

Ð

Figure 11-Elemental mercury is found

B

B

1

E

B

E

Figure 12-Excavation of subterranean objects

E

Figure 13-Exhumed debris

E

E

.

Figure 14-More exhumed debris

ĺ

D

Đ

0

Figure 16 - Beta-gamma detector

Figure 17-Geophysical map of buried objects

(

EID-04628 Page 95

0

Figure 18-Geophysical surveying

0

0

0

Figure 19-Submergence pit

Figure 20-Demolition of pit

EID-04628 Page 98

B

0

Figure 21-Filled hazardous containers (awaiting shipment)

Figure 22-Radioactive waste containers (filled)

E

8

Figure 23-On-loading of filled containers

Figure 24-Shipping of full containers

E

E

Figure 25-Vehicle weigh station

Figure 26-Bedrock exposed in lower pond

Figure 27-Tarps over excavations

EID-04628 Page 105

Figure 28-Tarped site during rain

Figure 29-RWQCB Officer (in vest) on site

C

EID-04628 Page 107

Figure 30-Site in February 1993

F

1

ŀ

Figure 31-Radioactive waste containers at RMDF

E

E

Figure 32-Drilling well cluster RD-54 in lower pond

Í

Ì

Í

D

Ó

Figure 33-Sorting and segregating non-hazardous soils

I

Figure 34-Soil sorting and handling machine

P

Figure 35-Soil segregation in process

Figure 36-Composite view of contamination types

EID-04628 Page 115

Figure 37-''Sniffing potentially hazardous material

D

ĺ

1

1

U

1

U

U

Ĺ

I

Ĺ

Figure 38-ITC with NaI probe receptacle

Figure 39-Excavation, segregation and classification process

I

U

1

U

0

0

Û

E

Ū

Figure 40-NaI probe insertion into receptacle

0

0

Ū

Û

Figure 41-ITC filled with soil being counted for radioactivity

Figure 42-Solid waste streams

EID-04628 Page 120

Figure 43-Radionuclide content of radioactive and mixed wastes

				Ĺ	ower	Pono	I Exca rganic	ivated Solls						
· · · · · · · · · · · · · · · · · · ·		-:									4 10	<u></u>		<u></u>
		Arely Coll Closel											r	
1-1-10		11	LC:		<u></u>	1		Rugal Randa			H	esult Rano	n	Anniylical
Waste			Ra	suit Hang	100	Low Hon MD				Low High MDL.			Method	
Gonstituent	and the state of	and the states	LOW	ngn		CHART	Challman			llots Findings		mo/L	مة <u>مراجعة م</u>	
	Ellons	Findings			44		THATA	0	32					6010/SW 840
Antimony	81	Q	at at	47	32	N K			53				0.053	6010/SW 840
Arsenic	61	10	1.4	120	20	0		đ	ď2				0.002	6010/SW 84
Banum	107	107	54	120	0.02	ň		0:0	03 []	In the Ballion				0010/SW 04
Beryllum	107	10	0,49	0.00	0.03	×.		0	04		29 021 200 970	¥ soutia+ do 2 or s	0.004	6010/SW 84
Cadmium	107	88	0.4	7,0	0.4	v.		1	07	1 1			0.007	6010/SW 84
Chromium, total	107	98	4.7	66	U./	20		- 10 - 15	N7 5			6.9 W		8010/SW 84
Cobalt	107	106	41	9.8	U _1	X		n.	06					6010/SW 84
Copper	107	105	82	(Q) 61	<i>U.</i> 0	ň		ă.	42			ni y na sere	0.42	6010/SW 84
Lead	107	22	A.0	03	8.02	Å.	Ď	00	102	17	0.0034	0.13	0.0002	7471/SW 84
Mercury	107	TUA	0,000	18	0.02	ä		Ö.	.08 1			9 X S. 6		7470/SW 84
Molypaenum	51	9	1994) 1997 - 1997	010	1.5	ñ		0.	15		di Serve		HT E H	6010/SW 84
Nickel	107	00	9.9.	47V	7.6	0		0.	.75				0.075	6010/8W 84
Selenium	107		0.28	5	07	្តិ៍		Ŭ.	07	- Server and the second second	م الديم الم	. دې د ا	0,007	6010/SW 84
Silver	01		0.20		40	្តី		-	0.4 F				1 A 14	6010/SW 84
3 NOLIKUTI	01	AAE .	194		0.8	n.		Ű.	00					6010/SW84
Vanacium	107		51 65	1100	62	ñ			02					5010/SW 84
Zing	107	103		1100	V.C.			<u> </u>	بالبرجع			e e e e e e e e e e e e e e e e e e e	and a second second	

Figure 44-Inorganic (metals) constituents of wastes from lower pond

EID-04628 Page 122

! * ţ

B/886 Former Sodium Disposal Facility Analytical Result Summary Lower Pond Excavated Soils Semi Volatile Organic Compounds

Page 1 of 2

Waste Constituent 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrotphenol 2,4-Dinitrotphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,7-Dinotoluene 2,7-	10rts 44 44 44 44 44 44 44 44 44 44 44 44 44	Findings 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Result Low	Range High <u>- mg/Kg</u> 3.33	Typical MDL 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Waste Constituent 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinethylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene </th <th>Norts 44 44 44 44 44 44 44 44 44 44 44 44 44</th> <th>Findings 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0</th> <th>Low (2.6</th> <th>High <u>- ma/Ka</u> 3.33</th> <th>MDL 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.7 0.2 TIC 0.4 0.4 1.0 0.2 0.2 0.7 0.4</th>	Norts 44 44 44 44 44 44 44 44 44 44 44 44 44	Findings 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0	Low (2.6	High <u>- ma/Ka</u> 3.33	MDL 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.7 0.2 TIC 0.4 0.4 1.0 0.2 0.2 0.7 0.4
Ei 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6 Tribromophenol 2,4-Dinethylphenol 2,4-Dinethylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	Norts 44 44 44 44 44 44 44 44 44 44 44 44 44	Findings 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.6	<u> </u>	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.7 0.2 TIC 0.4 0.4 1.0 0.2 0.2 0.7 0.4
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,2-Diphenyihydrazine 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinethylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 3,7-Dinitrotoluene 3,7-Dinitrotoluene 3,7-Dinitrotoluene 3,7-Dinitrotoluene 3	44 44 44 44 44 44 44 44 44 44 44 44 44	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.6	3.33	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6 Tribromophenol 2,4,6 Tribromophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 3,7-Dinitrotoluene 3,7-Dinitrotoluene 3,7-Dinitrotoluene 3,7-Dinitrotoluene 3,7-Din	44 44 44 44 44 44 44 44 44 44 44 44 44	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.6	3.33	0.2 0.2 0.2 0.7 0.7 0.2 TIC 0.4 1.0 0.2 0.2 0.7 0.4
1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6 Tribromophenol 2,4,6 Tribromophenol 2,4-Dichlorophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitrotoluene 2,7-Dinitroto	44 44 44 44 44 44 44 44 44 44 44 44 44	0 0 0 0 0 0 14 0 0 0 0 0 0 0	2.6	3.33	0.2 0.2 0.2 0.7 0.2 TIC 0.4 1.0 0.2 0.2 0.2 0.7 0.4
1,2-Diphenyihydrazine 1,3-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6 Tribromophenol 2,4-Dichlorophenol 2,4-Dimitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	44 44 44 44 44 44 44 44 44 44 44 44 44	0 0 0 14 0 0 0 0 0 0	2.6	3.33	0.2 0.2 0.7 0.2 TIC 0.4 1.0 0.2 0.2 0.7 0.4
1,3-Dichloroberzene 1,4-Dichloroberzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6 Tribromophenol 2,4-Dinitromophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene	44 44 44 44 44 44 44 44 44 44 44 44 44	0 0 14 0 0 0 0 0	2.6	3.33	0.2 0.2 0.7 0.2 TIC 0.4 1.0 0.2 0.2 0.7 0.4
1,4-Dichloroberzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Flurophenol 2-Flurophenol	44 44 44 44 44 44 44 44 44 44 44 44	0 0 14 0 0 0 0	2.6	3.33	0.2 0.7 0.2 TIC 0.4 1.0 0.2 0.2 0.2 0.7 0.4
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6 Tribromophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Flurophenol 2-Flurophenol 2-Flurophenol	44 44 44 44 44 44 44 44 44 44 44	0 14 0 0 0 0	2.6	3.33	0.7 0.2 TIC 0.4 1.0 0.2 0.2 0.7 0.4
2,4,6-Trichlarophenol 2,4,6 Tribromophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Flurophenol 2-Flurophenol 2-Flurophenol	44 44 44 44 44 44 44 44 44	0 14 0 0 0 0 0	2.6	3.33	0.2 TIC 0.4 1.0 0.2 0.2 0.7 0.4
2,4,6 Tribromophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Flurophenol 2-Flurophenol	44 44 44 44 44 44 44	14 0 0 0 0 0	2.6	3.33	TIC 0.4 0.4 1.0 0.2 0.2 0.7 0.4
2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Flurophenol 2-Flurophenol	44 44 44 44 44 44 44	0 0 0 0 0			0.4 0.4 1.0 0.2 0.2 0.7 0.4
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Flurobiphenol 2-Flurophenol	44 44 44 44 44 44 44	0 0 0 0			0.4 1.0 0.2 0.2 0.7 0.4
2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Flurophenol 2-Flurophenol 2-Flurophenol	44 44 44 44 44 44	0 0 0 0			1.0 0.2 0.2 0.7 0.4
2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Flurophenol 2-Flurophenol 2-Herbuld Schölmphanol	44 44 44 44	0 0 0 14	<i>.</i>		0.2 0.2 0.7 0.4
2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Flurobiphenyi 2-Flurophenol 2-Herbud 6-cinitrophenol	44 44 44 44	0			0.2 0.7 0.4
2-Chloronaphthalene 2-Chlorophenol 2-Flurobiphenyl 2-Flurophenol 2-Vethul 4 Schlimphanol	44 44 44	0			0.7 0.4
2-Chlorophenol 2-Flurobiphenyl 2-Flurophenol 2. Nethold Scheimphenol	44 44	0			0.4
2-Flurobiphenyi 2-Flurophenoi 2-Nethulul Schölmphanoi	44	14			•••
2-Flurophenol		17	1.01	1.67	TIC
2. Methyl A. S. dinimohanol	44	14	2.58	3.33	TIC
	44	0			0.7
2-Methylnapthalene	44	0			0.7
2-Methylphenol (o-Cresol)	44	0			0.2
2-Nitroaniline	44	0			2.0
2-Nitrophenol	44	0			0.4
3-3'-Dichlorobenzidine	44	0			0.4
3-Nitroaniline	44	Õ			0.4
4-Bromophenviohenviether	44	Ō			0.2
4-Chloro-3-methylphenol	44	ŏ			0.2
4-Chloroaniline	44	Ō			0.4
4-Chlorophenviohenviether	44	Ō			0.2
4-Methylohenol	44	õ			0.2
4-Nitroaniline	44	õ			0.7
4-Nitrophenol	44	n			0.7
Acénachthene	44	ŏ			0.2
Acenanthilene	44	ň			0.2
Anilino	44	ň			с. С 4

Figure 45-SVOCs from lower pond (1 of 2)

B/886 Former Sodium Disposal Facility Analytical Result Summary Lower Pond Excavated Soils Semi Volatile Organic Compounds (cont.)

Page 2 of 2

ſ	Analytical Method SW 846 8270						
			Result	Result Range			
Waste Constituent			Low	High	MDL		
	Efforts	Findings		- ma/Ka			
Anthracene	44	1	ND	0.65	0.2		
Benzidine	44	0			7.0		
Benzo(a)anthracene	44	1	ND	0.49	0.2		
Benzo(a)pyrene	44	0			0.2		
Benzo(b)fluoranthene	44	0	L.		0.2		
Benzo(g,h,i)perviene	44	0			0.2		
Benzo(k)fluoranthene	44	Q			D.2		
Benzyl alcohol	44	0			0.2		
Benzoic acid	44	0			2.0		
Butylbenzylphthalate	44	Ő			0.2		
Chrysene	44	14	0.43	3.2	0.2		
Di-n-octylphthalate	44	Ö			0.2		
Dibenzo(a,h)anthracene	44	0			0.2		
Dibenzofuran	44	0			0.2		
Dibutyiphthalate	· 44	0			0.4		
Diethylphthalate	44	1	ND	1.1	0.4		
Dimethylphthalate	44	0			0.4		
Fluoranthene	44	0			0.2		
Fluorene	44	7	0.43	1.5	0,4		
Hexachlorobenzene	44	0			0.2		
Hexachlorobutadiene	44	0			0.2		
Hexachlorocyclopentadiene	44	Ô			0.2		
Hexachloroethane	44	0			0.2		
Indeno(1,2,3-c,d)pyrene	44	0			0.4		
Isophorone	44	0			0.2		
N-Nitrosodimethylamine	44	0			0.2		
N-Nitrosodiphenylamine	44	0			0.2		
N-Nitrosodi-n-propylamine	44	0			0.7		
Nitrobenzene	44	15	1.04	1,67	0.2		
Napthalene	44	1	ND	0.31	0.2		
Phenanthrene	44	17	0.22	13	0,2		
Phenol	44	15	1.93	3.33	0.4		
Pentachlorophenol	44	0			0.4		
Pyrene	44	.0			0.4		
Terphenyl	44	15	0.913	1.67	TIC		
Bis(2-chloroethoxy)methane	44	Q			0.4		
Bis(2-chloroethyl)ether	44	0			0.4		
Bis(2-chlorolsopropyl)ether	44	0			0.4		
Bis(2-ethylhexyl)phthalate	44	10	0.35	2.2	0.4		

Note: MDL = Minimum Detection Limit. Compounds identified by the laboratory as a "Tentatively Identified Compound" are labeled "TIC" in the MDL column. The TIC's minimum detection limits are unavailable.

Figure 46-SVOCs from lower pond (2 of 2)
B/886 Former Sodium Disposal Facility Analytical Result Summary Lower Pond Excavated Soils Volatile Organic Compounds

Page 1 of 2

		Analytical	Method SW	846 8240	
			Result	Range	
Waste Constituent			Low	High	MDL
	Efforts	Findings		- ug/Kg	
1,1-Oxybisbenzene	75	5	77	620	TIC
1,1,1-Trichloroethane	75	25	2.6	600	0.8
1,1,2,2-Tetrachloroethane	75	0			0.5
1,1,2-Trichloroethane	75	σ			0.5
1,1-Dichloroethane	75	2	6.2	11	1.1
1,1-Dichloroethylene	75	3	7.8	70	0.8
1,2-Dichlorobenzene	75	0			0.6
1,2-Dichloroethane	75	0			0.2
1,2-Dichloroethylene (cis)	75	0			0.2
1,2-Dichloroethylene (trans)	75	0		* -	0.4
1,2,3,4-Tetrahydronapthalene	75	5	15	43	TIC
1,4-Dichloropropane	75	0		·	0.8
1,3-Dichlorobenzene	75	7	2.5	1300	0,6
1,3-Dichloropropene (cis)	. 75	6	10	410	0.6
1,3-Dichloropropene (trans)	75	0			0.5
1,4-Dichlorobenzene	75	3	2.2	5.5	1.0
Acetone	75	0			7.9
Alkyl substituted benzene isomer	75	1	ND	36	TIC
Benzene	75	0			0,7
Bromodichloromethane	75	Û			0.6
Bromoform	75	0			0.5
Bromodichloromethane	75	Ö			1.0
Carbon Tetrachloride	75	0			0.5
Chloroethane	75	Û			1.0
Chloroform	75	1	ND	4.1	0.8
Chloromethane	75	0			0.6
Dibromochloromethane	75	0			0.4
Dimethylcyclooctane	75	1	ND	22	TIC
Ethybenzene	75	2	1.8	28	0.8
Freon 113	75	11	7,4	34	0.8
Methylene Chloride	75	0			2.9
Monochlorobenzene	75	0			0.6
Napthalene	75	1	ND	31	TIC
Polyaromatic hydrocarbon	75	7	5.5	4800	TIC
Polynuclear aromatic hydrocarbon	75	4	6.5	42	TIC

Figure 47-VOCs from lower pond (1 of 2)

B/886 Former Sodium Disposal Facility Analytical Result Summary Lower Pond Excavated Soils Volatile Organic Compounds (cont.)

Page 2 of 2

		Analytical N	Method SW	846 8240	
			Result	Range	
Waste Constituent			Low	Ĥigh	MDL
	Efforts	Findings	·····	– ug/Ka ——	
Saturated alipatic hydrocarbon	75	7	5.5	200	TIC
Tetrachioroethylene	75	10	4,1	610	0.8
Tetrachlorohexaflurobutane	75	1	ND	70	TIC
Tetramethylbenzene isomer	75	1	ND	6	TIC
Toluene	75	5	5.7	41	0.7
Thiobismethane	75	1	ND	18	TIC
Trichloroethylene (TCE)	75	46	3.4	1700	0.6
Trichlorofluromethane	75	1	ND	1.4	0.8
Tridecane	75	1	ND	85	TIC
Trimethylbenzene isomer	75	5	7	42	TIC
Trimethylcyclohexane isomer	75	1	ND	40	TIC
Undecane	75	1	ND	110	TIC
Unknown aromatic hydrocarbon	75	2	7	ଷ	TIC
Unknown hydrocarbon	- 75	37	4.7	490	TIC
Vinyl Chloride	75	0			0.4
Xylenes (Total)	75	9	3,9	97	1.4

Note: MDL
Minimum Detection Limit. Waste constituents identified by the laboratory as a "Tentatively Identified Compound" are labeled "TIC" in the MDL column. The TIC's minimum detection limits are unavailable.

Figure 48-VOCs from lower pond (2 of 2)

B/886 Former Sodium Disposal Facility Analytical Result Summary Lower Pond Excavated Soils Miscellaneous Waste Constituents

Waste Constituent	F Hada	Findings	Resul	ts Range	1.000	Analytical
	Enons	Findings	LOW		MDL	Method
лН	44	44	69	pri Unics - 10		SWRAE ONA
	r v.	-+7		— та/Ка -		011010 304
Polychlorinated Biphenyls	45	43	0.06	2	0.05	SW846 808
Total Petroleum Hydrocarbons	41	40	10	7900	10	EPA 418.1
TCLP Organics				ua/L	* *********** ***	
Vinyl Chloride	4	0			50	8150/GCMS
1,1-Dichloroethylene	1	-0			25	B150/GCMS
Chloroform	1	Ő			25	8150/GCMS
1.2-Dichloroethane	1	0			25	8150/GCMS
2-Butanone	1	ō			50	8150/GCMS
Carbon tetrachloride	1	0			25	8150/GCMS
Trichloroethylene	Ť	ō			25	8150/GCMS
Chiorobenzene	1	ō			25	8150/GCMS
TCLP Semi Volatile Organic	s.	•		ua/L		
o-Cresol	- 1	D			40	3550/8270
m+o Cresol	1	ō			40	3550/8270
1.4-Dichloroethalene	1	0			40	3550/8270
2.4-Dinitrotoluene	1	Ő			40	3550/8270
Hexachlorobenzene	1	Ö			40	3550/8270
Hexacloror-1.3-butadiene	1	- Ö			40	3550/8270
Hexachloroethane	1	Ö		•	40	3550/8270
Nitroberzene	1	ō			40	3550/8270
Pentachlorophenol	Ŷ	Ō			200	3550/8270
Pvridine	1	Ō			400	3550/8270
2.4.5-Trichlorophenol	1	ō			200	3550/8270
2.4.6-Trichlorophenol	1	Ő			40	3550/8270
TCLP Pesticides	-	-		ua/L		
Lindarie	1	0		-2-	1	3550/8270
Heptachlor	1	Õ			1	3550/8270
Heptachlor epoxide	1	0			1	3550/8270
Endrin	i	ŏ			1	3550/8270
Methoxychior	1	ō			i	3550/8270
Chiorodane	1	Ō			Ă	3550/8270
Toxaphene	1	Õ			4	3550/8270
2.4-D	i	0			10	3550/8270
Silver	Ť	ñ			10	3550/8270
Martin Martin Constraints Statement						

	WASTE MANIFEST	<u>l. l. k.</u> ine T48	A. State Mar	Heat Corner		
	Rockwel, incernational Rockwel, incernational Rocketdyne Uivision - SSFL STEC, 5633 Canoga Aver Canoga Park, CA. 91344 A Generation Mond (818) 700-6127 S. Transporter & Company Name Themical Waster Management. (CLA TI OLD 0 0 0 0 0	iue T48		0.0.0	ant Humbe	r
	Cancer Fark (A) 91344 A Concert (A) 9		A Binto Car	898	614	.94
	6. Transporter 1 Company Name Transporter 1 Company Name Transporter 1 Company Name Transporter 1 Company Name		H YI		n n	1 N N N
	Themical Veste Management ICIAI TIOLOIDI 4		G. Blate Tre	mpenner's ID	306	203
	Direutadet weber theme	<u> 9 4 4 7</u>	E. Blate Ten	aperter's ID	- (20	9)-386-0711
			F. Tesaspers	er's Phone		
	S. Designated Papelity Martin and Site Address SO. US EPA D Number	,		1700	Ď <i>L</i> a	1117
	Chemical Waste Management		H. Facility's	Phone		
	Kettleman City, CA, 93239 GADQQ44	6 1 1 X	(209 ining 13	<u>) 386–9</u> . Total	1711 1 14. T	<u> </u>
	11. US.DOT Description Occuring Proper Shipping Name, Hazard Civits, and 10 Number).	No.	Туре	Cusicity	Unit W17Vat	Waste He,
	* NON-RCRA HAZARDOUS WASTE SOLID. (Contaminated					61.11.81
Q E		001	21	1360		NONG
ER	b.					
A T				1.1.1		SPA/Ciller
, A	¢.					Sinio
		1		LEI-		PAJOIN
	4					
		1		1.1.1.		
	J. Additional Descriptions for Misterials Lipted About		K. Handlin	Castin Int.	1.5.2	illus Above.
	a.) Contaminated soil BF 6840.		<u> </u>	13	<u> </u>	<u>.</u>
					P 3	Sec. 1
	RIN: 5248		L	equip	ment. 1	when
	handling. Avoid contact or inhalation of soil or de NUMBER: (818) 710-2531. CONTACT: BRIAN SUJATA. **	DOT ERG	24 NOUI : A.) 3	THERG	ENCY	TELEPHONE
3	18.	in hill and i	courtally doe	oribed above	i by prope	e shipping nama:
ŧ	definition to the second matter in the second secon	a tor transport	by highway a	aanding 10 i		
5	If 4 and a large quantity generator, I cantify that I have a program in place to veduce the vol to be economically predicable and that I have assessed the predicable method of investm	une and binds	ky of woold in deposal com here: backs it	and him of		Auch stinistings the
	present and four threat to based heats and the anti-the providence. On, in taking not the past the best search measured, webbid, that is straighted to me suit the	t I can allord.	<u>a</u>		<u> </u>	Manth Day Ye
	Printed/Typed Neme		1h			11039
H	Brian D. Sujata For Rockwell Int. Corb.	10	1			Adaptite Class Vie
₹ }	Probed Typed Home of Lass () 1/1 of 2 as 5 Signature	In 1	2.11	lain		11039
	18. Transporter & Acturavelogoment of Receipt of Materials	7.6				Marth Day Y
3	Printed / Typed North					
ĭ∔	19. Discrepency indication Bpeau	 				AR
			_	-	•	
	(13) VON J. 30, 160 Marine	phred !	y Bri		ijat	a 11/5/96
	Producting and and active stand	K				7/03
L DH\$`@	Do Not Write Below Edu	Line				

Figure 50-Hazardous waste manifest

1

SHIPPING INFORMATION FOR CONVENTIONAL WASTES
1. Waste Disposal Site: Name of Owner/Operator <u>Christal Unite Management - KHF</u> EPA Permit No. <u>ON COO allo 117</u> Address <u>35261 Old Skyline Bond, Kettleman City, CA</u> 93239
2. Waste Hauler Name of Company Chemical Waste Management Hauler's Permit No. <u>Cap port \$6.718</u> Permit Issued by <u>GALIE</u>
3. Shipper: Rockwell International, Rocketdyne Division 6633 Canoga Ave. Canoga Park, CA 91304 Burghana Order Marker & 214, OTK 820235533
4. Shinoing Information
Container ID No. <u>\$2114</u> Weight: Gross <u>64946</u> Tare <u>395946</u> Waste Name: <u>NON-hazardou 5 (1000)</u> Profile Number /RWQCB Permit Number (if applicable) <u>AM 7335</u>
Date of Departure from Facility <u>6-7-95</u> Name of Driver <u>GLease of Hickory</u> Signature of Driver <u>LL</u> <u>Hickory</u> Name of Rockwell Representative <u>Robert</u> <u>HAROY</u> Signature of Rockwell Representative <u>CrPH</u> <u>S</u> CHEMICAL WASTE MANAGEMENT, NC CHEMICAL WASTE MANAGEMENT, NC CHEMICAL WASTE MANAGEMENT, NC CHEMICAL WASTE MANAGEMENT, NC CHEMICAL WASTE MANAGEMENT, NC

Figure 51-Conventional waste shipper

		OFF-SITE SHIPMENT FOR HAZARDOUS (ONLY) WASTE QA CHECKLIST	2					
Contai	ner No:	5200						
Shipwer	nt Date:	AN 2 5 1993		_				
Item	Form No.	Description	Inspection	ſ				
No.		· (title)	Verification					
+-+	· · · · · · · · · · · · · · · · · · ·		1121314	F				
	1	1						
A	DHS8022A	Uniform Hazardous Waste Manifest	11-1-	Ę.				
В		Cert of No Detectable Activity	11	Έ				
C	·	Haz Determination Report by EP	11-1-1-	C				
D		Shipping Data form for Haz Wastes	11/1-	Ľ				
E	732-A	Radiation Survey Report		Ľ				
F		Inspection Checklist for Vehicle						
G		Log Entries	1 J I I NK	6				
H Intermediate Lot Followers								
I		Federal Notice Land Disposal Restriction	wa					
J		California Notice & Cert Land Disposal Restriction	11-	3				
R		DOE Approval	44-1-	1				
L	<u> </u>	Waste Profile & Haz Lable	11/1/2	13				
M		Drivers Safety Awareness Sheet	WRL					
1 A e 2 E 3 R	ll Required nter NR. ntry Inform equired Sig	Line Entries Completed, If entry	is not requi	;e				
4 C <u>Shipwe</u>	opy of Comp nt and OA F	lecords						
			1111					
Approv	ed Hazardou	s Waste Desposal Site: Krilledaac	Hills Ca					
All of accept	able for tr	ansport.	eg, Mareitai					

Figure 52-Waste data checklist

CERTIFICATION OF "CONFORMANCE TO DOE OBJECTIVES"
The undersigned certifies that the identified wastes contained within the container conforms to the performance objectives established by the DOE and based upon process knowledge, operational procedures and radiological analysis that this waste meets all release criteria established by the DOE
A copy of this certification, and the below cited attachments shall be affixed to any container so certified.
Container No5700
1. External Radiation Survey (form 732-A)
2. Uniform Hazardous Waste Manifest No. (form DHS 8022A 1/88) 89861575 (for Hazardous Wastes only)
Certification of meeting DOE performance objective
Name (Health Physicist)
Date

Figure 53-Certificate of compliance with DOE objectives

	No. 886-52-0005 Rev. New
	Page _44_ of50
	Original Date:06/08/92 Rev Date:
APPENDIX H	[
i.	·
he Energy Technology Engineering Center (ETEC) rotection (D543) with all available laboratory analytic	has supplied Environmental cal data for the following container(s):
(Bin, tank, roll-off, or box identification numb	20,02/6
he analysis was performed by the following laborate	ary, with the following identification
umbers: 92. 886.168	· · · · · · · · · · · · · · · · · · ·
Sample No. (B886 sample log)
Laboratory Name: SSFC, BCA	•
Laboratory Report Number:	
Laboratory Sample Identification Number (s):	
92110423	
92110434	
76115175	
The data is attached, and has been reviewed by Envir eview, the material has been determined to fail into the	onmenni Protection. Based upon this he following category: IX-3
The data is anached, and has been reviewed by Envir eview, the material has been determined to fall into the Non-hazardous- Clean	onmeani Protection. Based upon this he following category: DX-3 (signature of reviewer)
The data is atmohed, and has been reviewed by Envir eview, the material has been determined to fail into the Non-hazardous- Clean Non-hazardous- Selectively Contaminated	onmeani Protection. Based upon this he following category:
The data is attached, and has been reviewed by Envir eview, the material has been determined to fall into the Non-hazardous- Clean Non-hazardous- Selectively Contaminated Acceptable for Class III disposal	onmeani Protection. Edsed upon itis he following category:
The data is anached, and has been reviewed by Envir eview, the material has been determined to fall into the Non-hazardous- Clean Non-hazardous- Selectively Contaminated Acceptable for Class III disposal Non-hazardous- Contaminated above Chere III disposal	onmeani Protection. Eased upon this he following category:
The data is annohed, and has been reviewed by Envir eview, the material has been determined to fall into the Non-hazardous- Clean Non-hazardous- Selectively Contaminated Acceptable for Class III disposal Non-hazardous- Contaminated above Class III disposal limits	onmeani Protection. Edsed upon this he following entegety:
The data is attached, and has been reviewed by Envir eview, the material has been determined to fall into the Non-hazardous- Clean Non-hazardous- Selectively Contaminated Acceptable for Class III disposal Non-hazardous- Contaminated above Class III disposal limits	onmeani Protection. Edsed upon this he following entegery: <u>DX-3</u> (signature of reviewer) <u>DS-3</u> * (signature of reviewer) <u>DS-3</u> (signature of reviewer) <u>DS-3</u> (signature of reviewer) <u>DS-3</u>
The data is attached, and has been reviewed by Envir eview, the material has been determined to fall into the Non-hazardous- Clean Non-hazardous- Selectively Contaminated Acceptable for Class III disposal Non-hazardous- Contaminated above Class III disposal limits Hazardous- Non-RCRA-California Regulated	onmeani Protection. Eased upon this he following entry:
The data is attached, and has been reviewed by Envir eview, the material has been determined to fall into the Non-hazardous- Clean Non-hazardous- Selectively Contaminated Acceptable for Class III disposal Non-hazardous- Contaminated above Class III disposal limits Hazardous- Non-RCRA-California Regulated	onmeani Protection. Edsed upon this he following entegery: <u>DS43</u> (signature of reviewer) <u>DS43</u> * (signature of reviewer) <u>DS53</u> (signature of reviewer) <u>DS43</u> (signature of reviewer) <u>DS43</u>
The data is attached, and has been reviewed by Envir eview, the material has been determined to fall into the Non-hazardous- Clean Non-hazardous- Selectively Contaminated Acceptable for Class III disposal Non-hazardous- Contaminated above Class III disposal limits Hazardous- Non-RCRA-California Regulated Hazardous- RCRA not requiring treatment	onmeani Protection. Eased upon this he following entry: (signature of reviewer) DS43 (signature of reviewer) DS43 (signature of reviewer) DS43 (signature of reviewer) DS43 (signature of reviewer)
The data is attached, and has been reviewed by Envir eview, the material has been determined to fall into the Non-hazardous- Clean Non-hazardous- Selectively Contaminated Acceptable for Class III disposal Non-hazardous- Contaminated above Class III disposal limits Hazardous- Non-RCRA-California Regulated Hazardous- RCRA not requiring treatment Hazardous- RCRA requiring treatment	onmeani Protection. Edsed upon this he following entegery: <u>DS43</u> (signature of reviewer) <u>DS43</u> (signature of reviewer) <u>DS43</u> (signature of reviewer) <u>DS43</u> (signature of reviewer) <u>DS43</u> (signature of reviewer) <u>DS43</u>
The data is attached, and has been reviewed by Envir eview, the material has been determined to fall into the Non-hazardous- Clean Non-hazardous- Selectively Contaminated Acceptable for Class III disposal Non-hazardous- Contaminated above Class III disposal limits Hazardous- Non-RCRA-California Regulated Hazardous- RCRA not requiring treatment Hazardous- RCRA requiring treatment	onmeani Protection. Eased upon this he following entry: <u>DS43</u> (signature of reviewer) <u>DS43</u> (signature of reviewer) <u>DS53</u> (signature of reviewer)
The data is attached, and has been reviewed by Envir eview, the material has been determined to fall into the Non-hazardous- Clean Non-hazardous- Selectively Contaminated Acceptable for Class III disposal Non-hazardous- Contaminated above Class III disposal limits Hazardous- Non-RCRA-California Regulated Hazardous- RCRA not requiring treatment Hazardous- RCRA not requiring treatment Hazardous- RCRA requiring treatment MOTE Only a waste that was determined to	onmeani Protection. Edsed upon this he following entry:
The data is attached, and has been reviewed by Envir eview, the material has been determined to fall into the Non-hazardous- Clean Non-hazardous- Selectively Contaminated Acceptable for Class III disposal Non-hazardous- Contaminated above Class III disposal limits Hazardous- Non-RCRA-California Regulated Hazardous- Non-RCRA-California Regulated Hazardous- RCRA not requiring treatment Hazardous- RCRA not requiring treatment NOTE Only a waste that was determined to radioactivity may be categorized as a (refer to Appendix B).	onmeani Protection. Edsed upon itis he following entegery: <u>JX23</u> (signature of reviewer) <u>DS13</u> (signature of reviewer)

he

*

Figure 54-Waste classification determination

		1					ROON LOWER	Pano	
ALMER A		DATE	PURPOSE: Rusteder OF Rettor M	5700		CPM 5227			
-		d in lu	The + Shu			4992	•		
•		\downarrow	Stis			2487			
"			5812			4641			
0			SPIT			2411	• • •		
k			5718			4 726	•		·
		}. - -	5113			HT74			
4 .			5820			470			
0						. Uthur			
9			2322			45th			
15						153 h.			-
ł							•		
				. 	:				
			「「「「「」」、「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、		J.				
				-				•	
				•					÷
					1				
8	ENTS: A	E PTAK	& Far Now Ryposerive Dispose.	INSIMULIAN		LUDE UM 223		F	
• .	•	• • •		DENTROAT	8	53921			
	•			CALIBRATION	1 DUE	1/2/93			
-	•			BACKGROUN	6	018.6			
ι.	2	۱ م	Let 1 Let M	EFFICIENCY		NA			
	u u		A DESCRIPTION OF A	COUNT THE	1. W. 74	1			

Figure 55-Radioactivity survey report

EID-04628 Page 133

5700 5943 MOT NAME OF CARRIER NAME OF DRIVER DRIVER'S LICENSE MU DRIVER'S LICENSE MU DRIVER'S LICENSE AU MEDICAL EXAM DATE VEHICLE LICENSE PLAT	5943 MOTOR VEHICLE INSPECTION (SEE OVER FOR INFORMATION) NAME OF CARRIER FAMOLOGY DATE OF INSPECTION <u>1-25-53</u> NAME OF DRIVER Autor Action for the formed of the forme							
	ACCEPTABLE	UNACCEPTABLE	REMARKS					
GENERAL VEHICLE CONDITION	V							
FIRE EXTINGUISHERS INSTALLED	U							
TIRE CONDITIONS	V							
HORNUGHTSREFLECTORS	V							
BRAKES	L							
MIRRORS/WINDSHIELD	~		(
LOAD								
MISCELLANEOUS	/							
	ACCE	PTED BY (NAME,	un leeden					

• ..

Figure 56-Vehicle inspection report

TTC# 5822 INTERMEDIATE LOT FOLLOWER	•
Grid Location Lower Pono Material from RMMA? Yes V No	Sign/Date
Hazardous Visual Yes No HNU Yes No HAZMZP Yes No	
Radioactivity, Background Reading <u>4810</u> cpm $X = 6.01 \sqrt{B} = 5227$	
Direct Counts less Background Reading Compare to X: radioactive?	
Transfer to: Clean container No. Radioactive container No. Hazardous container No. Mixed Haz container No.	
Quality Assurance Verification:	- NOV-1-4-1992-

× .

.

Figure 57-Intermediate lot follower

Car 20-1-93

Revised: 3/9/92

California Land	Disposal	Restriction	Notice	and	Certification
-----------------	----------	-------------	--------	-----	---------------

Generator Name Lochial Int Cor Rockfeling Die STR 500	Manifest Number	89861575
California Hazardouz Waste Code(s) 181, 611	CiVM Profile Number	BF GEYC

	State of California - Restricted Waste Description Usted in 22 CCR § 66263.29	Prohibition Effective Date	Corresponding Treatment Standard (from 22 CCR)
	1 Metal-containing aqueous wasta identified in 22-CCA 66258.25(a).	1/25/90	68268.107(2)
	2 PCB wastes Identified in section 66258.25(b).	1/27/90	66258.11G
	3 Auto shredder waste klentified in section \$5258.25(c).	5/8/\$1	68268.106(2)(1)
	4 Nonwastewater solvent waste identified in section 62253.25(c).	5/8/S1	66258.107(b)
	6 Hazardous wasta foundry sand identified is saction 60258.25(e).	1/1/91	66255.106(a)(21
	(1) B (reserved) (ar dev) Settoreur (vrabat) (Carden (vrabat))	No.	
\mathcal{L}	7 Metal-containing solid waate identified in \$5258.29(c).	5/8/92	66268.106(a)(3)
Ľ	8 Fly ash, bottom ash, retort ash or baghouse waste identical in 60252.23(h).	1/1/51	66258.106(a)(4)
	S Beghouse waste from foundries identified in 62258.25.3].	1/1/51	56258.106(a::5)
	10 Aqueous and Equid organic waste identified in 66252.22().	5/8/52	66258.112
	11 Solid waste containing organics identified in 65258.25(n).	5/8/52	66268.173
	A. RESTRICTED WASTE REQUIRES TREATMENT an the generator of the waste identified above which must be treated to many the applicable treatment is or article 11 of Chapter 18. B.1 RESTRICTED WASTE TREATED TO PERFORMANCE STANDARDS I cently under penalty of lew that I have personally examined and an timiliar with the treatment techni- read to support this certification and that, based upon my inquiry of those individuals introdicingly respon- ter the treatment process has been operated and maintained properly so as to comply with the periors 11 of chapter 18, division 4.5, Tite 22, CCR and all applicable prohibitions set forth in section 66268.3 6524(0) without impermissible citution of the prohibited waste. I am every dust there are significant including the possibility of a fine and imprisonment.	nt standardis se Kogy and opera naible for ottain nance levels ap to r RCRA section penatives for at	t forch in COR Title 22, article tion of the treatment process ling this information, I believe actified in article 4 and article in 3004(c) (42 U.S.C. section ibmitting a false certification,
	C. RESTRICTED WASTE SUBJECT TO A VARIANCE The wasta identified above is subject to a capacity variance which expires on <u>1. Lower</u> 13	95	د د
	D. RESTRICTED WASTE CAN BE LAND DISPOSED WITHOUT FURTHER TO Teacity under penalty of law that / personally have examined and am fumiliar with the weste furough the weste to support this certification, that the waste complex with the teament standards specified in 4 and anicle 11 and all applicable prohibitions set forth in CCR Tice 22, section 66268.32 or RCRA a am aware that there are significant penalties for submitting a faise certification, including the possib	REATMENT analysis and rea CCR Title 22, d action 3004(C)(illy of a fine and	ting or through incluiecge o Nition 4.3, chapter 18, stick 42 U.S.C. section 6924(d)). d imprisionnem.*

Figure 58-California land disposal restriction form

I hereby cartily that all information submitted in this and all associated documents is complete and accustate to the best of my knowledge and

Tille Member of Techanil Staff

Information.

Signature Com N

Copyright e 1990 Chemical Waste Mangement, Inc.

al

Y	WASTE PROFILE
	OLED TE SING KOLES. Kreck Creatry, 24
	Check here if this is a Recentification.
OEN	ETAL INFORMATION
31. 9.	BENERATOR NAME U.S. DEPARTMENT OF CHERY, GRANNE USERAD UNS OT UTO USE
<u> </u>	Caroga P.ik, CA 91303
3.	TEATHERTOARDAN BLIAN SUIMA EXE 773.5426
4	Attimate Contact Thom Alex Kig - 08 585 572 Sting Contact Monor
PRO	MERTIES AND COMPOSITION C P. D. Clean-Out
a	Wate Name Ran RCRA Sodie Burn Bit Weste
7Å,	to this a USEPA hazardous wasts p40 CFR Part 25(17 Kes D No 32)
Β.	
.	Physical State @ 70"F.A. Solid CLiquid CL Both D. B. Single Laver C. Multilever (1) C. Fite Rould Farmer Fite D. to
-	pit Range or two applicably J B. Shong Odor []; describe
10.	Upuin Parts - 75'F - 75'F - 75'F - 100 139'F - 160 199'F - 2 200'F - NAX Cound Cup - Open Cup
	Community Particle Community Commun
12.	07HER: PCBs if yes, concentration poin, PCBs regulated by 40 CPH 761
14. 	
518	PACKARINA I LAN SOLA SOLA BUK Lague D Dum D Type StatsOner
ា 5.	ANTICIPATED ANNUAL VOLUME: Units: Supplies Findunes;
5A) 164	HPLANS WITCHMATTICH Sample source (drim legoon, pondymes, warma) Ence Within 1987 Date Samples 28 August 1982 Sampler a Name Company.
165	. Senerator's Agent Supervising Bumpling
	NERATOR & CONTINECATION user, callty is at all information assembled in the bird of anticet documents contains they and accurate descriptions of p() share. Any service submitted is represented or inforced and CFR 30. Appendix for by using an effective and an information population by submitted in the policy of the service is at committee Division granities (and an article at terms for proposes of second context of a
ين. معني	15 lion Finh Brin Syste MISTH _ 28 High 2

. . . ·

_

Figure 59-Regulated waste profile

A),	-
008 F 1376.8 (0-81) 670 (07-80)		×	-
United S	tates Government	Department of Energy	
me	morandum	RECEIVED	
DATE		JAN 1 5 1993	
REPLY TO	FN-444	ORF 0079	• .
SUBJECTI TO:	Approval of Waste Shipmont from the Ener Sodium Disposal Facility James T. Davia, SF	gy Technology Engineering Center's	
	The December 11, 1992, memorandum from A requesting to ship offsite all soils des been received and reviewed by this offic Technology Engineering Center's (ETEC's) waste, and procedures to assure that only (SDF) wastes showing no detectable activ nonradioactive, this office believes that added radiation is present in these wast	lax Dong to Lee Stevens (attached), ignated as nonradioactive wastes has e. In consideration of the Energy demonstrated knowledge of the y those Sodium Disposal Facility ity will be designated as t no Department of Energy (DOE)- es.	
	ETEC has to date, not provided informati- site-wide. For this request, the inform specified above is sufficient. This off ship all SDF wastes found to have no DOE nonradioactive. The moratorium remains at ETEC, which are not specifically exce activity at the SDF.	on acceptable to lift the moratorium ation submitted for the SDF wastes ice concurs with your request to -added radiation offsite as in effect for all RCRA/TSCA wastes vated soils from the remadiation	
	Jrqf Jrqf Biegu Envi Ja	E. Lytle ty Assistant Secretary r Waste Management ronmental Restoration and ste Management	
	Attechment .		
с. 	cc: Joe Boda, EN-322 Bordon Langlie, EM-322 Hannibal Joma, DOE-SF Jonathan Kang, EM-351	-	

Figure 60-Case exception for DOE approval for shipment

	PENDING	ANALYS	IS	
Canoga D 6633 Canoga Avenue Canoga Park, CA 91303	DeSoto 8900 DeSoto Avenue Canoga Park, CA 91304 Simi Hilis, CA 9	Canyon Road 2825 Townegate F 1311 Westlake, CA 913	Plummer E td. 21415 Plummer Ave. 61 Chatsworth, CA 91311] Oth
Date of Storage		FROM R	mma	
Date of 1st Accum/Date Dee	ment to be a Weste 11-14-9	2		-
	M2C/ETEC M	ALASDE MAN	86	\ F. C 977
- Sall	99, Known Volgetia	ignitability (F.P. < 140 7)	Corrostvity (PH < 2 or > 12.5)	Toxici
· · · · · · · · · · · · · · · · · · ·	%	C Reactivity	Other	
······································	% Rhown	tate: Solid DiLiquid D	Sludge 🔲 Gas 🗌 Other	
		Container:	Ogal. 🗆 ibs. 🙀	lau. yos
	% Process Ge	inerating Waste_OSD	E CLOSURE	
	······································			
	92886-168	Date Sampled	11-19-92	
Analysis Log No				

*

EID-04628 Page 139

,

92.886.168c . 886 Random sample generator (1 sample, 5 bins) BIN NO. 1 CONTAINER SERIAL NO. 1029 RANDOM NUMBER LIST 3 BIN NO. 2 CONTAINER SERIAL NO. 5942 RANDOM NUMBER LIST 6 BIN NO. 3 CONTAINER SERIAL NO. 5700 RANDOM NUMBER LIST . 5 BIN NO. 4 CONTAINER SERIAL NO. 0220 RANDOM NUMBER LIST 1 BIN NO. 5 CONTAINER SERIAL NO. 0216 RANDOM NUMBER LIST 2

Figure 62-Random sampling of 5 R/O bins

	IPLE ANALYSIS REQU (Side 1)	EST FORM	n	
Requester: <u>Sodium Dis</u>	posal Fac. Sam	pler:		
Dept H 075 Aall		pletion Dat		₽₽
Project Name: _Bodi	um Disposal Facility	Closure		
Proj. Charge Number:	29841-96215-15300			
Are these samples for	Regulatory Compliance? _	N		
To which agency are th	e results being reported	,		
	· · · · · · · · · · · · · · · · · · ·			
	MATRIX (check one)			
Drinking Water:	_ soil:	0111		
Ground Water:	Sludge:	Solven	t:	
		0-h		
Waste Water:	Hazardous Waster	UEner:		<u> </u>
Waste Water:	Hazardous Waster COMMENTS	Other:		
Waste Water:	Hazardous Waster COMMENTS	Other:		
Waste Water:	Hazardous Waste: COMMENTS	Other:		
Waste Water:	Eazardous Waste:	Other:		
Waste Water:	Hazardous Waster COMMENTS	ons		
Waste Water:	Eazardous Waster COMMENTS Sample Condition For Lab Use Onl	ons y	N	N/A
Waste Water:	Eazardous Waster COMMENTS Sample Condition For Lab Use Online tact?	ons Y	NN	N/A N/A
Waste Water:	Eazardous Waster COMMENTS Sample Condition For Lab Use Online tact? tt?	ons y Y y Y y Y	N N N N	N/A N/A N/A
Waste Water: Are the seals int Are labels preser Are samples Chair Are Tags, Contair	Eazardous Waster COMMENTS Sample Condition For Lab Use Online tact? tt? to of Custody? hers, and Chain	ons y y y y y	N N N	N/A N/A N/A
Waste Water: 	Eazardous Waster COMMENTS Sample Condition For Lab Use Online tact? hof Custody? hers, and Chain h agreement?	ons y y y y y y	N N N N	N/A N/A N/A N/A
Are the seals int Are the seals int Are labels preser Are samples Chair Are Tags, Contair of Custody in Are Samples Cold	Eazardous Waster COMMENTS Sample Condition For Lab Use Online tact? hof Custody? hers, 'and Chain h agreement?	onsY	N N N N N N	N/A N/A N/A N/A N/A N/A
Waste Water: Are the seals int Are labels preser Are samples Chair Are Tags, Contair of Custody in Are Samples Intak Is there haden	Eazardous Waster COMMENTS Sample Condition For Lab Use Online Lact? hof Custody? hers, 'and Chain h agreement? ? ct? er?	ons y y y y y y y y y y y y y y y y y y y	N N N N N N N	N/A N/A N/A N/A N/A N/A N/A
Are the seals int Are the seals int Are labels preser Are samples Chair Are Jags, Contair Are Samples Cold Are samples Intac Is there headspac Is there sufficie	Eazardous Waste: COMMENTS Sample Condition For Lab Use Onlite tact? ht? hors, and Chain hagreement? ct? ct? ct? set Sample?	ons y Y Y Y Y Y Y Y Y Y Y Y	N N N N N N N N N N	N/A N/A N/A N/A N/A N/A N/A N/A N/A
Are the seals int Are the seals int Are labels preser Are samples Chair Are Tays, Contair of Custody in Are samples Intac Is there headspace Is there sufficie	Eazardous Waster COMMENTS Sample Condition For Lab Use Online tact? tt? to of Custody? hers, and Chain h agreement? tt? tr? tr? set Sample?	chas y Y Y Y Y Y Y Y Y	N N N N N N N N N	N/A N/A N/A N/A N/A N/A N/A N/A
Are the seals int Are the seals int Are labels preser Are samples Chair Are Tags, Contair Are Tags, Contair of Custed int Are samples Inta Is there headspace Is there sufficie	Eazardous Waste: COMMENTS Sample Condition For Lab Use Online Lact? ht? h of Custody? hers, and Chain h agreement? ct? ct? set Sample?	Dins Y Y Y Y Y Y Y Y Y Y Y Y Y	N N N N N N N N N	N/A N/A N/A N/A N/A N/A N/A N/A

Figure 63-Chemical sample request- (page 1 of 2)

SAMPLE ANALY	
Sampled By (Sign):	P.Pollock
Log Number Sample Joits Time	Sample Description Analysis
<u>47887.16861 1.1442 0820</u>	0/1 (024 (Hotele and pit
12867770311442 20124 -	Bon 2474 A Hethod 6240
045107/1662 11-11-12 10 201 - 00 201	
92-80 - JULEZA LUGAI IR 5	A. O. O. O.
The part in the fact in the second	
log Number Sample / Date Time	Sample Description Analysis
92886-168A, 1846.92 1629	BIN'S 1029, 5942, Hetals and pit
10	5 700, 0220, Hering 8740
	P226 Nechod 8270
92.800 -1688 -184.4A2 -1629	Method 8080
	EPA 418.1
92.886768CI	BIN 1029 BIN CAUS
72886-168-2	BIN 5700
Q1,602.168.CV	BIN 0220
92.886.168 CS	BW 6216
an An Angelan Anna an Anna	· · · · · · · · · · · · · · · · · · ·
CHAIN OF CUSTODY	(For Environmental Samples)
Relinquished By (sign) Date	Time Received By (sign)
Relinquished By (sign) Date	Time Received By (sign)
Belinquished By (sign) Core	Yime , Received By (sign)

Figure 64-Chemical sample request (page 2 of 2)

DOL 7					ANALYTI	CAL REPO	ORT
B C Anal	rtical						
801 Western Avenu Glendale, CA 9120 8181247-5737 Far: 8181247-9797	n						
•			••			LOG NO: G	92-11-276
						Received:	20 NOV 92
						Mailed: DE	C 0 7 1992
Ms. Roci 663 Can	Nancy McMillan kwell Internati 3 Canoga Avenue oga Park, Calif	, SS21 onal Corpor ornia 9130	ation 3		Purchase O	rder: R24Pj	1 29203 3545
		REPORT OF	ANALI	TICAL RESUL	T 5		Pağe 1
LOG NO	SAMPLE DESCRIP	TION, SOIL	SAMPLI	ES		DA	TE SAMPLED
11-276-1 11-276-2 11-276-3 11-276-4 11-276-5	92110413 كليمنة 92110416 كليمنة 92110427 كليمنة 92110427 <u>كليمن</u> ة 92110430 <u>B</u>	5648, 594 552, 5642 5698, 5640 1663, 0788, 1029, 5942,	2,0714 ,554, ,0224, 5516,1 ,5700,	6443,5634 6443,5634 6443,5598 1204,5557 1204,5557 1204,5557	1647 1657 1668 1678 1688		18 NOV 92 18 NOV 92 18 NOV 92 18 NOV 92 18 NOV 92 18 NOV 92
PARAMETER	*************	11-2	276-1	11-275-2	11-275-3	11-276-4	11-276-5
Nitric Acio HCl, Date GFA Digest Arsenic by Antimony, J Barium, mg, Beryllium, Cadmium, m Chromium, i Cobalt, mg Copper, mg Lead, mg/kg Mercury, m Molybdenum Nickel, mg Selenium b Silver, mg Thallium, Zinc, mg/k	l Digestion with (EPA 3050), Dat Graphite Furnac ng/kg mg/kg g/kg ng/kg kg g/kg g/kg mg/kg y Graphite Furn kg mg/kg g g/kg g	ace, mg/kg	23/92 23/92 2.3 ~10 0.49 <0.4 25 6.8 12 8.9 22 <4 25 <0.4 0.69 <5 30 99	11/23/92 11/23/92 1.4 <10 87 0.58 <0.4 27 7.4 9.4 10 7.9 <4 30 <0.4 0.94 <6 34 64	11/23/92 11/23/92 2.7 <10 86 0.56 <0.4 20 6.9 8.5 9.5 5.8 <4 36 <0.4 0.80 <6 34 62	11/23/92 11/23/92 1.7 <10 84 0.54 <0.4 17 6.7 7.9 6.6 6.2 <4 27 <0.4 0.57 <6 33 41	11/23/92 11/23/92 2.0 <10 88 0.54 <0.4 25 7.7 9.2 9.2 39 <4 45 <0.4 0.74 <6 33 49
BCA	•						

Figure 65-Chemical analysis results (metals)

0: Sodium Disposal Fac. Dept/Group: 025-000 PHONE: 382-5922	KAIĹ: 1886		REPORT DATE: 12/04/9
Sample Descrption: Soil, Requested Analysis: 8080 Sampler: B. Sujata	SAMPLE INFORMAT Bins: 1029, 5942, 5700 Sampler ID#: 92-8	ION	Received: 11/19/92 Sampled: 11/18/92 @ 16:29:00
AKALYTE	RESULT	UNITS	NETHOD/SOURCE
PCB 1254 in soil	0.80	ng/ Kg	SU846, Nethod 8080
		ž	
		• •	
			••••••••••••••••••••••••••••••••••••••
SPECIFICATION: (PCB analysi: Special Notes: Conments:)		
Rocketdyne SSEL An	M. D. Robertsm alytical Chemistry	SIGNED : EU	tie Schurents indyne BSFI Analytipas Chemia

Figure 66-Chemical analysis results (PCBs)

umple Descrption: Soil, Bin squested Analysis: 8240 umpler: F. Pollock	a: 1029, 5942, 5700, 0220	, 0216		
	Sampler ID#: 92-886-168	.c. s	Received: ampled: 11/19/92 8	11/1 8:2
ANALYTE per SM-846, #8240	RESULT, ug/kg	MOL	NCL	
Bate Extracted	••••••••••••••••••••••••••••••••••••••		• ••••••••	
1,1,1-Trichloroethane (TCA)	14 <i>23472</i> 11.0.	0.8	**	
1,1,2,2-Tetrach(orosthane	¥.0.	0.5	**	
1,1,2-Trichloroethane	N.D.	0.5	**	
1,1-Dichloroethane	N.D.	1,1	**	
1,1-Dichloroethylene	N.D.	0.8	* #	
1,Z-Dichlorobenzene	N.D.	0.6	**	
1,2-Dichlorgethilane tais	¥.D.	0.Z		
1,2-Dichloroethylene (trans)	F.V. 11.D.	0.2	**	
1,2-DichLoropropane	N.D.	0.8	**	
1,3-Dichlorobenzene	K_D,	0.6	**	
1,3-Dichloropropene (cis)	N.9.	0.6	**	
1,3-Dichloropropene (trans)	¥.0.	0.5	**	
1,4-Dichlorobenzene	N.O.	1.0	**	
Acetone	N.O.	7.9	**	
ectione Bronodichioronatione	K.D.	ÿ.7 6'≛	**	
Sronoform		0.5	- ++	
Bromomethane	N.01	1.0	**	
Carbon TetrachLoride	N.D. j	0.5	**	
Chloroethane	N.D. Ť	1.0	**	
Chloroform	N.D.	0.8	**	
Chioromethane Dibermaki constant	¥.D.	0.6	**	
y tor uncon Loronethane Ethyl henvere	H.D.	, •U.% 0 #	**	
Freen 113	K.V.	0.8	÷*	
Methylene Chloride	#.D.	2.9	**	
Monoch1orobenzene	¥.0.	0.6	**	
Tetrachloroethylene	N.D.	0.8	**	
Taluene	N.D.	0.7	**	
Trichloroethylene (TCE)	¥.D.	0.6	**	
Trichlorofluoromethane	W.D.	0.8		
UNKAGUN WYGFOCARDOD	** 15			
Vind Chlasid	·	~ /		

*----

. .

Figure 67-Chemical analysis results (VOCs)

Sample Reques Sample	Descrption: ted Analysis r: P. Polloc	Soil, Bins 1: 8240 2k	- SAMPLI : 1029, : Sampler	E INFORM 5942, 57 ID #: 92	ATION	0216	Sampled:	Received: 11/19/92.0	11/19/ 8:20:
•	ANALYTE per	54-845, #8240		RESULT,	ug/ky	NDL	NCL	•••	
	Xylenes (Total))		¥.D.		1.4			
		. •							
			ŧ.						
							•		
							,		
	·								

• •

Figure 68-Chemical analysis results (SVOCs)

14.0 REFERENCES

4 GEN-ZR-0002, "CERCLA Program Phase II - Site Characterization," Rocketdyne Staff, 5/29/87

5 BNA GEN-ZR-0004, "Radiological Survey of the Sodium Disposal Facility - Building T886." 6/27/88

6 TOXIC PITS CLEANUP ACT (TPCA) Section 25208 of Article 9.5, California Code of Regulations.

7 ETEC-DRF-2438 "Hydrogeological Assessment Report-Review thereof, RI-SSFL, File 04.003.00"

J.E.Ross (Los Angeles Regional Water Quality Control Board), 3/5/91

8 ETEC-DRF-2439 "Clean Up and Abatement Order No. 91-061 (File No. 200.003)" Ghirelli (RWQCB), 4/30/91

9 90 ETEC-DRF-1145, "Assessment Plan for the FSDF..." BNA Staff, 5/25/91

10 91RC09556, "Former Sodium Disposal Facility (SSFL) Closure Plan", BNA Staff, 7/31/91

11 RWQCB DRAFT Letter, FSDF Closure Plan Approval, Ross, 9/9/91

12 ETEC-DRF-2192 "Request for NEPA Determination" Stone (BNA) 9/28/91

13 N001TI000339 "Definitions and Designation of Radioactive Materials Management Areas-RMMA)", Rocketdyne Staff 9/15/91.

14 ETEC-DRF-2418 "Revision to the Performance Objective [Waste Shipment Moratorium]", Nakahara (DOE-SF) to Gaylord (ETEC), 10/22/91

15 011775RC "FSDF Closure Plan [Deficiencies]" Ross (RWQCB) & Pearson (DTSC), 11/1/91

16 886-AN-0001 "Project Management Plan-Sodium Disposal Facility Closure", ETEC, 11/20/91

17 886-ZR-0001 "SDF Closure-Health and Safety Plan", ETEC Staff, 12/06/91

18 886-CX-0002 "FSDF Remediation Site Layout", Staff, 4/23/92

19 92RC00025 "Response to Recommendations on the Closure Plan for FSDF" Jensen (BNA), 1/3/92

20 92 RC01593 "SDF, Buried Object Removal Procedure" Lafflam 2/7/92

21 002077 "Closure Plan for FSDF", Pearson 2/11/92

22 002076RC "Closure Plan Approval" Ross 2/11/92

23 92RC02376 "Closure Plan for the FSDF" BNA, Jensen to Ross (RWQCB) 2/20/92

24 92RC02374 "Closure Plan for the FSDF" BNA Jensen to Pearson (DTSC), 2/20/92

25 IL, "SFDF Pilot Study Designations", Klein to Gaylord, 2/24/92

26 DRF 0390 "NEPA Approval for FSDF Remediation", Liddle (DOE), 3/5/92

27 DTSC Letter, "Closure Plan for FSDF" Pearson to Lafflam, 3/10/92.

28 92RC02624 "Request for Extension of Soil Storage at the FSDF", Jensen to Pearson (DTSC), 3/16/92

29 N704SRR990034 "Baseline Radiological Survey of the FSDF", Rocketdyne staff, 8/31/92

30 003854RC "Request for an Extension of the 90 day period for storage", DTSC, 4/6/92

31 004455RC "Health and Safety Plan Review", DTSC Staff, 4/24/92

32 04994-001-00 "Geophysical Survey of B-886, Former Sodium Disposal Facility", ICF Kaiser Engineers, M. Miele 5/92

33 Internal Letter, "Funding for Burn Pit Lower Pond", BNA Staff, McCurnin to Kittinger, 2/24/81

34. DRF-0839 "Land Disposal Restrictions-National Variance Deadline for Mixed Wastes", DOE Staff 5/6/92

35 005087 "Soil Cleanup and Storage", DTSC Staff, 5/11/92

36 92RC05537 "Response to HASP review for FSDF", Rocketdyne staff, 5/14/92

37 DRF-1090 "Public Information Document Review", DTSC Staff, 5/22/92

38 92RC05668 "B/886 FSDF" BNA Staff, 5/22/92

39 005871RC "Approval of Interim Measure Workplan...", DTSC Staff, 6/5/92

40 92RC06399 "B/886 FSDF" BNA Staff, 6/11/92

41 006001RC "Conflict of Applicable Regulations", Zelikson, EPA, 6/10/92

42 92RC07098 "Cleanup and Abatement Order", BNA Staff, 6/30/92

43 007980RC "Soil Boring and Excavation....", DTSC Staff, 8/10/92

^{1 8640}M-95 "Hydrogeologic Assessment Report, Lower Pond B 886 SDF", Groundwater Resources Consultants Staff, 6/12/90.

² Internal Letter, "Burn Pit Lower Pond", BNA Staff, Lang to McCurnin, 12/11/80

^{3 303-886-}C1, Sodium & Flammable Liquid Disposal Facility-Site Plan and Concrete Pit Details", Atomics International, September 1960

44 #92-003, "X*TRAX and Stabilization Treatability Studies of Mercury Contaminated Soil, from SSFL", Clemson Technical Center, Chemical Waste Management Inc., 10/92. (011324 RC).

45 #8664 (CUP 248) Grading Permit, Ventura County, 9/8/92

46 92RC09932 "Pilot Study Report-B/886 FSDF)" BNA Staff, 10/2/92

47 DRF-1806 "FSDF Final Closure Plan Approval), RWQCB Staff, 10/9/92

48 DOE Memorandum, "Clarification on Approval......ETEC...", Stevens (HQ) to Davis (OAK), 10/29/92

49 92RC12948 "Submittal of Interim Post Closure Plan for the Lower Pond-FSDF", BNA Staff 12/22/92

50 DRF2280 "Closure of Surface Impoundment-FSDF", RWQCB Staff, 12/29/92

51 00588RC "Authority to Regulate Mixed Waste Treatment", DTSC Staff, 1/12/93

52 ETEC-DRF-0347 "Approval of Waste Shipment from FSDF" Dong (DOE-SF) 1/19/93

53 93RC02022 "Extension of Permit per Title 22" BNA Staff, 2/17/93

54 93 ETEC-DRF-0357 "Proposed Treatment Process for FSDF Mixed Waste" BNA Staff, 2/23/93

55 93-ETEC-DRF-0359 " Determination of No Added Radioactivity..FSDF", BNA Staff, 2/24/93

56 93 ETEC-DRF-0403 "RMDF RCRA Part A Permit", BNA Staff, 3/3/93

57 Summary Table of CEP results of samples taken by RWQCB on March 24, 1993

58 93 ETEC-DRF-0891 "Treatment of Mixed Wastes-FSDF", BNA Staff, 5/19/93

59 05739RC "Mixed Waste Storage-FSDF" DTSC Staff, 6/8/93

60 California DHS/RHB internal memorandum from Steve Hsu. "Soil Released from Lower Pond of Sodium Burn Pit at SSFL." 6/17/93

61 06283 "CA Radioactive License, Alleged Complain" DHS Staff, 6/22/93

62 93 RC04700 "Disposal of Non-Radioactive Soil to Kettleman Hills Hazardous Waste Landfill", BNA Staff, 7/12/93

63 93RC07059 "Request for Ombudsman Support", BNA Staff 8/6/93

64 93RC08068 "Treatment of Mixed Waste Soils", BNA Staff 8/13/93

65 ETEC-DRF-1774 "Exemption from DOE Order 5820.2A for Mixed Waste from ERWM Activities", DOE Staff, 10/12/93

66 93 ETEC-DRF-2062 "Final Radiological Survey Plan for the B/886 SDF", DHS Staff, 12/13/93 1993. 67 Project 2205-400.06 Geophysical Report by Norcal", Bilodeau, 2/9/94 (ETEC-DRF-0303)

68 94 ETEC-DRF-0143 "Transmittal of Documents to California AIP Members", BNA Staff, 1/27/94 69 Internal Letter "Results of ETEC Soil samples from Sodium Burn Pit", Hsu (California DHS/RHB 2/15/94

70 8640M-216, "Hydrogeological Conditions, B886 (FSDF), Groundwater Resources Consultants, Inc., 4/15/94

71 886-ZR-0007 "Post-Remediation Ambient Gamma Radiological Survey of the FSDF), BNA Staff, 1/5/95

72 DOE Letter, "Removal of RMMA Designation for the FSDF), Davis (DOE), 3/10/95

73 ICF Kaiser Engineers, "Sampling and Analysis Workplan, FSDF, SSFL", ICF Kaiser Staff, 6/95 74 ICF-Kaiser, Inc. "Geophysical Survey Extension of FSDF", ICF Kaiser Staff, 8/95

75 SSFL 95-01 "Sampling and Analysis Workplan DRAFT-FSDF, SSFL" ICF Kaiser Engineers, 6/29/95 76 95 ETEC-DRF-0632 "Conditional Authorization to Implement Sampling and Analysis Workplan for FSDF", DTSC Staff 7/13/95

77 SSFL-95-03, "DRAFT-FSDF SSFL Characterization Report-5 Volumes", ICF Kaiser Staff, 10/26/95 78 SSFL-97-01, "FSDF Characterization Report-5 Volumes, ICF Kaiser Staff, 8/15/97 [Final]

79 03.0601846.001.001 "Draft FSDF Off-Site Drainage Characterization Report", McLaren Hart Staff, 10/4/95

80 Rocketdyne Report 886-ZR-0009, "Post-Remediation Soil Sampling and Analysis for the Former Sodium Disposal Facility (T886)." Revision A. 4/8/97

81 "Draft Risk Assessment (RA) Workplan", ICF Kaiser Staff, 10/4/95

82 "Draft Closure Report for the FSDF", ICF Kaiser Staff, 10/27/95

83 010115RC- "Interim Measures for FSDF", DTSC Staff, 12/1/95

84 Hazardous Waste Treatment and Storage Permit "#93-3-TS-002" 1993

85 95RC08251 "FSDF Interim Measures", BNA Staff, 12/20/95

86 000646RC "FSDF Interim Measures", DTSC Staff, 1/17/96

87 96RC00881"FSDF Interim Measures", BNA Staff, 1/31/96

88 ETEC-DRF-96-0125 "Review of FSDF Risk Assessment Workplan", DTSC Staff, 1/31/96

89 ETEC-DRF-960049 "FSDF Interim measures", DTSC Staff, 2/28/96 90 001943RC "Response to Comments from DTSC, RE HBRA", ICF Kaiser to DTSC, ICF Kaiser Staff, 2/29/96. 91 ETEC-DRF-96-0153 "FSDF Project Status", BNA Staff, 3/20/96 92 003535RC "Assessment/Remediation at FSDF", DTSC Staff, 4/23/96 93 96ETEC-DRF-0144 "Licensee Final Survey Reports-FSDF", BNA Staff, 5/6/96 94 96ETEC-DRF-0291 "FSDF-Request for Unrestricted release and removal from License", BNA Staff, 5/16/96 95 96ETEC-DRF-0345 "Decision to Proceed at ETEC", DOE Staff, 6/26/96 96 California DHS/RHB internal memorandum from Hank Kocol to Fred Toyoma. "Comparison of Soil Results for Sodium Burn Pit Area." 12/30/96. 97 96RC06180 "FSDF Closure Plan", BNA Staff, 10/10/96 98 SSFL 96-02 "Risk Assessment FSDF", ICF-Kaiser Staff, 10/15/96 99 96RC07261 "FSDF Final Interim Measures, Excavation and Backfilling", BNA Staff, 11/18/96 100 ETEC-DRF-960607 "FSDF" DTSC Staff, 12/11/96 101 ETEC-DRF-970077 "Comments on Risk Assessment FSDF", DTSC Staff, 3/14/97 102 886-ZR-0009" Post-remediation Soil Sampling and Analysis for FSDF", Rev A, BNA Staff, 4/8/97 103 97RC2351 "Response to DTSC Comments-3/4/97 FSDF risk assessment" BNA Staff, 4/11/97 104 97RC2624 "Summary of Meeting-FSDF Risk Assessment", BNA Staff, 4/29/97 105 ETED-DRF-970143 "Risk Assessment FSDF", DTSC Staff, 5/9/97 106 97RC3102 "Monte Carlo Results for FSDF", BNA Staff, 5/16/97 107 97RC3104 "Response to Final Comments-FSDF Risk Assessment", BNA Staff 5/20/97 108 ETEC-DRF-970190 "FSDF-Ecological Risk Assessment", DTSC Staff, 6/2/97 109 ETEC-DRF-970270 "FSDF Status and Risk Assessment review-Meeting notes", BNA Staff, 7/24/97 110 ETEC-DRF-0267 "Further Remediation of the FSDF", DOE Staff, 8/7/97 111 ETEC-DRF-0266 "Decision to Proceed with Interim Removal Action at FSDF", DOE Staff 8/7/97 112 SSFL-97-01 "Former Sodium Disposal Facility-SSFL Characterization Report", ICF Kaiser Staff, 8/15/97 113 95-ETEC-DRF-0957 "FSDF Interim Status", BNA Staff 11/20/95. 114 Verbal communications -(Burke (DOE), Weingarten (DTSC), et. al) 8/97 115 97-ETC-DRF-0322 "FSDF Interim Remedial Measure Workplan" BNA Staff, 9/8/97 116 ETEC-DRF-0337 "DOE Letter-FSDF" Burke to Weingarten (DTSC), 9/10/97 117 California DHS/RHB Survey Report. "Confirmatory Survey: Soil Samples from the Former Sodium Disposal Facility." 9/16/97. 118 California DHS/RHB internal memorandum from Roger Lupo to Fred Toyoma. "Former Sodium Disposal Facility located at Area IV Santa Susana Field Laboratory - ETEC." 5/1/98. 119 ETEC-DRF-0369 "Proposed Further Remediation-FSDF", DTSC Staff, 9/22/97 120 ETEC-DRF-970404 " CEQA for FSDF", DTSC Staff, 10/3/97 121 98RC0921, "Requested Documents FSDF and Drainages", BNA Staff 2/16/98 122 Amendment 98 to California Radioactive Materials License Number 0015-19. 5/6/98 123 DHS Letter from Gerard Wong (DHS/RHB) to Phil Rutherford. Untitled 5/15/98 124 DHS memorandum "FSDF-ETEC", DHS Staff, 5/1/98 125 Letter, "FSDF-Release for Unrestricted use, Removal from License", Wong (DHS), 5/15/98 126 ETEC-DRF-980159 "Amendment #98 to License 0015-19", DHS, 5/6/98 127 98RC2603 "Interim Measures Workplan FSDF", BNA Staff 5/18/98. 128 ETEC-DRF-0208 "Technical Review of Draft IRM, FSDF", DTSC Staff 7/16/98. 129 98RC4136 "Final Response to Comments-re FSDF Interim Measures Workplan", BNA Staff, 7/23/98 130 DTSC Letter "Comments-FSDF IM Workplan", DTSC Staff, 10/5/98 131 DTSC Letter "Comment-FSDF IM Workplan", DTSC Staff, 10/23/98 132 ETEC-DRF-0282 "FSDF", DOE letter, Lopez to Lee (BNA), 11/2/98 133 RC0588 "FSDF-Funding" DOE Staff, 1/27/99 134 DHS Letter, "FSDF Status Clarification", Lupo (RHB) to Abrams (DTSC), 2/18/99

135 DHS Letter, "Unrestricted Use of the FSDF", Bailey (RHB) to Cornwell (DTSC), 2/23/99

136 Final 1998 Interim Measure Workplan for Soil Cleanup at the FSDF", ICF Kaiser Engineers Staff, 3/18/99

137 IT Report "Draft Final Interim Measures Workplan for the FSDF", IT Staff, 7/9/99

138 IT Report "Draft Final Interim Measures Risk Assessment", IT Staff, 7/9/99

139 004653RC "Technical Review of Draft Final IM Workplan-FSDF", DTSC Staff, 7/15/99

140 004654RC "Approval of Draft Final ... Risk Assessment-FSDF", DTSC Staff, 7/15/99

141 886-CS-0002 "FSDF Area 886 Remediation Site Layout", 4/92

142 886-XT-0001 "SDF-Radiological Acceptance Criteria for Soil Segregation", BNA Staff 12/4/92

143 886-SP-0002 "SDF-Procedure for Excavation, Sorting, Segregation and Classification of Soils", BNA Staff, [Rev C], 8/10/92

144 886-SP-0004" SDF-Sampling of Soils for Analysis", BNA Staff 6/19/92

145 ER-SP-0001 "Management and Disposition of Known or Potentially Hazardous Wastes Originating in a RMMA", BNA Staff, [Rev A], 2/27/92

146 886-XT-0002 "Basis for Radiological Determination of No DOE-Added Radioactivity at the FSDF", BNA Staff, 12/3/92

147 IT Report "Draft Final Interim Measures Risk Assessment", IT Staff, 7/9/99

148 IT Report "Draft Final Interim Measures Workplan for the FSDF", IT Staff, 7/9/99

149 12-441-001 "Revegetation Specifications for the FSDF", Envicom Staff, 3/30/93

150 DRAFT "Negative Declaration for Interim Measure for the FSDF", DTSC Undated -1999

EXHIBIT V

FINAL DOCUMENTATION AND RADIOLOGICAL SURVEY(S) OF FACILITY 4886 AFTER DECONTAMINATION AND DECOMMISSIONING

TITLE:	ENERGY TECH OPERATED FOR THE ROCKETDYNE DIVISION Post-Remedia	HNOLOGY ENGINEER U.S. DEPARTMENT OF ENERGY ON, ROCKWELL INTERNATIONAL diation Soil Samp	ING CENTER	No. <u>886-ZR-0009</u> Rev. <u>A</u> Page <u>1</u> of <u>59</u> Orig. Date <u>3/25/96</u> Rev. Date <u>1/13/97</u>
	for the Forr	ner Soaium Dispo - APPR	OVALS -	
	Originator ETEC Proj. Mgr. ETEC Prog. Mgr.	R. J. Tuttle P. S. Olson M. E. Lee	ETEC QA Enviro Rem Enviro Rem	S. E. Reeder P. D. Rutherford B. M. Oliver
REV. LTR.		Original signatures on file REVISION りんしが	26016	APPROVAL/DATE
A	Added Appendix B	- Interpretation of Results		R. J. Tuttle Place 18/97 P. S. Olson Blann 1/30/97 M. E. Lee Haufs/97 S. E. Reeder Vanhiger P. D. Rutherford Hue Lycon J. G. Barnes
				OFFICIAL COPY APR 08 '97 NOTICE: WILL NOT BE UPDATED

CONTENTS

Page

1. INTRODUCTION	3
2. SUMMARY AND CONCLUSIONS	3
3. SAMPLING	4
4. ANALYSIS	5
5. RESULTS	5
6. INTERPRETATION	5
7. QUALITY ASSURANCE	7
8. DOCUMENTATION	9
9. REFERENCES	9
10. APPENDIX A	.51
11. APPENDIX B- INTERPRETATION OF RESULTS	. 57

1. Introduction

The Former Sodium Disposal Facility (T886) at the Rockwell International Santa Susana Field Laboratory was used primarily for cleaning sodium heat transfer system components (pipes, valves, tanks) and for disposal of scrap sodium by reaction with water. However, during its use, small quantities of a variety of other materials were disposed of there, including radioactively contaminated components and material. As a result, small amounts of radioactive contamination became dispersed in the T886 pool, and in the lower basin and adjacent areas. The pool and related structure, and all the soil in the lower basin, were removed during a remediation project lasting from 1991 through 1994. At the completion of the radiological remediation, a final gamma radiation survey and a sampling of soil and rock were performed to demonstrate the satisfactory removal of the radioactive contamination. The gamma radiation survey was summarized in ETEC document number 886-ZR-0007 (Ref. 1).

Following removal of all potentially radioactively contaminated soil from the former Sodium Disposal Facility, the soil and rock samples were independently taken by ICF-Kaiser Environment and Energy Group. These samples were analyzed by Oak Ridge Institute for Science and Education (ORISE), and the results reported to the Radiation Protection and Health Physics Services Group (now Environmental Remediation) at Rocketdyne. This report summarizes those results and presents comparisons with local background values.

2. Summary and Conclusions

To confirm the satisfactory radiological remediation of this area, a sampling and analysis plan was developed by the Environment and Energy Group of ICF Kaiser Engineers (Ref. 2). ICF Kaiser personnel collected 63 soil samples and 15 rock samples for analysis according to this plan. Figure 1 shows the layout of the Former Sodium Disposal Facility and its subdivision into grids to provide a basis for the sampling. (Figures and Tables follow the text of this report.)

The ICF Kaiser samples were sent to ORISE where they were individually analyzed by gamma spectrometry, and analyzed by various radiochemistry procedures in composited groups. Sample material is available for confirmatory analyses by the State of California Department of Health Services - Radiologic Health Branch.

The gamma spectrometry showed low concentrations of Cs-137, the primary radioactive contaminant at the Former Sodium Disposal Facility, and normal amounts of natural K-40, and the thorium and uranium decay chains. The Cs-137 concentrations are similar to, though in some instances somewhat greater than, local background surface soil concentrations due to global fallout from nuclear weapon testing. The radiochemistry showed low concentrations of Sr-90, similar to the Cs-137 concentrations, and somewhat higher than local background surface soil concentrations. Radiochemistry with alpha spectrometry for thorium and uranium showed concentrations that agreed well with values expected for naturally occurring minerals, and in agreement with the daughter activities found by gamma spectrometry. This comparison shows that the thorium and uranium activities are a natural occurrence.

Gamma spectrometry of the rock samples showed natural concentrations of K-40 and the thorium and uranium decay chains, in agreement with the concentrations found in the soil, but no Cs-137. Radiochemistry showed natural equilibrium in the thorium chain but some

disequilibrium in the uranium chain, with the Th-230 activity (and its daughters) exceeding that expected from the parent uranium activities. This is commonly found in geological materials.

Radiochemistry with alpha spectrometry for plutonium (Pu-238, Pu-239/240) showed no concentrations in soil or in rock that differed statistically from zero.

The small amounts of Sr-90 and Cs-137, which may represent residue from the contaminated soil that was removed, are well below proposed guidelines for residual radioactivity in soil, for release without radiological restrictions (Ref. 3). No other indications of possible remaining contamination were found.

No samples indicated the presence of significant levels of radioactive contaminants. All results were well below proposed acceptable limits for radioactive contamination in soil. The results of this sampling and analysis program confirm that the area is acceptable for release for use without radiological restriction.

3. Sampling

For the purpose of providing a uniform basis for sampling the Former Sodium Disposal Facility area, four regions were established, relating to the history of the facility. These regions were subdivided into 50-foot square grids, and sample locations were selected within the grids by use of random numbers.

Surface soil samples were collected by hand, with a trowel, providing somewhat more than 1 kg of soil for each sample. Soil samples were placed in jars for transport to the ORISE laboratory. Subsurface samples were collected at a depth of about 4 feet below the surface by use of a hand auger. Bedrock samples were broken after core-drilling from the local rock.

Sample locations were identified, relative to the grid shown in Figure 1, by use of a 12-character code. The first digit indicates the region (1-4), the next 2 digits indicate the block number for that region, the next 2 digits give the distance in feet to the north from the southeast corner of the block, the next 2 digits give the distance in feet to the west from the same corner, and the next digit (0 or 1) indicates a surface sample (0) or a 4-foot subsurface sample (1). The type of sample is indicated by S for soil and B for bedrock. The samples taken for radionuclide analysis were further identified by RN. Scheduled samples, as distinct from QC samples, were identified by a final 0.

After the initial gamma spectrometry had been reported for all the individual samples, portions of selected samples were grouped together at the ORISE laboratory to form composite samples for the radiochemistry analyses. This was done to use the analytical funding as effectively as possible, since gamma spectrometry is relatively inexpensive, compared to analyses requiring chemical separation.

The composite groups were selected by first associating the gamma spectrometry results for each sample with the region, and then combining nearby samples with similar radiological characteristics, as determined from the gamma spectrometry. Some samples were kept separate for individual analysis. The sample groupings are shown on the layout map of the area in Figure 2.

4. Analysis

Samples were analyzed at ORISE in Oak Ridge, Tennessee, under contract to DOE/OAK. The gamma spectrometry used a high-purity germanium detector with a computer based multichannel analyzer. The standard Canberra software for interpretation of photopeaks was used. The uncertainties reported with the results are determined by the computer processing and are specified at the 2-sigma level.

Radiochemistry was done to quantify Sr-90 and the requested alpha emitters. Chemical separation provides a strontium precipitate, beta counting serves as the determination of the activity. Similarly chemical separation provides separate deposits for thorium, uranium, and plutonium. Alpha spectrometry is used to determine the individual isotopic activity for each element. Uncertainties for the radiochemical results are also reported at the 2-sigma level.

5. Results

The results of the ORISE analyses are listed in Tables 1A, 1B, and 1C. These tables provide the sample location code number, as described above, and the activity concentration and 2-sigma uncertainty, in pCi/g. All scheduled samples are included here, with the results for 3 field duplicate soil samples. Blank entries in the uncertainty (unc) column indicate that the activity for that radionuclide was not detected, and so one-half of the Minimum Detectable Activity (MDA) has been entered as the result for that sample. Table 1A lists all sample results obtained by gamma spectrometry. Table 1B lists the results obtained by radiochemistry. Table 1C lists the MDA values for all the radionuclide analyses that were performed.

The groups of individual samples that were composited for the radiochemistry analyses are listed in Table 2, with the associated Lab ID, Lab composite ID, and the designated composite number.

6. Interpretation

Individual results from the analysis of soil and rock are presented as cumulative probability plots in Figures 3a through 3q. In these plots, measured values are shown with a small or large error bar associated with the data symbol. The error bars indicate the 2-sigma uncertainty estimated for the result. Non-detected results, set to one-half the MDA, are shown without an error bar. In a cumulative probability plot, data with a normal (or Gaussian) distribution fall along a straight line. The plot shows, as a diagonal line, the theoretical Gaussian distribution calculated from the arithmetic mean and standard deviation of the dataset.

Most of the radionuclides detected show a distribution that is close to Gaussian. The distribution for Cs-137 in soil (Figure 3b) shows several values that are somewhat higher than expected, but not entirely outside the range of environmental fallout activity in surface soil. Only 3 samples, at 0.57, 0.30, and 0.30 pCi/g, are above the upper 95% bound for local background of 0.27 pCi/g. The highest value, 0.57, corresponded to the sample with the highest Sr-90 result. All results are well below the proposed SSFL site limit for Cs-137 in soil, 8.6 pCi/g (Ref. 3). This limit was determined by a pathways analysis using the DOE code RESRAD Version 5.61, for a maximum annual dose of 10 mrem in a residential setting.

The results for Sr-90 in soil (Figure 3i) also show some elevated values. Of the 19 composite sample analyses performed, 14 were reported at levels that were below the MDA. Only 4 composite soil samples, at 0.57, 0.49, 0.40, and 0.26 pCi/g, are above MDA for this analysis. The

highest value, 0.57, corresponded to the sample with the highest Cs-137 result, also 0.57 pCi/g. One composite rock sample, at 0.28 pCi/g, was above the MDA of 0.27. All results are well below the proposed SSFL site limit for Sr-90 in soil, 24 pCi/g. This limit was determined by the same pathways analysis.

The distribution for U-235, in both soil and rock (Figure 3h), as determined by gamma spectrometry, is distorted by the many non-detected values. There is no indication of contamination in these results, and higher quality values determined by radiochemistry with alpha spectrometry (Figure 3n) confirm this conclusion.

The analyses for plutonium, both Pu-238 and Pu-239 (including Pu-240), show no results that indicate contamination. While the analyses for Pu-238, which is found in global fallout, showed 6 (out of 19) results above the MDA, none of the analyses for Pu-239, a suspect SSFL contaminant, were above the MDA. The reported values result from random variability in the background of the analyses.

The determination of background distributions of the radionuclides reported here, for soil, is based on two sets of data covering large local areas. One collection is from the McLaren-Hart Multimedia Study of the Brandeis-Bardin Institute and Santa Monica Mountains Conservancy properties near SSFL (Ref. 4), as supplemented by some recent samples collected offsite by Rocketdyne. (This set is identified as "... in Background Soil".) The other consists of results from the Rocketdyne Area IV Radiological Characterization Study (Ref. 3), using only those results that are clearly unaffected by contamination. (This set is identified as "... in Area IV Soil (background)".) These measured background distributions, representative of the local area, are shown in Figures 4a through 4k.

For comparison, the average value and 2-sigma uncertainty for each radionuclide measured in soil from the Former Sodium Disposal Facility are listed below, with the corresponding values from the two background sets.

Radionuclide	Former Sodium	Background	Area IV
	Disposal Facility	Soil	Soil
K-40	21.7 ± 3.14	21.9 ± 3.44	19.0 ± 4.72
Sr-90	0.13 ± 0.29	0.047 ± 0.080	0.040 ± 0.080
Cs-137	0.069 ± 0.189	0.103 ± 0.166	0.079 ± 0.141
Th-228	1.43 ± 0.35	0.98 ± 0.95	1.00 ± 0.53
Th-230	1.21 ± 0.26	0.28 ± 0.57	0.82 ± 0.46
Th-232	1.34 ± 0.35	0.37 ± 0.83	0.99 ± 0.51
U-234	0.96 ± 0.27	0.35 ± 0.84	0.77 ± 0.35
U-235	0.044 ± 0.024	0.018 ± 0.045	0.042 ± 0.022
U-238	0.95 ± 0.26	0.36 ± 0.79	0.78 ± 0.33
Pu-238	0.027 ± 0.040	*****	0.0006 ± 0.0052
Pu-239	0.009 ± 0.043	****	0.003 ± 0.007

While there are some variations from background, some above, some below, the averages look quite similar.

Further evidence that the thorium and uranium activity detected in the Former Sodium Disposal Facility soil is natural, can be seen in comparisons of the daughter activities. Thorium and uranium are naturally occurring radioactive elements that slowly decay to stable isotopes of lead. The sequence of radionuclides in the major decay chains is shown below, with those radionuclides that were detected by the present analyses shown in boldface:

thorium	uranium	chain
chain	(U-238)	(U-235)
Th-232	U-238	U-235
Ra-228	Th-234	Th-231
Ac-228	Pa-234	Pa-231
Th-228	U-234	Ac-227
Ra-224	Th-230	Th-227
Rn-220	Ra-226	Ra-223
Po-216	Rn-222	Rn-219
Pb-212	Po-218	Po-215
Bi-212	РЬ-214	Pb-211
Po-212	Bi-214	Bi-211
Pb-208 (stable)	Po-214	Po-211
	Pb-210	Pb-207 (stable)
	Bi-210	
	Po-210	
	Pb-206 (stable)	

In each chain, one longer-lived radionuclide acts as a "bottleneck" to the development of equilibrium activity after chemical purification of the element. Ra-228, with a half-life of 5.76 years, delays full development of equilibrium activity in the thorium chain by about 25 years. Th-230, with a half-life of 75,000 years, delays development of the uranium chain by 300,000 years. Several of these daughters (and the U-235 "cousin" to U-238) were measured in the soil from the Former Sodium Disposal Facility. The activities detected are shown in Figure 5. The straight diagonal lines show the theoretical variation of the daughter activity with the parent. The good agreement of the measured values with the theoretical variation shows that these activities are natural.

7. Quality Assurance

Several sets of measurements were done to provide quality control checks on the analytical procedure. These measurements were directed towards demonstrating the precision and accuracy of the analytical results. The QC samples consisted of field duplicates (which were reported in the main section of this report, but are also discussed here), laboratory replicate analyses, matrix spikes (laboratory control samples), and blind spikes. The Data Quality Objectives are considered to be satisfied if the observed differences are less than 3 times the estimated standard deviation of the difference (Ref. 4). (Standard laboratory reporting provides the uncertainties (unc) as 2 times the estimated standard deviation of the result. For the QC comparisons, the derived uncertainty must be multiplied by 1.5 to obtain the 3-sigma value.)

Duplicate soil samples were made from 3 original samples: 21346220, 30113170, and 42455090. The original samples were individually mixed, and "split" samples were taken from

the bulk material. These samples then proceeded through the balance of the sampling and analysis as though they were independent samples. The results are compared in Table 3. These results show good agreement, with the differences between separate paired soil samples generally being less than the estimated uncertainty. Of 31 comparisons, 5 failed to satisfy the 3-sigma test. Of these, 4 were among the alpha spectrometry analyses, which are sensitive to non-uniformity in the soil.

Laboratory duplicate analyses were done extensively for the gamma spectrometry, less so for the more complicated radiochemistry analyses. These results are shown in Table 4. The comparison is made by calculating the relative difference between the results of the two analyses, and the estimated uncertainty for this relative difference. For a perfect comparison, the relative difference would be zero. Because of random variations, some deviations from zero will occur. These should generally be less than the uncertainty. Of 79 comparisons, 15 failed the 3-sigma test. Two of these failures were for uranium in one of the blind laboratory spike samples, and may have resulted from lack of homogeneity.

Laboratory matrix spikes were prepared for gamma spectrometry by adding a calibrated solution of Cs-137 to selected soil samples. These results are shown as the first 9 entries in Table 5A. A "recovery" value of 1.000 indicates perfect detection of the added spike activity. Of the 9 ORISE-spiked samples, all results are within the required range of 3 times the estimated standard deviation of the difference.

Blind spikes were obtained through a commercial laboratory, by adding calibrated solutions of Sr-90, Cs-137, Th, U, and Pu-239 to 3 selected soil samples. These results are shown as the last 3 entries for Table 5A and all the entries in Table 5B. (The calibration sheets for these blind spikes are presented in the Appendix.) Gamma spectrometry showed the required agreement for 2 of the 3 comparisons. The radiochemistry showed disagreement for 14 of the 32 comparisons. In some of these cases, the differences may reflect the difficulty in making a bulk sample that is adequately homogeneous on the small scale of the analytical aliquots. (Gamma spectrometry measures the radioactivity in a large sample, 600-1000 grams, averaging throughout its volume, while the radiochemical procedures use relatively small aliquots, 3-5 grams, for processing and analysis.)

The results of the QC tests are summarized below as percentages of comparisons satisfying the 3-sigma test.

	Field Duplicates	Lab Duplicates	Matrix Spikes	Blind Spikes	Aggregate Total
K-40	¹ 3/3	^ 9/10	-		12/13
Sr-90	1/1	1/1		2/4	4/6
Cs-137	3/3	10/10	9/9	2/3	24/25
Pb-212	3/3	6/10			9/13
Pb-214	3/3	3/10			6/13
Bi-214	3/3	10/10			13/13
Ac-228	2/3	10/10			12/13
Th-228	0/1	1/1	***	2/4	3/6
Th-230	1/3	1/1			2/4
Th-232	0/1	1/1		2/4	3/6
Th-234	3/3	9/10			12/13
U-234	0/1	0/1		0/4	0/6
U-235	1/1	1/1		4/4	4/6
U-238	0/1	0/1		1/4	1/6
Pu-238	1/1	1/1		4/4	6/6
Pu-239	1/1	1/1		3/4	5/6

The overall score for these comparisons is 74%.

8. Documentation

Backup documentation for this sampling and analysis project is stored in the Former Sodium Disposal Facility (T886) decommissioning file.

9. References

- 1. "Post-Remediation Ambient Gamma Radiological Survey of the Former Sodium Disposal Facility", 886-ZR-0007, F. C. Dahl, 12/13/94.
- "Sampling and Analysis Workplan -- Former Sodium Disposal Facility, Santa Susana Field Laboratory", SSFL 95-01, ICF Kaiser Engineers, Environment and Energy Group, June 29, 1995.
- 3. "Proposed Sitewide Release Criteria for Remediation of facilities at the SSFL", N001SRR140127, B. M. Oliver and R. J. Tuttle, 3/11/96.
- 4. "Area IV Radiological Characterization Survey, Draft Final Report", Volume 1, A4CM-ZR-0011, P. D. Rutherford, March 15, 1996.
- "Multi-Media Sampling Report for the Brandeis-Bardin Institute and the Santa Monica Mountains Conservancy", McLaren/Hart Environmental Engineering Corporation, March 10, 1993.

Figure 1. Layout of Former Sodium Disposal Facility for sampling.

Figure 2. Locations of samples grouped for composite analysis.

Figure 3b. Distribution of Cs-137 in Soil and Rock at the Former Sodium Disposal Facility.

Figure 3c. Distribution of Pb-212 in Soil and Rock at the Former Sodium Disposal Facility.

Figure 3d. Distribution of Pb-214 in Soil and Rock at the Former Sodium Disposal Facility.

C:\CUMPLOT\T886R05.CMP

4

02-15-96

Figure 3e. Distribution of Bi-214 in Soil and Rock at the Former Sodium Disposal Facility.

Figure 3f. Distribution of Ac-228 in Soil and Rock at the Former Sodium Disposal Facility.

Soaium Dis

Figure 3h. Distribution of U-235 in Soil and Rock at the Former Sodium Disposal Facility.

Figure 3i. Distribution of Sr-90 in Soil and Rock at the Former Sodium Disposal Facility.

Figure 3k. Distribution of Th-230 in Soil and Rock at the Former Sodium Disposal Facility.

Figure 31. Distribution of Th-232 in Soil and Rock at the Former Sodium Disposal Facility.

Figure 3n. Distribution of U-235 in Soil and Rock at the Former Sodium Disposal Facility.

Figure 30. Distribution of U-238 in Soil and Rock at the Former Sodium Disposal Facility.

Figure 3q. Distribution of Pu-239 in Soil and Rock at the Former Sodium Disposal Facility.

Figure 4a. Distribution of K-40 in Background Soil.

C:\CUMPLOT\BKGS02.CMP

02-16-96

Figure 4b. Distribution of Sr-90 in Background Soil.

Figure 4c. Distribution of Cs-137 in Background Soil.

Figure 4d. Distribution of Th-228 in Background Soil.

Figure 4e. Distribution of Th-230 in Background Soil.

Figure 4f. Distribution of Th-232 in Background Soil.

Figure 4g. Distribution of U-234 in Background Soil.

Figure 4h. Distribution of U-235 in Background Soil.

Figure 4i. Distribution of U-238 in Background Soil.

ų

Figure 4j. Distribution of Pu-238 in Background Soil.

Figure 4k. Distribution of Pu-239 in Background Soil.

Comparison of Uranium Chain Activities for T886 Soil

Figure 5. Decay chain daughter áctivities for soil from the Former Sodium Disposal Facility

886-ZR-0009

Page 41

Table 1A. Results of gamma spectrometry analyses of soil and rock samples.

.....

- - -

-	Sample Location	K40		cs	137	PB	212	PB	214	BI	214	AC	228	TH	234	U2	35
	BOIL	pCi/a	unc	pCi/g	NDC	nCi/a	UDC	pCi/a	unc	pCi/a	unc	pCi/g	unc	pCi/g	unc	pCi/a	unc
	1013033158NO	19.66	0.58	0 009	unc	1 377	0.035	0 769	0 047	0.885	0.149	1.524	0.107	0.963	0.319	0.005	
	1024622058NO	21 43	0 61	0 021	0.016	1 450	0 037	0 878	0.045	1.017	0.211	1.416	0.103	0.966	0.320	0.062	0.010
	10346220SPN0	21 37	0 62	0 052	0.014	1 301	0.030	0 763	0.052	0 770	0 241	1 383	0 111	0 800	0.325	0 007	0.010
	10430331 SPN0	10 40	0.65	0.052	0.014	1 604	0.036	0.000	0.002	0 801	0 160	1.501	0 105	0 995	0 317	0 062	0 000
	105203316000	21 62	0.55	0.010		1.504	0.030	1 060	0.048	1 002	0.100	1 662	0.100	1 000	0.201	0.002	0.000
	105303315KN0	21.55	0.50	0.010		1.048	0.037	1.009	0.048	1.003	0.209	1.002	0.099	1.002	0.291	0.073	0.009
	105303315KN2	22.41	0.61	0.010		1.439	0.036	0.890	0.046	0.951	0.152	1.420	0.098	0.997	0.313	0.006	
	201303515KNU	17.85	0.52	0.009		1.166	0.032	0.793	0.043	0.939	0.16/	1.429	0.091	1.416	0.361	0.005	
	20246220SRN0	21.33	0.62	0.047	0.028	1.241	0.036	0.860	0.049	1.009	0.220	1.480	0.113	1.022	0.319	0.007	
	203463105RN0	23.59	0.58	0.078	0.020	1.365	0.034	0.890	0.047	0.851	0.152	1.427	0.098	0.804	0.326	0.062	0.009
	20446370SRN0	21.40	0.54	0.073	0.018	1.203	0.031	0.765	0.040	0.889	0.172	1.113	0.097	0.788	0.303	0.005	
	20646220SRN0	23.64	0.66	0.034	0.015	1.564	0.040	1.027	0,056	1.027	0.207	1.609	0.108	1.291	0.415	0.073	0.022
~	20730331SRN0	19.27	0.49	0.008		1.381	0.031	0.845	0.039	0.778	0.147	1.429	0.093	0.678	0.247	0.005	
	20946220SRN0	22.37	0.58	0.044	0.014	1.428	0.035	1.128	0.056	1.017	0.181	1.362	0.095	1.035	0.369	0.061	0.009
-	210303315RN0	20.50	0.52	0.009		1.532	0.034	0.901	0.045	0.925	0.166	1.530	0.095	0.869	0.289	0.054	0.017
~	211203315RN0	22.11	0.60	0.012		1.277	0.035	0.790	0.047	0.718	0.183	1.316	0.104	1.052	0.284	0.057	0.009
~	21230331SRN0	21.54	0.70	0.014		1.581	0.044	0.977	0.062	1.215	0.216	1.616	0.137	1.168	0.402	0.066	0.021
	21346220SRN0	22.59	0.61	0.062	0.018	1.467	0.037	1.026	0.050	0.992	0.167	1.553	0.116	1.037	0.316	0.006	
	21346220SRN2	23.04	0.64	0.077	0.018	1.507	0.038	1.058	0.056	0.956	0.210	1.623	0.116	1.234	0.428	0.006	
	21646220SRN0	22.83	0.59	0.055	0.016	1.439	0.035	1.004	0.050	1.053	0.212	1.547	0.104	0.838	0.306	0.063	0.009
i	217362205RN0	24.80	0.71	0.014		1.462	0.042	0.874	0.059	1.052	0.249	1.467	0.124	1.314	0.388	0.065	0.011
	21946220SRN0	22.07	0.66	0.096	0.023	1.541	0.042	1.029	0.053	1.067	0.232	1.613	0.114	1.316	0.394	0.064	0.010
	220462205RN0	21.65	0.55	0.108	0.021	1.314	0.032	0.922	0.047	0.883	0.213	1.405	0.088	1.110	0.323	0.066	0.009
4	22146220SRN0	23.38	0.62	0.010		1.380	0.036	0.984	0.051	0.820	0.212	1.486	0.101	0.205		0.055	0.009
	222362205RN0	26.17	0.72	0.026	0.023	1.578	0.043	1.116	0.056	1.060	0.219	1.572	0.124	1.321	0.346	0.087	0.014
	301131705RN0	20.58	0.65	0.014		1.614	0.043	1.039	0.055	1.226	0.212	1.641	0.125	1.549	0.397	0.008	
i	30113170SRN2	21.42	0.68	C.015		1.648	0.044	1.064	0.061	0.988	0.206	1.631	0.119	1.364	0.375	0.008	
	301230805RN0	23.56	0.59	0.229	0.024	1.582	0.036	1.043	0.050	1.154	0.185	1.558	0.108	1.189	0.344	0.067	0.009
	30123380SRN0	21.79	0.54	0.055	0.014	1.347	0.033	0.867	0.046	0.738	0.157	1.305	0.085	1.195	0.348	0.054	0.008
	301390405RN0	21.50	0.64	0.037	0.018	1.645	0.041	1.086	0.056	1.204	0.183	1.671	0.110	1.492	0.392	0.006	
	3021916058N0	21.68	0 63	0 011	0.010	1 705	0 042	1 209	0 057	1 418	0.199	1.636	0 118	1.173	0.354	0 082	0.010
	303090405RN0	20.90	0.54	0 567	0 025	1 314	0 032	0 905	0 047	1 071	0 176	1 342	0.086	1.088	0 284	0 059	0.008
	303151605PN0	22 33	0.57	6 047	0.019	1 469	0.035	1 010	0 047	1 041	0 210	1 504	0 107	1 371	0 336	0 006	
	303451105PN0	21 34	0.50	0.047	0.010	1 277	0.035	0 855	0.047	1.011	0.210	1 257	0.107	1 250	0 403	0.000	
	303431105RN0	10 60	0.56	0.003	0.010	1.5//	0.037	1 022	0.050	0.000	0.152	1 710	0.033	1.250	0.403	0.007	
	304131 03ANO	20 67	0.55	0.012	0.022	1 252	0.037	0 922	0.054	0.310	0.152	1 360	0.104	1 284	0 416	0 007	
	1010208005RN0	20.07	0.56	0.013		1.352	0.03/	0.922	0.053	0.709	0.103	1.360	0.092	1 200	0.410	0.007	1
	401020805RN0	22.58	0.59	0.012		1.089	0.034	0.753	0.050	0.001	0.200	1.184	0.094	1.368	0.339	0.007	A 999
	402080805RN0	24.18	0.55	0.009		1.201	0.032	0.818	0.044	0.806	0.164	1.101	0.077	0.962	0.310	0.053	0.009
	403100805RN0	22.80	0.59	0.010		0.827	0.030	0.515	0.039	0.528	0.15/	0.8//	0.080	0.906	0.299	0.008	i
	404140805RN0	20.85	0.58	0.036	0.016	1.06/	0.033	0.753	0.04/	0.823	0.186	1.1/9	0.101	1.009	0.296	0.007	
	40518080SRN0	24.71	0.59	0.072	0.015	1.537	0.037	1.296	0.054	1.297	0.195	1.475	0.092	1.536	0.334	0.077	0.008
	40620580SRN0	21.63	0.54	0.041	0.013	1.403	0.033	1.022	0.049	1.036	0.167	1.398	0.094	2.413	0.365	0.087	0.009
	40728080SRN0	24.25	0.53	0.020	0.013	0.826	0.025	0.631	0.036	0.715	0.185	0.841	0.073	0.773	0.262	0.038	0.016
1	40832080SRN0	21.05	0.49	0.022	0.012	0.993	0.026	0.803	0.037	0.737	0.133	1.050	0.072	0.904	0.246	0.049	0.006
1	40933580SRN0	20.63	0.60	0.062	0.019	1.643	0.040	1.042	0.053	1.073	0.191	1.636	0.113	1.480	0.343	0.079	0.009
	41038580SRN0	22.58	0.55	0.108	0.015	1.460	0.035	1.010	0.045	0.957	0.151	1.391	0.091	1.237	0.345	0.062	0.009
	41047580SRN0	23.86	0.56	0.038	0.012	1.069	0.030	0.786	0.038	0.733	0.153	1.035	0.090	0.986	0.295	0.046	0.008
	410490805RN0	20.22	0.60	0.205	0.024	1.518	0.040	1.052	0.059	1.043	0.177	1.518	0.103	1.638	0.339	0.062	0.010
	41102090SRN0	22.97	0.53	0.009]	1.579	0.036	1.095	0.044	1.128	0.211	1.495	0.095	1.051	0.313	0.006	
1	41206390SRN0	20.43	0.52	0.008	÷	1.279	0.031	0.903	0.043	0.842	0.184	1.443	0.097	1.074	0.275	0.060	0.008
	41310090SRN0	18.86	0.59	0.209	0.019	1.274	0.036	0.892	0.055	0.987	0.220	1.381	0.112	1.203	0.366	0.066	0.009
	41414090SRN0	20+13	0.51	0.11B	0.023	1.301	0.032	0.925	0.047	0.894	0.161	1.301	0.088	1.123	0.336	0.052	0.008
- 1	414300905RN0	19.89	0.51	0.216	0.021	1.249	0.030	0.934	0.040	0.819	0.158	1.316	0.083	1.384	0.295	0.061	0.008
	41518090SRN0	20.80	0.54	0.297	0.020	1.253	0.032	0.902	0.045	0.870	0.195	1.270	0.089	1.117	0.317	0.005	- 1
_ {	41622090SRN0	19.07	0.50	0.167	0.017	1.150	0.030	0.884	0.044	0.938	0.201	1.232	0.086	1.082	0.268	0.005	
1	41726090SRN0	20.36	0.53	0.297	0.022	1.199	0.030	0.880	0.046	1.020	0.167	1.138	0.097	1.020	0.248	0.005	
	419340905RN0	22.49	0.57	0.117	0.019	1.435	0.035	1.029	0.050	1.177	0.189	1.370	0.095	1.763	0.427	0.006	
	420380905RN0	21.65	0.54	0.008		1.497	0.036	1.059	0.051	0.993	0.190	1.368	0.090	1.451	0.346	0.059	0.010
	42142090SRN0	21.39	0.59	0.042	0.015	1.199	0.034	0.785	0.050	0.899	0.231	1.242	0.093	0.903	0.326	0.056	0.009
	42246090SBN0	20.21	0.58	0.012		1.393	0.036	0.882	0.051	0.908	0.208	1.335	0.097	1.035	0.319	0.007	- 1
- (42351990SRN0	20.74	0.54	0.097	0.019	1.426	0.033	0.926	0.044	0.906	0.192	1.453	0.093	1.215	0.353	0.005	1
	424550908RN2	22.52	0.54	0.017	0.012	0.907	0.029	0.413	0.038	0.612	0.158	0.898	0.077	0.514	0.252	0.005	
1	42455090SRNO	22.18	0.55	0.023	0.014	0.945	0.030	0.468	0.039	0.503	0.158	0.915	0.081	0.704	0.281	0.005	
	42559090SRN0	21.53	0.52	0.072	0.016	1.078	0.028	0.732	0.039	0.645	0.155	1.142	0.082	0.701	0.231	0.048	0.006
	SOIL	KA	0	CSI	37	PR	12	PB2	14	BI2	214	AC2	28	TH2	34	U2	35
		pCi/n	unc	pCi/c	UNC	pCi/c	unc	pCi/a	unc								
- 1	number	63		63		63		63		63		63		63		63	
	maximum	26.17		0.567		1.705	1	1.296		1.418		1.718		2.413	1	0.087	ļ
- (mean	21.68	3.14	0.069	0.189	1.360	0.420	0.913	0.321	0.934	0.353	1.385	0.418	1.129	0.642	0.037	0.059
	minimum	17.85		0.008		0.826		0.413		0.503]	0.841		0.205		0.005	

Sample Location	K40		CS137		PB212		PB214		BI214		AC228 -		TH234		U2	35
BEDROCK	pCi/g unc		pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc
30511230BRN0	22.39	0.55	0.009		1.374	0.033	0.895	0.048	0.920	0.157	1.392	0.089	1.159	0.343	0.005	
30515270BRN0	20.50	0.58	0.013		1.800	0.042	1.296	0.057	1.225	0.220	1.649	0.112	1.845	0.456	0.008	0.000
30530340BRN0	22.44	0.56	0.008		1.219	0.033	0.937	0.050	0.872	0.196	1.168	0.087	0.672	0.285	0.005	
30540490BRN0	21.20	0.60	0.013		1.822	0.043	1.259	0.055	1.196	0.184	1.663	0.107	1.626	0.432	0.069	0.011
30547080BRN0	21.63	0.54	0.009		1.680	0.037	1.032	0.050	1.054	0.175	1.701	0.105	1.009	0.335	0.005	
30604500BRN0	22.61	0.57	0.009		1.510	0.035	1.081	0.048	1.036	0.158	1.405	0.102	1.247	0.337	0.006	
30630280BRN0	20.04 0.59		0.013		1.725	0.040	1.204	0.057	1.283	0.211	1.668	0.105	1.151	0.315	0.007	
30648280BRN0	22.18 0.53		0.008		1.413	0.034	0.715	0.043	0.833	0.145	1.416	0.099	0.937	0.265	0.005	
30648390BRN0	23.91	0.55	0.008		1.453	0.035	1.207	0.049	1.124	0.155	1.369	0.093	1.157	0.314	0.006	
30724500BRN0	23.12	0.55	0.008		1.204	0.031	0.577	0.039	0.558	0.168	1.109	0.091	0.681	0.326	0.005	
30940300BRN0	22.30	0.54	0.009		1.401	0.033	1.086	0.045	1.078	0.169	1.387	0.087	1.068	0.349	0.056	0.009
30950430BRN0	22.00	0.53	0.009		1.810	0.038	1.364	0.049	1.249	0.162	1.634	0.101	1.341	0.362	0.074	0.009
31027430BRN0	22.55	0.56	0.010		2.361	0.044	1.781	0.059	1.768	0.189	2.184	0.111	1.621	0.413	0.092	0.011
31044050BRN0	23.31	0.54	0.008		1.488	0.035	1.087	0.046	1.044	0.176	1.477	0.104	1.124	0.311	0.005	
31111220BRN0	21.10	0.60	0.013		2.068	0.044	1.493	0.058	1.532	0.227	2.082	0.116	1.387	0.343	0.009	
BEDROCK	K4	0	CS1	.37	PB2	212	PB2	214	BI	214	AC	228	TH	234	U2	35
	pCi/g	unc	pCi/g	UDC	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc
number	15		15		15		15		15		15		15		15	
maximum	23.91		0.013		2.361		1.781		1.768		2.184		1.845		0.092	
mean	22.09	2.09	0.010	0.004	1.622	0.636	1.134	0.598	1.118	0.578	1.554	0.590	1.202	0.658	0.024	0.063
minimum	20.04	_	0.008		1.204		0.577		0.558		1.109		0.672		0.005	

ť

.

÷

٠,

- -

886-ZR-0009

Page 43

Table 1B. Results of radiochemistry analyses of soil and rock samples.

.

	Sample Location	SR	90	TH	228	тн	230	тн	232	U2	234	U 2	235	U2	38	PU:	238	PU	239
1	SOIL	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc								
1	101303315RN0	0.402	0.189	1.506	0.186	1.257	0.163	1.420	0.178	0.841	0.098	0.032	0.021	0.923	0.103	0.013	0.033	-0.01	0.027
	10246220SRN0	0.402	0.189	1.506	0.186	1.257	0.163	1.420	0.178	0.841	0.098	0.032	0.021	0.923	0.103	0.013	0.033	-0.01	0.027
	10346220SRN0	0.402	0.189	1.506	0.186	1.257	0.163	1.420	Ò.17B	0.841	0.098	0.032	0.021	0.923	0.103	0.013	0.033	-0.01	0.027
	10430331SRN0	0.402	0.189	1.506	0.186	1.257	0.163	1.420	0.178	0.841	0.098	0.032	0.021	0.923	0.103	0.013	0.033	-0.01	0.027
	10530331SRN0	0.402	0.189	1.506	0.186	1.257	0.163	1.420	0.178	0.841	0.098	0.032	0.021	0.923	0.103	0.013	0.033	-0.01	0.027
	10530331SRN2	0.402	0.189	1.506	0.186	1.257	0.163	1.420	0.178	0.841	0.098	0.032	0.021	0.923	0.103	0.013	0.033	-0.01	0.027
	201303315RN0	0.051	0.140	1.380	0.184	1.149	0.162	1.222	0.166	0.903	0.100	0.028	0.022	0.815	0.093	0.031	0.029	0.005	0.023
1	20246220SRN0	0.051	0.140	1.380	0.184	1.149	0.162	1.222	0.166	0.903	0.100	0.028	0.022	0.815	0.093	0.031	0.029	0.005	0.023
	20346310SRN0	0.051	0.140	1.380	0.184	1.149	0.162	1.222	0.166	0.903	0.100	0.028	0.022	0.815	0.093	0.031	0.029	0.005	0.023
ł	20446370SRN0	0.051	0.140	1.380	0.184	1.149	0.162	1.222	0.166	0.903	0.100	0.028	0.022	0.815	0.093	0.031	0.029	0.005	0.023
	20646220SRN0	0.051	0.140	1.380	0.184	1.149	0.162	1.222	0.166	0.903	0.100	0.028	0.022	0.815	0.093	0.031	0.029	0.005	0.023
	20730331SRN0	0.051	0.140	1.380	0.184	1.149	0.162	1.222	0.166	0.903	0.100	0.028	0.022	0.815	0.093	0.031	0.029	0.005	0.023
I	20946220SRN0	0.051	0.140	1.380	0.184	1.149	0.162	1.222	0.166	0.903	0.100	0.028	0.022	0.815	0.093	0.031	0.029	0.005	0.023
	21030331SRN0	0.051	0.140	1.380	0.184	1.149	0.162	1.222	0.166	0.903	0.100	0.028	0.022	0.815	0.093	0.031	0.029	0.005	0.023
Í	21120331SRN0	-0.05	0.124	1.549	0.191	1.262	0.164	1.391	0.174	0.915	0.104	0.047	0.023	1.008	0.110	0.022	0.024	-0.01	0.015
ļ	21230331SRN0	0.051	0.140	1.380	0.184	1.149	0.162	1.222	0.166	0.903	0.100	0.028	0.022	0.815	0.093	0.031	0.029	0.005	0.023
ł	21346220SRN0	-0.02	0.130	1.572	0.193	1.272	0.163	1.511	0.186	0.953	0.104	0.061	0.024	0.978	0.106	0.065	0.070	0.054	0.059
l	21346220SRN2	-0.02	0.130	1.572	0.193	1.272	0.163	1.511	0.186	0.953	0.104	0.061	0.024	0.978	0.106	0.065	0.070	0.054	0.059
Į	216462205RN0	0.051	0.140	1.380	0.184	1.149	0.162	1.222	0.166	0.903	0.100	0.028	0.022	0.815	0.093	0.031	0.029	0.005	0.023
ł	21736220SRN0	-0.05	0.124	1.549	0.191	1.262	0.164	1.391	0.174	0.915	0.104	0.047	0.023	1.008	0.110	0.022	0.024	-0.01	0.015
I	21946220SRN0	-0.02	0.130	1.572	0.193	1.272	0.163	1.511	0.186	0.953	0.104	0.061	0.024	0.978	0.106	0.065	0.070	0.054	0.059
I	22046220SRN0	-0.02	0.130	1.572	0.193	1.272	0.163	1.511	0.186	0.953	0.104	0.061	0.024	0.978	0.106	0.065	0.070	0.054	0.059
í	221462205RN0	0.051	0.140	1.380	0.184	1.149	0.162	1.222	0.166	0.903	0.100	0.028	0.022	0.815	0.093	0.031	0.029	0.005	0.023
ł	22236220SRN0	-0.05	0.124	1.549	0.191	1.262	0.164	1.391	0.174	0.915	0.104	0.047	0.023	1.008	0.110	0.022	0.024	-0.01	0.015
İ	30113170SRN0	-0.02	0.130	1.572	0.193	1.272	0.163	1.511	0.186	0.953	0.104	0.061	0.024	0.978	0.106	0.065	0.070	0.054	0.059
I	30113170SRN2	-0.02	0.130	1.572	0.193	1.272	0.163	1.511	0.186	0.953	0.104	0.061	0.024	0.978	0.106	0.065	0.070	0.054	0.059
ļ	30123080SRN0	0.493	0.192	1.473	0.153	1.263	0.135	1.391	0.146	0.893	0.088	0.043	0.017	0.942	0.091	0.013	0.010	0.00	0.008
ł	301233805RN0	-0.02	0.130	1.572	0.193	1.272	0.163	1.511	0.186	0.953	0.104	0.061	0.024	0.97B	0.106	0.065	0.070	0.054	0.059
ł	30139040SRN0	-0.02	0.130	1.572	0.193	1.272	0.163	1.511	0.186	0.953	0.104	0.061	0.024	0.978	0.106	0.065	0.070	0.054	0.059
ļ	30219160SRN0	-0.02	0.130	1.572	0.193	1.272	0.163	1.511	0.186	0.953	0.104	0.061	0.024	0.978	0.106	0.065	0.070	0.054	0.059
ł	30309040SRN0	0.569	0.188	1.512	0.155	1.364	0.142	1.422	0.147	1.059	0.100	0.065	0.021	1.095	0.102	0.000	0.005	0.002	0.004
I	30315160SRN0	-0.02	0.130	1.572	0.193	1.272	0.163	1.511	0.186	0.953	0.104	0.061	0.024	0.978	0.106	0.065	0.070	0.054	0.059
ł	30345110SRN0	-0.02	0.130	1.572	0.193	1.272	0.163	1.511	0.186	0.953	0.104	0.061	0.024	0.978	0.106	0.065	0.070	0.054	0.059
ł	30413170SRN0	0.051	0.140	1.380	0.184	1.149	0.162	1.222	0.166	0.903	0.100	0.028	0.022	0.815	0.093	0.031	0.029	0.005	0.023
I	30427300SRN0	0.051	0.140	1.380	0.184	1.149	0.162	1.222	0.166	0.903	0.100	0.028	0.022	0.815	0.093	0.031	0.029	0.005	0.023
ļ	40102080SRN0	0.188	0.156	1.279	0.141	1.106	0.125	1.230	0.136	1.128	0.100	0.047	0.016	1.037	0.093	0.010	0.010	0.00	0.008
l	40208080SRN0	0.188	0.156	1.279	0.141	1.106	0.125	1.230	0.136	1.128	0.100	0.047	0.016	1.037	0.093	0.010	0.010	0.00	0.008
į	40310080SRN0	0.188	0.156	1.279	0.141	1.106	0.125	1.230	0.136	1.128	0.100	0.047	0.016	1.037	0.093	0.010	0.010	0.00	0.008
I	40414080SRN0	0.188	0.156	1.279	0.141	1.106	0.125	1.230	0.136	1.128	0.100	0.047	0.016	1.037	0.093	0.010	0.010	0.00	0.008
I	40518080SRN0	0.188	0.156	1.279	0.141	1.106	0.125	1.230	0.136	1.128	0.100	0.047	0.016	1.037	0.093	0.010	0.010	0.00	0.008
ļ	40620580SRN0	0.188	0.156	1.279	0.141	1.106	0.125	1.230	0.136	1.128	0.100	0.047	0.016	1.037	0.093	0.010	0.010	0.00	0.008
I	40728080SRN0	0.096	0.168	0.782	0.108	0.718	0.102	0.672	0.097	0.634	0.084	0.031	€ 024	0.664	0.084	0.057	0.031	0.003	0.016
ł	40832080SRN0	0.188	0.156	1.279	0.141	1.106	0.125	1.230	0.136	1.128	0.100	0.047	0.016	1.037	0.093	0.010	0.010	0.00	0.008
l	40933580SRN0	0.086	0.150	1.782	0.213	1.387	0.172	1.667	0.201	1.238	0.106	0.055	0.018	1.174	0.102	0.002	0.011	0.002	0.007
ł	41038580SRN0	0.086	0.150	1.782	0.213	1.387	0.172	1.667	0.201	1.238	0.106	0.055	0.018	1.174	0.102	0.002	0.011	0.002	0.007
1	41047580SRN0	0.086	0.150	1.782	0.213	1.387	0.172	1.667	0.201	1.238	0.106	0.055	0.018	1.174	0.102	0.002	0.011	0.002	0.007
ł	41049080SRN0	0.258	0.164	1.347	0.141	1.066	0.117	1.201	0.128	1.269	0.112	0.056	0.019	1.284	0.113	0.000	0.007	0.000	0.005
l	41102090SRN0	0.004	0.135	1.614	0.634	1.343	0.546	1.356	0.538	1.054	0.098	0.052	0.018	1.079	0.100	0.028	0.017	0.003	0.007
l	41206390SRN0	0.004	0.135	1.614	0.634	1.343	0.546	1.356	0.538	1.054	0.098	0.052	0.018	1.079	0.100	0.028	0.017	0.003	0.007
l	41310090SRN0	0.161	0.145	1.414	0.142	1.184	0.123	1.377	0.139	0.967	0.087	0.049	0.017	1.019	0.091	0.017	0.011	800.0	0.010
I	41414090SRN0	0.151	0.145	1.414	0.142	1.184	0.123	1.377	0.139	0.967	0.087	0.049	0.017	1.019	0.091	0.017	0.011	0.008	0.010
ļ	41430090SRN0	0.161	0.145	1.414	0.142	1.184	0.123	1.377	0.139	0.967	0.087	0.049	0.017	1.019	0.091	0.017	0.011	0.008	0.010
l	41518090SRN0	0.161	0.145	1.414	0.142	1.184	0.123	1.377	0.139	0.967	0.087	0.049	0.017	1.019	0.091	0.017	0.011	0.008	0.010
ł	41622090SRN0	0.161	0.145	1.414	0.142	1.184	0.123	1.377	0.139	0.967	0.087	0.049	0.017	1.019	0.091	0.017	0.011	0.008	0.010
Į	41726090SRN0	0.161	0.145	1.414	0.142	1.184	0.123	1.377	0.139	0.967	0.087	0.049	0.017	1.019	0.091	0.017	0.011	0.008	0.010
ł	41934090SRN0	0.161	0.145	1.414	0.142	1.184	0.123	1.377	0.139	0.967	0.087	0.049	0.017	1.019	0.091	0.017	0.011	0.008	0.010
Į	420380905RN0	0.207	0.156	1.307	0.189	1.330	0.191	1.312	0.188	0.942	0.110	0.043	0.022	0.942	0.109	0.019	0.020	-0.01	0.024
ļ	42142090SRN0	0.207	0.156	1.307	0.189	1.330	0.191	1.312	0.188	0.942	0.110	0.043	0.022	0.942	0.109	0.019	0.020	-0.01	0.024
۱	42246090SRN0	0.207	0.156	1.307	0.189	1.330	0.191	1.312	0.188	0.942	0.110	0.043	0.022	0.942	0.109	0.019	0.020	-0.01	0.024
I	42351990SRN0	0.207	0.156	1.307	0.189	1.330	0.191	1.312	0.188	0.942	0.110	0.043	0.022	0.942	0.109	0.019	0.020	-0.01	0.024
I	42455090SRN2	0.166	0.176	0.752	0.106	0.574	0.090	0.682	0.099	0.421	0.065	0.021	0.019	0.401	0.062	0.014	0.017	0.003	0.006
l	42455090SRNO	0.207	0.156	1.307	0.189	1.330	0.191	1.312	0.188	0.942	0.110	0.043	0.022	0.942	0.109	0.019	0.020	-0.01	0.024
ŀ	42559090SRN0	0.207	0.156	1.307	0.189	1.330	0.191	1.312	0.188	0.942	0.110	0.043	0.022	0.942	0.109	0.019	0.020	-0.01	0.024
١	SOIL	SR	90	TH2	28	TH	230	TH2	32	U2	34	U235		U238		PU238		PU239	
ļ		pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pC1/g	unc	pCi/g	unc	pC1/g	unc	pC1/g	unc	pC1/g	unc
1	number	63		63		62		63		63		62		1 204		63		0 054	
l	maximum	0.569		1.782	A	1.387		1 340	0 174	1.209	0 122	0.065	0 013	1.204	0.130	0.000	0.020	0.009	0.022
I	mean	-0 05	0.140	1.129	0.110	0.574	0.134	0.672	0.114	0.421	5.100	0.021	5.515	0.401	5.150	0.000	5.525	-0.01	3.342

886-ZR-0009 Page 44

Sample Location	SR	SR90		TH228		TH230		TH232		U234		U235		U238		PU238		239
BEDROCK	pCi/g unc		pCi/g unc		pCi/g unc		pCi/g	unc	pCi/g	unc	pCi/g	ບກວ	pCi/g	นกต	pCi/g	unc	pCi/g	unc
30511230BRN0	0.211	0.166	1.452	0.155	1.205	0.135	1.361	0.147	0.981	0.110	0.048	0.022	0.885	0.102	0.000	0.000	0.000	0.000
30515270BRN0	0.211	0.166	1.452	0.155	1.205	0.135	1.361	0.147	0.981	0.110	0.048	0.022	0.885	0.102	0.000	0.000	0.000	0.000
30530340BRN0	0.211	0.166	1.452	0.155	1.205	0.135	1.361	0.147	0.981	0.110	0.048	0.022	0.885	0.102	0.000	0.000	0.000	0.000
30540490BRN0	0.211	0.166	1.452	0.155	1.205	0.135	1.361	0.147	0.981	0.110	0.048	0.022	0.885	0.102	0.000	0.000	0.000	0.000
30547080BRN0	0.206	0.159	1.728	0.229	1.236	0.178	1.255	0.178	0.596	0.081	0.036	0.022	0.680	0.089	0.004	0.014	0.00	0.008
30604500BRN0	0.280	0.168	1.555	0.204	1.172	0.165	1.385	0.186	0.681	0.090	0.036	0.019	0.711	0.091	0.008	0.015	0.004	0.013
30630280BRN0	0.280	0.168	1.555	0.204	1.172	0.165	1.385	0.186	0.681	0.090	0.036	0.019	0.711	0.091	0.008	0.015	0.004	0.013
30648280BRN0	0.280	0.168	1.555	0.204	1.172	0.165	1.385	0.186	0.681	0.090	0.036	0.019	0.711	0.091	0.008	0.015	0.004	0.013
30648390BRN0	0.280	0.168	1.555	0.204	1.172	0.165	1.385	0.186	0.681	0.090	0.036	0.019	0.711	0.091	0.008	0.015	0.004	0.013
30724500BRN0	0.227	0.167	1.254	0.139	0.679	0.087	1.246	0.138	0.567	0.063	0.018	0.011	0.638	0.068	0.004	0.006	0.000	0.000
30940300BRN0	0.206	0.159	1.728	0.229	1.236	0.178	1.255	0.178	0.596	0.081	0.036	0.022	0.680	0.088	0.004	0.014	0.00	0.008
30950430BRN0	0.206	0.159	1.728	0.229	1.236	0.178	1.255	0.178	0.596	0.081	0.036	0.022	0.680	0.088	0.004	0.014	0.00	0.008
31027430BRN0	0.280	0.168	1.555	0.204	1.172	0.165	1.385	0.186	0.681	0.090	0.036	0.019	0.711	0.091	0.008	0.015	0.004	0.013
31044050BRN0	0.206	0.159	1.728	0.229	1.236	0.178	1.255	0.178	0.596	0.081	0.036	0.022	0.680	0.088	0.004	0.014	0.00	0.008
31111220BRN0	0.280	0.168	1.555	0.204	1.172	0.165	1.385	0.186	0.681	0.090	0.036	0.019	0.711	0.091	0.008	0.015	0.004	0.013
REDROCK	SR	90	TH2	28	TH	230	TH	232	U2	34	U2	35	U2	38	PU2	238	PU	239
	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc
number	15		15		15		15		15		15		15		15		15	
maximum	0.280		1.728		1.236		1.385		0.981		0.048		0.885		0.008		0.004	
mean	0.238	0.071	1.554	0.269	1.165	0.274	1.334	0.121	0.731	0.323	0.038	0.016	0.745	0.180	0.004	0.006	0.000	0.006
minimum	0.206		1.254		0.679	_	1.246		0.567		0.018		0.638		0.000		0.00	

ų

4

•

4

Table 1C. Minimum Detectable Activity

Sample Location	C060	ZN65	SR90	SB125	CS134	CS137	CE144	EU152	EU154	TH228	TH230	TH232	U234	U235	U238	PU238	PU239
SOIL	pCi/g																
101303315RN0	0.034	0.062	0.256	0.057	0.018	0.023	0.110	0.058	0.100	0.022	0.010	0.004	0.016	0.010	0.003	0.014	0.021
102462205RN0	0.024	0.044	0.256	0.040	0.014	0.018	0.083	0.041	0.072	0.022	0.010	0.004	0.016	0.010	0.003	0.014	0.021
10346220SRN0	0.034	0.060	0.256	0.050	0.018	0.020	0.100	0.052	0.099	0.022	0.010	0.004	0.016	0.010	0.003	0.014	0.021
104303315RN0	0.034	0.062	0.256	0.057	0.019		0.112	0.058	0.105	0.022	0.010	0.004	0.016	0.010	0.003	0.014	0.021
10530331SRN0	0.025	0.044	0.256	0.046	0.015		0.097	0.047	0.081	0.022	0.010	0.004	0.016	0.010	0.003	0.014	0.021
105303315RN2	0.024	0.046	0.256	0.044	0.015		0.091	0.043	0.082	0.022	0.010	0.004	0.016	0.010	0.003	0.014	0.021
201303315RN0	0.020	0.037	0.256	0.035	0.012		0.074	0.035	0.063	0.022	0.010	0.004	0.016	0.010	0.003	0.014	0.021
202462205RN0	0.037	0.067	0.256	0.063	0.021		0.126	0.066	0.115	0.022	0.020	0.014	0.015	0.012	0.010	0.022	0.015
20346310SRN0	0.025	0.045	0.256	0.042	0.014		0.090	0.044	0.074	0.022	0.020	0.014	0.015	0.012	0.010	0.022	0.015
204463/USRN0	0.024	0.043	0.256	0.041	0.014		0.087	0.041	0.071	0.022	0.020	0.014	0.015	0.012	0.010	0.022	0.015
206462205RN0	0.024	0.044	0.241	0.042	0.014	0.018	0.093	0.045	0.076	0.226	0.239	0.111	0.016	0.010	0.008	0.019	0.013
20730331SKN0	0.022	0.042	0.241	0.041	0.014	0.01/	0.084	0.041	0.077	0.226	0.239	0.111	0.016	0.010	0.008	0.019	0.013
209462205KNU	0.034	0.064	0.238	0.060	0.020		0.118	0.055	0.109	0.009	0.016	0.003	0.000	0.012		0.010	0.015
2112033315RN0	0.024	0.042	0.230	0.043	0.013		0.087	0.042	0.070	0.009	0.016	0.003	0.000	0.012	0.000	0.010	0.015
212303315RN0	0.025	0.045	0.238	0.043	0.014		0.087	0.043	0.078	0.009	0.016	0.003	0.008	0.012	0.000	0.010	0.015
2134622058N0	0.022	0.043	0.238	0.040	0 013		0.081	0.040	0.075	0.009	0.016	0.003	0.008	0 012	0.000	0.010	0.015
213462205RN2	0.023	0.040	0.238	0.040	0.014		0.081	0.041	0.073	0.009	0.016	0.003	0.008	0.012	0.008	0.010	0.015
21646220SRN0	0.026	0.047	0.238	0.044	0.014		0.098	0.046	0.086	0.009	0.016	0.003	0.008	0.012	0.008	0.010	0.015
217362205RN0	0.023	0.038	0.252	0.042	0.014	0.017	0.085	0.044	0.079	0.046	0.049	0.030	0.037	0.019	0.019	0.013	0.058
21946220SRN0	0.033	0.064	0.252	0.057	0.019		0.116	0.055	0.104	0.046	0.049	0.030	0.037	0.019	0.019	0.013	0.058
2204 62205RN0	0.032	0.061	0.252	0.058	0.021	0.025	0.117	0.058	0.112	0.046	0.049	0.030	0.037	0.019	0.019	0.013	0.058
22146220SRN0	0.026	0.045	0.252	0.045	0.015		0.090	0.042	0.083	0.046	0.049	0.030	0.037	0.019	0.019	0.013	0.058
222362205RN0	0.030	0.058	0.252	0.050	0.016		0.100	0.050	0.090	0.046	0.049	0.030	0.037	0.019	0.019	0.013	0.058
301131705RN0	0.023	0.041	0.252	0.037	0.013		0.075	0.037	0.068	0.046	0.049	0.030	0.037	0.019	0.019	0.013	0.058
30113170SRN2	0.024	0.043	0.243	0.042	0.014	0.018	0.088	0.041	0.076	0.045	0.065	0.025	0.037	0.030	0.029	0.031	0.048
30123080SRN0	0.035	0.066	0.243	0.059	0.021		0.121	0.059	0.120	0.045	0.065	0.025	0.037	0.030	0.029	0.038	0.048
301233805RN0	0.025	0.048	0.243	0.045	0.015		0.094	0.046	0.081	0.045	0.065	0.025	0.037	0.030	0.029	0.038	0.048
30139040SRN0	0.025	0.045	0.243	0.041	0.014		0.085	0.042	0.075	0.045	0.065	0.025	0.037	0.030	0.029	0.038	0.048
30219160SRN0	0.031	0.052	0.243	0.052	0.018		0.104	0.055	0.096	0.045	0.065	0.025	0.037	0.030	0.029	0.038	0.048
303090405RN0	0.022	0.041	0.243	0.037	0.013	0.016	0.083	0.039	0.073	0.045	0.065	0.025	0.037	0.030	0.029	0.038	0.048
30315160SRN0	0.028	0.048	0.243	0.045	0.015	0 010	0.098	0.047	0.088	0.045	0.065	0.025	0.037	0.030	0.029	0.038	0.048
304131705PN0	0.023	0.043	0.243	0.040	0.015	0.010	0.087	0.042	0.078	0.045	0.005	0.025	0.037	0.030	0.029	0.030	0.048
304273005RN0	0.027	0.047	0.243	0.045	0.015	0.025	0.090	0.047	0.086	0.045	0.065	0.025	0.037	0.030	0.029	0.038	0.048
40102080SRN0	0.027	0.050	0.243	0.046	0.016	0.021	0.094	0.047	0.082	0.045	0.065	0.025	0.037	0.030	0.029	0.038	0.048
402080805RN0	0.025	0.045	0.243	0.046	0.016	-	0.100	0.046	0.082	0.045	0.065	0.025	0.037	0.030	0.029	0.038	0.048
40310080SRN0	0.033	0.061	0.243	0.060	0.020	0.026	0.121	0.061	0.115	0.045	0.065	0.025	0.037	0.030	0.029	0.038	0.048
40414080SRN0	0.034	0.065	0.228	0.055	0.019	0.024	0.114	0.058	0.113	0.044	0.057	0.027	0.028	0.022	0.020	0.033	0.048
40518080SRN0	0.041	0.075	0.228	0.066	0.024	0.028	0.131	0.070	0.134	0.044	0.057	0.027	0.028	0.022	0.020	0.033	0.048
40620580SRN0	0.040	0.081	0.228	0.073	0.023		0.137	0.068	0.138	0.044	0.057	0.027	0.028	0.022	0.020	0.033	0.048
40728080SRN0	0.027	0.049	0.234	0.045	0.016		0.091	0.046	0.089	0.036	0.031	0.007	0.017	0.006	0.020	02100	0.080
40832080SRN0	0.027	0.051	0.234	0.049	0.016		0.101	0.049	0.093	0.036	0.031	0.007	0.017	0.006	0.020	0.100	0.080
40933580SRN0	0.039	0.075	0.234	0.067	0.024		0.133	0.089	0.131	0.036	0.031	0.007	0.017	0.006	0.020	0.100	0.080
410385805KN0	0.020	0.048	0.234	0.044	0.014	0 020	0.089	0.044	0.077	0.036	0.031	0.007	0.017	0.006	0.020	0.100	0.080
4104/5805RN0	0.030	0.071	0.234	0.007	0.023	0.020	0.123	0.009	0 141	0.036	0.031	0.007	0.017	0.000	0.020	0.100	0.000
41102090SRN0	0.024	0.042	0 234	0.0/0	0.014	0.030	0.086	0.043	0.077	0.036	0.031	0.007	0.017	0.006	0.020	0.100	0.080
412063905RN0	0.031	0.049	0.234	0.053	0.017		0.104	0.053	0.100	0.036	0.031	0.007	0.017	0.006	0.020	0.100	0.080
41310090SRN0	0.029	0.054	0.234	0.052	0.018	0.022	0.103	0.052	0.097	0.036	0.031	0.007	0.017	0.006	0.020	0.100	0.080
41414090SRN0	0.027	0.048	0.234	0.047	0.015		0.098	0.048	0.082	0.036	0.031	0.007	0.017	0.006	0.020	0.100	0.080
414300905RN0	0.033	0.061	0.234	0.058	0.019		0.117	0.060	0.103	0.036	0.031	0.007	0.017	0.006	0.020	0.100	0.080
41518090SRN0	0.024	0.042	0.289	0.044	0.015	0.019	0.089	0.044	0.086	0.019	0.033	0.019	0.040	0.027	0.030	0.062	0.072
41622090SRN0	0.028	0.048	0.289	0.048	0.016		0.093	0.048	0.091	0.019	0.033	0.019	0.040	0.027	0.030	0.062	0.072
41726090SRN0	0.036	0.066	0.289	0.062	0.021		0.121	0.063	0.113	0.019	0.033	0.019	0.040	0.027	0.030	0.062	0.072
41934090SRN0	0.024	0.046	0.289	0.044	0.016	0.019	0.094	0.046	0.085	0.019	0.033	0.019	0.040	0.027	0.030	0.062	0.072
42038090SRN0	0.026	0.047	0.289	0.049	0.016	0.020	0.095	0.047	0.088	0.019	0.033	0.019	0.040	0.027	0.030	0.062	0.072
42142090SRN0	0.026	0.049	0.289	0.047	0.016	0.020	0.092	0.046	0.087	0.019	0.033	0.019	0.040	0.027	0.030	0.062	0.072
42246090SRN0	0.026	0.047	0.285	0.047	0.016		0.094	0.048	0.089	0.012	0.020	0.012	0.024	0.015	0.012	0.005	0.018
42351990SRN0	0.022	0.044	0.269	0.044	0.014		0.087	0.043	0.075	0.019	0.020	0.009	0.023	0.013	0.015	0.013	0.005
42455090SRN2	0.035	0.067	0.260	0.063	0.022		0.127	0.064	0.119	0.010	0.017	0.004	0.022	0.015	0.012	0.017	0.014
42433090SRNO	0.030	0.055	0.293	0.045	0.016		0.098	0.037	0.092	0.025	0.036	0.030	0.050	0.034	0.038	0.020	0.032
SOTT.	CO60	ZN65	5290	58125	CS134	CS137	CELAA	EU152	EU154	TH228	TH230	TH232	U234	U235	U238	PU238	PU239
	pCi/a	pCi/a	pCi/a	pCi/a	pCi/a	pCi/a	pCi/n	pCi/a	pCi/q	pCi/q	pCi/a						
number	63	63	63	63	63	22	63	63	63	63	63	63	63	63	63	63	63
maximum	0.041	0.081	0.293	0.073	0.024	0.030	0.137	0.073	0.141	0.226	0.239	0.111	0.050	0.034	0.038	0.100	0.080
mean	0.028	0.052	0.250	0.049	0.017	0.021	0.100	0.050	0.092	0.037	0.043	0.018	0.026	0.018	0.019	0.040	0.045
minimum	0.020	0.037	0.228	0.035	0.012	0.016	0.074	0.035	0.063	0.009	0.010	0.003	U.008	U.006	U.003	0.005	U.005
886-ZR-0009 Page 46

								the second se	_					_		_	
Sample Location	CO60	ZN65	SR90	SB125	CS134	CS137	CE144	EU152	EU154	TH228	TH2 30	TH2 32	U2 34	U235	U238	PU2 38	PU239
BEDROCK	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g	pCi/g						
30511230BRN0	0.024	0.048	0.266	0.042	0.014	0.017	0.092	0.042	0.075	0.020	0.030	0.025	0.029	0.007	0.018	0.037	0.047
30515270BRN0	0.033	0.063	0.266	0.062	0.022	0.025	0.132	0.065	0.120	0.020	0.030	0.025	0.029	0.007	0.018	0.037	0.047
30530340BRN0	0.026	0.045	0.266	0.043	0.015	0.017	0.092	0.043	0.077	0.020	0.030	0.025	0.029	0.007	0.018	0.037	0.047
30540490BRN0	0.035	0.065	0.266	0.063	0.021	0.025	0.133	0.067	0.122	0.020	0.030	0.025	0.029	0.007	0.018	0.037	0.047
30547080BRN0	0.025	0.045	0.257	0.045	0.016	0.019	0.098	0.045	0.080	0.046	0.063	0.040	0.015	0.024	0.006	0.029	0.029
30604500BRN0	0.027	0.048	0.266	0.044	0.015	0.018	0.098	0.047	0.084	0.041	0.044	0.035	0.033	0.007	0.006	0.028	0.028
30630280BRN0	0.033	0.066	0.266	0.064	0.021	0.025	0.133	0.064	0.120	0.041	0.044	0.035	0.033	0.007	0.006	0.028	0.028
30648280BRN0	0.023	0.041	0.266	0.041	0.013	0.016	0.086	0.042	0.071	0.041	0.044	0.035	0.033	0.007	0.006	0.028	0.028
30648390BRN0	0.023	0.042	0.266	0.044	0.014	0.016	0.093	0.046	0.078	0.041	0.044	0.035	0.033	0.007	0.006	0.028	0.028
30724500BRN0	0.024	0.045	0.269	0.041	0.014	0.016	0.088	0.040	0.074	1.254	0.679	0.011	0.019	0.018	0.638	0.010	0.013
30940300BRN0	0.025	0.046	0.257	0.045	0.014	0.017	0.095	0.044	0.077	0.046	0.063	0.040	0.015	0.024	0.006	0.029	0.029
30950430BRN0	0.022	0.046	0.206	0.047	0.014	0.018	0.098	0.049	0.081	0.046	0.063	0.040	0.015	0.024	0.006	0.029	0.029
31027430BRN0	0.025	0.049	0.266	0.051	0.016	0.019	0.113	0.054	0.091	0.041	0.044	0.035	0.033	0.007	0.006	0.028	0.028
31044050BRN0	0.024	0.044	0.257	0.043	0.014	0.017	0.090	0.045	0.074	0.046	0.063	0.040	0.015	0.024	0.006	0.029	0.029
31111220BRN0	0.035	0.067	0.266	0.069	0.024	0.026	0.139	0.070	0.128	0.041	0.044	0.035	0.033	0.007	0.006	0.028	0.028
REDROCK	CO60	ZN65	SR90	SB125	CS134	CS137	CE144	EU152	EU154	TH228	TH2 30	TH2 32	U234	U235	U238	PU238	PU239
	nCi/a	pCi/a	DC1/a	DCi/a	nCi/a	pCi/g	pCi/a	pCi/g	pCi/g	pCi/a	pCi/g	pCi/g	pCi/a	pCi/q	pCi/g	pCi/a	pCi/g
number	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
maniper	0 025	0 067	0 260	0 060	0.024	0 026	0 1 20	0 070	0 128	1.254	0 679	0.040	0.033	0.024	0.638	0.037	0.047
maximum	0.035	0.007	0.209	0.009	0.024	0.020	0.135	0.051	0.120	0 110	0.000	0.010	0.035	0 012	0.051	0 020	0 032
mean	0.027	0.051	0.260	0.050	0.016	0.019	0.105	0.051	0.090	0.110	0.000	0.032	0.020	0.012	0.001	0.029	0.032
minimum	0.022	0.041	0.206	0.041	0.013	0.016	0.086	0.040	0.071	0.020	0.030	0.011	0.015	0.007	0.006	0.010	0.013

۰,

	TAR					LAB		
COMPOSITE	COMPOST	TAD TO	Sample		COMPOSITE	COMPOSITE	TAR TO	Sample
NUMBER	TD	עו פאע	Location		NUMBER			Location
	224.04	22222	403100905510		8	22501	22287	301131705PN2
↓	22999	22322	40310080SKN0		• •	22301	22201	301131700002
1		22324	40208080SRN0		8		22290	301131/03KN0
1		22325	40102080SRN0		8	1 1	22291	21946220SRN0
- 1		22359	40/28080SRN0		- 6		22292	213462203RN2
1		22360	40414080SRN0		8		22293	213402203RN0
1		22361	40620580SRN0		8		22288	301390405RN0
1		22362	40518080SRNU		8		22289	30219160SRN0
1		22363	40832080SRN0		8		22330	22046220SRN0
2	22495	22347	41047580SRN0		8		22334	30123380SRN0
2		22350	41038580SRN0	[1	8		22335	30345110SRN0
2		22351	40933580SRN0		8		22336	30315160SRN0
3	22496	22331	41206390SRN0		9	22502	22271	10130331SRN0
3		22348	41102090SRN0		9		22272	10246220SRN0
4	22497	22342	41518090SRN0		9		22273	10346220SRN0
4	[[22345	41622090SRN0	í I	9		22274	10530331SRN2
4		22349	41934090SRN0		9		22275	10430331SRN0
4		22353	41414090SRN0		9		22281	10530331SRN0
4		22354	41430090SRN0		10	22503	22295	30530340BRN0
4		22355	41310090SRN0		10		22303	30540490BRN0
4		22357	41726090SRN0		10		22304	30511230BRN0
5	22498	22339	42038090SRN0		10		22306	30510270BRN0
5		22340	42559090SRN0		11	22504	22297	31027430BRN0
5		22341	42455090SRN0		11		22298	30604500BRN0
5		22346	42246090SRN0		11		22299	30648280BRN0
5		22352	42142090SRN0		11		22300	30630280BRN0
5		22356	42351990SRN0		11		22302	30648390BRN0
6	22499	22277	21646220SRN0		11		22309	31111220BRN0
6		22278	221462205RN0		12	22505	22294	30940300BRN0
6		22282	21030331SRN0		12		22296	31044050BRN0
· 6		22284	21230331SRN0		12		22305	30950430BRN0
6		22285	20646220SRN0		12		22310	30547080BRN0
6		22307	20946220SRN0		13	22506	.22283	10546220WRN1
6	~	22308	20730331SRN0		13		22326	21431330WRN1
6	1	22323	20346310SRN0		13		22337	40414080WRN1
6		22327	20130331SRN0		13		22338	30543090WRN1
6	•	22329	30427300SRN0	li	14	22286	22286	30123080SRN0
6	1	22332	20246220SRN0	l	15	22301	22301	30724500BRN0
6		22333	30413170SRN0		- 16	22328	22328	30309040SRN0
6		22344	20446370SRN0		17	22358	22358	41049080SRN0
7.	22500	22276	21120331SRN0		18	22343	22343	42455090SRN2
7 '		22279	31027430BRN0		19	22359	22359	40728080SRN0
7		22280	30604500BRN0		end			·
· · · · · · · · · · · · · · · · · · ·		22200	30004300BANO		0			

Table 2. Grouping of samples for composite analyses.

4

Sample Location K40 CS137 PB212 PB214 BI214 AC226 TH234 U235 SOIL pCi/g unc /td

Table 3A. Comparison of Field Duplicate Samples for Radionuclides, Gamma Spectrometry

SOIL	K40	CS137	PB212	PB214	BI214	AC228	TH234	U235
	diff unc	diff une	diff unc	diff_unc	diff unc	diff unc	diff unc	diff unc
number	3	3	3	3	3	3	3	3
baximum	0.040 0.04	0.062 0.910	0.021 0.038	0.024 0.078	0.196 0.400	-0.01 0.106	-0.08 0.411	0.034 0.411
mean	0.032 0.02	-0.0B 0.910	-0.05 0.157	-0.09 0.213	-0.05 0.434	-0.06 0.168	-0.17 0.243	-0.55 2.006
minimum	0.015 0.03	-0.29 0.910	-0.14 0.034	-0.18 0.067	-0.22 0.267	-0.16 0.106	-0.31 0.619	-1.71 0.619

Table 3B. Comparison of Field Duplicate Samples for Radionuclides, Radiochemistry

Sample Location	SR	90	тн	228	TH	230	TH	232	U2	34	υ2	35	υ2	38	PU	238	PU	239
SOIL	pCi/c	unc	pCi/g	ບກະ	pCi/g	unc												
42455090SRN0	0.207	0.156	1.307	0.189	1.330	0.191	1.312	0.188	0.942	0.110	0.043	0.022	0,942	0.109	0.019	0.020	-0.01	0.024
42455090SRN2	0.166	0.176	0.752	0.106	0.574	0.090	0.682	0.099	0.421	0.065	0.021	0.019	0.401	0.062	0.014	0.017	0.003	0.006
10530331SRN0					1.257	0.163							-			2		
10530331SRN5					1.665	0.246	l											
42455090SRN0					1.330	0.191									ſ			
42455090SRN5					0.665	0.182												

Comparison, relative difference second/first

۰.

.

42455090SRN0	-0.22 1.261	-0.54 0.210	-0.79	0.222	-0.63	0.213	-0.76	0.188	-0.66	0.898	-0.81	0.187	-0.32	1.549	-3.62	7.087
10530331SRN0			0.746	0.202												
42455090SRN0			0.279	0.264												

Sample Location	K4	10	cs	137	PB	212	PB	214	BI	214	AC	228	тн	234	U2	:35
	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc
10346220SRN0	21.37	0.62	0.052	0.014	1.381	0.038	0.763	0.052	0.778	0.241	1.383.	0.111	0.800	0.325	0.007	0.007
10346220SRN0	21.63	0.56	0.046	0.015	1.400	0.034	1.043	0.047	1.089	0.188	1.373	0.100	0.748	0.271	0.005	0.005
21946220SRN0	22.07	0.66	0.096	0.023	1.541	0.042	1.029	0.053	1.067	0.232	1.613	0.114	1.316	0.394	0.064	0.010
21946220SRN0	21.69	0.61	0.124	0.022	1.509	0.038	1.274	0.055	1.180	0.202	1.514	0.097	1.255	0.342	0.068	0.009
22146220SRN0	23.38	0.62	0.010	0.010	1.380	0.036	0.984	0.051	0.820	0.212	1.486	0.101	0.850	0.330	0.055	0.009
221462205RN0	23.73	0.68	0.015	0.015	1.481	0.041	1.178	0.063	1.106	0.214	1.466	0.120	0.205	0.205	0.010	0.010
30309040SRN0	20.90	0.54	0.567	0.025	1.314	0.032	0.905	0.047	1.071	0.176	1.342	0.086	1.088	0.284	0.059	0.008
303090405RN0	21.62	0.56	0.561	0.02B	1.460	0.035	1.098	0.049	1.167	0.187	1.369	0.099	1.275	0.276	0.005	0.005
30315160SRN0	22.33	0.57	0.047	0.018	1.469	0.035	1.010	0.047	1.041	0.210	1.504	0.107	1.371	0.336	0.006	0.006
30315160SRN0	22.76	0.58	0.048	0.017	1.488	0.036	1.165	0.051	1.153	0.190	1.446	0.107	1.426	0.380	0.005	0.005
30540490BRN0	21.20	0.60	0.013	0.013	1.822	0.043	1.259	0.055	1.196	0.184	1.663	0.107	1.626	0.432	0.069	0.011
30540490BRN0	22.34	0.57	0.010	0.010	1.865	0.039	1.373	0.051	1.500	0.216	1.818	0.110	1.576	0.366	0.070	0.009
30547080BRN0	21.63	0.54	0.009	0.009	1.680	0.037	1.032	0.050	1.054	0.175	1.701	0.105	1.009	0.335	0.005	0.005
30547080BRN0	21.18	0.53	0.010	0.010	1.797	0.038	1.104	0.051	1.067	0.201	1.671	0.104	1.023	0.317	0.005	0.005
30648280BRN0	22.18	0.53	0.008	0.008	1.413	0.034	0.715	0.043	0.833	0.145	1.416	0.099	0.937	0.265	0.005	0.005
30648280BRN0	20.87	0.57	0.010	0.010	1.381	0.037	0.676	0.045	0.680	0.162	1.249	0.098	0.984	0.342	0.005	0.005
42246090SRN0	20.21	0.58	0.012	0.012	1.393	0.036	0.882	0.051	0.908	0.208	1.335	0.097	1.035	0.319	0.007	0.007
42246090SRN0	19.99	0.56	0.015	0.015	1.362	0.036	0.990	0.050	1.006	0.203	1.399	0.101	1.553	0.394	0.060	0.010
42351990SRN0	20.74	0.54	0.097	0.019	1.426	0.033	0.926	0.044	0.906	0.192	1.453	0.093	1.215	0.353	0.005	0.005
42351990SRN0	21.29	0.54	0.083	0.018	1.436	0.033	0.947	0.044	0.985	0.153	1.484	0.096	1.003	0.321	0.005	0.005
Comparison, r	elative	diffe	erence	second	d/first	:										
10346220SRN0	0.012	0.039	-0.11	0.416	0.014	0.037	0.311	0.077	0.333	0.328	-0.01	0.109	-0.07	0.547	-0.36	1.436
				1												ł
21946220SRN0	-0.02	0.041	0.257	0.289	-0.02	0.037	0.213	0.066	0.101	0.274	-0.06	0.096	-0.05	0.406	0.065	0.210
		- 1		ł												
22146220SRN0	0.015	0.039	0.373	1.439	0.071	0.038	0.179	0.075	0.297	0.313	-0.01	0.106	-1.22	0.736	-1.38	0.408
				1											1	
303090405RN0	0.034	0.037	-0.01	0.066	0.105	0.034	0.193	0.068	0.086	0.229	0.020	0.096	0.158	0.335	-1.69	0.303
)]								
30315160SRN0	0.019	0.036	0.019	0.514	0.013	0.034	0.143	0.064	0.102	0.258	-0.04	0.103	0.039	0.363	-0.14	1.418
		[(- 1		
30540490BRN0	0.052 0	0.038	-0.24	1.424	0.023	0.032	0.087	0.057	0.226	0.211	0.089	0.088	-0.03	0.353	0.013	0.205
205 470800000																
3024 /080BKN0	-0.02 (0.035	0.061	1.415	0.067	0.030	0.067	0.066	0.012	0.252	-0.02	0.087	0.014	0.454	0.000	1.414
2054028022010																
30648280BKN0	-0.06 1	0.036	0.239	1.424	-0.02	0.036	-0.06	0.089	-0.20	0.308	-0.13	0.105	0.049	0.451	0.000	1.414
4224600000000																
422400905KNU	-0.01 (0.040	0.196	1.421	-0.02	0.037	0.116	0.077	0.102	0.304	0.047	0.102	0.400	0.392	1.573	0.366
423510005010	0 076 0															
42351990SKN0	0.026 (0.037	-0.16	0.284	0.007	0.033	0.023	0.066	0.083	0.259	0.021	0.091	-0.19	0.430	0.000	1.414
	¥41															
ł	diff	<u>, 1000</u>	4: ##	3/	PB2	+4	4: 44	+4	BIZ	14	ACZ	20	THZ	34	02.	<u>,,</u>
number	10		1		1/		11		1/		1/		1111			unc
maximum	0.052 0	0.038	0.373	0.280	0.105	0.034	0.311	0.077	0.333	0.328	0.080	0.088	0.400	0.302	1.573	0.210
mean	0.005 0	0.065	0.064	0.398	0.023	0.088	0.127	0.209	0.114	0.303	~0.01	0.110	-0.09	0.856	-0.19	1.767
minimum	-0.06 0	.036	-0.24	0.284	-0.02	0.036	-0.06	0.089	-0.20	0.308	-0.13	0.105	-1.22	0.430	-1.69	0.205

Table 4A. Comparison of Laboratory Duplicate Analyses for Radionuclides, Gamma Spectrometry

Table 4B. Comparison of Laboratory Duplicate Analyses for Radionuclides, Radiochemistry

.

٠,

•

-

Sample Location	SR	90	TH:	228	TH2	:30	TH	232	U2	34	<i>U</i> 2	235	V2	38	PU	238	PU	239
	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	ມກຕ	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc	pCi/g	unc
IPL-506-2-3	6.248	0.389	7.716	0.801	1.696	0.258	7.519	0.782	3.594	0.359	0.241	0.085	3.839	0.375	0.122	0.087	2.903	0.524
IPL-506-2-3D	6.743	0.408	9.266	1.054	1.741	0.299	9.116	1.037	7.082	0.629	0.311	0.107	7.103	0.627	0.018	0.051	2.698	0.446

Comparison, relative difference second/first IPL-506-2-3 0.076 0.087 0.183 0.156 0.026 0.230 0.192 0.156 0.653 0.136 0.254 0.495 0.597 0.134 -1.49 1.441 -0.07 0.246

191.0	\$06.0	2\$6.9	604.8	880.0	298.0	1246.0	6£6'0	280.0	628.0	160.0	928.0	saure	DO 106	E01.0	788.0	PEI.0	059°T	Recovery	YAEBYCE
														1			_		
18»T.0	688.0	285.1	212.1	0.129	95C°T	0.440	E72.1	921.0	716.1	021.0	£00.1	asure		521.0	610°1	521.0	C8C.S	Recovery	
999.0	869.5	120.0	810.0	150.0	E01.7	101.0	116.0	629.0	280.T	1.037	911.6	662-0	197.1	1.054	992.6	804.0	£\$7.8	besured	206462205RMS
\$90.0	750.5	000.0	510.0	601.0	5.240	600.0	\$\$2.0	\$61.0	966.2	TSE.0	060.6	bebbs	anon	TSC.0	060.6	290.0	2.830	bebba	IPL-506-2-3D
1				ł –		}		ł				1		}		1			
\$L1.0	956.0	516.T	20.25	970.0	EET.0	0.350	986.0	170.0	699.0	160.0	728.0	aure	DO 200	Ce0.0	618. 0	941.0	802.S	Recovery	
\$25.0	£06.5	180.0	221.0	246.0	958.5	580.0	112.0	625.0	162.5	287.0	615° <i>L</i>	822.0	969°T	108.0	9TL°L	esc.o	812.8	Nessured	206462205RNS
190.0	7.037	000.0	210.0	681°0	5.240	600-0	0.244	\$61.0	975.2	125.0	060.6	bebbs	edon	12E.0	060.6	290.0	068.5	yqqeq	IB5-506-2-3
1						ł		l		1		})			
STT.0	28\$°0	096'6	196°L	950.0	***.0	E62.0	999.0	850.0	991.0	570.0	089.0	sance	no me	\$80-0	872.0	121.0	670.0	Recovery	
6L2.0	272.5	\$60.0	910.0	0.330	907.2	E80.0	681.0	896.0	\$16°Z	161.0	846.E	281.0	299.0	895.0	\$20.)	192.0	£61.S	Measured	SNUS06055727
150.0	161.5	000-0	010.0	612.0	060.8	010.0	\$8Z.0	\$22.0	812.8	122.0	016.8	peppe	adon	tsz.0	016.3	690.0	2.240	yqqeq	I&F-206-2-2
1				1		1		1				ł		Į					
162.0	262°1	6.210	288.2	060.0	\$16.0	182.0	158.0	980.0	\$98.0	501.0	\$66.0	sante	vo ve	511.0	1,103	1711.0	ΙΕΟ'Ι	Recovery	
111.0	££0.\$	910.0	270.0	685.0	886.3	260°0	1 <i>1</i> 2.0	112.0	6.205	161.0	200.8	912.0	599°T	598.0	278.8	0.280	2,526	peansee	SNUSTEEDESOT
990.0	3.123	000.0	210.0	222.0	066-9	210.0	926.0	852.0	171.7	682°0	010.8	peppe	anon	682.0	010.8	\$\$0.0	2.450	yqqeq	165-206-2-1
L						L				I		l		l					•
nuc	6/10d	Junc	pC1/g	oun	pC1/g	oun	pC1/g	Sau	6/T0d	mc	6/70d	npc	6/15d	nuc	pC1/q	JUL	b/TOd		
																			UOTANDOT
60	204	36	204	•	izn	50	zn.	1 10	20	35	781	003		30		0	NS .		атоште

Table 58. Compatison of Laboratory Matrix Spike Analyses for Radionnolides, Radioobemistry

â

461	ເຮວ		Location Sample
nuc	b/Tod		
060.0	000.2	peppy	ZNUSTEEDESOT
0 082.0	002.2	Delugaen	1
700.0	071.1	A TRACCOR	
080.0	2.000	peppy	SO4463705BNO
127.0	020-1	Recovery	
060.0	066.1	peppy	ONNSIECOEDIZ
520.0	000-1	Kecoverv Recoverv	
060.0	046-1	peppy	ONNISOLTETTOE
680.0	\$20.1 020.2	Recovery	
	010 2	poppe	0112308000206
011-0	020-2	becurseeM	0101508060505
890.0	\$00°T	Recovery	
080.0	010-2	Degueed	ONNSOTTOPOS
920.0	000.1	Recovery	
	J.U G		
0011.0	070.2	perites Depty	ONHROSZIICOS
690.0	SL0'T	geconety .	
	JUU L	PPt	
080.0	000.7	Deppov PerusseM	ONNROGRORCOS
\$20.0	056.0	Recovery	
	000 6		U.14300096218
1000 0	000-7	Dentry	000000007110
1890.0	\$86.0	Becovery	
050.0	092.2	Peppy	1-Z-905-141
0110	020.1	Recovery	CONSTERACO
	050.1	ATRACCO	
050.0	095.1	bebbA	Lbr-206-2-2
001.0	088.2	peingrew	SNNS060SCH7
650.0	0/017	Veconery	
050.0	099.2	peppy	LPL-506-2-3
051.0	095.2	Measured	SO6462205RN2
620.0	810.1	KECOASEA	-
190.0	1.025	Recovery	YNERAGE

Table 5A. Comparison of Laboratory Matrix Spike Analyses for Radionuclides, Gamma Spectrometry

986-ZR-0009 02 9ge^q

10. Appendix A

. .

The Certificates of Calibration for the blind spike samples prepared by Isotope Product Laboratories are presented here. The activity values, uncertainties, and isotopic fractions stated on these sheets have been used in the intercomparisons discussed in this report.

CERTIFICATE OF CALIBRATION MULTINUCLIDE STANDARD SOURCE

Customer:	ROCKWELL INTL/ ROCKETDYNE	P.O.No.:	R54PJO-95162004	
Catalog No.:	EG-0075	Reference Date:	September 1 1995	12:00 PST.
Source No.:	506-2-1	Total Radioactivity	28.9	nCi.
		Total Radioactivity:	1,068	Ba

Description of Source

a. Capsule type:

Customer supplied bottle

- b. Nature of active deposit: SrCl2, CsCl, Th(NO3)4, UO2(NO3)2, and Pu(NO3)3 dispersed in a sand matrix
- Approximately 1.0 L (Mass of sand = 1,125.60 g) c. Active diameter/volume: Glass
- d. Backing:

e. Cover:	•		Glass			
Nuclide	Half-life	Activity. (nCl)	Concentration (pCl/g)	Systematic Uncert.	Random Uncert.	Total Uncert.
Sr-90	28.5 ± 0.2 years	2.76	2.45	2.0%	0.9%	2.2%
Cs-137	30.17 ± 0.16 years	5.92	5.26	1.0%	0.7%	1.2%
Th-232	$(1.405 \pm 0.006) \times 10^{-10}$ years	9.05	8.04	3.0%	2.0%	3.6%
U-238	$(4.468 \pm 0.005) \times 10^{-9} \text{ years}$	7.87	6.99	3.0%	2.0%	3.6%
Pu-239	$24,110 \pm 30 \text{ years}$	3.26 D	2.90	2.1%	0 3%	2.1%

Method of Calibration

d of Cullbration (Colling Colling Coll determined as follows: 1) for Sr-90 and Pu-239 by a liquid scintillation counter. 2) for Cs-137 by a well type ionization chamber, and 3) for Th-232 and U-238 by specific activity and mass calculations. Sr-90 has a daughter(Y-90) in equilibrium. U-238 and Pu-239 have attached technical data sheets for impurities and daughters.

Daughter decay scheme for Th-232

Rs-228 -> Ac-228 -> Th-228 -> Rs-224 -> Rs-220 -> Po-216 -> Pb-212 -> Bi-212 -> Po-212 -> Ti-208 -> Pb-208 **NIST Traceability**

This calibration is implicitly traccable to the National Institute of Standards and Technology.

Leak Test(s)

Soo reverse side for Leak Test(s) applied to this source.

Notes

1. IPL participates in an NIST measurement assurance program to establish and maintain implicit trassability for a number of nuclides, based on the blind assay (and later NIST contification) of Standard Reference Materials (As in NRC Regulatory Guide 4.15).

2. Overall uncertainty is calculated at the 95.5% confidence lavel.

ann u. OUALITY CONTROL

14 Sep 1995 Date Signed

ISOTOPE PRODUCTS LABORATORIES 3017 N. SAN FERNANDO BLVD. BURBANK, CALIFORNIA 91504

IPL Ref No. 506-2-1

818 · 843 · 7000 FAX 818 · 843 · 6168

CERTIFICATE OF CALIBRATION MULTINUCLIDE STANDARD SOURCE

Customer: Catalog No.: Source No.: Description of	ROCKWELL INTL/ ROC EG-0075 506-2-2	KETDYNE	P.O.No.: Reference Date: Total Radioactivity: Total Radioactivity:	R34PJO-951 September J 1 28 1,04	62004 995 1; 3 18	2:00 PST. nCi. Hq.
a. Caps b. Natu c. Activ d. Back e. Cove	ule type: re of active deposit: SrCl2 e diameter/volume: ing: r:	Cu , CsCl, Th(NO3 Approximately	stomer supplied bott)4, UO2(NO3)2, an 1.0 L-(Mass of sand Glass Glass	16 d Pu(NO3)3 di i - 1,283.96 g)	spersod in a	a sand matrix
Nuclide	Half-life	Activity. (nCl)	Concentration (pCVg)	Systematic	Random Uncert.	Total Uncert.
Sr-90	28.5 = 0.2 years	2.88	2.24	2.0%	0.9%	2.2%
Cs-137	30.17 ± 0.16 years	5.86	4.56	1.0%	0.7%	1.2%
T <u>I</u> n-232	$(1.405 \pm 0.006) \times 10^{10}$ vers	8.95	6.97	3.0%	2.0%	3.6%
U-238	(4.468 ± 0.005) x	7.81	6.09	3.0%	2.0%	3.6%
Pu-239	$24,110 \pm 30$ years	2.83	2.26	2.1%	0.3%	2.1%

Method of Calibration

This source was prepared from weighed aliquots of solutions whose concentrations, in nCi/g, were determined as follows: 1) for Sr-90 and Pu-239 by a liquid scintillation counter. 2) for Cs-137 by a well type ionization chamber, and 3) for Th-232 and U-238 by specific activity and mass calculations. Sr-90 has a daughter(Y-90) in equilibrium. U-238 and Pu-239 have attached technical data sheets for impurities and daughters.

Daughter decay scheme for Th-232

Ra-228 -> Ao-228 -> Th-228 -> Ra-224 -> Rn-220 -> Po-216 -> Pb-212 -> Bi-212 -> Po-212 -> T1-208 -> Pb-208

NIST Traceability

This calibration is implicitly traceable to the National Institute of Standards and Technology.

Leak Test(s)

See reverse side for Leak Test(s) applied to this source.

Notes

1. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST cartification) of Standard Reference Materials (As in NRC Regulatory Quide 4.15).

2. Overall uncertainty is calculated at the 95.5% confidence level.

QUALITY CONTROL

14 Sep 1995 Date Signed

ALLONATORIE:

ISOTOPE PRODUCTS LABORATORIES 3017 N. SAN FERNANDO BEVD. BURBANK, CALIFORNIA 91504

818-843-7000 FAX 818-843-6168

IPL Ref No. 506-2-2

CERTIFICATE OF CALIBRATION MULTINUCLIDE STANDARD SOURCE

Customer: ROCKWELL INTL/ ROCKETDYNE P.O.No.: R54PJO-95162004 EG-0075 September 1 1995 Reference Date: Catalog No.: 12:00 PST. Source No .: 506-2-3 **Total Radioactivity:** 25.3 nCi. 938 **Total Radioactivity:** Hq.

Description of Source

a. Capsule type:

Customer supplied bottle

Glass

Glass

b. Nature of active deposit: SrCl2, CsCl, Th(NO3)4, UO2(NO3)2, and Pu(NO3)3 disporsed in a sand matrix Approximately 1.0 L (Mass of sand = 995.76g) c. Activo diametor/volume:

d. Backing:

a Caller

C. COTO:			0/000			
Nuclide	Half-life	Activity. Concentra (nCi) (pCi/g)		Systematic - Uncert.	Random Uncert.	Total Uncert.
Sr-90	28 5 ± 0.2 years	2.82	2.83	2.0%	0.9%	2.2%
Cs-137	30.17 ± 0.16 years	. 5.44	5.46	1.0%	0.7%].2%
Th-232	(1.405 ± 0.006) x 10^10 years	9.05	9.09	3.0%	2.0%	3.6%
U-238	$(4.468 \pm 0.005) \times$ 10^9 years	5.22	5.24	3.0%	2.0%	3.6%
Pu-239	$24,110 \pm 30$ years	2.81	2.82	2.1%	0.3%	2.1%

Method of Calibration

This source was prepared from weighed aliquots of solutions whose concentrations, in nCi/g, were determined as follows: 1) for Sr-90 and Pu-239 by a liquid scintillation counter. 2) for Cs-137 by a well type ionization chamber, and 3) for Th-232 and U-238 by specific activity and mass calculations. Sr-90 has a daughter(Y-90) in equilibrium. U-238 and Pu-239 have attached technical data sheets for impurities and daughters.

Daughter decay scheme for Th-232 -

Rs-228 -> Ac-228 -> Th-228 -> Rs-224 -> Rs-220 -> Po-216 -> Pb-212 -> Bi-212 -> Po-212_+> Ti-208 -> Pb-208

NIST Traceability

This calibration is implicitly traceable to the National Institute of Standard and

Leak Test(s)

Soo reverse side for Leak Test(s) applied to this source.

Notes

1. IPL participates in an NIST measurement assurance program to establish and maintain implicit travesbility for e number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (As in NRC Regulatory Guide 4.15).

2. Overall uncertainty is calculated at the 95.5% confidence level.

ISOTOPE PRODUCTS LABORATORIES

3017 N. SAN FERNANDO BLVD. BURBANK, CALIFORNIA 91504

818 · 843 · 7000 FAX 818 · 843 · 6168

QUALITY CONTROL

14 Sep 1995 Date Signed

IPL Ref No. 506-2-3

۲

4

U-238 TECHNICAL DATA

The U-238 used to prepare your order was taken from Isotope Products Laboratories Lot #6794 and had the following composition as of June 1, 1994.

Corporate Offices	<u> </u>		
3017 N. San Fernando Blvd.	NUCLIDE	ATOM	ACTIVITY:
Burbank, California	Color Color	N/D	·····
91504	U-233	N/D	
	U-234	0.005	49.501
Main Laboratory	U-235	9.720	2.250
1800 N. Keystone Street	U-236	N/D	
Burbank. California 91504	U-238	99.274	48.249

Isotopic composition provided by Oak Ridge National Laboratory.

Fax 818-843-6168

818-843-7000

If you have any questions, please contact Technical Service.

(818)843-7000

Pu-239 TECHNICAL DATA

The Pu-239 used to prepare your order was taken from Isotope Products Laboratories Lot #6617-1 and had the following composition as of October 1, 1994.

Corporate Offices	NUCLIDE	ATOMS	ACTIVITYS	TOTAL & ACTIVITY &
3017 N. San Fernando Blvd				
Burbank, California	Pu-238	0.002	0.337	0.388
11504	Pu-239	\$7.933	79.717	91.887
	Fu-240	2.056	6.124	7.058
Main Laboratory	Pu-241	0.010	13.241	N/A
1800 N. Keystone Street Burbank, California	Pu-242	P 2001	0.000	0.000
91504	Am-241		0.582	0.671
	Note:	Pu-241 is bet	a active.	

318-843-7000 Fax 818-843-6168

Isotopic composition provided by New Brunswick Laboratory. If you have any questions, please contact Technical Service.

: :: :

11. Appendix B - Interpretation of Results

All soil sample analytical results are well below the approved limits for release of land areas for use without radiological restrictions (see "Proposed Sitewide Release Criteria for Remediation of Facilities at the SSFL", B. M. Oliver and R. J. Tuttle, Rocketdyne Document N001SRR140127, 8/22/96). That document provided single-isotope limits for all radionuclides that are possible contaminants at SSFL, and those limits were approved by the Department of Energy, Oakland Operations Office, and by the State of California Department of Health Services, Radiologic Health Branch. Potential doses to future users of the site, for residential, industrial, and wilderness use situations were considered, and concentrations were calculated that provided a Total Effective Dose Equivalent (TEDE) equal to the limit of 15 mrem/year recommended by the EPA. For the two radionuclides detected in the soil sampling survey, Sr-90 and Cs-137, the limits are 36.0 and 9.2 pCi/g, respectively. All analytical results were well below these limits. The maximum value for Sr-90 was 0.569 pCi/g, or 1.58% of the single-isotope limit. The maximum value for Cs-137 was 0.567 pCi/g, or 6.16% of the single-isotope limit. Combining these two percentages to test for the combined sum of fractions rule, results in a percentage of 7.74%, far below the allowable 100%.

To demonstrate the satisfactory condition of the radiologically remediated Former Sodium Disposal Facility, a pathways analysis was performed to estimate potential dose to a hypothetical resident of the area. This analysis used the pathways code, RESRAD (version 5.61), with the same parameters that were used in establishing the generic limits on radioactivity in soil at SSFL. The Former Sodium Disposal Facility was represented as a slightly smaller area, 8,200 m², than the generic reference case, 10,000 m².

The residual contamination of the site was assumed to be equal to the average of the measured values, for Sr-90 and Cs-137, the only contaminants detected in the radiometric analyses. These values were, respectively, 0.131 pCi/g for Sr-90 and 0.069 pCi/g for Cs-137. Residual contamination was assumed to be uniformly distributed through the upper 1 meter of the soil. (This is a conservative assumption, since much of the area was excavated down to bedrock and only a very thin residual layer of soil remains. For this calculation the top 1 meter of the site is considered to be soil. Studies of the depth distribution of the original contamination showed that the radioactivity, which had initially been deposited on the surface of the soil, had not penetrated beyond about 18 inches.)

RESRAD calculates the dose from a variety of exposure pathways. The only significant pathways were direct radiation from the ground for the Cs-137, and plant uptake (in vegetables) for the Sr-90. If the Former Sodium Disposal Facility had been occupied in a residential manner immediately after completion of the soil sampling, that is, in August 1995, the first-year dose is calculated to be 0.166 mrem. This is small compared to the recommended limit of 15 mrem per year, established by the EPA, and trivial compared to the natural dose from "clean" soil approximately 80 mrem/year. The estimated dose declines with time into the future. This is

shown in Figure A.1, where the dose becomes essentially zero after 100 years.

TOTAL DOSE: All Isotopes and Pathways Summed

Figure A-1. Calculated potential dose to resident of remediated Former Sodium Disposal Facility.

The average values assumed for contamination are comparable to the fallout background found in surface soil in this region. Subtraction of background activities is not suitable in this case, however, because many of the samples are from deep below the original surface of the soil where the background activity of these radionuclides is essentially zero. Therefore, a comparison calculation was performed, representing an undisturbed plot of land with the same characteristics and usage as proposed for the Former Sodium Disposal Facility, except that the residual contamination was replaced by the values of activity found for the surrounding, unaffected, terrain. These background values were derived from the Area IV Characterization Survey results, by excluding all samples that were suggestive of possible contamination, and the deliberately selected offsite (background) soil sample results. (See "Area IV Radiological Characterization Survey - Final Report", ETEC Document A4CM-ZR-0011, Revision A, Volumes I-IV, August 15, 1996.) For unaffected soil, contaminated only by fallout activity, the activity was assumed to be limited to the upper 10 cm of the soil (4 inches). This calculation shows that the dose on unaffected, and unremediated, land would be 0.171 mrem in the first year, slightly more than for the remediated Former Sodium Disposal Facility. When naturally occurring concentrations of potassium-40, uranium (plus daughters) and thorium (plus daughters) are included in the "clean" soil, a similar RESRAD calculation yields 81.74 mrem/year, as an additional, natural dose from the natural radioactivity alone.

As a further demonstration of the conservatism in the cleanup conducted here, a RESRAD calculation was also done with the assumption that the entire site was contaminated at the level found in the single most contaminated sample, that is, the sample taken at location 3030904, in the former Lower Pond. (All soil had been removed from the Lower Pond, so that only bedrock remains.) This calculation showed that these greater amounts of Sr-90 (0.569 pCi/g) and Cs-137

(0.567 pCi/g) would produce only 1.157 mrem/year in the first year, still far below the limit of 15 mrem/year and the natural dose of 81.74 mrem/year.

This study shows that the Former Sodium Disposal Facility is in compliance with the recommended acceptance limit of 15 mrem per year for radiological exposure, and is essentially no different, radiologically, from any similar unaffected plot of land.

.

DER	25490	.110
VPY		

ENERGY TECHNOLOGY ENGINEERING CENTER

OPERATED FOR THE U.S. DEPARTMENT OF ENERGY ROCKETDYNE DIVISION, ROCKWELL INTERNATIONAL No.<u>886-ZR-0007</u> Rev.<u>NC</u>

Page <u>1</u> of <u>66</u> Orig. Date <u>12/13/94</u> Rev. Date

TITLE: POST-REMEDIATION AMBIENT GAMMA RADIOLOGICAL SURVEY OF THE FORMER SODIUM DISPOSAL FACILITY (T886) - APPROVALS -**RP&HPS** Originator P. D. Rutherford Prog Mgr Proj Mgr Juse M. Jensen Klein QA S. Reeder REV. APPROVAL/DATE REVISION LTR. , OFFICIAL COPY JAN 5 1995 NOTICE: THIS COPY SUPERSEDES ALL PRIOR COPIES ISSUED

886-ZR-0007 Page 2 12/13/94

CONTENTS

		Page
1.0	Introduction	. 8
2.0	Summary and Conclusions	. 9
3.0	Background	. 12
	3.1 Location	. 12
	3.2 Topography and Site Characterization	. 12
	3.3 Remediation Activities	. 12
4.0	Survey Results	. 16
	4.1 Overview	. 16
	4.2 Survey Procedures	. 16

1

886-ZR-0007 Page 3 12/13/94

FIGURES

		Page
1.	Data Analysis Results Summary	. 11
2.	Location of SSFL in Relation to Los Angeles and Vicinit	y 13
3.	Map of Neighboring SSFL Communities	. 14
4.	Santa Susana Field Laboratory (SSFL) Area IV	. 15
5.	Sodium Disposal Facility Plan View	. 17
6.	Sodium Disposal Facility Post-Remediation Survey Grid Map	. 18
7.	All Survey Areas Combined Ambient Gamma Exposure Rate	. 21
. 8	Lower and Upper Pond Basins Ambient Gamma Exposure Rate	22
9.	Ambient Gamma Exposure Rate Excluding the Lower and Upper Pond Basins	. 23
10.	Upper Pond Basin Ambient Gamma Exposure Rate	24
11.	Lower Pond Basin Ambient Gamma Exposure Rate	. 25
12.	Crid Locator Map for Survey Results	. 26
13.	Grid #1 Ambient Gamma Exposure Rate	. 27
14.	Grid #2 Ambient Gamma Exposure Rate	. 28
15.	Grid #4 Ambient Gamma Exposure Rate	. 29
16.	Grid #5 Ambient Gamma Exposure Rate	. 30
17.	Grid #6 Ambient Gamma Exposure Rate	. 31
18.	Grid #7 Plot View	. 32
19.	Grid #8 Ambient Gamma Exposure Rate	. 33
20.	Grid #9 Ambient Gamma Exposure Rate	. 34
21.	Grid #10 Ambient Gamma Exposure Rate	35
22.	Grid #11 Ambient Gamma Exposure Rate	. 36
23.	Grid #13 Ambient Gamma Exposure Rate	. 37
ź4.	Grid #14 Ambient Gamma Exposure Rate	. 38
25.	Grid #15 Ambient Gamma Exposure Rate	. 39
26.	Grid #16 Ambient Gamma Exposure Rate	. 40
27.	Grid #17 Ambient Gamma Exposure Rate	. 41
28.	Grid #21 Ambient Gamma Exposure Rate	. 42
29.	Grid #22 Ambient Gamma Exposure Rate	. 43
30.	Grid #23 Ambient Gamma Exposure Rate	. 44
31.	Grid #24 Ambient Gamma Exposure Rate	45

886-ZR-0007 Page 4 12/13/94

FIGURES

															F	age
32.	Grid	# 29	Ambient	Gamma	Exposure	Rate	•	٠	•	• '	•	•	•	٠	•	46
33.	Grid	# 30	Ambient	Gamma	Exposure	Rate	•	٠	•	•	•	•	•	•	•	47
34.	Grid	#31	Ambient	Gamma	Exposure	Rate	•	•	•	•	•	•	•	•	•	48
35.	Grid	# 32	Ambient	Gamma	Exposure	Rate	•	••	•	•	•	•	•	•	•	49
36.	Grid	#33	Ambient	Gamma	Exposure	Rate	•		•	•	•	•	•	•	•	50
37.	Grid	# 36	Ambient	Gamma	Exposure	Rate	•	•	•	•	•	•	•	•	•	51
38.	Grid	# 37	Ambient	Gamma	Exposure	Rate	•	•	• .	•	. • .	•	•	•	•	52
39.	Grid	#38	Ambient	Gamma	Exposure	Rate	•	•	•	•	•	٠	•	•	•	53
40.	Grid	#39	Ambient	Gamma	Exposure	Rate	•	•	•	•	•	•	•	•	•	54
41.	Grid	# 40	Ambient	Gamma	Exposure	Rate	•	•	•	• .	•	•	•	•	•	55
42.	Grid	#41	Ambient	Gamma	Exposure	Rate	••	•	•	•	•	•	•	•	•	56
43.	Grid	# 43	Ambient	Gamma	Exposure	Rate		• .	•	•	• 1	•	•	•	•	57
44.	Grid	#44	Ambient	Gamma	Exposure	Rate	÷	•	• . '	ė	•	•	•	•	•	58
45.	Grid	#45	Ambient	Gamma	Exposure	Rate	•	•	•	•	•'	•	•	•	•	59
46.	Grid	#46	Ambient	Gamma	Exposure	Rate	•	•	•	•	•	•	•	•	•	60
47.	Grid	# 47	Ambient	Gamma	Exposure	Rate	٠	•	•	•	•	•	•	•	•	61
48.	Grid	#48	Ambient	Gamma	Exposure	Rate	•	•	•	•	•	•	•	•	•	62
49.	Grid	# 52	Ambient	Gamma	Exposure	Rate	•	•	•	•	•	•	•	•	•	63
50.	Grid	# 53	Ambient	Gamma	Exposure	Rate	•	•	•	•	•	•	•	• .	•	64
51.	Grid	# 54	Ambient	Gamma	Exposure	Rate	•	•	•	•	•	•	•	•	•	65
52.	Grid	# 55	Ambient	Gamma	Exposure	Rate	•	•	•	•	•	•	•	•	•.	66

1

886-ZR-0007 Page 5 12/13/94

TABLES

																I	Page
1.	Data Analysis	Results	Summary	•	•	٠	•	٠	•	••	٠	•	•	٠	•	•	11

•

1

886-ZR-0007 Page 6 12/13/94

ABSTRACT

A comprehensive baseline radiological survey for ambient gamma exposure rate was conducted in 1991 (Reference 3) just prior to the site remediation of the former Sodium Disposal Facility (SDF) (T886). That survey covered the lower and upper pond areas of the SDF and was used as a guide in beginning remediation (i.e., excavation). After the remedial efforts were completed (which included numerous operational gamma surveys) the stage was set for the post-remedial ambient gamma exposure survey. This survey covered the lower and upper pond areas as well as adjacent land.

Results of this survey show the ambient gamma exposure rates of the former SDF and surrounding land to be indistinguishable from each other. These results presented here along with the planned soil sampling by an outside contractor will serve as a basis to release the SDF for use without radiological controls. This document represents the ambient gamma survey as performed in accordance with Reference 1.

886-ZR-0007 Page 7 12/13/94

REFERENCES

- J. J. Collins, "Final Radiological Sampling and Gamma Survey Procedures to Follow Site Remediation of the Former T886 Sodium Disposal Facility, ETEC, 886-ZR-0006 (July 20, 1993)
- 2. J. Chapman, "Radiological Survey of the Sodium Disposal Facility Bldg T886," ETEC, GEN-ZR-0004 (June 3, 1988)
- 3. J. J. Collins, "Baseline Radiological Survey of the Sodium Disposal Facility (T886)," Rockwell International, Rocketdyne Division, N704SRR990034 (August 31, 1992)
- "Radiological Soil Sampling and Pathways Dose Analysis for the Sodium Disposal Facility (T886)" to be published
- 5. L. Mountford, "Interim Report (March May 1994), Area IV, Radiological Characterization Study," A4CM-ZR-0008, June 28, 1994
- 6. L. Mountford, "Interim Report (June August 1994), Area IV, Radiological Characterization Study," A4CM-ZR-0009, October 6, 1994
- 7. "Additional Soil and Water Sampling at the Brandeis-Bardin Institute and Santa Monica Mountains Conservancy," draft, November 18, 1994

886-ZR-0007 Page 8 12/13/94

This report documents the post-remediation radiological ambient gamma survey of the former Sodium Disposal Facility (SDF) (T886) and subsequent data analyses. The post-remediation ambient gamma survey was undertaken to evaluate the radiological conditions after the completion of the site remediation. The surveyed areas included the remediated lower and upper pond basins, the surrounding land, and the site drainage pathways. The ambient gamma exposure rate results used in conjunction with the soil sampling analyses as outlined in Reference 1 will serve as a basis to quantitatively release the SDF from radiological controls. This document represents the gamma survey as performed in accordance with Reference 1.