

Lab Reporting Batch ID: DX130

Laboratory: LL

EDD Filename: DX130_v1

eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2410B372134	8/30/2011 9:34:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF CODD OCDF	0.173 ng/Kg 0.0734 ng/Kg 0.0734 ng/Kg 0.0294 ng/Kg 0.0282 ng/Kg 0.0284 ng/Kg 0.0221 ng/Kg 0.0303 ng/Kg 0.0498 ng/Kg 0.0330 ng/Kg 0.0366 ng/Kg 0.0276 ng/Kg 0.0245 ng/Kg 0.0349 ng/Kg 0.0379 ng/Kg	DUP13-SA6-QC-082611 SL-030-SA6-SB-4.0-5.0 SL-030-SA6-SB-9.0-10.0 SL-035-SA6-SB-2.5-3.5 SL-040-SA6-SB-4.0-5.0 SL-041-SA6-SB-3.0-4.0 SL-066-SA6-SB-2.0-3.0 SL-113-SA6-SB-7.0-8.0 SL-113-SA6-SB-4.0-5.0 SL-195-SA6-SB-4.0-5.0 SL-197-SA6-SB-4.0-5.0 SL-208-SA6-SB-4.0-5.0 SL-247-SA6-SB-4.0-5.0 SL-247-SA6-SB-4.0-5.0 SL-250-SA6-SB-3.0-4.0 SL-250-SA6-SB-3.0-4.0 SL-256-SA6-SB-3.0-5.0 SL-256-SA6-SB-3.5-5.5 SL-257-SA6-SB-3.5-5.5 SL-251-SA6-SB-3.5-5.5

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-035-SA6-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDF	0.111 ng/Kg	0.111U ng/Kg
SL-035-SA6-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.134 ng/Kg	0.134U ng/Kg
SL-035-SA6-SB-2,5-3,5(RES)	2,3,4,7,8-PECDF	0.210 ng/Kg	0.210U ng/Kg
SL-040-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0597 ng/Kg	0.0597U ng/Kg
SL-040-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.100 ng/Kg	0.100U ng/Kg
SL-040-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0820 ng/Kg	0.0820U ng/Kg
SL-040-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0425 ng/Kg	0.0425U ng/Kg
SL-040-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.163 ng/Kg	0.163U ng/Kg
SL-041-SA6-SB-3.0-4.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0607 ng/Kg	0.0607U ng/Kg
SL-041-SA6-SB-3.0-4.0(RES)	1,2,3,4,7,8-HxCDD	0.106 ng/Kg	0.106U ng/Kg
SL-041-SA6-SB-3.0-4.0(RES)	1,2,3,4,7,8-HXCDF	0.0852 ng/Kg	0.0852U ng/Kg
SL-041-SA6-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDF	0.125 ng/Kg	0.125U ng/Kg
SL-041-SA6-SB-3.0-4.0(RES)	1,2,3,7,8-PECDD	0.0636 ng/Kg	0.0636U ng/Kg
SL-041-SA6-SB-3.0-4.0(RES)	1,2,3,7,8-PECDF	0.0773 ng/Kg	0.0773U ng/Kg
SL-041-SA6-SB-3.0-4.0(RES)	2,3,4,6,7,8-HXCDF	0.0659 ng/Kg	0.0659U ng/Kg
SL-041-SA6-SB-3.0-4.0(RES)	2,3,4,7,8-PECDF	0.100 ng/Kg	0.100U ng/Kg
SL-066-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HxCDD	0.135 ng/Kg	0.135U ng/Kg
SL-066-SA6-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDF	0.122 ng/Kg	0.122U ng/Kg
SL-066-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDD	0.144 ng/Kg	0.144U ng/Kg
SL-066-SA6-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0.186 ng/Kg	0.186U ng/Kg
SL-113-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.312 ng/Kg	0.312U ng/Kg
SL-113-SA6-SB-7.0-8.0(RES)	1,2,3,7,8,9-HXCDF	0.0656 ng/Kg	0.0656U ng/Kg
SL-113-SA6-SB-7.0-8.0(RES)	1,2,3,7,8-PECDF	0.0641 ng/Kg	0.0641U ng/Kg
SL-113-SA6-SB-7.0-8.0(RES)	2,3,4,7,8-PECDF	0.0638 ng/Kg	0.0638U ng/Kg
SL-195-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDF	0.326 ng/Kg	0.326U ng/Kg
SL-195-SA6-SB-1.0-2.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0404 ng/Kg	0.0404U ng/Kg
SL-195-SA6-SB-1.0-2.0(RES)	1,2,3,4,7,8-HxCDD	0.0297 ng/Kg	0.0297U ng/Kg

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO			Province Bills (Altabilis di	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-195-SA6-SB-1.0-2.0(RES)	1,2,3,4,7,8-HXCDF	0.111 ng/Kg	0.111U ng/Kg
SL-195-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDF	0.0546 ng/Kg	0.0546U ng/Kg
SL-195-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDF	0.108 ng/Kg	0.108U ng/Kg
SL-195-SA6-SB-1.0-2.0(RES)	1,2,3,7,8-PECDD	0.0264 ng/Kg	0.0264U ng/Kg
SL-195-SA6-SB-1.0-2.0(RES)	2,3,4,6,7,8-HXCDF	0.0924 ng/Kg	0.0924U ng/Kg
SL-197-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.643 ng/Kg	0.643U ng/Kg
SL-197-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.207 ng/Kg	0.207U ng/Kg
SL-197-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0817 ng/Kg	0.0817U ng/Kg
SL-197-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0,137 ng/Kg	0.137U ng/Kg
SL-197-SA6-SB-4.0-5.0(RES)	OCDF	0.239 ng/Kg	0.239U ng/Kg
SL-208-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.138 ng/Kg	0.138U ng/Kg
SL-208-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.118 ng/Kg	0.118U ng/Kg
SL-208-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.126 ng/Kg	0.126U ng/Kg
SL-247-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.307 ng/Kg	0,307U ng/Kg
SL-247-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0487 ng/Kg	0.0487U ng/Kg
SL-247-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0151 ng/Kg	0.0151U ng/Kg
SL-247-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0264 ng/Kg	0.0264U ng/Kg
SL-247-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0243 ng/Kg	0.0243U ng/Kg
SL-247-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.00778 ng/Kg	0.00778U ng/Kg
SL-247-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0213 ng/Kg	0.0213U ng/Kg
SL-247-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0144 ng/Kg	0.0144U ng/Kg
SL-247-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0155 ng/Kg	0.0155U ng/Kg
SL-247-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0107 ng/Kg	0.0107U ng/Kg
SL-247-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0312 ng/Kg	0.0312U ng/Kg
SL-247-SA6-SB-4.0-5.0(RES)	OCDD	1.32 ng/Kg	1.32U ng/Kg
SL-247-SA6-SB-4.0-5.0(RES)	OCDF	0,103 ng/Kg	0.103U ng/Kg
SL-256-SA6-SB-2,5-3,5(RES)	1,2,3,4,7,8,9-HPCDF	0.124 ng/Kg	0.124U ng/Kg
SL-256-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8-HxCDD	0.0829 ng/Kg	0.0829U ng/Kg
SL-256-SA6-SB-2.5-3.5(RE\$)	1,2,3,4,7,8-HXCDF	0.133 ng/Kg	0.133U ng/Kg
SL-256-SA6-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.0719 ng/Kg	0.0719U ng/Kg
SL-256-\$A6-\$B-2,5-3,5(RE\$)	2,3,4,6,7,8-HXCDF	0.120 ng/Kg	0.120U ng/Kg
SL-256-SA6-SB-2.5-3.5(RES)	2,3,4,7,8-PECDF	0.181 ng/Kg	0.181U ng/Kg

1/3/2012 11:07:41 AM ADR version 1.4.0.111 Page 3 of 3

#### Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	<b>MINIMETER (METERSTER</b>	ánsplát á sz	÷×4	kating is a party			
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-252-SA6-SB-4.0-5.0MS SL-252-SA6-SB-4.0-5.0MSD (SL-252-SA6-SB-4.0-5.0)	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF OCDD OCDF	-2059 -97 -12580 -108	-2054 -92 -12592 -104	40.00-135.00 40.00-135.00 40.00-135.00 40.00-135.00	-	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF OCDD OCDF	J (all detects) R (all non-detects) 1,2,3,4,6,7,8-HPCDD, OCDD, No Qual, >4x

1/3/2012 11:04:58 AM ADR version 1.4.0.111 Page 1 of 1

#### Field Duplicate RPD Report

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO					endario de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya dela companya dela companya dela companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya d
	Concent	Concentration (%)			<u> </u>
Analyte	SL-252-SA6-SB-4.0-5.0	DUP13-SA6-QC-082611	Sample RPD	eQAPP RPD	Flag
MOISTURE	5.1	6.0	16		No Qualifiers Applied

Method: 1613B Matrix: SO	allumbahatzin gurusungan				(VE) girtar in a constant resign
	Concentra	tion (ng/Kg)			
Analyte	SL-252-SA6-SB-4.0-5.0 DUP13-SA6-QC-082611		Sample RPD	eQAPP RPD	Flag
1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	19.2 14.1 23.9 16.7	14.2 11.0 31.3 11.4	30 25 27 38	50.00 50.00 50.00 50.00	No Qualifiers Applied
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDD OCDF	2210 214 7.11 17.0 56.2 20.6 5.26 U 3.95 5.56 0.727 8.25 26000 452	270 63.2 2.64 28.9 11.5 5.65 8.87 5.11 U 9.42 0.134 4.76 3690 109	156 109 92 52 132 114 200 200 52 138 54 150	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)

Page 1 of 1

Lab Reporting Batch ID: DX130

Laboratory: LL EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-082311	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JB JBQ JBQ JBQ JBQ JBQ JBQ JB	3.48 1.35 0.961 0.623 0.402 0.554 0.643 4.48 2.93	9.95 9.95 9.95 9.95 9.95 9.95 9.95 19.9	PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)
EB-SA6-SB-082411	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JBQ JB JBQ JBQ JBQ JBQ JBQ JBQ	3.67 2.64 0.489 0.320 0.632 0.522 0.442 7.16 2.09	10.3 10.3 10.3 10.3 10.3 10.3 10.3 20.7 20.7	PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
DUP13-SA6-QC-082611	1,2,3,4,7,8-HxCDD 2,3,7,8-TCDD	JB J	2.64 0.134	5.11 1.02	PQL PQL	ng/Kg ng/Kg	J (all detects)
SL-030-SA6-SB-4.0-5.0	1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	IB IB IB IB IB IB IB IB IB IB IB IB IB I	5.38 1.07 3.09 1.69 2.33 0.777 0.850	5.50 5.50 5.50 5.50 5.50 1.10	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-030-SA6-SB-9.0-10.0	1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		4.51 0.900 4.89 2.35 2.11 1.06 0.687	5.81 5.81 5.81 5.81 5.81 1.16	PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-035-SA6-SB-2.5-3.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-PECDF	មិន មិន មិន មិន មិន មិន មិន មិន មិន មិន	1.05 0.761 0.365 2.33 0.437 0.699 0.111 0.134 0.225 0.526 0.210 0.0353	5.10 5.10 5.10 5.10 5.10 5.10 5.10 5.10	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL. Type	Units	Flag
SL-040-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF	場	1.99 0.226 0.0597 0.180 0.280 0.100 0.163 0.0820 0.0425 0.371 0.125 0.163 4.51	5.08 5.08 5.08 5.08 5.08 5.08 5.08 5.08	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-041-SA6-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	######################################	0.976 0.0607 0.106 0.0852 0.456 0.125 0.360 0.157 0.0636 0.0773 0.0659 0.100 0.0180 0.0238 1.34	5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-066-SA6-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	85~666666666666666666666666666666666666	1.37 0.251 0.135 0.148 0.369 0.122 0.160 0.124 0.144 0.177 0.134 0.186 0.0526 0.0468 3.20	5.18 5.18 5.18 5.18 5.18 5.18 5.18 5.18	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-113-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		2.98 4.64 0.941 0.831 1.82 0.236 0.977 0.312 0.319 0.0679	5.23 5.23 5.23 5.23 5.23 5.23 5.23 5.23	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-113-SA6-SB-7.0-8.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	B B B B B B B B B B B B B B B B B B B	0.769 1.08 0.282 1.79 0.227 1.43 0.0656 0.413 0.0641 0.274 0.0638 0.0418	5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-195-SA6-SB-1.0-2.0	2,3,7,8-TCDF  1,2,3,4,6,7,8-HPCDD  1,2,3,4,6,7,8-HPCDF  1,2,3,4,7,8,9-HPCDF  1,2,3,4,7,8-HXCDD  1,2,3,6,7,8-HXCDD  1,2,3,6,7,8-HXCDD  1,2,3,7,8,9-HXCDD  1,2,3,7,8,9-HXCDD  1,2,3,7,8-PECDD  1,2,3,7,8-PECDD  1,2,3,7,8-PECDF  2,3,4,6,7,8-HXCDF  2,3,4,7,8-PECDF  2,3,4,7,8-PECDF  2,3,7,8-TCDF  OCDD  OCDF	7 奥里斯克里斯克里里里里里里里	0.0211 1.04 0.326 0.0404 0.0297 0.111 0.135 0.0546 0.124 0.108 0.0264 0.188 0.0924 0.504 0.0478 7.21 0.556	1.06 5.16 5.16 5.16 5.16 5.16 5.16 5.16 5.16 5.16 5.16 5.16 5.16 5.16 5.16 5.16	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-197-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 0CDD OCDF	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.643 0.207 0.0817 0.137 0.234 0.188 0.215 0.246 0.246 0.275 0.382 0.134 0.329 3.67 0.239	5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-208-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD		0.568 0.256 0.253 0.989 0.302 0.566 0.148 0.138 0.118 0.450 0.126 0.0339 0.0271	5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-246-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF	JB	1.26	5.46	PQL	ng/Kg	<u> </u>
	1,2,3,4,7,8-HxCDD	JB	1.37	5.46	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.853	5.46	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	4.07	5.46	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.638	5.46	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	2,24	5.46	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.452	5.46	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.499	5.46	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.903	5.46	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.386	5.46	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0612	1.09	PQL	ng/Kg	
	2,3,7,8-TCDF	Ĵ	0.349	1.09	PQL	ng/Kg	
SL-247-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.307	5.32	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.0487	5.32	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0151	5.32	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0264	5.32	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0243	5.32	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.00778	5.32	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0213	5.32	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0144	5.32	PQL	ng/Kg	o (an actorio)
	1,2,3,7,8-PECDF	JBQ	0.0155	5.32	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0107	5.32	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0312	5.32	PQL	ng/Kg	
	OCDD	JB	1.32	10.6	PQL	ng/Kg	
	OCDF	JBQ	0.103	10.6	PQL	ng/Kg	
SL-250-SA6-SB-3.0-4.0	1,2,3,4,7,8,9-HPCDF	JB	1.60	5.12	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JВ	0.876	5.12	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	1.50	5.12	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	3.28	5.12	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	1.22	5.12	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.71	5.12	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.373	5.12	PQL	ng/Kg	, ,
	1,2,3,7,8-PECDD	JB	0.557	5.12	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.13	5.12	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	1.83	5.12	PQL	ng/Kg	
	2,3,7,8-TCDD	j	0.119	1.02	PQL	ng/Kg	
SL-252-SA6-SB-4.0-5.0	1,2,3,7,8-PECDD	JB	3.95	5.26	PQL	ng/Kg	J (all detects)
	2,3,7,8-TCDD	J	0.727	1.05	PQL	ng/Kg	
SL-256-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD	JB	3.70	5.31	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	1.01	5.31	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.124	5.31	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0829	5.31	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.133	5.31	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.439	5.31	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.155	5.31	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.422	5.31	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.158	5.31	PQL	ng/Kg	o (an detecta)
	1,2,3,7,8-PECDD	JBQ	0.0719	5.31	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.146	5.31	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.120	5.31	PQL	ng/Kg	
		ו חו	0.181	5.31	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB		1			
	2,3,7,8-TCDD	Ĺ	0.0159	1.06	PQL	ng/Kg	
		1		1			

Lab Reporting Batch ID: DX130 Laboratory: LL

EDD Filename: DX130_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-257-SA6-SB-1.5-2.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF	18888888888888888888888888888888888888	0.465 0.525 0.635 1.47 0.314 0.885 0.125 0.236 0.367 0.366 0.512	5.17 5.17 5.17 5.17 5.17 5.17 5.17 5.17	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-291-SA6-SB-2.0-3.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	######################################	2.05 1.55 2.80 2.92 0.687 0.971 2.59 2.36	5.04 5.04 5.04 5.04 5.04 5.04 5.04 5.04	PAL PAL PAL PAL PAL PAL PAL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 11:07:50 AM ADR version 1.4.0.111 Page 5 of 5

# **SAMPLE DELIVERY GROUP**

**DX131** 

# Attachment I

Sample ID Cross Reference and Data Review Level

#### **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
29-Aug-2011	SL-255-SA6-SB-2.0-3.0	6390972	N	METHOD	1613B	111
29-Aug-2011	SL-253-SA6-SB-4.0-5.0	6390971	N	METHOD	1613B	III
29-Aug-2011	SL-249-SA6-SB-4.0-5.0	6390970	N	METHOD	1613B	111
29-Aug-2011	SL-192-SA6-SB-4.0-5.0	6390973	N	METHOD	1613B	III
29-Aug-2011	SL-192-SA6-SB-9.0-10.0	6390974	N	METHOD	1613B	III
30-Aug-2011	SL-267-SA6-SB-4.0-5.0	6392239	N	METHOD	1613B	III
30-Aug-2011	SL-267-SA6-SB-9.0-10.0	6392240	N	METHOD	1613B	Ш
30-Aug-2011	SL-305-SA6-SS-0.0-0.5	6392242	N	METHOD	1613B	111
30-Aug-2011	SL-305-SA6-SB-2.0-3.0	6392241	N	METHOD	1613B	III
30-Aug-2011	EB-SA6-SB-083011	6392245	ЕВ	METHOD	1613B	111
30-Aug-2011	SL-306-SA6-SB-4.0-5.0	6392244	N	METHOD	1613B	III
30-Aug-2011	SL-306-SA6-SS-0.0-0.5	6392243	N	METHOD	1613B	III
31-Aug-2011	SL-198-SA6-SB-4.0-5.0	6393655	N	METHOD	1613B	III
31-Aug-2011	SL-198-SA6-SB-9.0-10.0	6393656	N	METHOD	1613B	111
31-Aug-2011	SL-213-SA6-SB-4.0-5.0	6393660	N	METHOD	1613B	III
31-Aug-2011	SL-201-SA6-SB-2.0-3.0	6393659	N	METHOD	1613B	111
31-Aug-2011	SL-270-SA6-SB-2.0-3.0	6393661	N	METHOD	1613B	!!1
31-Aug-2011	SL-199-SA6-SB-4.0-5.0	6393657	N	METHOD	1613B	Ш
31-Aug-2011	SL-200-SA6-SB-4.0-5.0	6393658	N	METHOD	1613B	161

# **Attachment II**

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX131

Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

Matrix: AQ

Cample ID:	EB-SA6-SB-083011	
Samble io:	ED-OAU-JD-U0JUII	

'allactadi.	8/30/2014	1.00.00	

And the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o

Sample ID: EB-SA6-SB-083011	Collec	Collected: 8/30/2011 1:00:00 Ar				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.92	JBQ	0.381	MDL	10.3	PQL	pg/L	U	В
1,2,3,4,6,7,8-HPCDF	2.06	JB	0.167	MDL	10.3	PQL	pg/L	U	В
1,2,3,4,7,8-HXCDF	0.360	JBQ	0.160	MDL	10.3	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDF	0.377	JBQ	0.155	MDL	10.3	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDD	0.250	JBQ	0.224	MDL	10.3	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDF	0.183	JBQ	0.150	MDL	10.3	PQL	pg/L	υ	В
2,3,4,6,7,8-HXCDF	0.309	JBQ	0.146	MDL	10.3	PQL	pg/L	U	В
2,3,4,7,8-PECDF	0.473	JQ	0.109	MDL	10.3	PQL	pg/L	J	Z
OCDD	4.69	JBQ	0.243	MDL	20.6	PQL	pg/L	U	В
OCDF	1.76	JBQ	0.384	MDL	20.6	PQL	pg/L	U	В

Method Category: GENCHEM Method: 1613B

Matrix: SO

Sample ID: SL-192-SA6-SB-4.0-5.0

Collected: 8/29/2011 2:23:00

Analysis Type: RES

Dilution: 1

Sample ID: 5L-192-5A6-55-4.0-3.0	Conec	tea: 8/29/2	011 2:23:0	ю д	naiysis ij	ype: KES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	3.52	JB	0.0721	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	1.12	JB	0.0262	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.153	JВ	0.0415	MDL	5.25	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0798	JB	0.0305	MDL	5.25	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.197	JB	0.0341	MDL	5.25	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.200	JQ	0.0311	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.152	JB	0.0301	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.158	JB	0.0274	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0903	JB	0.0378	MDL	5.25	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0587	JQ	0.0169	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0986	JB	0.0138	MDL	5.25	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.189	JBQ	0.0311	MDL	5.25	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0991	JB	0.0154	MDL	5.25	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0284	J	0.0149	MDL	1.05	PQL	ng/Kg	J	Z	
OCDF	1.45	JB	0.0432	MDL	10.5	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:39:27 AM

ADR version 1.4.0.111

Page 1 of 13

Lab Reporting Batch ID: DX131

Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B

Matrix: SC

Sample ID: SL-192-SA6-SB-9.0-10.0	Collec	ted: 8/29/2	011 2:33:0	10 A	Analysis Type: RES				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDF	1.27	JB	0.0198	MDL	5.32	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.160	JB	0.0292	MDL	5.32	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.0690	JBQ	0.0311	MDL	5.32	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.224	JB	0.0329	MDL	5.32	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.230	J	0.0314	MDL	5.32	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.119	JBQ	0.0283	MDL.	5.32	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.178	JB	0.0304	MDL	5.32	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.126	JBQ	0.0305	MDL	5.32	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDD	0.0290	JQ	0.0175	MDL	5.32	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.0913	JB	0.0171	MDL.	5.32	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.162	JB	0.0281	MDL	5.32	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.0904	JBQ	0.0180	MDL	5.32	PQL	ng/Kg	υ	В		
2,3,7,8-TCDF	0.0349	JQ	0.0304	MDL	1.06	PQL	ng/Kg	J	Z		
OCDF	2.15	JB	0.0410	MDL	10.6	PQL	ng/Kg	J	Z		

Sample ID: SL-198-SA6-SB-4.0-5.0	Collected: 8/31/2011 8:25:00	Analysis Type: RES	Dilution: 1

	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL.	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	2.17	JB	0.0511	MDL	5.21	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.754	JB	0.0271	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0764	JBQ	0.0448	MDL	5.21	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0340	JB	0.0237	MDL	5.21	PQL	ng/Kg	Ų	В
1,2,3,4,7,8-HXCDF	0.116	JB	0.0251	MDL	5.21	PQL	ng/Kg	Ų	В
1,2,3,6,7,8-HXCDD	0.121	J	0.0240	MDL	5.21	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0610	JB	0.0215	MDL	5,21	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.149	JB	0.0220	MDL	5.21	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.165	JBQ	0.0278	MDL	5.21	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0375	JQ	0.0266	MDL.	5.21	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0805	JB	0.0150	MDL	5.21	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.139	JB	0.0239	MDL	5.21	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.114	JB	0.0151	MDL	5.21	PQL	ng/Kg	U	В
OCDF	1.15	JB	0.0466	MDL	10.4	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/3/2012 11:39:27 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX131

Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-198-SA6-SB-9.0-10.0	Collec	ted: 8/31/2	011 8:35:0	00 A	nalysis Ty	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	1.97	JB	0.0382	MDL	5.36	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	1.08	JB	0.0216	MDL	5.36	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.115	JB	0.0302	MDL	5.36	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0281	JB	0.0246	MDL,	5.36	PQL	ng/Kg	Ü	В	
1,2,3,4,7,8-HXCDF	0.170	JB	0.0267	MDL	5.36	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.150	JQ	0.0252	MDL	5.36	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.107	JB	0.0244	MDL	5.36	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.226	JB	0.0229	MDL	5.36	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.269	JB	0.0283	MDL	5.36	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0369	JQ	0.0242	MDL	5.36	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.121	JB	0.0168	MDL	5.36	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.210	JΒ	0.0259	MDL	5.36	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.144	JB	0.0172	MDL	5.36	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0512	J	0.0132	MDL	1.07	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0393	JQ	0.0242	MDL	1.07	PQL	ng/Kg	J	Z	
OCDF	1.21	JВ	0.0374	MDL	10.7	PQL	ng/Kg	J	Z	

Sample ID: SL-199-SA6-SB-4.0-5.0

Collected: 8/31/2011 12:28:00 Analysis

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.809	JВ	0.0340	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.710	JB	0.0176	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0786	JB	0.0269	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.117	JB	0.0210	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0514	JQ	0.0189	MDL	5.41	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0842	JB	0.0187	MDL	5.41	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0480	JBQ	0.0187	MDL	5.41	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0496	JBQ	0.0128	MDL	5.41	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.184	JBQ	0.0208	MDL	5.41	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0983	JBQ	0.0139	MDL	5.41	PQL	ng/Kg	υ	8
2,3,7,8-TCDD	0.0311	JQ	0.0174	MDL	1.08	PQL	ng/Kg	J	Z
OCDD	5.37	JB	0.0416	MDL	10.8	PQL	ng/Kg	J	Z
OCDF	0.521	JB	0.0378	MDL	10.8	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:39:27 AM

Lab Reporting Batch ID: DX131

Laboratory: LL

EDD Filename: DX131_v1

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B

Matrix: SO

Sample ID: SL-200-SA6-SB-4.0-5.0	Collec	ted: 8/31/2	011 2:50:0	00 A	nalysis T	/pe: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	1.37	JB	0.0522	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	0.698	JB	0.0196	MDL	5.55	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0913	JB	0.0305	MDL	5.55	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HxCDD	0.0294	JB	0.0197	MDL	5.55	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HXCDF	0.140	JB	0.0239	MDL	5.55	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0786	JQ	0.0209	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0795	JB	0.0204	MDL	5.55	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.116	JB	0.0185	MDL	5.55	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.115	JB	0.0268	MDL	5.55	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0421	JB	0.0178	MDL	5.55	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.166	JB	0.0218	MDL	5.55	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0976	JB	0.0181	MDL	5.55	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0261	JQ	0.0181	MDL	1.11	PQL	ng/Kg	J	Z	
OCDD	8.74	JB	0.0373	MDL	11.1	PQL	ng/Kg	J	Z	
		t · ·					·			

Sample ID: SL-201-SA6-SB-2.0-3.0

OCDF

Collected: 8/31/2011 10:50:00

0.0369

MDL

0.645

Analysis Type: RES

PQL

ng/Kg

11.1

Dilution: 1

В

		100. O/O I/L	011 10.50		narysis i	ype, itto		Dilution.		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	4.33	JB	0.0387	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.416	JB	0.0543	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.265	JB	0.0786	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.222	JBQ	0.0372	MDL	5.00	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDD	0.984	J	0.0780	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.166	JB	0.0349	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.294	JBQ	0.0703	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.166	JB	0.0411	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.114	J	0.0391	MDL	5.00	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.191	JВ	0.0157	MDL	5.00	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0,311	JB	0.0358	MDL	5.00	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.205	JB	0.0157	MDL	5.00	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0431	JQ	0.0139	MDL	1.00	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0895	J	0.0317	MDL.	1.00	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:39:27 AM

Lab Reporting Batch ID: DX131

Laboratory: LL

EDD Filename: DX131_v1

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method:

1613B

Matrix:

Sample ID: SL-213-SA6-SB-4.0-5.0	Collected: 8/31/2011 9:45:00	Analysis Type: RES	Dilution: 1
----------------------------------	------------------------------	--------------------	-------------

nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.766	JB	0.0391	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.428	JB	0.0157	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0789	JB	0.0268	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0509	JBQ	0.0246	MDL	5.29	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.178	JB	0.0219	MDL	5.29	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.194	J	0.0240	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.131	JB	0.0185	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.278	JB	0.0223	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.229	JB	0.0252	MDL.	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.156	J	0.0236	MDL	5.29	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.216	JB	0.0155	MDL	5.29	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.152	JBQ	0.0194	MDL	5.29	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.175	JB	0.0163	MDL	5.29	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0529	J	0.0192	MDL	1.06	PQL	ng/Kg	J	Z
OCDD	5.58	JB	0.0266	MDL	10.6	PQL	ng/Kg	J	Z
OCDF	0.510	JB	0.0346	MDL	10.6	PQL	ng/Kg	υ	В

Sample ID: SL-249-SA6-SB-4.0-5.0

Collected: 8/29/2011 11:23:00

Analysis Type: RES

Dilution: 1

nalyte	- Obliet	ICO. OIZSIZ	.011 11.20	.00 A	iiaiyata ij	ype. NEO		L	manom, 1
	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	4.82	JB	0.0363	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.446	JB	0.0434	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.283	JB	0.0733	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.559	JB	0.0571	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.610	J	0.0749	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.328	JB	0.0520	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.379	JB	0.0715	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.298	JB	0.0588	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.117	J	0.0336	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.286	JB	0.0337	MDL.	5.23	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.431	JB	0.0540	MDL,	5.23	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.257	JB	0.0328	MDL	5.23	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0253	J	0.0194	MDL	1.05	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0506	J	0.0468	MDL	1.05	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:39:27 AM

Lab Reporting Batch ID: DX131

Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEN

Method: 1613B Matrix: SO

Sample ID: SL-249-SA6-SB-4.0-5.0	Collec	Collected: 8/29/2011 11:23:00					<b>;</b>	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
OCDF	8.95	JB	0.0318	MDL	10.5	PQL	ng/Kg	J	Z	ㅣ

Sample ID: SL-253-SA6-SB-4.0-5.0 Collected: 8/29/2011 10:10:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Quai	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.451	JB	0.0440	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.221	JB	0.0697	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.772	JB	0.0676	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.92	J	0.0717	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.514	JB	0.0651	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.01	JB	0.0663	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.239	JB	0.0701	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0981	JQ	0.0241	MDL	5.17	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.446	JB	0.0407	MDL	5.17	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.562	JВ	0.0593	MDL	5.17	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.452	JВ	0.0384	MDL	5.17	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.414	J	0.0776	MDL	1.03	PQL	ng/Kg	J	Z
OCDF	8.13	JB	0.0288	MDL	10.3	PQL	ng/Kg	J	Z

Sample ID: SL-255-SA6-SB-2.0-3.0 Collected: 8/29/2011 8:45:00 Analysis Type: RES Dilution: 1

nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.321	JВ	0.0203	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.351	JB	0.0119	MDL	5.37	PQL	ng/Kg	Ü	В
1,2,3,4,7,8,9-HPCDF	0.0697	JB	0.0183	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0827	JB	0.0143	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0789	JQ	0.0161	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0727	JB	0.0119	MDL	5.37	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0915	JB	0.0156	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0661	JВ	0.0155	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0294	JQ	0.0168	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0294	JBQ	0.0105	MDL	5.37	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0979	JBQ	0.0128	MDL	5.37	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0714	JB	0.0114	MDL	5.37	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0228	JQ	0.0165	MDL	1.07	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:39:27 AM

Lab Reporting Batch ID: DX131

Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-255-SA6-SB-2.0-3.0	Collec	Collected: 8/29/2011 8:45:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
2,3,7,8-TCDF	0.0174	JQ	0.0159	MDL	1.07	PQL	ng/Kg	J	Z		
OCDD	0.651	JB	0.0294	MDL	10.7	PQL	ng/Kg	U	В		
OCDE	0.265	10	0.0225	MDI	10.7	POL	nalle	11			

Sample ID: SL-267-SA6-SB-4.0-5.0 Collected: 8/30/2011 9:05:00 Analysis Type: RES Dilution: 1

npie ib. 01-201-070-05-4.0-3.0	Conec	teu, bijuiz	011 5.05.0	, A	ilalysis i	pe. KLS	Ditation: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.616	JB	0.0300	MDL	4.92	PQL	ng/Kg	υ	В	
1,2,3,4,6,7,8-HPCDF	0.486	JB	0.0152	MDL	4.92	PQL	ng/Kg	υ	В	
1,2,3,4,7,8,9-HPCDF	0.0826	JB	0.0206	MDL	4.92	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.293	JB	0.0211	MDL	4.92	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0364	JQ	0.0246	MDL	4.92	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0764	JB	0.0187	MDL	4.92	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0592	JBQ	0.0241	MDL	4.92	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0446	JQ	0.0279	MDL	4.92	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.215	JB	0.0224	MDL	4.92	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.104	JВ	0.0188	MDL	4.92	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0681	JВ	0.0233	MDL	4.92	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.125	JQ	0.0250	MDL	0.984	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0222	JQ	0.0222	MDL	0.984	PQL	ng/Kg	J	Z	
OCDD	3.06	JB	0.0292	MDL	9.84	PQL	ng/Kg	J	Z	
OCDF	0.496	JB	0.0278	MDL	9.84	PQL	ng/Kg	υ	В	

Sample ID: SL-267-SA6-SB-9.0-10.0 Collected: 8/30/2011 9:15:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.490	JB	0.0241	MDL	5.11	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.370	JB	0.0108	MDL	5.11	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0527	JBQ	0.0175	MDL	5.11	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0209	JBQ	0.0158	MDL	5.11	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0863	JB	0.0148	MDL	5.11	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0255	JQ	0.0164	MDL	5.11	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0476	JB	0.0130	MDL	5.11	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0412	JBQ	0.0147	MDL	5.11	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0649	JB	0.0155	MDL,	5.11	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:39:27 AM ADR version 1.4.0.111 Page 7 of 13

Lab Reporting Batch ID: DX131

Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-267-SA6-SB-9.0-10.0	Collec	ted: 8/30/2	011 9:15:0	0 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8-PECDD	0.0247	1O	0.0154	MDL	5.11	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0244	JBQ	0.0102	MDL	5.11	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0908	JBQ	0.0135	MDL	5.11	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0777	JBQ	0.0101	MDL	5.11	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0380	J	0.0145	MDL	1.02	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0180	JQ	0.0133	MDL	1.02	PQL	ng/Kg	J	Z	
OCDD	2.19	JB	0.0290	MDL	10.2	PQL	ng/Kg	J	Z	
OCDF	0.303	JBQ	0.0276	MDL	10.2	PQL	ng/Kg	U	В	

Sample ID: SL-270-SA6-SB-2.0-3.0 Collected: 8/31/2011 11:40:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.30	JB	0.0492	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.446	JB	0.0163	MDL	5.07	PQL	ng/Kg	U	8
1,2,3,4,7,8,9-HPCDF	0.0867	JB	0.0260	MDL.	5.07	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0628	JBQ	0.0183	MDL	5.07	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.117	JB	0.0157	MDL	5.07	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.109	J	0.0185	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0895	JBQ	0.0145	MDL	5.07	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.130	JB	0.0172	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0960	JBQ	0.0179	MDL	5.07	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0673	J	0.0154	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0713	JB	0.0105	MDL	5.07	PQL	ng/Kg	υ	В
2,3,4,6,7,8-HXCDF	0.120	JВ	0.0159	MDL	5.07	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0998	JB	0.0117	MDL.	5.07	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0373	JQ	0.0193	MDL	1.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0245	J	0.0174	MDL	1.01	PQL	ng/Kg	J	Z
OCDF	0.438	JB	0.0295	MDL	10.1	PQL	ng/Kg	U	В

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.346	JB	0.0189	MDL	5.25	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.379	JB	0.0115	MDL	5.25	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0550	JB	0.0177	MDL	5.25	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:39:27 AM

Lab Reporting Batch ID: DX131

Laboratory: LL

EDD Filename: DX131_v1

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method:

1613B Matrix: SO

Sample ID: SL-305-SA6-SB-2.0-3.0	Collec	ted: 8/30/2	2011 12:00:	:00 A	nalysis T	ype: RES		Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8-HxCDD	0.0651	JB	0.0181	MDL	5.25	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.161	JB	0.0164	MDL	5.25	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0746	J	0.0185	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.131	JB	0.0138	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.0987	JB	0.0168	MDL	5.25	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.118	JB	0.0185	MDL	5.25	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.130	J	0.0168	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.174	JB	0.0143	MDL	5.25	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.145	JB	0.0153	MDL	5.25	PQL	ng/Kg	Ü	В	
2,3,4,7,8-PECDF	0.197	JB	0.0139	MDL	5.25	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0479	J	0.0159	MDL	1.05	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0610	JQ	0.0181	MDL	1.05	PQL	ng/Kg	J	Z	
OCDD	0.528	JB	0.0252	MDL	10.5	PQL	ng/Kg	U	В	
OCDF	0.306	JB	0.0250	MDL	10.5	POL	ng/Kg	U	B	

Sample ID: SL-305-SA6-SS-0.0-0.5 Collected: 8/30/2011 10:45:00 Analysis Type: RES Dilution: 1

	Lab	Lab		DL.		RL		Data Review	Reason
Analyte	Result	Qual	DL	Туре	RL	Туре	Units	Qual	Code
1,2,3,4,7,8,9-HPCDF	0.587	JB	0.0676	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.489	JB	0.125	MDL	5.24	PQL	ng/Kg	j	Z
1,2,3,4,7,8-HXCDF	1.35	JB	0.174	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.34	J	0.123	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.02	JB	0.135	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.04	JB	0.119	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.368	JB	0.104	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.537	J	0.0433	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.612	JB	0.0977	MDL	5.24	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.66	JB	0.0884	MDL	5.24	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	4.74	JВ	0.0928	MDL	5.24	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.138	J	0.0220	MDL	1.05	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.583	7	0.116	MDL	1.05	PQL	ng/Kg	j	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX131

Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-306-SA6-SB-4.0-5.0 Collected: 8/30/2011 2:55:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.350	JB	0.0293	MDL	5.18	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.440	JB	0.0156	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0583	JB	0.0241	MDL	5.18	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0779	JB	0.0163	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0608	JBQ	0.0145	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0452	JB	0.0151	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0600	JBQ	0.0180	MDL	5.18	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0170	JBQ	0.0120	MDL	5.18	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.106	JB	0.0146	MDL	5.18	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0673	JBQ	0.0120	MDL	5.18	PQL	ng/Kg	U	В
OCDD	0.857	JB	0.0414	MDL	10.4	PQL	ng/Kg	U	В
OCDF	0.307	JB	0.0394	MDL	10.4	PQL	ng/Kg	U	В

Sample ID: SL-306-SA6-SS-0.0-0.5 Collected: 8/30/2011 3:00:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.04	JB	0.0691	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.59	JB	0.0887	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.14	JB	0.0608	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.20	J	0.0888	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.950	JB	0.0553	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.48	JB	0.0829	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.495	JВ	0.0607	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.323	J	0.0543	MDL	4.96	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.268	JB	0.0589	MDL	4.96	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.28	JВ	0.0544	MDL	4.96	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	2.04	JB	0.0579	MDL	4.96	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0659	JQ	0.0188	MDL	0.991	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.201	J	0.0946	MDL	0.991	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX131 EDD Filename: DX131_v1

Laboratory: LL eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
E	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX131

EDD Filename: DX131_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Hename. DX	131_41	EWALL Maille. CDM 30LF
F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	<del></del>
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
1	Internal Standard Estimation	
I	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
M	Continuing Tune	
М	Initial Tune	
M	Performance Evaluation Mixture	
M	Resolution Check Mixture	···
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
a	Matrix Spike Precision	,
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	
-	Annual Programme	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX131

EDD Filename: DX131_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
S	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

# **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

**DX131** 

Lab Reporting Batch ID: DX131 Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: AQ							
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples			
BLK2490B371547	9/8/2011 3:47:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF OCDD OCDF	2.69 pg/L 2.50 pg/L 0.533 pg/L 0.566 pg/L 0.432 pg/L 0.280 pg/L 0.290 pg/L 0.341 pg/L 0.512 pg/L 0.524 pg/L 5.61 pg/L 1.43 pg/L	EB-SA6-SB-083011			

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA6-SB-083011(RES)	1,2,3,4,6,7,8-HPCDD	2.92 pg/L	2.92U pg/L
EB-SA6-SB-083011(RES)	1,2,3,4,6,7,8-HPCDF	2.06 pg/L	2.06U pg/L
EB-SA6-SB-083011(RES)	1,2,3,4,7,8-HXCDF	0.360 pg/L	0.360U pg/L
EB-SA6-SB-083011(RES)	1,2,3,6,7,8-HXCDF	0.377 pg/L	0.377U pg/L
E8-SA6-SB-083011(RES)	1,2,3,7,8,9-HXCDD	0.250 pg/L	0.250U pg/L
EB-SA6-SB-083011(RE\$)	1,2,3,7,8,9-HXCDF	0.183 pg/L	0.183U pg/L
EB-SA6-SB-083011(RES)	2,3,4,6,7,8-HXCDF	0.309 pg/L	0.309U pg/L
EB-SA6-SB-083011(RES)	OCDD	4.69 pg/L	4.69U pg/L
EB-SA6-SB-083011(RES)	OCDF	1.76 pg/L	1.76U pg/L

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
3LK2490B371845	9/7/2011 6:45:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF CODD CODD	0.226 ng/Kg 0.213 ng/Kg 0.213 ng/Kg 0.0451 ng/Kg 0.0185 ng/Kg 0.0589 ng/Kg 0.0232 ng/Kg 0.0213 ng/Kg 0.0299 ng/Kg 0.0175 ng/Kg 0.0940 ng/Kg 0.0541 ng/Kg 0.436 ng/Kg 0.215 ng/Kg	SL-192-SA6-SB-4.0-5.0 SL-192-SA6-SB-9.0-10.0 SL-198-SA6-SB-9.0-10.0 SL-198-SA6-SB-9.0-10.0 SL-199-SA6-SB-4.0-5.0 SL-200-SA6-SB-4.0-5.0 SL-201-SA6-SB-4.0-5.0 SL-213-SA6-SB-4.0-5.0 SL-253-SA6-SB-4.0-5.0 SL-255-SA6-SB-4.0-5.0 SL-255-SA6-SB-4.0-5.0 SL-267-SA6-SB-9.0-10.0 SL-270-SA6-SB-2.0-3.0 SL-305-SA6-SB-2.0-3.0 SL-305-SA6-SB-2.0-3.0 SL-306-SA6-SB-0.0-0.5 SL-306-SA6-SB-0.0-0.5

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-192-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.153 ng/Kg	0.153U ng/Kg
SL-192-SA6-SB-4,0-5,0(RES)	1,2,3,4,7,8-HxCDD	0.0798 ng/Kg	0.0798U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:37:40 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX131 Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method: 16131 Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-192-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.197 ng/Kg	0.197U ng/Kg	
SL-192-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0903 ng/Kg	0.0903U ng/Kg	
SL-192-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.189 ng/Kg	0.189U ng/Kg	
SL-192-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0991 ng/Kg	0.0991U ng/Kg	
SL-192-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.160 ng/Kg	0.160U ng/Kg	
SL-192-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0690 ng/Kg	0.0690U ng/Kg	
SL-192-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.224 ng/Kg	0.224U ng/Kg	
SL-192-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.126 ng/Kg	0.126U ng/Kg	
SL-192-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.162 ng/Kg	0.162U ng/Kg	
SL-192-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0904 ng/Kg	0.0904U ng/Kg	
SL-198-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.754 ng/Kg	0.754U ng/Kg	
SL-198-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0764 ng/Kg	0.0764U ng/Kg	
SL-198-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0340 ng/Kg	0.0340U ng/Kg	
SL-198-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.116 ng/Kg	0.116U ng/Kg	
SL-198-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0610 ng/Kg	0.0610U ng/Kg	
SL-198-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0805 ng/Kg	0.0805U ng/Kg	
SL-198-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.139 ng/Kg	0.139U ng/Kg	
SL-198-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.114 ng/Kg	0.114U ng/Kg	
SL-198-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.115 ng/Kg	0.115U ng/Kg	
SL-198-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0281 ng/Kg	0.0281U ng/Kg	
SL-198-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.170 ng/Kg	0.170U ng/Kg	
SL-198-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.107 ng/Kg	0.107U ng/Kg	
SL-198-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.210 ng/Kg	0.210U ng/Kg	
SL-198-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.144 ng/Kg	0.144U ng/Kg	
SL-199-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.809 ng/Kg	0.809U ng/Kg	
SL-199-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,4,6,7,8-HPCDF	0.710 ng/Kg	0.710U ng/Kg	
SL-199-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0786 ng/Kg	0.0786U ng/Kg	
SL-199-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.117 ng/Kg	0.117U ng/Kg	
SL-199-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0842 ng/Kg	0.0842U ng/Kg	
SL-199-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0480 ng/Kg	0.0480U ng/Kg	
SL-199-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0496 ng/Kg	0.0496U ng/Kg	
SL-199-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.184 ng/Kg	0.184U ng/Kg	
SL-199-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0983 ng/Kg	0.0983U ng/Kg	
SL-199-SA6-SB-4,0-5,0(RES)	OCDF	0.521 ng/Kg	0.521U ng/Kg	
SL-200-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.698 ng/Kg	0.698U ng/Kg	
SL-200-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0913 ng/Kg	0.0913U ng/Kg	
SL-200-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0294 ng/Kg	0.0294U ng/Kg	
SL-200-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.140 ng/Kg	0.140U ng/Kg	
SL-200-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0795 ng/Kg	0.0795U ng/Kg	
SL-200-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.115 ng/Kg	0.115U ng/Kg	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:37:40 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX131 Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				Pari tokkiji i korotika is
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-200-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0421 ng/Kg	0.0421U ng/Kg	
SL-200-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.166 ng/Kg	0.166U ng/Kg	
SL-200-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0976 ng/Kg	0.0976U ng/Kg	
SL-200-SA6-SB-4.0-5.0(RES)	OCDF	0.645 ng/Kg	0.645U ng/Kg	
SL-201-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HXCDF	0.222 ng/Kg	0.222U ng/Kg	
SL-201-SA6-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.311 ng/Kg	0.311U ng/Kg	
SL-201-SA6-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0.205 ng/Kg	0.205U ng/Kg	
SL-213-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.766 ng/Kg	0.766U ng/Kg	
SL-213-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.428 ng/Kg	0.428U ng/Kg	
SL-213-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0789 ng/Kg	0.0789U ng/Kg	
SL-213-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0509 ng/Kg	0.0509U ng/Kg	
SL-213-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.178 ng/Kg	0.178U ng/Kg	
SL-213-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.152 ng/Kg	0.152U ng/Kg	
SL-213-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.175 ng/Kg	0.175U ng/Kg	
SL-213-SA6-SB-4.0-5.0(RES)	OCDF .	0.510 ng/Kg	0.510U ng/Kg	
SL-249-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.431 ng/Kg	0.431U ng/Kg	
SL-249-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.257 ng/Kg	0.257U ng/Kg	
SL-255-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDD	0.321 ng/Kg	0.321U ng/Kg	
SL-255-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDF	0.351 ng/Kg	0.351U ng/Kg	
SL-255-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0697 ng/Kg	0.0697U ng/Kg	
SL-255-\$A6-\$B-2.0-3.0(RE\$)	1,2,3,4,7,8-HXCDF	0.0827 ng/Kg	0.0827U ng/Kg	
SL-255-SA6-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDF	0.0727 ng/Kg	0.0727U ng/Kg	
SL-255-\$A6-\$B-2.0-3.0(RE\$)	1,2,3,7,8,9-HXCDD	0.0915 ng/Kg	0.0915U ng/Kg	
SL-255-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDF	0.0661 ng/Kg	0.0661U ng/Kg	
SL-255-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDF	0.0294 ng/Kg	0.0294U ng/Kg	
SL-255-SA6-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.0979 ng/Kg	0.0979U ng/Kg	
SL-255-SA6-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0.0714 ng/Kg	0.0714U ng/Kg	
SL-255-\$A6-\$B-2.0-3,0(RE\$)	OCDD	0.651 ng/Kg	0.651U ng/Kg	
SL-255-SA6-SB-2.0-3.0(RES)	OCDF	0.265 ng/Kg	0.265U ng/Kg	
SL-267-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.616 ng/Kg	0.616U ng/Kg	
SL-267-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.486 ng/Kg	0.486U ng/Kg	
SL-267-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0826 ng/Kg	0.0826U ng/Kg	
SL-267-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.293 ng/Kg	0.293U ng/Kg	
SL-267-SA6-SB-4.0-5,0(RES)	1,2,3,6,7,8-HXCDF	0.0764 ng/Kg	0.0764U ng/Kg	
SL-267-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0592 ng/Kg	0.0592U ng/Kg	
SL-267-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.104 ng/Kg	0.104U ng/Kg	
SL-267-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0681 ng/Kg	0.0681U ng/Kg	
SL-267-SA6-SB-4.0-5.0(RES)	OCDF	0.496 ng/Kg	0.496U ng/Kg	
SL-267-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.490 ng/Kg	0.490U ng/Kg	
SL-267-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.370 ng/Kg	0.370U ng/Kg	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:37:40 AM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX131 Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B	zentez eta bira yez eta bir zenyan ber	terin kan di kanan di kanan di kanan di kanan di kanan di kanan di kanan di kanan di kanan di kanan di kanan d		
Matrix: SO				
Method Blank				Associated
Sample ID	Analysis Date	Analyte	Result	Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result	
SL-267-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0527 ng/Kg	0.0527U ng/Kg	
SL-267-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0209 ng/Kg	0.0209U ng/Kg	
SL-267-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0863 ng/Kg	0.0863U ng/Kg	
SL-267-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0476 ng/Kg	0.0476U ng/Kg	
SL-267-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0412 ng/Kg	0.0412U ng/Kg	
SL-267-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0649 ng/Kg	0.0649U ng/Kg	
SL-267-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0244 ng/Kg	0.0244U ng/Kg	
SL-267-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0,0908 ng/Kg	0.0908U ng/Kg	
SL-267-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0777 ng/Kg	0.0777U ng/Kg	
SL-267-SA6-SB-9.0-10.0(RES)	OCDF	0.303 ng/Kg	0.303U ng/Kg	
SL-270-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDF	0.446 ng/Kg	0.446U ng/Kg	
SL-270-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0867 ng/Kg	0.0867U ng/Kg	
SL-270-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HxCDD	0.0628 ng/Kg	0.0628U ng/Kg	
SL-270-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HXCDF	0.117 ng/Kg	0.117U ng/Kg	
SL-270-SA6-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDF	0.0895 ng/Kg	0.0895U ng/Kg	
SL-270-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDF	0.0960 ng/Kg	0.0960U ng/Kg	
SL-270-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDF	0.0713 ng/Kg	0.0713U ng/Kg	
SL-270-\$A6-\$B-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.120 ng/Kg	0.120U ng/Kg	
SL-270-SA6-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0.0998 ng/Kg	0.0998U ng/Kg	
SL-270-SA6-SB-2.0-3.0(RES)	` OCDF	0.438 ng/Kg	0.438U ng/Kg	
SL-305-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDD	0.346 ng/Kg	0.346U ng/Kg	
SL-305-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDF	0.379 ng/Kg	0.379U ng/Kg	
SL-305-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0550 ng/Kg	0.0550U ng/Kg	
SL-305-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HxCDD	0.0651 ng/Kg	0.0651U ng/Kg	
SL-305-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HXCDF	0.161 ng/Kg	0.161U ng/Kg	
SL-305-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDD	0.0987 ng/Kg	0.0987U ng/Kg	
SL-305-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDF	0.118 ng/Kg	0.118U ng/Kg	
SL-305-SA6-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.145 ng/Kg	0.145U ng/Kg	
SL-305-\$A6-SB-2.0-3.0(RE\$)	2,3,4,7,8-PECDF	0.197 ng/Kg	0.197U ng/Kg	
SL-305-SA6-SB-2.0-3.0(RES)	OCDD	0.528 ng/Kg	0.528U ng/Kg	
SL-305-\$A6-\$B-2.0-3.0(RE\$)	OCDF	0.306 ng/Kg	0.306U ng/Kg	
SL-306-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.350 ng/Kg	0.350U ng/Kg	
SL-306-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.440 ng/Kg	0.440U ng/Kg	
SL-306-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0583 ng/Kg	0.0583U ng/Kg	
SL-306-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0779 ng/Kg	0.0779U ng/Kg	
SL-306-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0608 ng/Kg	0.0608U ng/Kg	
SL-306-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0452 ng/Kg	0.0452U ng/Kg	
SL-306-\$A6-\$B-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0,0600 ng/Kg	0.0600U ng/Kg	
SL-306-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0170 ng/Kg	0.0170U ng/Kg	
SL-306-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.106 ng/Kg	0.106U ng/Kg	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 11:37:40 AM ADR version 1.4.0.111 Page 4 of 5

Lab Reporting Batch ID: DX131

Laboratory: LL

EDD Filename: DX131_v1

eQAPP Name: CDM_SSFL_110509

<i>Method:</i> 1613E <i>Matrix:</i> SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-306-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0673 ng/Kg	0.0673U ng/Kg
SL-306-SA6-SB-4.0-5.0(RES)	OCDD	0.857 ng/Kg	0.857U ng/Kg
SL-306-SA6-SB-4.0-5.0(RES)	OCDF	0,307 ng/Kg	0.307U ng/Kg

Page 5 of 5

Lab Reporting Batch ID: DX131 Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-083011	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	JBQ JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ	2.92 2.06 0.360 0.377 0.250 0.183 0.309 0.473 4.69 1.76	10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	PQL PQL PQL PQL PQL PQL PQL PQL PQL	pg/L pg/L pg/L pg/L pg/L pg/L pg/L pg/L	J (all detects)

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-192-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDF		3.52 1.12 0.153 0.0798 0.197 0.200 0.152 0.158 0.0903 0.0587 0.0986 0.189 0.0991 0.0284 1.45	5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-192-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDF CODF	######################################	1.27 0.160 0.0690 0.224 0.230 0.119 0.178 0.126 0.0290 0.0913 0.162 0.0904 0.0349 2.15	5.32 5.32 5.32 5.32 5.32 5.32 5.32 5.32	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 11:37:51 AM ADR version 1.4.0.111 Page 1 of 6

Lab Reporting Batch ID: DX131 Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-198-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF	HEREN HEREN	2.17 0.754 0.0764 0.0340 0.116 0.121 0.0610 0.149 0.165 0.0375 0.0805 0.139 0.114 1.15	5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-198-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	\$\$\$\$\$\$\$\$\$\$\$\$\$\$	1.97 1.08 0.115 0.0281 0.170 0.150 0.107 0.226 0.269 0.0369 0.121 0.210 0.144 0.0512 0.0393 1.21	5.36 5.36 5.36 5.36 5.36 5.36 5.36 5.36	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-199-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD	######################################	0.809 0.710 0.0786 0.117 0.0514 0.0842 0.0480 0.0496 0.184 0.0983 0.0311 5.37 0.521	5.41 5.41 5.41 5.41 5.41 5.41 5.41 5.41	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-200-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.37 0.698 0.0913 0.0294 0.140 0.0786 0.0795 0.116 0.115 0.0421 0.166 0.0976 0.0261 8.74 0.645	5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.5	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX131 Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO		,					
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-201-SA6-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	######################################	4.33 0.416 0.265 0.222 0.984 0.166 0.294 0.166 0.114 0.191 0.311 0.205 0.0431 0.0895	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-213-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF C,3,7,8-TCDF CCDD CCDF	ឧឝឝឝឝ៸ឝឝឝ៸ឝឝឝ៸ឝឝ	0.766 0.428 0.0789 0.0509 0.178 0.194 0.131 0.278 0.229 0.156 0.216 0.152 0.175 0.0529 5.58 0.510	5.29 5.29 5.29 5.29 5.29 5.29 5.29 5.29	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-249-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD	明明の日子の日子の日子の日子の日子の日子の日子の日子の日子の日子の日子の日子の日子の	4.82 0.446 0.283 0.559 0.610 0.328 0.379 0.298 0.117 0.286 0.431 0.257 0.0253 0.0506 8.95	5.23 5.23 5.23 5.23 5.23 5.23 5.23 5.23	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-253-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF CODF	JB JB JB JB JB JB JB JB JB JB JB JB JB J	0.451 0.221 0.772 2.92 0.514 1.01 0.239 0.0981 0.446 0.562 0.452 0.414 8.13	5.17 5.17 5.17 5.17 5.17 5.17 5.17 5.17	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX131 Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-255-SA6-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF 0,3,7,8-TCDF 0,3,7,8-TCDF	H H H H H H H H H H H H H H H H H H H	0.321 0.351 0.0697 0.0827 0.0789 0.0727 0.0915 0.0661 0.0294 0.0294 0.0979 0.0714 0.0228 0.0174 0.651	5.37 5.37 5.37 5.37 5.37 5.37 5.37 5.37	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	Flag J (all detects)
SL-267-SA6-SB-4.0-5,0	OCDF  1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDF 0,3,7,8-TCDF 0CDD 0CDF	# ####################################	0.265 0.616 0.486 0.0826 0.293 0.0364 0.0764 0.0592 0.0446 0.215 0.104 0.0681 0.125 0.0222 3.06 0.496	10.7 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-267-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 0,3,7,8-TCDD 0,0CDF	######################################	0.490 0.370 0.0527 0.0209 0.0863 0.0255 0.0476 0.0412 0.0649 0.0247 0.0244 0.0908 0.0777 0.0380 0.0180 2.19 0.303	5.11 5.11 5.11 5.11 5.11 5.11 5.11 5.11	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/3/2012 11:37:51 AM ADR version 1.4.0.111 Page 4 of 6

Lab Reporting Batch ID: DX131 Laboratory: LL

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

SampleID	Analyto	Lab	Result	Reporting Limit	RL Tuno	l Inita	Elas
	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-270-\$A6-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDD	JB	1.30	5.07	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.446	5.07	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0867	5.07	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0628	5.07	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.117	5.07	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	J	0.109	5.07	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0895	5.07	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.130	5.07	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0960	5.07	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	J	0.0673	5.07	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0713	5.07	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.120	5.07	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0998	5.07	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0373	1.01	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.0245	1.01	PQL	ng/Kg	
	OCDF	JB	0.438	10.1	PQL	ng/Kg	
SL-305-SA6-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDD	JB	0.346	ļ		<del></del>	
5E 500-0A0-0D-2.0-0,0	1,2,3,4,6,7,8-HPCDF	JB	0.346	5.25 5.25	PQL PQL	ng/Kg	
						ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0550	5.25	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF	JB	0.0651	5.25	PQL	ng/Kg	
		JB	0.161	5.25	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	7	0.0746	5.25	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.131	5.25	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0987	5.25	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.118	5.25	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	J	0.130	5.25	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.174	5.25	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.145	5.25	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.197	5.25	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0479	1.05	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0610	1.05	PQL	ng/Kg	
	OCDD	JB	0.528	10.5	PQL	ng/Kg	
	OCDF	JB	0.306	10.5	PQL	ng/Kg	
SL-305-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	0.587	5.24	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.489	5.24	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	1.35	5.24	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	J	1.34	5.24	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	1.02	5.24	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.04	5.24	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.368	5.24	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	J	0.537	5.24	PQL	ng/Kg	,
	1,2,3,7,8-PECDF	JB	0.612	5.24	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.66	5.24	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	4.74	5.24	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.138	1.05	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.583	1.05	PQL	ng/Kg	
SL-306-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.350	5.18	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.330	5.18	PQL	ng/Kg	
	1,2,3,4,0,7,5-17 ODF	JB	0.0583	5.18	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0363	5.18	PQL	ng/Kg	
		JBQ	0.0608	5.18	PQL	ng/Kg	
	11 2 3 6 7 8-HYCDE	1 200					
	1,2,3,6,7,8-HXCDF	ID	በ በለፍን				
	1,2,3,7,8,9-HXCDD	JB IBO	0.0452	5.18 5.18	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF	JBQ	0.0600	5.18	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF	JBQ JBQ	0.0600 0.0170	5.18 5.18	PQL PQL	ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF	JBQ JBQ JB	0.0600 0.0170 0.106	5.18 5.18 5.18	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF	JBQ JBQ	0.0600 0.0170	5.18 5.18	PQL PQL	ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX131

EDD Filename: DX131_v1 eQAPP Name: CDM_SSFL_110509

Laboratory: LL

ere e de managamenta de la companya de la companya de la companya de la companya de la companya de la companya

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-306-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF	JB JB JB	1.04 1.59 1.14	4.96 4.96 4.96	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	J JB JB	2.20 0.950 1.48	4.96 4.96 4.96	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
	1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF	JB J JB	0.495 0.323 0.268	4.96 4.96 4.96	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	J (all detects)
	2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	JB JB	1.28 2.04	4.96 4.96	PQL PQL	ng/Kg ng/Kg	
	2,3,7,8-TCDD 2,3,7,8-TCDF	JQ	0.0659 0.201	0.991 0.991	PQL PQL	ng/Kg ng/Kg	

1/3/2012 11:37:51 AM ADR version 1.4.0.111 Page 6 of 6

# **SAMPLE DELIVERY GROUP**

**DX132** 

# Attachment I

Sample ID Cross Reference and Data Review Level

# **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
01-Sep-2011	SL-258-SA6-SB-0.0-0.83	6395215	N	METHOD	1613B	IV
01-Sep-2011	SL-262-SA6-SB-4.0-5.0	6395216	N	METHOD	1613B	IV
01-Sep-2011	SL-262-SA6-SB-4.0-5.0MS	6395217	MS	METHOD	1613B	IV
01-Sep-2011	SL-262-SA6-SB-4.0-5.0MSD	6395218	MSD	METHOD	1613B	IV
01-Sep-2011	DUP14-SA6-QC-090111	6395221	FD	METHOD	1613B	IV
01-Sep-2011	SL-266-SA6-SB-4.0-5.0	6395220	N	METHOD	1613B	IV
01-Sep-2011	SL-264-SA6-SB-0.4-1.4	6395219	N	METHOD	1613B	IV
06-Sep-2011	SL-263-SA6-SB-4.0-5.0	6397906	N	METHOD	<b>1</b> 613B	IV
06-Sep-2011	SL-263-SA6-SB-9.0-10.0	6397907	N	METHOD	1613B	IV
06-Sep-2011	SL-261-SA6-SB-1.5-2.5	6397904	N	METHOD	1613B	IV
06-Sep-2011	SL-261-SA6-SB-9.0-10.0	6397905	N	METHOD	1613B	IV
06-Sep-2011	SL-204-SA6-SB-4.0-5.0	6397903	N	METHOD	1613B	IV
07-Sep-2011	SL-311-SA6-SB-2.0-3.0	6400464	N	METHOD	1613B	IV
07-Sep-2011	SL-205-SA6-SB-4.0-5.0	6400463	N	METHOD	1613B	IV
07-Sep-2011	EB-SA6-SB-090711	6400465	ЕВ	METHOD	1613B	IV

# **Attachment II**

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX132

EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

Method Category GENCHEN

Method: 1613B Matrix: At

Sample ID: EB-SA6-SB-090711 Collected: 9/7/2011 1:00:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.78	JB	0.496	MDL	9.85	PQL	pg/L	U	В
1,2,3,4,6,7,8-HPCDF	2.98	JBQ	0.239	MDL	9.85	PQL	pg/L	U	В
1,2,3,4,7,8,9-HPCDF	0.355	JBQ	0.280	MDL	9.85	PQL	pg/L	U	В
1,2,3,4,7,8-HxCDD	0.618	JBQ	0.307	MDL	9.85	PQL	pg/L	U	В
1,2,3,4,7,8-HXCDF	0.297	JBQ	0.211	MDL	9.85	PQL	pg/L	U	В
1,2,3,6,7,8-HXCDF	0.296	JQ	0.197	MDL	9.85	PQL	pg/L	J	Z
1,2,3,7,8,9-HXCDD	0.436	JBQ	0.284	MDL	9.85	PQL	pg/L	U	В
1,2,3,7,8,9-HXCDF	0.324	JBQ	0.147	MDL	9.85	PQL	pg/L	U	В
1,2,3,7,8-PECDF	0.309	JBQ	0.179	MDL	9.85	PQL	pg/L	U	В
2,3,4,6,7,8-HXCDF	0.684	JBQ	0.184	MDL	9.85	PQL	pg/L	U	В
2,3,4,7,8-PECDF	0.344	JBQ	0.156	MDL	9.85	PQL	pg/L	U	В
OCDD	6.01	JBQ	0.294	MDL	19.7	PQL	pg/L	U	В
OCDF	2.71	JB	0.397	MDL	19.7	PQL	pg/L	U	В

Method Category: GENCHEM

Method: 1613B Matrix:

Sample ID: DUP14-SA6-QC-090111	Collected: 9/1/2011 9:23:00 AM	Analysis Type: RES	Dilution: 1
	Concoica. Or I/2011 Di20100 Aili	Allarysis Type. Itae	Ditation.

SO

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.297	JB	0.0183	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.187	JB	0.00932	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0361	JB	0.0151	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0602	JB	0.0115	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0375	JBQ	0.0147	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0267	JB	0.00954	MDL	5.49	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0327	JBQ	0.0137	MDL	5.49	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8,9-HXCDF	0.0345	JB	0.0102	MDL	5.49	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8-PECDF	0.0296	JBQ	0.0101	MDL	5.49	PQL	ng/Kg	UJ	B, FD
2,3,4,6,7,8-HXCDF	0.0523	JBQ	0.0101	MDL	5.49	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0657	JBQ	0.0118	MDL	5.49	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0186	J	0.0156	MDL	1.10	PQL	ng/Kg	J	Z, FD
OCDD	0.818	JB	0.0323	MDL	11.0	PQL	ng/Kg	บป	B, FD
OCDF	0.168	JB	0.0229	MDL	11.0	PQL	ng/Kg	UJ	B, FD

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 8:54:28 AM

ADR version 1.4.0.111

Page 1 of 11

Laboratory: LL

SO

Lab Reporting Batch ID: DX132

Laboratory: LL

EDD Filename: DX132 v1

eQAPP Name: CDM_SSFL_110509

A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR

Method Category: GENCHEM

Method: 1613B Matrix:

Sample ID: SL-204-SA6-SB-4.0-5.0 Collected: 9/6/2011 12:45:00 Analysis Type: RES Dilution: 1 Data Lab Lab DLRLReview Reason DL. Analyte Result Qual Туре RLUnits Qual Type Code 1,2,3,4,6,7,8-HPCDD 0.704 JB 0.0344 MDL 5.36 **PQL** U В ng/Kg 1,2,3,4,6,7,8-HPCDF 0.299 JB 0.0108 MDL **PQL** 5.36 ng/Kg U В 1,2,3,4,7,8,9-HPCDF 0.0812 JBQ 0.0204 MDL 5.36 PQL U ng/Kg В 1,2,3,4,7,8-HxCDD 0.0678 j 0.0179 MDL. **PQL** 5.36 J Z ng/Kg 1,2,3,4,7,8-HXCDF 0.157 JBQ 0.0197 MDL 5.36 **PQL** U В ng/Kg 1,2,3,6,7,8-HXCDD 0.0670 JBQ 0.0187 MDL **PQL** U 5.36 ng/Kg В 1,2,3,6,7,8-HXCDF U 0.114 JBQ 0.0164 MDL 5.36 **PQL** ng/Kg В 1,2,3,7,8,9-HXCDD 0.0649 JB 0.0159 MDL 5.36 **PQL** U ng/Kg В U 1,2,3,7,8,9-HXCDF 0.0860 JΒ 0.0197 MDL 5.36 **PQL** ng/Kg В 1,2,3,7,8-PECDD 0.0170 J 0.167 JΒ MDL 5.36 PQL ng/Kg Ζ 1,2,3,7,8-PECDF J₿ 0.0124 z 0.193 MDL 5.36 PQL ng/Kg J 2,3,4,6,7,8-HXCDF JB 0.0156 U 0.125 MDL 5.36 **PQL** ng/Kg В 2,3,4,7,8-PECDF 0.208 JΒ 0.0138 MDL 5.36 PQL ng/Kg U В 2,3,7,8-TCDD 0.0539 0.0174 JQ MDL 1.07 **PQL** ng/Kg J z 2,3,7,8-TCDF 0.0632 0.0172 MDL 1.07 **PQL** J z ng/Kg OCDD 7.69 MDL JΒ 0.0296 10.7 PQL J Z ng/Kg OCDF 0.535 JΒ 0.0298 MDL 10.7 **PQL** U ng/Kg В

Sample ID: SL-205-SA6-SB-4.0-5.0

Collected: 9/7/2011 11:24:00

Analysis Type: RES

Dilution: 1

00mpio 121 0= 200 01.0 02 110 010	001100			~ ~	nunyono n	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Dittation.		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.991	JB	0.0322	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.447	JB	0.0133	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0831	JBQ	0.0266	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.148	JB	0.0197	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0407	JB	0.0151	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.113	JBQ	0.0164	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0520	JB	0.0140	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0328	JBQ	0.0249	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0162	JBQ	0.0161	MDL	5.45	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.719	JB	0.0348	MDL	5.45	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0869	JB	0.0193	MDL	5.45	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.206	JBQ	0.0377	MDL	5.45	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.360	J	0.0685	MDL	1.09	PQL	ng/Kg	J	Z
	'			·	·			<u> </u>	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 8:54:28 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX132

Laboratory: LL

EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

Method Cate	gory: GENCHEM		
Method:	1613B	Matrix:	so

Sample ID: SL-205-SA6-SB-4.0-5.0	Collec	Collected: 9/7/2011 11:24:00			Analysis Type: RES				Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
OCDD	10.4	JB	0.0223	MDL	10.9	PQL	ng/Kg	J	Z		
OCDF	1.04	JB	0.0317	MDL	10.9	PQL	ng/Kg	J	Z		

 Sample ID: SL-258-SA6-SB-0.0-0.83
 Collected: 9/1/2011 8:08:00 AM
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.12	JB	0.0514	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.901	Ĺ	0.105	MDL,	5.07	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.87	JB	0.0639	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.75	JB	0.108	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.755	JB	0.0542	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.30	JB	0.102	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.317	JB	0.0592	MDL	5.07	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.300	JB	0.0481	MDL	5.07	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.831	JB	0.0609	MDL	5.07	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.611	JB	0.0461	MDL	5.07	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0449	JQ	0.0202	MDL	1.01	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.296	JQ	0.0476	MDL	1.01	PQL	ng/Kg	J	Z

Sample ID: SL-261-SA6-SB-1.5-2.5 Collected: 9/6/2011 10:40:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.63	JB	0.0146	MDL	5.51	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.184	JB	0.0273	MDL	5.51	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.197	J	0.0542	MDL	5.51	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.382	JB	0.0490	MDL	5.51	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.587	JB	0.0537	MDL	5.51	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.313	JB	0.0392	MDL	5.51	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.539	JB	0.0455	MDL	5.51	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.406	JB	0.0594	MDL	5.51	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.408	JB	0.0300	MDL	5.51	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.604	JB	0.0168	MDL	5.51	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.296	JB	0.0476	MDL	5.51	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.540	JB	0.0187	MDL	5.51	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.108	J	0.0159	MDL	1.10	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 8:54:28 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX132

Laboratory: LL

EDD Filename: DX132_v1

Method:

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM	

1613B

Sample ID: SL-261-SA6-SB-1.5-2.5	Collec	ted: 9/6/20	11 10:40:0	00 A	nalysis T	ype: RES	i	ı	Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.479	J	0.0322	MDL	1.10	PQL	ng/Kg	J	Z
OCDF	3.73	JB	0.0295	MDL	11.0	PQL	ng/Kg	J	Z

Matrix:

SO

Sample ID: SL-261-SA6-SB-9.0-10.0 Collected: 9/6/2011 10:45:00 Analysis Type: RES Dilution: 1

Sample ID. 3L-201-3A0-3B-9.0-10.0	Conec	160: 9/0/20	11 10:45:0	10 A	inalysis Type: RES			Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.334	JB	0.0210	MDL	5.48	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.245	JB	0.0102	MDL	5.48	PQL	ng/Kg	υ	В	
1,2,3,4,7,8,9-HPCDF	0.0780	JB	0.0225	MDL	5.48	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.131	JQ	0.0196	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.257	JB	0.0230	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.124	JB	0.0184	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.185	JB	0.0171	MDL	5.48	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.102	JB	0.0190	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.183	JB	0.0305	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.284	JB	0.0188	MDL	5.48	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.345	JBQ	0.0138	MDL	5.48	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.165	JB	0.0217	MDL	5.48	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.347	JB	0.0156	MDL	5.48	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.102	JQ	0.0181	MDL	1.10	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.118	JQ	0.0186	MDL	1.10	PQL	ng/Kg	J	Z	
OCDD	0.621	JB	0.0290	MDL	11.0	PQL	ng/Kg	U	В	
OCDF	0.251	JB	0.0281	MDL	11.0	PQL	ng/Kg	U	В	

Sample ID: SL-262-SA6-SB-4.0-5.0

Collected: 9/1/2011 9:15:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.353	JB	0.0218	MDL	5.44	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.166	JB	0.0119	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0351	JBQ	0.0175	MDL	5.44	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0458	JBQ	0.0178	MDL	5.44	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.0451	JBQ	0.0171	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0320	JB	0.0136	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0762	JBQ	0.0152	MDL	5.44	PQL	ng/Kg	ΟJ	B, FD
1,2,3,7,8,9-HXCDF	0.0112	U	0.0112	MDL	5.44	PQL	ng/Kg	UJ	FD

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX132

Laboratory: LL

EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

0.343

Sample ID: SL-262-SA6-SB-4.0-5.0	Collec	ted: 9/1/2	011 9:15:00	AM A	nalysis T	ype: RES	i	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8-PECDF	0.0147	JBQ	0.00930	MDL	5.44	PQL	ng/Kg	UJ	B, FD	
2,3,4,6,7,8-HXCDF	0.0625	JBQ	0.00952	MDL	5.44	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0569	JB	0.0118	MDL	5.44	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0164	Ų	0.0164	MDL	1.09	PQL	ng/Kg	UJ	FD	
OCDD	2.08	JB	0.0302	MDL	10.9	PQL	ng/Kg	J	Z, FD	

JB

Sample ID: SL-263-SA6-SB-4.0-5.0

OCDF

Collected: 9/6/2011 8:40:00 AM Analysis Type: RES

MDL

10.9

PQL

ng/Kg

UJ

0.0278

Dilution: 1

B, FD

<u></u>					17017010 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.363	JB	0.0182	MDL.	5.44	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.230	JBQ	0.00891	MDL.	5.44	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0567	JB	0.0154	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0536	J	0.0140	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.135	JB	0.0146	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0493	JBQ	0.0153	MDL	5.44	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDF	0.106	JB	0.0124	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0762	JBQ	0.0135	MDL	5.44	PQL	ng/Kg	υ	. В
1,2,3,7,8,9-HXCDF	0.101	JB	0.0163	MDL	5.44	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.132	JBQ	0.0174	MDL	5.44	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.178	JB	0.0101	MDL	5.44	PQL	ng/Kg	J	Ż
2,3,4,6,7,8-HXCDF	0.0906	JВ	0.0123	MDL	5.44	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.163	JB	0.0103	MDL	5.44	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0590	J	0.0146	MDL	1.09	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0577	1.0	0.0138	MDL	1.09	PQL	ng/Kg	J	Z
OCDD	1.37	JB	0.0315	MDL	10.9	PQL	ng/Kg	U	В
OCDF	0.258	JB	0.0234	MDL	10.9	PQL	ng/Kg	U	В

Sample ID: SL-263-SA6-SB-9.0-10.0

Collected: 9/6/2011 8:44:00 AM Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.250	JB	0.0153	MDL	5.57	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.196	JB	0.00777	MDL	5.57	PQL	ng/Kg	Ü	В
1,2,3,4,7,8,9-HPCDF	0.0360	JBQ	0.0146	MDL	5.57	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0565	JB	0.0120	MDL	5.57	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX132

Laboratory: LL

A PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF

EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

Mothod	46420	
and the second second		
		in the research time. On the property of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro
Method Catego	ory GENCHEM	and the disease of the l

Sample ID: SL-263-SA6-SB-9.0-10.0 Collected: 9/6/2011 8:44:00 AM Analysis Type: RES Dilution: 1

Matrix:

SO

Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
0.0205	JBQ	0.0141	MDL	5.57	PQL	ng/Kg	U	В	
0.0287	JBQ	0.0100	MDL	5.57	PQL	ng/Kg	U	В	
0.0196	JBQ	0.0123	MDL	5.57	PQL	ng/Kg	U	В	
0.0262	JB	0.0153	MDL	5.57	PQL	ng/Kg	U	В	
0.0175	JBQ	0.0104	MDL	5.57	PQL	ng/Kg	U	В	
0.0616	JBQ	0.0111	MDL	5.57	PQL	ng/Kg	U	В	
0.0485	JB	0.0111	MDL	5.57	PQL	ng/Kg	U	В	
0.0205	JQ	0.0166	MDL	1.11	PQL	ng/Kg	J	Z	
0.522	JВ	0.0255	MDL	11.1	PQL	ng/Kg	U	В	
0.205	JB	0.0242	MDL	11.1	PQL	ng/Kg	U	В	
	Result  0.0205  0.0287  0.0196  0.0262  0.0175  0.0616  0.0485  0.0205  0.522	Result         Qual           0.0205         JBQ           0.0287         JBQ           0.0196         JBQ           0.0262         JB           0.0175         JBQ           0.0616         JBQ           0.0485         JB           0.0205         JQ           0.522         JB	Result         Qual         DL           0.0205         JBQ         0.0141           0.0287         JBQ         0.0100           0.0196         JBQ         0.0123           0.0262         JB         0.0153           0.0175         JBQ         0.0104           0.0616         JBQ         0.0111           0.0205         JB         0.0166           0.522         JB         0.0255	Result         Qual         DL         Type           0.0205         JBQ         0.0141         MDL           0.0287         JBQ         0.0100         MDL           0.0196         JBQ         0.0123         MDL           0.0262         JB         0.0153         MDL           0.0175         JBQ         0.0104         MDL           0.0616         JBQ         0.0111         MDL           0.0485         JB         0.0111         MDL           0.0205         JQ         0.0166         MDL           0.522         JB         0.0255         MDL	Result         Qual         DL         Type         RL           0.0205         JBQ         0.0141         MDL         5.57           0.0287         JBQ         0.0100         MDL         5.57           0.0196         JBQ         0.0123         MDL         5.57           0.0262         JB         0.0153         MDL         5.57           0.0175         JBQ         0.0104         MDL         5.57           0.0616         JBQ         0.0111         MDL         5.57           0.0485         JB         0.0111         MDL         5.57           0.0205         JQ         0.0166         MDL         1.11           0.522         JB         0.0255         MDL         11.1	Result         Qual         DL         Type         RL         Type           0.0205         JBQ         0.0141         MDL         5.57         PQL           0.0287         JBQ         0.0100         MDL         5.57         PQL           0.0196         JBQ         0.0123         MDL         5.57         PQL           0.0262         JB         0.0153         MDL         5.57         PQL           0.0175         JBQ         0.0104         MDL         5.57         PQL           0.0616         JBQ         0.0111         MDL         5.57         PQL           0.0485         JB         0.0111         MDL         5.57         PQL           0.0205         JQ         0.0166         MDL         1.11         PQL           0.522         JB         0.0255         MDL         11.1         PQL	Result         Qual         DL         Type         RL         Type         Units           0.0205         JBQ         0.0141         MDL         5.57         PQL         ng/Kg           0.0287         JBQ         0.0100         MDL         5.57         PQL         ng/Kg           0.0196         JBQ         0.0123         MDL         5.57         PQL         ng/Kg           0.0262         JB         0.0153         MDL         5.57         PQL         ng/Kg           0.0175         JBQ         0.0104         MDL         5.57         PQL         ng/Kg           0.0616         JBQ         0.0111         MDL         5.57         PQL         ng/Kg           0.0485         JB         0.0111         MDL         5.57         PQL         ng/Kg           0.0205         JQ         0.0166         MDL         1.11         PQL         ng/Kg           0.522         JB         0.0255         MDL         11.1         PQL         ng/Kg	Lab Result         Lab Qual         DL DL DL Type         RL Type         RL Type         RL Type         Review Qual           0.0205         JBQ         0.0141         MDL         5.57         PQL         ng/Kg         U           0.0287         JBQ         0.0100         MDL         5.57         PQL         ng/Kg         U           0.0196         JBQ         0.0123         MDL         5.57         PQL         ng/Kg         U           0.0262         JB         0.0153         MDL         5.57         PQL         ng/Kg         U           0.0175         JBQ         0.0104         MDL         5.57         PQL         ng/Kg         U           0.0616         JBQ         0.0111         MDL         5.57         PQL         ng/Kg         U           0.0485         JB         0.0111         MDL         5.57         PQL         ng/Kg         U           0.0205         JQ         0.0166         MDL         1.11         PQL         ng/Kg         J           0.522         JB         0.0255         MDL         11.1         PQL         ng/Kg         U	

 Sample ID: SL-264-SA6-SB-0.4-1.4
 Collected: 9/1/2011 12:08:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.09	JB	0.0346	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.654	JB	0.0158	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.105	JBQ	0.0296	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0819	JQ	0.0261	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.117	JB	0.0191	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.134	JB	0.0280	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0869	JB	0.0151	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.165	JB	0.0241	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.143	JB	0.0211	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0749	JBQ	0.0218	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0720	JBQ	0.00996	MDL	5.09	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.110	JBQ	0.0160	MDL	5.09	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.121	JB	0.0113	MDL	5.09	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0193	JQ	0.0131	MDL	1.02	PQL	ng/Kg	J	Z
OCDF	1.42	JB	0.0414	MDL	10.2	PQL	ng/Kg	J	Z

Sample ID: SL-266-SA6-SB-4.0-5.0 Collected: 9/1/2011 9:33:00 AM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.01	JB	0.0381	MDL	5.38	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.380	JВ	0.0133	MDL	5.38	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/4/2012 8:54:28 AM

Lab Reporting Batch ID: DX132

Laboratory: LL

EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM

Method: 1613B Matrix: SO

Sample ID: SL-266-SA6-SB-4.0-5.0	Collec	Collected: 9/1/2011 9:33:00 AM Analysis Type: RES							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	0.0775	JBQ	0.0238	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0604	JВ	0.0147	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0679	JBQ	0.0180	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0335	JBQ	0.0116	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.102	JBQ	0.0157	MDL	5.38	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.110	JBQ	0.0153	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0224	JBQ	0.0148	MDL	5.38	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0300	JBQ	0.0107	MDL	5.38	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.0548	JB	0.0118	MDL	5.38	PQL	ng/Kg	υ	В	
2,3,4,7,8-PECDF	0.0564	JBQ	0.0116	MDL	5.38	PQL	ng/Kg	υ	В	
2,3,7,8-TCDD	0.0213	JQ	0.0166	MDL	1.08	PQL	ng/Kg	J	Z	
OCDD	10.4	JB	0.0345	MDL	10.8	PQL	ng/Kg	J	Z	
OCDF	0.769	JB	0.0314	MDL	10.8	PQL	ng/Kg	U	В	

Sample ID: SL-311-SA6-SB-2.0-3.0

Collected: 9/7/2011 9:20:00 AM Analysis Type: RES

Dilution: 1

								#114150111	
Analyte	Lab Result	Lab Qual	DL.	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.47	JB	0.0284	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.666	JB	0.0187	MDL	5.33	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0913	JВ	0.0343	MDL	5.33	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.147	JВ	0.0255	MDL	5.33	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.111	JB	0.0233	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.131	JB	0.0212	MDL	5.33	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.111	JB	0.0208	MDL	5.33	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0717	JBQ	0.0271	MDL	5.33	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0246	JB	0.0147	MDL	5.33	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0742	JBQ	0.0142	MDL	5.33	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.118	JB	0.0233	MDL	5.33	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.178	JBQ	0.0156	MDL	5.33	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.203	J	0.0265	MDL	1.07	PQL	ng/Kg	J	Z
OCDD	9.15	JB	0.0254	MDL	10.7	PQL	ng/Kg	J	Z
OCDF	0.786	JB	0.0289	MDL	10.7	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX132 Laboratory: LL

EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

* denotes a non-reportable result

Lab Reporting Batch ID: DX132 Laboratory: LL EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

### Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
, , , , , , , , , , , , , , , , , , ,	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count = 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
С	Continuing Calibration Verification Percent Difference Lower Rejection
С	Continuing Calibration Verification Percent Difference Upper Estimation
С	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
С	Initial Calibration Percent Relative Standard Deviation
С	Initial Calibration Verification Correlation Coefficient
С	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
С	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
Ε	Laboratory Duplicate Precision
E	Matrix Spike Precision

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX132

EDD Filename: DX132_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

nename. Dance	<del>'_ * '</del>	EWALL Maille, ODIN 30LF
F	Equipment Blank Contamination	_
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
Н	Extraction to Analysis Estimation	
н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	, , , , , , , , , , , , , , , , , , ,
н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
Н	Sampling to Leaching Rejection	
Н	Temperature Estimation	
Н	Temperature Rejection	
ī	Internal Standard Estimation	
I	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
М	Continuing Tune	
М	Initial Tune	
М	Performance Evaluation Mixture	
M	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	
Q	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX132

EDD Filename: DX132_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
R	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
S	Surrogate/Tracer Recovery Lower Estimation
S	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
S	Surrogate/Tracer Recovery Upper Rejection
т	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

# **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX132

Lab Reporting Batch ID: DX132 Laboratory: LL

EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2560B372026	9/14/2011 8:26:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDD	2.87 pg/L 2.13 pg/L 0.770 pg/L 0.441 pg/L 0.529 pg/L 0.617 pg/L 0.652 pg/L 0.522 pg/L 0.426 pg/L 0.833 pg/L 0.637 pg/L 0.680 pg/L 4.54 pg/L	EB-SA6-SB-090711

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-\$A6-\$B-090711(RES)	1,2,3,4,6,7,8-HPCDD	2.78 pg/L	2.78U pg/L
EB-SA6-SB-090711(RES)	1,2,3,4,6,7,8-HPCDF	2.98 pg/L	2.98U pg/L
EB-SA6-SB-090711(RES)	1,2,3,4,7,8,9-HPCDF	0.355 pg/L	0.355U pg/L
EB-SA6-SB-090711(RES)	1,2,3,4,7,8-HxCDD	0.618 pg/L	0.618U pg/L
EB-SA6-SB-090711(RES)	1,2,3,4,7,8-HXCDF	0.297 pg/L	0.297U pg/L
EB-SA6-SB-090711(RES)	1,2,3,7,8,9-HXCDD	0.436 pg/L	0.436U pg/L
EB-SA6-SB-090711(RES)	1,2,3,7,8,9-HXCDF	0.324 pg/L	0.324U pg/L
EB-\$A6-SB-090711(RES)	1,2,3,7,8-PECDF	0.309 pg/L	0.309U pg/L
EB-SA6-SB-090711(RES)	2,3,4,6,7,8-HXCDF	0.684 pg/L	0.684U pg/L
EB-SA6-SB-090711(RES)	2,3,4,7,8-PECDF	0.344 pg/L	0.344U pg/L
EB-SA6-SB-090711(RES)	OCDD	6.01 pg/L	6.01U pg/L
EB-SA6-SB-090711(RES)	OCDF	2.71 pg/L	2.71U pg/L

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2570B372148	9/16/2011 9:48:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF CCDD CCDF	0.215 ng/Kg 0.214 ng/Kg 0.0353 ng/Kg 0.0509 ng/Kg 0.0509 ng/Kg 0.0140 ng/Kg 0.0471 ng/Kg 0.0192 ng/Kg 0.0158 ng/Kg 0.0181 ng/Kg 0.0795 ng/Kg 0.0500 ng/Kg 0.396 ng/Kg 0.179 ng/Kg	DUP14-SA6-QC-090111 SL-204-SA6-SB-4.0-5.0 SL-205-SA6-SB-4.0-5.0 SL-258-SA6-SB-0.0-0.83 SL-261-SA6-SB-9.0-10.0 SL-261-SA6-SB-9.0-10.0 SL-263-SA6-SB-4.0-5.0 SL-263-SA6-SB-4.0-5.0 SL-263-SA6-SB-4.0-5.0 SL-264-SA6-SB-0-11.0 SL-264-SA6-SB-0.4-1.4 SL-266-SA6-SB-4.0-5.0 SL-311-SA6-SB-2.0-3.0

1/4/2012 8:23:31 AM ADR version 1.4.0.111 Page 1 of 4

Lab Reporting Batch ID: DX132

EDD Filename: DX132_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				esecondatal algundados de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la company
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP14-SA6-QC-090111(RES)	1,2,3,4,6,7,8-HPCDD	0.297 ng/Kg	0.297U ng/Kg
DUP14-SA6-QC-090111(RES)	1,2,3,4,6,7,8-HPCDF	0.187 ng/Kg	0.187U ng/Kg
DUP14-SA6-QC-090111(RES)	1,2,3,4,7,8,9-HPCDF	0.0361 ng/Kg	0.0361U ng/Kg
DUP14-SA6-QC-090111(RES)	1,2,3,4,7,8-HXCDF	0.0602 ng/Kg	0.0602U ng/Kg
DUP14-SA6-QC-090111(RES)	1,2,3,6,7,8-HXCDD	0.0375 ng/Kg	0.0375U ng/Kg
DUP14-SA6-QC-090111(RES)	1,2,3,6,7,8-HXCDF	0.0267 ng/Kg	0.0267U ng/Kg
DUP14-SA6-QC-090111(RES)	1,2,3,7,8,9-HXCDD	0.0327 ng/Kg	0.0327U ng/Kg
DUP14-SA6-QC-090111(RES)	1,2,3,7,8,9-HXCDF	0.0345 ng/Kg	0.0345U ng/Kg
DUP14-SA6-QC-090111(RES)	1,2,3,7,8-PECDF	0.0296 ng/Kg	0.0296U ng/Kg
DUP14-SA6-QC-090111(RES)	2,3,4,6,7,8-HXCDF	0.0523 ng/Kg	0.0523U ng/Kg
DUP14-SA6-QC-090111(RES)	2,3,4,7,8-PECDF	0.0657 ng/Kg	0.0657U ng/Kg
DUP14-SA6-QC-090111(RES)	OCDD	0,818 ng/Kg	0.818U ng/Kg
DUP14-SA6-QC-090111(RES)	OCDF	0.168 ng/Kg	0.168U ng/Kg
SL-204-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.704 ng/Kg	0.704U ng/Kg
SL-204-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.299 ng/Kg	0.299U ng/Kg
SL-204-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0812 ng/Kg	0.0812U ng/Kg
SL-204-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.157 ng/Kg	0.157U ng/Kg
SL-204-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0670 ng/Kg	0.0670U ng/Kg
SL-204-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.114 ng/Kg	0.114U ng/Kg
SL-204-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0649 ng/Kg	0.0649U ng/Kg
SL-204-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0860 ng/Kg	0.0860U ng/Kg
SL-204-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.125 ng/Kg	0.125U ng/Kg
SL-204-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.208 ng/Kg	0.208U ng/Kg
SL-204-SA6-SB-4.0-5.0(RES)	OCDF	0.535 ng/Kg	0.535U ng/Kg
SL-205-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,991 ng/Kg	0.991U ng/Kg
SL-205-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.447 ng/Kg	0.447U ng/Kg
SL-205-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0831 ng/Kg	0.0831U ng/Kg
SL-205-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.148 ng/Kg	0.148U ng/Kg
SL-205-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0407 ng/Kg	0.0407U ng/Kg
SL-205-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.113 ng/Kg	0.113U ng/Kg
SL-205-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0520 ng/Kg	0.0520U ng/Kg
SL-205-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0328 ng/Kg	0.0328U ng/Kg
SL-205-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0,0162 ng/Kg	0.0162U ng/Kg
SL-205-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0869 ng/Kg	0.0869U ng/Kg
SL-205-\$A6-\$B-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.206 ng/Kg	0.206U ng/Kg
SL-261-SA6-SB-1.5-2.5(RES)	2,3,4,6,7,8-HXCDF	0.296 ng/Kg	0.296U ng/Kg
SL-261-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.334 ng/Kg	0.334U ng/Kg
SL-261-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.245 ng/Kg	0.245U ng/Kg
SL-261-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0780 ng/Kg	0.0780U ng/Kg
SL-261-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.185 ng/Kg	0.185U ng/Kg

1/4/2012 8:23:31 AM ADR version 1.4.0.111 Page 2 of 4

Lab Reporting Batch ID: DX132 Laboratory: LL

EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-261-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.165 ng/Kg	0.165U ng/Kg
SL-261-SA6-SB-9.0-10.0(RES)	OCDD	0.621 ng/Kg	0.621U ng/Kg
SL-261-SA6-SB-9.0-10.0(RES)	OCDF	0.251 ng/Kg	0.251U ng/Kg
SL-262-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0,353 ng/Kg	0.353U ng/Kg
SL-262-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.166 ng/Kg	0.166U ng/Kg
SL-262-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0351 ng/Kg	0.0351U ng/Kg
SL-262-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0,0458 ng/Kg	0.0458U ng/Kg
SL-262-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0451 ng/Kg	0.0451U ng/Kg
SL-262-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0320 ng/Kg	0.0320U ng/Kg
SL-262-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0762 ng/Kg	0.0762U ng/Kg
SL-262-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0147 ng/Kg	0.0147U ng/Kg
SL-262-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0625 ng/Kg	0.0625U ng/Kg
SL-262-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0569 ng/Kg	0.0569U ng/Kg
SL-262-SA6-SB-4.0-5.0(RES)	OCDF	0,343 ng/Kg	0.343U ng/Kg
SL-263-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.363 ng/Kg	0.363U ng/Kg
SL-263-SA6-SB-4.0-5,0(RES)	1,2,3,4,6,7,8-HPCDF	0.230 ng/Kg	0.230U ng/Kg
SL-263-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0567 ng/Kg	0.0567U ng/Kg
SL-263-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.135 ng/Kg	0.135U ng/Kg
SL-263-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0493 ng/Kg	0.0493U ng/Kg
SL-263-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.106 ng/Kg	0.106U ng/Kg
SL-263-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0762 ng/Kg	0.0762U ng/Kg
SL-263-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.101 ng/Kg	0.101U ng/Kg
SL-263-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0906 ng/Kg	0.0906U ng/Kg
SL-263-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.163 ng/Kg	0.163U ng/Kg
SL-263-SA6-SB-4.0-5.0(RES)	OCDD	1.37 ng/Kg	1.37U ng/Kg
SL-263-SA6-SB-4.0-5.0(RES)	OCDF	0.258 ng/Kg	0.258U ng/Kg
SL-263-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.250 ng/Kg	0.250U ng/Kg
SL-263-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.196 ng/Kg	0.196U ng/Kg
SL-263-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0360 ng/Kg	0.0360U ng/Kg
SL-263-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.0565 ng/Kg	0.0565U ng/Kg
SL-263-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDD	0.0205 ng/Kg	0.0205U ng/Kg
SL-263-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0287 ng/Kg	0.0287U ng/Kg
SL-263-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0,0196 ng/Kg	0.0196U ng/Kg
SL-263-SA6-SB-9,0-10,0(RES)	1,2,3,7,8,9-HXCDF	0.0262 ng/Kg	0.0262U ng/Kg
SL-263-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0175 ng/Kg	0.0175U ng/Kg
SL-263-\$A6-\$B-9.0-10,0(RES)	2,3,4,6,7,8-HXCDF	0.0616 ng/Kg	0.0616U ng/Kg
SL-263-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0485 ng/Kg	0.0485U ng/Kg
SL-263-SA6-SB-9.0-10.0(RES)	OCDD	0.522 ng/Kg	0.522U ng/Kg
SL-263-SA6-SB-9.0-10.0(RES)	OCDF	0.205 ng/Kg	0.205U ng/Kg
SL-264-SA6-SB-0.4-1.4(RES)	1,2,3,4,6,7,8-HPCDF	0.654 ng/Kg	0.654U ng/Kg

1/4/2012 8:23:31 AM ADR version 1.4.0.111 Page 3 of 4

Lab Reporting Batch ID: DX132 Laboratory: LL

EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-264-SA6-SB-0.4-1.4(RES)	1,2,3,4,7,8,9-HPCDF	0.105 ng/Kg	0.105U ng/Kg
SL-264-SA6-SB-0.4-1.4(RES)	1,2,3,4,7,8-HXCDF	0.117 ng/Kg	0.117U ng/Kg
SL-264-SA6-SB-0.4-1.4(RES)	1,2,3,6,7,8-HXCDF	0.0869 ng/Kg	0.0869U ng/Kg
SL-264-SA6-SB-0.4-1.4(RES)	1,2,3,7,8-PECDD	0.0749 ng/Kg	0.0749U ng/Kg
SL-264-SA6-SB-0.4-1.4(RES)	1,2,3,7,8-PECDF	0.0720 ng/Kg	0.0720U ng/Kg
SL-264-SA6-SB-0.4-1.4(RES)	2,3,4,6,7,8-HXCDF	0.110 ng/Kg	0.110U ng/Kg
SL-264-SA6-SB-0.4-1.4(RES)	2,3,4,7,8-PECDF	0.121 ng/Kg	0.121U ng/Kg
SL-266-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	1.01 ng/Kg	1.01U ng/Kg
SL-266-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.380 ng/Kg	0.380U ng/Kg
SL-266-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0775 ng/Kg	0,0775U ng/Kg
SL-266-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0604 ng/Kg	0.0604U ng/Kg
SL-266-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0679 ng/Kg	0,0679U ng/Kg
SL-266-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0335 ng/Kg	0.0335U ng/Kg
SL-266-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0,110 ng/Kg	0.110U ng/Kg
SL-266-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0224 ng/Kg	0.0224U ng/Kg
SL-266-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0300 ng/Kg	0.0300U ng/Kg
SL-266-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0548 ng/Kg	0.0548U ng/Kg
SL-266-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0564 ng/Kg	0.0564U ng/Kg
SL-266-SA6-SB-4.0-5.0(RES)	OCDF	0.769 ng/Kg	0.769U ng/Kg
SL-311-SA6-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDF	0.666 ng/Kg	0.666U ng/Kg
SL-311-SA6-SB-2,0-3,0(RES)	1,2,3,4,7,8,9-HPCDF	0.0913 ng/Kg	0.0913U ng/Kg
SL-311-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8-HXCDF	0.147 ng/Kg	0.147U ng/Kg
SL-311-SA6-SB-2,0-3,0(RES)	1,2,3,6,7,8-HXCDF	0.131 ng/Kg	0.131U ng/Kg
SL-311-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDF	0.0717 ng/Kg	0.0717U ng/Kg
L-311-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDD	0.0246 ng/Kg	0.0246U ng/Kg
L-311-SA6-SB-2.0-3.0(RES)	1,2,3,7,8-PECDF	0.0742 ng/Kg	0.0742U ng/Kg
SL-311-SA6-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.118 ng/Kg	0.118U ng/Kg
SL-311-SA6-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0.178 ng/Kg	0.178U ng/Kg
SL-311-SA6-SB-2.0-3.0(RES)	OCDF	0.786 ng/Kg	0.786U ng/Kg

Page 4 of 4

# Field Duplicate RPD Report

Lab Reporting Batch ID: DX132

Laboratory: LL

EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO		<b>Lighthallida</b> surtigi <mark>a perte</mark> gralis			endingual e propie en encon
	Concen	tration (%)			
Analyte	SL-262-SA6-SB-4.0-5.0	DUP14-SA6-QC-090111	Sample RPD	eQAPP RPD	Flag
MOISTURE	8.6	9.9	14		No Qualifiers Applied

	Concentra	tion (ng/Kg)			
Analyte	SL-262-SA6-SB-4.0-5.0	DUP14-SA6-QC-090111	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD	0.353	0.297	17	50.00	
,2,3,4,6,7,8-HPCDF	0.166	0.187	12	50.00	
,2,3,4,7,8,9-HPCDF	0.0351	0.0361	3	50.00	
,2,3,4,7,8-HXCDF	0.0458	0.0602	27	50.00	No Ovellens Asset
,2,3,6,7,8-HXCDD	0.0451	0.0375	18	50.00	No Qualifiers Appli
,2,3,6,7,8-HXCDF	0.0320	0.0267	18	50.00	
3,4,6,7,8-HXCDF	0.0625	0.0523	18	50.00	
,3,4,7,8-PECDF	0.0569	0.0657	14	50.00	
,2,3,7,8,9-HXCDD	0.0762	0.0327	80	50.00	
,2,3,7,8,9-HXCDF	5.44 U	0.0345	200	50.00	
,2,3,7,8-PECDF	0.0147	0.0296	67	50.00	J(all detects)
2,3,7,8-TCDF	1.09 U	0.0186	200	50.00	UJ(all non-detects
OCDD	2.08	0.818	87	50.00	
OCDF	0.343	0.168	68	50.00	

Lab Reporting Batch ID: DX132

EDD Filename: DX132_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

# Method: 1613B

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA6-SB-090711	1,2,3,4,6,7,8-HPCDD	JB	2.78	9.85	PQL	pg/L	
	1,2,3,4,6,7,8-HPCDF	JBQ	2.98	9.85	PQL	pg/L	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.355	9.85	PQL	pg/L	
	1,2,3,4,7,8-HxCDD	JBQ	0.618	9.85	PQL	pg/L	
	1,2,3,4,7,8-HXCDF	JBQ	0.297	9.85	PQL	pg/L	
	1,2,3,6,7,8-HXCDF	JQ	0.296	9.85	PQL	pg/L	
	1,2,3,7,8,9-HXCDD	JBQ	0.436	9.85	PQL	pg/L	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.324	9.85	PQL	pg/L	, , , , ,
	1,2,3,7,8-PECDF	JBQ	0.309	9.85	PQL	pg/L	
	2,3,4,6,7,8-HXCDF	JBQ	0.684	9.85	PQL	pg/L	
	2,3,4,7,8-PECDF	JBQ	0.344	9.85	PQL	pg/L	
	OCDD	JBQ	6.01	19.7	PQL	pg/L	
	locde	JB	2 71	19.7	POL	ng/i	

Metrica: 1613B

Matrix: SC

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
DUP14-SA6-QC-090111	1,2,3,4,6,7,8-HPCDD	JB	0.297	5.49	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.187	5.49	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0361	5.49	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0602	5.49	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0375	5.49	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0267	5.49	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0327	5.49	PQL	ng/Kg	1 /-11 -11-3
	1,2,3,7,8,9-HXCDF	JB	0.0345	5.49	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.0296	5.49	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0523	5.49	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0657	5.49	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.0186	1.10	PQL	ng/Kg	
	OCDD	JB	0.818	11.0	PQL	ng/Kg	
	OCDF	JB	0.168	11.0	PQL	ng/Kg	
SL-204-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.704	5.36	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.299	5.36	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0812	5.36	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0678	5.36	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.157	5.36	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0670	5.36	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.114	5.36	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0649	5.36	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JВ	0.0860	5.36	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.167	5.36	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.193	5.36	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.125	5.36	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.208	5.36	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0539	1.07	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.0632	1.07	PQL	ng/Kg	
	OCDD	JB	7.69	10.7	PQL	ng/Kg	
	OCDF	JB	0.535	10.7	PQL	ng/Kg	

1/4/2012 8:23:41 AM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX132

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX132_v1 eQAPP Name: CDM_SS

Method: 1613B

Matrix: SO

Wiatrix. 30				,			
		Lab		Reporting	RL.		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-205-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.991	5.45	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.447	5.45	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0831	5.45	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.148	5.45	PQL	ng/Kg	
1	1,2,3,6,7,8-HXCDD	JB	0.0407	5.45	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.113	5.45	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0520	5.45	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0328	5.45	PQL	ng/Kg	J (all detects)
i	1,2,3,7,8-PECDD	JBQ	0.0162	5.45	PQL	ng/Kg	, ,
	1,2,3,7,8-PECDF	JB	0.719	5.45	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0869	5.45	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.206	5.45	PQL	ng/Kg	
	2,3,7,8-TCDF	j	0.360	1.09	PQL	ng/Kg	
	OCDD	JB	10.4	10.9	PQL	ng/Kg	
	OCDF	JB	1.04	10.9	PQL	ng/Kg	
SL-258-SA6-SB-0.0-0.83	1,2,3,4,7,8,9-HPCDF	JB	1.12	5.07	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.901	5.07	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	1.87	5.07	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	1.75	5.07	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.755	5.07	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.30	5.07	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JB	0.317	5.07	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.300	5.07	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.831	5.07	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.611	5.07	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0449	1.01	PQL	na/Ka	
	2,3,7,8-TCDF	JQ	0.296	1.01	PQL	ng/Kg	
SL-261-SA6-SB-1.5-2.5	1,2,3,4,6,7,8-HPCDF	JB	1,63	5,51	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.184	5.51	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.197	5.51	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.382	5.51	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.587	5.51	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.313	5.51	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.539	5.51	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.406	5.51	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.408	5.51	PQL	ng/Kg	o (an aciecia)
	1,2,3,7,8-PECDF	JB	0.604	5.51	PQL	ng/Kg ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.004	5.51	PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF	JB	0.540	5.51	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.108	1.10	PQL	ng/Kg	
	2,3,7,8-TCDF	j	0.108	1.10	PQL	ng/Kg	
	OCDF	JB	3.73	11.0	PQL	ng/Kg ng/Kg	
	ООВ	JD	3.13	11.0	FUL	ing/ing	

Lab Reporting Batch ID: DX132

Laboratory: LL

EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-261-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	##SS##################################	0.334 0.245 0.0780 0.131 0.257 0.124 0.185 0.102 0.183 0.284 0.345 0.165 0.347 0.102 0.118 0.621 0.251	5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.48	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-262-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	18 18 18 18 18 18 18 18 18 18 18 18 18 1	0.353 0.166 0.0351 0.0458 0.0451 0.0320 0.0762 0.0147 0.0625 0.0569 2.08 0.343	5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-263-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-TCDD 2,3,7,8-TCDD 0CDF	а В В В В В В В В В В В В В	0.363 0.230 0.0567 0.0536 0.135 0.0493 0.106 0.0762 0.101 0.132 0.178 0.0906 0.163 0.0590 0.0577 1.37 0.258	5.44 5.44 5.44 5.44 5.44 5.44 5.44 5.44	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX132 Laboratory: LL

EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-263-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD	JB	0.250	5.57	PQL	ng/Kg	-, -
	1,2,3,4,6,7,8-HPCDF	JB	0.196	5.57	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0360	5.57	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0565	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0205	5.57	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0287	5.57	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0196	5.57	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JB	0.0262	5.57	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.0175	5.57	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0616	5.57	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0485	5.57	PQL	ng/Kg	
į	2,3,7,8-TCDD	JQ	0.0205	1.11	PQL	ng/Kg	
	OCDD	JB	0.522	11.1	PQL	ng/Kg	
	OCDF	JB	0.205	11.1	PQL	ng/Kg	
SL-264-SA6-SB-0.4-1.4	1,2,3,4,6,7,8-HPCDD	JB	2.09	5.09	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.654	5.09	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.105	5.09	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0819	5.09	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.117	5.09	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.134	5.09	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0869	5.09	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.165	5.09	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.143	5.09	PQL	ng/Kg	, ,,,
	1,2,3,7,8-PECDD	JBQ	0.0749	5.09	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0720	5.09	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.110	5.09	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.121	5.09	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0193	1.02	PQL	ng/Kg	
	OCDF	JB	1.42	10.2	PQL	ng/Kg	
SL-266-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	1.01	5.38	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.380	5.38	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0775	5.38	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.0604	5.38	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0679	5.38	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0335	5.38	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.102	5.38	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.110	5.38	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0224	5.38	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0300	5.38	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0548	5.38	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0564	5.38	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0213	1.08	PQL	ng/Kg	
	OCDD	JB	10.4	10.8	PQL	ng/Kg	
	OCDF	JB	0.769	10.8	PQL	ng/Kg	

Lab Reporting Batch ID: DX132 Laboratory: LL

EDD Filename: DX132_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-311-SA6-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDD	JB	1.47	5.33	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.666	5.33	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0913	5.33	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.147	5.33	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.111	5.33	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.131	5.33	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.111	5.33	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.0717	5.33	PQL	ng/Kg	J (all detects
	1,2,3,7,8-PECDD	JB	0.0246	5.33	PQL	ng/Kg	•
	1,2,3,7,8-PECDF	JBQ	0.0742	5.33	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.118	5.33	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.178	5.33	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.203	1.07	PQL	ng/Kg	
	OCDD	JB	9.15	10.7	PQL	ng/Kg	
	OCDF	JB	0.786	10.7	PQL	ng/Kg	

ADR version 1.4.0.111 Page 5 of 5

### **Enclosure II**

**Level IV Validation Reports** 

# Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Santa Susana Field Laboratory

Collection Date: September 1 through September 7, 2011

LDC Report Date: December 28, 2011

Matrix: Soil/Water

Parameters: Dioxins/Dibenzofurans

Validation Level: Level IV

Laboratory: Lancaster Laboratories

Sample Delivery Group (SDG): DX132

### Sample Identification

SL-258-SA6-SB-0.0-0.83

SL-262-SA6-SB-4.0-5.0

SL-264-SA6-SB-0.4-1.4

SL-266-SA6-SB-4.0-5.0

DUP14-SA6-QC-090111

SL-204-SA6-SB-4.0-5.0

SL-261-SA6-SB-1.5-2.5

SL-261-SA6-SB-9.0-10.0

SL-263-SA6-SB-4.0-5.0

SL-263-SA6-SB-9.0-10.0

SL-205-SA6-SB-4.0-5.0

SL-311-SA6-SB-2.0-3.0

EB-SA6-WB-090711

SL-262-SA6-SB-4.0-5.0MS

SL-262-SA6-SB-4.0-5.0MSD

### Introduction

This data review covers 14 soil samples and one water sample listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1613B for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Quality Assurance Project Plan for Santa Susana Field Laboratory (SSFL), RCRA Facility Investigation, Surficial Media Operable Unit (March 2009, Revision 4) and the USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

### II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

The chromatographic resolution between 2,3,7,8-TCDD and the peaks representing any other unlabeled TCDD isomers was resolved with a valley of less than or equal to 25%.

PFK and static resolving power were within validation criteria.

### III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

### IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were within QC limits

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

### V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BLK26001	9/13/11	2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDD 0CDD 0CDF	0.680 pg/L 0.426 pg/L 0.637 pg/L 0.529 pg/L 0.833 pg/L 0.441 pg/L 0.617 pg/L 0.652 pg/L 0.522 pg/L 2.13 pg/L 2.87 pg/L 0.770 pg/L 4.54 pg/L 1.21 pg/L	All water samples in SDG DX132
BLK257002	9/15/11	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0CDD 0CDF	0.0181 ng/Kg 0.0560 ng/Kg 0.0560 ng/Kg 0.0509 ng/Kg 0.0471 ng/Kg 0.0795 ng/Kg 0.0140 ng/Kg 0.0192 ng/Kg 0.0275 ng/Kg 0.214 ng/Kg 0.215 ng/Kg 0.0353 ng/Kg 0.396 ng/Kg 0.179 ng/Kg	All soil samples in SDG DX132

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
EB-\$A6-WB-090711	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 0,2,3,4,7,8,9-HpCDD	0.309 pg/L 0.344 pg/L 0.297 pg/L 0.684 pg/L 0.618 pg/L 0.436 pg/L 0.324 pg/L 2.98 pg/L 2.78 pg/L 0.355 pg/L 6.01 pg/L 2.71 pg/L	0.309U pg/L 0.344U pg/L 0.297U pg/L 0.684U pg/L 0.618U pg/L 0.436U pg/L 0.324U pg/L 2.98U pg/L 2.78U pg/L 0.355U pg/L 6.01U pg/L 2.71U pg/L

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-262-SA6-SB-4.0-5.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD	0.0147 ng/Kg 0.0569 ng/Kg 0.0458 ng/Kg 0.0320 ng/Kg 0.0625 ng/Kg 0.0451 ng/Kg 0.0762 ng/Kg 0.166 ng/Kg 0.353 ng/Kg 0.0351 ng/Kg 0.0351 ng/Kg	0.0147U ng/Kg 0.0569U ng/Kg 0.0458U ng/Kg 0.0320U ng/Kg 0.0625U ng/Kg 0.0451U ng/Kg 0.0762U ng/Kg 0.166U ng/Kg 0.353U ng/Kg 0.0351U ng/Kg
SL-264-SA6-SB-0.4-1.4	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	0.0720 ng/Kg 0.121 ng/Kg 0.0749 ng/Kg 0.117 ng/Kg 0.0869 ng/Kg 0.110 ng/Kg 0.654 ng/Kg 0.105 ng/Kg	0.0720U ng/Kg 0.121U ng/Kg 0.0749U ng/Kg 0.117U ng/Kg 0.0869U ng/Kg 0.110U ng/Kg 0.654U ng/Kg 0.105U ng/Kg
SL-266-SA6-SB-4.0-5.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 0CDF	0.0300 ng/Kg 0.0564 ng/Kg 0.0224 ng/Kg 0.0604 ng/Kg 0.0335 ng/Kg 0.0548 ng/Kg 0.0679 ng/Kg 0.110 ng/Kg 0.380 ng/Kg 1.01 ng/Kg 0.0775 ng/Kg 0.769 ng/Kg	0.0300U ng/Kg 0.0564U ng/Kg 0.0224U ng/Kg 0.0604U ng/Kg 0.0335U ng/Kg 0.0548U ng/Kg 0.0679U ng/Kg 0.380U ng/Kg 1.01U ng/Kg 0.0775U ng/Kg 0.769U ng/Kg
DUP14-SA6-QC-090111	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 0CDD 0CDD	0.0296 ng/Kg 0.0657 ng/Kg 0.0602 ng/Kg 0.0267 ng/Kg 0.0523 ng/Kg 0.0375 ng/Kg 0.0327 ng/Kg 0.0345 ng/Kg 0.187 ng/Kg 0.297 ng/Kg 0.0361 ng/Kg 0.818 ng/Kg	0.0296U ng/Kg 0.0657U ng/Kg 0.0602U ng/Kg 0.0267U ng/Kg 0.0523U ng/Kg 0.0375U ng/Kg 0.0327U ng/Kg 0.0345U ng/Kg 0.187U ng/Kg 0.297U ng/Kg 0.0361U ng/Kg 0.818U ng/Kg 0.168U ng/Kg
SL-204-SA6-SB-4.0-5.0	2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 0CDF	0.208 ng/Kg 0.157 ng/Kg 0.114 ng/Kg 0.125 ng/Kg 0.0670 ng/Kg 0.0649 ng/Kg 0.0860 ng/Kg 0.299 ng/Kg 0.704 ng/Kg 0.0812 ng/Kg 0.535 ng/Kg	0.208U ng/Kg 0.157U ng/Kg 0.114U ng/Kg 0.1125U ng/Kg 0.0670U ng/Kg 0.0649U ng/Kg 0.0860U ng/Kg 0.299U ng/Kg 0.704U ng/Kg 0.0812U ng/Kg 0.535U ng/Kg
SL-261-SA6-SB-1.5-2.5	2,3,4,6,7,8-HxCDF	0.296 ng/Kg	0.296U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-261-SA6-SB-9.0-10.0	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF OCDD OCDF	0.185 ng/Kg 0.165 ng/Kg 0.245 ng/Kg 0.334 ng/Kg 0.0780 ng/Kg 0.621 ng/Kg 0.251 ng/Kg	0.185U ng/Kg 0.165U ng/Kg 0.245U ng/Kg 0.334U ng/Kg 0.0780U ng/Kg 0.621U ng/Kg 0.251U ng/Kg
SL-263-SA6-SB-4.0-5.0	2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF OCDD OCDF	0.163 ng/Kg 0.135 ng/Kg 0.106 ng/Kg 0.0906 ng/Kg 0.0493 ng/Kg 0.0762 ng/Kg 0.101 ng/Kg 0.230 ng/Kg 0.363 ng/Kg 0.0567 ng/Kg 1.37 ng/Kg	0.163U ng/Kg 0.135U ng/Kg 0.106U ng/Kg 0.0906U ng/Kg 0.0493U ng/Kg 0.0762U ng/Kg 0.101U ng/Kg 0.230U ng/Kg 0.363U ng/Kg 0.0567U ng/Kg 1.37U ng/Kg 0.258U ng/Kg
SL-263-SA6-SB-9.0-10.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 0CDD OCDF	0.0175 ng/Kg 0.0485 ng/Kg 0.0565 ng/Kg 0.0565 ng/Kg 0.0287 ng/Kg 0.0616 ng/Kg 0.0205 ng/Kg 0.0196 ng/Kg 0.196 ng/Kg 0.250 ng/Kg 0.0360 ng/Kg 0.522 ng/Kg 0.205 ng/Kg	0.0175U ng/Kg 0.0485U ng/Kg 0.0565U ng/Kg 0.0287U ng/Kg 0.0616U ng/Kg 0.0205U ng/Kg 0.0196U ng/Kg 0.0262U ng/Kg 0.196U ng/Kg 0.250U ng/Kg 0.0360U ng/Kg 0.522U ng/Kg 0.522U ng/Kg
SL-311-SA6-SB-2.0-3.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	0.0742 ng/Kg 0.178 ng/Kg 0.0246 ng/Kg 0.147 ng/Kg 0.131 ng/Kg 0.118 ng/Kg 0.0717 ng/Kg 0.666 ng/Kg 0.0913 ng/Kg 0.786 ng/Kg	0.0742U ng/Kg 0.178U ng/Kg 0.0246U ng/Kg 0.147U ng/Kg 0.131U ng/Kg 0.118U ng/Kg 0.0717U ng/Kg 0.666U ng/Kg 0.0913U ng/Kg 0.786U ng/Kg
SL-205-SA6-SB-4.0-5.0	2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD	0.206 ng/Kg 0.0162 ng/Kg 0.148 ng/Kg 0.113 ng/Kg 0.0869 ng/Kg 0.0407 ng/Kg 0.0520 ng/Kg 0.0328 ng/Kg 0.447 ng/Kg 0.991 ng/Kg 0.0831 ng/Kg	0.206U ng/Kg 0.0162U ng/Kg 0.148U ng/Kg 0.113U ng/Kg 0.0869U ng/Kg 0.0407U ng/Kg 0.0520U ng/Kg 0.0328U ng/Kg 0.447U ng/Kg 0.991U ng/Kg

Sample EB-SA6-WB-090711 was identified as an equipment blank. No polychlorinated dioxin/dibenzofuran contaminants were found with the following exceptions:

Equipment Blank ID	Sampling Date	Compound	Concentration	Associated Samples
EB-SA6-WB-090711	9/7/11	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0CDD 0CDF	0.309 pg/L 0.344 pg/L 0.297 pg/L 0.684 pg/L 0.618 pg/L 0.436 pg/L 0.324 pg/L 2.98 pg/L 2.78 pg/L 0.355 pg/L 6.01 pg/L 2.71 pg/L	SL-205-SA6-SB-4.0-5.0 SL-311-SA6-SB-2.0-3.0

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X for other contaminants) than the concentrations found in the associated field blanks.

### VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) samples were reviewed for each matrix as applicable. Percent recoveries (%R) and relative percent differences (RPD) were within the QC limits.

## VII. Laboratory Control Samples (LCS)

Laboratory control samples were reviewed for each matrix as applicable. The percent recoveries (%R) were within the QC limits.

### VIII. Regional Quality Assurance and Quality Control

Not applicable.

### IX. Internal Standards

All internal standard recoveries were within QC limits.

### X. Target Compound Identifications

All target compound identifications were within validation criteria.

## XI. Compound Quantitation and RLs

All compound quantitation and RLs were within validation criteria.

All compounds reported below the RL were qualified as follows:

Sample	Finding	Flag	A or P
All samples in SDG DX132	All compounds reported below the RL.	J (all detects)	А

## XII. System Performance

The system performance was acceptable.

## XIII. Overall Assessment of Data

Data flags are summarized at the end of this report if data has been qualified.

## XIV. Field Duplicates

Samples SL-262-SA6-SB-4.0-5.0 and DUP14-SA6-QC-090111 were identified as field duplicates. No polychlorinated dioxins/dibenzofurans were detected in any of the samples with the following exceptions:

	Concentra	ition (ng/Kg)			
Compound	SL-262-SA6-SB-4.0-5.0	DUP14-SA6-QC-090111	RPD (Limits)	Flags	A or P
2,3,7,8-TCDF	1.09U	0.0186	200 (≤50)	J (all detects) UJ (all non-detects)	Α
1,2,3,7,8-PeCDF	0.0147	0.0296	67 (≤50)	J (all detects)	A
2,3,4,7,8-PeCDF	0.0569	0.0657	14 (≤50)	-	-
1,2,3,4,7,8-HxCDF	0.0458	0.0602	27 (≤50)	-	-
1,2,3,6,7,8-HxCDF	0.0320	0.0267	18 (≤50)	-	-
2,3,4,6,7,8-HxCDF	0.0625	0.0523	18 (≤50)	-	-
1,2,3,6,7,8-HxCDD	0.0451	0.0375	18 (≤50)	-	-
1,2,3,7,8,9-HxCDD	0.0762	0.0327	80 (≤50)	J (all detects)	А
1,2,3,7,8,9-HxCDF	5.44U	0.0345	200 (≤50)	J (all detects) UJ (all non-detects)	Α
1,2,3,4,6,7,8-HpCDF	0.166	0.187	12 (≤50)	-	-
1,2,3,4,6,7,8-HpCDD	0.353	0.297	17 (≤50)	-	-

	Concentra				
Compound	SL-262-SA6-SB-4.0-5.0	DUP14-SA6-QC-090111	RPD (Limits)	Flags	A or P
1,2,3,4,7,8,9-HpCDF	0.0351	0.0361	3 (≤50)	-	-
OCDD	2.08	0.818	87 (≤50)	J (all detects)	А
OCDF	0.343	0.168	68 (≤50)	J (all detects)	А

## Santa Susana Field Laboratory Dioxins/Dibenzofurans - Data Qualification Summary - SDG DX132

SDG	Sample	Compound	Flag	A or P	Reason (Code)
DX132	SL-258-SA6-SB-0.0-0.83 SL-262-SA6-SB-4.0-5.0 SL-264-SA6-SB-0.4-1.4 SL-266-SA6-SB-4.0-5.0 DUP14-SA6-QC-090111 SL-204-SA6-SB-4.0-5.0 SL-261-SA6-SB-1.5-2.5 SL-261-SA6-SB-9.0-10.0 SL-263-SA6-SB-4.0-5.0 SL-263-SA6-SB-9.0-10.0 SL-205-SA6-SB-4.0-5.0 SL-205-SA6-SB-4.0-5.0 SL-311-SA6-SB-2.0-3.0 EB-SA6-WB-090711	All compounds reported below the RL.	J (all detects)	Α	Compound quantitation and RLs (Z)
DX132	SL-262-SA6-SB-4.0-5.0 DUP14-SA6-QC-090111	2,3,7,8-TCDF 1,2,3,7,8,9-HxCDF	J (all detects) UJ (all non-detects) J (all detects) UJ (all non-detects)	A	Field duplicates (RPD) (FD)
DX132	SL-262-SA6-SB-4.0-5.0 DUP14-SA6-QC-090111	1,2,3,7,8-PeCDF 1,2,3,7,8,9-HxCDD OCDD OCDF	J (all detects) J (all detects) J (all detects) J (all detects)	Α	Field duplicates (RPD) (FD)

## Santa Susana Field Laboratory Dioxins/Dibenzofurans - Laboratory Blank Data Qualification Summary - SDG DX132

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX132	EB-SA6-WB-090711	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 0CDD 0CDD	0.309U pg/L 0.344U pg/L 0.297U pg/L 0.684U pg/L 0.618U pg/L 0.436U pg/L 0.324U pg/L 2.98U pg/L 2.78U pg/L 0.355U pg/L 6.01U pg/L 2.71U pg/L	A	В
DX132	SL-262-SA6-SB-4.0-5.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD	0.0147U ng/Kg 0.0569U ng/Kg 0.0458U ng/Kg 0.0320U ng/Kg 0.0625U ng/Kg 0.0451U ng/Kg 0.0762U ng/Kg 0.166U ng/Kg 0.353U ng/Kg 0.0351U ng/Kg	А	В

SDG	Sample	Compound	Modified Final Concentration	A or P	Code
DX132	SL-264-SA6-SB-0.4-1.4	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	0.0720U ng/Kg 0.121U ng/Kg 0.0749U ng/Kg 0.117U ng/Kg 0.0869U ng/Kg 0.110U ng/Kg 0.654U ng/Kg 0.105U ng/Kg	A	В
DX132	SL-266-SA6-SB-4.0-5.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD OCDF	0.0300U ng/Kg 0.0564U ng/Kg 0.0224U ng/Kg 0.0604U ng/Kg 0.0335U ng/Kg 0.0548U ng/Kg 0.0679U ng/Kg 0.110U ng/Kg 0.380U ng/Kg 1.01U ng/Kg 0.0775U ng/Kg	А	В
DX132	DUP14-SA6-QC-090111	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0CDD 0CDF	0.0296U ng/Kg 0.0657U ng/Kg 0.0602U ng/Kg 0.0267U ng/Kg 0.0523U ng/Kg 0.0375U ng/Kg 0.0327U ng/Kg 0.0345U ng/Kg 0.187U ng/Kg 0.297U ng/Kg 0.0361U ng/Kg 0.818U ng/Kg 0.168U ng/Kg	А	В
DX132	SL-204-SA6-SB-4.0-5.0	2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD	0.208U ng/Kg 0.157U ng/Kg 0.114U ng/Kg 0.125U ng/Kg 0.0670U ng/Kg 0.0649U ng/Kg 0.0860U ng/Kg 0.299U ng/Kg 0.704U ng/Kg 0.0812U ng/Kg	А	В
DX132	SL-261-SA6-SB-1.5-2.5	2,3,4,6,7,8-HxCDF	0.296U ng/Kg	A	В
DX132	SL-261-SA6-SB-9.0-10.0	1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF OCDD OCDF	0.185U ng/Kg 0.165U ng/Kg 0.245U ng/Kg 0.334U ng/Kg 0.0780U ng/Kg 0.621U ng/Kg 0.251U ng/Kg	А	В

SDG	Sample	Compound	Modified Final	A or P	Code
DX132	SL-263-SA6-SB-4.0-5.0	2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF OCDD OCDF	0.163U ng/Kg 0.135U ng/Kg 0.106U ng/Kg 0.0906U ng/Kg 0.0493U ng/Kg 0.0762U ng/Kg 0.101U ng/Kg 0.230U ng/Kg 0.363U ng/Kg 0.0567U ng/Kg 1.37U ng/Kg	А	В
DX132	SL-263-SA6-SB-9.0-10.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDF OCDD OCDF	0.0175U ng/Kg 0.0485U ng/Kg 0.0565U ng/Kg 0.0287U ng/Kg 0.0616U ng/Kg 0.0205U ng/Kg 0.0196U ng/Kg 0.0262U ng/Kg 0.196U ng/Kg 0.250U ng/Kg 0.0360U ng/Kg 0.0360U ng/Kg 0.0522U ng/Kg	А	В
DX132	SL-311-SA6-SB-2.0-3.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	0.0742U ng/Kg 0.178U ng/Kg 0.0246U ng/Kg 0.147U ng/Kg 0.131U ng/Kg 0.118U ng/Kg 0.0717U ng/Kg 0.666U ng/Kg 0.0913U ng/Kg 0.786U ng/Kg	А	В
DX132	SL-205-SA6-SB-4.0-5.0	2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD	0.206U ng/Kg 0.0162U ng/Kg 0.148U ng/Kg 0.113U ng/Kg 0.0869U ng/Kg 0.0407U ng/Kg 0.0520U ng/Kg 0.0328U ng/Kg 0.447U ng/Kg 0.991U ng/Kg	А	В

Santa Susana Field Laboratory Dioxins/Dibenzofurans - Field Blank Data Qualification Summary - SDG DX132

No Sample Data Qualified in this SDG

LDC #: 26850I21	VALIDATION COMPLETENESS WORKSHEET	Date: 12-/27/1
SDG #: DX132 Laboratory: Lancaster Laborat	Level IV	Page: <u>/</u> of <u>/</u> Reviewer: <i>F</i> ⁄
	kins/Dibenzofurans (EPA Method 1613B)	2nd Reviewer:
The samples listed below were validation findings worksheets	e reviewed for each of the following validation areas. Validation fine.	dings are noted in attached

	Validation Area		Comments
ı.	Technical holding times	_ ^	Sampling dates: 9 1 - 9 7 / 1)
11.	HRGC/HRMS Instrument performance check	$\triangle$	
III.	Initial calibration	Δ	% PSD = 20/55
IV.	Routine calibration/ <del>IC∀</del>	A.	ac limits
V.	Blanks	SIN	
VI.	Matrix spike/Matrix spike duplicates	Α	
VII.	Laboratory control samples	A	١(٦
VIII.	Regional quality assurance and quality control	N	
IX.	Internal standards	A	a C limits
X.	Target compound identifications	Δ	
XI.	Compound quantitation and CRQLs	A	
XII.	System performance	A	
XIII.	Overall assessment of data	Δ	
XIV.	Field duplicates	sw	D = 2 + 5
XV.	Field blanks	હખ	EB = 13

Note:

A = Acceptable N = Not provided/applicable SW = See worksheet

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate TB = Trip blank EB = Equipment blank

Validated Samples:

	son + maen						
1 V	SL-258-SA6-SB-0.0-0.83	11	SL-205-SA6-SB-4.0-5.0	21	Blank 256001	31	
2	SL-262-SA6-SB-4.0-5.0	12	SL-311-SA6-SB-2.0-3.0	227	Blank 257002	32	
3	SL-264-SA6-SB-0.4-1.4	13	EB-SA6-WB-090711 W	23		33	
4	SL-266-SA6-SB-4.0-5.0	14	SL-262-SA6-SB-4.0-5.0MS	24		34	
5	DUP14-SA6-QC-090111 /	15	SL-262-SA6-SB-4.0-5.0MSD	25		35	
6	SL-204-SA6-SB-4.0-5.0	16		26		36	
7	SL-261-SA6-SB-1.5-2.5	17		27		37	
8	SL-261-SA6-SB-9.0-10.0	18		28		38	
9	SL-263-SA6-SB-4.0-5.0	19		29		39	
10	SL-263-SA6-SB-9.0-10.0	20		30		40	

Notes:_			
	,, <b>,,,</b>		

Page: <u></u> _of_	2
Reviewer: FT	
2nd Reviewer: 🔨	

Method: Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding∗times:				
All technical holding times were met.				
Cooler temperature criteria was met.				
II. GC/MS instrument performance check		Ser Ser Laboration		
Was PFK exact mass 380.9760 verified?				
Were the retention time windows established for all homologues?				
Was the chromatographic resolution between 2,3,7,8-TCDD and peaks representing any other unlabeled TCDD isomers ≤ 25% ?				
Is the static resolving power at least 10,000 (10% valley definition)?				
Was the mass resolution adequately check with PFK?				
Was the presence of 1,2,8,9-TCDD and 1,3,4,6,8-PeCDF verified?			- Neore	and the control of the control we have to control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control o
III. Initial calibration				
Was the initial calibration performed at 5 concentration levels?				
Were all percent relative standard deviations (%RSD) ≤ 20% for unlabeled compounds and ≤ 35% for labeled compounds ?				
Did all calibration standards meet the Ion Abundance Ratio criteria?				
Was the signal to noise ratio for each target compound ≥ 2.5 and for each recovery and internal standard ≥ 10?				
IV. Continuing calibration	15-15-7 14-14-7		der ki Materia	
Was a routine calibration performed at the beginning and end of each 12 hour period?				
Were all the concentrations for the unlabeled compounds and labeled compounds within the QC limits (Method 1613B, Table 6)?		-		
Did all routine calibration standards meet the Ion Abundance Ratio criteria?			L. Livering	
V:Blanks	***			
Was a method blank associated with every sample in this SDG?				
Was a method blank performed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet?				
VI. Matrix spike/Matrix spike duplicates.				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Were the MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?				
VIII. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per extraction batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				

LDC#: 2680 I2

## **VALIDATION FINDINGS CHECKLIST**

Page: 2of 2
Reviewer: FT
2nd Reviewer: ^

Validation Area	Yes	No	NA	Findings/Comments
VIII. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?	,			
Were the performance evaluation (PE) samples within the acceptance limits?				
IX Internal standards				
Were internal standard recoveries within the <del>25 150% c</del> riteria?				
Was the minimum S/N ratio of all internal standard peaks ≥ 10?	<u></u>			
X: Target compound identification			ang A Kimbo	
For 2,3,7,8 substituted congeners with associated labeled standards, were the retention times of the two quantitation peaks within -1 to 3 sec. of the RT of the labeled standard?	/			
For 2,3,7,8 substituted congeners without associated labeled standards, were the relative retention times of the two quantitation peaks within 0.005 time units of the RRT measured in the routine calibration?	/			
For non-2,3,7,8 substituted congeners, were the retention times of the two quantitation peaks within RT established in the performance check solution?	/			
Did compound spectra contain all characteristic ions listed in the table attached?	/			
Was the Ion Abundance Ratio for the two quantitation ions within criteria?	_			
Was the signal to noise ratio for each target compound and labeled standard > 2.5?	1			
Does the maximum intensity of each specified characteristic ion coincide within $\pm$ 2 seconds (includes labeled standards)?		<del></del>		
For PCDF identification, was any signal (S/N $\geq$ 2.5, at $\pm$ seconds RT) detected in the corresponding PCDPE channel?				
Was an acceptable lock mass recorded and monitored?				
XI. Compound quantitation/CRQLs	13.75 V. 12.			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?		-		
Were compound quantitation and CRQLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. System performance		表。 作		
System performance was found to be acceptable.	1			
XIII Overall assessment of data				
Overall assessment of data was found to be acceptable.				
XIV. Field duplicates.				
Field duplicate pairs were identified in this SDG.				
Target compounds were detected in the field duplicates.				
XV. Field blanks ¹³ .				
Field blanks were identified in this SDG.				The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
Target compounds were detected in the field blanks.				-

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

A. 2,3,7,8-TCDD	F. 1,2,3,4,6,7,8-HpCDD	K. 1,2,3,4,7,8-HxCDF	P. 1,2,3,4,7,8,9-HpCDF	U. Total HpCDD
B. 1,2,3,7,8-PeCDD	G. OCDD	L. 1,2,3,6,7,8-HxCDF	Q. OCDF	V. Total TCDF
C. 1,2,3,4,7,8-HxCDD	H. 2,3,7,8-TCDF	M. 2,3,4,6,7,8-HxCDF	R. Total TCDD	W. Total PeCDF
D. 1,2,3,6,7,8-HxCDD	1. 1,2,3,7,8-PeCDF	N. 1,2,3,7,8,9-HxCDF	S. Total PeCDD	X. Total HxCDF
E. 1,2,3,7,8,9-HxCDD	J. 2,3,4,7,8-PeCDF	O. 1,2,3,4,6,7,8-HpCDF	T. Total HxCDD	Y. Total HpCDF

Notes:

26850 <b>&amp;</b> 21
)C #;;

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? Y N N/A Y/N N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed? *EMPC Was the method blank contaminated? ALL WATER Blank analysis date: 9/14/11 Associated samples: Bank extraction date: 9/13/11

2nd Reviewer,

Conc. units: pg/L						
Compound	Blank ID			Sample Identification		
	BL K256001	2X	13			
A	0.680*	3.4				
	0.426*	2.13	0.309*∪			
ر	0.637	3.185	0.344*U			
¥	0.529*	2.645	0.297*U			
M	0.833*	4.165	0.684*U			
၁	0.441*	2.205	0.618*U			
D	0.617*	3.085				
<u> </u>	0.652	3.26	0.436*U			
Z	0.522	2.61	0.324*U			
0	2.13	10.65	2.98*∪			
L	2.87	14.35	2.78U			
۵	0.770*	3.85	0.355*U			
9	4.54	22.7	6.01*U			
	1 21*	8.08	2 7411		-	

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

Н	) <b>C</b> 21
	26850
	# 2
	2

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were all samples associated with a method blank? X N N/A N/A N/A

Was a method blank performed for each matrix and whenever a sample extraction was performed? *EMPC

Associated samples: ALL SOILS Blank analysis date: 9/16/11 Was the method blank contaminated? Brank extraction date: 9/15/11

2nd Reviewer: Reviewer.

Conc. units: ng/kg			2 2 2			According	Associated samples.	/ ICE COILE		
Compound	Blank ID				Š	Sample Identification	ıtion			
-	BI K257002	2X	-	2	23	4	2	9		8
	0.0181*	0.0905		0.0147*U	0.0720*U	0.0300*U	0.0296*U			
	0.0560*	0.28		0.0569U	0.121U	0.0564*U	0.0657*U	0.208U		
æ	0.0158	0.079			0.0749*U	0.0224*U				
×	0.0509	0.2545		0.0458*U	0.117U	0.0604U	0.0602U	0.157*U		
	0.0471	0.2355		0.0320U	0.0869U	0.0335*U	0.0267U	0.114*U		0.185U
M	0.0795*	0.3975		0.0625*U	0.110*U	0.0548U	0.0523*U	0.125U	0.296U	0.165U
Q	0.0140	0.07		0.0451*U		0.0679*U	0.0375*U	0.0670*U		
ш	0.0192*	0.096		0.0762*U			0.0327*U	0.0649U		
Z	0.0275*	0.1375				0.110*U	0.0345U	0.0860U		
0	0.214	1.07		0.166U	0.654U	0.380U	0.187U	0.299U		0.245U
щ	0.215	1.075		0.353U		1.01U	0.297U	0.704U		0.334U
Д.	0.0353*	0.1765		0.0351*U	0.105*U	0.0775*U	0.0361U	0.0812*U	-0:184t	0.0780U
9	0.396	1.98					0.818U			0.621U
C	0.179	0.895		0.34313		0.7691	0.1681	0 53511		0.25111

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

Н	0821
	2685
	#
	Ö
	ч

Prepse see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Y N N/A N/A N/A

Were all samples associated with a method blank?

Was a method blank performed for each matrix and whenever a sample extraction was performed? *EMPC

Blank analysis date: 9/16/11 Was the method blank contaminated? Blank extraction date: 9/15/11

Y/N N/A

Associated samples: ALL SOILS

2nd Reviewer: Reviewer:_

Conc. units: ng/kg								
Compound	Blank ID				Š	Sample Identification	ion	
	BI K257002	5X	6	10	12	11		
-	0.0181*	0.0905		0.0175*	0.0742*			
٦	0.0560*	0.28	0.163	0.0485	0.178*	0.206*		
В	0.0158	0.079			0.0246	0.0162*		
¥	0.0509	0.2545	0.135	0.0565	0.147	0.148		
J	0.0471	0.2355	0.106	0.0287*	0.131	0.113*		
M	0.0795*	0.3975	0.0906	0.0616*	0.118	0.0869		
D	0.0140	0.07	0.0493*	0.0205*		0.0407		
Ш	0.0192*	0.096	0.0762*	0.0196*		0.0520		
Z	0.0275*	0.1375	0.101	0.0262	0.0717*	0.0328*	:	
0	0.214	1.07	0.230*	0.196	0.666	0.447		
Ŀ	0.215	1.075	0.363	0.250		0.991		
ď	0.0353*	0.1765	0.0567	0.0360*	0.0913	0.0831*		
9	0.396	1.98	1.37	0.522				
D	0.179	0.895	0.258	0.205	ก 786			

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

_
Ň
증
33
õ
$\sim$
*
$\circ$
Õ

## VALIDATION FINDINGS WORKSHEET Field Blank

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A". METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

Were target compounds detected in the field blank? Were field blank identified in this SDG? Y N/A

Y/N N/A Were target compounds detected in tall to be a sociated sample unit: ng/L Associated sample unit: ng/Kg Sampling date: 09/07/11

*EMPC

2nd Reviewer:_

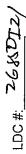
Associated samples: 11,12 >5X

Sample Identification 1.545 1.775 30.05 13.55 1.485 2.18 3.09 13.9 3.42 14.9 1.72 1.62 섥 Blank ID 0.309*0.344* 0.297* 0.684* 0.618* 0.436*0.324*0.355*2.98* 2.78 6.01* 뒤 Compound

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

## LDC#: 26850[2] VALIDATION FINDINGS WORKSHEET Field Duplicates

**METHOD**: 1613B


Y N NA Were field duplicate pairs identified in this SDG?

Y N NA Were target analytes detected in the field duplicate pairs?

* empe

	Concentra	tion (ng/kg)	<u>≤50</u>	
Compound	2	5	RPD	
н	0.0164U	0.0186	200	1/w/A
ı	0.0147*	0.0296*	67	J/Adul
J	0.0569*	0.0657*	14	
к	0.0458*	0.0602	27	
L	0.0320	0.0267	18	
М	0.0625*	0.0523*	18	
D	0.0451*	0.0375*	18	
E	0.0762*	0.0327*	80	1/Add
N	0.0112U	0.0345	200	1/W/A
0	0.166	0.187	12	
F	0.353	0.297	17	
Р	0.0351*	0.0361	3	
G	2.08	0.818	87	J/Adut
Q	0.343	0.168	68	1

V:\FIELD DUPLICATES\templates\26850I21.wpd



## VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: / of/	Reviewer: FT	2nd Reviewer:	J
-------------	--------------	---------------	---

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_g)/(A_{lg})(C_g)$  average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)

 $A_s = Area\ of\ compound, \qquad \qquad A_s = Area\ of\ associated\ internal\ standard\ C_x = Concentration\ of\ compound, \qquad C_s = Concentration\ of\ internal\ standard\ S = Standard\ deviation\ of\ the\ RRFs, \qquad X = Mean\ of\ the\ RRFs$ 

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF ( ر ج عtd)	RRF ( CS 75td)	%RSD	%RSD
-	LCA L	(1/10/8	2,3,7,8-TCDF ( ¹³ C-2,3,7,8-TCDF)	D. X64	0.864	0.890	0.890	3.68	3.68
		•• •	2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	1.017	1.017	1.003	1.003	86-C	29.5K
			1,2,3,6,7,8-HxCDD ( ¹³ C-1,2,3,6,7,8-HxCDD)	968-0	9680	6.854	٥. هم	4.82	787
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	0.964	P46.0	0.946	0.946	9.49	67.4
			OCDF (13C-OCDF)	0.911	116.0	o, &CO	0.82J	3.43	3.43
7			2,3,7,8-TCDF ( ¹³ C-2,3,7,8-TCDF)						
			2.3.7,8-TCDD (13C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)		-				
			OCDF (13C-OCDF)						
п			2,3,7,8-TCDF ( ¹³ C-2,3,7,8-TCDF)						
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)						
			OCDF (13C-OCDF)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

## LDC# 60 63770

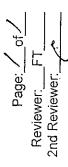
## Initial Calibration Calculation Verification VALIDATION FINDINGS WORKSHEET

Page: /of_ Reviewer._FT 2nd Reviewer._

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the follow calculations:

RRF = (A_x)(C_{is})/(A_{is})(C_x) average RRF = sum of the RRFs/number of standards %RSD = 100 * (S/X)


 $A_k = Area \ of \ compound, \qquad \qquad A_k = Area \ of \ associated \ internal \ standard \ S = Standard \ deviation \ of \ the \ RRFs, \qquad X = Mean \ of \ the \ RRFs$ 

_									
·				Reported	Recalculated	Reported	Recalculated	Reported	Recalculatec
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	Average RRF (initial)	Average RRF (initial)	RRF (CS3 std)	RRF (@5,3 std)	%RSD	%RSD
<b>-</b>	KA L	11/2/0	2,3,7,8-TCDF ( ¹³ C-2,3,7,8-TCDF)	1.01	1.017	1.033	1.033	4.59	4:50
			2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	1.186	1.186	181.1	1.186	5.5%	5.5%
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	0.995	<u> 1660</u>	1001	1-00]	3.43	3.43
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	1.077	1.017	. 1 01 1	101-1	4.02	4.02
			OCDF (13C-OCDF)	0.945	094V	4-P-0	470.0	3.24	3.54
7	147	[1///	2.3.7,8-TCDF (13C-2,3,7,8-TCDF)	1.022	7701	No.1	1.02%	7.7.7	7:17
	•	-a	2,3,7,8-TCDD ( ¹³ C-2,3,7,8-TCDD)	1.133	1.133	1.142	7/1-1	3.52	352
			1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)	0.971	1260	1.018	 1.01,⊗	4.32	4.32
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)	6.50-1	1.053	1.087	1.087	4-49	4.49
			OCDF (13C-OCDF)	0.950	0000	1.00]	1.001	(0.5	10-3
က	•		2,3,7,8-TCDF ( ¹³ C-2,3,7,8-TCDF)						
			2,3,7,8-TCDD ( ¹³ C-2,3,7,8-TCDD)						
			1,2,3,6,7,8-HxCDD ( ¹³ C-1,2,3,6,7,8-HxCDD)						
			1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)						
			ocdf (¹3c-ocdf)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalcular results.

## LDC # 2685072/

## VALIDATION FINDINGS WORKSHEET Routine Calibration Results Verification



METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compound: identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF RRF =  $(A_v)(C_s)/(A_{si})(C_s)$ 

Where: ave. RRF = initial calibration average RRF RRF = continuing calibration RRF

A_x = Area of compound, C_x = Concentration of compound,

 $A_{\rm s}$  = Area of associated internal standard  $C_{\rm s}$  = Concentration of internal standard

# Standard ID Ca	Calibration Date			ć			
Standard ID  6W 17:36	libration Date			керопеа	Recalculated	Reported	Recalculated
	114 [1]	Compound (Reference Internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	d _s	<b>d</b> %
	-	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	0.0	9.530	9.530	Sb	8
		2,3,7,8-TCDD ( ¹³ C-2,3,7,8-TCDD)	10.0	076-01	016.01	601	501
T S		1,2,3,6,7,8-HXCDD (13C-1,2,3,6,7,8-HxCDD)	E 50 0	0 pc 05	046.03	D 0	001
T is		1,2,3,4,6,7,8-HpCDD ( ¹³ C-1,2,4,6,7,8,-HpCDD)	50.0	030.64	050-6h	Şb	o X
1		OCDF (13C-OCDF)	100 0	99.910	016.66	701	001
2 cm (8:01 4 16 1)	191	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)	-	06.01	06001	601	601
	· · · · · · · · · · · · · · · · · · ·	2,3,7,8-TCDD (13C-2,3,7,8-TCDD)		0 × 10	10-180	102	20
		1,2,3,6,7,8-HxCDD (13C-1,2,3,6,7,8-HxCDD)		63.360	53.360	107	[0]
	- 1	1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)		52.810	59-870	30	20
		OCDF (13C-OCDF)	7	106.910	016-901	107	[0]
3 Cey 4:78 A	9/17/11	2,3,7,8-TCDF (13C-2,3,7,8-TCDF)		10.330	10330	103	601
		2,3,7,8-TCDD (13C-2,3,7,8-TCDD)	_	OL1 91	10.170	70)	201
	<b>t</b> .	1,2,3,6,7,8-HxCDD ( ¹³ C-1,2,3,6,7,8-HxCDD)		52730	53-7-3	107	Lol
		1,2,3,4,6,7,8-HpCDD (13C-1,2,4,6,7,8,-HpCDD)		51.590	51.590	103	103
		OCDF (¹³C-OCDF)		165.650	105.650	101	901

Comments: Refer to Routine Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the results recalculated

LDC#: 2683072

# VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page: _of_	Reviewer: FT	2nd Reviewer:	,
------------	--------------	---------------	---

METHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * (SSR - SR)/SA

Where: SSR = Spiked sample result, SR = Sample result SA = Spike added

RPD = I MSR - MSDR I * 2/(MSR + MSDR)

MSR = Matrix spike percent recovery MSDR = Matrix spike duplicate percent recovery

MS/MSD samples:

Recalculated	RPD		0	а	4	~					
Renorted	RPD		2	2	7	ሌ					
Matrix Spike Duplicate	Percent Recovery	Recalc	λP	105	107	102.	[ hal				
Matrix Snik	Percent F	Reported	کام	امی	Lol	102	ነዐሳ				
Matrix Spike	Percent Recovery	Recalc	£	901	إملا	701	]a[				
Matrix	Percent	Reported	7.7	101	101	901	105				
Spiked Sample	ncentration ne d	MSD	51.5	114	וון	112	276				
Spiked	Concentration ( no. 14	MS	21.2	S11	114	115	222		•		
Sample	Concentration ( no st	) )	C 2	92	S	0.0351	6-243				
ike	, y	usw O	21-8	100	100	109	315			•	
Sp	Added ( way	) MS	21.8	100	109	601	ماح				
	Compound		2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8,9-HpCDF	OCDF				

Comments: Refer to Matrix Spike/Matrix Spike Duplicate findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

`\
4
H
200
26
#
FDC

## Laboratory Control Sample Results Verification VALIDATION FINDINGS WORKSHEET

2nd Reviewer: Page: Reviewer:

METHOD: GC/MS Dioxins/Dibenzofurans (EPA SW 846 Method 1613B)

The percent recoveries (%R) and Relative Percent Difference (RPD) of the Jaboratoy control sample and Jaboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

% Recovery = 100 * SSC/SA

Where: SSC = Spiked sample concentration SA = Spike added

RPD = ILCS - LCSD I * 2/(LCS + LCSD)

LCS = Laboraotry control sample percent recovery

00R x 700) LCS ID:

LCSD = Laboratory control sample duplicate percent recovery

				<del></del>	<del></del>					·	~	 		
CS/I CSD	RPD	1 0 0 0	\ Recalmand											
		4000												
CSD	Percent Recovery	Docolo												
31	Percent	Reported					7 7							
l CS	Recovery	Recolu	76	누이	70	[0]	<b>601</b>							
-	Percent	Percent Recovery	Reported	<b>3</b> 6	tot	20	101	५०।						
Sample	Spired Sample Concentration	J' Csn	4 2	-			<b>-</b>							
Spiked	W )	) CS	19.	hol	SOI	101	20%							
oike	4	Spike Added May 44		42					·					
Ś	A A	108	20.0	001	001	901	200				·			
	Compound		QC	eCDD	НхСDD	9-HpCDF								
			2,3,7,8-TCDD	1,2,3,7,8-PeCDD	1,2,3,4,7,8-HxCDD	1,2,3,4,7,8,9-HpCDF	OCDF		•					

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. LDC #: 26850'I' 2)

only.

## VALIDATION FINDINGS WORKSHEET

Sample Calculation Verification

Page: /of_	/
Reviewer:F	7
2nd reviewer:A	
<u> </u>	

MFTHOD: HRGC/HRMS Dioxins/Dibenzofurans (EPA Method 1613B)

$/_{\rm Y}$	Ν	N/A
(Y)	Ν	N/A

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concent	ration	$= \frac{(A_x)(I_s)(DF)}{(A_{is})(RRF)(V_o)(\%S)}$
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured
A _{is}	=	Area of the characteristic ion (EICP) for the specific internal standard
ts	=	Amount of internal standard added in nanograms (ng)
V _o	=	Volume or weight of sample extract in milliliters (ml) or grams (g).
RRF	=	Relative Response Factor (average) from the initial calibration
Df	=	Dilution Factor.
%S	=	Percent solids, applicable to soil and solid matrices

#	Sample ID	Compound	Reported Concentration ( )	Calculated Concentration ( )	Qualification
					<u> </u>
	<del></del>				
		_			
-					
<u></u>					

## **SAMPLE DELIVERY GROUP**

**DX133** 

## Attachment I

Sample ID Cross Reference and Data Review Level

## **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
09-Sep-2011	SL-001-SA6-SB-0.0-1.0	6401600	N	METHOD	1613B	III
09-Sep-2011	SL-001-SA6-SB-0.0-1.0MS	6401601	MS	METHOD	1613B	111
09-Sep-2011	SL-001-SA6-SB-0.0-1.0MSD	6401602	MSD	METHOD	1613B	111
09-Sep-2011	DUP15-SA6-QC-090911	6401607	FD	METHOD	1613B	Ш
09-Sep-2011	SL-217-SA6-SB-4.0-5.0	6401605	N	METHOD	1613B	111
09-Sep-2011	SL-217-SA6-SB-7.5-8.5	6401606	N	METHOD	1613B	tii
09-Sep-2011	SL-210-SA6-SB-4.0-5.0	6401603	N	METHOD	1613B	III
09-Sep-2011	SL-210-SA6-SB-9.0-10.0	6401604	N	METHOD	1613B	111
12-Sep-2011	SL-051-SA6-SB-3.5-4.5	6404358	N	METHOD	1613B	111
12-Sep-2011	SL-235-SA6-SB-4.0-5.0	6404361	N	METHOD	1613B	III
12-Sep-2011	SL-050-SA6-SB-1.0-2.0	6404357	N	METHOD	1613B	111
12-Sep-2011	SL-269-SA6-SB-1.5-2.5	6404360	N	METHOD	1613B	111
12-Sep-2011	SL-055-SA6-SB-2.0-3.0	6404359	N	METHOD	1613B	Ш
13-Sep-2011	SL-040-SA7-SS-0.0-0.5	6404534	N	METHOD	1613B	III
13-Sep-2011	SL-041-SA7-SS-0.0-0.5	6404535	N	METHOD	1613B	111
13-Sep-2011	SL-071-SA7-SS-0.0-0.5	6404537	N	METHOD	1613B	Ш
13-Sep-2011	SL-037-SA7-SS-0.0-0.5	6404533	N	METHOD	1613B	111
13-Sep-2011	SL-070-SA7-SS-0.0-0.5	6404536	N	METHOD	1613B	111
13-Sep-2011	SL-034-SA7-SS-0.0-0.5	6404531	N	METHOD	<b>1</b> 613B	III
13-Sep-2011	SL-035-SA7-SS-0.0-0.5	6404532	N	METHOD	1613B	111
13-Sep-2011	SL-073-SA7-SS-0.0-0.5	6404538	N	METHOD	1613B	111
13-Sep-2011	SL-030-SA7-SS-0.0-0.5	6404530	N	METHOD	1613B	111

## **Attachment II**

**Overall Data Qualification Summary** 

Lab Reporting Batch ID: DX133

Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B Matrix: SO

Sample ID: DUP15-SA6-QC-090911	Collec	ted: 9/9/20	11 10:55:0	00 A	nalysis T	/pe: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.61	JB	0.0352	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.241	JBQ	0.0505	MDL	5.25	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0836	JBQ	0.0510	MDL	5.25	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.300	JQ	0.0399	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.355	J	0.0502	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.155	J	0.0368	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.267	JBQ	0.0473	MDL	5.25	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0685	JQ	0.0342	MDL	5.25	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.252	JQ	0.0496	MDL	5.25	PQL	ng/Kg	J	Z, FD
1,2,3,7,8-PECDF	0.338	J	0.0358	MDL	5.25	PQL	ng/Kg	J	Z, FD
2,3,4,6,7,8-HXCDF	0.157	JBQ	0.0395	MDL	5.25	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.310	JB	0.0365	MDL	5.25	PQL	ng/Kg	J	Z, FD
2,3,7,8-TCDD	0.0868	JQ	0.0594	MDL	1.05	PQL	ng/Kg	J	Ž, FD
OCDF	5.30	JB	0.0442	MDL	10.5	PQL	ng/Kg	J	Z

Sample ID: SL-001-SA6-SB-0.0-1.0 Collected: 9/9/2011 10:50:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.49	JB	0.0350	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.176	JBQ	0.0572	MDL	5.20	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.107	JBQ	0.0515	MDL	5.20	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.269	J	0.0425	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.347	JQ	0.0501	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0932	JQ	0.0386	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.202	JBQ	0.0514	MDL	5.20	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0706	JQ	0.0485	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0486	U	0.0486	MDL	5.20	PQL	ng/Kg	IJ	FD
1,2,3,7,8-PECDF	0.0490	J	0.0383	MDL	5.20	PQL	ng/Kg	J	Z, FD
2,3,4,6,7,8-HXCDF	0.161	JBQ	0.0375	MDL	5.20	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.170	JB	0.0396	MDL	5.20	PQL	ng/Kg	UJ	B, FD
2,3,7,8-TCDD	0.0825	U	0.0825	MDL	1.04	PQL	ng/Kg	บป	FD
OCDD	219	В	0.0856	MDL	10.4	PQL	ng/Kg	J	Q, Q
OCDF	4.62	JB	0.0546	MDL	10.4	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 1:50:36 PM ADR version 1.4.0.111 Page 1 of 13

Lab Reporting Batch ID: DX133

Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM Method: 1613B

Matrix: SO

Sample ID: SL-030-SA7-SS-0.0-0.5	Collec	ted: 9/13/2	2011 2:55:0	00 A	nalysis T	ype: RES	ı	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.452	JB	0.0802	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.01	JB	0.113	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.14	J	0.0710	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	3.08	J	0.110	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.604	J	0.0682	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.80	JB	0.0987	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.346	J	0.0705	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.319	J	0.0798	MDL	5.02	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.494	J	0.0715	MDL	5.02	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.600	JB	0.0606	MDL	5.02	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.05	JB	0.0658	MDL	5.02	PQL	ng/Kg	J	Z

Sample ID: SL-034-SA7-SS-0.0-0.5

2,3,7,8-TCDF

Collected: 9/13/2011 12:15:00

JQ

0.386

Analysis Type: REA

PQL

1.00

ng/Kg

J

Dilution: 1

Z

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.804	JC	0.0637	MDL	0.994	PQL	ng/Kg	Ĺ	Z

0.123

MDL

Sample ID: SL-034-SA7-SS-0.0-0.5

Collected: 9/13/2011 12:15:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.36	JB	0.0742	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.45	JB	0.0908	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.39	J	0.0673	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	4.58	J	0.0908	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.834	J	0.0680	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.95	JB	0.0671	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3, <b>7</b> ,8-PECDD	0.775	J	0.0844	MDL	4.97	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.686	J	0.0691	MDL	4.97	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.18	JB	0.0615	MDL	4.97	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.953	JB	0.0651	MDL	4.97	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.142	J	0.0703	MDL	0.994	PQL	ng/Kg	J	Z

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/3/2012 1:50:36 PM ADR version 1.4.0.111 Page 2 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX133

Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B			Ma	trix:	so					
Sample ID: SL-035-SA7-SS	S-0.0-0.5	Collected: 9/13/2011 2:05:00 Analysis Type: REA									
Analyte		Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reasor Code	
2,3,7,8-TCDF		0.937	JC	0.0563	MDL	0.993	PQL	ng/Kg	J	Z	

ample ID. OL-033-OAT-33-0.0-0.3	Conec	teu. 3/13/2	.011 2.03.0	70 A	marysis i	ype: KLS		L	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	1.15	JB	0.0826	MDL	4.97	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	1.20	JB	0.0964	MDL	4.97	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	1.51	J	0.0734	MDL	4.97	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	3.30	J	0.0986	MDL	4.97	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.725	J	0.0710	MDL	4.97	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	2.29	JB	0.0821	MDL	4.97	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.226	JQ	0.0760	MDL	4.97	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.715	JQ	0.0914	MDL	4.97	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	1.83	J	0.0861	MDL	4.97	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.968	JB	0.0716	MDL	4.97	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.980	JB	0.0738	MDL	4.97	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.388	J	0.0740	MDL	0.993	PQL	ng/Kg	J	Z	

Sample ID: SL-037-SA7-SS-0.0-0.5 Collected: 9/13/2011 10:15:00 Analysis Type: REA Dilution: 1

Analyte	Lab Result	Lab Qual		DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,7,8-TCDF	0.976	JC	0.0823	MDL	1.01	PQL	ng/Kg	J	Z

Sample ID: SL-037-SA7-SS-0.0-0.5	Collec	ted: 9/13/2	011 10:15:	:00 A	nalysis T	ype: RES		L	Dilution: 1
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.968	JВ	0.0745	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.696	JB	0.0706	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	2.77	J	0.0844	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	1.42	J	0.0733	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.992	J	0.0803	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.12	JB	0.0619	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.337	JQ	0.0655	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.476	J	0.0688	MDL	5.03	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.806	JQ	0.0943	MDL	5.03	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 1:50:36 PM ADR version 1.4.0.111 Page 3 of 13

Lab Reporting Batch ID: DX133 Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method Category	GENCHEM		
Method:	1613B	Matrix: SO	

Sample ID: SL-037-SA7-SS-0.0-0.5	Collec	Collected: 9/13/2011 10:15:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
2,3,4,6,7,8-HXCDF	0.946	JB	0.0609	MDL	5.03	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	2.48	JB	0.0804	MDL	5.03	PQL	ng/Kg	J	Z		
2.3.7,8-TCDD	0.140	JQ	0.0687	MDL	1.01	PQL	na/Ka	J	Z		

Sample ID: SL-040-SA7-SS-0.0-0.5 Collected: 9/13/2011 8:46:00 Analysis Type: RES Dilution: 1 Data DL Lab Lab RL Review Reason Analyte Result Qual DL Туре RL Units Qual Code Type 1,2,3,4,6,7,8-HPCDD 2.25 0.0557 MDL z JB 5.02 PQL ng/Kg J 1,2,3,4,6,7,8-HPCDF 1.07 Z JB 0.0257 MDL 5.02 **PQL** ng/Kg 1,2,3,4,7,8,9-HPCDF 0.0922 JB 0.0407 MDL 5.02 U В PQL ng/Kg 1,2,3,4,7,8-HxCDD 0.0941 JB 0.0454 MDL 5.02 PQL U В ng/Kg 1,2,3,4,7,8-HXCDF 0.188 JQ 0.0265 MDL 5.02 PQL J z ng/Kg J 1,2,3,6,7,8-HXCDD 0.207 JQ 0.0458 MDL, 5.02 PQL ng/Kg Z 1,2,3,6,7,8-HXCDF 0.113 J 0.0251 MDL 5.02 **PQL** ng/Kg Z 1,2,3,7,8,9-HXCDD 0.177 JBQ 0.0405 MDL PQL 5.02 ng/Kg U В 1,2,3,7,8,9-HXCDF 0.0876 J 0.0312 MDL 5.02 PQL ng/Kg J Z 1,2,3,7,8-PECDD 0.121 JQ J 0.0441 MDL 5.02 PQL Z ng/Kg JQ 1,2,3,7,8-PECDF 0.175 0.0293 MDL 5.02 PQL ng/Kg J Z 2,3,4,6,7,8-HXCDF 0.164 JΒ 0.0311 MDL 5.02 **PQL** U В ng/Kg 2,3,4,7,8-PECDF 0.277 JB 0.0304 MDL 5.02 PQL ng/Kg J Z 2,3,7,8-TCDF 0.0973 J J 0.0618 MDL 1.00 **PQL** ng/Kg Z

Sample ID: SL-041-SA7-SS-0.0-0.5	Collected: 9/13/2011 9:09:00	Analysis Type: RES	Dilution: 1

0.0507

MDL

10.0

**PQL** 

ng/Kg

JΒ

3.38

z

bample ID. OE-041-OAT-00-0.0-0.0	Conec	Dittaon.								
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	1.72	JB	0.0301	MDL	5.02	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.166	JBQ	0.0467	MDL	5.02	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.236	JBQ	0.0679	MDL	5.02	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.556	J	0.0355	MDL	5.02	PQL	ng/Kg	J	Ž	
1,2,3,6,7,8-HXCDD	0.595	JQ	0.0687	MDL	5.02	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.177	JQ	0.0305	MDL	5.02	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.434	JBQ	0.0624	MDL	5.02	PQL	ng/Kġ	J	Z	
1,2,3,7,8,9-HXCDF	0.0691	JQ	0.0358	MDL	5.02	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.242	JQ	0.0461	MDL	5.02	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

OCDF

1/3/2012 1:50:36 PM ADR version 1.4.0.111 Page 4 of 13

Lab Reporting Batch ID: DX133

Laboratory: LL

Page 5 of 13

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method Categor	y: GENCHEM			
Method:	1613B	Matrix:	so	

Sample ID: SL-041-SA7-SS-0.0-0.5	Collec	tea: 9/13/2	:011 9:09:0	iu A	nalysis i	ype: RES		L	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,7,8-PECDF	0.166	J	0.0309	MDL	5.02	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.159	JB	0.0308	MDL	5.02	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.240	JB	0.0290	MDL	5.02	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.0719	JQ	0.0601	MDL	1.00	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.176	JQ	0.0721	MDL	1.00	PQL	ng/Kg	J	Z		
OCDF	3.74	JB	0.0512	MDL	10.0	PQL	ng/Kg	J	Z		

Sample ID: SL-050-SA6-SB-1.0-2.0	Collec	ted: 9/12/2	011 10:10	:00 A	nalysis Ty	/pe: RES		4	Dilution: 1
Analyte	Lab Result	Lab Qual	DL.	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5.02	JB	0.0596	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.829	JB	0.0276	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.108	JBQ	0.0445	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0972	JBQ	0.0400	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.280	JQ	0.0403	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.292	JQ	0.0410	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.165	JQ	0.0369	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.263	JBQ	0.0400	MDL	5.15	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.168	J	0.0385	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.216	JQ	0.0423	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.224	JQ	0.0305	MDL	5.15	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.157	JBQ	0.0364	MDL	5.15	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.197	JBQ	0.0303	MDL	5.15	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.112	JQ	0.0637	MDL	1.03	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.102	J	0.0586	MDL	1.03	PQL	ng/Kg	J	Z
OCDF	2.02	JВ	0.0557	MDL	10.3	PQL	ng/Kg	Ĺ	Z

Sample ID: SL-051-SA6-SB-3.5-4.5	Collected: 9/12/2011 8:30:00	Analysis Type: RES	Dilution: 1
oumpie 15. OE-001-070-05-010-410	Conected. Silbzoii 6.30.00	Allalysis Type. ILLO	Ditauon.

	0000	Analysis type. Ite							Dianon,		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	0.348	JB	0.0457	MDL	5.15	PQL	ng/Kg	U	В		
1,2,3,4,6,7,8-HPCDF	0.121	JBQ	0.0175	MDL	5.15	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.0528	JQ	0.0231	MDL	5.15	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	0.0653	J	0.0328	MDL	5.15	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.0296	JQ	0.0198	MDL.	5.15	PQL	ng/Kg	J	Z		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 1:50:36 PM ADR version 1.4.0.111

Lab Reporting Batch ID: DX133

Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B		Matrix:	SO
Method Catego	ry: GENCHEM	tinikusinika periodika		

Sample ID: SL-051-SA6-SB-3.5-4.5	Collec	ted: 9/12/2	2011 8:30:0	00 A	nalysis Ty	ype: RES		Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,7,8,9-HXCDD	0.0713	JB	0.0286	MDL	5.15	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.0550	JQ	0.0261	MDL	5.15	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.0700	JQ	0.0424	MDL	5.15	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.0643	JQ	0.0237	MDL	5.15	PQL	ng/Kg	J	z		
2,3,4,6,7,8-HXCDF	0.0432	JBQ	0.0219	MDL	5.15	PQL	ng/Kg	U	В		
2,3,4,7,8-PECDF	0.113	JB	0.0243	MDL	5.15	PQL	ng/Kg	υ	В		
OCDD	1.63	JB	0.0309	MDL	10.3	PQL	ng/Kg	υ	В		
OCDF	0.165	JB	0.0580	MDL	10.3	PQL	ng/Kg	υ	В		

Sample ID: SL-055-SA6-SB-2.0-3.0 Collected: 9/12/2011 11:40:00 Analysis Type: RES Dilution: 1

						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		D.10000111			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	3.68	JB	0.0749	MDL	5.10	PQL	ng/Kg	J	Z		
1,2,3,4,6,7,8-HPCDF	0.972	JB	0.0329	MDL	5.10	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.0835	JB	0.0601	MDL	5.10	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HXCDF	0.224	JQ	0.0387	MDL	5.10	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	0.347	J	0.0491	MDL	5.10	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.114	JQ	0.0329	MDL.	5.10	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	0.316	JB	0.0463	MDL	5.10	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDF	0.105	J	0.0464	MDL	5.10	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.0662	JQ	0.0586	MDL	5.10	PQL	ng/Kg	J	Ż		
1,2,3,7,8-PECDF	0.328	J	0.0324	MDL	5.10	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.167	JBQ	0.0356	MDL.	5.10	PQL	ng/Kg	υ	В		
2,3,7,8-TCDD	0.0767	J	0.0754	MDL	1.02	PQL	ng/Kg	J	Z		
OCDF	2.37	JB	0.0703	MDL	10.2	PQL	ng/Kg	J	Z		

Sample ID: SL-070-SA7-SS-0.0-0.5 Collected: 9/13/2011 10:35:00 Analysis Type: RES Dilution: 1

Lab	Lab				I	ľ	Data	
Result	Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.636	JB	0.0555	MDL	4.90	PQL	ng/Kg	J	Z
0.350	JBQ	0.0737	MDL	4.90	PQL	ng/Kg	J	Z
2.14	J	0.0460	MDL	4.90	PQL	ng/Kg	J	Z
1.06	J	0.0761	MDL	4.90	PQL	ng/Kg	J	Z
0.500	J	0.0506	MDL	4.90	PQL	ng/Kg	J	Z
0.682	JB	0.0638	MDL	4.90	PQL	ng/Kg	J	Z
	0.636 0.350 2.14 1.06 0.500	0.636 JB 0.350 JBQ 2.14 J 1.06 J 0.500 J	0.636         JB         0.0555           0.350         JBQ         0.0737           2.14         J         0.0460           1.06         J         0.0761           0.500         J         0.0506	0.636         JB         0.0555         MDL           0.350         JBQ         0.0737         MDL           2.14         J         0.0460         MDL           1.06         J         0.0761         MDL           0.500         J         0.0506         MDL	0.636         JB         0.0555         MDL         4.90           0.350         JBQ         0.0737         MDL         4.90           2.14         J         0.0460         MDL         4.90           1.06         J         0.0761         MDL         4.90           0.500         J         0.0506         MDL         4.90	0.636         JB         0.0555         MDL         4.90         PQL           0.350         JBQ         0.0737         MDL         4.90         PQL           2.14         J         0.0460         MDL         4.90         PQL           1.06         J         0.0761         MDL         4.90         PQL           0.500         J         0.0506         MDL         4.90         PQL	0.636         JB         0.0555         MDL         4.90         PQL         ng/Kg           0.350         JBQ         0.0737         MDL         4.90         PQL         ng/Kg           2.14         J         0.0460         MDL         4.90         PQL         ng/Kg           1.06         J         0.0761         MDL         4.90         PQL         ng/Kg           0.500         J         0.0506         MDL         4.90         PQL         ng/Kg	0.636         JB         0.0555         MDL         4.90         PQL         ng/Kg         J           0.350         JBQ         0.0737         MDL         4.90         PQL         ng/Kg         J           2.14         J         0.0460         MDL         4.90         PQL         ng/Kg         J           1.06         J         0.0761         MDL         4.90         PQL         ng/Kg         J           0.500         J         0.0506         MDL         4.90         PQL         ng/Kg         J

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 1:50:36 PM

Lab Reporting Batch ID: DX133 Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method Category:	GENCHEM 2000			
Method:	1613B	Matrix:	so	

Sample ID: SL-070-SA7-SS-0.0-0.5	Collec	Collected: 9/13/2011 10:35:00 Analysis Type: RES								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8,9-HXCDF	0.246	J	0.0525	MDL	4.90	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.334	JQ	0.0588	MDL	4.90	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	1.46	J	0.0679	MDL	4.90	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.630	JB	0.0515	MDL	4.90	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	1.08	JB	0.0609	MDL	4.90	PQL	ng/Kg	J	Z	

Sample ID: SL-071-SA7-SS-0.0-0.5 Collected: 9/13/2011 9:26:00 Analysis Type: RES Dilution: 1 Data Lab DLReview Lab RL Reason Analyte DL Result Qual Туре RLUnits Qual Type Code 1,2,3,4,6,7,8-HPCDF 3.17 JВ 0.0311 MDL Z 5.01 **PQL** ng/Kg J 1,2,3,4,7,8,9-HPCDF 0.380 JBQ 0.0544 MDL 5.01 **PQL** Z ng/Kg 1,2,3,4,7,8-HxCDD 0.590 JBQ 0.0659 MDL 5.01 PQL J ng/Kg Ζ 1,2,3,4,7,8-HXCDF 0.376 JQ 0.0476 MDL 5.01 PQL ng/Kg J Z 1,2,3,6,7,8-HXCDD 0.702 JQ 0.0676 MDL 5.01 PQL ng/Kg J Z 1,2,3,6,7,8-HXCDF 0.203 0.0398 J MDL. 5.01 PQL J ng/Kg Z 1,2,3,7,8,9-HXCDD 0.575 **JBQ** 0.0651 MDL 5.01 **PQL** J Z ng/Kg 1,2,3,7,8,9-HXCDF J 0.163 0.0308 MDL 5.01 **PQL** J Z ng/Kg

0.0566

0.0305

0.0391

0.0340

0.0674

0.0588

MDL

MDL

MDL

MDL

MDL

MDL

5.01

5.01

5.01

5.01

1.00

10.0

**PQL** 

PQL

PQL

PQL

**PQL** 

PQL

ng/Kg

ng/Kg

ng/Kg

ng/Kg

ng/Kg

ng/Kg

J

J

U

J

J

z

Z

В

Z

z

Z

Sample ID: SL-073-SA7-SS-0.0-0.5 Collected: 9/13/2011 2:30:00 Analysis Type: RES Dilution: 1

J

JQ

JBQ

JΒ

JQ

JΒ

0.193

0.157

0,241

0.277

0.0843

8.44

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.588	JBQ	0.0803	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.64	JB	0.110	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.09	JQ	0.0782	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	4.78	J	0.112	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.724	JQ	0.0641	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.45	JBQ	0.114	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.451	1O	0.0549	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.554	J	0.101	MDL	5.00	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

1,2,3,7,8-PECDD

1,2,3,7,8-PECDF

2,3,4,7,8-PECDF

2,3,7,8-TCDF

OCDF

2,3,4,6,7,8-HXCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 1:50:37 PM ADR version 1.4.0.111 Page 7 of 13

Lab Reporting Batch ID: DX133 Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method (	Category: GENCHEM	(Bishing of a substitute in the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont	
Method:	1613B	Matrix: SO	

Sample ID: SL-073-SA7-SS-0.0-0.5	Collec	ted: 9/13/2	2011 2:30:0	)0 A	nalysis T	ype: RES		1	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,7,8-PECDF	0.859	J	0.0668	MDL	5.00	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.599	JB	0.0708	MDL	5.00	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	1.03	JB	0.0671	MDL	5.00	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.316	JQ	0.121	MDL	0.999	PQL	ng/Kg	J	Z		

Sample ID: SL-210-SA6-SB-4.0-5.0	Collected: 9/9/2011 3:15:00 PM	Analysis Type: RES	Dilution: 1
			5-4-

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	5.33	JB	0.0568	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.952	JB	0.0289	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0518	JB	0.0432	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0902	JBQ	0.0449	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.149	JQ	0.0401	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.275	JQ	0.0463	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.118	JQ	0.0345	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.426	JBQ	0.0339	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.359	JQ	0.0308	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0904	JQ	0.0534	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.189	J	0.0266	MDL	5.37	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.145	JBQ	0.0317	MDL	5.37	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.202	JB	0.0280	MDL	5.37	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.105	J	0.0586	MDL	1.07	PQL	ng/Kg	J	Z
OCDF	3.75	JB	0.0559	MDL	10.7	PQL	ng/Kg	J	Z

Sample ID: SL-210-SA6-SB-9.0-10.0 Collected: 9/9/2011 3:20:00 PM Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DĹ	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.466	JB	0.0624	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0950	JBQ	0.0252	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0597	JB	0.0450	MDL	5.50	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0584	JQ	0.0265	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.0461	JQ	0.0445	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0462	JQ	0.0226	MDL	5.50	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.0889	JBQ	0.0298	MDL	5.50	PQL	лg/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0884	JQ	0.0244	MDL	5.50	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 1:50:37 PM ADR version 1.4.0.111 Page 8 of 13

Lab Reporting Batch ID: DX133 Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	ry: GENCHEM	tion in the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the seco		
Method:	1613B	Matrix:	so	

Sample ID: SL-210-SA6-SB-9.0-10.0	Collec	ted: 9/9/20	11 3:20:00	PM A	nalysis T	ype: RES		E	ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,6,7,8-HXCDF	0.0619	JB	0.0242	MDL	5.50	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0721	JB	0.0295	MDL,	5.50	PQL	ng/Kg	U	В
OCDD	1.97	JB	0.0340	MDL	11.0	PQL	ng/Kg	U	В
OCDF	0.283	JBQ	0.0554	MDL	11.0	PQL	ng/Kg	U	В

						•		,		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	1.57	JB	0.0362	MDL	6.05	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.115	JB	0.0580	MDL	6.05	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.109	JBQ	0.0498	MDL	6.05	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.195	JQ	0.0455	MDL	6.05	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.602	J	0.0495	MDL,	6.05	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.126	JQ	0.0377	MDL	6.05	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	0.584	JBQ	0.0479	MDL	6.05	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.498	JQ	0.0535	MDL	6.05	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.165	JQ	0.0593	MDL	6.05	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.193	JQ	0.0383	MDL	6.05	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.191	JBQ	0.0438	MDL	6.05	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.160	JQ	0.0787	MDL	1.21	PQL	ng/Kg	J	Z	
OCDF	4.10	JB	0.0673	MDL	12.1	PQL	ng/Kg	J	Z	

Sample ID: SL-217-SA6-SB-7.5-8.5 Collected: 9/9/2011 1:48:00 PM Analysis Type: RES Dilution: 1

	2 Industrial 1								
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.255	JB	0.0519	MDL	5.46	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.0758	JBQ	0.0186	MDL	5.46	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HXCDF	0.0353	JQ	0.0283	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0431	JQ	0.0243	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.0796	JBQ	0.0232	MDL	5.46	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0353	JQ	0.0233	MDL	5.46	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0433	JQ	0.0275	MDL	5.46	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0877	JB	0.0268	MDL	5.46	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0927	JQ	0.0556	MDL	1.09	PQL	ng/Kg	J	Z
OCDD	0.568	JB	0.0295	MDL	10.9	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 1:50:37 PM ADR version 1.4.0.111 Page 9 of 13

Lab Reporting Batch ID: DX133

Laboratory: LL

EDD Filename: DX133_v1

eQAPP Name: CDM_SSFL_110509

Method Category: GENCHEM		CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF
Method: 1613B	Matrix: SO	

Sample ID: SL-217-SA6-SB-7.5-8.5	Collect	ted: 9/9/20	11 1:48:00	PM A	nalysis T	ype: RES			Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDF	0.110	JBQ	0.0566	MDL	10.9	PQL	ng/Kg	U	В

Sample ID: SL-235-SA6-SB-4.0-5.0 Collected: 9/12/2011 9:01:00 Analysis Type: RES Dilution: 1 Data Lab Lab DL. RLReview Reason Analyte Result DLRL Qual Туре Type Units Qual Code 1,2,3,4,6,7,8-HPCDD 0.324 JΒ 0.0618 MDL 5.41 PQL ng/Kg 1,2,3,4,6,7,8-HPCDF 0.147 JB 0.0328 MDL 5.41 PQL ng/Kg U В 1,2,3,4,7,8-HXCDF 0.0793 0.0341 MDL JQ 5.41 PQL ng/Kg J Z 1,2,3,6,7,8-HXCDD 0.0840 0.0444 MDL 5.41 PQL ng/Kg J Z 1,2,3,7,8,9-HXCDD 0.103 JBQ 0.0448 MDL PQL U 5.41 ng/Kg В 1,2,3,7,8,9-HXCDF 0.0804 JQ 0.0389 MDL 5.41 PQL ng/Kg J Z 2,3,4,7,8-PECDF 0.0627 **JBQ** 0.0352 **MDL** 5.41 PQL U ng/Kg В OCDD JΒ U 0.460 0.0490 MDL 10.8 PQL ng/Kg В OCDF 0.208 JB 0.0889 MDL 10.8 PQL ng/Kg U В

Sample ID: SL-269-SA6-SB-1.5-2.5	Collected: 9/12/2011 10:46:00	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.214	JB	0.0568	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0981	JB	0.0250	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0463	JQ	0.0385	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.0432	JBQ	0.0290	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0539	JQ	0.0378	MDL	5.09	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0488	JB	0.0296	MDL	5.09	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0565	JBQ	0.0285	MDL	5.09	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0792	JQ	0.0764	MDL	1.02	PQL	ng/Kg	J	Z
OCDD	0.740	JBQ	0.0302	MDL	10.2	PQL	ng/Kg	U	В
OCDF	0.345	JBQ	0.0711	MDL	10.2	PQL	ng/Kg	U	В

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/3/2012 1:50:37 PM

ADR version 1.4.0.111

Page 10 of 13

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX133

Laboratory: LL

EDD Filename: DX133_v1

eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
	Duplicate Sample Count = 0
<del></del>	Duplicate Sample Count > 1
	Illogical Fraction
	Laboratory Control Sample Count = 0
	Laboratory Control Sample Count > 1
	Laboratory Triplicate Precision
	Matrix Spike Sample Count = 0
	Matrix Spike Sample Count > 1
	Method Blank Sample Count ≂ 0
	Method Blank Sample Count > 1
	Percent Moisture
*#	Professional Judgment
A	ICP Serial Dilution
В	Calibration Blank Contamination
В	Method Blank Contamination
С	Continuing Calibration Verification Correlation Coefficient
С	Continuing Calibration Verification Percent Difference Lower Estimation
c	Continuing Calibration Verification Percent Difference Lower Rejection
c	Continuing Calibration Verification Percent Difference Upper Estimation
c	Continuing Calibration Verification Percent Difference Upper Rejection
С	Initial Calibration Correlation Coefficient
c	Initial Calibration Percent Relative Standard Deviation
c	Initial Calibration Verification Correlation Coefficient
C	Initial Calibration Verification Percent Difference Lower Estimation
С	Initial Calibration Verification Percent Difference Lower Rejection
c	Initial Calibration Verification Percent Difference Upper Estimation
С	Initial Calibration Verification Percent Difference Upper Rejection
E	Laboratory Control Precision
 E	Laboratory Duplicate Precision
E	Matrix Spike Precision
E	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX133

EDD Filename: DX133_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

F	Equipment Blank Contamination	
F	Field Blank Contamination	
FD	Field Duplicate Precision	
FT	Field Triplicate Precision	
н	Extraction to Analysis Estimation	
Н	Extraction to Analysis Rejection	
Н	Preservation	
Н	Sampling to Analysis Estimation	
Н	Sampling to Analysis Rejection	
Н	Sampling to Extraction Estimation	
Н	Sampling to Extraction Rejection	
Н	Sampling to Leaching Estimation	
H	Sampling to Leaching Rejection	
H	Temperature Estimation	
Н	Temperature Rejection	
	Internal Standard Estimation	
Ī	Internal Standard Rejection	
L	Laboratory Control Precision	
L	Laboratory Control Spike Lower Estimation	
L	Laboratory Control Spike Lower Rejection	
L	Laboratory Control Spike Upper Estimation	
L	Laboratory Control Spike Upper Rejection	
M	Continuing Tune	
М	Initial Tune	
М	Performance Evaluation Mixture	
М	Resolution Check Mixture	
Q	Laboratory Duplicate Precision	
Q	Matrix Spike Lower Estimation	
Q	Matrix Spike Lower Rejection	
Q	Matrix Spike Precision	
Q	Matrix Spike Upper Estimation	· · · · · · · · · · · · · · · · · · ·
Q	Matrix Spike Upper Rejection	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/3/2012 1:50:37 PM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX133

EDD Filename: DX133_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

R	Continuing Calibration Verification Percent Recovery Lower Estimation
R	Continuing Calibration Verification Percent Recovery Lower Rejection
R	Continuing Calibration Verification Percent Recovery Upper Estimation
R	Continuing Calibration Verification Percent Recovery Upper Rejection
R	Continuing Calibration Verification Relative Response Factor
R	Initial Calibration Relative Response Factor
Ŕ	Initial Calibration Verification Percent Recovery Lower Estimation
R	Initial Calibration Verification Percent Recovery Lower Rejection
R	Initial Calibration Verification Percent Recovery Upper Estimation
R	Initial Calibration Verification Percent Recovery Upper Rejection
R	Initial Calibration Verification Relative Response Factor
s	Surrogate/Tracer Recovery Lower Estimation
s	Surrogate/Tracer Recovery Lower Rejection
s	Surrogate/Tracer Recovery Upper Estimation
s	Surrogate/Tracer Recovery Upper Rejection
T	Trip Blank Contamination
Z	Reporting Limit
Z	Reporting Limit > Project Maximum Contamination Limit
Z	Reporting Limit Trace Value

^{*} denotes a non-reportable result

# **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

**DX133** 

## Method Blank Outlier Report

Lab Reporting Batch ID: DX133 Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO							
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples			
BLK2630B370406	9/22/2011 4:06:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	0.184 ng/Kg 0.0934 ng/Kg 0.0517 ng/Kg 0.0330 ng/Kg 0.0687 ng/Kg 0.0706 ng/Kg 0.0420 ng/Kg 0.418 ng/Kg 0.129 ng/Kg	DUP15-SA6-QC-090911 SL-001-SA6-SB-0.0-1.0 SL-030-SA7-SS-0.0-0.5 SL-034-SA7-SS-0.0-0.5 SL-035-SA7-SS-0.0-0.5 SL-037-SA7-SS-0.0-0.5 SL-040-SA7-SS-0.0-0.5 SL-041-SA7-SS-0.0-0.5 SL-051-SA6-SB-1.0-2.0 SL-051-SA6-SB-3.5-4.5 SL-055-SA6-SB-2.0-3.0 SL-070-SA7-SS-0.0-0.5 SL-071-SA7-SS-0.0-0.5 SL-071-SA7-SS-0.0-0.5 SL-210-SA6-SB-4.0-5.0 SL-217-SA6-SB-4.0-5.0 SL-217-SA6-SB-4.0-5.0 SL-217-SA6-SB-4.0-5.0 SL-217-SA6-SB-4.0-5.0 SL-217-SA6-SB-4.0-5.0 SL-217-SA6-SB-4.0-5.0 SL-235-SA6-SB-4.0-5.0 SL-269-SA6-SB-1.5-2.5			

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP15-SA6-QC-090911(RES)	1,2,3,4,7,8,9-HPCDF	0.241 ng/Kg	0.241U ng/Kg
DUP15-SA6-QC-090911(RES)	1,2,3,4,7,8-HxCDD	0.0836 ng/Kg	0.0836U ng/Kg
DUP15-SA6-QC-090911(RES)	1,2,3,7,8,9-HXCDD	0.267 ng/Kg	0.267U ng/Kg
DUP15-SA6-QC-090911(RES)	2,3,4,6,7,8-HXCDF	0.157 ng/Kg	0.157U ng/Kg
SL-001-SA6-SB-0.0-1.0(RES)	1,2,3,4,7,8,9-HPCDF	0.176 ng/Kg	0.176U ng/Kg
SL-001-SA6-SB-0.0-1.0(RE\$)	1,2,3,4,7,8-HxCDD	0.107 ng/Kg	0.107U ng/Kg
SL-001-SA6-SB-0.0-1.0(RES)	1,2,3,7,8,9-HXCDD	0.202 ng/Kg	0.202U ng/Kg
SL-001-SA6-SB-0.0-1.0(RES)	2,3,4,6,7,8-HXCDF	0.161 ng/Kg	0.161U ng/Kg
SL-001-SA6-SB-0,0-1,0(RES)	2,3,4,7,8-PECDF	0.170 ng/Kg	0.170U ng/Kg
SL-040-SA7-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0922 ng/Kg	0.0922U ng/Kg
SL-040-SA7-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.0941 ng/Kg	0.0941U ng/Kg
SL-040-SA7-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.177 ng/Kg	0.177U ng/Kg
SL-040-SA7-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.164 ng/Kg	0.164U ng/Kg
SL-041-SA7-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.166 ng/Kg	0.166U ng/Kg
SL-041-SA7-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.159 ng/Kg	0.159U ng/Kg
SL-050-SA6-SB-1.0-2.0(RES)	1,2,3,4,7,8,9-HPCDF	0.108 ng/Kg	0.108U ng/Kg
SL-050-SA6-SB-1.0-2.0(RES)	1,2,3,4,7,8-HxCDD	0.0972 ng/Kg	0.0972U ng/Kg
SL-050-SA6-SB-1,0-2,0(RES)	1,2,3,7,8,9-HXCDD	0.263 ng/Kg	0.263U ng/Kg
SL-050-SA6-SB-1.0-2.0(RES)	2,3,4,6,7,8-HXCDF	0.157 ng/Kg	0.157U ng/Kg
SL-050-SA6-SB-1.0-2.0(RES)	2,3,4,7,8-PECDF	0.197 ng/Kg	0.197U ng/Kg
SL-051-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDD	0.348 ng/Kg	0.348U ng/Kg
SL-051-SA6-SB-3.5-4.5(RES)	1,2,3,4,6,7,8-HPCDF	0.121 ng/Kg	0.121U ng/Kg
SL-051-SA6-SB-3.5-4.5(RES)	1,2,3,7,8,9-HXCDD	0.0713 ng/Kg	0.0713U ng/Kg
SL-051-\$A6-\$B-3.5-4.5(RE\$)	2,3,4,6,7,8-HXCDF	0.0432 ng/Kg	0.0432U ng/Kg
SL-051-SA6-SB-3.5-4.5(RES)	2,3,4,7,8-PECDF	0.113 ng/Kg	0.113U ng/Kg
SL-051-SA6-SB-3.5-4.5(RES)	OCDD	1.63 ng/Kg	1.63U ng/Kg
SL-051-SA6-\$B-3.5-4.5(RE\$)	OCDF	0.165 ng/Kg	0.165U ng/Kg

## Method Blank Outlier Report

Lab Reporting Batch ID: DX133 Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO			ini amakini Ledika aktori	<b>的</b> 的复数形式地名英国西班牙克尔
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-055-SA6-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0835 ng/Kg	0.0835U ng/Kg
SL-055-SA6-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDD	0.316 ng/Kg	0.316U ng/Kg
SL-055-SA6-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.167 ng/Kg	0.167U ng/Kg
SL-071-SA7-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.241 ng/Kg	0.241U ng/Kg
SL-210-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0518 ng/Kg	0.0518U ng/Kg
SL-210-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.0902 ng/Kg	0.0902U ng/Kg
SL-210-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.145 ng/Kg	0.145U ng/Kg
SL-210-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.202 ng/Kg	0.202U ng/Kg
SL-210-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDD	0.466 ng/Kg	0.466U ng/Kg
SL-210-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0950 ng/Kg	0.0950U ng/Kg
SL-210-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HxCDD	0.0597 ng/Kg	0.0597U ng/Kg
SL-210-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDD	0.0889 ng/Kg	0.0889U ng/Kg
SL-210-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0,0619 ng/Kg	0.0619U ng/Kg
SL-210-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0721 ng/Kg	0.0721U ng/Kg
SL-210-SA6-SB-9.0-10.0(RES)	OCDD	1.97 ng/Kg	1,97U ng/Kg
SL-210-SA6-SB-9.0-10.0(RES)	OCDF	0.283 ng/Kg	0.283U ng/Kg
SL-217-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.115 ng/Kg	0.115U ng/Kg
SL-217-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HxCDD	0.109 ng/Kg	0.109U ng/Kg
SL-217-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.191 ng/Kg	0.191U ng/Kg
SL-217-SA6-SB-7.5-8.5(RES)	1,2,3,4,6,7,8-HPCDD	0,255 ng/Kg	0.255U ng/Kg
SL-217-SA6-SB-7.5-8.5(RES)	1,2,3,4,6,7,8-HPCDF	0.0758 ng/Kg	0.0758U ng/Kg
SL-217-SA6-SB-7.5-8.5(RES)	1,2,3,7,8,9-HXCDD	0.0796 ng/Kg	0.0796U ng/Kg
SL-217-SA6-SB-7.5-8.5(RES)	2,3,4,7,8-PECDF	0.0877 ng/Kg	0.0877U ng/Kg
SL-217-SA6-SB-7.5-8.5(RES)	OCDD	0.568 ng/Kg	0,568U ng/Kg
SL-217-SA6-SB-7.5-8.5(RES)	OCDF	0.110 ng/Kg	0.110U ng/Kg
SL-235-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.324 ng/Kg	0.324U ng/Kg
SL-235-\$A6-\$B-4.0-5.0(RE\$)	1,2,3,4,6,7,8-HPCDF	0.147 ng/Kg	0.147U ng/Kg
SL-235-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.103 ng/Kg	0,103U ng/Kg
SL-235-\$A6-SB-4.0-5.0(RE\$)	2,3,4,7,8-PECDF	0.0627 ng/Kg	0.0627U ng/Kg
SL-235-SA6-SB-4.0-5.0(RES)	OCDD	0.460 ng/Kg	0.460U ng/Kg
SL-235-SA6-SB-4.0-5.0(RES)	OCDF	0.208 ng/Kg	0.208U ng/Kg
SL-269-SA6-SB-1.5-2.5(RES)	1,2,3,4,6,7,8-HPCDD	0.214 ng/Kg	0.214U ng/Kg
SL-269-SA6-SB-1.5-2,5(RES)	1,2,3,4,6,7,8-HPCDF	0,0981 ng/Kg	0.0981U ng/Kg
SL-269-SA6-SB-1.5-2.5(RES)	1,2,3,7,8,9-HXCDD	0.0432 ng/Kg	0.0432U ng/Kg
SL-269-SA6-SB-1,5-2,5(RES)	2,3,4,6,7,8-HXCDF	0.0488 ng/Kg	0.0488U ng/Kg
SL-269-SA6-SB-1.5-2.5(RES)	2,3,4,7,8-PECDF	0.0565 ng/Kg	0.0565U ng/Kg
SL-269-SA6-SB-1.5-2.5(RES)	OCDD	0.740 ng/Kg	0.740U ng/Kg
SL-269-SA6-SB-1.5-2.5(RE\$)	OCDF	0.345 ng/Kg	0.345U ng/Kg

1/3/2012 1:49:47 PM ADR version 1.4.0.111 Page 2 of 2

## Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX133

Laboratory: LL

EDD Filename: DX133_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	de de la la la la la la la la la la la la la	All and a contra	diskutti			nta ^l man, tainespas maad kan be	
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-001-SA6-SB-0.0-1.0MS SL-001-SA6-SB-0.0-1.0MSD (SL-001-SA6-SB-0.0-1.0)	OCDD	341	-	40.00-135.00	83 (20.00)	OCDD	J (all detects)

Page 1 of 1

## Field Duplicate RPD Report

Lab Reporting Batch ID: DX133 Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO					
	Concent	tration (%)			
Analyte	SL-001-SA6-SB-0.0-1.0	DUP15-SA6-QC-090911	Sample RPD	eQAPP RPD	Flag
MOISTURE	4.0	4.9	20		No Qualifiers Applied

Method Matrix:	: 1613B SO	asinicina di antara di Maria di Sala di Sala di Sala di Sala di Sala di Sala di Sala di Sala di Sala di Sala d				
		Concent	ration (ng/Kg)			
				Sample	eQAPP	
	Analyte	SL-001-SA6-SB-0.0-	I.0 DUP15-SA6-QC-090911	RPD	RPD	Flag

	Concentra	Concentration (ng/Kg)			
Analyte	SL-001-SA6-SB-0.0-1.0	DUP15-SA6-QC-090911	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF OCDD OCDF	14.6 1.49 0.176 0.107 0.269 0.347 0.0932 0.202 0.0706 0.161 219 4.62	14.9 1.61 0.241 0.0836 0.300 0.355 0.155 0.267 0.0685 0.157 268 5.30	2 8 31 25 11 2 50 28 3 3 20	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	No Qualifiers Applied
1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD	5.20 U 0.0490 0.170 1.04 U	0.252 0.338 0.310 0.0868	200 149 58 200	50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)

Page 1 of 1

Lab Reporting Batch ID: DX133 Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		T		T			
0	1	Lab		Reporting	.RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
DUP15-SA6-QC-090911	1,2,3,4,6,7,8-HPCDF	JB	1.61	5.25	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.241	5.25	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0836	5.25	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JQ	0.300	5.25	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	J	0.355	5.25	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	J	0.155	5.25	PQL	лg/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.267	5.25	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JQ	0.0685	5.25	PQL	ng/Kg	o (all detects)
	1,2,3,7,8-PECDD	JQ	0.252	5.25	PQL	ng/Kg	
	1,2,3,7,8-PECDF	J	0.338	5.25	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.157	5.25	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.310	5.25	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0868	1.05	PQL	ng/Kg	
	OCDF	JB	5.30	10.5	PQL	ng/Kg	
SL-001-SA6-SB-0.0-1.0	1,2,3,4,6,7,8-HPCDF	JB	1.49	5.20	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.176	5.20	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.107	5.20	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	J	0.269	5.20	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JQ	0.347	5.20	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JQ	0.0932	5.20	PQL	ng/Kg	I /all datasta
	1,2,3,7,8,9-HXCDD	JBQ	0.202	5.20	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JQ	0.0706	5.20	PQL	ng/Kg	
	1,2,3,7,8-PECDF	j	0.0490	5.20	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.161	5.20	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.170	5.20	PQL	ng/Kg	
	OCDF	JB	4.62	10.4	PQL	ng/Kg	
\$L-030-\$A7-\$\$-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	0.452	5.02	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	1.01	5.02	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	j	1.14	5.02	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	J	3.08	5.02	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	J	0.604	5.02	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.80	5.02	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	J	0.346	5.02	PQL	ng/Kg	o (an detects)
	1,2,3,7,8-PECDD	J	0.319	5.02	PQL	ng/Kg	
	1,2,3,7,8-PECDF	J	0.494	5.02	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.600	5.02	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	1.05	5.02	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.386	1.00	PQL	ng/Kg	·
\$L-034-SA7-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	1.36	4.97	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	1.45	4.97	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	J	1.39	4.97	PQL.	ng/Kg	
	1,2,3,6,7,8-HXCDD	J	4.58	4.97	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	J	0.834	4.97	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	2.95	4.97	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	J	0.775	4.97	PQL	ng/Kg	a (an aereora)
	1,2,3,7,8-PECDF	<u> </u>	0.686	4.97	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.18	4.97	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.953	4.97	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.142	0.994	PQL	ng/Kg	
	2,3,7,8-TCDF	JC	0.804	0.994	PQL	ng/Kg	

1/3/2012 1:49:54 PM ADR version 1.4.0.111 Page 1 of 5

Lab Reporting Batch ID: DX133 Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-035-SA7-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	1.15	4.97	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	1.20	4.97	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	J	1.51	4.97	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	J	3.30	4.97	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	J	0.725	4.97	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	2.29	4.97	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JQ	0.226	4.97	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD 1,2,3,7,8-PECDF	JQ	0.715 1.83	4.97 4.97	PQL PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.968	4.97	PQL	ng/Kg ng/Kg	
	2,3,4,7,8-PECDF	JB	0.980	4.97	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.388	0.993	PQL	ng/Kg	
	2,3,7,8-TCDF	JC	0.937	0.993	PQL	ng/Kg	
SL-037-SA7-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	0.968	5.03	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.696	5.03	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	J	2.77	5.03	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	J	1.42	5.03	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	J	0.992	5.03	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.12	5.03	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JQ	0.337	5.03	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	J	0.476	5.03	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JQ	0.806	5.03	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.946	5.03	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	2.48	5.03	PQL	ng/Kg	
	2,3,7,8-TCDD 2,3,7,8-TCDF	JQ	0.140 0.976	1.01 1.01	PQL PQL	ng/Kg ng/Kg	
SL-040-SA7-SS-0.0-0.5	****			<del> </del>			
3L-040-3A7-33-0.0-0.3	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF	JB JB	2.25 1.07	5.02 5.02	PQL PQL	ng/Kg ng/Kg	
	1,2,3,4,0,7,6-11-CDF	JB	0.0922	5.02	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.0941	5.02	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JQ	0.188	5.02	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JQ	0.207	5.02	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	J	0.113	5.02	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.177	5.02	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	J	0.0876	5.02	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JQ	0.121	5.02	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JQ	0.175	5.02	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.164	5.02	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.277 0.0973	5.02	PQL	ng/Kg	
	2,3,7,8-TCDF OCDF	JB	3.38	1.00	PQL PQL	ng/Kg ng/Kg	
SL-041-SA7-SS-0.0-0.5						· · · · · · · · · · · · · · · · · · ·	
3L-041-3A7-33-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JBQ	1.72 0.166	5.02	PQL PQL	ng/Kg	
	1,2,3,4,7,8,9-HFCDF 1,2,3,4,7,8-HxCDD	JBQ	0.166	5.02 5.02	PQL	ng/Kg ng/Kg	
	1,2,3,4,7,8-HXCDF	J	0.556	5.02	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JQ	0.595	5.02	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JQ	0.177	5.02	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.434	5.02	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JQ	0.0691	5.02	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JQ	0.242	5.02	PQL	ng/Kg	, ,
	1,2,3,7,8-PECDF	J	0.166	5.02	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.159	5.02	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.240	5.02	PQL	ng/Kg	
	2,3,7,8-TCDD	ήď	0.0719	1.00	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.176	1.00	PQL	ng/Kg	
	OCDF	JB	3.74	10.0	PQL	ng/Kg	

Lab Reporting Batch ID: DX133

Laboratory: LL EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

Watrix, SU							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-050-SA6-SB-1.0-2.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	######################################	5.02 0.829 0.108 0.0972 0.280 0.292 0.165 0.263 0.168 0.216 0.224 0.157 0.197 0.112 0.102 2.02	5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-051-SA6-SB-3.5-4.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	ままない の の の の の の の の の の の の の	0.348 0.121 0.0528 0.0653 0.0296 0.0713 0.0550 0.0700 0.0643 0.0432 0.113 1.63 0.165	5.15 5.15 5.15 5.15 5.15 5.15 5.15 5.15	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-055-SA6-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,7,8-PECDF 2,3,7,8-PECDF 0,3,7,8-PECDD	明明のこのでしている。	3.68 0.972 0.0835 0.224 0.347 0.114 0.316 0.105 0.0662 0.328 0.167 0.0767 2.37	5.10 5.10 5.10 5.10 5.10 5.10 5.10 5.10	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-070-SA7-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	JB JB JB JB JB JB JB JB JB JB JB JB JB J	0.636 0.350 2.14 1.06 0.500 0.682 0.246 0.334 1.46 0.630 1.08	4.90 4.90 4.90 4.90 4.90 4.90 4.90 4.90	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX133 Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

so

Matrix:

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-071-SA7-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	#5#445 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3.17 0.380 0.590 0.376 0.702 0.203 0.575 0.163 0.193 0.157 0.241 0.277 0.0843 8.44	5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-073-SA7-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF	5#6-586->##S	0.588 1.64 1.09 4.78 0.724 2.45 0.451 0.554 0.859 0.599 1.03 0.316	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-210-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	ಕ-ಕಹ್ಡಿಕರಿಶಿಕ್ಷರಿಕ್ಷ	5.33 0.952 0.0518 0.0902 0.149 0.275 0.118 0.426 0.359 0.0904 0.189 0.145 0.202 0.105 3.75	5.37 5.37 5.37 5.37 5.37 5.37 5.37 5.37	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-210-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	明 第 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.466 0.0950 0.0597 0.0584 0.0461 0.0462 0.0889 0.0884 0.0619 0.0721 1.97 0.283	5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX133 Laboratory: LL

EDD Filename: DX133_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SC

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-217-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDF	18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1.57 0.115 0.109 0.195 0.602 0.126 0.584 0.498 0.165 0.193 0.191 0.160	6.05 6.05 6.05 6.05 6.05 6.05 6.05 6.05	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-217-SA6-SB-7.5-8.5	OCDF  1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	JB JBQ JQQ JBQ JBQ JBQ JBQ JBQ	4.10 0.255 0.0758 0.0353 0.0431 0.0796 0.0353 0.0433 0.0877 0.0927 0.568 0.110	5.46 5.46 5.46 5.46 5.46 5.46 5.46 5.46	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-235-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	18 19 19 19 19 19 19 19 19 19 19 19 19 19	0.324 0.147 0.0793 0.0840 0.103 0.0804 0.0627 0.460 0.208	5.41 5.41 5.41 5.41 5.41 5.41 5.41 10.8 10.8	PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-269-SA6-SB-1.5-2.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	88588888888888888888888888888888888888	0.214 0.0981 0.0463 0.0432 0.0539 0.0488 0.0565 0.0792 0.740 0.345	5.09 5.09 5.09 5.09 5.09 5.09 5.09 1.02 10.2	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Page 5 of 5

# **SAMPLE DELIVERY GROUP**

**DX146** 

## Attachment I

Sample ID Cross Reference and Data Review Level

## **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
28-Sep-2011	EB-SA5DS-SS-092811	6422610	ЕB	METHOD	1613B	III
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5	6422605	N	METHOD	1613B	Ш
28-Sep-2011	SL-034-SA5DS-SS-0.0-0.5MS	6422606	MS	METHOD	1613B	Ш
28-Sep-2011	DUP-02-SA5DS-QC-092811	6422609	FD	METHOD	1613B	111
28-Sep-2011	SL-040-SA5DS-SS-0.0-0.5	6422608	N	METHOD	1613B	111
30-Sep-2011	SL-132-SA7-SB-8.5-9.5	6426151	N	METHOD	1613B	Ш
30-Sep-2011	SL-132-SA7-SB-4.0-5.0	6426150	N	METHOD	1613B	III
30-Sep-2011	SL-023-SA8S-SS-0.0-0.5	6426146	N	METHOD	1613B	Ш
30-Sep-2011	SL-022-SA8S-SS-0.0-0.5	6426145	N	METHOD	1613B	Ш
30-Sep-2011	SL-180-SA7-SB-2.0-3.0	6426152	N	METHOD	1613B	Ш
30-Sep-2011	SL-084-SA7-SB-0.0-1.0	6426147	N	METHOD	1613B	111
30-Sep-2011	SL-115-SA7-SB-0.5-1.5	6426149	N	METHOD	1613B	m
30-Sep-2011	SL-113-SA7-SB-0.0-1.0	6426148	N	METHOD	1613B	HI
03-Oct-2011	SL-064-SA6-SB-4.0-5.0	6427660	N	METHOD	1613B	III
03-Oct-2011	SL-064-SA6-SB-9.0-10.0	6427661	N	METHOD	1613B	HI
04-Oct-2011	SL-037-SA6-SB-4.0-5.0	6429939	N	METHOD	1613B	111
04-Oct-2011	SL-037-SA6-SB-9.0-10.0	6429940	N	METHOD	1613B	Ш
04-Oct-2011	SL-225-SA6-SB-3.0-4.0	6429943	N	METHOD	1613B	Iti
04-Oct-2011	SL-007-SA6-SB-1.0-2.0	6429938	N	METHOD	1613B	111
04-Oct-2011	SL-206-SA6-SB-4.0-5.0	6429942	N	METHOD	1613B	181
04-Oct-2011	SL-191-SA6-SB-0.0-1.0	6429941	N	METHOD	1613B	111

# Attachment II

# **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX146 Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: AQ

Sample ID: EB-SA5DS-SS-092811	Collec	ted: 9/28/2	011 1:00:0	00 A.	nalysis Ty	ype: RES	ı	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	2.89	JB	0.297	MDL	9.69	PQL	pg/L	U	В	
1,2,3,4,6,7,8-HPCDF	1.76	JB	0.135	MDL	9.69	PQL	pg/L	υ	В	
1,2,3,4,7,8,9-HPCDF	0.521	JBQ	0.154	MDL	9.69	PQL	pg/L	U	В	
1,2,3,4,7,8-HxCDD	0.360	JB	0.179	MDL	9.69	PQL	pg/L	U	В	
1,2,3,4,7,8-HXCDF	0.497	JB	0.112	MDL	9.69	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDD	0.286	JB	0.183	MDL	9.69	PQL	pg/L	U	В	
1,2,3,6,7,8-HXCDF	0.497	JB	0.113	MDL	9.69	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDD	0.355	JBQ	0.181	MDL	9.69	PQL	pg/L	U	В	
1,2,3,7,8,9-HXCDF	0.562	JB	0.108	MDL	9.69	PQL	pg/L	υ	В	
1,2,3,7,8-PECDD	0.594	JBQ	0.214	MDL	9.69	PQL	pg/L	U	В	
1,2,3,7,8-PECDF	0.627	JBQ	0.135	MDL	9.69	PQL	pg/L	U	В	
2,3,4,6,7,8-HXCDF	0.387	JBQ	0.110	MDL	9.69	PQL	pg/L	U	В	
2,3,4,7,8-PECDF	0.712	JB	0.122	MDL	9.69	PQL	pg/L	U	В	
OCDD	5.08	JB	0.321	MDL	19.4	PQL	pg/L	U	В	
OCDF	1.67	JBQ	0.217	MDL	19.4	PQL	pg/L	U	В	

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: DUP-02-SA5DS-QC-092811	Collec	ted: 9/28/2	011 1:55:0	10 A	nalysis T	ype: RES	1	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.809	JB	0.0253	MDL	5.06	PQL	ng/Kg	υ	В	
1,2,3,4,6,7,8-HPCDF	0.571	JB	0.0239	MDL	5.06	PQL	ng/Kg	UJ	B, FD	
1,2,3,4,7,8,9-HPCDF	0.0552	JB	0.0241	MDL	5.06	PQL	ng/Kg	บม	B, FD	
1,2,3,4,7,8-HxCDD	0.0496	JBQ	0.0248	MDL	5.06	PQL	ng/Kg	บม	B, FD	
1,2,3,4,7,8-HXCDF	0.172	JB	0.0333	MDL	5.06	PQL	ng/Kg	υJ	B, FD	
1,2,3,6,7,8-HXCDD	0.0932	JB	0.0258	MDL	5.06	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.101	JBQ	0.0285	MDL	5.06	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8,9-HXCDD	0.192	JBQ	0.0243	MDL	5.06	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.174	JQ	0.0196	MDL	5.06	PQL	ng/Kg	J	Z, FD	
1,2,3,7,8-PECDD	0.0619	JB	0.0317	MDL	5.06	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8-PECDF	0.107	JB	0.0203	MDL	5.06	PQL	ng/Kg	UJ	B, FD	
2,3,4,6,7,8-HXCDF	0.134	JBQ	0.0161	MDL	5.06	PQL	ng/Kg	UJ	B, FD	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/20/2012 11:52:45 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX146

Laboratory: LL

Dilution: 1

eQAPP Name: CDM_SSFL_110509

EDD Filename: DX146_v1

Method Category: SVOA

Method: 1613B

Matrix: SO

Sample ID: DUP-02-SA5DS-QC-092811	Collected: 9/28/2011 1:55:00	Analysis Type: RES

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
2,3,4,7,8-PECDF	0.117	JB	0.0193	MDL	5.06	PQL	ng/Kg	υ	В
2,3,7,8-TCDF	0.0615	J	0.0275	MDL	1.01	PQL	ng/Kg	J	Z, FD
OCDD	6.37	JB	0.0209	MDL	10.1	PQL	ng/Kg	J	Z
OCDF	0.480	JB	0.0340	MDL	10.1	PQL	ng/Kg	U	В

					,	, pu,			D1100011.
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.332	JBQ	0.0404	MDL	5.24	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.133	JB	0.0243	MDL	5.24	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0287	JBQ	0.0267	MDL	5.24	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0321	JQ	0.0257	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0604	JBQ	0.0259	MDL	5.24	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0353	JQ	0.0254	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0531	JBQ	0.0229	MDL	5.24	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0556	JQ	0.0255	MDL	5.24	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0307	JBQ	0.0181	MDL	5.24	PQL	ng/Kg	U	В
1,2,3, <b>7</b> ,8-PECDF	0.0488	JBQ	0.0176	MDL	5.24	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0572	JBQ	0.0166	MDL	5.24	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0711	JBQ	0.0169	MDL	5.24	PQL	ng/Kg	υ	В
OCDD	1.00	JB	0.0289	MDL	10.5	PQL	ng/Kg	U	В
OCDF	0.171	JB	0.0457	MDL	10.5	PQL	ng/Kg	U	В

Sample ID: SL-022-SA8S-SS-0.0-0.5 Collected: 9/30/2011 9:05:00 Analysis Type: RES Dilution: 1

1010 101 02 022 01 100 00 010 010	001100	Analysis type. The							Dittion.		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDD	3.60	JB	0.0328	MDL	5.26	PQL	ng/Kg	J	Z		
1,2,3,4,6,7,8-HPCDF	0.777	JB	0.0181	MDL	5.26	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.0858	JB	0.0243	MDL	5.26	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.0991	J	0.0297	MDL	5.26	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	0.126	JBQ	0.0243	MDL	5.26	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.182	JQ	0.0327	MDL	5.26	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.102	JB	0.0223	·MDL	5.26	PQL	ng/Kg	U	В		
1,2,3,7,8,9-HXCDD	0.153	J	0.0283	MDL	5.26	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.112	JB	0.0309	MDL	5.26	PQL	ng/Kg	U	В		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/20/2012 11:52:45 AM ADR version 1.4.0.111 Page 2 of 12

Lab Reporting Batch ID: DX146

Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

	Collec	ted: 9/30/2	2011 9:05:0	00 A	nalysis T	ype: RES		1	Dilution: 1
	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,7,8-PECDF	0.0992	JBQ	0.0286	MDL	5.26	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.130	JBQ	0.0220	MDL	5.26	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.165	JB	0.0276	MDL	5.26	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.128	JQ	0.0559	MDL	1.05	PQL	ng/Kg	J	Z
OCDF	1.23	JВ	0.0256	MDL	10.5	PQL	ng/Kg	J	Z

Sample ID: SL-023-SA8S-SS-0.0-0.5 Collected: 9/30/2011 8:45:00 Analysis Type: RES Dilution: 1

imple ID. 0L-023-0A03-03-0.0-0.3	Conec	ieu. Jisuiz	.011 0.45.0	<i>7</i> 0 A	naiysis i	ype: NEG		1	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDF	1.01	JB	0.0312	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,4,7,8,9-HPCDF	0.0811	JBQ	0.0387	MDL	5.25	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.128	JQ	0.0384	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.186	JBQ	0.0295	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.310	J	0.0411	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.175	JB	0.0278	MDL	5.25	PQL	ng/Kg	Ü	В	
1,2,3,7,8,9-HXCDD	0.333	JQ	0.0666	MDL	5.25	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0383	JBQ	0.0314	MDL	5.25	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0967	JB	0.0377	MDL	5.25	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.116	JBQ	0.0368	MDL	5.25	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.183	JBQ	0.0287	MDL	5.25	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.0466	JQ	0.0403	MDL	1.05	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.474	J	0.0693	MDL	1.05	PQL	ng/Kg	J	Z	
OCDF	1.63	JB	0.0310	MDL	10.5	PQL	ng/Kg	J	Z	

Sample ID: SL-034-SA5DS-SS-0.0-0.5 Collected: 9/28/2011 1:45:00 Analysis Type: RES Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL. Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.974	JBQ	0.0306	MDL	5.13	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.301	JB	0.0221	MDL	5.13	PQL	ng/Kg	บม	B, FD
1,2,3,4,7,8,9-HPCDF	0.0310	JBQ	0.0217	MDL	5.13	PQL	ng/Kg	กา	B, FD
1,2,3,4,7,8-HxCDD	0.0227	υ	0.0227	MDL	5.13	PQL	ng/Kg	UJ	FD
1,2,3,4,7,8-HXCDF	0.0775	JBQ	0.0315	MDL	5.13	PQL	ng/Kg	UJ	B, FD
1,2,3,6,7,8-HXCDD	0.0828	JQ	0.0233	MDL	5.13	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0507	JBQ	0.0302	MDL	5.13	PQL	ng/Kg	UJ	B, FD
1,2,3,7,8,9-HXCDD	0.133	JQ	0.0244	MDL	5.13	PQL	ng/Kg	j	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/20/2012 11:52:45 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX146 Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

ng/Kg

В

Method:	1613B	Matrix:	SO
Method Cate	g <i>ory.</i> SVOA	Salahan kalandar	delita

Sample ID: SL-034-SA5DS-SS-0.0-0.5	Collec	ted: 9/28/2	2011 1:45:0	00 A	nalysis T	lysis Type: RES Dilution:				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,7,8,9-HXCDF	0.101	JBQ	0.0180	MDL	5.13	PQL	ng/Kg	UJ	B, FD	
1,2,3,7,8-PECDD	0.0265	U	0.0265	MDL	5.13	PQL	ng/Kg	IJ	FD	
1,2,3,7,8-PECDF	0.0401	JBQ	0.0176	MDL	5.13	PQL	ng/Kg	UJ	B, FD	
2,3,4,6,7,8-HXCDF	0.0678	JBQ	0.0156	MDL	5.13	PQL	ng/Kg	UJ	B, FD	
2,3,4,7,8-PECDF	0.0902	JBQ	0.0168	MDL	5.13	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.0290	U	0.0290	MDL	1.03	PQL	ng/Kg	IJ	FD	
OCDD	9.33	JB	0.0295	MDL,	10.3	PQL	ng/Kg	J	Z, Q, Q	
OCDF	0.613	JB	0.0370	MDL	10.3	PQL	ng/Kg	J	Z	

Sample ID: SL-037-SA6-SB-4.0-5.0	Collec	ted: 10/4/2	10/4/2011 8:25:00 Analysis Type: RES						Dilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.987	JB	0.0409	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.208	JB	0.0159	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0559	JBQ	0.0248	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0707	JQ	0.0228	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.107	JBQ	0.0207	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0677	J	0.0235	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0692	JB	0.0177	MDL	5.10	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0672	JQ	0.0240	MDL	5.10	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0594	JBQ	0.0211	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.121	JBQ	0.0270	MDL	5.10	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.131	JBQ	0.0196	MDL	5.10	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0562	JBQ	0.0177	MDL	5.10	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.181	JB	0.0188	MDL	5.10	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0582	J	0.0358	MDL	1.02	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0640	JQ	0.0320	MDL	1.02	PQL	ng/Kg	J	Z
OCDD	5.58	JB	0.0282	MDL	10.2	PQL	ng/Kg	j	Z

Sample ID: SL-037-SA6-SB-9.0-10.0	Collected: 10/4/2011 9:05:00	Analysis Type: RES	Dilution: 1
			_,,_,,,,,,,

JBQ

0.386

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	1.59	JB	0.0633	MDL	5.51	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.153	JB	0.0240	MDL	5.51	PQL	ng/Kg	υ	В

0.0354

MDL

10.2

PQL

OCDF

ADR version 1.4.0.111 1/20/2012 11:52:45 AM Page 4 of 12

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX146 Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-037-SA6-SB-9.0-10.0 Collected: 10/4/2011 9:05:00 Analysis Type: RES Dilution: 1 Data DLLab Lab RLReview Reason Analyte Result Qual DL RL Units Туре Туре Qual Code 1,2,3,4,7,8,9-HPCDF 0.0818 **JBQ** 0.0404 MDL. 5.51 **PQL** ng/Kg U В 1,2,3,4,7,8-HxCDD 0.0376 JQ 0.0322 MDL **PQL** 5.51 ng/Kg Z 1,2,3,4,7,8-HXCDF 0.140 JBQ 0.0249 MDL 5.51 PQL ng/Kg U В 1,2,3,6,7,8-HXCDD 0.0453 JQ 0.0320 MDL **PQL** Z 5.51 ng/Kg J 1,2,3,6,7,8-HXCDF 0.0326 JBQ 0.0207 MDL PQL 5.51 ng/Kg U В 1,2,3,7,8,9-HXCDD 0.0781 JQ 0.0332 MDL 5.51 **PQL** J Z ng/Kg 1,2,3,7,8,9-HXCDF 0.0283 **JBQ** 0.0237 MDL 5.51 PQL U ng/Kg В 1,2,3,7,8-PECDD 0.125 0.0400 MDL 5.51 JBQ **PQL** U В ng/Kg 1,2,3,7,8-PECDF 0.0902 JBQ 0.0200 MDL 5.51 **PQL** ng/Kg J Z 2,3,4,6,7,8-HXCDF 0.0541 JΒ 0.0184 MDL 5.51 PQL U В ng/Kg 2,3,4,7,8-PECDF 0.0634 **JBQ** 0.0204 MDL 5.51 PQL ng/Kg U В 2,3,7,8-TCDD 0.0547 JO 0.0474 MDL 1.10 PQL ng/Kg J Z

 Sample ID: SL-040-SA5DS-SS-0.0-0.5
 Collected: 9/28/2011 3:05:00
 Analysis Type: RES
 Dilution: 1

0.0632

MDL

11.0

**PQL** 

ng/Kg

U

JВ

0.205

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	1.38	JB	0.0399	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.128	JBQ	0.0265	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.341	J	0.0439	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.275	JBQ	0.0531	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.696	JQ	0.0486	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.219	JBQ	0.0498	MDL	5.06	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.648	J	0.0372	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.585	JB	0.0201	MDL	5.06	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.154	JB	0.0298	MDL	5.06	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.201	JBQ	0.0184	MDL	5.06	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.172	JB	0.0171	MDL	5.06	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.0854	JВ	0.0182	MDL	5.06	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.186	J	0.0314	MDL	1.01	PQL	ng/Kg	J	Z
OCDF	4.60	JB	0.0275	MDL	10.1	PQL	ng/Kg	J	Z

OCDF

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/20/2012 11:52:45 AM ADR version 1.4.0.111 Page 5 of 12

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX146

Laboratory: LL

EDD Filename: DX146_v1

eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: SL-064-SA6-SB-4.0-5.0 Collected: 10/3/2011 3:30:00 Analysis Type: RES Dilution: 1

nalyte	Conec	160. 10/3/2	.011 3.30.0	, A	iiaiysis i	ype. KLO		Dilation.		
	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	2.91	JB	0.0859	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.835	J	0.0629	MDL	5.17	PQL	ng/Kg	L	Z	
1,2,3,4,7,8-HXCDF	1.15	JB	0.0811	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	5.15	J	0.0615	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.790	JB	0.0678	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.83	J	0.0607	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.170	JBQ	0.0584	MDL	5.17	PQL	ng/Kg	υ	В	
1,2,3,7,8-PECDD	1.15	JBQ	0.0433	MDL	5.17	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0327	JBQ	0.0276	MDL	5.17	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	1.17	JB	0.0462	MDL	5.17	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.346	JB	0.0274	MDL	5.17	PQL	ng/Kg	J	Z	
2,3,7,8-TCDD	0.190	JQ	0.0390	MDL	1.03	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.0770	JQ	0.0381	MDL	1.03	PQL	ng/Kg	J	Z	

Sample ID: SL-064-SA6-SB-9.0-10.0

Collected: 10/3/2011 4:00:00

Analysis Type: RES

Dilution: 1

					-	•				
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,7,8,9-HPCDF	1.04	JB	0.0717	MDL	5.64	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HxCDD	0.457	J	0.0636	MDL	5.64	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.461	JB	0.0468	MDL	5.64	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	3.01	J	0.0646	MDL	5.64	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.393	JB	0.0384	MDL	5.64	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDD	1.27	J	0.0635	MDL	5.64	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.127	JBQ	0.0468	MDL	5.64	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.299	JBQ	0.0522	MDL	5.64	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0547	JB	0.0263	MDL	5.64	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.606	JB	0.0373	MDL	5.64	PQL	ng/Kg	J	Z	
2,3,4,7,8-PECDF	0.152	JB	0.0264	MDL	5.64	PQL	ng/Kg	υ	В	
2,3,7,8-TCDF	0.0779	J	0.0414	MDL	1.13	PQL	ng/Kg	J	Z	
·		.1		1		1	.1	l .		

Sample ID: SL-084-SA7-SB-0.0-1.0

Collected: 9/30/2011 12:05:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.374	JB	0.0230	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.144	JBQ	0.0189	MDL	5.09	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/20/2012 11:52:45 AM

ADR version 1.4.0.111

Page 6 of 12

Lab Reporting Batch ID: DX146

Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Camp	ia II	1. CI	-084	-847	-SB-	0.0-1.0	
samp	ie il	<i>);</i> ວເ	004	-OA1	-35-	U.U-1.U	

Collected: 9/30/2011 12:05:00

Analysis Type: RES

Dilution: 1

nalyte	Conec	Conected: 9/30/2011 12:05:00 Analysis Type: RES							
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	0.0268	JBQ	0.0251	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0473	J	0.0235	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0709	JBQ	0.0205	MDL	5.09	PQL.	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0561	JQ	0.0265	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0683	JBQ	0.0168	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0453	JQ	0.0407	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0466	JBQ	0.0243	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0447	JB	0.0271	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0527	JB	0.0135	MDL	5.09	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0603	JBQ	0.0127	MDL	5.09	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.106	JBQ	0.0138	MDL	5.09	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0390	J	0.0340	MDL	1.02	PQL	ng/Kg	J	Z
OCDD	2.44	JB	0.0205	MDL	10.2	PQL	ng/Kg	J	Z
OCDF	0.212	JB	0.0345	MDL	10.2	PQL	ng/Kg	υ	В

Sample ID: SL-113-SA7-SB-0.0-1.0

Collected: 9/30/2011 2:06:00

Analysis Type: RES

Dilution: 1

		· · · · · · · · · · · · · · · · · · ·				,puu			Direntin 1
nalyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.662	JB	0.0255	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.195	JBQ	0.0114	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0386	JBQ	0.0204	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0587	J	0.0240	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.149	JBQ	0.0185	MDL	5.53	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.487	J	0.0241	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.161	JВ	0.0157	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.643	J	0.0234	MDL	5.53	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0741	JB	0.0218	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.155	JB	0.0249	MDL	5.53	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDF	0.156	JB	0.0135	MDL	5.53	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0789	JBQ	0.0167	MDL	5.53	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.167	JB	0.0142	MDL	5.53	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0643	JQ	0.0266	MDL	1.11	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0416	JQ	0.0197	MDL	1,11	PQL	ng/Kg	J	Z
OCDD	4.39	JB	0.0200	MDL	11.1	PQL	ng/Kg	J	Z
							<del> </del>		

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/20/2012 11:52:45 AM

Page 7 of 12

Lab Reporting Batch ID: DX146 Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Mediod Calegory.	SVOA	Marking lighty and another a substance of the control	e dispera la Leo la colore. Mangini priminali della Francia proprie d	rajustitus ikspēlijos et elaparatija valgarija ir elaparatija. Augustija ir ir ir ir ir ir ir ir ir ir ir ir ir
Method:	1613B	Matrix:	so	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

Sample ID: SL-113-SA7-SB-0.0-1.0	Collec	Collected: 9/30/2011 2:06:00 Analysis Type: RES							Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
OCDF	0.329	JB	0.0331	MDL	11.1	PQL	ng/Kg	U	В		

Sample ID: SL-115-SA7-SB-0.5-1.5 Collected: 9/30/2011 12:23:00 Analysis Type: RES Dilution: 1 Data Lab DL Lab RLReview Reason Analyte DL Result Qual Туре RL. Type Units Qual Code 1,2,3,4,6,7,8-HPCDD 0.395 0.0262 MDL 5.20 JΒ PQL ng/Kg U В 1,2,3,4,6,7,8-HPCDF 0.130 JB 0.0101 MDL 5.20 **PQL** ng/Kg U В ng/Kg 1,2,3,4,7,8-HXCDF 0.0320 JBQ 0.0263 MDL 5.20 **PQL** U В 1,2,3,6,7,8-HXCDD 0.313 J 0.0270 MDL 5.20 PQL J Z ng/Kg 1,2,3,6,7,8-HXCDF 0.199 JBQ 0.0192 MDL 5.20 **PQL** ng/Kg U В 1,2,3,7,8,9-HXCDD 0.434 J 0.0283 MDL 5.20 PQL J z ng/Kg 1,2,3,7,8,9-HXCDF 0.0431 **JBQ** 0.0208 MDL 5.20 **PQL** ng/Kg Ų В 1,2,3,7,8-PECDD 0.0468 JBQ 0.0307 MDL 5.20 PQL U ng/Kg В 1,2,3,7,8-PECDF ng/Kg 0.0864 JΒ 0.0135 MDL 5.20 **PQL** Z 2,3,4,6,7,8-HXCDF 0.0565 JB 0.0157 MDL 5.20 **PQL** ng/Kg U В 2,3,4,7,8-PECDF 0.110 **JBQ** 5.20 PQL 0.0140 MDL ng/Kg U В 2,3,7,8-TCDF 0.0243 J 0.0220 MDL 1.04 PQL ng/Kg J Z OCDD 3.13 JB 0.0248 MDL 10.4 PQL ng/Kg J Z OCDF 0.221 JB U 0.0380 MDL 10.4 PQL В ng/Kg

Sample ID: SL-132-SA7-SB-4.0-5.0	Collected: 9/30/2011 8:23:00	Analysis Type: RES	Dilution: 1
Outspic 12. OE 10E OF 1. OB 4.0 0.0	00000000	Anarysis Type. NEO	onuuon.

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.709	JB	0.0181	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0713	JB	0.0251	MDL	5.09	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0415	JQ	0.0316	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0727	JBQ	0.0195	MDL	5.09	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.239	J	0.0317	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0644	JBQ	0.0182	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.187	JQ	0.0310	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0498	JBQ	0.0208	MDL	5.09	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0449	JBQ	0.0226	MDL	5.09	PQL	ng/Kg	Ü	В
1,2,3,7,8-PECDF	0.0365	JBQ	0.0140	MDL	5.09	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0652	JBQ	0.0175	MDL	5.09	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.115	JBQ	0.0130	MDL	5.09	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/20/2012 11:52:45 AM ADR version 1.4.0.111 Page 8 of 12

Lab Reporting Batch ID: DX146 Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method Category	SVOA:	week all the track to the same the first execute the table by the annex construction of the track of the track of the table to the table to the table to the table to the table to the table to the table to the table to the table to the table to the table to the table to the table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to table to
Method:	1613B	Matrix: SO

Sample ID: SL-132-SA7-SB-4.0-5.0	Collec	Collected: 9/30/2011 8:23:00				ype: RES	Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code	
OCDF	1 77	JB	0.0299	MDI	10.2	POL	na/Ka		7	_

Sample ID: SL-132-SA7-SB-8.5-9.5	Collec	Collected: 9/30/2011 8:10:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.70	JB	0.0493	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.364	JB	0.0153	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.102	JBQ	0.0267	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0579	JBQ	0.0257	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.446	J	0.0332	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.182	JB	0.0209	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.762	J	0.0307	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.110	JBQ	0.0243	MDL	5.28	PQL	ng/Kg	υ	В
1,2,3,7,8-PECDD	0.0489	JBQ	0.0300	MDL	5.28	PQL	пд/Кд	U	В
1,2,3,7,8-PECDF	0.0636	JBQ	0.0168	MDL	5.28	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0422	JB	0.0198	MDL	5.28	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0637	JB	0.0180	MDL	5.28	PQL	ng/Kg	U	В
OCDF	0.667	JB	0.0484	MDL	10.6	PQL	ng/Kg	J	Z

Sample ID: SL-180-SA7-SB-2.0-3.0	Collected: 9/30/2011 9:50:00 Analysis Type: RES								Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.591	JBQ	0.0301	MDL	5.12	PQL	ng/Kg	υ	В	
1,2,3,4,6,7,8-HPCDF	0.191	JВ	0.0102	MDL	5.12	PQL	ng/Kg	υ	В	
1,2,3,4,7,8,9-HPCDF	0.0489	JBQ	0.0182	MDL	5.12	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.0426	JBQ	0.0168	MDL	5.12	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.0787	JQ	0.0220	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0179	JBQ	0.0140	MDL	5,12	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.127	JQ	0.0220	MDL	5.12	PQL	ng/Kg	J	Z	
1,2,3,7,8,9-HXCDF	0.0730	JBQ	0.0155	MDL	5.12	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0278	JB	0.0159	MDL	5.12	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0712	JBQ	0.0134	MDL	5.12	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0980	JBQ	0.0169	MDL	5.12	PQL	ng/Kg	U	В	
2,3,7,8-TCDD	0.0376	JQ	0.0366	MDL	1.02	PQL	ng/Kg	J	Z	
OCDD	2.78	JB	0.0195	MDL	10.2	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling
1/20/2012 11:52:45 AM ADR version 1.4.0.111 Page 9 of 12

Lab Reporting Batch ID: DX146 Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method Categor	y: SVOA	and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o	andersa	unggrungski kilovinskuli ik iki sklesiest	antonia di para per per di para di para di para di para di para di para di para di para di para di para di par La para di para di para di para di para di para di para di para di para di para di para di para di para di par
Method:	1613B	Matrix:	so		

Sample ID: SL-180-SA7-SB-2.0-3.0	Collec	Collected: 9/30/2011 9:50:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
OCDF	0,252	JBQ	0.0377	MDL	10.2	PQL	na/Ka	U	В

Sample ID: SL-191-SA6-SB-0.0-1.0  Analyte	Collec	Collected: 10/4/2011 3:15:00				Analysis Type: RES			Dilution: 1		
	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,7,8,9-HPCDF	1.65	JB	0.0563	MDL	4.91	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HxCDD	1.29	J	0.0506	MDL	4.91	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	1.38	JB	0.0471	MDL	4.91	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDD	4.20	J	0.0542	MDL	4.91	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	1.24	JB	0.0467	MDL	4.91	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDD	2.09	J	0.0527	MDL	4.91	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.380	JBQ	0.0409	MDL	4.91	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.822	JB	0.0462	MDL	4.91	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDF	0.577	JB	0.0353	MDL	4.91	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	1.49	JB	0.0357	MDL	4.91	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.978	JB	0.0329	MDL	4.91	PQL	ng/Kg	J	Z		
2,3,7,8-TCDD	0.0615	J	0.0337	MDL	0.983	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.419	J	0.0566	MDL	0.983	PQL	ng/Kg	J	Z		

Sample ID: SL-206-SA6-SB-4.0-5.0	Collec	Collected: 10/4/2011 3:00:00						Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	3.58	JB	0.0481	MDL	5.21	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	0.642	JB	0.0180	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0703	JBQ	0.0294	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0694	JQ	0.0292	MDL	5.21	PQL	ng/Kg	J	Z	
1,2,3,4,7,8-HXCDF	0.0777	JBQ	0.0215	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.132	JQ	0.0294	MDL	5.21	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.0463	JB	0.0192	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.108	J	0.0296	MDL	5.21	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0452	JBQ	0.0296	MDL	5.21	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0328	JBQ	0.0179	MDL	5.21	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.0648	JB	0.0190	MDL	5.21	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.121	JBQ	0.0175	MDL	5.21	PQL	ng/Kg	U	В	
2,3,7,8-TCDF	0.100	JQ	0.0325	MDL	1.04	PQL	ng/Kg	J	Z	

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/20/2012 11:52:45 AM ADR version 1.4.0.111 Page 10 of 12

Lab Reporting Batch ID: DX146 Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method Catego	ny: SVOA	Capacitation and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the
Method:	1613B	Matrix: SO

Sample ID: SL-206-SA6-SB-4.0-5.0	Collect	Collected: 10/4/2011 3:00:00				ype: RES	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type		RL Type	Units	Data Review Qual	Reason Code
OCDF	1.38	JB	0.0430	MDL	10.4	PQL	ng/Kg	J	Z

Sample ID: SL-225-SA6-SB-3.0-4.0	Collected: 10/4/2011 10:00:00 Analysis Type: RES					Dilution: 1			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.663	JB	0.0397	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.257	JB	0.0141	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0364	JBQ	0.0172	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0694	J	0.0236	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.0170	JBQ	0.0150	MDL	5.43	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0467	JQ	0.0244	MDL	5.43	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0309	JBQ	0.0272	MDL	5.43	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0426	JB	0.0148	MDL	5.43	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0638	JBQ	0.0152	MDL	5.43	PQL	ng/Kg	U	В
OCDD	6.16	JB	0.0259	MDL	10.9	PQL	ng/Kg	J	Z
OCDF	0.575	JB	0.0389	MDL	10.9	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX146

Laboratory: LL

EDD Filename: DX146_v1

eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
В	Method Blank Contamination
E	Matrix Spike Precision
FD	Field Duplicate Precision
L	Laboratory Control Spike Upper Estimation
Q	Matrix Spike Precision
Q	Matrix Spike Upper Estimation
S	Surrogate/Tracer Recovery Lower Estimation
Z	Reporting Limit Trace Value

# **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX146

## Method Blank Outlier Report

Lab Reporting Batch ID: DX146 Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2760B370751	10/5/2011 7:51:00 AM	1,2,3,4,6,7,8-HPCDD	2.57 pg/L	EB-SA5DS-SS-092811
		1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	1.42 pg/L 0.763 pg/L	
		1,2,3,4,7,8-HxCDD	0.763 pg/L 0.388 pg/L	
	ļ	1,2,3,4,7,8-HXCDF	0.622 pg/L	
	į	1,2,3,6,7,8-HXCDD	0.421 pg/L	
		1,2,3,6,7,8-HXCDF	0.553 pg/L	
		1,2,3,7,8,9-HXCDD	0.543 pg/L	
		1,2,3,7,8,9-HXCDF	0.770 pg/L	
	i	1,2,3,7,8-PECDD	0.712 pg/L	1
		1,2,3,7,8-PECDF	0.901 pg/L	
		2,3,4,6,7,8-HXCDF	0.643 pg/L	
		2,3,4,7,8-PECDF	0.929 pg/L	<u> </u>
		2,3,7,8-TCDD 2,3,7,8-TCDF	0.373 pg/L	ł
		OCDD	0.261 pg/L 3.69 pg/L	
		OCDF	3.69 pg/L 1.50 pg/L	1

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
EB-SA5DS-SS-092811(RES)	1,2,3,4,6,7,8-HPCDD	2.89 pg/L	2.89U pg/L
EB-SA5DS-SS-092811(RES)	1,2,3,4,6,7,8-HPCDF	1.76 pg/L	1.76U pg/L
EB-SA5DS-SS-092811(RES)	1,2,3,4,7,8,9-HPCDF	0.521 pg/L	0.521U pg/L
EB-SA5DS-SS-092811(RES)	1,2,3,4,7,8-HxCDD	0.360 pg/L	0.360U pg/L
EB-SA5DS-SS-092811(RES)	1,2,3,4,7,8-HXCDF	0.497 pg/L	0.497U pg/L
EB-SA5DS-SS-092811(RES)	1,2,3,6,7,8-HXCDD	0.286 pg/L	0.286U pg/L
EB-SA5DS-SS-092811(RES)	1,2,3,6,7,8-HXCDF	0.497 pg/L	0.497U pg/L
EB-SA5DS-SS-092811(RES)	1,2,3,7,8,9-HXCDD	0.355 pg/L	0.355U pg/L
EB-SA5DS-SS-092811(RES)	1,2,3,7,8,9-HXCDF	0.562 pg/L	0.562U pg/L
EB-SA5DS-SS-092811(RES)	1,2,3,7,8-PECDD	0.594 pg/L	0.594U pg/L
EB-SA5DS-SS-092811(RES)	1,2,3,7,8-PECDF	0.627 pg/L	0.627U pg/L
EB-SA5DS-SS-092811(RES)	2,3,4,6,7,8-HXCDF	0.387 pg/L	0.387U pg/L
EB-SA5DS-SS-092811(RES)	2,3,4,7,8-PECDF	0.712 pg/L	0.712U pg/L
EB-SA5DS-SS-092811(RES)	OCDD	5.08 pg/L	5.08U pg/L
EB-SA5DS-SS-092811(RES)	OCDF	1.67 pg/L	1.67U pg/L

1/20/2012 11:30:10 AM ADR version 1.4.0.111 Page 1 of 5

## Method Blank Outlier Report

Lab Reporting Batch ID: DX146 Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method: 161: Matrix: SO	3B		eletaja ir sesaja peresagan	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2830B371806	10/13/2011 6:06:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF OCDD OCDF	0.268 ng/Kg 0.129 ng/Kg 0.0187 ng/Kg 0.0314 ng/Kg 0.0471 ng/Kg 0.0484 ng/Kg 0.0326 ng/Kg 0.0149 ng/Kg 0.0274 ng/Kg 0.0319 ng/Kg 0.392 ng/Kg 0.121 ng/Kg	SL-007-SA6-SB-1.0-2.0 SL-022-SA8S-SS-0.0-0.5 SL-023-SA8S-SS-0.0-0.5 SL-034-SA5DS-SS-0.0-0.5 SL-037-SA6-SB-4.0-5.0 SL-037-SA6-SB-9.0-10.0 SL-040-SA5DS-SS-0.0-0.5 SL-064-SA6-SB-9.0-10.0 SL-064-SA6-SB-9.0-10.0 SL-084-SA7-SB-0.0-1.0 SL-113-SA7-SB-0.5-1.5 SL-113-SA7-SB-0.5-1.5 SL-132-SA7-SB-4.0-5.0 SL-191-SA6-SB-0.0-1.0 SL-191-SA6-SB-0.0-1.0 SL-191-SA6-SB-0.0-1.0 SL-206-SA6-SB-4.0-5.0 SL-225-SA6-SB-3.0-4.0
BLK2920B371824	10/20/2011 6:24:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 0CDD 0CDF	0.305 ng/Kg 0.370 ng/Kg 0.0805 ng/Kg 0.0310 ng/Kg 0.114 ng/Kg 0.0294 ng/Kg 0.0822 ng/Kg 0.0415 ng/Kg 0.0488 ng/Kg 0.0392 ng/Kg 0.0874 ng/Kg 0.0693 ng/Kg 0.653 ng/Kg 0.256 ng/Kg	DUP-02-SA5DS-QC-092811

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP-02-SA5DS-QC-092811(RES)	1,2,3,4,6,7,8-HPCDD	0,809 ng/Kg	0.809U ng/Kg
DUP-02-SA5DS-QC-092811(RES)	1,2,3,4,6,7,8-HPCDF	0.571 ng/Kg	0.571U ng/Kg
DUP-02-SA5DS-QC-092811(RES)	1,2,3,4,7,8,9-HPCDF	0.0552 ng/Kg	0.0552U ng/Kg
DUP-02-SA5DS-QC-092811(RES)	1,2,3,4,7,8-HxCDD	0.0496 ng/Kg	0.0496U ng/Kg
DUP-02-SA5DS-QC-092811(RES)	1,2,3,4,7,8-HXCDF	0.172 ng/Kg	0.172U ng/Kg
DUP-02-SA5DS-QC-092811(RES)	1,2,3,6,7,8-HXCDD	0,0932 ng/Kg	0.0932U ng/Kg
DUP-02-SA5DS-QC-092811(RES)	1,2,3,6,7,8-HXCDF	0.101 ng/Kg	0.101U ng/Kg
DUP-02-SA5DS-QC-092811(RES)	1,2,3,7,8,9-HXCDD	0.192 ng/Kg	0.192U ng/Kg
DUP-02-SA5DS-QC-092811(RES)	1,2,3,7,8-PECDD	0.0619 ng/Kg	0.0619U ng/Kg
DUP-02-SA5DS-QC-092811(RES)	1,2,3,7,8-PECDF	0.107 ng/Kg	0.107U ng/Kg
DUP-02-SA5DS-QC-092811(RES)	2,3,4,6,7,8-HXCDF	0.134 ng/Kg	0.134U ng/Kg
DUP-02-SA5DS-QC-092811(RES)	2,3,4,7,8-PECDF	0.117 ng/Kg	0.117U ng/Kg
DUP-02-SA5DS-QC-092811(RES)	OCDF	0.480 ng/Kg	0.480U ng/Kg
SL-007-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDD	0,332 ng/Kg	0.332U ng/Kg
SL-007-SA6-SB-1.0-2.0(RES)	1,2,3,4,6,7,8-HPCDF	0.133 ng/Kg	0.133U ng/Kg
SL-007-SA6-SB-1.0-2.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0287 ng/Kg	0.0287U ng/Kg
SL-007-SA6-SB-1.0-2.0(RES)	1,2,3,4,7,8-HXCDF	0.0604 ng/Kg	0.0604U ng/Kg
SL-007-SA6-SB-1.0-2.0(RES)	1,2,3,6,7,8-HXCDF	0.0531 ng/Kg	0.0531U ng/Kg
SL-007-SA6-SB-1.0-2.0(RES)	1,2,3,7,8,9-HXCDF	0.0307 ng/Kg	0.0307U ng/Kg

1/20/2012 11:30:10 AM ADR version 1.4.0.111 Page 2 of 5

Lab Reporting Batch ID: DX146

Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method:	1613B		eletakakan errepakan anarah biraka arah	usika pikatika katangan sa	
Matrix:	so				errein di belineral den 14 Antonio
Method Blank Sample ID		Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-007-SA6-SB-1.0-2.0(RES)	1,2,3,7,8-PECDF	0.0488 ng/Kg	0.0488U ng/Kg
SL-007-SA6-SB-1.0-2.0(RES)	2,3,4,6,7,8-HXCDF	0.0572 ng/Kg	0.0572U ng/Kg
SL-007-SA6-SB-1.0-2.0(RES)	2,3,4,7,8-PECDF	0.0711 ng/Kg	0.0711U ng/Kg
SL-007-SA6-SB-1.0-2.0(RES)	OCDD	1.00 ng/Kg	1.00U ng/Kg
SL-007-SA6-SB-1.0-2.0(RES)	OCDF	0.171 ng/Kg	0.171U ng/Kg
SL-022-SA8S-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0858 ng/Kg	0.0858U ng/Kg
SL-022-SA8S-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.126 ng/Kg	0.126U ng/Kg
SL-022-SA8S-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.102 ng/Kg	0.102U ng/Kg
SL-022-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.112 ng/Kg	0.112U ng/Kg
SL-022-SA8S-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.130 ng/Kg	0.130U ng/Kg
SL-023-SA8S-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0811 ng/Kg	0.0811U ng/Kg
SL-023-SA8S-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.175 ng/Kg	0.175U ng/Kg
SL-023-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0383 ng/Kg	0.0383U ng/Kg
SL-023-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.0967 ng/Kg	0.0967U ng/Kg
SL-034-SA5DS-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDD	0.974 ng/Kg	0.974U ng/Kg
SL-034-SA5DS-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDF	0.301 ng/Kg	0.301U ng/Kg
SL-034-SA5DS-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0310 ng/Kg	0.0310U ng/Kg
SL-034-SA5DS-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.0775 ng/Kg	0.0775U ng/Kg
SL-034-SA5DS-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.0507 ng/Kg	0.0507U ng/Kg
SL-034-SA5DS-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.101 ng/Kg	0.101U ng/Kg
SL-034-SA5DS-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0401 ng/Kg	0.0401U ng/Kg
SL-034-SA5DS-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.0678 ng/Kg	0.0678U ng/Kg
SL-034-SA5DS-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.0902 ng/Kg	0.0902U ng/Kg
SL-037-\$A6-\$B-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.987 ng/Kg	0.987U ng/Kg
SL-037-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.208 ng/Kg	0.208U ng/Kg
SL-037-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0559 ng/Kg	0.0559U ng/Kg
SL-037-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.107 ng/Kg	0.107U ng/Kg
SL-037-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0692 ng/Kg	0.0692U ng/Kg
SL-037-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0594 ng/Kg	0.0594U ng/Kg
SL-037-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.121 ng/Kg	0.121U ng/Kg
SL-037-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0562 ng/Kg	0.0562U ng/Kg
SL-037-SA6-SB-4.0-5.0(RES)	OCDF	0.386 ng/Kg	0.386U ng/Kg
SL-037-SA6-SB-9.0-10.0(RES)	1,2,3,4,6,7,8-HPCDF	0.153 ng/Kg	0.153U ng/Kg
SL-037-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0818 ng/Kg	0.0818U ng/Kg
SL-037-SA6-SB-9.0-10.0(RES)	1,2,3,4,7,8-HXCDF	0.140 ng/Kg	0.140U ng/Kg
SL-037-SA6-SB-9.0-10.0(RES)	1,2,3,6,7,8-HXCDF	0.0326 ng/Kg	0.0326U ng/Kg
SL-037-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.0283 ng/Kg	0.0283U ng/Kg
SL-037-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDD	0.125 ng/Kg	0.125U ng/Kg
SL-037-SA6-SB-9.0-10.0(RES)	2,3,4,6,7,8-HXCDF	0.0541 ng/Kg	0.0541U ng/Kg
SL-037-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.0634 ng/Kg	0.0634U ng/Kg

1/20/2012 11:30:10 AM ADR version 1.4.0.111 Page 3 of 5

Lab Reporting Batch ID: DX146 Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO				
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-037-SA6-SB-9.0-10.0(RES)	OCDF	0.205 ng/Kg	0.205U ng/Kg
SL-040-SA5DS-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.219 ng/Kg	0.219U ng/Kg
SL-040-SA5DS-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.154 ng/Kg	0.154U ng/Kg
SL-040-SA5DS-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.0854 ng/Kg	0.0854U ng/Kg
SL-064-SA6-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.170 ng/Kg	0.170U ng/Kg
SL-064-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0327 ng/Kg	0.0327U ng/Kg
SL-064-SA6-SB-9.0-10.0(RES)	1,2,3,7,8,9-HXCDF	0.127 ng/Kg	0.127U ng/Kg
SL-064-SA6-SB-9.0-10.0(RES)	1,2,3,7,8-PECDF	0.0547 ng/Kg	0.0547U ng/Kg
SL-064-SA6-SB-9.0-10.0(RES)	2,3,4,7,8-PECDF	0.152 ng/Kg	0.152U ng/Kg
SL-084-SA7-SB-0.0-1.0(RES)	1,2,3,4,6,7,8-HPCDD	0.374 ng/Kg	0.374U ng/Kg
SL-084-SA7-SB-0.0-1.0(RES)	1,2,3,4,6,7,8-HPCDF	0.144 ng/Kg	0.144U ng/Kg
SL-084-SA7-SB-0.0-1.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0268 ng/Kg	0.0268U ng/Kg
SL-084-SA7-SB-0.0-1.0(RES)	1,2,3,4,7,8-HXCDF	0.0709 ng/Kg	0.0709U ng/Kg
SL-084-SA7-SB-0.0-1.0(RES)	1,2,3,6,7,8-HXCDF	0.0683 ng/Kg	0.0683U ng/Kg
SL-084-SA7-SB-0.0-1.0(RES)	1,2,3,7,8,9-HXCDF	0.0466 ng/Kg	0.0466U ng/Kg
SL-084-SA7-SB-0.0-1.0(RES)	1,2,3,7,8-PECDD	0.0447 ng/Kg	0.0447U ng/Kg
SL-084-SA7-SB-0.0-1.0(RES)	1,2,3,7,8-PECDF	0.0527 ng/Kg	0.0527U ng/Kg
SL-084-SA7-SB-0.0-1.0(RES)	2,3,4,6,7,8-HXCDF	0.0603 ng/Kg	0.0603U ng/Kg
SL-084-SA7-SB-0.0-1.0(RES)	2,3,4,7,8-PECDF	0,106 ng/Kg	0.106U ng/Kg
SL-084-SA7-SB-0.0-1.0(RES)	OCDF	0.212 ng/Kg	0.212U ng/Kg
SL-113-SA7-SB-0.0-1.0(RES)	1,2,3,4,6,7,8-HPCDD	0.662 ng/Kg	0.662U ng/Kg
SL-113-SA7-SB-0.0-1.0(RES)	1,2,3,4,6,7,8-HPCDF	0,195 ng/Kg	0.195U ng/Kg
SL-113-SA7-SB-0.0-1.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0386 ng/Kg	0.0386U ng/Kg
SL-113-SA7-SB-0.0-1.0(RES)	1,2,3,4,7,8-HXCDF	0.149 ng/Kg	0.149U ng/Kg
SL-113-SA7-SB-0.0-1.0(RES)	1,2,3,6,7,8-HXCDF	0.161 ng/Kg	0.161U ng/Kg
SL-113-SA7-SB-0.0-1.0(RES)	1,2,3,7,8,9-HXCDF	0.0741 ng/Kg	0.0741U ng/Kg
SL-113-SA7-SB-0.0-1.0(RES)	1,2,3,7,8-PECDD	0.155 ng/Kg	0.155U ng/Kg
SL-113-SA7-SB-0.0-1.0(RES)	2,3,4,6,7,8-HXCDF	0.0789 ng/Kg	0.0789U ng/Kg
SL-113-SA7-SB-0.0-1.0(RES)	OCDF	0,329 ng/Kg	0.329U ng/Kg
SL-115-SA7-SB-0.5-1.5(RES)	1,2,3,4,6,7,8-HPCDD	0.395 ng/Kg	0.395U ng/Kg
SL-115-SA7-SB-0.5-1.5(RES)	1,2,3,4,6,7,8-HPCDF	0,130 ng/Kg	0.130U ng/Kg
SL-115-SA7-SB-0.5-1.5(RES)	1,2,3,4,7,8-HXCDF	0.0320 ng/Kg	0.0320U ng/Kg
SL-115-SA7-SB-0.5-1.5(RES)	1,2,3,6,7,8-HXCDF	0.199 ng/Kg	0.199U ng/Kg
SL-115-SA7-SB-0.5-1.5(RES)	1,2,3,7,8,9-HXCDF	0.0431 ng/Kg	0.0431U ng/Kg
SL-115-SA7-SB-0.5-1.5(RES)	1,2,3,7,8-PECDD	0.0468 ng/Kg	0.0468U ng/Kg
SL-115-SA7-SB-0.5-1.5(RES)	2,3,4,6,7,8-HXCDF	0.0565 ng/Kg	0.0565U ng/Kg
SL-115-SA7-SB-0.5-1.5(RES)	2,3,4,7,8-PECDF	0.110 ng/Kg	0.110U ng/Kg
SL-115-SA7-SB-0.5-1.5(RES)	OCDF	0,221 ng/Kg	0.221U ng/Kg
SL-132-SA7-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0713 ng/Kg	0.0713U ng/Kg
SL-132-SA7-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0727 ng/Kg	0.0727U ng/Kg

1/20/2012 11:30:10 AM ADR version 1.4.0.111 Page 4 of 5

Lab Reporting Batch ID: DX146

Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO	aanallehinging niberhistis (di	Carmine de displaying to the constant and an experience of the con-	ingural sold regard (1877)	
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-132-SA7-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0644 ng/Kg	0.0644U ng/Kg
SL-132-SA7-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0498 ng/Kg	0.0498U ng/Kg
SL-132-SA7-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0449 ng/Kg	0.0449U ng/Kg
SL-132-SA7-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0365 ng/Kg	0.0365U ng/Kg
SL-132-SA7-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0652 ng/Kg	0.0652U ng/Kg
SL-132-SA7-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.115 ng/Kg	0.115U ng/Kg
SL-132-SA7-SB-8.5-9.5(RES)	1,2,3,4,6,7,8-HPCDF	0.364 ng/Kg	0.364U ng/Kg
SL-132-SA7-SB-8.5-9.5(RES)	1,2,3,4,7,8-HXCDF	0.0579 ng/Kg	0.0579U ng/Kg
SL-132-SA7-SB-8.5-9.5(RES)	1,2,3,6,7,8-HXCDF	0.182 ng/Kg	0.182U ng/Kg
SL-132-SA7-SB-8.5-9.5(RES)	1,2,3,7,8,9-HXCDF	0.110 ng/Kg	0.110U ng/Kg
SL-132-SA7-SB-8.5-9.5(RES)	1,2,3,7,8-PECDD	0.0489 ng/Kg	0.0489U ng/Kg
SL-132-SA7-SB-8.5-9.5(RES)	1,2,3,7,8-PECDF	0.0636 ng/Kg	0.0636U ng/Kg
SL-132-SA7-SB-8.5-9.5(RES)	2,3,4,6,7,8-HXCDF	0.0422 ng/Kg	0.0422U ng/Kg
SL-132-SA7-SB-8.5-9.5(RES)	2,3,4,7,8-PECDF	0.0637 ng/Kg	0.0637U ng/Kg
SL-180-SA7-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDD	0.591 ng/Kg	0.591U ng/Kg
6L-180-SA7-SB-2.0-3.0(RES)	1,2,3,4,6,7,8-HPCDF	0.191 ng/Kg	0.191U ng/Kg
L-180-SA7-SB-2.0-3.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0489 ng/Kg	0.0489U ng/Kg
L-180-SA7-SB-2.0-3.0(RES)	1,2,3,4,7,8-HXCDF	0.0426 ng/Kg	0.0426U ng/Kg
L-180-SA7-SB-2.0-3.0(RES)	1,2,3,6,7,8-HXCDF	0.0179 ng/Kg	0.0179U ng/Kg
SL-180-SA7-SB-2.0-3.0(RES)	1,2,3,7,8,9-HXCDF	0.0730 ng/Kg	0.0730U ng/Kg
SL-180-SA7-SB-2.0-3.0(RES)	1,2,3,7,8-PECDF	0.0278 ng/Kg	0.0278U ng/Kg
L-180-SA7-SB-2.0-3.0(RES)	2,3,4,6,7,8-HXCDF	0.0712 ng/Kg	0.0712U ng/Kg
L-180-SA7-SB-2.0-3.0(RES)	2,3,4,7,8-PECDF	0.0980 ng/Kg	0.0980U ng/Kg
L-180-SA7-SB-2.0-3.0(RES)	OCDF	0.252 ng/Kg	0.252U ng/Kg
L-206-SA6-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.642 ng/Kg	0.642U ng/Kg
L-206-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0703 ng/Kg	0.0703U ng/Kg
L-206-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.0777 ng/Kg	0.0777U ng/Kg
SL-206-SA6-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0463 ng/Kg	0.0463U ng/Kg
L-206-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0452 ng/Kg	0.0452U ng/Kg
L-206-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0328 ng/Kg	0.0328U ng/Kg
L-206-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0648 ng/Kg	0.0648U ng/Kg
L-206-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.121 ng/Kg	0.121U ng/Kg
L-225-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDD	0.663 ng/Kg	0.663U ng/Kg
L-225-SA6-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDF	0.257 ng/Kg	0.257U ng/Kg
L-225-SA6-SB-3.0-4.0(RES)	1,2,3,4,7,8-HXCDF	0.0364 ng/Kg	0.0364U ng/Kg
L-225-SA6-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDF	0.0170 ng/Kg	0.0170U ng/Kg
L-225-SA6-SB-3.0-4.0(RES)	1,2,3,7,8-PECDD	0.0309 ng/Kg	0.0309U ng/Kg
L-225-SA6-SB-3.0-4.0(RES)	2,3,4,6,7,8-HXCDF	0.0426 ng/Kg	0.0426U ng/Kg
L-225-SA6-SB-3.0-4.0(RES)	2,3,4,7,8-PECDF	0.0638 ng/Kg	0.0638U ng/Kg
L-225-SA6-SB-3.0-4.0(RES)	OCDF	0.575 ng/Kg	0.575U ng/Kg

1/20/2012 11:30:10 AM ADR version 1.4.0.111 Page 5 of 5

## Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: DX146

Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO			eresses en		A. O. T. R. A. S. A. S. A. S. A. S. A. S. A. S. A. S. A. S. A. S. A. S. A. S. A. S. A. S. A. S. A. S. A. S. A.	Parity Control of Control of Control	
QC Sample ID (Associated Samples)	Compound	MS %R	MSD %R	%R Limits	RPD (Limits)	Affected Compounds	Flag
SL-034-SA5DS-SS-0.0-0.5MSD (SL-034-SA5DS-SS-0.0-0.5)	OCDD	<u> </u>	169	40.00-135.00	54 (20.00)	OCDD	J (all detects)

Page 1 of 1

## Field Duplicate RPD Report

Lab Reporting Batch ID: DX146

Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Wethod: 160.3M Watrix: SO	diction in a second second second second second second second second second second second second second second	alatical de designation de la constitución de la constitución de la constitución de la constitución de la cons		etalasidete adell	
	Concentr	Concentration (%)			,
Analyte	SL-034-SA5DS-SS-0.0- 0.5	DUP-02-SA5DS-QC- 092811	Sample RPD	eQAPP RPD	Flag
MOISTURE	4.0	3.8	5		No Qualifiers Applie

Method: 1613B Matrix: SO

	Concentrat	Concentration (ng/Kg)			
Analyte	SL-034-SA5DS-SS-0.0- 0.5	1		eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 2,3,4,7,8-PECDF OCDD OCDF	0.974 0.0828 0.133 0.0902 9.33 0.613	0.809 0.0932 0.192 0.117 6.37 0.480	19 12 36 26 38 24	50.00 50.00 50.00 50.00 50.00 50.00	No Qualifiers Applied
1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDF	0.301 0.0310 5.13 U 0.0775 0.0507 0.101 5.13 U 0.0401 0.0678 1.03 U	0.571 0.0552 0.0496 0.172 0.101 0.174 0.0619 0.107 0.134 0.0615	62 56 200 76 66 53 200 91 66 200	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	J(all detects) UJ(all non-detects)

ADR version 1.4.0.111 Page 1 of 1

Lab Reporting Batch ID: DX146 Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Meti	iod:	613	В

AQ

Matrix:

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
EB-SA5DS-SS-092811	1,2,3,4,6,7,8-HPCDD	JB	2.89	9.69	PQL	pg/L	
	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JBQ	1.76 0.521	9.69 9.69	PQL PQL	pg/L pg/L	
	1,2,3,4,7,8-HxCDD	JB	0.360	9.69	PQL	pg/L	
	1,2,3,4,7,8-HXCDF	JB	0.497	9.69	PQL	pg/L	
	1,2,3,6,7,8-HXCDD	JB	0.286	9.69	PQL	pg/L	
	1,2,3,6,7,8-HXCDF	JB	0.497	9.69	PQL	pg/L	
	1,2,3,7,8,9-HXCDD	JBQ	0.355	9.69	PQL	pg/L	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.562	9.69	PQL	pg/L	, ,
	1,2,3,7,8-PECDD	JBQ	0.594	9.69	PQL	pg/L	
	1,2,3,7,8-PECDF	JBQ	0.627	9.69	PQL	pg/L	
	2,3,4,6,7,8-HXCDF	JBQ	0.387	9.69	PQL	pg/L	
	2,3,4,7,8-PECDF	JB	0.712	9.69	PQL	pg/L	
	OCDD	JB	5.08	19.4	PQL	pg/L	
	OCDF	JBQ	1.67	19.4	PQL	pg/L	

Method: 1613B Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Quai	Result	Limit	Туре	Units	Flag
DUP-02-SA5DS-QC-092811	1,2,3,4,6,7,8-HPCDD	JB	0.809	5.06	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.571	5.06	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0552	5.06	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0496	5.06	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.172	5.06	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0932	5.06	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.101	5.06	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.192	5.06	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JQ	0.174	5.06	PQL	ng/Kg	J (all delects)
	1,2,3,7,8-PECDD	JB	0.0619	5.06	PQL	ng/Kg	
1	1,2,3,7,8-PECDF	JB	0.107	5.06	PQL	ng/Kg	
1	2,3,4,6,7,8-HXCDF	JBQ	0.134	5.06	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.117	5.06	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.0615	1.01	PQL	ng/Kg	
	OCDD	JB	6.37	10.1	PQL	ng/Kg	
	OCDF	JB	0.480	10.1	PQL	ng/Kg	
SL-007-SA6-SB-1.0-2.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.332	5.24	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.133	5.24	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0287	5.24	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0321	5.24	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0604	5.24	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JQ	0.0353	5.24	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0531	5.24	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JQ	0.0556	5.24	PQL	ng/Kg	J (all delects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0307	5.24	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0488	5.24	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0572	5.24	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0711	5.24	PQL	ng/Kg	
	OCDD	JB	1.00	10.5	PQL	ng/Kg	
	OCDF	JВ	0.171	10.5	PQL	ng/Kg	

1/20/2012 11:30:18 AM ADR version 1.4.0.111 Page 1 of 6

Lab Reporting Batch ID: DX146 Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613E

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-022-SA8S-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HCDF 0,3,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-PECDF	JB JB JB JB JB JB JB JB JB JB JB JB JB J	3.60 0.777 0.0858 0.0991 0.126 0.182 0.102 0.153 0.112 0.0992 0.130 0.165 0.128 1.23	5.26 5.26 5.26 5.26 5.26 5.26 5.26 5.26	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-023-SA8S-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,7,8-TCDD 2,3,7,8-TCDF OCDF	# - 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.01 0.0811 0.128 0.186 0.310 0.175 0.333 0.0383 0.0967 0.116 0.183 0.0466 0.474 1.63	5.25 5.25 5.25 5.25 5.25 5.25 5.25 5.25	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-034-SA5DS-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 0CDD 0CDF	G B B B G G G B B B B B B	0.974 0.301 0.0310 0.0775 0.0828 0.0507 0.133 0.101 0.0401 0.0678 0.0902 9.33 0.613	5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-037-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	######################################	0.987 0.208 0.0559 0.0707 0.107 0.0677 0.0692 0.0594 0.121 0.131 0.0562 0.181 0.0582 0.0640 5.58 0.386	5.10 5.10 5.10 5.10 5.10 5.10 5.10 5.10	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX146 Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-037-SA6-SB-9.0-10.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,7,8-PECDF 2,3,7,8-PECDF 2,3,7,8-TCDD OCDF		1.59 0.153 0.0818 0.0376 0.140 0.0453 0.0326 0.0781 0.0283 0.125 0.0902 0.0541 0.0634 0.0547 0.205	5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.51	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-040-SA5DS-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDF OCDF	а-ыы Выбас Выба Выба Выба	1.38 0.128 0.341 0.275 0.696 0.219 0.648 0.585 0.154 0.201 0.172 0.0854 0.186 4.60	5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06	Pal Pal Pal Pal Pal Pal Pal Pal Pal Pal	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-064-SA6-SB-4.0-5.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	B	2.91 0.835 1.15 5.15 0.790 1.83 0.170 1.15 0.0327 1.17 0.346 0.190 0.0770	5.17 5.17 5.17 5.17 5.17 5.17 5.17 5.17	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-064-SA6-SB-9.0-10.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF	JB JB JBQ JBQ JBQ JBQ JBQ JB JB JB JB JB JB JB JB JB JB JB JB JB	1.04 0.457 0.461 3.01 0.393 1.27 0.127 0.299 0.0547 0.606 0.152 0.0779	5.64 5.64 5.64 5.64 5.64 5.64 5.64 5.64	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/20/2012 11:30:18 AM ADR version 1.4.0.111 Page 3 of 6

Lab Reporting Batch ID: DX146

Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-084-SA7-SB-0.0-1.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDD	JB JBQ JBQ JBQ JBQ JBQ JBB JBQ JBQ JBB	0.374 0.144 0.0268 0.0473 0.0709 0.0561 0.0683 0.0453 0.0466 0.0447 0.0527 0.0603 0.106 0.0390 2.44 0.212	5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-113-SA7-SB-0.0-1.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-ECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	BECEPT BUBBBBCBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	0.662 0.195 0.0386 0.0587 0.149 0.487 0.161 0.643 0.0741 0.155 0.156 0.0789 0.167 0.0643 0.0416 4.39 0.329	5.53 5.53 5.53 5.53 5.53 5.53 5.53 5.53	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-115-SA7-SB-0.5-1.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	######################################	0.395 0.130 0.0320 0.313 0.199 0.434 0.0431 0.0468 0.0864 0.0565 0.110 0.0243 3.13 0.221	5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

1/20/2012 11:30:18 AM ADR version 1.4.0.111 Page 4 of 6

Lab Reporting Batch ID: DX146

Tanagasa U. S. Baras (Tanas Caras Anna S. Tanagas) a sangar

Laboratory: LL

EDD Filename: DX146_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

					D/		
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-132-SA7-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF	JB JB JBQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ	0.709 0.0713 0.0415 0.0727 0.239 0.0644 0.187 0.0498 0.0449 0.0365 0.0652 0.115	5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-132-SA7-SB-8.5-9.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,7,8-PECDF OCDF	B B B B B B B B B B B B B B B B B B B	2.70 0.364 0.102 0.0579 0.446 0.182 0.762 0.110 0.0489 0.0636 0.0422 0.0637 0.667	5.28 5.28 5.28 5.28 5.28 5.28 5.28 5.28	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-180-SA7-SB-2.0-3.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD OCDD OCDF	## ## ## ## ## ## ## ## ## ## ## ## ##	0.591 0.191 0.0489 0.0426 0.0787 0.0179 0.127 0.0730 0.0278 0.0712 0.0980 0.0376 2.78 0.252	5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-191-SA6-SB-0.0-1.0	1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD	L L L L L L L L L L L L L L L L L L L	1.65 1.29 1.38 4.20 1.24 2.09 0.380 0.822 0.577 1.49 0.978 0.0615 0.419	4.91 4.91 4.91 4.91 4.91 4.91 4.91 4.91	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

Lab Reporting Batch ID: DX146

Laboratory: LL

EDD Filename: DX146_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B	indinteration of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the					1242.00	designation design
Matrix: SO							The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-206-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	JB JBQ JQQ JBQ JBQ JBQ JBQ JBQ JBQ JBQ J	3.58 0.642 0.0703 0.0694 0.0777 0.132 0.0463 0.108 0.0452 0.0328 0.0648 0.121 0.100 1.38	5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21	POL POL POL POL POL POL POL POL POL POL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-225-SA6-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF OCDD OCDF	##BABABABAB ##BABABABAB	0.663 0.257 0.0364 0.0694 0.0170 0.0467 0.0309 0.0426 0.0638 6.16 0.575	5.43 5.43 5.43 5.43 5.43 5.43 5.43 5.43	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)

## **SAMPLE DELIVERY GROUP**

**DX147** 

## **Attachment I**

**Sample ID Cross Reference and Data Review Level** 

## **Sample Cross Reference**

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
29-Sep-2011	SL-007-SA8S-SS-0.0-0.5	6423878	N	METHOD	1613B	IV
29-Sep-2011	SL-005-SA8S-SS-0.0-0.5	6423877	N	METHOD	1613B	IV
29-Sep-2011	SL-177-SA7-SB-3.0-4.0	6423886	N	METHOD	1613B	IV
29-Sep-2011	SL-003-SA8S-SS-0.0-0.5	6423874	N	METHOD	1613B	IV
29-Sep-2011	SL-003-SA8S-SS-0.0-0.5MS	6423875	MS	METHOD	1613B	IV
29-Sep-2011	SL-003-SA8S-SS-0.0-0.5MSD	6423876	MSD	METHOD	1613B	IV
29-Sep-2011	SL-127-SA7-SB-4.0-5.0	6423885	N	METHOD	1613B	IV
29-Sep-2011	DUP01-SA8S-QC-092911	6423883	FD	METHOD	1613B	IV
29-Sep-2011	SL-001-SA8S-SS-0.0-0.5	6423873	N	METHOD	1613B	IV
29-Sep-2011	SL-126-SA7-SB-4.0-5.0	6423884	N	METHOD	1613B	IV
29-Sep-2011	SL-024-SA8S-SS-0.0-0.5	6423882	N	METHOD	1613B	IV
29-Sep-2011	SL-013-SA8S-SS-0.0-0.5	6423879	N	METHOD	1613B	iV
29-Sep-2011	SL-014-SA8S-SS-0.0-0.5	6423880	N	METHOD	1613B	IV .
29-Sep-2011	SL-015-SA8S-SS-0.0-0.5	6423881	N	METHOD	1613B	IV :
06-Oct-2011	SL-229-SA6-SS-0.0-0.5	6431147	N	METHOD	1613B	IV
06-Oct-2011	SL-229-SA6-SB-2.0-3.0	6431152	N	METHOD	1613B	IV
06-Oct-2011	SL-230-SA6-SS-0.0-0.5	6431148	N	METHOD	1613B	1V
06-Oct-2011	SL-230-SA6-SB-4.0-5.0	6431153	N	METHOD	1613B	iV
06-Oct-2011	SL-254-SA6-SB-2.5-3.5	6431154	N	METHOD	1613B	IV
06-Oct-2011	SL-234-SA6-SS-0.0-0,5	6431149	N	METHOD	1613B	IV
06-Oct-2011	SL-232-SA6-SS-0.0-0.5	6431150	N	METHOD	1613B	IV
06-Oct-2011	SL-232-SA6-SB-2.5-3.5	6431151	N	METHOD	1613B	IV

## Attachment II

## **Overall Data Qualification Summary**

Lab Reporting Batch ID: DX147

Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID: DUP01-SA8S-QC-092911	Collec	ted: 9/29/2	2011 10:05	5:00 A	nalysis T	ype: RES	<b>;</b>	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.04	JB	0.0303	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.615	JBQ	0.0183	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0624	JBQ	0.0245	MDL	5.15	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0704	JQ	0.0271	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.361	J	0.0281	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.193	JB	0.0260	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.148	JB	0.0233	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.138	JB	0.0256	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0609	JB	0.0205	MDL	5.15	PQL	ng/Kg	ΟĴ	B, FD
1,2,3,7,8-PECDD	0.0846	JQ	0.0258	MDL	5.15	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0763	JB	0.0215	MDL	5.15	PQL	ng/Kg	UJ	B, FD
2,3,4,6,7,8-HXCDF	0.149	JB	0.0186	MDL	5.15	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.233	JB	0.0220	MDL	5.15	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.265	JB	0.0349	MDL	1.03	PQL	ng/Kg	J	Z

Sample ID: SL-001-SA8S-SS-0.0-0.5

OCDF

Collected: 9/29/2011 11:25:00

JΒ

0.0284

MDL

1.00

Analysis Type: RES

PQL

ng/Kg

10.3

Dilution: 1

Z

				7.		7pcc			ondaon.
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.77	JB	0.0590	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.592	JB	0.0323	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.118	JBQ	0.0499	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0733	J	0.0329	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.288	JQ	0.0388	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.152	JB	0.0326	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.133	JBQ	0.0311	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.125	JB	0.0347	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0547	JBQ	0.0320	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0599	J	0.0362	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0941	JBQ	0.0250	MDL	5.28	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.203	JB	0.0242	MDL	5.28	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.381	JB	0.0263	MDL	5.28	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.179	JB	0.0436	MDL	1.06	PQL	ng/Kg	υ	В
OCDF	1.15	JB	0.0920	MDL	10.6	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/31/2012 8:08:36 AM

Lab Reporting Batch ID: DX147

Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID:SL-003-SA8S-SS-0.0-0.5	Collected: 9/29/2011 9:55:00				nalysis T	ype: RES	Dilution: 1		
								Data	
	Lab	Lab		DL		RL		Review	Reason

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.71	JB	0.0405	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.574	JB	0.0211	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0457	JB	0.0282	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0692	JQ	0.0320	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.220	J	0.0352	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.165	JB	0.0345	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.113	JBQ	0.0268	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.163	JBQ	0.0290	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0252	U	0.0252	MDL	5.09	PQL	ng/Kg	UJ	FD
1,2,3,7,8-PECDD	0.0765	J	0.0313	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0217	U	0.0217	MDL	5.09	PQL	ng/Kg	UJ	FD
2,3,4,6,7,8-HXCDF	0.150	JB	0.0209	MDL	5.09	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.317	JB	0.0220	MDL	5.09	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.196	JB	0.0375	MDL	1.02	PQL	ng/Kg	J	z
OCDF	0.882	JB	0.0464	MDL	10.2	PQL	ng/Kg	U	В

Sample ID: SL-005-SA8S-SS-0.0-0.5

Analysis Type: RES

Dilution: 1

						24.0			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.781	JB	0.0297	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.151	JB	0.0191	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0559	JB	0.0189	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.0315	J	0.0252	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0398	JQ	0.0348	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.0811	JBQ	0.0273	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0340	JB	0.0326	MDL	5.09	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0560	JB	0.0238	MDL	5.09	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDF	0.0374	JBQ	0.0192	MDL	5.09	PQL	ng/Kg	Ü	В
1,2,3,7,8-PECDD	0.0587	JQ	0.0286	MDL	5.09	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0389	JB	0.0198	MDL	5.09	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0512	JB	0.0162	MDL	5.09	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0720	JBQ	0.0189	MDL	5.09	PQL	ng/Kg	U	В
OCDD	5.28	JB	0.0248	MDL	10.2	PQL	ng/Kg	J	Z
OCDF	0.353	JB	0.0407	MDL	10.2	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling ADR version 1.4.0.111 1/31/2012 8:08:36 AM

Lab Reporting Batch ID: DX147 Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

 Sample ID:SL-007-SA8S-SS-0.0-0.5
 Collected: 9/29/2011 8:00:00
 Analysis Type: RES
 Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	2.29	JB	0.0341	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.474	JB	0.0190	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0508	JB	0.0211	MDL	5.14	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.0397	JQ	0.0280	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.0598	JQ	0.0255	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.119	JB	0.0270	MDL	5.14	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0674	JB	0.0227	MDL	5.14	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.118	JBQ	0.0273	MDL	5.14	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0505	JBQ	0.0178	MDL	5.14	PQL	ng/Kg	U	В
1,2,3,7,8-PECDD	0.0474	JQ	0.0270	MDL	5.14	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.0823	JBQ	0.0153	MDL	5.14	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0428	JBQ	0.0171	MDL	5.14	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0545	JB	0.0312	MDL	1.03	PQL	ng/Kg	U	В
OCDF	0.884	JB	0.0379	MDL	10.3	PQL	ng/Kg	U	В

Sample ID:SL-013-SA8S-SS-0.0-0.5 Collected: 9/29/2011 2:55:00 Analysis Type: RES Dilution: 1

	Lab	Lab		DL		RL		Data Review	Reason
Analyte	Result	Qual	DL_	Type	RL	Туре	Units	Qual	Code
1,2,3,4,6,7,8-HPCDD	2.17	JB	0.0342	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.756	JB	0.0242	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.211	JBQ	0.0263	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.224	J	0.0317	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.438	J	0.0445	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.253	JB	0.0310	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.372	JBQ	0.0382	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.289	JB	0.0323	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.222	JBQ	0.0314	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.188	J	0.0333	MDL	5.14	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.268	JBQ	0.0288	MDL	5.14	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.311	JB	0.0265	MDL	5.14	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.601	JB	0.0291	MDL	5.14	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.183	JB	0.0618	MDL	1.03	PQL	ng/Kg	υ	В
OCDF	1.27	JB	0.0324	MDL	10.3	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/31/2012 8:08:36 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX147

Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-014-SA8S-SS-0.0-0.5	Collected: 9/29/2011 3:10:00	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	0.690	JВ	0.0225	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.0761	JBQ	0.0259	MDL	5.20	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.194	J	0.0411	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	0.220	J	0.0344	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	0.247	JB	0.0443	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.172	JB	0.0266	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	0.210	JBQ	0.0377	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.164	J	0.0295	MDL	5.20	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.220	JB	0.0239	MDL	5.20	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	0.184	JB	0.0193	MDL	5.20	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.409	JB	0.0245	MDL	5.20	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0992	JB	0.0421	MDL	1.04	PQL	ng/Kg	U	В
OCDF	1.33	JB	0.0312	MDL	10.4	PQL	ng/Kg	J	Z

Sample ID: SL-015-SA8S-SS-0.0-0.5

Collected: 9/29/2011 3:30	:00 Analysi	is Type: RES
OGMOCIONI CIECIRO I I CICO	noo nananyon	0 , , , , , , , , , , , , , , , , , , ,

Dilution: 1

	Tananga iyo						Direction			
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	5.08	JB	0.0435	MDL	5.14	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	0.862	JB	0.0254	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.108	JB	0.0244	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0940	JBQ	0.0360	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HXCDF	0.189	JBQ	0.0463	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDD	0.169	JBQ	0.0345	MDL	5.14	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.129	JBQ	0.0412	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0999	JB	0.0333	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0687	JQ	0.0240	MDL	5.14	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0439	JB	0.0285	MDL	5.14	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.0687	JB	0.0184	MDL	5.14	PQL	ng/Kg	U	В	
2,3,4,6,7,8-HXCDF	0.178	JB	0.0190	MDL	5.14	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.220	JBQ	0.0185	MDL	5.14	PQL	ng/Kg	Ü	В	
2,3,7,8-TCDF	0.0580	JQ	0.0372	MDL	1.03	PQL	ng/Kg	J	Z	
OCDF	0.875	JB	0.0367	MDL	10.3	PQL	ng/Kg	Ų	В	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/31/2012 8:08:36 AM ADR version 1.4.0.111

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX147 Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID:SL-024-SA8S-SS-0.0-0.5	Collected: 9/29/2011 2:15:00	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	3.94	JВ	0.0303	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	0.772	JB	0.0181	MDL	5.00	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0874	JBQ	0.0267	MDL	5.00	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.137	JBQ	0.0388	MDL	5.00	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.179	JBQ	0.0242	MDL	5.00	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.225	JB	0.0417	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.138	JВ	0.0222	MDL	5.00	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.183	JBQ	0.0314	MDL	5.00	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0642	JQ	0.0265	MDL	5.00	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0493	JBQ	0.0288	MDL	5.00	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.190	JB	0.0273	MDL	5.00	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.190	JBQ	0.0224	MDL	5.00	PQL	ng/Kg	υ	В
2,3,4,7,8-PECDF	0.0436	JBQ	0.0256	MDL	5.00	PQL	ng/Kg	υ	В
2,3,7,8-TCDD	0.0482	JQ	0.0321	MDL	1.00	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.282	J	0.0531	MDL	1.00	PQL	ng/Kg	J	Z
OCDF	1.26	JB	0.0253.	MDL	10.0	PQL	ng/Kg	U	В

Sample ID:SL-126-SA7-SB-4.0-5.0

Collected: 9/29/2011 11:33:00 Analysis Type: RES

Dilution: 1

		Tanada di Laria di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada di Tanada						Direction.	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.211	JBQ	0.0217	MDL	5.35	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.0901	JBQ	0.0170	MDL	5.35	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0193	JB	0.0156	MDL	5.35	PQL	ng/Kg	υ	В
1,2,3,6,7,8-HXCDD	0.124	JB	0.0231	MDL	5.35	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.234	JB	0.0209	MDL	5.35	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.210	JBQ	0.0136	MDL	5.35	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.0429	JB	0.0155	MDL	5.35	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0159	JB	0.0120	MDL	5.35	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0412	JB	0.0145	MDL	5.35	PQL	ng/Kg	U	В
OCDD	0.577	JB	0.0193	MDL	10.7	PQL	ng/Kg	υ	В
OCDF	0.124	JBQ	0.0278	MDL	10.7	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX147

Laboratory: LL

EDD Filename: DX147 v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA Method: 1613B

Matrix: SO

Sample ID:SL-127-SA7-SB-4.0-5.0	Collec	ted: 9/29/2	2011 10:00	):00 A	nalysis 7	ype: RES	;	Dilution: 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code	
1,2,3,4,6,7,8-HPCDD	0.284	JB	0.0175	MDL	5.11	PQL	ng/Kg	U	В	
1,2,3,4,6,7,8-HPCDF	0.163	JB	0.0112	MDL	5.11	PQL	ng/Kg	U	В	
1,2,3,4,7,8,9-HPCDF	0.0235	JBQ	0.0114	MDL	5.11	PQL	ng/Kg	U	В	
1,2,3,4,7,8-HxCDD	0.0219	J	0.0146	MDL	5.11	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDD	0.0346	JB	0.0158	MDL	5.11	PQL	ng/Kg	U	В	
1,2,3,6,7,8-HXCDF	0.0482	JBQ	0.0180	MDL	5.11	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.0636	JBQ	0.0146	MDL	5.11	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0500	JBQ	0.0119	MDL	5.11	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDD	0.0360	J	0.0167	MDL	5.11	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDF	0.0254	JBQ	0.00973	MDL	5.11	PQL	ng/Kg	υ	В	
2,3,4,6,7,8-HXCDF	0.0396	JB	0.0104	MDL	5.11	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.0610	JBQ	0.00952	MDL	5.11	PQL	ng/Kg	U	В	
OCDD	0.862	JB	0.0149	MDL	10.2	PQL	ng/Kg	U	В	
OCDF	0.230	JB	0.0225	MDL	10.2	PQL	ng/Kg	U	В	

Sample ID:SL-177-SA7-SB-3.0-4.0

Collected: 9/29/2011 8:50:00

Analysis Type: RES

Dilution: 1

		Concetta, 5/25/2011 0.50.00				ype. KLO	Dilation. 1		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.339	JB	0.0214	MDL	5.28	PQL	ng/Kg	υ	В
1,2,3,4,6,7,8-HPCDF	0.135	JBQ	0.0113	MDL	5.28	PQL	ng/Kg	υ	В
1,2,3,4,7,8,9-HPCDF	0.0411	JBQ	0.0186	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.0413	JBQ	0.0161	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0551	JBQ	0.0204	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0191	JBQ	0.0139	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.0930	JBQ	0.0202	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0556	JQ	0.0176	MDL	5.28	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.0346	JBQ	0.0234	MDL	5.28	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0291	JBQ	0.0138	MDL	5.28	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0511	JBQ	0.0147	MDL	5.28	PQL	ng/Kg	U	В
2,3,7,8-TCDD	0.0319	JQ	0.0314	MDL	1.06	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.0344	JQ	0.0252	MDL	1.06	PQL	ng/Kg	J	Z
OCDD	1.15	JB	0.0208	MDL	10.6	PQL	ng/Kg	U	В
OCDF	0.179	JB	0.0316	MDL	10.6	PQL	ng/Kg	U	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling 1/31/2012 8:08:36 AM ADR version 1.4.0.111

Lab Reporting Batch ID: DX147

Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	3.51	JB	0.0617	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	2.52	JB	0.0622	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.65	JB	0.0372	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.38	JB	0.0337	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	3.92	JB	0.0645	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.432	J	0.0407	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	1.03	JB	0.0556	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.714	JB	0.0280	MDL	5.18	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	2.20	JB	0.0354	MDL	5.18	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	0.834	JB	0.0280	MDL	5.18	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.224	J	0.0333	MDL	1.04	PQL	ng/Kg	J	Z
2,3,7,8-TCDF	0.319	J	0.0443	MDL	1.04	PQL	ng/Kg	j	Z

Sample ID: SL-229-SA6-SS-0.0-0.5

Collected: 10/6/2011 8:30:00	Analysis Type: RES	Dilution: 1
------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	2.79	JB	0.0599	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	1.87	J	0.0542	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.32	J	0.0740	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.06	JB	0.0629	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	2.84	JB	0.0511	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.254	JBQ	0.0378	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	2.23	J	0.0461	MDL	5.23	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.255	JBQ	0.0214	MDL	5.23	PQL	ng/Kg	j	Z
2,3,4,6,7,8-HXCDF	1.79	JB	0.0359	MDL	5.23	PQL	ng/Kg	j	Z
2,3,4,7,8-PECDF	0.555	JB	0.0214	MDL	5.23	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.151	JBQ	0.0307	MDL	1.05	PQL	ng/Kg	U	B
2,3,7,8-TCDF	0.184	JBQ	0.0368	MDL	1.05	PQL	ng/Kg	U	В

Sample ID: SL-230-SA6-SB-4.0-5.0

Collected: 10/6/2011 10:45:00	Analysis Type: RES	Dilution: 1
-------------------------------	--------------------	-------------

Analyte	Lab Result	Lab Qual	DL.	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDF	3.22	JB	0.0287	MDL	5.18	PQL	ng/Kg	J	Z
1,2,3,4,7,8,9-HPCDF	0.398	JBQ	0.0497	MDL	5.18	PQL	ng/Kg	υ	В
1,2,3,4,7,8-HxCDD	0.206	JBQ	0.0591	MDL	5.18	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/31/2012 8:08:36 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX147

Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method:

1613B Matrix: SO

Sample ID:SL-230-SA6-SB-4.0-5.0	Col

Collec	ted: 10/6/2	011 10:45	5:00 A	nalysis T	ype: RES	

Dilution: 1

Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
0.336	JB	0.0404	MDL	5.18	PQL	ng/Kg	U	В
0.544	JBQ	0.0581	MDL	5.18	PQL	ng/Kg	J	Z
0.234	JBQ	0.0346	MDL	5.18	PQL	ng/Kg	U	В
0.226	JBQ	0.0605	MDL	5.18	PQL	ng/Kg	J	Z
0.0487	JQ	0.0456	MDL	5.18	PQL	ng/Kg	J	Z
0.0606	JBQ	0.0544	MDL	5.18	PQL	ng/Kg	U	
0.110	JBQ	0.0274	MDL	5.18	PQL	ng/Kg	U	В
0.322	JB	0.0365	MDL	5.18	PQL	ng/Kg	U	В
0.0939	JBQ	0.0274	MDL	5.18	PQL	ng/Kg	Ų	В
0.0620	JQ	0.0441	MDL	1.04	PQL	ng/Kg	J	Z
7.59	JB	0.0550	MDL	10.4	PQL	ng/Kg	J	Z
	0.336 0.544 0.234 0.226 0.0487 0.0606 0.110 0.322 0.0939 0.0620	Result         Qual           0.336         JB           0.544         JBQ           0.234         JBQ           0.226         JBQ           0.0487         JQ           0.0606         JBQ           0.110         JBQ           0.322         JB           0.0939         JBQ           0.0620         JQ	Result         Qual         DL           0.336         JB         0.0404           0.544         JBQ         0.0581           0.234         JBQ         0.0346           0.226         JBQ         0.0605           0.0487         JQ         0.0456           0.0606         JBQ         0.0544           0.110         JBQ         0.0274           0.322         JB         0.0365           0.0939         JBQ         0.0274           0.0620         JQ         0.0441	Result         Qual         DL         Type           0.336         JB         0.0404         MDL           0.544         JBQ         0.0581         MDL           0.234         JBQ         0.0346         MDL           0.226         JBQ         0.0605         MDL           0.0487         JQ         0.0456         MDL           0.0606         JBQ         0.0544         MDL           0.110         JBQ         0.0274         MDL           0.0322         JB         0.0365         MDL           0.0939         JBQ         0.0274         MDL           0.0620         JQ         0.0441         MDL	Result         Qual         DL         Type         RL           0.336         JB         0.0404         MDL         5.18           0.544         JBQ         0.0581         MDL         5.18           0.234         JBQ         0.0346         MDL         5.18           0.226         JBQ         0.0605         MDL         5.18           0.0487         JQ         0.0456         MDL         5.18           0.0606         JBQ         0.0544         MDL         5.18           0.110         JBQ         0.0274         MDL         5.18           0.0322         JB         0.0365         MDL         5.18           0.0939         JBQ         0.0274         MDL         5.18           0.0620         JQ         0.0441         MDL         1.04	Result         Qual         DL         Type         RL         Type           0.336         JB         0.0404         MDL         5.18         PQL           0.544         JBQ         0.0581         MDL         5.18         PQL           0.234         JBQ         0.0346         MDL         5.18         PQL           0.226         JBQ         0.0605         MDL         5.18         PQL           0.0487         JQ         0.0456         MDL         5.18         PQL           0.0606         JBQ         0.0544         MDL         5.18         PQL           0.110         JBQ         0.0274         MDL         5.18         PQL           0.322         JB         0.0365         MDL         5.18         PQL           0.0939         JBQ         0.0274         MDL         5.18         PQL           0.0620         JQ         0.0441         MDL         1.04         PQL	Result         Qual         DL         Type         RL         Type         Units           0.336         JB         0.0404         MDL         5.18         PQL         ng/Kg           0.544         JBQ         0.0581         MDL         5.18         PQL         ng/Kg           0.234         JBQ         0.0346         MDL         5.18         PQL         ng/Kg           0.226         JBQ         0.0605         MDL         5.18         PQL         ng/Kg           0.0487         JQ         0.0456         MDL         5.18         PQL         ng/Kg           0.0606         JBQ         0.0544         MDL         5.18         PQL         ng/Kg           0.110         JBQ         0.0274         MDL         5.18         PQL         ng/Kg           0.322         JB         0.0365         MDL         5.18         PQL         ng/Kg           0.0939         JBQ         0.0274         MDL         5.18         PQL         ng/Kg           0.0620         JQ         0.0441         MDL         1.04         PQL         ng/Kg	Result         Qual         DL         Type         RL         Type         Units         Qual           0.336         JB         0.0404         MDL         5.18         PQL         ng/Kg         U           0.544         JBQ         0.0581         MDL         5.18         PQL         ng/Kg         J           0.234         JBQ         0.0346         MDL         5.18         PQL         ng/Kg         U           0.226         JBQ         0.0605         MDL         5.18         PQL         ng/Kg         J           0.0487         JQ         0.0456         MDL         5.18         PQL         ng/Kg         J           0.0606         JBQ         0.0544         MDL         5.18         PQL         ng/Kg         U           0.110         JBQ         0.0274         MDL         5.18         PQL         ng/Kg         U           0.322         JB         0.0365         MDL         5.18         PQL         ng/Kg         U           0.0939         JBQ         0.0274         MDL         5.18         PQL         ng/Kg         U           0.0620         JQ         0.0441         MDL         1.0

Sample ID: SL-230-SA6-SS-0.0-0.5

Collected: 10/6/2011 10:25:00	Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL. Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8,9-HPCDF	1.20	JВ	0.0490	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HxCDD	0.816	JB	0.0620	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,4,7,8-HXCDF	1.95	JB	0.0434	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDD	2.49	JB	0.0629	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	1.07	JB	0.0399	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDD	1.51	JВ	0.0630	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.316	J	0.0474	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.427	JB	0.0702	MDL	5.34	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	1.45	JB	0.0473	MDL	5.34	PQL	ng/Kg	J	Z
2,3,4,6,7,8-HXCDF	1.09	JB	0.0433	MDL	5.34	PQL	ng/Kg	J	Z
2,3,4,7,8-PECDF	1.35	JB	0.0449	MDL	5.34	PQL	ng/Kg	J	Z
2,3,7,8-TCDD	0.0733	J	0.0493	MDL	1.07	PQL	ng/Kg	j	Z
2,3,7,8-TCDF	0.939	J	0.0847	MDL	1.07	PQL	ng/Kg	J	Z

Sample ID: SL-232-SA6-SB-2.5-3.5

Collected: 10/6/2011 3:30:00

Analysis Type: RES

Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL.	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	0.308	JBQ	0.0206	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,4,6,7,8-HPCDF	0.175	JBQ	0.0145	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.0271	JBQ	0.0270	MDL	5.37	PQL	ng/Kg	υ	В

^{*} denotes a non-reportable result

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX147

1613B

Laboratory: LL

Dilution: 1

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Collected: 10/6/2011 3:30:00

Method Category: SVOA Method:

Matrix: SO

Sample ID:SL-232-SA6-SB-2.5-3.5

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,7,8-HxCDD	0.0832	JBQ	0.0237	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.106	JBQ	0.0177	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.0730	JB	0.0225	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDF	0.0607	JB	0.0146	MDL	5.37	PQL	ng/Kg	υ	В
1,2,3,7,8,9-HXCDD	0.0963	JB	0.0216	MDL	5.37	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDF	0.0889	JQ	0.0201	MDL	5.37	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDF	0.121	JBQ	0.0144	MDL	5.37	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.0858	JB	0.0156	MDL	5.37	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.0960	JB	0.0151	MDL	5.37	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0684	JQ	0.0263	MDL	1.07	PQL	ng/Kg	J	Z
OCDD	1.23	JB	0.0212	MDL	10.7	PQL	ng/Kg	U	В
OCDF	0.213	JB	0.0310	MDL	10.7	PQL	ng/Kg	U	В

0			
Sample ID:SL	-232-3	Ab SS	-O.U-O.5

Collected: 10/6/2011 3:00:00

Analysis Type: RES

Analysis Type: RES

Dilution: 1

Analyte .	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,2,3,4,6,7,8-HPCDD	4.46	JB	0.0399	MDL	5.61	PQL	ng/Kg	J	Z
1,2,3,4,6,7,8-HPCDF	1.18	JB	0.0246	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,4,7,8,9-HPCDF	0.131	JBQ	0.0420	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,4,7,8-HxCDD	0.129	JBQ	0.0366	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,4,7,8-HXCDF	0.158	JBQ	0.0292	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,6,7,8-HXCDD	0.289	JB	0.0324	MDL	5.61	PQL	ng/Kg	J	Z
1,2,3,6,7,8-HXCDF	0.103	JBQ	0.0255	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,7,8,9-HXCDD	0.291	JB	0.0307	MDL	5.61	PQL	ng/Kg	J	Z
1,2,3,7,8,9-HXCDF	0.0996	JQ	0.0313	MDL	5.61	PQL	ng/Kg	J	Z
1,2,3,7,8-PECDD	0.104	JBQ	0.0340	MDL	5.61	PQL	ng/Kg	U	В
1,2,3,7,8-PECDF	0.0936	JB	0.0212	MDL	5.61	PQL	ng/Kg	U	В
2,3,4,6,7,8-HXCDF	0.175	JB	0.0251	MDL	5.61	PQL	ng/Kg	U	В
2,3,4,7,8-PECDF	0.209	JB	0.0214	MDL	5.61	PQL	ng/Kg	U	В
2,3,7,8-TCDF	0.0661	J	0.0364	MDL	1.12	PQL	ng/Kg	J	Z
OCDF	3.55	JB	0.0404	MDL	11.2	PQL	ng/Kg	J	Z

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX147

Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method Category: SVOA

Method: 1613B Matrix: SO

Sample ID: SL-234-SA6-SS-0.0-0.5	Collected: 10/6/2011 12:15:00	Analysis Type: RES	Dilution: 1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code		
1,2,3,4,6,7,8-HPCDF	3.56	JB	0.0220	MDL	5.51	PQL	ng/Kg	J	Z		
1,2,3,4,7,8,9-HPCDF	0.338	JB	0.0372	MDL	5.51	PQL	ng/Kg	U	В		
1,2,3,4,7,8-HxCDD	0.200	JB	0.0436	MDL	5.51	PQL	ng/Kg	J	Z		
1,2,3,4,7,8-HXCDF	0.386	JBQ	0.0378	MDL	5.51	PQL	ng/Kg	U	В		
1,2,3,6,7,8-HXCDD	0.648	JB	0.0422	MDL	5.51	PQL	ng/Kg	J	Z		
1,2,3,6,7,8-HXCDF	0.369	JB	0.0319	MDL	5.51	PQL	ng/Kg	Ü	В		
1,2,3,7,8,9-HXCDD	0.588	JB	0.0420	MDL	5.51	PQL	ng/Kg	J	Z		
1,2,3,7,8,9-HXCDF	0.183	JQ	0.0401	MDL	5.51	PQL	ng/Kg	J	Z		
1,2,3,7,8-PECDD	0.202	JB	0.0429	MDL	5.51	PQL	ng/Kg	U	В		
1,2,3,7,8-PECDF	0.546	JB	0.0320	MDL	5.51	PQL	ng/Kg	J	Z		
2,3,4,6,7,8-HXCDF	0.551	JB	0.0320	MDL	5.51	PQL	ng/Kg	J	Z		
2,3,4,7,8-PECDF	0.783	JBQ	0.0315	MDL	5.51	PQL	ng/Kg	J	Z		
2,3,7,8-TCDF	0.294	J	0.0639	MDL	1.10	PQL	ng/Kg	J	Z		

Sample ID: SL-254-SA6-SB-2.5-3.5

Dil	utic	on:	•

•								27,200,77		
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	, Reason Code	
1,2,3,4,6,7,8-HPCDD	2.33	JB	0.0314	MDL	5.09	PQL	ng/Kg	J	Z	
1,2,3,4,6,7,8-HPCDF	0.913	JB	0.0185	MDL	5.09	PQL	ng/Kg	υ	В	
1,2,3,4,7,8,9-HPCDF	0.0826	JB	0.0311	MDL	5.09	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HxCDD	0.0357	JBQ	0.0309	MDL	5.09	PQL	ng/Kg	υ	В	
1,2,3,4,7,8-HXCDF	0.281	JBQ	0.0277	MDL	5.09	PQL	ng/Kg	υ	В	
1,2,3,6,7,8-HXCDD	0.247	JB	0.0313	MDL	5.09	PQL	ng/Kg	J	Z	
1,2,3,6,7,8-HXCDF	0.172	JBQ	0.0229	MDL	5.09	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDD	0.198	JBQ	0.0307	MDL	5.09	PQL	ng/Kg	U	В	
1,2,3,7,8,9-HXCDF	0.0849	JQ	0.0302	MDL	5.09	PQL	ng/Kg	J	Z	
1,2,3,7,8-PECDD	0.0424	JB	0.0276	MDL	5.09	PQL	ng/Kg	U	В	
1,2,3,7,8-PECDF	0.242	JВ	0.0225	MDL	5.09	PQL	ng/Kg	J	Z	
2,3,4,6,7,8-HXCDF	0.133	JB	0.0239	MDL	5.09	PQL	ng/Kg	U	В	
2,3,4,7,8-PECDF	0.472	JB	0.0226	MDL	5.09	PQL	ng/Kg	J	Z	
2,3,7,8-TCDF	0.372	JQ	0.0526	MDL	1.02	PQL	ng/Kg	J	Z	
OCDF	1.19	JB	0.0340	MDL	10.2	PQL	ng/Kg	IJ	В	

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX147

ar Harri

EDD Filename: DX147_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

^{*} denotes a non-reportable result

Lab Reporting Batch ID: DX147

EDD Filename: DX147_v1

Laboratory: LL

eQAPP Name: CDM_SSFL_110509

#### Reason Code Legend

Reason Code	Description
В	Method Blank Contamination
FD	Field Duplicate Precision
Z	Reporting Limit Trace Value

## **Enclosure I**

Level III ADR Outliers (including Manual Review Outliers)

# Quality Control Outlier Reports

DX147

Lab Reporting Batch ID: DX147 Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613 Matrix: SO	3 <b>B</b>			
Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
BLK2860B370829	10/15/2011 8:29:00 AM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD OCDF	0.202 ng/Kg 0.0913 ng/Kg 0.0260 ng/Kg 0.0344 ng/Kg 0.0263 ng/Kg 0.0271 ng/Kg 0.0293 ng/Kg 0.0281 ng/Kg 0.0606 ng/Kg 0.0553 ng/Kg 0.0656 ng/Kg 0.0656 ng/Kg 0.0691 ng/Kg 0.0391 ng/Kg 0.380 ng/Kg 0.380 ng/Kg	DUP01-SA8S-QC-092911 SL-001-SA8S-SS-0.0-0.5 SL-003-SA8S-SS-0.0-0.5 SL-005-SA8S-SS-0.0-0.5 SL-007-SA8S-SS-0.0-0.5 SL-013-SA8S-SS-0.0-0.5 SL-013-SA8S-SS-0.0-0.5 SL-014-SA8S-SS-0.0-0.5 SL-126-SA7-SB-4.0-5.0 SL-127-SA7-SB-4.0-5.0 SL-229-SA6-SS-0.0-0.5
BLK2920B371824	10/20/2011 6:24:00 PM	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF OCDD OCDF	0.305 ng/Kg 0.370 ng/Kg 0.0805 ng/Kg 0.0805 ng/Kg 0.0310 ng/Kg 0.114 ng/Kg 0.0294 ng/Kg 0.0822 ng/Kg 0.0415 ng/Kg 0.0488 ng/Kg 0.0392 ng/Kg 0.0874 ng/Kg 0.0693 ng/Kg 0.653 ng/Kg 0.256 ng/Kg	SL-015-SA8S-SS-0.0-0.5 SL-024-SA8S-SS-0.0-0.5 SL-177-SA7-SB-3.0-4.0 SL-229-SA6-SB-2.0-3.0 SL-230-SA6-SB-4.0-5.0 SL-230-SA6-SB-2.5-3.5 SL-232-SA6-SB-2.5-3.5 SL-232-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-254-SA6-SB-2.5-3.5

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
DUP01-SA8S-QC-092911(RES)	1,2,3,4,7,8,9-HPCDF	0.0624 ng/Kg	5.15U ng/Kg
DUP01-SA8S-QC-092911(RES)	1,2,3,7,8,9-HXCDF	0.0609 ng/Kg	5.15U ng/Kg
DUP01-SA8S-QC-092911(RES)	1,2,3,7,8-PECDF	0.0763 ng/Kg	5.15U ng/Kg
DUP01-SA8S-QC-092911(RES)	2,3,4,6,7,8-HXCDF	0.149 ng/Kg	5.15U ng/Kg
DUP01-SA8S-QC-092911(RES)	2,3,4,7,8-PECDF	0.233 ng/Kg	5.15U ng/Kg
SL-001-SA8S-SS-0.0-0,5(RES)	1,2,3,4,7,8,9-HPCDF	0.118 ng/Kg	5,28U ng/Kg
SL-001-SA8S-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDD	0.152 ng/Kg	5.28U ng/Kg
SL-001-SA8S-SS-0.0-0,5(RES)	1,2,3,7,8,9-HXCDD	0.125 ng/Kg	5,28U ng/Kg
SL-001-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0547 ng/Kg	5.28U ng/Kg
SL-001-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0941 ng/Kg	5.28U ng/Kg
SL-001-SA8S-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.203 ng/Kg	5.28U ng/Kg
SL-001-SA8S-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.179 ng/Kg	1.06U ng/Kg
SL-003-SA8S-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0457 ng/Kg	5.09U ng/Kg
SL-003-SA8S-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDD	0.165 ng/Kg	5.09U ng/Kg
SL-003-SA8S-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.113 ng/Kg	5.09U ng/Kg
SL-003-SA8S-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.150 ng/Kg	5.09U ng/Kg
SL-003-SA8S-SS-0.0-0.5(RES)	OCDF	0.882 ng/Kg	10.2U ng/Kg
SL-005-SA8S-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDD	0.781 ng/Kg	5.09U ng/Kg
SL-005-SA8S-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDF	0.151 ng/Kg	5.09U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/31/2012 8:08:23 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX147 Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613	3			
Matrix: SO				
Method Blank				Associated
Sample ID	Analysis Date	Analyte	Result	Samples

The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-005-SA8S-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0559 ng/Kg	5.09U ng/Kg
SL-005-SA8S-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDD	0.0811 ng/Kg	5.09U ng/Kg
SL-005-SA8S-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.0340 ng/Kg	5.09U ng/Kg
SL-005-SA8S-SS-0.0-0,5(RES)	1,2,3,7,8,9-HXCDD	0,0560 ng/Kg	5.09U ng/Kg
SL-005-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0374 ng/Kg	5.09U ng/Kg
SL-005-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0389 ng/Kg	5.09U ng/Kg
SL-005-SA8S-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.0512 ng/Kg	5.09U ng/Kg
SL-005-SA8S-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.0720 ng/Kg	5.09U ng/Kg
SL-005-SA8S-SS-0.0-0.5(RES)	OCDF	0.353 ng/Kg	10.2U ng/Kg
SL-007-SA8S-SS-0.0-0,5(RES)	1,2,3,4,7,8,9-HPCDF	0.0508 ng/Kg	5.14U ng/Kg
SL-007-SA8S-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDD	0.119 ng/Kg	5.14U ng/Kg
SL-007-SA8S-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.0674 ng/Kg	5.14U ng/Kg
SL-007-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.118 ng/Kg	5.14U ng/Kg
SL-007-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDF	0.0505 ng/Kg	5.14U ng/Kg
SL-007-SA8S-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.0823 ng/Kg	5.14U ng/Kg
SL-007-SA8S-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.0428 ng/Kg	5.14U ng/Kg
SL-007-SA8S-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0545 ng/Kg	1.03U ng/Kg
SL-007-SA8S-SS-0.0-0.5(RES)	OCDF	0.884 ng/Kg	10.3U ng/Kg
SL-013-SA8S-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.183 ng/Kg	1.03U ng/Kg
SL-014-SA8S-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0761 ng/Kg	5,20U ng/Kg
SL-014-SA8S-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.184 ng/Kg	5.20U ng/Kg
SL-014-SA8S-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.0992 ng/Kg	1.04U ng/Kg
SL-015-SA8S-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDF	0.862 ng/Kg	5.14U ng/Kg
SL-015-SA8S-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.108 ng/Kg	5.14U ng/Kg
SL-015-SA8S-SS-0,0-0,5(RES)	1,2,3,4,7,8-HxCDD	0.0940 ng/Kg	5.14U ng/Kg
SL-015-SA8S-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.189 ng/Kg	5.14U ng/Kg
SL-015-SA8S-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.129 ng/Kg	5.14U ng/Kg
SL-015-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.0999 ng/Kg	5.14U ng/Kg
GL-015-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.0439 ng/Kg	5.14U ng/Kg
SL-015-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0687 ng/Kg	5.14U ng/Kg
SL-015-SA8S-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.178 ng/Kg	5.14U ng/Kg
SL-015-SA8S-SS-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.220 ng/Kg	5.14U ng/Kg
SL-015-SA8S-SS-0.0-0,5(RES)	OCDF	0.875 ng/Kg	10.3U ng/Kg
SL-024-SA8S-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDF	0.772 ng/Kg	5.00U ng/Kg
SL-024-SA8S-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0874 ng/Kg	5.00U ng/Kg
SL-024-SA8S-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.137 ng/Kg	5,00U ng/Kg
SL-024-SA8S-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.179 ng/Kg	5.00U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/31/2012 8:08:23 AM

ADR version 1.4.0.111

Lab Reporting Batch ID: DX147 Laboratory: LL EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B Matrix: SO Method Blank Associated Sample ID Analysis Date Analyte

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Result

Samples

Sample ID	Analyte	Reported Result	Modified Final Result
SL-024-SA8S-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.138 ng/Kg	5.00U ng/Kg
SL-024-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8,9-HXCDD	0.183 ng/Kg	5.00U ng/Kg
SL-024-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.0493 ng/Kg	5.00U ng/Kg
SL-024-SA8S-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.190 ng/Kg	5.00U ng/Kg
SL-024-SA8S-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.190 ng/Kg	5.00U ng/Kg
SL-024-SA8\$-\$\$-0.0-0.5(RES)	2,3,4,7,8-PECDF	0.0436 ng/Kg	5.00U ng/Kg
SL-024-SA8S-SS-0.0-0.5(RES)	OCDF	1.26 ng/Kg	10.0U ng/Kg
SL-126-SA7-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.211 ng/Kg	5.35U ng/Kg
SL-126-SA7-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.0901 ng/Kg	5.35U ng/Kg
SL-126-SA7-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0193 ng/Kg	5.35U ng/Kg
SL-126-SA7-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.124 ng/Kg	5,35U ng/Kg
SL-126-SA7-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0429 ng/Kg	5.35U ng/Kg
SL-126-SA7-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0159 ng/Kg	5.35U ng/Kg
SL-126-SA7-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0412 ng/Kg	5.35U ng/Kg
SL-126-SA7-SB-4.0-5.0(RES)	OCDD	0.577 ng/Kg	10.7U ng/Kg
SL-126-SA7-SB-4.0-5.0(RES)	OCDF	0.124 ng/Kg	10.7U ng/Kg
SL-127-SA7-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDD	0.284 ng/Kg	5.11U ng/Kg
SL-127-SA7-SB-4.0-5.0(RES)	1,2,3,4,6,7,8-HPCDF	0.163 ng/Kg	5.11U ng/Kg
SL-127-SA7-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0235 ng/Kg	5.11U ng/Kg
SL-127-SA7-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDD	0.0346 ng/Kg	5.11U ng/Kg
SL-127-SA7-SB-4.0-5.0(RES)	1,2,3,6,7,8-HXCDF	0.0482 ng/Kg	5.11U ng/Kg
SL-127-SA7-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDD	0.0636 ng/Kg	5.11U ng/Kg
SL-127-SA7-SB-4.0-5.0(RES)	1,2,3,7,8,9-HXCDF	0.0500 ng/Kg	5.11U ng/Kg
SL-127-SA7-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.0254 ng/Kg	5.11U ng/Kg
SL-127-SA7-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.0396 ng/Kg	5.11U ng/Kg
SL-127-SA7-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0610 ng/Kg	5.11U ng/Kg
SL-127-SA7-SB-4.0-5.0(RES)	OCDD	0.862 ng/Kg	10.2U ng/Kg
SL-127-SA7-SB-4.0-5.0(RES)	OCDF	0.230 ng/Kg	10.2U ng/Kg
SL-177-SA7-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDD	0.339 ng/Kg	5.28U ng/Kg
SL-177-SA7-SB-3.0-4.0(RES)	1,2,3,4,6,7,8-HPCDF	0.135 ng/Kg	5.28U ng/Kg
SL-177-SA7-SB-3.0-4.0(RES)	1,2,3,4,7,8,9-HPCDF	0.0411 ng/Kg	5.28U ng/Kg
SL-177-SA7-SB-3.0-4.0(RES)	1,2,3,4,7,8-HXCDF	0.0413 ng/Kg	5,28U ng/Kg
SL-177-SA7-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDD	0.0551 ng/Kg	5.28U ng/Kg
SL-177-SA7-SB-3.0-4.0(RES)	1,2,3,6,7,8-HXCDF	0.0191 ng/Kg	5.28U ng/Kg
SL-177-SA7-SB-3.0-4.0(RES)	1,2,3,7,8,9-HXCDD	0.0930 ng/Kg	5.28U ng/Kg
SL-177-SA7-SB-3.0-4.0(RES)	1,2,3,7,8-PECDD	0.0346 ng/Kg	5.28U ng/Kg
SL-177-SA7-SB-3.0-4.0(RES)	1,2,3,7,8-PECDF	0.0291 ng/Kg	5.28U ng/Kg

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/31/2012 8:08:23 AM

Lab Reporting Batch ID: DX147 Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B	. We are proposed from a compact direction			
Matrix: SO				
Method Blank				Associated
Sample ID	Analysis Date	Analyte	Result	Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte		Modified Final Result	
SL-177-SA7-SB-3.0-4.0(RES)	2,3,4,6,7,8-HXCDF	0.0511 ng/Kg	5.28U ng/Kg	
SL-177-SA7-SB-3.0-4.0(RES)	OCDD	1.15 ng/Kg	10.6U ng/Kg	
SL-177-SA7-SB-3.0-4.0(RES)	OCDF	0.179 ng/Kg	10.6U ng/Kg	
SL-229-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDD	0.151 ng/Kg	1,05U ng/Kg	
SL-229-SA6-SS-0.0-0.5(RES)	2,3,7,8-TCDF	0.184 ng/Kg	1.05U ng/Kg	
SL-230-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8,9-HPCDF	0.398 ng/Kg	5.18U ng/Kg	
SL-230-SA6-SB-4.0-5.0(RES)	1,2,3,4,7,8-HXCDF	0.336 ng/Kg	5.18U ng/Kg	
SL-230-SA6-SB-4.0-5,0(RES)	1,2,3,6,7,8-HXCDF	0.234 ng/Kg	5.18U ng/Kg	
SL-230-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDD	0.0606 ng/Kg	5.18U ng/Kg	
SL-230-SA6-SB-4.0-5.0(RES)	1,2,3,7,8-PECDF	0.110 ng/Kg	5,18U ng/Kg	
SL-230-SA6-SB-4.0-5.0(RES)	2,3,4,6,7,8-HXCDF	0.322 ng/Kg	5.18U ng/Kg	
SL-230-SA6-SB-4.0-5.0(RES)	2,3,4,7,8-PECDF	0.0939 ng/Kg	5,18U ng/Kg	
SL-232-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDD	0.308 ng/Kg	5.37U ng/Kg	
SL-232-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0.175 ng/Kg	5.37U ng/Kg	
SL-232-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0271 ng/Kg	5.37U ng/Kg	
SL-232-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8-HxCDD	0.0832 ng/Kg	5.37U ng/Kg	
SL-232-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8-HXCDF	0.106 ng/Kg	5.37U ng/Kg	
SL-232-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDD	0.0730 ng/Kg	5.37U ng/Kg	
SL-232-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.0607 ng/Kg	5,37U ng/Kg	
SL-232-SA6-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDD	0.0963 ng/Kg	5.37U ng/Kg	
SL-232-SA6-SB-2,5-3,5(RES)	1,2,3,7,8-PECDF	0.121 ng/Kg	5.37U ng/Kg	
SL-232-SA6-SB-2.5-3.5(RES)	2,3,4,6,7,8-HXCDF	0.0858 ng/Kg	5.37U ng/Kg	
SL-232-SA6-SB-2.5-3.5(RES)	2,3,4,7,8-PECDF	0.0960 ng/Kg	5.37U ng/Kg	
SL-232-SA6-SB-2.5-3.5(RES)	OCDD	1.23 ng/Kg	10.7U ng/Kg	
SL-232-SA6-SB-2.5-3.5(RES)	OCDF	0.213 ng/Kg	10.7U ng/Kg	
SL-232-SA6-SS-0.0-0.5(RES)	1,2,3,4,6,7,8-HPCDF	1.18 ng/Kg	5.61U ng/Kg	
SL-232-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.131 ng/Kg	5,61U ng/Kg	
SL-232-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HxCDD	0.129 ng/Kg	5.61U ng/Kg	
SL-232-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0.158 ng/Kg	5,61U ng/Kg	
SL-232-\$A6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.103 ng/Kg	5.61U ng/Kg	
SL-232-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.104 ng/Kg	5.61U ng/Kg	
SL-232-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDF	0.0936 ng/Kg	5.61U ng/Kg	
SL-232-SA6-SS-0.0-0.5(RES)	2,3,4,6,7,8-HXCDF	0.175 ng/Kg	5,61U ng/Kg	
SL-232-SA6-SS-0.0-0,5(RES)	2,3,4,7,8-PECDF	0.209 ng/Kg	5.61U ng/Kg	
SL-234-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8,9-HPCDF	0.338 ng/Kg	5.51U ng/Kg	
SL-234-SA6-SS-0.0-0.5(RES)	1,2,3,4,7,8-HXCDF	0,386 ng/Kg	5.51U ng/Kg	
SL-234-SA6-SS-0.0-0.5(RES)	1,2,3,6,7,8-HXCDF	0.369 ng/Kg	5.51U ng/Kg	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/31/2012 8:08:23 AM ADR version 1.4.0.111 Page 4 of 5

Lab Reporting Batch ID: DX147 Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method: 16	13 <b>B</b>			
Matrix: SC				
Method Blank				Associated
Sample ID	Analysis Date	Analyte	Result	Samples

#### The following samples and their listed target analytes were qualified due to contamination reported in this blank

Sample ID	Analyte	Reported Result	Modified Final Result
SL-234-SA6-SS-0.0-0.5(RES)	1,2,3,7,8-PECDD	0.202 ng/Kg	5.51U ng/Kg
SL-254-SA6-SB-2.5-3.5(RES)	1,2,3,4,6,7,8-HPCDF	0.913 ng/Kg	5.09U ng/Kg
SL-254-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8,9-HPCDF	0.0826 ng/Kg	5.09U ng/Kg
SL-254-SA6-SB-2.5-3,5(RES)	1,2,3,4,7,8-HxCDD	0.0357 ng/Kg	5.09U ng/Kg
SL-254-SA6-SB-2.5-3.5(RES)	1,2,3,4,7,8-HXCDF	0.281 ng/Kg	5.09U ng/Kg
SL-254-SA6-SB-2.5-3.5(RES)	1,2,3,6,7,8-HXCDF	0.172 ng/Kg	5.09U ng/Kg
SL-254-SA6-SB-2.5-3.5(RES)	1,2,3,7,8,9-HXCDD	0.198 ng/Kg	5.09U ng/Kg
SL-254-SA6-SB-2.5-3.5(RES)	1,2,3,7,8-PECDD	0.0424 ng/Kg	5.09U ng/Kg
SL-254-SA6-SB-2.5-3.5(RES)	2,3,4,6,7,8-HXCDF	0,133 ng/Kg	5.09U ng/Kg
SL-254-SA6-SB-2.5-3.5(RES)	OCDF	1.19 ng/Kg	10.2U ng/Kg

## Field Duplicate RPD Report

Lab Reporting Batch ID: DX147 Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method: 160.3M Matrix: SO

	Concenti				
Analyte	SL-003-SA8S-SS-0.0- 0.5	DUP01-SA8S-QC- 092911	Sample RPD	eQAPP RPD	Flag
MOISTURE	3.3	3.1	6	1	No Qualifiers Applied

Method: 1613B Matrix: SO

-	Concentrat	Concentration (ng/Kg)			
Analyte	SL-003-SA8S-SS-0.0- 0.5	DUP01-SA8S-QC- 092911	Sample RPD	eQAPP RPD	Flag
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,7,8-TCDF OCDD OCDF	2.71 0.574 0.0457 0.0692 0.220 0.165 0.113 0.163 0.0765 0.150 0.317 0.196 18.7 0.882	3.04 0.615 0.0624 0.0704 0.361 0.193 0.148 0.138 0.0846 0.149 0.233 0.265 27.5 1.00	11 7 31 2 49 16 27 17 10 1 31 30 38 13	50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00	No Qualifiers Applied
1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDF	5.09 U 5.09 U	0.0609 0.0763	200 200	50.00 50.00	J(all detects) UJ(all non-detects)

Lab Reporting Batch ID: DX147

Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

matrix. GO		,					
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
DUP01-SA8S-QC-092911	1,2,3,4,6,7,8-HPCDD	JB	3.04	5.15	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.615	5.15	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0624	5.15	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0704	5.15	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	J	0.361	5.15	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.193	5.15	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.148	5.15	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.138	5.15	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JB	0.0609	5.15	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JQ	0.0846	5.15	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0763	5.15	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.149	5.15	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.233	5.15	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.265	1.03	PQL	ng/Kg	
	OCDF	JB	1.00	10.3	PQL	ng/Kg	
SL-001-SA8S-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD	JB	2.77	5.28	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.592	5.28	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.118	5.28	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0733	5.28	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JQ	0.288	5.28	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.152	5.28	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.133	5.28	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.125	5.28	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0547	5.28	PQL	ng/Kg	
i :	1,2,3,7,8-PECDD	J	0.0599	5.28	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0941	5.28	PQL	ng/Kg	F .
	2,3,4,6,7,8-HXCDF	JB	0.203	5.28	PQL	ng/Kg	4
	2,3,4,7,8-PECDF	JB	0.381	5.28	PQL.	ng/Kg	
	2,3,7,8-TCDF	JB	0.179	1.06	PQL	ng/Kg	ر.
	OCDF	JB	1.15	10.6	PQL	ng/Kg	1.1
SL-003-SA8S-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD	JB	2.71	5.09	PQL	ng/Kg	
1	1,2,3,4,6,7,8-HPCDF	JB	0.574	5.09	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0457	5.09	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	Jά	0.0692	5.09	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	J	0.220	5.09	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.165	5.09	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.113	5.09	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDD	JBQ	0.163	5.09	PQL	ng/Kg	
	1,2,3,7,8-PECDD	J	0.0765	5.09	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.150	5.09	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.317	5.09	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.196	1.02	PQL	ng/Kg	
	OCDF	JВ	0.882	10.2	PQL	ng/Kg	

Lab Reporting Batch ID: DX147

Laboratory: LL

EDD Filename: DX147_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B

		γ					
		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Type	Units	Flag
SL-005-SA8S-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD	JB	0.781	5.09	PQL	ng/Kg	
02 000 07 100 00 0.0	1,2,3,4,6,7,8-HPCDF	JB	0.751	5.09	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.151	5.09	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0339	5.09	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	Ja	0.0313	5.09	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0396	5.09	PQL		
	1,2,3,6,7,8-HXCDF	JBQ	0.0311			ng/Kg	
1	1,2,3,7,8,9-HXCDD	JB	0.0540	5.09	PQL	ng/Kg	17-11-1-41-3
}				5.09	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0374	5.09	PQL	ng/Kg	
	1,2,3,7,8-PECDD	JQ	0.0587	5.09	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	0.0389	5.09	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0512	5.09	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0720	5.09	PQL	ng/Kg	
	OCDD	JB	5.28	10.2	PQL	ng/Kg	
	OCDF	JB	0.353	10.2	PQL	ng/Kg	
SL-007-SA8S-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD	JB	2.29	5.14	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.474	5.14	PQL	ng/Kg	
1	1,2,3,4,7,8,9-HPCDF	JB	0.0508	5.14	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JQ	0.0397	5.14	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JQ	0.0598	5.14	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.119	5.14	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0674	5.14	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.118	5.14	PQL	лg/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0505	5.14	PQL	ng/Kg	
ł	1,2,3,7,8-PECDD	JQ	0.0474	5.14	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0823	5.14	PQL	ng/Kg	
İ	2,3,4,7,8-PECDF	JBQ	0.0428	5.14	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.0545	1.03	PQL	ng/Kg	
	OCDF .	JB	0.884	10.3	PQL	ng/Kg	
SL-013-SA8S-SS-0.0-0.5			*				
3L-013-5A65-55-0.0-0.5	1,2,3,4,6,7,8-HPCDD	JB	2.17	5.14	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.756	5.14	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.211	5.14	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	j	0.224	5.14	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	J	0.438	5.14	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.253	5.14	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.372	5.14	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.289	5.14	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.222	5.14	PQL	ng/Kg	
	1,2,3,7,8-PECDD	J	0.188	5.14	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.268	5.14	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.311	5.14	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.601	5.14	PQL	ng/Kg	
	2,3,7,8-TCDF	JB	0.183	1.03	PQL	ng/Kg	
	OCDF	JB	1.27	10.3	PQL	ng/Kg	

Lab Reporting Batch ID: DX147 Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
SL-014-SA8S-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF OCDF	JBQ JBD JBB JBB JBB JBB JBB JBB JBB JBB JBB	0.690 0.0761 0.194 0.220 0.247 0.172 0.210 0.164 0.220 0.184 0.409 0.0992 1.33	5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.20	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-015-SA8S-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-PECDF 2,3,4,6,7,8-PECDF 2,3,4,8-PECDF 2,3,7,8-TCDF	LE LE CONTROL LE LE CONTROL LE LE CONTROL LE LE CONTROL LE LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONTROL LE CONT	5.08 0.862 0.108 0.0940 0.189 0.169 0.129 0.0999 0.0687 0.0439 0.0687 0.178 0.220 0.0580 0.875	5.14 5.14 5.14 5.14 5.14 5.14 5.14 5.14	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
SL-024-SA8S-SS-0.0-0.5	1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDD 2,3,7,8-TCDD 0CDF	#######################################	3.94 0.772 0.0874 0.137 0.179 0.225 0.138 0.183 0.0642 0.0493 0.190 0.190 0.0436 0.0482 0.282 1.26	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kgg ng/Kgg ng/Kgg ng/Kgg ng/Kgg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg n n n n n n n n n n n n n n n n n n n	J (all detects)

Lab Reporting Batch ID: DX147

Laboratory: LL eQAPP Name: CDM_SSFL_110509

EDD Filename: DX147_v1

Method: 1613B Matrix: SO

				T			
Samula ID	Amalada	Lab	D#	Reporting			=,
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-126-SA7-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JBQ	0.211	5.35	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.0901	5.35	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JB	0.0193	5.35	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.124	5.35	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.234	5.35	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.210	5.35	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JB	0.0429	5.35	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0159	5.35	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0412	5.35	PQL	ng/Kg	
	OCDD	JB	0.577	10.7	PQL	ng/Kg	
	OCDF	JBQ	0.124	10.7	PQL	ng/Kg	
SL-127-SA7-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDD	JB	0.284	5.11	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JB	0.163	5.11	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0235	5.11	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	J	0.0219	5.11	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0346	5.11	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0482	5.11	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0636	5.11	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JBQ	0.0500	5.11	PQL	ng/Kg	o (all detects)
	1,2,3,7,8-PECDD	J	0.0360	5.11	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0254	5.11	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0396	5.11	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0610	5.11	PQL	ng/Kg	
	OCDD	JB	0.862	10.2	PQL	ng/Kg	
	OCDF	JB	0.230	10.2	PQL	ng/Kg	
SL-177-SA7-SB-3.0-4.0	1,2,3,4,6,7,8-HPCDD	JB	0.339	5.28	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.135	5.28	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0411	5.28	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.0413	5.28	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.0551	5.28	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.0191	5.28	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.0930	5.28	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JQ	0.0556	5.28	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0346	5.28	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.0291	5.28	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JBQ	0.0511	5.28	PQL	ng/Kg	
	2,3,7,8-TCDD	JQ	0.0319	1.06	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0344	1.06	PQL	ng/Kg	
	OCDD OCDF	JB	1.15	10.6	PQL	ng/Kg	
		JB	0.179	10.6	PQL	ng/Kg	***
SL-229-SA6-SB-2.0-3.0	1,2,3,4,7,8,9-HPCDF	JB	3.51	5.18	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	2.52	5.18	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	1.65	5.18	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	1.38	5.18	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	3.92	5.18	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	J J	0.432	5.18	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	1.03	5.18	PQL	ng/Kg	- (
	1,2,3,7,8-PECDF	JB	0.714	5.18	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	2.20	5.18	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.834	5.18	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.224	1.04	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.319	1.04	PQL	ng/Kg	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

Lab Reporting Batch ID: DX147 Laboratory: LL

EDD Filename: DX147_v1 eQAPP Name: CDM_SSFL_110509

Method: 1613B

Matrix: SO

		Lab		Reporting	RL		
SampleID	Analyte	Qual	Result	Limit	Туре	Units	Flag
SL-229-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	2.79	5.23	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JJ	1.87	5.23	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	J	1.32	5.23	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	1.06	5.23	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	2.84	5.23	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	JBQ	0.254	5.23	PQL	ng/Kg	
	1,2,3,7,8-PECDD	J	2.23	5.23	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDF	JBQ	0.255	5.23	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.79	5.23	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.555	5.23	POL	ng/Kg	
	2,3,7,8-TCDD	JBQ	0.151	1.05	PQL	ng/Kg	
	2,3,7,8-TCDF	JBQ	0.184	1.05	POL	ng/Kg	
SL-230-SA6-SB-4.0-5.0	1,2,3,4,6,7,8-HPCDF	JB	3.22	5.18	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.398	5.18	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.206	5.18	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	0.336	5.18	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JBQ	0.544	5.18	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JBQ	0.234	5.18	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JBQ	0.226	5.18	PQL	ng/Kg	1 (= 1) =1 = 4 = 4 = 1
	1,2,3,7,8,9-HXCDF	JQ	0.0487	5.18	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JBQ	0.0606	5.18	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.110	5.18	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.322	5.18	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JBQ	0.0939	5.18	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0620	1.04	PQL	ng/Kg	
	OCDF	JB	7.59	10.4	PQL	ng/Kg	
SL-230-SA6-SS-0.0-0.5	1,2,3,4,7,8,9-HPCDF	JB	1.20	5.34	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JB	0.816	5.34	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JB	1.95	5.34	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JΒ	2.49	5.34	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	1.07	5.34	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	1.51	5.34	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDF	J	0.316	5.34	PQL	ng/Kg	J (all detects)
	1,2,3,7,8-PECDD	JB	0.427	5.34	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JB	1.45	5.34	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	1.09	5.34	PQL	лд/Кд	
	2,3,4,7,8-PECDF	JB	1.35	5.34	PQL	ng/Kg	
	2,3,7,8-TCDD	J	0.0733	1.07	PQL	ng/Kg	
	2,3,7,8-TCDF	J	0.939	1.07	PQL	ng/Kg	
SL-232-SA6-SB-2.5-3.5	1,2,3,4,6,7,8-HPCDD	JBQ	0.308	5.37	PQL	ng/Kg	
	1,2,3,4,6,7,8-HPCDF	JBQ	0.175	5.37	PQL	ng/Kg	
	1,2,3,4,7,8,9-HPCDF	JBQ	0.0271	5.37	PQL	ng/Kg	
	1,2,3,4,7,8-HxCDD	JBQ	0.0832	5.37	PQL	ng/Kg	
	1,2,3,4,7,8-HXCDF	JBQ	0.106	5.37	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDD	JB	0.0730	5.37	PQL	ng/Kg	
	1,2,3,6,7,8-HXCDF	JB	0.0607	5.37	PQL	ng/Kg	
	1,2,3,7,8,9-HXCDD	JB	0.0963	5.37	PQL	ng/Kg	J (all detects)
	1,2,3,7,8,9-HXCDF	JQ	0.0889	5.37	PQL	ng/Kg	
	1,2,3,7,8-PECDF	JBQ	0.121	5.37	PQL	ng/Kg	
	2,3,4,6,7,8-HXCDF	JB	0.0858	5.37	PQL	ng/Kg	
	2,3,4,7,8-PECDF	JB	0.0960	5.37	PQL	ng/Kg	
	2,3,7,8-TCDF	JQ	0.0684	1.07	PQL	ng/Kg	
	OCDD	JB	1.23	10.7	PQL	ng/Kg	
	OCDF	JB	0.213	10.7	PQL	ng/Kg	

Project Name and Number: 1203-004-009-AL - SSFL Area IV Collocated Soil Sampling

1/31/2012 8:08:29 AM ADR version 1.4.0.111 Page 5 of 6

Lab Reporting Batch ID: DX147

Laboratory: LL

EDD Filename: DX147_v1

eQAPP Name: CDM_SSFL_110509

Method: 1613B

	Lab		Reporting	RL		
Anaiyte	Qual	Result	Limit	Туре	Units	Flag
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF	JB JB JBQ	4.46 1.18 0.131	5.61 5.61 5.61	PQL PQL PQL	ng/Kg ng/Kg ng/Ka	
1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HXCDF	JBQ JBQ	0.129 0.158	5.61 5.61	PQL PQL	ng/Kg ng/Kg	
1,2,3,6,7,8-HXCDF 1,2,3,7,8,9-HXCDD	JBQ JB	0.103 0.291	5.61 5.61	PQL PQL	ng/Kg ng/Kg	J (all detects)
1,2,3,7,8-PECDD	JBQ	0.104	5.61	PQL	ng/Kg	
2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF	JB JB J	0.175 0.209 0.0661	5.61 5.61 1.12	PQL PQL PQL	ng/Kg ng/Kg ng/Kg	
1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 2,3,4,7,8-PECDF 2,3,7,8-TCDF		3.56 0.338 0.200 0.386 0.648 0.369 0.588 0.183 0.202 0.546 0.551 0.783 0.294	5.51 5.51 5.51 5.51 5.51 5.51 5.51 5.51	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
1,2,3,4,6,7,8-HPCDD 1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDD 2,3,4,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF	明明の別の別の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の	2.33 0.913 0.0826 0.0357 0.281 0.247 0.172 0.198 0.0849 0.0424 0.242 0.133 0.472	5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09	PQL PQL PQL PQL PQL PQL PQL PQL PQL PQL	ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg ng/Kg	J (all detects)
	1,2,3,4,6,7,8-HPCDF 1,2,3,4,7,8,9-HPCDF 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8-PECDD 1,2,3,7,8-PECDF 2,3,4,6,7,8-HPCDF 2,3,4,7,8-PECDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,6,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 2,3,4,6,7,8-HXCDF 1,2,3,7,8-PECDF 2,3,4,6,7,8-HYCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDF 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,4,7,8-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDD 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF 1,2,3,7,8,9-HXCDF	Analyte	Analyte	Analyte	Analyte   Qual   Result   Limit   Type	Analyte

## **Enclosure II**

**Level IV Validation Reports** 

## Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name: Santa Susana Field Laboratory

Collection Date: September 29, 2011

LDC Report Date: January 31, 2012

Matrix: Soil

Parameters: Dioxins/Dibenzofurans

Validation Level: Level IV

Laboratory: Lancaster Laboratories

Sample Delivery Group (SDG): DX147

#### Sample Identification

SL-001-SA8S-SS-0.0-0.5 SL-003-SA8S-SS-0.0-0.5MS SL-003-SA8S-SS-0.0-0.5MSD

SL-005-SA8S-SS-0.0-0.5

SL-007-SA8S-SS-0.0-0.5

SL-013-SA8S-SS-0.0-0.5

SL-014-SA8S-SS-0.0-0.5

SL-015-SA8S-SS-0.0-0.5

SL-024-SA8S-SS-0.0-0.5

DUP01-SA8S-QC-092911

SL-126-SA7-SB-4.0-5.0

SL-127-SA7-SB-4.0-5.0

SL-177-SA7-SB-3.0-4.0

SL-229-SA6-SS-0.0-0.5

SL-230-SA6-SS-0.0-0.5

SL-234-SA6-SS-0.0-0.5

SL-232-SA6-SS-0.0-0.5

SL-232-SA6-SB-2.5-3.5

SL-229-SA6-SB-2.0-3.0

SL-230-SA6-SB-4.0-5.0

SL-254-SA6-SB-2.5-3.5

#### Introduction

This data review covers 22 soil samples listed on the cover sheet including dilutions and reanalysis as applicable. The analyses were per EPA Method 1613B for Polychlorinated Dioxins/Dibenzofurans.

This review follows the Quality Assurance Project Plan for Santa Susana Field Laboratory (SSFL), RCRA Facility Investigation, Surficial Media Operable Unit (March 2009, Revision 4) and the USEPA Contract Laboratory Program National Functional Guidelines for Polychlorinated Dioxins/Dibenzofurans Data Review (September 2005).

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

The following are definitions of the data qualifiers:

- U Indicates the compound or analyte was analyzed for but not detected at or above the stated limit.
- J Indicates an estimated value.
- R Quality control indicates the data is not usable.
- NJ Presumptive evidence of presence of the compound at an estimated quantity.
- UJ Indicates the compound or analyte was analyzed for but not detected. The sample detection limit is an estimated value.
- A Indicates the finding is based upon technical validation criteria.
- P Indicates the finding is related to a protocol/contractual deviation.
- None Indicates the data was not significantly impacted by the finding, therefore qualification was not required.

#### I. Technical Holding Times

All technical holding time requirements were met.

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures met validation criteria.

#### II. HRGC/HRMS Instrument Performance Check

Instrument performance was checked at the required daily frequency.

The chromatographic resolution between 2,3,7,8-TCDD and the peaks representing any other unlabeled TCDD isomers was resolved with a valley of less than or equal to 25%.

PFK and static resolving power were within validation criteria.

#### III. Initial Calibration

A five point initial calibration was performed as required by the method.

Percent relative standard deviations (%RSD) were less than or equal to 20.0% for unlabeled compounds and less than or equal to 35.0% for labeled compounds.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

The minimum S/N ratio was greater than or equal to 10 for each unlabeled compound and labeled compound.

#### IV. Routine Calibration (Continuing)

Routine calibration was performed at the required frequencies.

All of the routine calibration percent differences (%D) between the initial calibration RRF and the routine calibration RRF were within QC limits.

The ion abundance ratios for all PCDDs and PCDFs were within validation criteria.

#### V. Blanks

Method blanks were reviewed for each matrix as applicable. No polychlorinated dioxin/dibenzofuran contaminants were found in the method blanks with the following exceptions:

Method Blank ID	Extraction Date	Compound	Concentration	Associated Samples
BLK286001	10/13/11	2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0CDD 0CDF	0.0391 ng/Kg 0.0626 ng/Kg 0.0281 ng/Kg 0.0553 ng/Kg 0.0263 ng/Kg 0.0606 ng/Kg 0.0344 ng/Kg 0.0271 ng/Kg 0.0293 ng/Kg 0.0913 ng/Kg 0.202 ng/Kg 0.380 ng/Kg 0.189 ng/Kg	SL-001-SA8S-SS-0.0-0.5 SL-003-SA8S-SS-0.0-0.5 SL-005-SA8S-SS-0.0-0.5 SL-007-SA8S-SS-0.0-0.5 SL-013-SA8S-SS-0.0-0.5 SL-014-SA8S-SS-0.0-0.5 DUP01-SA8S-QC-092911 SL-126-SA7-SB-4.0-5.0 SL-127-SA7-SB-4.0-5.0 SL-229-SA6-SS-0.0-0.5
BLK292003	10/19/11	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD 0CDF	0.0392 ng/Kg 0.0693 ng/Kg 0.0488 ng/Kg 0.114 ng/Kg 0.114 ng/Kg 0.0822 ng/Kg 0.0874 ng/Kg 0.0310 ng/Kg 0.0294 ng/Kg 0.370 ng/Kg 0.305 ng/Kg 0.305 ng/Kg 0.0805 ng/Kg 0.653 ng/Kg	SL-015-SA8S-SS-0.0-0.5 SL-024-SA8S-SS-0.0-0.5 SL-177-SA7-SB-3.0-4.0 SL-230-SA6-SS-0.0-0.5 SL-234-SA6-SS-0.0-0.5 SL-232-SA6-SS-0.0-0.5 SL-232-SA6-SB-2.5-3.5 SL-229-SA6-SB-2.0-3.0 SL-230-SA6-SB-4.0-5.0 SL-254-SA6-SB-2.5-3.5

Sample concentrations were compared to concentrations detected in the method blanks. The sample concentrations were either not detected or were significantly greater (>5X blank contaminants) than the concentrations found in the associated method blanks with the following exceptions:

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-001-SA8S-SS-0,0-0,5	2,3,7,8-TCDF	0.179 ng/Kg	0.179U ng/Kg
	1,2,3,7,8-PeCDF	0.0941 ng/Kg	0.0941U ng/Kg
	2,3,4,6,7,8-HxCDF	0.203 ng/Kg	0.203U ng/Kg
	1,2,3,6,7,8-HxCDD	0.152 ng/Kg	0.152U ng/Kg
	1,2,3,7,8,9-HxCDD	0.125 ng/Kg	0.125U ng/Kg
	1,2,3,7,8,9-HxCDF	0.0547 ng/Kg	0.0547U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.118 ng/Kg	0.118U ng/Kg
SL-003-SA8S-SS-0.0-0.5	1,2,3,6,7,8-HxCDF	0.113 ng/Kg	0.113U ng/Kg
	2,3,4,6,7,8-HxCDF	0.150 ng/Kg	0.150U ng/Kg
	1,2,3,6,7,8-HxCDD	0.165 ng/Kg	0.165U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.0457 ng/Kg	0.0457U ng/Kg
	OCDF	0.882 ng/Kg	0.882U ng/Kg

Sample	Compound	Reported Concentration	Modified Final Concentration
SL-005-SA8S-SS-0.0-0.5	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD	0.0389 ng/Kg 0.0720 ng/Kg 0.0340 ng/Kg 0.0512 ng/Kg 0.0511 ng/Kg 0.0560 ng/Kg 0.0374 ng/Kg 0.151 ng/Kg 0.781 ng/Kg 0.0559 ng/Kg 0.353 ng/Kg	0.0389U ng/Kg 0.0720U ng/Kg 0.0340U ng/Kg 0.0512U ng/Kg 0.0811U ng/Kg 0.0560U ng/Kg 0.0374U ng/Kg 0.151U ng/Kg 0.781U ng/Kg 0.0559U ng/Kg 0.353U ng/Kg
SL-007-SA8S-SS-0.0-0.5	2,3,7,8-TCDF	0.0545 ng/Kg	0.0545U ng/Kg
	2,3,4,7,8-PeCDF	0.0428 ng/Kg	0.0428U ng/Kg
	1,2,3,6,7,8-HxCDF	0.0674 ng/Kg	0.0674U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0823 ng/Kg	0.0823U ng/Kg
	1,2,3,6,7,8-HxCDD	0.119 ng/Kg	0.119U ng/Kg
	1,2,3,7,8,9-HxCDD	0.118 ng/Kg	0.118U ng/Kg
	1,2,3,7,8,9-HxCDF	0.0505 ng/Kg	0.0505U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.0508 ng/Kg	0.0508U ng/Kg
	OCDF	0.884 ng/Kg	0.884U ng/Kg
SL-013-SA8S-SS-0.0-0.5	2,3,7,8-TCDF	0.183 ng/Kg	0.183U ng/Kg
SL-014-SA8S-SS-0.0-0.5	2,3,7,8-TCDF	0.0992 ng/Kg	0.0992U ng/Kg
	2,3,4,6,7,8-HxCDF	0.184 ng/Kg	0.184U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.0761 ng/Kg	0.0761U ng/Kg
DUP01-SA8S-QC-092911	1,2,3,7,8-PeCDF	0.0763 ng/Kg	0.0763U ng/Kg
	2,3,4,7,8-PeCDF	0.233 ng/Kg	0.233U ng/Kg
	2,3,4,6,7,8-HxCDF	0.149 ng/Kg	0.149U ng/Kg
	1,2,3,7,8,9-HxCDF	0.0609 ng/Kg	0.0609U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.0624 ng/Kg	0.0624U ng/Kg
SL-126-SA7-SB-4.0-5.0	1,2,3,7,8-PeCDF	0.0429 ng/Kg	0.0429U ng/Kg
	2,3,4,7,8-PeCDF	0.0412 ng/Kg	0.0412U ng/Kg
	2,3,4,6,7,8-HxCDF	0.0159 ng/Kg	0.0159U ng/Kg
	1,2,3,6,7,8-HxCDD	0.124 ng/Kg	0.124U ng/Kg
	1,2,3,4,6,7,8-HpCDF	0.0901 ng/Kg	0.0901U ng/Kg
	1,2,3,4,6,7,8-HpCDD	0.211 ng/Kg	0.211U ng/Kg
	1,2,3,4,7,8,9-HpCDF	0.0193 ng/Kg	0.0193U ng/Kg
	OCDD	0.577 ng/Kg	0.577U ng/Kg
	OCDF	0.124 ng/Kg	0.124U ng/Kg
SL-127-SA7-SB-4.0-5.0	1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD 1,2,3,4,7,8,9-HpCDD 0CDD OCDF	0.0254 ng/Kg 0.0610 ng/Kg 0.0482 ng/Kg 0.0396 ng/Kg 0.0346 ng/Kg 0.0636 ng/Kg 0.0500 ng/Kg 0.163 ng/Kg 0.284 ng/Kg 0.0235 ng/Kg 0.862 ng/Kg 0.230 ng/Kg	0.0254U ng/Kg 0.0610U ng/Kg 0.0482U ng/Kg 0.0396U ng/Kg 0.0346U ng/Kg 0.0636U ng/Kg 0.0500U ng/Kg 0.163U ng/Kg 0.284U ng/Kg 0.0235U ng/Kg 0.862U ng/Kg 0.230U ng/Kg
St229-SA6-SS-0.0-0.5	2,3,7,8-TCDF	0.184 ng/Kg	0.184U ng/Kg
	2,3,7,8-TCDD	0.151 ng/Kg	0.151U ng/Kg