The Boeing Company Rocketdyne Propulsion & Power 6633 Canoga Avenue P.O. Box 7922 Canoga Park, CA 91309-7922

June 7, 2001

In reply refer to: 2001RC-2051

D. Sutherland
DOE Site Manager
U. S. Department of Energy
Oakland Operations Office
1301 Clay Street
Oakland, CA 94612-5208

Subject: NESHAPs Report for 2000

Dear Ms. Sutherland:

Enclosed is the National Emission Standards for Hazardous Air Pollutants (NESHAPs) Report for 2000 for the Department of Energy's (DOE) facility at the Santa Susana Field Laboratory (SSFL). The U.S. Environment Protection Agency (EPA) regulates airborne releases of radioactivity from DOE facilities under 40 CFR 61, Subpart H. This document reports the radiochemical analysis results of the effluent samples from all applicable emission sources. It also includes the off-site dose assessment results, which are compared against the EPA standards for compliance demonstration.

During 2000, the only applicable emission source at the DOE facility at SSFL was the operating exhaust stack at the Radioactive Materials Handling Facility (RMHF). Another potential point source mentioned in previous year's report, the 4024 portable ventilation system, was not in operation in 2000. The RMHF Pond, usually considered an area source when it is dry, contained water all year long, and, therefore, the sediment in the pond was not resuspended by wind for airborne releases.

Only trace amounts of radionuclides were released from the RMHF stack into the atmosphere in 2000. The calculated radiation exposure dose to the Maximally Exposed Individual (MEI) was performed using the EPA's CAP88PC computer model. The Effective Dose Equivalent from the RMHF exhaust during 2000 was 7.7x10⁻⁷ mrem (7.7x10⁻⁹ mSv) per year. The EPA limit for a DOE site is 10 mrem/yr, as specified in 40 CFR 61, Subpart H. This result indicates that the release from the RMHF is about 10 million times less than the regulatory limit.

D. Sutherland

Date: June 7, 2001

Page 2

This report includes the Certification Statement to be signed by M. E. Lee (or designee) for The Boeing Company, Rocketdyne Propulsion & Power and by you for the DOE Site Closure Office. The Certification Statements are required for the final report.

BOEING

If you have any questions or comments on this report, please contact Ning Liu at (818) 586-6262.

Sincerely,

M. E. Lee, Program Manager

DOE Site Closure

Enclosure: Radionuclide Air Emissions Annual Report

cc: S. Black, DOE/OAK

SHEA-093267

D. Sutherland

Date: June 7, 2001

Page 1

DOEAIR00

U. S. Department of Energy Radionuclide Air Emissions Annual Report (under Subpart H of 40 CFR Part 61) Calendar Year 2000

Site Name:

Santa Susana Field Laboratory

(Prepared on May 15, 2001)

Operations Office Information

Office:

Oakland Operations Office

Address:

1301 Clay Street, Room 700N

Oakland, CA 94612-5208

Contact:

Steve Black

Phone:

(510) 637-1595

Site Information

Operator:

The Boeing Company

Rocketdyne Propulsion & Power

Address:

6633 Canoga Avenue, MC T-038

P. O. Box 7922,

Canoga Park, CA 91309-7922

Contact:

Ning Liu

Phone:

(818) 586-6262

D. Sutherland Date: June 7, 2001 Page 2

Section I. Facility Information

Site Description

The Santa Susana Field Laboratory (SSFL) is located in a mountainous region between the residential areas of Simi Valley and San Fernando Valley at the boundary of Ventura and Los Angeles Counties in southern California (Figure 1). The site consists of approximately 2,850 acres (Figure 2), and the climate is generally dry, with variable winds.

The facility formerly served as a test site for very low-power experimental nuclear reactors and for developmental fuel fabrication, and fuel decladding. All the nuclear related research and development (R&D) operations in Area IV ceased in 1988, and the subsequent efforts have been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities.

Source Description

Potential sources of release of radionuclides at SSFL include both point and area (non-point) sources. Figure 3 shows the locations of these sources. The Radioactive Materials Handling Facility (RMHF) is the only facility that has a radiological ventilation systems and is considered a potential point source. This facility is used for storage of waste packages waiting shipment to DOE waste disposal sites, evaporation of radioactively contaminated water generated in decontamination operations, and decontamination, size-reduction, and packaging in support of the decontamination operations. Ventilation from work areas in this facility is exhausted through HEPA filters and released from a stack.

Building 4024 had a portable HEPA filtered ventilation system to support the decontamination of the Hot Laboratory concrete blocks. The system has not been in operation since the decontamination work was completed in 1999. The ventilation system in Building 4059 was no longer needed after the phase I remediation was completed in 1998, and the two ventilation stacks were demolished in 2000. Therefore, Building 4024 and 4059 are no longer considered point release sources.

The RMHF Pond (Sump 614), a collection sump for rainfall runoff from the RMHF, is a potential area source, because radioactivity in the sediment may become airborne when the pond is dry and the sediment is exposed to air. Similarly, the RMHF North Slope is an identified area of low-level soil contamination, and radioactivity in the soil may be resuspended by wind if the soil surface is not covered by vegetation. During 2000, the RMHF sump was covered with water and the RMHF North Slope was covered with dense brush for the entire year. No radionuclides from these two areas were resuspended by wind for airborne releases.

D. Sutherland Date: June 7, 2001

Page 3

The only applicable radiological emission source for the DOE facility at SSFL was the operating exhaust stack at the RMHF. Air samples from the ventilation stack were analyzed for specific radionuclides, and the results were used for the dose assessment in this report.

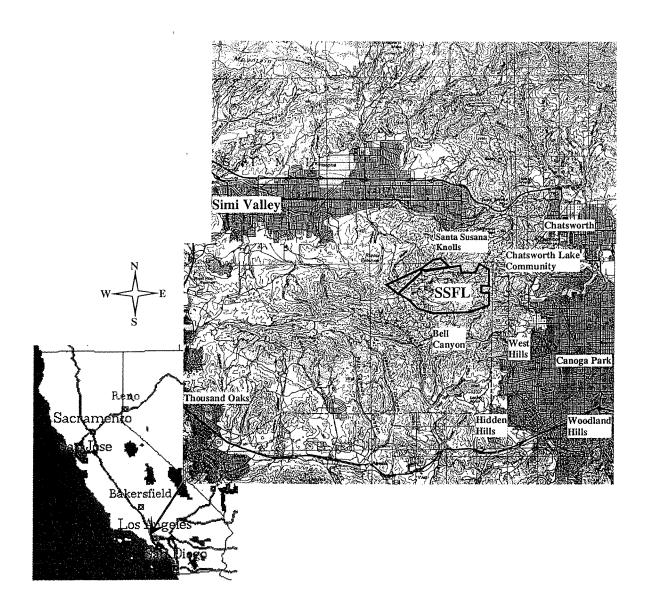


Figure 1. Location of Santa Susana Field Laboratory

D. Sutherland

Date: June 7, 2001

Page 4

Subdivisions				
Owner	Jurisdiction	Acres	Subtotals	
Rocketdyne	Rocketdyne-Area IV	289.9		
	Rocketdyne	784.8		
	Rocketdyne	1,324.6	2,399.3	
	(Undeveloped land)	, i	,	
Government	NASA (former AFP 57)	409.5		
	NASA (former AFP 64)	41.7	451.2	
Total Acres			2,850.5	

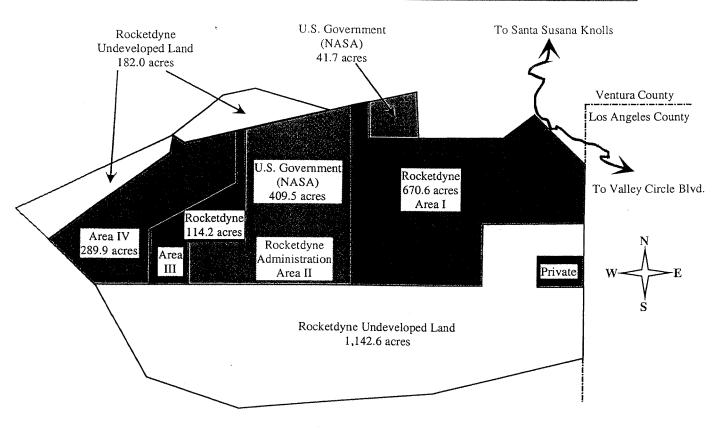


Figure 2. Santa Susana Field Laboratory Site Arrangement

D. Sutherland Date: June 7, 2001

Page 5

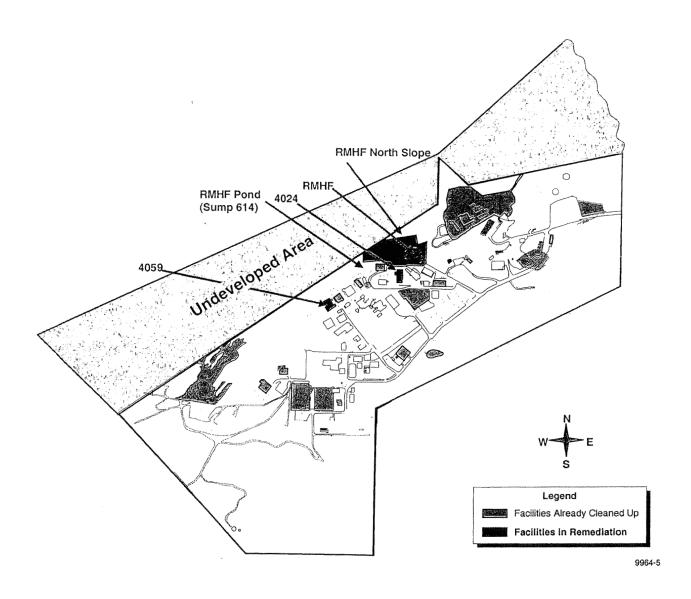


Figure 3. Potential Source Locations in Area IV at Santa Susana Field Laboratory

D. Sutherland

Date: June 7, 2001

Page 6

Section II. Air Emissions Data

Point Source

Point Source	Type Control	Efficiency	Distance to Nearest Reco	eptor
RMHF	Pre- and HEPA filters	99.97+%	2320 m SSE	,
Point Source Radionuclides			Annual Rele (Ci)	ease Quantity (Bq)
H-3 Cs-137 Ba-137M (Cs- U-234	-137 daughter ir	ı equilibrium)	2.7E-05 2.6E-07 2.4E-07 1.1E-08	1.0E+06 9.5E+03 9.0E+03 4.1E+02

1.3E-06

5.0E+04

Area (Non-Point) Source

Pu-241

N/A

D. Sutherland Date: June 7, 2001 Page 7

Section III. Dose Assessments

Description of Dose Model

Radiation doses to the Maximally Exposed Individual (MEI) as well as the population in the surrounding area resulting from the emissions of the DOE facility at SSFL during 2000 are calculated using the EPA's CAP88-PC version 2 computer code. Site specific meteorological data, such as wind speed, direction frequency, and stability, were developed by the NRC and Argonne National Laboratory and used for the atmospheric dispersion calculation in CAP88-PC. Other input data, such as release terms, stack height, and exhaust air velocity, were physically measured to represent the site-specific situation for dose calculations.

Dose calculations performed to demonstrate compliance with the NESHAPs standard are based on determining the maximum estimated dose to an offsite individual located at a residence, school, business, or office. For this purpose, the nearest such locations have been identified by review of maps, aerial photographs, and direct observation. The locations selected are in the nearest residential area of Simi Valley, the Brandeis-Bardin Institute, the Santa Monica Mountains Conservancy Sage Ranch office, the closest residence in Black Canyon, and the closest residence in Bell Canyon. The location with the highest estimated annual dose is considered the location of the Maximally Exposed Individual (MEI).

The RMHF stack is the only emission source in 2000. The Effective Dose Equivalent to the MEI resulting from the emission is compared against the NESHAPs standard for the demonstration of compliance. The dose was calculated using CAP88-PC with site-specific input data.

D. Sutherland

Date: June 7, 2001

Page 8

Compliance Assessment

Location of Maximally Exposed Individual (MEI):

Residence in Simi Valley, 2867 m NW of RMHF.

The Effective Dose Equivalent to the MEI from the RMHF exhaust during 2000:

 $7.7x10^{-7}$ mrem $(7.7x10^{-9} \text{ mSv})$ per year.

The EPA limit for a DOE site is 10 mrem/yr, as specified in 40 CFR 61, Subpart H. This result indicates that the release from the RMHF is about 10 million times less than the regulatory limit.

Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted herein and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment. (See, 18 U.S.C. 1001).

M. E. Lee Date: 6/7/01

DOE Site Closure Program Manager

The Boeing Company

Rocketdyne Propulsion & Power

Michael Laysla Pate: 6/7/0)

D. Sutherland

DOE Site Closure Manager

Oakland Operations Office

U. S. Department of Energy

D. Sutherland Date: June 7, 2001 Page 9

Supplemental Information

The collective Effective Dose Equivalent resulting from the DOE operations at SSFL is calculated for the population within 80 kilometers of the site. For 2000, this dose is estimated to be 2.2×10^{-04} person-rem (2.2×10^{-06} person-Sv).

The population doses were calculated using CAP88-PC in the "POPULATION" mode. The site-specific population distribution is based on updated demographic data for 2000. The population distribution is presented in a structure utilizing 16 directions, coinciding with the wind directions, and 13 radial zones, with the distances chosen to represent the center-of-area for each zone. These zones include a total population of 10.2 million people within 80 km of the site.

No operations regulated by Subparts Q and T were conducted in 2000, nor were there any emissions of Rn-220 from sources containing U-232 and Th-232. There were no non-disposal/non-storage sources of Rn-222 emission.

Potential releases from the RMHF are so low that, even assuming absence of HEPA filters, estimated doses would be below the level requiring continuous monitoring as prescribed in 40CFR61.93(b). However, continuous monitoring is still being performed as a best management practice. The stack effluent at RMHF is continuously sampled, counted for gross alpha and beta activities weekly, and composited annually for detailed radiochemical analysis. In addition, a sample of the evaporator feedwater is sampled annually and analyzed for tritium; the measured tritium concentration is used to calculate the release. Ambient air is continuously sampled and analyzed on a weekly basis for gross alpha and beta activities. These samples are composited (separately by location) annually for detailed radiochemical analysis. Appendix B, Method 114, as described in 40 CFR 61, Subpart H, is implemented for this surveillance effort.

C A P 8 8 - P C

Version 2.00

Clean Air Act Assessment Package - 1988

SYNOPSIS REPORT

Non-Radon Individual Assessment May 15, 2001 02:52 pm

Facility: RMHF

Address: SSFL, Top c City: Chatsworth SSFL, Top of Woolsey Canyon Road, Simi Hills

State: CA Zip: 91311-

Source Category: DOE facility

Source Type: Stack Emission Year: 2000

Comments: CAP88PC calculation for 2000 ASER and NESHAPs

Maximum Exposed Individual, RMHF Stack

Effective Dose Equivalent (mrem/year)

7.70E-07

At This Location: 2867 Meters Northwest

Dataset Name: RMHF00IND
Dataset Date: May 15, 2001 02:52 pm
Wind File: C:\CAP88PC2\WNDFILES\SSFLNRC.WND

MAXIMALLY EXPOSED INDIVIDUAL

Location Of The Individual: 2867 Meters Northwest Lifetime Fatal Cancer Risk: 8.64E-12

ORGAN DOSE EQUIVALENT SUMMARY

	Dose Equivalent
Organ	(mrem/y)
	
GONADS	3.70E-07
BREAST	2.67E-07
R MAR	7.57E-07
LUNGS	1.50E-06
THYROID	2.76E-07
ENDOST	6.92E-06
RMNDR	5.02E-07
EFFEC	7.70E-07

RADIONUCLIDE EMISSIONS DURING THE YEAR 2000

Nuclide	Class	Size	Source #1 Ci/y	TOTAL Ci/y
CS-137	D		2.6E-07	
BA-137M	D	1.00	2.4E-07	2.4E-07
H-3	*	0.00	2.7E-05	2.7E-05
PU-241	Y	1.00	1.3E-06	1.3E-06
11-234	Ÿ		1.1E-08	

SITE INFORMATION

Temperature: 17 degrees C Precipitation: 85 cm/y Mixing Height: 366 m

SOURCE INFORMATION

Source Number: 1

Stack Height (m): 40.
Diameter (m): 1.

Plume Rise
Momentum (m/s): 15.
(Exit Velocity)

AGRICULTURAL DATA

	Vegetable	Milk	Meat
	-	M. divided and an array	
Fraction Home Produced: Fraction From Assessment Area: Fraction Imported:	0.020 0.000 0.980	0.000 0.000 1.000	0.000 0.000 1.000

Food Arrays were not generated for this run.

Default Values used.

DISTANCES (M) USED FOR MAXIMUM INDIVIDUAL ASSESSMENT

2867

Version 2.00

Clean Air Act Assessment Package - 1988

DOSE AND RISK EQUIVALENT SUMMARIES

Non-Radon Individual Assessment May 15, 2001 02:52 pm

Facility: RMHF

Address: SSFL, Top of Woolsey Canyon Road, Simi Hills
City: Chatsworth
State: CA Zip: 91311-

Source Category: DOE facility

Source Type: Stack Emission Year: 2000

Comments: CAP88PC calculation for 2000 ASER and NESHAPs

Maximum Exposed Individual, RMHF Stack

Dataset Name: RMHF00IND

Dataset Date: May 15, 2001 02:52 pm Wind File: C:\CAP88PC2\WNDFILES\SSFLNRC.WND

ORGAN DOSE EQUIVALENT SUMMARY

Organ	Selected Individual (mrem/y)
- 1	
GONADS BREAST R MAR LUNGS THYROID ENDOST RMNDR	3.70E-07 2.67E-07 7.57E-07 1.50E-06 2.76E-07 6.92E-06 5.02E-07
EFFEC	7.70E-07

PATHWAY EFFECTIVE DOSE EQUIVALENT SUMMARY

Pathway	Selected Individual (mrem/y)
INGESTION INHALATION AIR IMMERSION GROUND SURFACE INTERNAL EXTERNAL	4.14E-09 5.27E-07 9.94E-14 2.39E-07 5.31E-07 2.39E-07
TOTAL	7.70E-07

NUCLIDE EFFECTIVE DOSE EQUIVALENT SUMMARY

Nuclide	Selected Individual (mrem/y)
CS-137 BA-137M H-3 PU-241 U-234	9.24E-10 2.39E-07 2.49E-10 4.39E-07 9.10E-08
TOTAL	7.70E-07

CANCER RISK SUMMARY

Cancer	Selected Individual Total Lifetime Fatal Cancer Risk
LEUKEMIA BONE THYROID BREAST LUNG STOMACH BOWEL LIVER PANCREAS URINARY OTHER	1.09E-12 2.91E-13 1.22E-13 1.02E-12 2.57E-12 6.43E-13 3.19E-13 1.39E-12 4.20E-13 2.65E-13 5.13E-13
TOTAL	8.64E-12

PATHWAY RISK SUMMARY

Pathway	Selected Individual Total Lifetime Fatal Cancer Risk
INGESTION INHALATION AIR IMMERSION GROUND SURFACE INTERNAL EXTERNAL	2.62E-14 2.89E-12 2.38E-18 5.72E-12 2.92E-12 5.72E-12
TOTAL	8.64E-12

NUCLIDE RISK SUMMARY

	Selected Individual Total Lifetime
Nuclide	Fatal Cancer Risk
And the second second second second second	
CS-137	2.43E-14
BA-137M	5.72E-12
H-3	6.81E-15
PU-241	1.68E-12
U-234	1.21E-12
TOTAL	8.64E-12

INDIVIDUAL EFFECTIVE DOSE EQUIVALENT RATE (mrem/y) (All Radionuclides and Pathways)

		Distance (m)	
Direct:	ion 2867		
N NNW NW WNW WSW SSW SSE ESE ENE NE NNE	1.3E-07 4.5E-07 7.7E-07 4.4E-07 9.6E-08 1.7E-07 2.0E-07 1.7E-07 1.4E-07 3.4E-07 3.2E-07 8.2E-08 1.0E-07 1.2E-07 1.3E-07		

INDIVIDUAL LIFETIME RISK (deaths) (All Radionuclides and Pathways)

Distance (m)

Direct:	ion 2867				
N	1.6E-12 5.1E-12				
NNW	8.6E-12				
WNW WNW	5.0E-12				
M	1.2E-12				
WSW	1.9E-12				
SW	2.2E-12				
SSW	1.9E-12				
S	1.7E-12				
SSE	3.8E-12				
SE	5.8E-12				
ESE	3.5E-12				
E	1.0E-12				
ENE	1.2E-12				
NE	1.4E-12				
NNE	1.5E-12				

Version 2.00

Clean Air Act Assessment Package - 1988

SYNOPSIS REPORT

Non-Radon Population Assessment May 15, 2001 02:47 pm

Facility: RMHF

Address: SSFL, Top of Woolsey Canyon Road, Simi Hills

City: Chatsworth

State: CA

Zip: 91311-

Source Category: DOE facility

Source Type: Stack Emission Year: 2000

Comments: CAP88PC calculation for 2000 ASER and NESHAPs

Population Dose, RMHF stack

8.90E-07

At This Location: 2400 Meters Northwest

Dataset Name: RMHF00POP

Dataset Date: May 15, 2001 02:47 pm

Wind File: C:\CAP88PC2\WNDFILES\SSFLNRC.WND Population File: C:\CAP88PC2\POPFILES\SSFL2000.POP

MAXIMALLY EXPOSED INDIVIDUAL

Location Of The Individual: 2400 Meters Northwest

Lifetime Fatal Cancer Risk:

1.01E-11

ORGAN DOSE EQUIVALENT SUMMARY

	Selected Individual	Collective Population
Organ	(mrem/y)	(person-rem/y)
Company of the Compan		Published Mary 1999 and the first the second
GONADS	4.34E-07	9.42E-05
BREAST	3.16E-07	6.52E-05
R MAR	8.75E-07	2.13E-04
LUNGS	1.73E-06	4.36E-04
THYROID	3.26E-07	6.73E-05
ENDOST	7.92E-06	2.04E-03
RMNDR	5.83E-07	1.38E-04
EFFEC	8.90E-07	2.16E-04

FREQUENCY DISTRIBUTION OF LIFETIME FATAL CANCER RISKS

	# of	# of People in This Risk	Deaths/Year in This	Deaths/Year in This Risk
Risk Range	People	Range or Higher	Risk Range	Range or Higher
1.0E+00 TO 1.0E-01	0	0	0.00E+00	0.00E+00
1.0E-01 TO 1.0E-02	0	0	0.00E+00	0.00E+00
1.0E-02 TO 1.0E-03	0	0	0.00E+00	0.00E+00
1.0E-03 TO 1.0E-04	0	0	0.00E+00	0.00E+00
1.0E-04 TO 1.0E-05	0	0	0.00E+00	0.00E+00
1.0E-05 TO 1.0E-06	0	0	0.00E+00	0.00E+00
LESS THAN 1.0E-061	0222462	10222462	3.18E-08	3.18E-08

RADIONUCLIDE EMISSIONS DURING THE YEAR 2000

Nuclide	Class	Size	Source #1 Ci/y	TOTAL Ci/y
+	<u></u>			
CS-137	D	1.00	2.6E-07	2.6E-07
BA-137M	D	1.00	2.4E-07	2.4E-07
H-3	*	0.00	2.7E-05	2.7E-05
U-234	Y	1.00	1.1E-08	1.1E-08
PU-241	Y	1.00	1.3E-06	1.3E-06

SITE INFORMATION

Temperature: 17 degrees C Precipitation: 85 cm/y Mixing Height: 366 m

SOURCE INFORMATION

1 .	Source Number:
40.	Stack Height (m): Diameter (m):
15.	Plume Rise Momentum (m/s): (Exit Velocity)

AGRICULTURAL DATA

	Vegetable	Milk	Meat
Fraction Home Produced: Fraction From Assessment Area: Fraction Imported:	0.020 0.000 0.980	0.000 0.000 1.000	0.000 0.000 1.000

Beef Cattle Density: 8.81E-02
Milk Cattle Density: 2.85E-02
Land Fraction Cultivated
for Vegetable Crops: 1.18E-02

POPULATION DATA

			Dista	ance (m)			
Direction	800	2400	4000	5600	7200	8800	11200
N NNW NW WNW WSW SSW SSE SE ESE ESE ENE NNE		38 0 562 0 0 0 0 305 0 188 201 0 0	2055 3007 6296 0 0 0 0 3 560 832 0 0 0 347 814	7029 8597 9532 8175 325 6 3554 0 0 1364 2299 1597 280 8915 8261	7689 6743 10120 7549 1129 852 3079 4166 1475 16 8154 9422 3483 387 2187 2947	5 354 244 7392 193 728 3041 5694 2306 2991 9003 13191 5769 2380 0	14 0 5 1050 12026 9539 11396 6453 3630 4712 22249 52287 38595 18881 130 65
			Dista	nce (m)			
Direction	14400	19200	25600	34400	48000	68000	
N NNW NW WNW WSW SSW SSE SE ESE ENE NNE	0 456 13029 18841 20912 13649 1432 681 1007 15379 42581 43909 15185 63 0	202 1702 141 15438 13897 28943 4018 624 5306 4202 5759 90394 133591 45485 15985 828	1029 65 14242 804 31911 12132 925 7206 347 2979 39912 125998 289752 101785 43962 17371	5024 0 748 30019 46004 4209 108 0 0 493989 465362 263927 6592 69867 11522	434 0 255 14607 275199 18643 0 0 13532 1110827 1623379 270781 3517 6882 3341	873 6131 346 35307 540 2 0 0 67961 1461829 1719302 283206 74108 208339 2719	

Version 2.00

Clean Air Act Assessment Package - 1988

DOSE AND RISK EQUIVALENT SUMMARIES

Non-Radon Population Assessment May 15, 2001 02:47 pm

Facility: RMHF

Address: SSFL, Top of Woolsey Canyon Road, Simi Hills
City: Chatsworth
State: CA Zip: 91311-

Source Category: DOE facility Source Type: Stack Emission Year: 2000

Comments: CAP88PC calculation for 2000 ASER and NESHAPs

Population Dose, RMHF stack

Dataset Name: RMHF00POP
Dataset Date: May 15, 2001 02:47 pm
Wind File: C:\CAP88PC2\WNDFILES\SSFLNRC.WND Population File: C:\CAP88PC2\POPFILES\SSFL2000.POP

ORGAN DOSE EQUIVALENT SUMMARY

Organ	Selected Individual (mrem/y)	Collective Population (person-rem/y)
	Annual Annua	
GONADS BREAST R MAR LUNGS THYROID ENDOST RMNDR	4.34E-07 3.16E-07 8.75E-07 1.73E-06 3.26E-07 7.92E-06 5.83E-07	9.42E-05 6.52E-05 2.13E-04 4.36E-04 6.73E-05 2.04E-03 1.38E-04
EFFEC	8.90E-07	2.16E-04

PATHWAY EFFECTIVE DOSE EQUIVALENT SUMMARY

Pathway	Selected Individual (mrem/y)	Collective Population (person-rem/y)
INGESTION INHALATION AIR IMMERSION GROUND SURFACE INTERNAL EXTERNAL	4.90E-09 6.03E-07 1.79E-13 2.82E-07 6.08E-07 2.82E-07	1.01E-06 1.57E-04 7.59E-13 5.77E-05 1.58E-04 5.77E-05
TOTAL	8.90E-07	2.16E-04

NUCLIDE EFFECTIVE DOSE EQUIVALENT SUMMARY

Nuclides	Selected Individual (mrem/y)	Collective Population (person-rem/y)
	-	
CS-137 BA-137M H-3 U-234 PU-241	1.07E-09 2.82E-07 2.84E-10 1.04E-07 5.03E-07	2.52E-07 5.77E-05 1.18E-07 2.71E-05 1.31E-04
TOTAL	8.90E-07	2.16E-04

CANCER RISK SUMMARY

Cancer	Selected Individual Total Lifetime Fatal Cancer Risk	Total Collective Population Fatal Cancer Risk (Deaths/y)
LEUKEMIA BONE THYROID BREAST LUNG STOMACH BOWEL LIVER PANCREAS URINARY OTHER	1.27E-12 3.34E-13 1.44E-13 1.20E-12 2.98E-12 7.60E-13 3.77E-13 1.62E-12 4.96E-13 3.13E-13 6.07E-13	4.03E-09 1.19E-09 4.18E-10 3.48E-09 9.99E-09 2.20E-09 1.09E-09 5.32E-09 1.44E-09 9.07E-10 1.76E-09
TOTAL	1.01E-11	3.18E-08

PATHWAY RISK SUMMARY

Pathway	Selected Individual Total Lifetime Fatal Cancer Risk	Total Collective Population Fatal Cancer Risk (Deaths/y)
INGESTION INHALATION AIR IMMERSION GROUND SURFACE INTERNAL EXTERNAL	3.10E-14 3.31E-12 4.29E-18 6.76E-12 3.34E-12 6.76E-12	9.20E-11 1.22E-08 2.56E-16 1.95E-08 1.23E-08 1.95E-08
TOTAL	1.01E-11	3.18E-08

PATHWAY GENETIC RISK SUMMARY (Collective Population)

Pathway	Genetic Risk (person-rem/y)
INGESTION	1.13E-07
INHALATION	7.64E-07
AIR IMMERSION	7.47E-13
GROUND SURFACE	5.71E-05
INTERNAL	8.76E-07
EXTERNAL	5.71E-05
TOTAL	5.80E-05

NUCLIDE RISK SUMMARY

Nuclide	Selected Individual Total Lifetime Fatal Cancer Risk	Total Collective Population Fatal Cancer Risk (Deaths/y)
CS-137 BA-137M H-3 U-234 PU-241	2.82E-14 6.76E-12 7.76E-15 1.39E-12 1.92E-12	9.36E-11 1.95E-08 4.56E-11 5.10E-09 7.05E-09
TOTAL	1.01E-11	3.18E-08

INDIVIDUAL EFFECTIVE DOSE EQUIVALENT RATE (mrem/y) (All Radionuclides and Pathways)

			Dist	cance (m)			
Directio	n 800	2400	4000	5600	7200	8800	11200
N WNN	0.0E+00 0.0E+00	1.5E-07 0.0E+00	1.0E-07 3.5E-07	7.7E-08 2.7E-07	6.6E-08 2.2E-07	5.6E-08 1.9E-07	4.5E-08 0.0E+00
WNW WNW	0.0E+00 0.0E+00	8.9E-07 0.0E+00	6.0E-07 0.0E+00	4.5E-07 2.6E-07	3.7E-07 2.2E-07	3.1E-07 1.8E-07	2.5E-07 1.4E-07
W WSW	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00	6.5E-08 9.9E-08	5.6E-08 8.2E-08	4.9E-08 6.8E-08	3.9E-08 5.3E-08
SW SSW	0.0E+00 0.0E+00	0.0E+00 0.0E+00	0.0E+00 0.0E+00	1.0E-07 0.0E+00	8.5E-08 7.8E-08	7.1E-08 6.6E-08	5.6E-08 5.2E-08
S SSE	0.0E+00 0.0E+00	1.7E-07 0.0E+00	1.1E-07 2.6E-07	0.0E+00 0.0E+00	7.2E-08 1.6E-07	6.1E-08 1.3E-07	4.8E-08 1.0E-07
SE ESE	0.0E+00 0.0E+00	6.3E-07 3.7E-07	4.0E-07 0.0E+00	2.9E-07 1.8E-07	2.4E-07 1.4E-07	2.0E-07 1.2E-07	1.6E-07 9.6E-08
E ENE NE	0.0E+00 0.0E+00 0.0E+00	0.0E+00 0.0E+00 1.4E-07	0.0E+00 0.0E+00 9.3E-08	5.2E-08 6.1E-08 7.1E-08	4.5E-08 5.2E-08 6.0E-08	3.8E-08 4.5E-08 0.0E+00	3.1E-08 3.6E-08 4.0E-08
NNE	0.0E+00	0.0E+00	9.7E-08	7.4E-08	6.3E-08	0.0E+00 0.0E+00	4.3E-08
			Dist	ance (m)			
Direction	n 14400	19200	25600	34400	48000	68000	
N	0.0E+00	2.4E-08	1.6E-08	1.1E-08	6.4E-09	3.2E-09	
NNW	0.0E+00	7.8E-08	5.3E-08	0.0E+00	0.0E+00	1.1E-08	
WW WMW	1.9E-07 1.1E-07	1.3E-07 7.7E-08	8.9E-08 5.2E-08	6.1E-08 3.5E-08	3.7E-08 2.1E-08	1.9E-08	
M	2.9E-08	2.1E-08	1.4E-08	9.3E-09	5.4E-09	1.1E-08 2.6E-09	
WSW	4.0E-08	2.8E-08	1.9E-08	1.3E-08	8.2E-09	4.4E-09	
SW	4.3E-08	3.1E-08	2.2E-08	1.5E-08	0.0E+00	0.0E+00	
SSW	3.9E-08	2.8E-08	1.9E-08	0.0E+00	0.0E+00	0.0E+00	
S	3.6E-08	2.5E-08	1.7E-08	0.0E+00	0.0E+00	0.0E+00	
SSE	7.8E-08	5.6E-08 8.5E-08	3.8E-08 5.8E-08	0.0E+00	1.7E-08	9.0E-09	
SE ESE	1.2E-07 7.2E-08	5.2E-08	3.5E-08	4.1E-08 2.4E-08	2.6E-08 1.5E-08	1.4E-08 8.2E-09	
E E	2.3E-08	1.6E-08	1.1E-08	7.3E-09	4.3E-09	2.0E-09	
ENE	2.7E-08	1.9E-08	1.3E-08	8.6E-09	5.1E-09	2.5E-09	
NE	3.1E-08	2.2E-08	1.5E-08	1.0E-08	6.0E-09	3.0E-09	
NNE	0.0E+00	2.3E-08	1.5E-08	1.0E-08	6.2E-09	3.1E-09	

COLLECTIVE EFFECTIVE DOSE EQUIVALENT (person rem/y) (All Radionuclides and Pathways)

				Dis	tance (m)			
Direction	on	800	2400	4000	5600	7200	8800	11200
N NNW NW WNW WSW SSW SSE SE ESE ENE NNE	0.01	E+00 E+00 E+00 E+00 E+00 E+00 E+00 E+00	5.8E-09 0.0E+00 5.0E-07 0.0E+00 0.0E+00 0.0E+00 5.1E-08 0.0E+00 1.2E-07 7.4E-08 0.0E+00 0.0E+00 0.0E+00	2.1E-07 1.1E-06 3.8E-06 0.0E+00 0.0E+00 0.0E+00 0.0E+00 3.4E-10 1.5E-07 3.3E-07 0.0E+00 0.0E+00 0.0E+00 3.2E-08 7.9E-08	5.4E-07 2.3E-06 4.3E-06 2.1E-08 5.9E-10 3.6E-07 0.0E+00 0.0E+00 4.0E-07 4.0E-07 8.3E-08 1.7E-08 6.3E-07	5.1E-07 1.5E-06 3.8E-06 1.6E-06 6.4E-08 6.9E-08 2.6E-07 3.2E-07 1.1E-07 2.5E-09 1.9E-06 1.4E-06 1.6E-07 2.0E-08 1.3E-07	2.8E-10 6.6E-08 7.7E-08 1.4E-06 9.4E-09 5.0E-08 2.2E-07 3.7E-07 1.4E-07 3.9E-07 1.8E-06 1.6E-06 2.2E-07 1.1E-07 0.0E+00	6.3E-10 0.0E+00 1.2E-09 1.5E-07 4.7E-07 5.1E-07 6.4E-07 3.3E-07 1.7E-07 4.9E-07 3.5E-06 5.0E-06 1.2E-06 6.7E-07 5.3E-09 2.8E-09
				Dis	tance (m)			
Direction	on 14	400	19200	25600	34400	48000	68000	
N NNW NW WNW WSW SW SSW SSE ESE ENE NNE	0.0E 0.0E 8.5E 1.4E 5.6E 8.4E 5.6E 5.6E 7.9E 1.8E 1.0E 4.1E 1.9E	+00 -08 -06 -07 -07 -08 -08 -08 -06 -06 -06 -07 -09	4.8E-09 1.3E-07 1.9E-08 1.2E-06 2.9E-07 8.2E-07 1.2E-07 1.8E-08 1.4E-07 2.3E-07 4.7E-06 2.2E-06 8.6E-07 3.5E-07 1.9E-08	1.7E-08 3.4E-09 1.3E-06 4.2E-08 4.4E-07 2.3E-07 2.0E-08 1.4E-07 6.0E-09 1.1E-07 2.3E-06 4.4E-06 3.2E-06 1.3E-06 6.5E-07 2.7E-07	5.4E-08 0.0E+00 4.5E-08 1.1E-06 4.3E-07 5.6E-08 1.7E-09 0.0E+00 0.0E+00 2.0E-05 1.1E-05 1.9E-06 5.7E-08 7.0E-07	2.8E-09 0.0E+00 9.5E-09 3.1E-07 1.5E-06 1.5E-07 0.0E+00 0.0E+00 2.2E-07 2.9E-05 2.5E-05 1.2E-06 1.8E-08 4.1E-08 2.1E-08	2.8E-09 6.7E-08 6.5E-09 3.8E-07 1.4E-09 8.8E-12 0.0E+00 0.0E+00 6.1E-07 2.1E-05 1.4E-05 5.8E-07 1.9E-07 6.3E-07 8.5E-09	

INDIVIDUAL LIFETIME RISK (deaths) (All Radionuclides and Pathways)

			Dis	cance (m)			
Directio	n 800	2400	4000	5600	7200	8800	11200
N NNW NW WNW WSW SSW SSE SE ESE ENE NNE	0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	1.9E-12 0.0E+00 1.0E-11 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.9E-12 0.0E+00 6.9E-12 4.1E-12 0.0E+00 0.0E+00 1.7E-12 0.0E+00	1.2E-12 3.9E-12 6.6E-12 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.3E-12 2.8E-12 4.2E-12 0.0E+00 0.0E+00 0.0E+00	8.8E-13 2.9E-12 4.8E-12 2.8E-12 7.5E-13 1.1E-12 0.0E+00 0.0E+00 0.0E+00 3.1E-12 1.9E-12 6.0E-13 7.0E-13 8.0E-13 8.4E-13	7.2E-13 2.3E-12 3.9E-12 2.3E-12 6.2E-13 8.6E-13 9.1E-13 7.7E-13 1.6E-12 2.5E-12 1.5E-12 5.0E-13 5.8E-13 6.9E-13	6.1E-13 1.9E-12 3.3E-12 1.9E-12 5.3E-13 7.1E-13 7.6E-13 6.4E-13 1.4E-12 2.0E-12 1.3E-12 4.2E-13 4.8E-13 0.0E+00 0.0E+00	4.8E-13 0.0E+00 2.5E-12 1.5E-12 4.2E-13 5.5E-13 6.0E-13 5.5E-13 5.0E-13 1.1E-12 1.6E-12 9.8E-13 3.3E-13 4.3E-13 4.6E-13
			Dist	ance (m)	4		
Direction	n 14400	19200	25600	34400	48000	68000	
N NNW NW WNW WSW SSW SSE SE ESE ESE ENE NNE	0.0E+00 0.0E+00 1.9E-12 1.1E-12 3.1E-13 4.2E-13 4.6E-13 4.1E-13 3.8E-13 8.0E-13 1.2E-12 7.4E-13 2.5E-13 2.9E-13 3.2E-13 0.0E+00	2.5E-13 8.1E-13 1.4E-12 7.9E-13 2.2E-13 3.0E-13 3.3E-13 3.0E-13 5.7E-13 5.7E-13 5.3E-13 1.7E-13 2.0E-13 2.3E-13 2.4E-13	1.7E-13 5.5E-13 9.2E-13 5.3E-13 1.5E-13 2.0E-13 2.0E-13 1.8E-13 3.9E-13 6.0E-13 1.2E-13 1.4E-13 1.6E-13	1.2E-13 0.0E+00 6.3E-13 3.6E-13 9.9E-14 1.4E-13 1.6E-13 0.0E+00 0.0E+00 4.2E-13 2.5E-13 7.9E-14 9.2E-14 1.1E-13 1.1E-13	6.9E-14 0.0E+00 3.8E-13 2.2E-13 5.8E-14 8.7E-14 0.0E+00 0.0E+00 1.7E-13 2.7E-13 1.6E-13 4.6E-14 5.5E-14 6.4E-14 6.7E-14	3.5E-14 1.2E-13 2.0E-13 1.1E-13 2.8E-14 4.8E-14 0.0E+00 0.0E+00 0.0E+00 9.4E-14 1.5E-13 8.6E-14 2.3E-14 2.3E-14 3.3E-14 3.4E-14	

COLLECTIVE FATAL CANCER RATE (deaths/y) (All Radionuclides and Pathways)

			Dis	tance (m)			
Direction	n 800	· 2400	4000	5600	7200	8800	11200
N	0.0E+00	1.0E-12	3.4E-11	8.7E-11	7.9E-11	4.3E-14	9.4E-14
NNW	0.0E+00	0.0E+00	1.7E-10	3.5E-10	2.2E-10	9.7E-12	0.0E+00
NW	0.0E+00	8.0E-11	5.8E-10	6.5E-10	5.6E-10	1.1E-11	1.8E-13
WNW	0.0E+00	0.0E+00	0.0E+00	3.3E-10	2.4E-10	2.0E-10	2.2E-11
W	0.0E+00	0.0E+00	0.0E+00	3.4E-12	9.9E-12	1.4E-12	7.1E-11
WSW	0.0E+00	0.0E+00	0.0E+00	9.0E-14	1.0E-11	7.3E-12	7.4E-11
SW	0.0E+00	0.0E+00	0.0E+00	5.7E-11	4.0E-11	3.3E-11	9.6E-11
SSW	0.0E+00	0.0E+00	0.0E+00	0.0E+00	4.9E-11	5.6E-11	5.0E-11
S	0.0E+00	8.4E-12	5.3E-14	0.0E+00	1.6E-11	2.1E-11	2.6E-11
SSE	0.0E+00	0.0E+00	2.2E-11	0.0E+00	3.7E-13	5.7E-11	7.0E-11
SE	0.0E+00	1.8E-11	5.0E-11	5.9E-11	2.8E-10	2.6E-10	5.0E-11
ESE	0.0E+00	1.2E-11	0.0E+00	6.1E-11	2.0E-10	2.3E-10	7.2E-10
E	0.0E+00	0.0E+00	0.0E+00	1.4E-11	2.5E-11	3.4E-11	1.8E-10
ENE	0.0E+00	0.0E+00	0.0E+00	2.8E-12	3.1E-12	1.6E-11	1.0E-10
NE	0.0E+00	2.6E-12	5.3E-12	1.0E-10	2.0E-11	0.0E+00	7.9E-13
NNE	0.0E+00	0.0E+00	1.3E-11	9.8E-11	2.9E-11	0.0E+00	4.2E-13
			Dist	ance (m)			
irection	14400	19200	25600	34400	48000	68000	**************************************

N	0.0E+00	7.2E-13	2.5E-12	8.2E-12	4.2E-13	4.3E-13	
NNW	0.0E+00	1.9E-11	5.0E-13	0.0E+00	0.0E+00	1.0E-11	
NW	1.2E-11	2.7E-12	1.9E-10	6.6E-12	1.4E-12	9.7E-13	
WNW	2.1E-10	1.7E-10	6.1E-12	1.5E-10	4.5E-11	5.6E-11	
W	8.3E-11	4.3E-11	6.6E-11	6.4E-11	2.3E-10	2.1E-13	
	1.2E-10	1.2E-10	3.4E-11	8.2E-12	2.3E-11	1.4E-15	
SW	8.8E-11	1.9E-11	3.0E-12	2.5E-13	0.0E+00	0.0E+00	
		2.6E-12	2.1E-11	0.0E+00	0.0E+00	0.0E+00	
SSW	8.4E-12				0 0- 0-		
SSW S	3.6E-12	2.0E-11	8.8E-13	0.0E+00	0.0E+00	0.0E+00	
SSW S SSE	3.6E-12 1.1E-11	2.0E-11 3.4E-11	8.8E-13 1.7E-11	0.0E+00 0.0E+00	3.3E-11	0.0E+00 9.0E-11	
SSW S SSE SE	3.6E-12 1.1E-11 2.6E-10	2.0E-11 3.4E-11 7.1E-11	8.8E-13 1.7E-11 3.4E-10	0.0E+00 0.0E+00 2.9E-09	3.3E-11 4.2E-09	0.0E+00 9.0E-11 3.1E-09	
SSW SSE SE ESE	3.6E-12 1.1E-11 2.6E-10 4.5E-10	2.0E-11 3.4E-11 7.1E-11 6.7E-10	8.8E-13 1.7E-11 3.4E-10 6.5E-10	0.0E+00 0.0E+00 2.9E-09 1.6E-09	3.3E-11 4.2E-09 3.6E-09	0.0E+00 9.0E-11 3.1E-09 2.1E-09	
SSW SSE SE ESE E	3.6E-12 1.1E-11 2.6E-10 4.5E-10 1.5E-10	2.0E-11 3.4E-11 7.1E-11 6.7E-10 3.3E-10	8.8E-13 1.7E-11 3.4E-10 6.5E-10 4.8E-10	0.0E+00 0.0E+00 2.9E-09 1.6E-09 2.9E-10	3.3E-11 4.2E-09 3.6E-09 1.8E-10	0.0E+00 9.0E-11 3.1E-09 2.1E-09 9.0E-11	
SSW SSE SE ESE ESE ENE	3.6E-12 1.1E-11 2.6E-10 4.5E-10 1.5E-10 6.1E-11	2.0E-11 3.4E-11 7.1E-11 6.7E-10 3.3E-10 1.3E-10	8.8E-13 1.7E-11 3.4E-10 6.5E-10 4.8E-10 2.0E-10	0.0E+00 0.0E+00 2.9E-09 1.6E-09 2.9E-10 8.6E-12	3.3E-11 4.2E-09 3.6E-09 1.8E-10 2.7E-12	0.0E+00 9.0E-11 3.1E-09 2.1E-09 9.0E-11 2.9E-11	
SSW SSE SE ESE ESE ENE NE	3.6E-12 1.1E-11 2.6E-10 4.5E-10 1.5E-10	2.0E-11 3.4E-11 7.1E-11 6.7E-10 3.3E-10	8.8E-13 1.7E-11 3.4E-10 6.5E-10 4.8E-10	0.0E+00 0.0E+00 2.9E-09 1.6E-09 2.9E-10	3.3E-11 4.2E-09 3.6E-09 1.8E-10	0.0E+00 9.0E-11 3.1E-09 2.1E-09 9.0E-11	