PV Fleet st-Graph Neural Network Modeling: Leveraging Spatiotemporal (st) Coherence, Distributed Computing, & Generative Al Models

Roger H. French

Director, Materials Data Science for Stockpile Stewardship (MDS³) COE Faculty Director, Applied Data Science Case Western Reserve University, Cleveland OH

DOE-EERE-SETO Project: PV-stGNN Project: DE-EE0009353

1. PV Perf., 2. st-Graph Learning, 3. CRADLE, 4. Graph Gen. AI for PV

Traditional PV Performance

Analysis

A. M. Karimi, Y. Wu, M. Koyuturk, R. H. French, "Spatiotemporal Graph Neural Network for Performance Prediction of Photovoltaic Power Systems," in *Proceedings of IAAI-21*, Virtual, 2021. MDS³ COE, SDLE Research Center, Roger H. French © 2023 https://miksle.coe.com/https///ilk.coe.com/

Traditional PLR Estimation Framework: Five Steps: #0 to #4

Progress in PV, 29, 6, 673–602, Jun. 2021. MDS⁵ COE, SDLE Research Center, Roger H. French © 2023

MDS³ COE, SDLE Research Center, Roger H. French © 2023

	1. Input data cle	aning & filtering			
0.a Data availability P _{mpp} , G _{POA} , T _{mod} , T _{amb} ,	1.a Data assembly Data imputation,	2. Performance metric selection, corrections & data aggregation 3. Timeseries feature corrections			
 Wind speed O.b Data quality assessment & grading Outliers, missing, gaps Low Quality In Low Quality In Low Quality In 	Timestamp validation, 1.b Filter application P_{mpp} ; G_{POA} ; T_{mod} PR; clear sky nputs ity PLR estimation ertainty racy	 2.a Perf. metric Predicted Power, Performance Ratio 2.b Temp. corrections IEC61724-1, UTC 2.c Data aggregation daily, weekly, monthly, yearly 	 3.a Seasonal decomp. CSD, STL, HW 3.b Imputation of Power P, PR 3.c Outlier removal Z-score, Interquartile ranges 	 4. Statistical modeling of PLR 4.a Statistical models Regression, YoY, CPLR 4.b PLR Determination 4.c Assess Confid. Int. bootstrap, model der. 4.d PLR Comparisons 95% CI for 1 PLR, or 83.4% CI for 2 PLRs 	

Progress in PV, 29, 6, 673–602, Jun. 2021. MDS⁵ COE, SDLE Research Center, Roger H. French © 2023

[1] S. Lindig et al., "

Progress in PV 29, 6, 673–602, Jun. 2021. MDS⁵ COE, SDLE Research Center, Roger H. French © 2023

Introduction to Graphs

Graphs are data structures that represent a

- set of objects (nodes) that are connected
- by some type of relationship (edges)

Distinct Objects ("Nodes")

- Represent an entity
 - $\circ~$ E.g,: a traffic sensor, a PV inverter, etc.
- Can hold multiple types of information
 In their "feature vectors",
- This nodal information can be either
 - Static (such as in a knowledge graph)
 - Constant properties of nodes
 - Time-varying

I≝ CWRI

- Timeseries (discrete or continuous)
 - Power, Weather, Irradiance

Relationships ("Edges")

- Edges can have directions
 - Undirected or Directed
 - Undirected: $(A \rightarrow B) = (B \rightarrow A)$
 - Directed: $(A \rightarrow B) \neq (B \rightarrow A)$

What are Spatiotemporal Graphs (st-graph)

st-graphs are special type of graphs

Where nodes contain

- Time-varying feature vectors
 - Single-channel: one timeseries per node
 - Multi-channels: multiple timeseries per node

ε: spatial coherence,

distanced-based threshold

- Between 0 and 1
- Controls the sparsity of graphs
 - $\circ~$ When $\pmb{\epsilon}$ = 0, all nodes connected with each other
 - $\circ~$ When $\pmb{\epsilon}$ = 1, all nodes isolated, unconnected

Spatiotemporal graphs

denoted as $G_t = (X_t, A)$

X_t: the time-varying node features

[1] A. M. Karimi, Y. Wu, M. Koyuturk, and R. H. French, " and the second sec

E, SDLE Research Center, Roger H. French © 2023 https://mds3-coe.com http://sdle.csse.edu DE-NA0004104

What are Dynamic Graphs

Mathematically, dynamic graphs are

defined as $G_t = (X_t, A_t)$

- X_t : the time-varying node features
- A_t: dynamic adjacency matrix,
 - captures dynamic changes in connections
 - $\circ~$ between of nodes over time
- So dynamic graphs enable Generative AI
 - Through Node Addition
 - And Node Removal

CWR

Dynamic graphs (graph structures vary with time)^[1]

Previously, we defined the st-graph as

Time

 $\mathbf{G}_{\mathrm{t}}=(\mathbf{X}_{\mathrm{t}},\,\mathbf{A})$

• Hence st-graph can be seen as

2021.

• A dynamic graph with static graph structure

[1] A. McCrabb, V. Bertacco,

no orapiti annioning iti Mariy

1. PV Perf., 2. st-Graph Learning, 3. CRADLE, 4. Graph Gen. AI for PV

Spatiotemporal-Graph (st-Graph) Learning:

Timeseries Imputation

& Trend Estimation

CWR

Large Scale Photovoltaic Fleet Monitoring: 104,700 PV Systems

CRADLE Data Explorer: PV Systems, {meta}data, Quality

Ingest 100,470

Photovoltaic Systems

- To CRADLE3
 - Into HDFS
 - As Parquet Files
- Using Apache Spark3 Distributed Across
- 1000 CPUs
- 100 HDDs

Apache Impala

• For SQL Queries

Provide Codebox

• For Customized Queries

Retrieve All Metadata

• Data Quality Heatmap

R coo	de to fetc	h pv meta	a data					
1 2 3	<pre>heta <- ge tbl('pvsys group_by(l</pre>	t_impala_con meta') %>% atd, lond)	nnection()	***				
Meta	Meta data of pv systems Show 10 ~ entries Search:							
	dtyp 🕴	styp	latd 🕴	lond	row_key	kgcz	mods	
1	рр	ss1	19.83	-155.79	b0580cn	Cfb	6be77d805385e0735c1b057a	
2	рр	ss1	19.93	-155.79	cn78irs	Cfb	f7bc2d4a7e6a9aee37b9beea	
3	рр	ss1	19.93	-155.79	qwfuo80	Cfb	f7bc2d4a7e6a9aee37b9beea	
4	рр	ss1	21.33	-157.9	wx8lr7g	As	f7bc2d4a7e6a9aee37b9beea	
5	рр	ss1	21.34	-1 <mark>57.9</mark>	a4mwbbm	As	850dbf76696f7dda65911489.	
6	рр	ss1	21.36	-157.95	pimqpdv	As	f7bc2d4a7e6a9aee37b9beea	
7	рр	ss1	21.36	-157.95	pkupb0f	As	f7bc2d4a7e6a9aee37b9beea	
8	рр	ss1	27.19	-82.4	l2zq550	Cfa	f7bc2d4a7e6a9aee37b9beea	

Heatmaps of selected pv system data

14

PV Sytems XRD Geospatial

PV Network Representation

Inverters

- \circ "Nodes"
- Individual Timeseries

Site "Similarity"

- "Edges"
 - How much information
 - Should connections "share"

Evaluating "Similarity"

- Distance (Spatial Coherence)
- Cell Type

- Nameplate Power
- Benefits from "FAIRified" datastreams

(edges sparsified for visualization)

Timeseries Data Reconstruction, & Generative Data Imputation

For PV: Performance Loss Rate (PLR)

Critical to profitability of asset

Data Quality Impacts PLR estimates

- Low Quality Data
 - Low Quality PLR estimation
 - High uncertainty, Low accuracy

Data Imputation improves low quality data

- Physical Models
- Predictive Mean Matching
- Gradient Boosting Regression
- Traditional Imputation Methods

 D_A : Augmented PV Data; D_C : Corrupted PV Data; D_R : Recovered PV Data.

Data Imputation Accuracy

st-GAE

Missingness Types

- Single Value Corruption
- Measurement Outage
- Missingness Severity
 - 10% 60% Measurements Missing
 - 2hrs 6hrs Inverter Outage

Model Accuracy

- Insensitive
 - Missingness Types
 - Missingness Severity
- st-GAE Outperforms
 - Traditional
 - Deep Learning

Data Reconstruction: Block Outages & Anomalous Measurements

RAW

s2025_inv2_18

s2025_inv2_18

Reconstruction

[1] Y. Fan, X. Yu, R. Wieser, ... L. Bruckman, R. French, Y. Wu, "

exertise Data Insuration," in Proc. ACM on Management of Data, 2023, 1, 1–19. MDS³ COE, SDI F, Research Center, Roger H, French © 2023, https://www.mail.com/auto-com/auto-com/auto-com/auto18_

_inv1	s2001_inv2	s2001_inv3	s2004_inv1	s2004_inv2	s2004_inv3	s2005_inv1
Amminia an		resourceson of a				
_inv2	s2005_inv3	s2006_inv1	s2006_inv2	s2006_inv3	s2007_inv1	s2007_inv2
_inv1	s2008_inv2	s2008_inv3	s2009_inv1	s2009_inv2	s2009_inv3	s2010_inv1
				Maria II (1997) Maria II (1995)		
_inv2	s2010_inv3	s2014_inv2	s2014_inv3	s2017_inv1	s2017_inv2	s2017_inv3
iner i Nentre generalitette	et descus l'intersats un della si da		A REAL DRIVEN WE WANT			
_inv1	s2020_inv2	s2020_inv3	s2021_inv1	s2021_inv2	s2021_inv3	s2022_inv1
_inv2	s2022_inv3	s2024_inv1	s2024_inv2	s2024_inv3	s2025_inv1	s2025_inv2
Mal a significant a first						AND CONS.
_inv3	s2027_inv1	s2027_inv3	15 Invortors	•		
			<25% NAs Unknown "	Real" Missing	ness	RAW

4DS³ COE, SDLE Research Center, Roger H. French © 2023 https://mds3-coe.com.http://sdle.case.edu. DE-NA0004104

19_

OE

MD

s2001_inv1	s2001_inv2	s2001_inv3	s2004_inv1	s2004_inv2	s2004_inv3	s2005_inv1
				The second state of the second	a and second as the second as a second	
s2005_inv2	s2005_inv3	s2006_inv1	s2006_inv2	s2006_inv3	s2007_inv1	s2007_inv2
An and the state of the second state of the se	All and the state of the second s		Ma ndalah Manaka Manaka	and the second second second second second		and the state of the second
s2008_inv1	s2008_inv2	s2008_inv3	s2009_inv1	s2009_inv2	s2009_inv3	s2010_inv1
s2010_inv2	s2010_inv3	s2014_inv2	s2014_inv3	s2017_inv1	s2017_inv2	s2017_inv3
		All instants of the second second second	the store of the second second second			
s2020_inv1	s2020_inv2	s2020_inv3	s2021_inv1	s2021_inv2	s2021_inv3	s2022_inv1
	Alexandri ortekozaniji der orta	All Review of Westernam Devices				A BASING NUMBER OF STREET
s2022_inv2	s2022_inv3	s2024_inv1	s2024_inv2	s2024_inv3	s2025_inv1	s2025_inv2
All resident of the loss of the party	Alexandra ar Maria and Array a	NER SHALL BURGLAND AN AND	An a state so in particular distants	Strenden sidera kan diraka	A REPORT OF A DAMAGE AND A DAMAG	A PARAMENT MADANA MANYA SA
s2025_inv3	s2027_inv1	s2027_inv3	45 Inverter '	"Reconstruct	ion"	
and the second state of th			Spatial - Te 0% Missing	st-GAE		

IDS³ COE, SDLE Research Center, Roger H. French © 2023 https://udsil-coecourt.http://s.lle.coecourdu DE-NA000410-

COE 20

Μ

Motivation of PV-stGNN-PLR

Traditional PLR estimation methods face following challenges:

- Lack of reproducibility: PLR may be straightforward, the pipelines are complex
 - requires domain-knowledge guided decisions
- <u>Data Quality:</u> missing or erroneous data can occur
 - adds complexity and uncertainty to the results
- <u>Non-linearity</u>: a single PLR value cannot characterize non-linear PLR degradation patterns

PV-stGNN-PLR addresses above challenges through:

- A light-weighted spatio-temporal graph neural network-based model
 O Utilizes spatio-temporal coherence within PV fleets
- A novel loss function
 - to ensure clear disentanglement between extracted aging and fluctuation
- Automated Data Preprocessing
 - st-GAE imputation improves data quality

Timeseries Decomposition Framework: For PLR Determination

- "Parallel-friendly" K+1 GAE (graph autoencoder) blocks
- One aging-term
 - Extracts the long-term degradation pattern for PLR analysis
- K different fluctuation terms
 - Captures seasonalities and noises at different temporal resolutions

[1] Y. Fan, R. Wieser, X. Yu, J. Braid, A. Shaton, A. Hoffman, T. Didier, B. Spurgeon, D. Gibbons, L. S. Bruckman, Y. Wu, and R. H. French, "Using Neural Network Decomposition to Estimate Field Photovoltaic Performance Loss Rate," presented at the IEEE PVSC 50, San Juan Puerto Ripo USA, 2033, LE Research Center, Roger H. French © 2023

Trend Decomposition and Extraction

We compare Estimated Degradation Pattern (EDP) extracted by PV-st-GNN-PLR

- With top six best-performed baselines with **Real Degradation Pattern (RDP).**
- PV-st-GNN-PLR can better recover real degradation pattern
- EDP extracted by PV-st-GNN-PLR is the closest to RDP

- in both Piecewise Linear and Hyperbolic degradation patterns
- followed by XbX+UTC and RdTools (Hyperbolic)

1. PV Perf., 2. st-Graph Learning, 3. CRADLE, 4. Graph Gen. AI for PV

CRADLE Computing

GS: Arafath Nihar¹, Olatunde Akanbi¹, Tommy Ciardi¹, Tian Wang¹ UG: Rachel Yamamoto¹, Rounak Chawla¹, Hayden Caldwell¹, Faculty: Yinghui Wu¹, Vipin Chaudhary¹, Roger H. French^{1,2}

- . Department of Computer and Data Sciences, CWRU, Cleveland, OH
- 2. Department of Materials Science & Engineering, CWRU, Cleveland OH, USA

DE-NA0004104 IDS³ COE, SDLE Research Center, Roger H. French © 2023 https://mdx3-coe.com/http://sdle.cuse.edu

CRADLE Hardware: HPC Scaling up

Pioneer HPC: 5912 cores

- 32 gpu nodes • Markov HPC: 1240 cores
 - 16 gpu nodes

One Compute Node

- Up to 40 cores
- Up to 1Tb RAM memory
- Nvidia v100
- Up to 32 GB of GPU VRAM

HPC Compute Model

- Lots of FLOPS
- But Limited, Expensive Data Storage

CRADLE Hardware: HPC Scaling up

Nvidia AISC: 32 integrated GPU nodes

- 4 Nvidia DGX Pods, of 8 A100 GPUs
- 2.56 Tb GPU VRAM
- 4 Tb of RAM memory
- 15 Tb NVME storage

Pioneer HPC: 5912 cores

• 32 gpu nodes

Markov HPC: 1240 cores

• 16 gpu nodes

One Compute Node

- Up to 40 cores
- Up to 1Tb RAM memory
- Nvidia v100
- Up to 32 GB of GPU VRAM

HPC Compute Model

- Lots of FLOPS
- But Limited, Expensive Data Storage

CRADLE Hardware: Distributed Hadoop Scaling Out, for CRADLE 3.2

4 Name Nodes

- 224 Cores
- 2 Tb of RAM memory
- 21.6 Tb Storage

15 Data Nodes

- 840 Cores
- 3.84 Tb of RAM memory
- 1.92 Pb of Storage TB
- 30 NVIDIA Ampere A2 GPU

= 1.95 Pb of storage

CRADLE D/HPC

- Dist. Compute
 - \circ 2.5 Pb Cluster
 - \circ 7 TB Ram
 - 1164 CPU Cores
 - 30 GPUs
 - 480 GPU VRAM
 - 384k Cuda Cores
 - 1.2k Tensor Cores
- <u>High Perf. Compute</u>
 - 7152 CPU Cores
- <u>Nvidia AISC 8-DGX</u>
 - $\circ~$ 2.5 Tb VRAM
 - \circ 4 Tb RAM

Scale Out

 $\circ~$ 15 Tb nvme storage

27

MDS3 COE, SDLE Research Center, Roger H. French © 2023 https://mele3-concorm.http://sdl.consec.edu/ DE-NA000410

Large st-Graph Calculation Benchmarks

Benchmark tests using CRADLE's

• State-of-the-art CPUs & GPUs

Compute 100K² adjacency matrix

- Using multi-processing per compute node
- And fleet out jobs across compute nodes
 - Using SDLEfleets package:
 - ~19 Days → ~ 2 hrs

Use 1 NVIDIA A100 GPU, 80GB VRAM

- For large-scale graph learning
 - Without subgraph sampling

AISC is 32 Integrated A100 GPUs!

- With integrated RAM & NVME Storage
- A critical form of Compute Integration

Benchmark Results

- Model: st-GAE-Impute
- Large Scale st-<u>G</u>raph <u>AutoEncoder</u>
 - \circ 10k nodes, ~1 million edges
 - 1-year timeseries for each node
 - 5-minutes interval
- Training time
 - Using 1 year of timeseries data
 - 5 min. Interval
 - Run time: 1 hour 55 minutes
 - Epsilon = 0.25
- Inference time: For Data Imputation
 - On two-months data
 - Run time: 56 seconds

1. PV Perf., 2. st-Graph Learning, 3. CRADLE, 4. Graph Gen. AI for PV

PV System Analytics: Dynamic Graphs &

Graph Generative Al

CWRI

M. Karimi, Y. Wu, M. Koyuturk, R. H. French, "Spatiotemporal Graph Neural Network for Performance Prediction of Photovoltaic Power Systems," DE-NA0004104 UCF MDS³ COE, SDLE Research Center, Roger H. French © 2023 https://orkio.com/https://docs.com/https://docs.com/

PV System Modeling / Prediction

AI Generated Virtual PV System Performance

Existing data

Graphs can be used to predict performance for a Simulated PV system

st-GNNs are a type of "Data-driven Digital Twin"

Leverage existing systems' datastreams to learn

Can Generate & Predict performance of new Virtual PV Systems

- From Dynamic Graph's Imputed Node Features
 - Power / Meteorology / System Info

How do Dynamic Graphs Enable Generative AI?

Graph learning for PV

• Node features represent PV system properties 0

Node features Include

- Static Features
 - Time invariant attributes Ο (constants)
 - Installed Capacity
 - Climate Zone
 - Model Type

Dynamic Features

- Timeseries (time-varying) Ο
 - Meteorological Data
 - Temp. Wind, Irrad. etc. •
 - Power Output

IV - Curve Traces

Dynamic st-Graphs for Generating Performance of Virtual PV Systems

Dynamic Graphs

• Allow for the permutations of the existing graph structure

- New Nodes / Edges
- Directed graphs, to guide imputation of new Virtual PV Systems

Generative AI Modeling

An Illustration of how to derive the Generative GAE from training data and apply Generative GAE to generate data for new PV systems.

MDS³ COE, SDLE Research Center, Roger H. French © 2023 https://mdslearce.com-http://sdle.case.edu_DE-NA000410

The Challenges, & Opportunities, of AI/ML: Accelerating Time to Science

To develop AI/ML for Science, Such as PV Science We have High Performance Computing (HPC)

- "Scaled Up" Computing: Works for Physics Simulation Modeling
 - <u>Doesn't handle massive datasets</u>

Yet Big Tech uses Distributed Computing (DC)

• "Scaled Out" Computing: e.g. used by Google, Meta, etc.

AI/ML for Science needs D/HPC Computing

- Needs the integration of "Scaled Out & Scaled Up" Computing
- CRADLEtm: Common Research Analytics & Data Lifecycle Environment¹
 - Automated pipelines, FAIRification², Efficient Insights

Data Centric Al³ presents humans with a grand opportunity

- "<u>Computational Inflection Point for Scientific Discovery</u>"
 - $\circ~$ Augmenting human reasoning; Working alongside human researchers
 - Scientific investigations restructured around the "salient human tasks"
 - With computers handling the routine and onerous tasks
 - Supplementing our human capabilities

While decreasing reductionist approaches in scientific research

A. Khalilnejad, ry s;., "Automated Pipeline Framework for Processing of Large-Scale ...," PLOS ONE, 15, 12, p. e0240461, Dec. 2020
 W. C. Oltjen et al., "FAIRification, Quality Assessment, and Missingness Pattern ...," EEE PVSC, Jun. 2022, pp. 0796–0801.
 M. H. Jarrahi, et al., "The Principles of Data-Centric AI," Commun. ACM, vol. 66, no. 8, pp. 84–92, Jul. 2023,
 T. Hope, et al., "A Computational Inflection for Scientific Discovery." Commun. ACM, vol. 66, no. 8, pp. 62–73, Jul. 2023,

In SDLE Res. Cntr.

- Dist. Compute
 - 2.5 Pb Cluster
 - 7 TB Ram
 - 1164 CPU Cores
 - 30 GPUs
 - 480 GPU VRAM
 - 384k Cuda Cores
 - 1.2k Tensor Cores
- High Perf. Compute
 - 7152 CPU Cores
- Nvidia AISC 8 DGX
 - 2.5 Tb VRAM
 - 4 Tb RAM
 - 15 Tb nvme storage

SDLE Research Center: Acknowledgements

CWRU 🐓

35

COE

1. CRADLE, 2. Data Lifecycle, 3. st-Graphs, 4. Geospatial, 5. XRD, 6. XCT

DE-NA0004104 IDS³ COE, SDLE Research Center, Roger H. French © 2023 https://mdoilecoscourc.http://dlecoscourc

