
Report on Quarterly Air Monitoring, Area IV, Second Quarter 2022

Santa Susana Field Laboratory Ventura County, California

Prepared for: United States Department of Energy

Prepared by: North Wind Portage, Inc.

Report on Quarterly Air Monitoring, Area IV, Second Quarter 2022

Santa Susana Field Laboratory Ventura County, CA

September 2022

Contract No. DE-EM0000837-DT0007583

Prepared for:

U.S. Department of Energy 4100 Guardian Street, Suite 160 Simi Valley, California 93063

Prepared by:

North Wind Portage, Inc. 1425 Higham Street Idaho Falls, Idaho 83402 (This page intentionally left blank)

EXECUTIVE SUMMARY

This report summarizes the United States Department of Energy (DOE) air monitoring activities conducted during the second quarter of 2022, which is the seventeenth quarter (Q17) of the monitoring period (April 1, 2022, to June 30, 2022) at Area IV within the Santa Susana Field Laboratory (SSFL), located in Ventura County, California. The area specifically discussed within this report is the DOE portion, Area IV of SSFL, known as the Energy Technology Engineering Center (ETEC). Year one of the Baseline Air Monitoring Program consisted of Quarter 1 through Quarter 4. Year two consisted of Quarter 5 through Quarter 7. Year 3 consisted of Quarter 8 through Quarter 11. Year 4 consisted of Quarter 12 through Quarter 15. The program is continuing for a fifth year, which consists of Quarter 16 through Quarter 19.

This quarterly report has been developed by North Wind Portage, Inc., on behalf of DOE in cooperation with The Boeing Company (Boeing) and the National Aeronautics and Space Administration (NASA), as part of the Baseline Air Monitoring Program.

In accordance with the Final Baseline Air Monitoring Work Plan, Santa Susana Field Laboratory, Ventura County, California (NASA 2017), the responsible parties are monitoring for particulate matter between 2.5 and 10 microns in aerodynamic diameter (PM₁₀), volatile organic compounds (VOCs), and radionuclides at air monitoring stations DOE-1, DOE-2, DOE-3, and DOE-4 encompassing the ETEC, Area IV portion of SSFL. Having developed the baseline levels for PM₁₀, VOCs, and radionuclides helps distinguish between levels that naturally occur or were previously present at the ETEC site and if onsite remediation activities produce elevated results. Air monitoring will be continued throughout remediation activities to be able to compare results from onsite remediation activities to baseline data in the Annual Air Monitoring Reports.

The following air monitoring activities conducted during 2022, Q2, by DOE within Area IV are summarized in this report:

- Collected meteorological data from one location (DOE-4);
- Collected PM₁₀ data from four locations (DOE-1 through DOE-4);
- Collected air samples from four locations (DOE-1 through DOE-4) for VOC laboratory analysis; and
- Collected radionuclide samples for laboratory analysis from four locations (DOE-1 through DOE-4).

Meteorological data, PM₁₀, and radionuclide data all met the data completeness goal of 80%, and VOC data met the completeness goal of 85% for Q17. The eighteenth quarter of the Air Monitoring Program will begin July 1, 2022.

The following site activities were conducted during Q17 by DOE within Area IV:

- Quarterly site-wide groundwater level monitoring
- CDM Smith conducted groundwater sampling activities at the Former Sodium Disposal Facility as a part of groundwater interim measures
- Surveillance and maintenance.

CONTENTS

EXECL	ITIVE SU	MMARY	V
ACRO	NYMS AI	ND ABBREVIATIONS	.viii
1.	INTROD	UCTION	1-1
	1.1	Regional Climate and Wind Direction	1-2
2.	SUMMA	ARY	2-1
3.	ANALYT	TICAL SAMPLING EVENTS	3-1
4.	DATA		4-1
	4.1	Meteorological Data	4-1
	4.2	PM ₁₀ Data	4-4
	4.3	Volatile Organic Compound Data	4-5
	4.4	Radionuclide Data	4-5
5.	QA/QC	ACTIVITIES	5-6
	5.1	Field QA/QC	5-6
	5.2	Laboratory QA/QC	5-6
	5.3	Audit Results	5-6
6.	REFERE	NCES	6-1
		FIGURES	
Figure	1 – SSFI	L Air Monitoring Locations	
Figure	2 – DOE	E Air Monitoring Locations	
Figure	3 – DOE	E Quarterly Wind Rose	
		TABLES	
Table	1. Data s	screening quality control codes for meteorological data	4-1
Table	2. Data s	screening summary for monitored meteorological parameters	4-3
Table	3. PM ₁₀	data completeness for April 1, 2022, to June 30, 2022	.4-4
Table	4. Top fi	ve PM ₁₀ 24-hour average concentration days for Q17	.4-4

Table 5. Ambient air VOC data completeness	4-5
Table 6. Gross alpha and beta-gamma average results for Q17	4-€
Table 7. Meteorological sensor recommended maintenance frequency (Met One)	5-5
Table 8. PM ₁₀ audit completeness.	5-€

APPENDICES

Appendix A – PM₁₀ Daily Averages and Monthly Statistics

Appendix B – Analytical Results for Ambient Air VOCs

Appendix C – Radionuclide Results

Appendix D – PM₁₀ Monthly Audit Reports and Flow Verification Results

ACRONYMS AND ABBREVIATIONS

°C degrees Celsius °F degrees Fahrenheit

μCi microcurie(s)

μg/m³ microgram(s) per cubic meter

Boeing The Boeing Company

CAAQS California Ambient Air Quality Standard

CFR Code of Federal Regulations
CLIN contract line item number

DASC Data Assessment Statistical Calculator

DOE U.S. Department of Energy

DTSC State of California Department of Toxic Substances Control

EPA U.S. Environmental Protection Agency
ETEC Energy Technology Engineering Center

GC gas chromatography

Hg mercury

HHRA Human Health Risk Assessment

m meter(s)

m/sec meter(s) per second

mb millibar(s)

MDC minimum detectable concentration

mL milliliter(s)
mph miles per hour
MS mass spectrometry
MDL method detection limit

NAAQS National Ambient Air Quality Standards

NASA National Aeronautics and Space Administration
NIST National Institute of Standards and Technology

pCi picocurie(s)

PM₁₀ particulate matter less than 10 microns in aerodynamic diameter

Q17 seventeenth quarter
QA quality assurance
QC quality control

RAWS Remote Automatic Weather Stations

RPD relative percent difference SDG sample delivery group

SSFL Santa Susana Field Laboratory
VOC volatile organic compound

1. INTRODUCTION

National Aeronautics and Space Administration (NASA), The Boeing Company (Boeing), and the U.S. Department of Energy (DOE), also known as the responsible parties, are performing air monitoring at the Santa Susana Field Laboratory (SSFL) site located in Ventura County, California. The SSFL is a business segment of Boeing. SSFL operates the 2,849-acre site located atop a range of hills between the Simi and San Fernando valleys, north of Los Angeles. The westernmost 290 acres of the SSFL, known as Area IV, contains both DOE and Boeing facilities. The DOE portion is mainly contained within the 90 acres known as the Energy Technology Engineering Center (ETEC).

When opened in the late 1950s, ETEC was ideally remote from population centers to enable development of security-sensitive projects. These projects supported research for DOE and its predecessor agencies for nuclear research and energy development. Area IV includes buildings that house test apparatus for large-scale heat transfer and fluid mechanics experiments, mechanical and chemical test facilities, office buildings, and auxiliary facilities.

Air monitoring is being conducted in accordance with the *Final Baseline Air Monitoring Work Plan, Santa Susana Field Laboratory, Ventura County, California* (NASA 2017), which was submitted to the State of California Department of Toxic Substances Control (DTSC) on September 21, 2017. DTSC approved the Work Plan. Final locations of the air monitoring locations were approved by DTSC on January 30, 2018 (DTSC 2018).

The objective of the Air Monitoring Program is to evaluate project conditions and provide a basis for determining the magnitude of deviation from those baseline conditions that may result from onsite remediation activities (project) at SSFL. Responsible parties are monitoring for particulate matter between 2.5 and 10 microns in aerodynamic diameter (PM_{10}), and volatile organic compounds (VOCs), at 14 locations at SSFL. Data was collected for four perimeter samplers (DOE-1 through DOE-4) and analyzed for gross alpha and gross beta. Individual radionuclide concentrations were determined by analysis at an offsite laboratory for these same four locations. Meteorological data is also collected as a part of the Air Monitoring Program.

Figure 1 shows the air monitoring locations for the Air Monitoring Program. These locations were selected based on the areas to be remediated, with consideration of winds in the area, topographic features, and accessibility. The air monitoring sites were also selected based on guidance obtained from the U.S. Environmental Protection Agency's (EPA's) *Quality Assurance Handbook for Air Pollution Measurement Systems*, Volume II, Ambient Air Monitoring Program (EPA 2017) and *Meteorological Monitoring Guidance for Regulatory Modeling Applications* (EPA 2000). Sites were evaluated per 40 Code of Federal Regulations (CFR) 58, Appendix C – Ambient Air Quality Monitoring Methodology. DOE is responsible for DOE-1, DOE-2, DOE-3, and DOE-4 of the 14 monitoring locations, represented in Figure 1. VOCs, PM₁₀, and radionuclides are monitored at the four DOE monitoring locations, and meteorological conditions are monitored at the DOE-4 location. The DOE monitoring locations DOE-1 through DOE-4 are shown in Figure 2.

This report summarizes the results and quality assurance (QA) activities performed during the second quarter of 2022, which was from April 1, 2022, through June 30, 2022. This represents the seventeenth quarter (Q17) of the monitoring period.

1.1 Regional Climate and Wind Direction

The climate in the SSFL area is characterized as "Mediterranean." The mean temperature during the winter months is approximately 50 degrees Fahrenheit (°F) and the mean temperature in the summer months is approximately 70°F. Based on climate data for 2019 and 2020 from Weather Currents, average rainfall is on the order of 15.9 inches per year. The majority of the rainfall occurs between December and April with January and February being the wettest months.

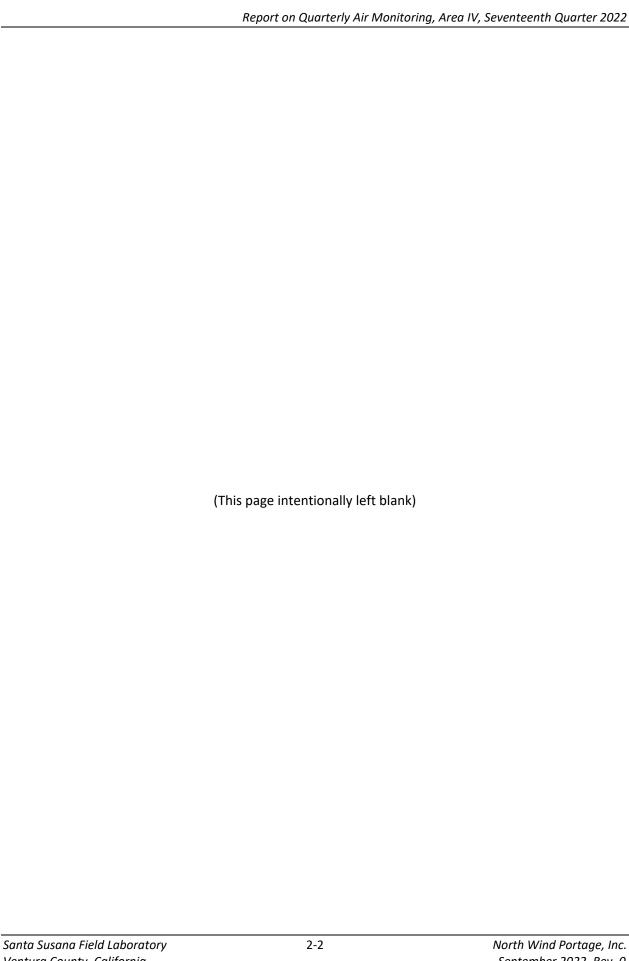
Through the second quarter in 2022, the Simi Valley received approximately 1.69 inches of rainfall.

The average hourly wind speed in Simi Valley varies significantly by season. The more turbulent part of the year lasts for 6 months, from November to April, with average western wind speeds of more than 7 miles per hour (mph). The calmer time of year lasts for 6 months, with northerly winds from May to October.

During the fall, winter, and spring, Santa Ana winds can blow from the north or northeast in excess of 35 mph.

2. SUMMARY

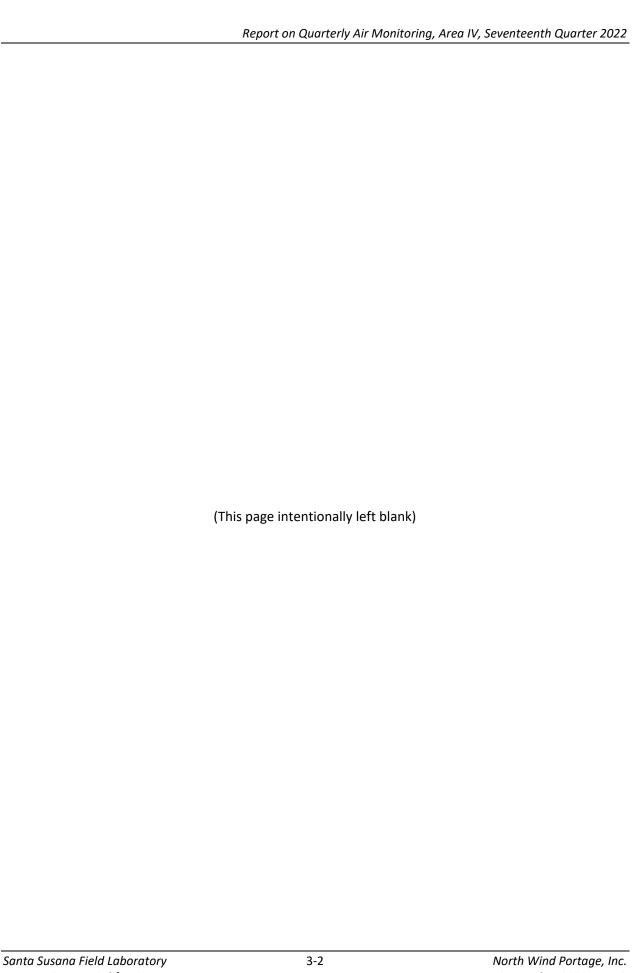
This report summarizes the air monitoring data collected during the Q17 reporting period (April 1, 2022, through June 30, 2022).


Quality objectives and data completeness were met for all meteorological, PM₁₀, VOC, and radionuclide data for Q17 of the Air Monitoring Program.

Urban background data compared with air monitoring data indicate that the PM_{10} concentrations measured at stations DOE-1, DOE-2, DOE-3, and DOE-4 during Q17 are comparable to the PM_{10} concentrations measured at stations characterizing urban background. Other sources that emit VOC characteristics are motor vehicle emissions, fossil fuel combustion, and wildfires. The results are reflected when considering SSFL site's urban background and relatively remote location from vehicle traffic. PM_{10} concentrations did not exceed the California Ambient Air Quality Standard (CAAQS; 50 micrograms per cubic meter $[\mu g/m^3]$) during Q17. During Q17 DOE-3 experienced a sensor failure starting June 19, 2022, and was out of commission until June 24, 2022 (as noted in Appendix A).

During Q17, no VOC analytes were detected above the EPA regional screening level (RSL).

Data collected during Q17 agrees with data collected, analyzed, and reported by the State of California DTSC, Los Angeles County Emergency Response Organization, the DOE Emergency Response organization, or other Multi-Agency Task Forces. Air monitoring at Area IV of the SSFL is to be continued starting July 1, 2022, for the eighteenth quarter of the Air Monitoring Program.


Site activities during Q17 included quarterly site-wide groundwater level monitoring, surveillance and maintenance, and groundwater sampling activities conducted by CDM Smith at the Former Sodium Disposal Facility as part of the groundwater interim measures.

3. ANALYTICAL SAMPLING EVENTS

VOCs are collected according to the EPA Toxic Compendium Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) (EPA 1999). Twenty-four-hour time-integrated samples are collected into Summa canisters via a flow controller and sent to an offsite laboratory for analysis. VOCs are collected every other week. There were six VOC sampling events with six field duplicate samples collected during this reporting period.

During Q17, radionuclide samples were collected at four perimeter sampler locations, DOE-1 through DOE-4. These samples were collected on glass fiber (Type A/E) filters that are changed twice a week. After a minimum 120-hour holding time to allow the decay of short-lived radon and thoron daughter products, the samples are simultaneously counted for gross alpha and beta activity with a low-background, thin-window, gas-flow proportional-counting system continually purged with P-10 argon/methane counting gas over a preset time interval. There were 104 airborne radioactivity filter samples collected in Q17 — 26 each for DOE-1, DOE-2, DOE-3, and DOE-4. Following analysis for gross alpha and gross beta radiation, sample filters were combined to form one composite sample representative of each location. The four composite samples were then analyzed for individual radionuclides at an offsite laboratory.

4. DATA

Sections 4.1 through 4.4 discuss Q17 air monitoring data.

4.1 Meteorological Data

General Summary

Meteorological data, also called weather data, is being collected as part of the ETEC cleanup and restoration effort. This information, particularly the wind direction and wind speed, can be used to help understand how dust and other air pollutants from the site are carried by the wind to possibly affect nearby public and residential areas. This is especially important when the E-BAM particulate monitors at the site detect higher than normal amounts of dust in the air. Scientific computer models can be used with this weather data in association with the particulate monitoring data to describe the air quality for the communities near the ETEC site. However, before the weather data can be used with the computer models it must first be tested for completeness and accuracy. A detailed description of the weather data collection and quality testing is provided in the following paragraphs.

Monitored meteorology parameters at the DOE-4 station included wind speed, wind direction, air temperature at 2 meters (m) and 10 m, relative humidity, precipitation, barometric pressure, and solar radiation. In addition, statistical parameters provided by the data logger included delta temperature (i.e., the 10-m temperature minus the 2-m temperature), maximum wind speed (i.e., wind gust), and standard deviation of wind direction. Observations were recorded at 15-minute intervals corresponding to minutes :00, :15, :30; and :45 each hour. There were 91 days in this reporting period (Q17) from 01 April 2022 through 30 June 2022 with a total of 8,736 possible 15-minute observations. This is the second quarter of Year 5 of the baseline monitoring.

Data Validation and Statistics

Data validation screening was performed on the recorded meteorological observations pursuant to EPA's *Meteorological Monitoring Guidance for Regulatory Modeling Applications* (EPA 2000) Table 8-4 (Suggested Data Screening Criteria) and Table 8-3 (Suggested Quality Control Codes). Validation screening provided the basis for evaluating data completeness and for determining sensor performance and/or maintenance status. Validation was performed following each weekly data download. Data validation quality control codes applied to the meteorological observations are defined in Table 1.

Table 1. Data screening quality control codes for meteorological data.

Code	Meaning	Description (as used for ETEC meteorological data validation)
0	Valid PASS – Observation is accurate within the performance limits of the instrument (i.e., value passes all data validation screening criteria).	
3	Acceptable	PASS – Observation originally failed initial quality control (QC) check (see Code 6), but additional review using other independent data and meteorological judgment support final validity.
6	Failed initial QC check	FAIL – Observation did not pass data validation screening criteria.
7	Suspect	FAIL – Observation failed initial data validation QC check (see Code 6) and could not be verified through additional review using other independent data.
8	Invalid	FAIL – Observation judged to be inaccurate or in error, and the cause is known.
9	Missing	FAIL – Observation was not collected.

The validation screening involved comparing, on an individual parameter basis, the recorded values (i.e., observations) against the EPA screening criteria shown in Table 2. The data validation procedure involved an initial automated review to apply a first level QC Code of 0 (valid), 6 (failed), or 9 (missing) as defined in Table 1. Observations initially flagged with a QC Code = 6 were then manually (i.e., second-level) reviewed by a project meteorologist. The procedure is outlined below:

- Values meeting all screening criteria for the respective meteorological parameter were automatically considered "valid" (QC Code = 0).
- Values not meeting a screening criterion were automatically flagged as "failed initial QC" (QC Code = 6). These values were subjected to second-level manual meteorological review using other available observations (e.g., 2-m vs. 10-m temperature at DOE-4 or from nearby Remote Automatic Weather Stations [RAWS] meteorological station CEEC1 in the Cheeseboro Canyon, California, area located 2.6 miles south of the DOE-4 site), and meteorological judgment:
 - o Values confirmed by second-level review were deemed "acceptable" (final QC Code = 3).
 - Otherwise, the values were deemed "suspect" (final QC Code = 7).
- Observations known to be inaccurate (QC Code = 8).
- Missing observations were automatically flagged as "missing" (QC Code = 9).

Values that pass validation with a final QC Code of 0 or 3 are included in the data completeness statistics and the final validated meteorological data set. Values with a final QC Code of 7, 8, or 9 are excluded from the final dataset and counted against the data completeness percentage. Quarterly data statistics for the meteorological parameters are listed in Table 2 along with year-to-date and project-to-date results. Year-to-date and project-to-date percentages are calculated as total valid observations through the completed quarters for the year divided by the total possible observations through this same period.

The completeness goal for meteorological data is 80% on an annual basis. Data completeness statistics for all completed reporting quarters in Year 5 of the Air Monitoring Program are presented in Table 2.

Wind Rose

The final validated 15-minute meteorological dataset was used to develop the wind rose for Q17 as presented in Figure 3. A wind rose is a graphical representation of wind speed and direction distribution (or wind climatology) for the period of interest. The frequency of winds blowing from specific directions are shown as petals on the wind rose, with the frequency of wind speeds depicted by color bands. Calm winds are identified as being less than 0.5 meters per second (m/sec).

During Q17, data capture for wind speed and direction at DOE-4 was 100%. The average and maximum wind speeds were 3.97 m/sec and 13.1 m/s, respectively. The maximum recorded wind gust was 19.9 m/sec. The predominant wind direction was from the east-southeast (ESE).

Table 2. Data screening summary for monitored meteorological parameters.

Meteorological	Screening Criteria (1)	Data Completeness Percent (%) (2)			
Parameter	(for valid sensor responses)	Q17	Year 5 to Date	Project to Date	
	between 0 and 25 m/sec		99.99	94.08	
Wind Speed	> 0.1 m/sec variation over 3 hours	100			
	> 0.5 m/sec variation over 12 hours				
	between 0 and 360 degrees				
Wind Direction	> 1 degree variation over 3 hours	100	99.99	94.88	
	> 10 degree variation over 12 hours				
Standard Deviation of	Inherits the completeness stats of Wind	100	99.99	94.88	
Wind Direction	Direction	100	33.33	94.00	
	≤ local record high (monthly basis)				
Temperature	≥ local record low (monthly basis)	100	99.99	94.88	
@ 2 m	> 0.5 degrees Celsius (°C) variation over 12	100			
	hours				
Temperature	≤ local record high (monthly basis)		99.99		
@ 10 m	≥ local record low (monthly basis)	100		94.88	
@ 10 III	> 0.5°C variation over 12 hours				
	≤ 0.1°C during daytime		99.99	94.88	
Delta Temperature	≥ -0.1°C during nighttime	100			
	between -3.0 and 5.0°C				
Deletion Housidian	relative humidity between 0-100%			00.04	
Relative Humidity	dew point T≤ambient T	100			
(and Dewpoint Temperature)	dew point T ≤ 5.0°C variation over 1 hour	100	99.99	89.04	
remperature)	dew point T > 0.5°C variation over 12 hours				
	≤ 1 inch in 1 hour				
Precipitation	≤ 4 inches in 24 hours	100	99.99	94.87	
	≥ 2 inches in 3 months				
	between 871 and 982 millibar (mb) (local)				
Barometric Pressure	(i.e., between 940 and 1060 mb sea level)	100	99.99	94.88	
	≤ 6 mb variation over 3 hours				
Calar Dadiation	> 0 at night	100	00.05	94.85	
Solar Radiation	≤ maximum possible for date and latitude	100	99.95		

- (1) Screening criteria from EPA Meteorological Monitoring Guidance (EPA 2000), Table 8-4.
- (2) Data Completeness % = [Observations Passing] / [Possible Observations)].
 - a. Missing or suspect observations count against data completeness statistics.
 - b. Year Two is an abbreviated data collection year spanning the period Apr 15-Dec 31, 2019 (i.e., Quarters 5, 6, and 7). This was done to synchronize future data collection years with calendar years.
 - c. Last column in this table represents the cumulative Completeness % for all completed quarterly reporting periods.
- (3) The number of possible 15-minute observations in the completed reporting periods:
 - Q03 = 8,832 • Q01 = 8,736 • Q02 = 8,832 • Q04 = 8,640• Year One = 35,040 Q05 = 8,736Q08 = 8,736 • Year Two = 25,056 (abbreviated) • Q06 = 8,832 • Q07 = 7,488 (only 3 quarters) • Q08 = 8,736 • Q12 = 8,640 • Q13 = 8,736 • Q10 = 8,832 • Q11 = 8,832 Year Three = 35,136 • Q14 = 8,832 • Q15 = 8,832 • Year Four = 35,040 • Q16 = 8,640 • Q17 = 8,736 • Year Five = 17,376 (to-date) = 147,648 (to-date) Project

4.2 PM₁₀ Data

 PM_{10} data, defined as coarse particles between 2.5 and 10 microns in aerodynamic diameter, are measured at the ETEC site. Sources of particulate matter can be naturally occurring or caused by human activity. The air monitoring conducted at ETEC is used to determine if any suspended particles are from activities conducted onsite or if they are consistent with surrounding air quality data. Some of the naturally occurring particles can originate from high winds, forest or grass fires, burning of fossil fuels in vehicles, or stirred-up road dust.

 PM_{10} data are collected with Met One E-BAM monitors at four monitoring locations. The Met One E-BAM uses the principle of beta attenuation to provide a determination of mass concentration. Twenty-four-hour concentrations are calculated from the hourly concentrations. There were 91 days in this reporting period.

- DOE-1 had valid readings all 91 days
- DOE-2 had valid readings all 91 days
- DOE-3 had valid readings 87 out of 91 days
- DOE-4 had valid readings all 91 days

DOE-1, DOE-2, and DOE-4 had 100% data completeness for PM_{10} in Q17. DOE-3 had a completeness of 96%, for a total data completeness of 99%, exceeding the project goal of 80% completeness for total samples collected (see Table 3). The complete table of daily averages is presented in Appendix A. The unit at DOE-3 (W23313) stopped working on June 19, 2022, due to a failed air pump, flow sensor, and board stack assembly and had to be repaired. The unit at DOE-3 (W23313) was replaced with backup unit (W23314), and DOE-3 was back up and running on June 24, 2022. DOE-3 had four days during which no data was collected.

Table 3. PM₁₀ data completeness for April 1, 2022, to June 30, 2022.

		T .	
Location	Valid Readings (Days)	Possible Readings (Days)	Data Completeness (Percent)
DOE-1 91		91	100%
DOE-2	91	91	100%
DOE-3 87		91	96%
DOE-4	91	91	100%
	Aver	99%	

The five highest PM₁₀ results identified for the reporting period are listed in Table 4 along with the CAAQS for PM₁₀. PM₁₀ concentrations were consistent with levels typically found in urban air. Of these top five results, two were recorded at DOE-2, two at DOE-4, and one at DOE-3. None of the top five values in Q17 were above the CAAQS of 50 μ g/m³ or NAAQS of 150 μ g/m³.

Table 4. Top five PM₁₀ 24-hour average concentration days for Q17.

Date	Location	PM ₁₀ Value (μg/m³)	CAAQS (µg/m³)
4/10/2022	DOE-2	48.958	50
6/2/2022	DOE-3	42.50	50
6/2/2022	DOE-4	42.416	50
4/10/2022	DOE-4	42.00	50
4/27/2022	DOE-2	41.875	50

Note: No values were above CAAQS screening level.

4.3 Volatile Organic Compound Data

VOCs are organic chemicals that have a high vapor pressure, which causes them to evaporate quickly and enter the surrounding air. VOCs can be naturally occurring or man-made. The VOC data collected can help distinguish between man-made detections from onsite activities or naturally existing organic chemicals. The VOC data collected are compared against screening levels. These screening levels are risk-based concentrations derived from standardized equations combining exposure information with toxicity data.

All four DOE locations were sampled each day during the six VOC sampling events this period. Data completeness goals for VOCs exceeded the project goal of 85% (see Table 5).

Table 3.7 timbrent all 100 data completeness.						
Location	Valid Readings (Days)	Possible Readings (Days)	Data Completeness (Percent)			
DOE-1	6	6	100%			
DOE-2	6	6	100%			
DOE-3 6		6	100%			
DOE-4	6	6	100%			
Average Total Data Completeness 100%						

Table 5. Ambient air VOC data completeness.

VOC detection results are presented in Table B-1 (Appendix B), including comparison to the April 2019 DTSC Human Health Risk Assessment (HHRA) Note 3 Screening Levels (DTSC 2019) or the 40 CFR 136 Appendix D for MDLs. During Q17, no VOC analytes were detected above the EPA regional screening level (RSL).

Two man-made VOC analytes, dichlorodifluoromethane (freon-12) and ethyl acetate, have been detected routinely at all four monitoring stations, during all quarterly sampling events, and in duplicate samples. These analytes were also detected as estimated values at NASA stations, but were not detected at Boeing stations. Based on laboratory QC data (method blanks, clean canister certifications), the sampling process and laboratory process are not the sources of the two analytes. The onsite source of the analytes is currently unknown.

Neither the establishment of sources for specific contaminants nor the performance of source apportionment was required for identifying remedial air quality impacts, nor was either within the scope or data quality objectives of the Air Monitoring Program.

4.4 Radionuclide Data

ETEC continuously monitors air at multiple locations for radioactive particles. This is performed for two reasons: (1) to determine the background airborne radioactivity concentration so that any possible releases from work activities can be detected, and (2) to detect any possible release from existing activities.

There were 104 airborne radioactivity filter samples collected in Q17 — 26 each for DOE-1, DOE-2, DOE-3, and DOE-4. Each sample was collected on a glass-fiber filter (as discussed in Section 3) and was analyzed using a "low background" Protean radiation counter system onsite. These samples included background radioactive materials and the potential of Area IV—specific radioactive materials.

The alpha and beta data are presented in Table C-1 (Appendix C). The onsite analysis determined only "alpha" or "beta/gamma" and did not analyze for specific isotopes. Isotopic analysis was performed later

by an offsite laboratory. Each sample produced a gross alpha and beta-gamma count. The analysis compared these values with the background radiation count rates, and using the volume of air collected determined the net counts and the minimum detectable concentration (MDC) for each sampling event. Some results in Table C-1 (Appendix C) are shown as negative values (because detector background is subtracted from the result).

All alpha samples except one were below the MDC, and this sample was only slightly greater than the MDC. Each MDC was below the airborne effluent limits specified in California regulations. There was no possibility of significant Area IV alpha radioactive material on these filters.

Approximately 43% of the beta samples were below MDC, and the gross (background radioactive material included) samples exceeded the MDC in 57% of samples, indicating the presence of airborne radioactive material (including background materials). The beta-gamma samples greater than the MDC were only slightly above the MDC, and were well below the effluent limits specified in California regulations. The elevated (but still low) results may be due to more airborne dust.

Following collection and onsite analysis, the air filters were composited and analyzed for specific radionuclides by an offsite laboratory. This data is shown in Table C-2 (Appendix C). This laboratory data determined that most radioactive material present was natural in origin, consisting of beryllium-7, polonium-210, potassium-40, combined radium-226 and radium-228, thorium-228, thorium-230, thorium-232, uranium-233/234, uranium-235/236, and uranium-238.

While artificial radionuclides (e.g., cesium-137, strontium-90, plutonium-239) were present in very small amounts, none of the results were above the MDC in Q17. The presence of these radionuclides is considered a part of the normal variation of global fallout and resuspension activities.

A summary of the gross air sampling data is shown in Table 6 below.

Location	Average alpha result (μCi/mL)	Average alpha MDC (μCi/mL)	Average beta result (μCi/mL)	Average beta MDC (μCi/mL)		
DOE-1	-6.95E-17	6.06E-15	2.64E-14	2.56E-14		
DOE-2	3.56E-16	6.06E-15	3.48E-14	2.56E-14		
DOE-3	2.85E-17	6.10E-15	2.37E-14	2.57E-14		
DOE-4	6.10E-16	6.10E-15	2.73E-14	2.57E-14		
Average	2.31E-16	6.08E-15	2.81E-14	2.57E-14		

Table 6. Gross alpha and beta-gamma average results for Q17.

5. QA/QC ACTIVITIES

The following QA/QC activities were conducted for the PM_{10} , VOC, radionuclide, and meteorological data collection and analysis.

5.1 Field QA/QC

5.1.1 PM₁₀

The 24-hour daily averages for Q17 are presented in Appendix A along with the monthly minimum, maximum, and 95th percentile for each station location.

Flow Verifications

Functionality of the Met One E-BAM units is verified and recorded monthly during instrument audits; however, the instruments are also checked several times a week for operability. During the monthly audits, the Met One E-BAM temperature, pressure, and flow rate are verified against a National Institute of Standards and Technology (NIST) traceable flowmeter. E-BAM units are occasionally swapped out for maintenance, and preliminary audits of the new units are performed. The Q17 audit results for the four DOE sites showed bias percentages that ranged from -1.20 to -0.75%. None of the results exceeded the flow rate measurement quality objective of +/- 4%.

Complete audit reports and flow verification results for Q17 are presented in Appendix D of this document. The flow rate verifications were based on 40 CFR 58, Appendix A, 3.3.1 and 4.2.2 through 4.2.3, along with the *Guideline on the Meaning and the Use of Precision and Bias Data Required by 40 CFR Part 58 Appendix A* (EPA 2007). The *Data Assessment Statistical Calculator* (DASC) tool, which is an EPA Excelbased software application, was used to perform the necessary statistical calculations based on the flowrate data collected during the monthly audits. Sections 2 and 2.5 of this EPA guidance document (EPA 2007) provide additional information and instruction for using the DASC tool.

5.1.2 VOCs

All data underwent at least two levels of QC review at the laboratory prior to transmission to North Wind. A minimum of 20% of the transmitted VOC results undergo a Level IV third-party data validation, annually. During this quarter, two of the six SDGs, P2201682 and P2202743, underwent the Level IV data validation. The data validation ensures that the required analytical measurement quality objectives are met to ensure the data are of sufficient quality for their intended purpose.

Each location had valid readings on the six sample days for a sample completeness of 100%. Data completeness goals for VOCs exceeded the project goal of 85%.

5.1.3 Field Duplicates

Six field duplicates were collected during this reporting period, one per sampling event. Ethyl acetate in SDGs #P2201682, P2202166, P2202388, and P2202566 was detected in four field duplicates that exceeded the quality objective of +/- 15% relative percent difference (RPD). For SDG #P2202743 the analytes n-Hexane and ethyl acetate were detected at levels higher than the RL in either the sample or duplicate, and in comparison, were reported as a non-detect in the associated sample or duplicate and exceeded the quality objective of +/- 15% RPD. Sixteen sample and duplicate analyte detections were within the quality objective of +/- 15% RPD. There were no other detections associated with the samples and associated duplicates collected during this reporting period.

5.1.4 Canister Pressure

Vacuum in the canisters is measured before and after sampling with an analog pressure gauge to ensure proper function. Final canister vacuums ranged from -5 inches mercury (Hg) to -1 inches Hg during this reporting period.

5.1.5 Radiological

The detector for onsite gross alpha and beta sample analysis is calibrated annually by a third-party vendor using sources traceable to the NIST. The detector is checked by counting alpha- and beta-emitting sources at the site when received from the vendor following calibration. This establishes an acceptable

performance range for daily source checks. On each day the detector is used, performance is determined with the site source. The detector may be used if the daily check is within the acceptable performance range.

Samples analyzed at the offsite laboratory are QC-checked at the laboratory. These QC checks include blanks, laboratory replicates, matrix spikes, and matrix spike duplicates. Barium, which behaves chemically similar to radium, is used as a carrier to determine the yield of the chemical extraction.

Since Q13, 100% of the radiological analytical results have undergone Level IV, third-party data validation. The data validation ensures that the required analytical measurement quality objectives are met to ensure the data are of sufficient quality for their intended purpose.

5.1.6 Meteorological

During the reporting period, a weekly data validation screening and review was performed on the monitored meteorological parameters based on the EPA guidance document *Meteorological Monitoring Guidance for Regulatory Modeling Applications* (EPA 2000), Table 8-4 – Suggested Data Screening Criteria, as outlined in Section 4.1. The data validation procedure provided the basis for evaluating data completeness and for determining sensor performance and/or maintenance status.

5.1.7 Maintenance

Routine visual checks were performed on the meteorological station during weekly data downloading site visits. This included inspection of the meteorological tower sensors, E-BAM monitoring unit wind sensors, and solar-powered batteries to ensure proper functioning.

5.1.8 Corrective Action

Issues and corrective actions regarding the PM_{10} monitors and the meteorological station are noted in Sections 5.1.8.1 and 5.1.8.2, respectively. Issues and corrective actions regarding the E-BAM monitors are noted in Section 4.2. No issues or corrective actions were noted regarding the remaining monitoring equipment or sampling events during this reporting period.

5.1.8.1 **PM**₁₀ **Monitors**

Refer to Section 4.2 for a detailed description of PM_{10} air monitoring equipment issues.

5.1.8.2 Meteorological Station

Although the data percent completion goal during Q17 was met: (1) the solar radiometer continued to record values that exceed the daily screening criteria and was affected by shadows cast by the tower, (2) the data logger clock time had drifted (slowed) by approximately 45 minutes, and (3) the improperly programmed data logger continues to affect calculation of delta temperature (i.e., temperature difference between 2 m and 10 m). These three items are discussed below, including issues and corrective actions/resolutions. The recommend sensor maintenance schedule is provided as item (4) below.

(1) Solar Radiometer:

Data Quality Issues:

 The solar radiometer continued to display an upward bias drift in the raw data observations.

• Corrective Actions:

- <u>Bias Removal</u> In the quarterly report for Quarter 14, details of the bias and correction were first presented. Quarterly adjustment factors have been developed and applied to the project datasets starting with the first quarter of 2020 based on a statistical trend analysis. A "bias removal" adjustment factor was also developed and applied to the Q17 solar radiometer. All validated project meteorological datasets to-date now include "unbiased" solar radiometer observations.
- Resolutions The unbiased observations are in line with the baseline year observations and theoretical values. The sensor drift bias will continue to be evaluated and correction factors applied during upcoming quarters. The following table presents the quarterly adjustment factors that have been applied to the solar radiometer raw data. In addition, replacement of the solar radiometer is being considered.

Solar Radiometer Adjustment Factor - Quarterly

(addistinent factor to eliminate drift blas)					
MONTH	2020	2021	2022		
1					
2	0.946	0.894	0.859		
3					
4					
5	0.924	0.889	0.861		
6					
7		0.860			
8	0.888		-		
9					
10					
11	0.893	0.849	-		
12					

(2) Wind Speed Sensor

Data Quality Issue:

 Near the end of Quarter 15 the wind speed sensor failed and then began working again after an 11-day period. To avoid having the same failure, since Q16, the data has been closely monitored to verify that this is no longer a problem. This issue was not present during Q17.

Corrective Action:

 Resolution – The wind speed sensor observations will continue to be monitored for unusual or unacceptable response. Replacement of the sensor or bearings will be performed if needed.

(3) Delta Temperature Calculation

• Data Quality Issue:

o For meteorological monitoring, delta temperature should be defined as T at the higher level minus T at the lower level. However, the datalogger was improperly programmed to calculate the inverse of delta temperature when the station was replaced after the Woolsey Wildfire during Q3. Consequently, delta temperature observations are being calculated with an opposite sign compared to the values from the original data logger.

Corrective Action:

 <u>Datalogger Equation</u> – Instead of reprogramming the datalogger to correctly calculate delta temperature, an adjustment multiplication factor of "-1" has been applied to the delta temperature values from the new data logger prior to performing the data validation.

<u>Resolution</u> — With application of the "-1" multiplication factor, delta temperature values in the validated project dataset accurately present delta temperature as:

Delta Temperature = [Temperature @ 2 m] minus [Temperature @ 10 m]

(4) Recommended Maintenance Schedule:

Although not a corrective action, the manufacturer's recommended maintenance frequency for meteorological sensors is presented below for information purposes. Proper and timely maintenance of the meteorological sensors is critical for ensuring that the data are not only valid (based on screening criteria) but also accurate. Schedules for maintenance and calibration are provided in the sensor user manuals and based on the in-service time of the sensor. Table 7 lists the recommended maintenance schedules for the Met One sensors installed at the DOE-4 meteorological station.

Table 7. Meteorological sensor recommended maintenance frequency (Met One).

Sensor	Frequency	Maintenance
WS	6–12 Month	Inspect for proper operation (manual check of pulses per revolution, bearing condition, anemometer cup condition, and bearing replacement if warranted)
	12–24 Month	Return to Met One for complete overhaul
	6–12 Month	Inspect for proper operation (manual check of sensor readings through 360°)
WD	6–12 Month	Field calibration
	12-24 month	Replace bearings & potentiometer
Т	6–12 Month	Inspect sensor for proper operation (field comparison sensor reading against a precision mercury thermometer)
DII	6–12 Month	Inspect sensor for proper operation (compare sensor reading against local weather service or field psychrometer)
RH	12 Month	Return sensor to Met One for calibration and replacement of O-rings and filter membrane
Rain Gauge	6 Month	Clean sensor and bucket and field verify proper operation
Pressure	12 Month	Return sensor to Met One for calibration and replacement of O-rings and filter membrane
Radiometer	Monthly	Clean sensor glass dome with clean rag/tissue

Note: Maintenance schedules as specified in the respective Met One sensor user manuals.

5.2 Laboratory QA/QC

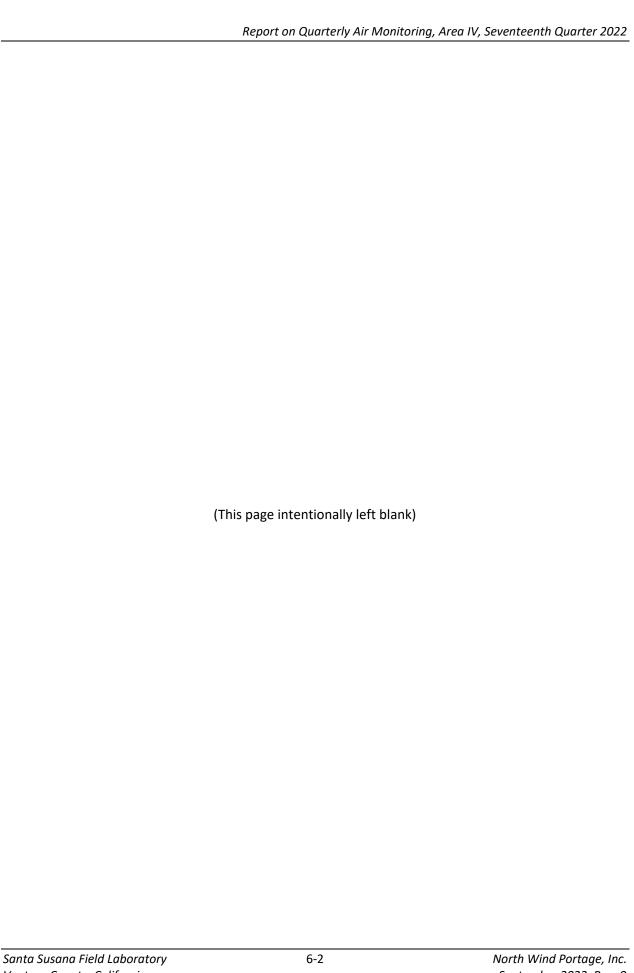
This report covers 30 air monitoring samples for VOCs collected and analyzed according to the EPA Toxic Compendium Method TO-15, Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) (EPA 1999). These samples were reported under six SDGs by the laboratory. All six SDG analyses were performed by ALS in Simi Valley, CA. For each SDG, the laboratory ran continuing calibration verification, a method blank, and laboratory control samples, and verified surrogate recoveries for each sample.

The laboratory provided certified clean canisters for the sampling events. The certification of the canister batch is considered the equipment blank for each sampling event. The ALS case narrative discusses the cleaning of the canisters.

5.3 Audit Results

The PM_{10} instruments were calibrated at the manufacturer and were functioning properly upon installation. The PM_{10} instruments were audited monthly with a secondary NIST traceable flow meter. Although audits occur only monthly, the instruments were checked several times a week to ensure that they were functioning. Table 8 lists the dates for audits conducted in April through June. No flow rate comparisons exceeded the project's acceptance criterion of +/- 4. The sample nozzles and support vanes were cleaned as needed. Complete audit reports are presented in Appendix D.

Table 8. PM₁₀ audit completeness.


Location	Met One E-BAM Serial Number	Parameter	Date
DOE-1	X16067	PM_{10}	04/26/2022
DOE-2	Y12096	PM_{10}	04/26/2022
DOE-3	W23313	PM ₁₀	04/26/2022
DOE-4	W23310	PM ₁₀	04/26/2022
DOE-1	X16067	PM ₁₀	05/19/2022
DOE-2	Y12096	PM ₁₀	05/19/2022
DOE-3	W23313	PM ₁₀	05/19/2022
DOE-4	W23310	PM ₁₀	05/19/2022
DOE-1	X16067	PM ₁₀	06/24/2022
DOE-2	Y12096	PM ₁₀	06/24/2022
DOE-3	W23314	PM ₁₀	06/24/2022
DOE-4	W23310	PM ₁₀	06/24/2022

6. REFERENCES

- 10 Code of Federal Regulations (CFR) 20, Appendix B, "Annual Limits on Intake (ALIs) and Derived Air Concentrations (DACs) of Radionuclides for Occupational Exposure; Effluent Concentrations; Concentrations for Release to Sewerage," Table 2.
- 40 CFR 58, Appendix C Ambient Air Quality Monitoring Methodology.
- 40 CFR 136, Appendix B Definition and Procedure for the Determination of the Method Detection Limit.
- California Environmental Protection Agency, Department of Toxic Substances Control (DTSC). 2018.

 Approval of the Final Air Monitoring Station Locations for the Santa Susana Field Laboratory,

 Ventura County, California. January.
- California Environmental Protection Agency, DTSC. 2019. Human and Ecological Risk Office Human Health Risk Assessment Note Number 3, DTSC-modified Screening Levels. April. https://www.dtsc.ca.gov/AssessingRisk/upload/HHRA-Note-3-April-2019.pdf.
- National Aeronautics and Space Administration (NASA). 2017. Santa Susana Field Laboratory Baseline Air Monitoring Report Work Plan Report. Prepared for California Department of Toxic Substances Control. Prepared on behalf of National Aeronautics and Space Administration, George C. Marshall Space Flight Center, The Boeing Company, and Department of Energy, Energy Technology and Engineering Center. September. Available online at: https://www.dtsc-ssfl.com/files/lib air monitor/work plan/67496 SSFL AirMonitoringWorkPlan Final.pdf
- U.S. Environmental Protection Agency (EPA). 1999. *Air Method, Toxic Organics-15 (TO-15), Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)*. EPA 625/R-96/010b. January. Available online at: https://www.epa.gov/homeland-security-research/epa-air-method-toxic-organics-15-15-determination-volatile-organic
- U.S. Environmental Protection Agency (EPA). 2000. *Meteorological Monitoring Guidance for Regulatory Modeling Applications, United State Environmental Protection Agency, Office of Air Quality Planning and Standards*. EPA-454/R-99-005. February.
- U.S. Environmental Protection Agency (EPA). 2007. *Guideline on the Meaning and the Use of Precision and Bias Data Required by 40 CFR Part 58 Appendix A, Version 1.1.* EPA-454/B-07-001. October.
- U.S. Environmental Protection Agency (EPA). 2017. *Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient Air Monitoring Program.* EPA-454/B-17-001. January.

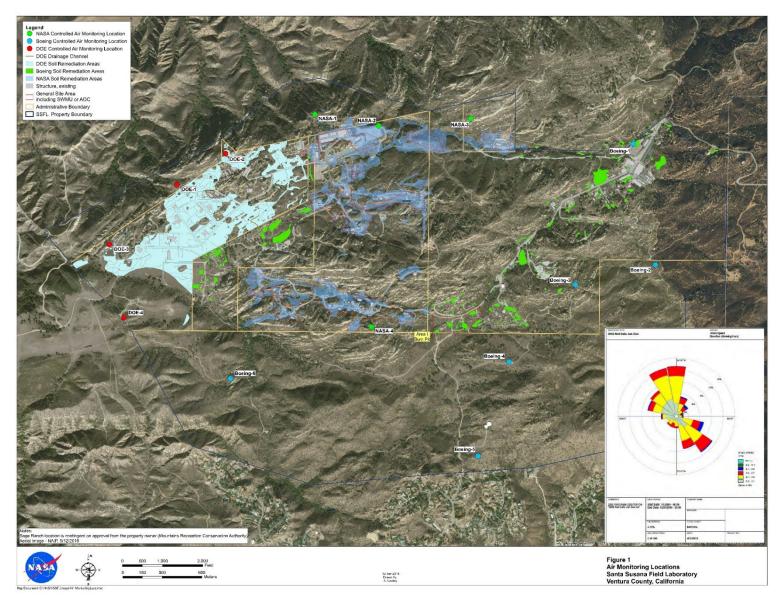


Figure 1 – SSFL Air Monitoring Locations

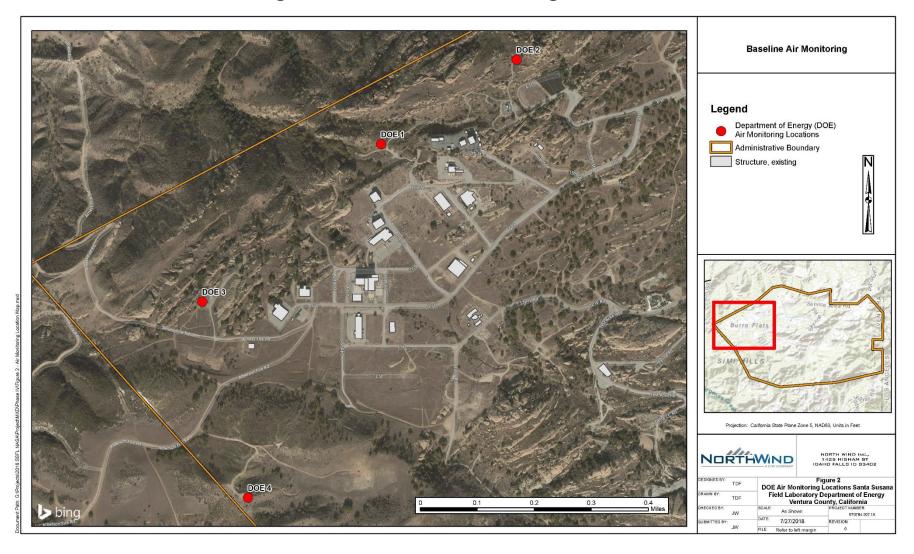
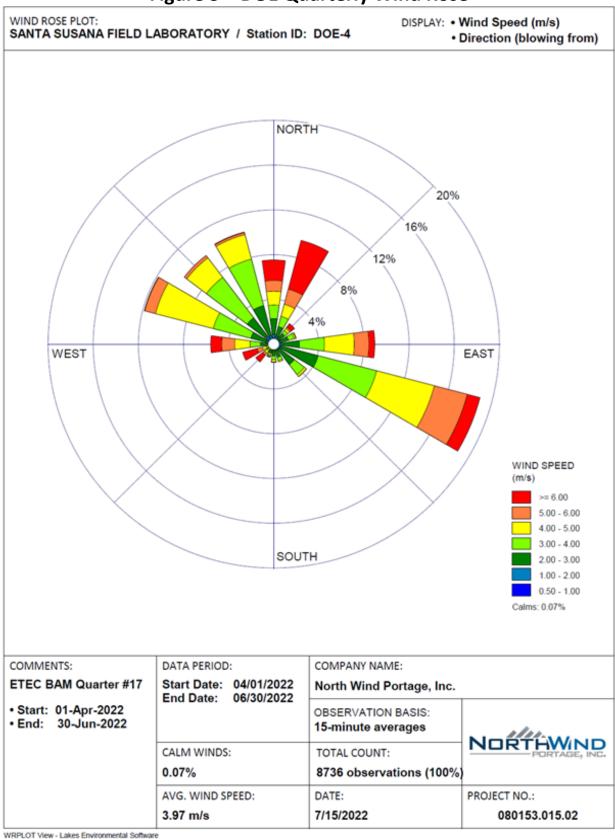
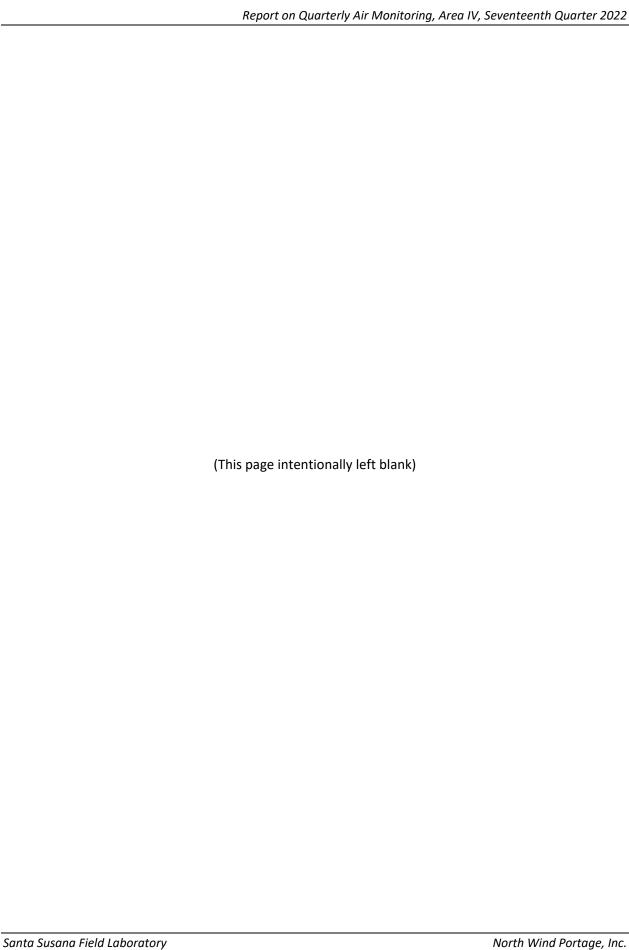
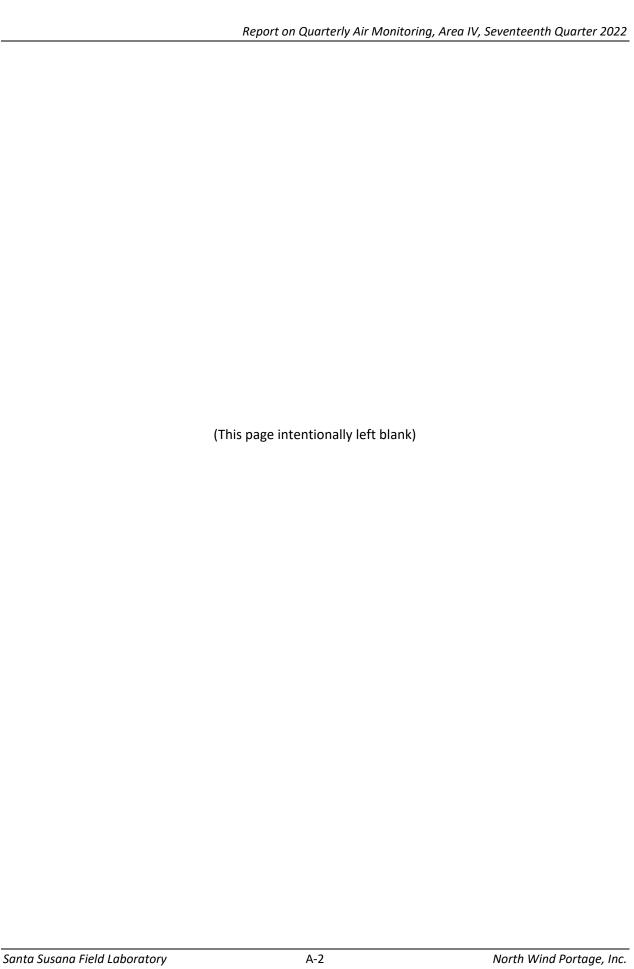




Figure 2 – DOE Air Monitoring Locations


Figure 3 – DOE Quarterly Wind Rose

APPENDIX A

PM₁₀ Daily Averages and Monthly Statistics

PM₁₀ Daily Averages

1 Will Barry Averages					
Site ID	DOE-1	DOE-2	DOE-3	DOE-4	
	PM ₁₀ (μg/m ³)	$PM_{10} (\mu g/m^3)$	$PM_{10} (\mu g/m^3)$	PM ₁₀ (μg/m ³)	
Sample Date	(CAAQS	(CAAQS	(CAAQS	(CAAQS	
- 1-1-1	50 μg/m³)	50 μg/m³)	50 μg/m³)	50 μg/m³)	
04/01/22	12.666	21.541	11.458	15.625	
04/02/22	10.833	9.75	11.416	13.666	
04/03/22	9.791	9.083	12.458	9.333	
04/04/22	12.416	13.041	12.666	12.708	
04/05/22	8.875	7.541	8.458	9.458	
04/06/22	15.541	10.5	11.166	12.166	
04/07/22	11.75	12.041	11.5	13.041	
04/08/22	10.375	10.083	10.291	11.125	
04/09/22	26.708	22.125	24.25	24.75	
04/10/22	37.333	48.958	37.458	42	
04/11/22	31.375	27.791	28.416	30.416	
04/12/22	17.125	12.208	13.625	12.416	
04/13/22	12.208	11	12.583	12.083	
04/14/22	13.833	13.541	16.625	16.583	
04/15/22	14.375	11.583	13.25	17.416	
04/16/22	5.666	6.708	6.625	7.291	
04/17/22	8.333	7.25	8.375	11.916	
04/18/22	15.333	15.041	16.5	13.791	
04/19/22	15.25	20.333	16.708	16.125	
04/20/22	10.333	9.041	11.875	16.166	
04/21/22	7.708	23.25	7.625	9.958	
04/22/22	8.5	6.166	7.083	7.625	
04/23/22	6.375	4.541	5.333	7.5	
04/24/22	5.625	4.25	5.875	6.583	
04/25/22	7.625	6.375	5.833	6.791	
04/26/22	19.916	14.916	22.5	18.375	
04/27/22	26.041	41.875	29.708	29.75	
04/28/22	20.666	20.708	20.375	22.333	
04/29/22	20.375	16	19.375	18.333	
04/30/22	21.541	18.625	20.416	20.833	
05/01/22	26.541	35.458	21.875	26.166	
05/02/22	21.625	16.5	25.333	20.166	
05/03/22	20.458	16.916	17.958	22.333	
05/04/22	21.208	27.416	21.666	20.125	
05/05/22	22.208	29.583	29.75	18.708	
03/03/22	22.200	25.505	23.73	10.700	

Site ID	DOE-1	DOE-2	DOE-3	DOE-4
Sample Date	PM ₁₀ (μg/m ³)	PM ₁₀ (μg/m ³)	$PM_{10} (\mu g/m^3)$	PM ₁₀ (μg/m ³)
	(CAAQS	(CAAQS	(CAAQS	(CAAQS
	50 μg/m³)	50 μg/m³)	50 μg/m³)	50 μg/m³)
05/06/22	15.75	19.25	18.083	15.083
05/07/22	20.166	18.958	29.125	23.125
05/08/22	21.208	21.25	21.083	25.041
05/09/22	20.583	15.666	20.666	18.375
05/10/22	11	10.666	13.291	14.041
05/11/22	8.875	8.208	9.541	9.416
05/12/22	10.708	10.791	10.958	11.791
05/13/22	9.458	9.25	8.916	10.708
05/14/22	10.166	9.416	10.791	10.041
05/15/22	14.75	12.791	16.583	14.25
05/16/22	23.541	21.375	22.041	23
05/17/22	20.916	17.625	17.291	25.833
05/18/22	24.291	23.25	26.166	27.208
05/19/22	21.583	18.916	18.958	25.708
05/20/22	9.25	15.708	11.75	13.416
05/21/22	13.583	13.083	19.458	14.5
05/22/22	16.625	16.125	13.208	26.916
05/23/22	23.916	30.458	23.291	28.708
05/24/22	21.5	18.166	22.666	24.625
05/25/22	19.75	18.541	23.5	29.375
05/26/22	19.583	24.375	31.916	20.208
05/27/22	14.916	16.75	10.5	16.041
05/28/22	11.375	11.458	10.666	13.291
05/29/22	15.75	10.5	13.791	15.25
05/30/22	27.458	41.375	22.833	28.375
05/31/22	22.083	36.541	15.75	17.333
06/01/22	27.208	19.916	19.166	16.458
06/02/22	29.958	33.625	42.5	42.416
06/03/22	20.208	20.791	18.708	23.125
06/04/22	14.666	21.041	20.916	19.666
06/05/22	11.375	16.25	12.125	15.708
06/06/22	13.875	18.333	14.708	29.75
06/07/22	20.208	15.125	17.75	20
06/08/22	21.625	25.041	27.041	21.041
06/09/22	23.041	23.125	18.833	21.041
00,03,22	25.071	23.123	10.000	21.071

Site ID	DOE-1	DOE-2	DOE-3	DOE-4
	PM ₁₀ (μg/m ³)	PM ₁₀ (μg/m ³)	PM ₁₀ (μg/m ³)	PM ₁₀ (μg/m³)
Sample Date	(CAAQS	(CAAQS	(CAAQS	(CAAQS
	50 μg/m³)	50 μg/m³)	50 μg/m³)	50 μg/m³)
06/11/22	13.166	13.333	13.083	15.5
06/12/22	15.875	12.5	16.75	15.708
06/13/22	18.666	18.875	14.583	15.208
06/14/22	23.166	18.958	20.083	24.125
06/15/22	24.666	25.25	31.25	26.833
06/16/22	25.125	25.541	35.583	38.5
06/17/22	16.875	18.125	22.125	18.125
06/18/22	15.916	16.958	15.333	18.25
06/19/22	10.583	15.75	10.458 *	12.791
06/20/22	13.375	12.541		12
06/21/22	19.791	17.333		13.375
06/22/22	20.458	12.875		13.75
06/23/22	11.291	8.791		10.916
06/24/22	13.791	7.833	15.318 *	9.208
06/25/22	11.375	8.708	11.875	10.916
06/26/22	14.875	11.375	14.25	12.166
06/27/22	22.083	19.458	24.875	22.458
06/28/22	14.708	15.458	17.166	13.5
06/29/22	19.833	16.625	21.625	16.875
06/30/22	21.208	17.708	18.083	16.041

Note: * indicates the average is only for a partial day worth of readings due to sensor failure

PM₁₀ Monthly Statistics

	April 2022 May 2022						June 2022			
		PM ₁₀			PM ₁₀			PM ₁₀		
Location			95th		95th				95th	
ID	High	Low	PCTL	High	Low	PCTL	High	Low	PCTL	
DOE-1	37.70800	9.83300	32.45800	31.91600	9.75000	26.97900	30.08300	7.91600	27.84550	
DOE-2	33.25000	9.33300	30.12500	26.54100	6.50000	25.99950	26.00000	5.83300	22.85975	
DOE-3	36.04100	8.83300	34.33300	29.20800	7.83300	26.52050	33.29100	7.75000	29.66630	
DOE-4	41.16600	10.25000	34.58300	62.08300	7.83300	29.22900	29.00000	7.70800	25.09565	

PCTL = percentile

APPENDIX B

Analytical Results for Ambient Air VOCs

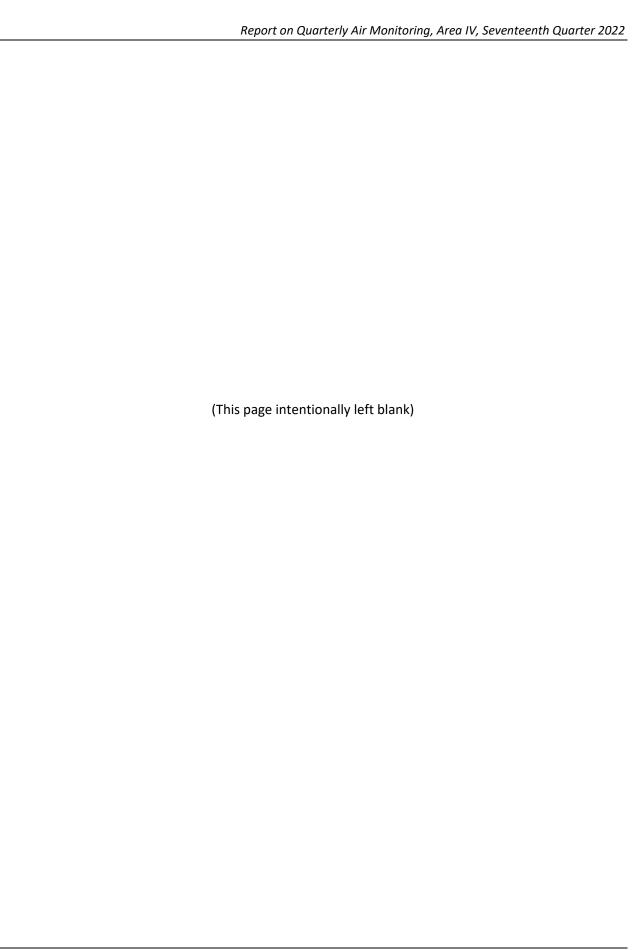


Table B-1. Ambient air VOC detection results compared to SLs.

Location			Method Detection		Screening Level	
ID	Sample Date	Analyte	Limit	Result	Value	SL Source
DOE-1	04/13/2022	Dichlorodifluoromethane	0.2	2.2	100	US EPA RSL
DOE-1	04/13/2022	Trichlorofluoromethane	0.098	1.1	1300	DTSC HHRA NOTE 3
DOE-2	04/13/2022	Dichlorodifluoromethane	0.2	2.3	100	US EPA RSL
DOE-2	04/13/2022	Trichlorofluoromethane	0.098	1.1	1300	DTSC HHRA NOTE 3
DOE-3	04/13/2022	Dichlorodifluoromethane	0.11	2.3	100	US EPA RSL
DOE-3	04/13/2022	Ethyl acetate	0.21	20	73	US EPA RSL
DOE-3	04/13/2022	Trichlorofluoromethane	0.099	1.1	1300	DTSC HHRA NOTE 3
DOE-4	04/13/2022	Dichlorodifluoromethane	0.11	2.3	100	US EPA RSL
DOE-4	04/13/2022	Ethyl acetate	0.16	5 (;J)	73	US EPA RSL
DOE-4	04/13/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-4	04/13/2022	Dichlorodifluoromethane	0.1	2.2	100	US EPA RSL
DOE-4	04/13/2022	Ethyl acetate	0.15	14 (;J)	73	US EPA RSL
DOE-4	04/13/2022	Trichlorofluoromethane	0.099	1.1	1300	DTSC HHRA NOTE 3
DOE-1	04/28/2022	Dichlorodifluoromethane	0.12	2.4	100	US EPA RSL
DOE-1	04/28/2022	Ethyl acetate	0.40	16	73	US EPA RSL
DOE-1	04/28/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-1	04/28/2022	Dichlorodifluoromethane	0.12	2.4	100	US EPA RSL
DOE-1	04/28/2022	Ethyl acetate	0.40	14	73	US EPA RSL
DOE-1	04/28/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-2	04/28/2022	Dichlorodifluoromethane	0.13	2.4	100	US EPA RSL
DOE-2	04/28/2022	Ethyl acetate	0.42	8.1	73	US EPA RSL
DOE-2	04/28/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-3	04/28/2022	Dichlorodifluoromethane	0.12	2.4	100	US EPA RSL
DOE-3	04/28/2022	Ethyl acetate	0.39	3.7	73	US EPA RSL
DOE-3	04/28/2022	Trichlorofluoromethane	0.11	1.2	1300	DTSC HHRA NOTE 3
DOE-4	04/28/2022	Dichlorodifluoromethane	0.12	2.4	100	US EPA RSL
DOE-4	04/28/2022	Ethyl acetate	0.40	6.1	73	US EPA RSL
DOE-4	04/28/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-1	05/13/2022	Dichlorodifluoromethane	0.13	2.4	100	US EPA RSL
DOE-1	05/13/2022	Ethyl acetate	0.42	18	73	US EPA RSL
DOE-1	05/13/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-2	05/13/2022	Dichlorodifluoromethane	0.14	2.3	100	US EPA RSL
DOE-2	05/13/2022	Ethyl acetate	0.45	13	73	US EPA RSL
DOE-2	05/13/2022	Trichlorofluoromethane	0.13	1.1	1300	DTSC HHRA NOTE 3
DOE-2	05/13/2022	Dichlorodifluoromethane	0.12	2.3	100	US EPA RSL
DOE-2	05/13/2022	Ethyl acetate	0.38	3.3	73	US EPA RSL
DOE-2	05/13/2022	Trichlorofluoromethane	0.11	1.1	1300	DTSC HHRA NOTE 3
DOE-3	05/13/2022	Dichlorodifluoromethane	0.14	2.3	100	US EPA RSL
DOE-3	05/13/2022	Trichlorofluoromethane	0.13	1.2	1300	DTSC HHRA NOTE 3
DOE-4	05/13/2022	Dichlorodifluoromethane	0.14	2.3	100	US EPA RSL
DOE-4	05/13/2022	Ethyl acetate	0.44	28	73	US EPA RSL
DOE-4	05/13/2022	Trichlorofluoromethane	0.13	1.2	1300	DTSC HHRA NOTE 3
DOE-1	05/27/2022	Ethyl acetate	0.39	12 (V;)	73	US EPA RSL
DOE-1	05/27/2022	Trichlorofluoromethane	0.11	1.2	1300	DTSC HHRA NOTE 3

			Method		Screening	
Location			Detection		Level	
ID	Sample Date	Analyte	Limit	Result	Value	SL Source
DOE-2	05/27/2022	Dichlorodifluoromethane	0.12	2.5	100	US EPA RSL
DOE-2	05/27/2022	Ethyl acetate	0.39	8.1 (V;)	73	US EPA RSL
DOE-2	05/27/2022	Trichlorofluoromethane	0.11	1.2	1300	DTSC HHRA NOTE 3
DOE-3	05/27/2022	Dichlorodifluoromethane	0.12	2.5	100	US EPA RSL
DOE-3	05/27/2022	Ethyl acetate	0.38	7.8 (V;)	73	US EPA RSL
DOE-3	05/27/2022	Trichlorofluoromethane	0.11	1.2	1300	DTSC HHRA NOTE 3
DOE-3	05/27/2022	Dichlorodifluoromethane	0.12	2.6	100	US EPA RSL
DOE-3	05/27/2022	Ethyl acetate	0.38	20 (V;)	73	US EPA RSL
DOE-3	05/27/2022	Trichlorofluoromethane	0.11	1.2	1300	DTSC HHRA NOTE 3
DOE-4	05/27/2022	Dichlorodifluoromethane	0.13	2.6	100	US EPA RSL
DOE-4	05/27/2022	Ethyl acetate	0.40	9.6 (V;)	73	US EPA RSL
DOE-4	05/27/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-1	06/09/2022	Dichlorodifluoromethane	0.13	2.3	100	US EPA RSL
DOE-1	06/09/2022	Ethyl acetate	0.43	12	73	US EPA RSL
DOE-1	06/09/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-2	06/09/2022	Dichlorodifluoromethane	0.14	2.2	100	US EPA RSL
DOE-2	06/09/2022	Ethyl acetate	0.46	13	73	US EPA RSL
DOE-2	06/09/2022	Trichlorofluoromethane	0.13	1.1	1300	DTSC HHRA NOTE 3
DOE-3	06/09/2022	Dichlorodifluoromethane	0.13	2.3	100	US EPA RSL
DOE-3	06/09/2022	Ethyl acetate	0.41	6.0	73	US EPA RSL
DOE-3	06/09/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-4	06/09/2022	Dichlorodifluoromethane	0.14	2.3	100	US EPA RSL
DOE-4	06/09/2022	Ethyl acetate	0.44	8.1	73	US EPA RSL
DOE-4	06/09/2022	Trichlorofluoromethane	0.13	1.1	1300	DTSC HHRA NOTE 3
DOE-4	06/09/2022	Dichlorodifluoromethane	0.13	2.2	100	US EPA RSL
DOE-4	06/09/2022	Ethyl acetate	0.41	15	73	US EPA RSL
DOE-4	06/09/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-1	06/22/2022	Dichlorodifluoromethane	0.14	2.3	100	US EPA RSL
DOE-1	06/22/2022	Hexane, n-	0.17	1.3	730	US EPA RSL
DOE-1	06/22/2022	N-heptane	0.20	0.86	420	US EPA RSL
DOE-1	06/22/2022	Toluene	0.10	0.95	310	DTSC HHRA NOTE 3
DOE-1	06/22/2022	Trichlorofluoromethane	0.13	1.1	1300	DTSC HHRA NOTE 3
DOE-1	06/22/2022	Dichlorodifluoromethane	0.13	2.3	100	US EPA RSL
DOE-1	06/22/2022	Ethyl acetate	0.41	3.7	73	US EPA RSL
DOE-1	06/22/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-2	06/22/2022	Dichlorodifluoromethane	0.13	2.2	100	US EPA RSL
DOE-2	06/22/2022	Trichlorofluoromethane	0.12	1.1	1300	DTSC HHRA NOTE 3
DOE-3	06/22/2022	Dichlorodifluoromethane	0.13	2.3	100	US EPA RSL
DOE-3	06/22/2022	Ethyl acetate	0.43	10	73	US EPA RSL
DOE-3	06/22/2022	Trichlorofluoromethane	0.12	1.2	1300	DTSC HHRA NOTE 3
DOE-4	06/22/2022	Dichlorodifluoromethane	0.12	2.4	100	US EPA RSL

J = estimated value

V = The continuing calibration verification standard was outside (biased low) the specified limits for this compound

APPENDIX C

Radionuclide Results

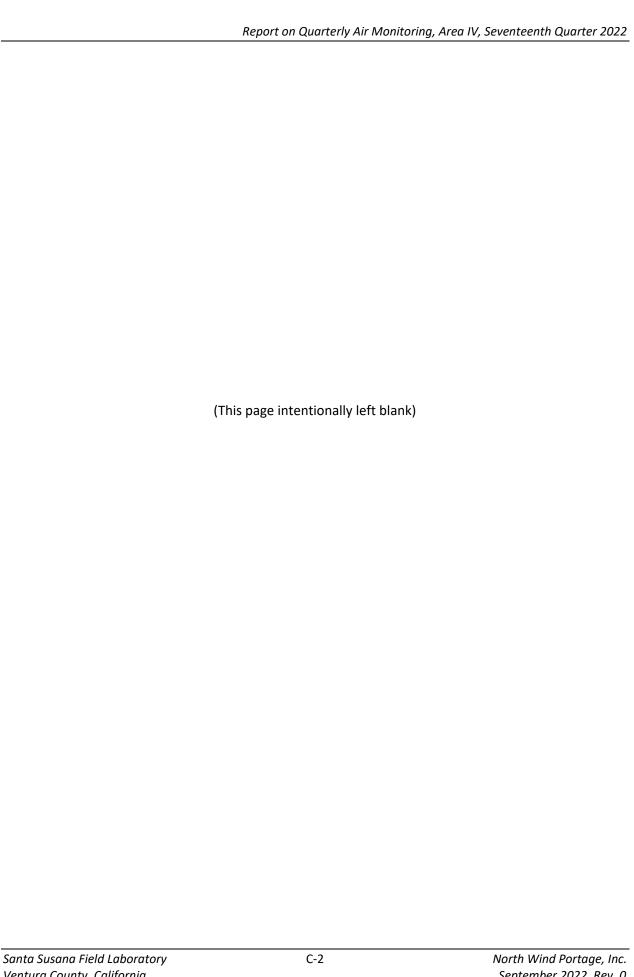


Table C-1. Gross alpha and gross beta air sample results for air samplers.

Sample Collection Date	Result Alpha (mCi/mL)	MDC – Alpha (mCi/mL)	Result Beta (mCi/mL)	MDC – Beta (mCi/mL)						
	Sample location DOE-1									
4/1/2022	-2.43E-15	7.37E-15	1.90E-14	2.99E-14						
4/4/2022	1.40E-17	7.37E-15	3.40E-14	2.99E-14						
4/8/2022	1.80E-15	5.41E-15	2.74E-14	2.19E-14						
4/11/2022	-2.96E-15	6.97E-15	3.94E-14	2.82E-14						
4/15/2022	-1.80E-15	5.47E-15	1.87E-14	2.22E-14						
4/18/2022	-2.33E-15	7.07E-15	-2.24E-15	2.86E-14						
4/22/2022	-1.52E-15	5.39E-15	1.84E-14	2.18E-14						
4/25/2022	-2.97E-15	6.99E-15	5.00E-14	2.83E-14						
4/29/2022	-5.05E-16	5.44E-15	2.08E-14	2.21E-14						
5/2/2022	3.76E-15	6.59E-15	4.04E-14	2.84E-14						
5/6/2022	3.66E-15	5.07E-15	2.58E-14	2.19E-14						
5/9/2022	-1.83E-15	6.54E-15	3.19E-15	2.82E-14						
5/13/2022	-1.50E-16	5.00E-15	9.82E-15	2.16E-14						
5/16/2022	1.40E-15	6.37E-15	3.71E-14	2.75E-14						
5/20/2022	-1.40E-15	4.98E-15	2.45E-14	2.15E-14						
5/23/2022	2.47E-15	6.67E-15	1.17E-14	2.88E-14						
5/27/2022	-1.94E-15	5.09E-15	5.32E-14	2.20E-14						
5/31/2022	-4.05E-16	5.06E-15	1.24E-14	2.19E-14						
6/3/2022	1.88E-15	6.88E-15	2.33E-14	2.99E-14						
6/6/2022	4.55E-16	6.58E-15	1.49E-14	2.86E-14						
6/10/2022	6.08E-16	5.06E-15	2.33E-14	2.20E-14						
6/13/2022	-3.54E-15	6.53E-15	4.40E-14	2.84E-14						
6/17/2022	-9.51E-16	5.13E-15	1.30E-14	2.23E-14						
6/20/2022	1.22E-16	6.67E-15	1.76E-14	2.90E-14						
6/24/2022	5.23E-15	5.05E-15	3.81E-14	2.19E-14						
6/27/2022	1.51E-15	6.79E-15	6.76E-14	2.95E-14						

Sample Collection Date	Result Alpha (mCi/mL)	MDC – Alpha (mCi/mL)	Result Beta (mCi/mL)	MDC – Beta (mCi/mL)						
	Sample location DOE-2									
4/1/2022	-1.38E-15	7.38E-15	-5.28E-15	2.99E-14						
4/4/2022	-1.38E-15	7.37E-15	2.23E-14	2.99E-14						
4/8/2022	2.67E-16	5.41E-15	5.52E-14	2.19E-14						
4/11/2022	-1.99E-15	7.04E-15	6.61E-14	2.85E-14						
4/15/2022	7.88E-16	5.48E-15	3.81E-14	2.22E-14						
4/18/2022	1.34E-17	7.07E-15	2.73E-14	2.86E-14						
4/22/2022	-1.01E-15	5.39E-15	2.54E-14	2.18E-14						
4/25/2022	2.66E-15	6.99E-15	1.48E-14	2.83E-14						
4/29/2022	-5.05E-16	5.44E-15	3.68E-14	2.21E-14						
5/2/2022	6.07E-15	6.59E-15	3.42E-14	2.84E-14						
5/6/2022	8.63E-16	5.07E-15	3.19E-14	2.19E-14						
5/9/2022	3.08E-15	6.54E-15	6.32E-14	2.82E-14						
5/13/2022	-1.15E-15	4.99E-15	4.09E-14	2.16E-14						
5/16/2022	-5.11E-16	6.38E-15	6.20E-14	2.75E-14						
5/20/2022	3.49E-16	4.98E-15	3.58E-14	2.15E-14						
5/23/2022	-2.54E-15	6.67E-15	2.93E-14	2.88E-14						
5/27/2022	1.63E-15	5.09E-15	2.45E-14	2.20E-14						
5/31/2022	-2.69E-15	5.06E-15	2.20E-14	2.19E-14						
6/3/2022	-9.23E-16	6.87E-15	2.98E-14	2.99E-14						
6/6/2022	1.79E-15	6.56E-15	2.62E-15	2.85E-14						
6/10/2022	5.00E-15	5.08E-15	2.26E-14	2.21E-14						
6/13/2022	4.52E-16	6.53E-15	6.95E-14	2.84E-14						
6/17/2022	-4.28E-16	5.13E-15	4.28E-14	2.23E-14						
6/20/2022	-1.58E-15	6.67E-15	3.08E-14	2.90E-14						
6/24/2022	1.89E-15	5.05E-15	4.29E-14	2.20E-14						
6/27/2022	4.70E-16	6.79E-15	4.04E-14	2.95E-14						

Sample Collection Date	Result Alpha (mCi/mL)	MDC – Alpha (mCi/mL)	Result Beta (mCi/mL)	MDC – Beta (mCi/mL)						
	Sample location DOE-3									
4/1/2022	-1.73E-15	7.38E-15	-1.63E-14	2.99E-14						
4/4/2022	3.62E-16	7.36E-15	4.50E-14	2.98E-14						
4/8/2022	3.60E-15	5.42E-15	4.06E-14	2.20E-14						
4/11/2022	1.32E-17	6.95E-15	2.65E-14	2.82E-14						
4/15/2022	-1.03E-15	5.48E-15	1.60E-14	2.22E-14						
4/18/2022	-3.67E-15	7.07E-15	-1.60E-14	2.86E-14						
4/22/2022	-2.76E-15	5.85E-15	1.62E-14	2.37E-14						
4/25/2022	-4.29E-15	6.99E-15	1.24E-14	2.83E-14						
4/29/2022	-1.02E-15	5.44E-15	3.46E-14	2.21E-14						
5/2/2022	2.44E-15	6.58E-15	1.26E-14	2.84E-14						
5/6/2022	3.56E-16	5.07E-15	5.04E-14	2.19E-14						
5/9/2022	2.09E-15	6.54E-15	4.49E-14	2.82E-14						
5/13/2022	3.56E-16	5.08E-15	1.12E-14	2.16E-14						
5/16/2022	-1.51E-15	6.54E-15	3.44E-14	2.78E-14						
5/20/2022	1.12E-15	5.09E-15	9.59E-15	2.16E-14						
5/23/2022	1.50E-15	6.80E-15	4.68E-15	2.89E-14						
5/27/2022	-1.71E-15	5.19E-15	3.57E-14	2.21E-14						
5/31/2022	-6.73E-16	5.17E-15	1.06E-14	2.20E-14						
6/3/2022	6.06E-15	6.86E-15	2.14E-14	2.98E-14						
6/6/2022	-1.55E-15	6.57E-15	-8.94E-15	2.86E-14						
6/10/2022	1.90E-15	5.07E-15	2.21E-14	2.21E-14						
6/13/2022	7.85E-16	6.53E-15	7.78E-14	2.84E-14						
6/17/2022	1.14E-15	5.13E-15	5.05E-14	2.23E-14						
6/20/2022	1.22E-16	6.67E-15	1.95E-15	2.90E-14						
6/24/2022	9.25E-17	5.05E-15	4.67E-14	2.19E-14						
6/27/2022	-1.26E-15	6.79E-15	3.24E-14	2.95E-14						

Sample Collection Date	Result Alpha (mCi/mL)	MDC – Alpha (mCi/mL)	Result Beta (mCi/mL)	MDC – Beta (mCi/mL)						
	Sample location DOE-4									
4/1/2022	2.46E-15	7.38E-15	-1.60E-15	2.99E-14						
4/4/2022	3.63E-16	7.36E-15	1.38E-14	2.98E-14						
4/8/2022	1.03E-17	5.42E-15	3.50E-14	2.20E-14						
4/11/2022	-3.28E-15	6.95E-15	4.11E-14	2.82E-14						
4/15/2022	-2.49E-16	5.48E-15	2.80E-14	2.22E-14						
4/18/2022	1.35E-15	7.07E-15	-8.31E-16	2.86E-14						
4/22/2022	1.02E-17	5.39E-15	4.07E-14	2.18E-14						
4/25/2022	-1.64E-15	6.99E-15	4.05E-15	2.83E-14						
4/29/2022	-2.31E-15	5.44E-15	4.33E-14	2.21E-14						
5/2/2022	2.83E-15	6.72E-15	2.81E-14	2.86E-14						
5/6/2022	2.96E-15	5.18E-15	4.91E-14	2.20E-14						
5/9/2022	1.34E-16	6.67E-15	2.96E-14	2.84E-14						
5/13/2022	2.13E-15	5.08E-15	7.46E-15	2.16E-14						
5/16/2022	2.10E-15	6.54E-15	5.42E-14	2.78E-14						
5/20/2022	2.39E-15	5.09E-15	1.09E-14	2.16E-14						
5/23/2022	-5.45E-16	6.80E-15	4.71E-14	2.89E-14						
5/27/2022	1.40E-15	5.19E-15	3.27E-14	2.21E-14						
5/31/2022	8.81E-16	5.18E-15	2.70E-14	2.20E-14						
6/3/2022	-1.62E-15	6.85E-15	9.67E-15	2.98E-14						
6/6/2022	4.14E-15	6.57E-15	1.87E-14	2.86E-14						
6/10/2022	-6.82E-16	5.07E-15	2.39E-14	2.21E-14						
6/13/2022	1.20E-16	6.53E-15	4.51E-14	2.84E-14						
6/17/2022	3.55E-16	5.13E-15	1.82E-14	2.23E-14						
6/20/2022	2.50E-15	6.68E-15	6.58E-15	2.90E-14						
6/24/2022	6.06E-16	5.05E-15	2.68E-14	2.19E-14						
6/27/2022	-5.67E-16	6.79E-15	7.12E-14	2.95E-14						

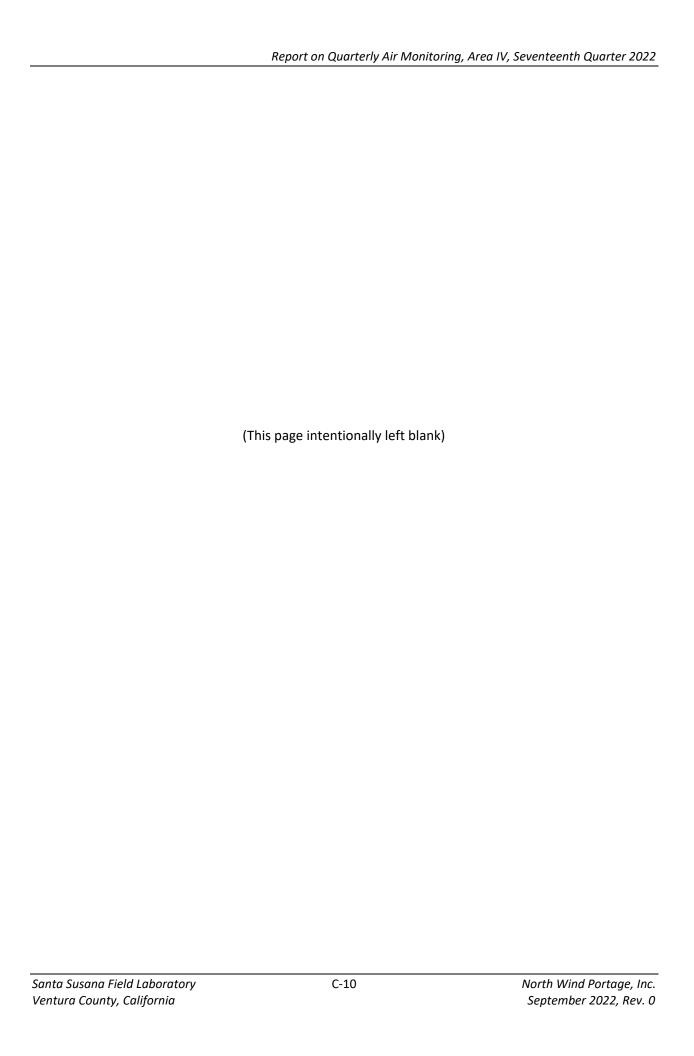
Note: Some values are negative after background subtraction.

Table C-2. Individual radionuclide analysis for the composite filter samples.

Table C-2. Individual radionucili	Result	MDC	Data	Airborne Concentration
Radionuclide	(pCi/sample)	(pCi/sample)	Qualifier	(μCi/mL)
Loc	cation DOE-1 - Air	volume/sample	= 9.72E+08	
Cesium-137	-1.85	5.44	UU	-1.903E-15
Strontium-90	1.79	8.18	UU	1.842E-15
Cobalt-60	0.268	8.08	UU	2.757E-16
Potassium-40	143	53.3		1.471E-13
Beryllium-7	106	58.4		1.091E-13
Plutonium-238	0.0614	0.271	U UJ	6.317E-17
Polonium-210	6.1	0.188	J	6.276E-15
Plutonium-241	18.4	29.5	U UJ	1.893E-14
Thorium-230	1.37	0.667	UJ	1.409E-15
Thorium-228	0.58	0.731	UU	5.967E-16
Actinium-228	-6.48	30.6	UU	-6.667E-15
Americium-241	0.133	0.223	UU	1.368E-16
Plutonium-239	-0.0322	0.344	U UJ	-3.313E-17
Ra-228 - total	-4.82	15.2	UU	-4.959E-15
Radium-226, -228 combined	4.02	4.65	UU	4.136E-15
Thorium-232	0.846	0.317	UJ	8.704E-16
Uranium-238	0.958	0.173	UJ	9.856E-16
Uranium-233/234	0.986	0.216	UJ	1.014E-15
Uranium-235/236	0.121	0.214	UU	1.245E-16
Loc	cation DOE-2 – Air	volume/sample	= 9.72E+08	
Cesium-137	1.4	7.61	UU	1.440E-15
Strontium-90	2.79	7.29	UU	2.870E-15
Cobalt-60	4.19	9.21	UU	4.311E-15
Potassium-40	128	85.1		1.317E-13
Beryllium-7	86	70.6	UI UJ	8.848E-14
Plutonium-238	-0.0168	0.26	U UJ	-1.728E-17
Polonium-210	6.37	0.257	J	6.553E-15
Plutonium-241	22	34.5	U UJ	2.263E-14
Thorium-230	1.36	0.568	UJ	1.399E-15
Thorium-228	0.413	0.42	UU	4.249E-16
Actinium-228	5.37	31.6	UU	5.525E-15
Americium-241	0.0405	0.361	UU	4.167E-17
Plutonium-239	-0.0165	0.191	U UJ	-1.698E-17
Ra-228 - total	2.56	12.3	UU	2.634E-15
Radium-226, -228 combined	-1.99	5.37	UU	-2.047E-15
Thorium-232	0.742	0.243	UJ	7.634E-16
Uranium-238	0.458	0.242	UJ	4.712E-16

Radionuclide	Result	MDC	Data	Airborne Concentration					
Radionuciide	(pCi/sample)	(pCi/sample)	Qualifier	(μCi/mL)					
Uranium-233/234	0.855	0.259	UJ	8.796E-16					
Uranium-235/236	0.0148	0.175	UU	1.523E-17					
Loc	Location DOE-3 – Air volume/sample = 9.69E+08								
Cesium-137	0.659	7.77	UU	6.801E-16					
Strontium-90	4	7.45	UU	4.128E-15					
Cobalt-60	-0.246	7.88	UU	-2.539E-16					
Potassium-40	84.4	76.9		8.710E-14					
Beryllium-7	136	66.9		1.404E-13					
Plutonium-238	0.0319	0.227	UU	3.292E-17					
Polonium-210	5.65	0.318	J	5.831E-15					
Plutonium-241	3.54	37.9	UU	3.653E-15					
Thorium-230	0.994	0.729	UJ	1.026E-15					
Thorium-228	0.866	0.704	UJ	8.937E-16					
Actinium-228	-15.7	32	UU	-1.620E-14					
Americium-241	-0.0819	0.505	UU	-8.452E-17					
Plutonium-239	0.0319	0.227	UU	3.292E-17					
Ra-228 - total	-7.09	16.4	UU	-7.317E-15					
Radium-226, -228 combined	6.08	6.79	UU	6.275E-15					
Thorium-232	0.538	0.506	UJ	5.552E-16					
Uranium-238	0.875	0.295	UJ	9.030E-16					
Uranium-233/234	0.619	0.343	J	6.388E-16					
Uranium-235/236	0.0933	0.315	UU	9.628E-17					
Loc	cation DOE-4 – Air	volume/sample	= 9.72E+08						
Cesium-137	-1.5	5.95	UU	-1.543E-15					
Strontium-90	4.77	6.75	UU	4.907E-15					
Cobalt-60	1.37	7.05	UU	1.409E-15					
Potassium-40	163	63.8		1.677E-13					
Beryllium-7	90.3	69.4		9.290E-14					
Plutonium-238	-0.0186	0.287	U UJ	-1.914E-17					
Polonium-210	6.07	0.131	J	6.245E-15					
Plutonium-241	17.8	42.4	U UJ	1.831E-14					
Thorium-230	1.36	0.5	UJ	1.399E-15					
Thorium-228	0.535	0.6	UU	5.504E-16					
Actinium-228	-33.3	29.1	UU	-3.426E-14					
Americium-241	0.0725	0.109	UU	7.459E-17					
Plutonium-239	-0.0185	0.287	U UJ	-1.903E-17					
Ra-228 - total	1.58	8.92	UU	1.626E-15					
Radium-226, -228 combined	5.04	3.91		5.185E-15					
Thorium-232	0.282	0.421	UU	2.901E-16					

Radionuclide	Result (pCi/sample)	MDC (pCi/sample)	Data Qualifier	Airborne Concentration (μCi/mL)
Uranium-238	0.405	0.328	UJ	4.167E-16
Uranium-233/234	0.866	0.294	UJ	8.909E-16
Uranium-235/236	-0.000972	0.325	UU	-1.000E-18


Note - Data Qualifier meanings:

UU – Analyte was analyzed for but not detected and is qualified as a non-detect.

U – The analyte was analyzed for, but not detected or is qualified as non-detect because of blank contamination.

J – The analyte was positively identified; the quantitation is estimated because of discrepancies in meeting certain analyte-specific QC criteria.

UJ – The analyte was not detected; however, the result is estimated because of discrepancies in meeting certain analyte-specific QC criteria.

APPENDIX D

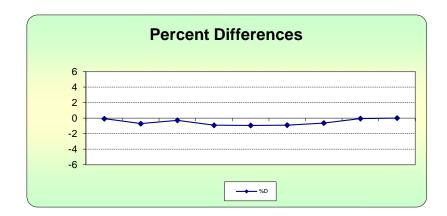
PM₁₀ Monthly Audit Reports and Flow Verification Results

ETEC Site: DOE-1 Pollutant type: PM10 Bias (%)

Quarter	E-BAM	Date	Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	Percentile	d ²	d	d ²
17	X16067	4/26/2022	14.00	14.01	-0.071		0.005	0.071	0.005
			16.70	16.82	-0.713	25th	0.509	0.713	0.509
			17.50	17.55	-0.285	-0.906	0.081	0.285	0.081
17	X16067	5/19/2022	14.00	14.13	-0.920		0.846	0.920	0.846
			16.70	16.86	-0.949	<u>75th</u>	0.901	0.949	0.901
			17.50	17.66	-0.906	-0.071	0.821	0.906	0.821
17	X16067	6/24/2022	14.00	14.09	-0.639		0.408	0.639	0.408
			16.70	16.71	-0.060		0.004	0.060	0.004
			17.50	17.50	0.000		0.000	0.000	0.000

n	Σ d	"AB" (Eqn 4)
9	4.543	0.505
n-1	$\sum \mathbf{d} ^2$	"AS" (Eqn 5)
8	3.575	0.400

Bias (%) (Eqn 3)	Both Signs Positive
0.75	FALSE
Signed Bias (%)	Both Signs Negative
-0.75	TRUE


Note: No quality issues reported this quarter.

Reference: U.S. EPA, Ambient Monitoring Technology Information Center (AMTIC) Quality Indicator Assessment Reports

Data Assessment Statistical Calculator - Software to calculate precision and bias statistics

https://www3.epa.gov/tnn/amtic/qareport.html

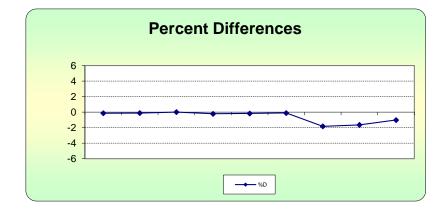
MS EXCEL filename - "11/3/2017 (dasc)11_3_17.xls)"

ETEC Site: DOE-2 Pollutant type: PM10 Bias (%)

Quarter	E-BAM	Date	Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	Percentile	d ²	d	d ²
17	Y12096	4/26/2022	14.00	14.02	-0.143		0.020	0.143	0.020
			16.70	16.72	-0.120	<u>25th</u>	0.014	0.120	0.014
			17.50	17.50	0.000	-1.018	0.000	0.000	0.000
17	Y12096	5/19/2022	14.00	14.03	-0.214		0.046	0.214	0.046
			16.70	16.73	-0.179	<u>75th</u>	0.032	0.179	0.032
			17.50	17.52	-0.114	-0.120	0.013	0.114	0.013
17	Y12096	6/24/2022	14.00	14.26	-1.823		3.324	1.823	3.324
			16.70	16.98	-1.649		2.719	1.649	2.719
			17.50	17.68	-1.018		1.037	1.018	1.037

n	Σ d	"AB" (Eqn 4)
9	5.260	0.584
n-1	$\sum \mathbf{d} ^2$	"AS" (Eqn 5)
8	7.206	0.719

Bias (%) (Eqn 3)	Both Signs Positive
1.03	FALSE
Signed Bias (%)	Both Signs Negative
-1.03	TRUE


<u>Note:</u> No quality issues reported this quarter.

Reference: U.S. EPA, Ambient Monitoring Technology Information Center (AMTIC)

Quality Indicator Assessment Reports

Data Assessment Statistical Calculator - Software to calculate precision and bias statistics

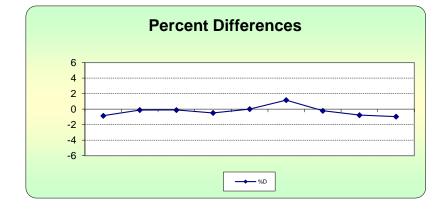
MS EXCEL filename - "11/3/2017 (dasc)11_3_17.xls)" https://www3.epa.gov/tnn/amtic/qareport.html

ETEC Site: DOE-3 Pollutant type: PM10 Bias (%)

Quarter	E-BAM	Date	Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	Percentile	d ²	d	d ²
17	W23313	4/26/2022	14.00	14.12	-0.850		0.722	0.850	0.722
			16.70	16.72	-0.120	<u>25th</u>	0.014	0.120	0.014
			17.50	17.52	-0.114	-0.772	0.013	0.114	0.013
17	W23313	5/19/2022	14.00	14.07	-0.498		0.248	0.498	0.248
			16.70	16.70	0.000	<u>75th</u>	0.000	0.000	0.000
			17.50	17.30	1.156	-0.114	1.336	1.156	1.336
17	W23314	6/24/2022	14.00	14.03	-0.214		0.046	0.214	0.046
			16.70	16.83	-0.772		0.597	0.772	0.597
			17.50	17.67	-0.962		0.926	0.962	0.926

n	$\Sigma \mathbf{d} $	"AB" (Eqn 4)
9	4.686	0.521
n-1	$\sum \mathbf{d} ^2$	"AS" (Eqn 5)
8	3.902	0.428

Bias (%) (Eqn 3)	Both Signs Positive					
0.79	FALSE					
Signed Bias (%)	Both Signs Negative					
-0.79	TRUE					


Note: Initial audit for unit W23314 on 6/24/2022. W23313 went down on 6/19/2022.

Reference: U.S. EPA, Ambient Monitoring Technology Information Center (AMTIC)

Quality Indicator Assessment Reports

Data Assessment Statistical Calculator - Software to calculate precision and bias statistics MS EXCEL filename - "11/3/2017 (dasc)11_3_17.xls)"

https://www3.epa.gov/tnn/amtic/qareport.html

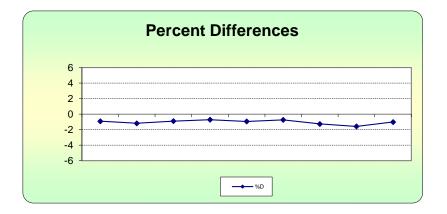
ETEC Site: DOE-4 Pollutant type: PM10 Bias (%)

Quarter	E-BAM	Date	Meas Val (Y)	Audit Val (X)	d (Eqn. 1)	Percentile	d²	d	d ²
17	W23310	4/26/2022	14.00	14.13	-0.920		0.846	0.920	0.846
			16.70	16.90	-1.183	25th	1.401	1.183	1.401
			17.50	17.66	-0.906	-1.183	0.821	0.906	0.821
17	W23310	5/19/2022	14.00	14.10	-0.709		0.503	0.709	0.503
			16.70	16.86	-0.949	<u>75th</u>	0.901	0.949	0.901
			17.50	17.63	-0.737	-0.906	0.544	0.737	0.544
17	W23310	6/24/2022	14.00	14.18	-1.269		1.611	1.269	1.611
			16.70	16.97	-1.591		2.531	1.591	2.531
			17.50	17.68	-1.018		1.037	1.018	1.037

n	Σ d	"AB" (Eqn 4)
9	9.284	1.032
n-1	$\sum \mathbf{d} ^2$	"AS" (Eqn 5)
8	10.194	0.278

Bias (%) (Eqn 3)	Both Signs Positive						
1.2	FALSE						
Signed Bias (%)	Both Signs Negative						
-1.2	TRUE						

Note: No quality issues reported this quarter.


 $\underline{\textbf{Reference}}\text{: U.S. EPA, Ambient Monitoring Technology Information Center (AMTIC)}$

Quality Indicator Assessment Reports

Data Assessment Statistical Calculator - Software to calculate precision and bias statistics

MS EXCEL filename - "11/3/2017 (dasc)11_3_17.x/s)"

https://www3.epa.gov/tnn/amtic/qareport.html

Station # Doc Audit Date: 4/		022	•			rial #y idited By :	T.S.	will	iford		
				Flo	ow A	Audit					
Flow Audit Device	Model:	BGI Del	lta Cal DC	C-1A S	eria	l No: 1	58047	Calibra	tion Date:	3/23/2	022
Leak Check Value:		as f	ound: 🧲	.5			ā	s left:	0.5		
				E-BAM		Ref. S	td.		E-BAM	Ref	Std.
Ambient Tempera	ture:	as for	und: 2	21.0	°C	21.5	°c as	left: 2	21.0	°C 21.5	-
Barometric Pressu	re:	as for	und: "7	13.6 m	mHg	713.5	mmHg as	left: 7	13.6 mm	Hg 7/3,	5 mml
16.7 lpm Flow F	Rate	as for	und: 1	0.7	lpm	16.8			6.7 1	om 16.8	
				lpm	14.0	i Ipm as	left:	14.0 1	om 14.0		
17.5 lpm Flow R	as for	und: 17	,5	lpm	17.55	lpm as	left: /	7.5 1	om 17,5	5 lp	
			Mecha	nical Au	dits	(Y=Yes	N = No)			-	
		Sam	ple nozzle	e clean:	as	found	Y	s left	Y		
	T	ape sup	port van	e clean:	as	found	Y	s left	Y		
		Tape sp	ool cover	rs tight:	as	found	Y	s left	Y		
	P	M10 pa	rticle trap	clean:	as	found	Y	s left	Y		
		PM10	0 drip jar	empty:	as	found	Y	s left	Y		
		PM10 k	oug scree	n clear:	as	found	Y	s left	Y		
Man	ual Span I	Membra	ne Test					Pum	np Test		
Expected Span						Flow Rate Vacuum Quality Category					ory
Measured Span						14.0 - 15.	0 Va	lue	No. of the last of	Marginal	
	ence (mg		0.01			(lpm)	(1	lg)			
% Differer	nce /@ss	or Fail:	1.48			14.8	434		Marc	ymal	
					Calib	ration Va	lues		()	
Parameter	Expected	Found	Pa	rameter		Expected	Found	Par	rameter	Expected	Found
Clock	0831	0831	A	nalog Mo	ode	Hourly	Hourly	Flo	w Type	Actual	Act
Location	1	l		Baud R	ate	9600	9600		art Voltage	12.5 v	12.50
Tape Advance	24 hrs	24 hrs		RH Setpo	int	45%	45%	Std C	ond Temp	25 C	25C
Realtime Avg	60 mins	60mi		a T Setpo	int	15 C	150°		DAC	8.0 v	8.0 V
Machine Type	PM-10	Pm-1		RH Cont	trol	On	On	RH	Connect	No	NO
Analog FS	1.0 v	1.0 v	Fl	ow Setpo	int	16.7	16.7	Pum	p Protect	Off	056
			Last	6 Errors	in E	-BAM Erro	or Log				
Error Date				Time			Error			Date	Time
1 No new me	ssages		4/26/22	0836	4						
2	0				5						
3					6						

Baseline Air Monitoring Program - DOE E-BAM Monthly Audit and Maintenance

				Flo	w Audit						
low Audit Device	Model:	BGI De	lta Cal DC	-1A S	erial No: 1	58047	Calibrat	ion Date:	3/23/2	022	
eak Check Value:		as f	ound:	0.5		a	s left:	0.5			
			TEST TEST	E-BAM	Ref. St	td.		E-BAM	Ref	Std.	
Ambient Tempera	ture:	as for	und: 26	7.9	°c 20.1	°c as l	eft: Z	0.9	°c 20.		
Barometric Pressu	ire:	as for	und: 7/	3.1 mm	Hg 713.0	mmHg as I	eft: 7	13. 1 mm		mm	
16.7 lpm Flow	Rate	as for	und: 16	7	pm 16.86		-	1 -	pm 16.8		
14.0 lpm Flow F	Rate	as for	und: 14	0	pm 14.13	Ipm as I		1		3 1	
17.5 lpm Flow F	Rate	as for	und: 17	.5	pm 17.60	6 Ipm as I	eft: [7.5	om 17.6		
			Mecha	nical Aud	its (Y = Yes I	N = No)					
		Sam	ple nozzle	e clean:	as found	Y as	s left 👌	(
	T	ape sup	port vane	e clean:	as found	Y as	s left	7			
		Tape sp	ool cover	s tight:	as found	Y as	s left	1			
	P	M10 pa	rticle trap	clean:	as found	Y as	s left				
		PM1	0 drip jar	empty:	as found	Y as	s left \				
		PM10 l	oug scree	n clear:	as found	<u>Y</u> as	s left 🔌	(
Man	ual Span N	Vlembra	ne Test				Pump	Test			
Expected Span	Mass (mg	/cm2):	0.95	0	Flow Rate	Vacu	um	Qua	lity Categ	ory	
Measured Span	Mass (mg	/cm2):	0,94	19	14.0 - 15.0	0 Val	ue	Good /	Marginal	/ Poor	
Diffe	rence (mg	/cm2):	0.00	01	(lpm)	(H	g)				
% Differen	nce / Pass	or Fail:	0.11	%	15.0	The second secon			ginal		
				tup and C	alibration Va	lues			U		
Parameter	Expected	Found		ameter	Expected	Found	Parameter		Expected	Foun	
	105/	1051	Ai	nalog Mo		Hourly		Туре	Actual	Act	
Location		1		Baud Ra	_	9600		t Voltage	12.5 v	12.5	
Tape Advance	24 hrs	24 hu		RH Setpoi		45%		nd Temp	25 C	250	
Realtime Avg	60 mins	60 min	-	T Setpoi		15C		AC	8.0 v	8.0	
Machine Type		PM-10		RH Conti		on		onnect	No	NO	
Analog FS	1.0 v	1.0 V	Flo	ow Setpoi	nt 16.7	16:1	Pump	Protect	Off	0	
					n E-BAM Erro						
Err			Date	Time		Error		-	Date	Time	
No new me	ssage	5	5/19/27	1059	4						
N	U				5						
					6				1		
udit Notes:											

Baseline Air Monitoring Program - DOE E-BAM Monthly Audit and Maintenance

Audit Date: 6/2		22			Audited By :	X160		rt wi	11:500	1
Addit Date. 6/	29/20				Audit	1.04	eur	7 00,	1111040	
Flow Audit Device	Model:	RCI Dali	ta Cal DC-			58047	Calibrat	ion Date:	3/23/20	122
Leak Check Value:	wouer.		ound:	7 7	101 NO		s left:	-	3/23/20	
Leak Check value.		as ic		2.	ī		-			0.1
		100		E-BAM	Ref. St		-	E-BAM		Std.
Ambient Temperat		as fou			c 31.9	°c as l		0.0	°c 31.9	
Barometric Pressui		as fou	1.	18. [mmh	1 1	mmHg		28.1 mml		
16.7 lpm Flow R		as fou	-				eft: 16		m 16.7	
14.0 lpm Flow R		as fou		0 lp	m 14,09			-	m 14.0°	
17.5 lpm Flow R	ate	as fou		, 5 lp		lpm as	left: [/	7.5 lp	m 17.5	lpr
					ts (Y = Yes I			· /		
			ole nozzle		as found		s left _	<u>Y</u>		
			port vane		as found		s left _	Y_		
			ool cover	0	as found		s left _	Y_		
	P		rticle trap		as found	_	s left _	<u>Y</u>		
			drip jar		as found		s left _	<u>Y</u>		
		PM10 b	ug screer	n clear:	as found	<u>Y</u> a	s left _	<u>Y</u>		
Man	ual Span N	/lembra	ne Test				Pum	p Test		
Expected Span	Mass (mg/	/cm2):	0,89		Flow Rate	e Vac	uum		lity Catego	
Measured Span	Mass (mg/	/cm2):	0.893		14.0 - 15.	0 Va	lue	Good /	Marginal	/ Poor
Differ	rence (mg,	/cm2):	8.000	1	(lpm)	(1	lg)			
% Differer	nce / Pass	or Fail:	0.45	%	14,9	418	18,6 Ma		genal	\ <u></u>
			Set	up and Ca	libration Va	lues		0		
Parameter	Expected	Found	Par	ameter	Expected	Found	Par	ameter	Expected Actual	Found
Clock	0911	0911	Aı	nalog Mod	le Hourly	Hondy	Flo	Flow Type		Act
Location	.	1		Baud Ra	te 9600	9600	Resta	rt Voltage	12.5 v	12.51
Tape Advance	24 hrs	24hr		RH Setpoi	nt 45%	45%		ond Temp	25 C	250
Realtime Avg	60 mins	60mi	Delta	a T Setpoi		15°C		DAC	8.0 v	8.0V
Machine Type	PM-10	PM-10	7	RH Contr		on	_	Connect	No	No
Analog FS	1.0 v	LOV	Flo	ow Setpoi	nt 16.7	16.7	Pum	Protect	Off	off
			Last	6 Errors i	n E-BAM Err	or Log				
Err	or		Date	Time		Erro	•		Date	Time
1 No new Me	essages		6/24/22	0929	4					
2	0				5					
3					6					
Audit Notes:										

Baseline Air Monitoring Program - DOE

E-BAM Monthly Audit and Maintenance DOE-2 Station # Serial # Y 12096 Audit Date: Audited By: TS will ford Flow Audit Flow Audit Device Model: BGI Delta Cal DC-1A Serial No: 158047 Calibration Date: 3/23/2022 Leak Check Value: as found: as left: 0,5 E-BAM Ref. Std. E-BAM Ref. Std. Ambient Temperature: as found: 21.6 °c as left: 21.6 21,8 Barometric Pressure: 710,5mmHg as found: 708,2 mmHg 710,5 mmHg as left: 708.2 mmHg 16.7 lpm Flow Rate Ipm 16.72 16.7 as found: 16:7 Ipm as left: 16.72 14.0 lpm Flow Rate as found: 14,0 14.02 Ipm as left: 14.0 14.02 lpm lpm 17.50 Ipm as left: 17.5 lpm Flow Rate as found: 17.5 17.50 lpm Mechanical Audits (Y = Yes N = No) Sample nozzle clean: as found as left Tape support vane clean: as found as left Tape spool covers tight: as found as left PM10 particle trap clean: as found as left PM10 drip jar empty: as found as left PM10 bug screen clear: as found as left Manual Span Membrane Test **Pump Test** Expected Span Mass (mg/cm2): 0 . 891 Flow Rate Vacuum **Quality Category** Measured Span Mass (mg/cm2): 0,911 14.0 - 15.0 Value Good / Marginal / Poor Difference (mg/cm2): 0.02 (lpm) (Hg) Marginal % Difference (Pass or Fail: 2.22% 416.3 Setup and Calibration Values Parameter Expected Found Parameter Expected Found Parameter Expected Found Actual Clock 0924 **Analog Mode** Hourly Flow Type 0924 Location **Baud Rate** 9600 Restart Voltage 12.5 v 9600 7.5V Std Cond Temp Tape Advance 24 hrs **RH Setpoint** 45% 25 C 45% 24 hrs 60 mins Delta T Setpoint 15 C DAC 8.0 v Realtime Avg 15C Machine Type PM-10 **RH Control RH Connect** On No on PM-10 Analog FS 1.0 v Flow Setpoint 16.7 **Pump Protect** Off 1.00 Last 6 Errors in E-BAM Error Log Error Date Time Date Time Error 1 No new Messages 4/26/22 0928 5 6 **Audit Notes:**

Baseline Air Monitoring Program - DOE

Audit Date: 5/19	1/20	22			Audited By		will	for	4	
					w Audit					
Flow Audit Device M	lodel:		Ita Cal DO		erial No: 1	58047	Calibratio	n Date:	3/23/2	022
Leak Check Value:		as f	ound: <u>(</u>	2.5		a	s left: O	5		
				E-BAM	Ref. S	td.	E	-BAM	Ref	. Std.
Ambient Temperatu	re:	as for	und: 22	2.9	°c 22,7	°c as I	eft: 22	9	°c 22.	
Barometric Pressure	:	as for	und: 7	7.3 mm	nHg 710.0	mmHg as I		7.3 mm		O mm
16.7 lpm Flow Ra	te	as for	und: 16	.7	Ipm 16:13	Ipm as I		17.00	om 16.7	13 Ip
14.0 lpm Flow Rat	e	as for	und: 4	.0	lpm 14.03	Ipm as I	eft: 14	.6	om 14.0	93 lp
17.5 lpm Flow Rat	e	as for	und: 17	.5	Ipm 17,52	_ Ipm as I	eft: 17.	5 1	om 17.5	52 I
			Mecha	nical Aud	lits (Y = Yes	N = No)				
		Sam	ple nozzle	e clean:	as found	∀ a	s left 📉			
			port vane		as found	Y a	s left Y			
			ool cover	-	as found	Ya	s left Y			
	P	M10 pa	rticle trap	clean:	as found	Y a	s left Y			
			0 drip jar		as found	Y a	s left			
		PM10 k	oug scree	n clear:	as found	<u> 1</u> a	s left Y			
Manua	I Span N	Membra	ne Test				Pump T	est		
Expected Span Ma				1	Flow Rate	e Vacu	uum	Qua	lity Categ	ory
Measured Span Ma	ass (mg	/cm2):	0,90%	2	14.0 - 15.	0 Val	lue		Marginal	
Differer	ice (mg	/cm2):	0.01	1	(lpm)	(H	g)			
% Difference	/ (ass	or Fail:	1.23	%	14.1	411.3		Mod	lerat	· ·
			Set	up and C	alibration Va	lues				
	pected	Found	Par	ameter	Expected	Found	Param	eter	Expected	Found
	31	11.31	Aı	nalog Mo	de Hourly	Housey	Flow T		Actual	Act
Location -	2	2	1	Baud Ra		9600	Restart \	/oltage	12.5 v	12,50
	24 hrs	24hr		RH Setpo		45%	Std Cond	Temp	25 C	25c
Realtime Avg 6	0 mins	60mi	Delta	T Setpo		15C	DA		8.0 v	8,0V
Machine Type F				RH Cont		on	RH Con		No	NO
Analog FS	1.0 v	1.00	Flo	w Setpo	int 16.7	16.7	Pump Pr	otect	Off	0-1-1
					n E-BAM Erro	or Log				
Error			Date	Time		Error			Date	Time
1 No new mess	ages		5/19/22	1136	4					
2					5					
3					6					
Audit Notes:										

Flow Audit Device Model: Leak Check Value: Ambient Temperature: Barometric Pressure: 16.7 lpm Flow Rate 14.0 lpm Flow Rate 17.5 lpm Flow Rate 17.5 lpm Flow Rate 18.7 lpm Flow Rate 19.9 lpm Mechanical Audits (Y) Sample nozzle clean: Tape support vane clean: Tape spool covers tight: As for	Ref. Std. 31.4 ° 7/3,5 mmH 7/4,26 lpi 7/4,26 lpi 7/4,26 lpi 7/4,8 lpi 7/4,8 lpi 7/4,8 lpi 7/4,8 lpi 7/4,0	as left: as left: as left: as left: as left: as left: as left	E-BAM 33.0 713.6 mml 16.7 lp 14.0 lp 17.5 lp Y Y Y Y Y Y Qua	Pc 31.9 Hg 713.1 hm /6.9 hm /4.7 hm /7.6	Std. Control SmmHg Blpm Control Blpm Control SmmHg Blpm Control SmmHg	
Flow Audit Device Model: Leak Check Value: Ambient Temperature: Barometric Pressure: 16.7 lpm Flow Rate 14.0 lpm Flow Rate 17.5 lpm Flow Rate 17.5 lpm Flow Rate 18.7 lpm Flow Rate 19.9 lpm / Mechanical Audits (Y Sample nozzle clean: as for Tape support vane clean: as for PM10 particle trap clean: as for PM10 bug screen clear: as for PM10 bug screen clear	Ref. Std. 31. 4 9 7/3. 5 mmH 7/4. 26 pp 7/4. 26 pp 7/7. 68 pp 7/7	as left: as left: as left: as left: as left: as left: as left as left	E-BAM 33.0 713.6 mml 16.7 lp 14.0 lp 17.5 lp Y Y Y Y Y Y Qua	Ref. 713. 11. 12. 12. 12. 12. 12. 12. 12. 12. 12	Std. SmmHg Blpm Blpm Blpm	
Ambient Temperature: as found: 33.0 °C; Barometric Pressure: as found: 713, 6 mmHg 16.7 lpm Flow Rate as found: 16.7 lpm / 14.0 lpm Flow Rate as found: 14.0 lpm / 17.5 lpm Flow Rate as found: 17.5 lpm / Mechanical Audits (Y Sample nozzle clean: as for Tape support vane clean: as for Tape support vane clean: as for PM10 particle trap clean: as for PM10 drip jar empty: as for PM10 bug screen clear: as for Manual Span Membrane Test Expected Span Mass (mg/cm2): 0.950 Measured Span Mass (mg/cm2): 0.952 Difference (mg/cm2): 0.952	Ref. Std. 31. 4 9 7/3. 5 mmH 16. 98 pp 14. 26 pp 17. 68 pp 17. 68 pp Y = Yes N = Nound Yound Yound	as left: as left: as left: as left: as left: as left: as left as left	E-BAM 33.0 713.6 mml 16.7 lp 14.0 lp 17.5 lp Y Y Y Y Y Y Qua	Ref. 713. 11. 12. 12. 12. 12. 12. 12. 12. 12. 12	Std. SmmHg Blpm Blpm Blpm	
Ambient Temperature: as found: 33.0 °C 3 Barometric Pressure: as found: 713.6 mmHg 7 16.7 lpm Flow Rate as found: 16.7 lpm / 1 14.0 lpm Flow Rate as found: 14.0 lpm / 1 17.5 lpm Flow Rate as found: 14.0 lpm / 1 Mechanical Audits (Y Sample nozzle clean: as for Tape support vane clean: as for Tape spool covers tight: as for PM10 particle trap clean: as for PM10 drip jar empty: as for PM10 bug screen clear: as for PM10 bug	31.4 ° 7/3.5 mmH 16.98 lpn 14.26 lpn 17.68 lpn	as left: as left: as left: as left: as left: as left: as left	E-BAM 33.0 713.6 mmi 16.7 lp 14.0 lp 17.5 lp Y Y Y Y Y Y Qua	Pc 31.9 Hg 713.1 hm /6.9 hm /4.7 hm /7.6	S mmHg B lpm C lpm C lpm	
Ambient Temperature: as found: 33.0 °C 3 Barometric Pressure: as found: 713.6 mmHg 7 16.7 lpm Flow Rate as found: 16.7 lpm 7 14.0 lpm Flow Rate as found: 14.0 lpm 7 17.5 lpm Flow Rate as found: 14.0 lpm 7 Mechanical Audits (Y Sample nozzle clean: as for Tape support vane clean: as for Tape spool covers tight: as for PM10 particle trap clean: as for PM10 drip jar empty: as for PM10 bug screen clear: as for PM10 bug screen	31.4 ° 7/3.5 mmH 16.98 lpn 14.26 lpn 17.68 lpn	as left: as left: as left: as left: as left	33.0 713.6 mml 16.7 lp 14.0 lp 17.5 lp Y Y Y Y Y Y Quantity	Pc 31.9 Hg 713.1 hm /6.9 hm /4.7 hm /7.6	S mmHg B lpm C lpn S lpn S lpn	
Barometric Pressure: 16.7 lpm Flow Rate 14.0 lpm Flow Rate 17.5 lpm Flow Rate 17.5 lpm Flow Rate 18.7 lpm Flow Rate 19.8 lpm Flow Rate 19.9	7/3, 5 mmH 16.98 pr 14.26 pr 17.68 pr 17.68	as left: as left: as left: as left: as left	713.6 mml 16.7 lp 14.0 lp 17.5 lp Y Y Y Y Y Y Quantum Test Quantum Test	Hg 713.	S mmHg B lpn C lpn B lpn C S lpn	
Barometric Pressure: 16.7 lpm Flow Rate 14.0 lpm Flow Rate 17.5 lpm Flow Rate 17.5 lpm Flow Rate As found: 14.0 lpm / Mechanical Audits (Y Sample nozzle clean: as for Tape support vane clean: as for Tape spool covers tight: as for PM10 particle trap clean: as for PM10 drip jar empty: as for PM10 bug screen clear: as for Manual Span Membrane Test Expected Span Mass (mg/cm2): 0.950 Measured Span Mass (mg/cm2): 0.952 Difference (mg/cm2): 0.952	16.98 pp 14.26 pp 17.68 pp 17.	as left: as left: as left	713.6 mml 16.7 lp 14.0 lp 17.5 lp Y Y Y Y Y Y Qua	m /6.9 m /4.7 m /7.6	8 Ipn 26 Ipn 58 Ipn	
14.0 lpm Flow Rate as found: 14.0 lpm / 17.5 lpm Flow Rate as found: 17.5 lpm / 18.5 lpm	14. 26 pr 17.68 pr 17	as left: as left Vacuum	14.0 p	lity Catego	e lpn	
Mechanical Audits (Y Sample nozzle clean: as for Tape support vane clean: as for Tape spool covers tight: as for PM10 particle trap clean: as for PM10 drip jar empty: as for PM10 bug screen clear: as for PM10 bug sc	Y = Yes N = Nound Yound	as left: as left Vacuum	Y Y Y Y Y Y Y Y Qua	om /7.6	ory	
Mechanical Audits (Y Sample nozzle clean: as for Tape support vane clean: as for Tape spool covers tight: as for PM10 particle trap clean: as for PM10 drip jar empty: as for PM10 bug screen clear: as for Manual Span Membrane Test Expected Span Mass (mg/cm2): 0.950 Measured Span Mass (mg/cm2): 0.952 Difference (mg/cm2): 0.952	Y = Yes N = Nound ound ound ound ound ound y	as left Vacuum	Y Y Y Y Y Y Y Qua	lity Catego	ory	
Sample nozzle clean: as for Tape support vane clean: as for Tape spool covers tight: as for PM10 particle trap clean: as for PM10 drip jar empty: as for PM10 bug screen clear: as for PM1	ound Y ound 1000 Rate 4.0 - 15.0	as left as left as left as left as left as left by as left vacuum	Y Y Y Y Y y ump Test	1000		
Sample nozzle clean: as for Tape support vane clean: as for Tape spool covers tight: as for PM10 particle trap clean: as for PM10 drip jar empty: as for PM10 bug screen clear: as for PM1	ound Y ound 1000 Rate 4.0 - 15.0	as left as left as left as left as left as left by as left vacuum	Y Y Y Y Y y ump Test	1000		
Tape support vane clean: as for Tape spool covers tight: as for PM10 particle trap clean: as for PM10 drip jar empty: as for PM10 bug screen clear: as for P	ound Y ound Y ound Y ound Y ound Y low Rate 4.0 - 15.0	as left as left as left as left Pu Vacuum	y Y Y y Imp Test	1000		
PM10 particle trap clean: as for PM10 drip jar empty: as for PM10 bug screen clear: as for PM10	ound yound you have 15.0	as left as left as left Pu Vacuum	y Y Y y Imp Test	1000		
PM10 drip jar empty: as for PM10 bug screen clear: as for PM10 bug	low Rate 4.0 - 15.0	as left as left Pu Vacuum	y Y y ump Test	1000		
Manual Span Membrane Test Expected Span Mass (mg/cm2): 0.950 Measured Span Mass (mg/cm2): 0.952 Difference (mg/cm2): 0.002	low Rate 4.0 - 15.0	as left Pu Vacuum	imp Test Qua	1000		
Manual Span Membrane Test Expected Span Mass (mg/cm2): 0.950 Floral Measured Span Mass (mg/cm2): 0.952 14 Difference (mg/cm2): 0.002	low Rate 4.0 - 15.0	Pu Vacuum	ımp Test Qua	1000		
Expected Span Mass (mg/cm2): 0.950 Florence (mg/cm2): 0.952 In the surface of the	4.0 - 15.0	Vacuum	Qua	1000		
Expected Span Mass (mg/cm2): 0.950 Florence (mg/cm2): 0.952 In the surface of the	4.0 - 15.0			1000		
Measured Span Mass (mg/cm2): 0.952 14 Difference (mg/cm2): 0.002		Value	Good /	Marginal,	/ Poor	
Difference (mg/cm2): 0.002	11 1			/ Marginal / Poor		
	(lpm)	(Hg)				
% Difference / Pass or Fail: 0.21%	14.8	432.4	Mara	ginal		
Setup and Calibra						
			arameter	Expected	Found	
		irly F	low Type	Actual	Act	
			start Voltage	12.5 v	125	
Tape Advance 24 hrs 24hvs RH Setpoint			Cond Temp	25 C	25%	
Realtime Avg 60 mins 60 mins Delta T Setpoint		58	DAC	8.0 v	8.0	
Machine Type PM-10 PM-10 RH Control	On O		H Connect	No	NO	
Analog FS 1.0 v 1.0 v Flow Setpoint	The second secon		mp Protect	Off	0.66	
Last 6 Errors in E-B	BAM Error Lo	og				
Error Date Time		Error		Date	Time	
1 No new Messages 6/24/2 1051 4						
2 5						
3 6						
Audit Notes:						
•						

Ambient Temperature: Barometric Pressure: 16.7 Ipm Flow Rate 14.0 Ipm Flow Rate 17.5 Ipm Flow Rate 17.5 Ipm Flow Rate 18.5 Ipm Flow Rate 19.5 Ipm Inc. Ipm Inc			
Leak Check Value: as found: D. S	23/202	22	
Ambient Temperature: Barometric Pressure: 16.7 lpm Flow Rate 14.0 lpm Flow Rate 17.5 lpm Flow Rate 17.5 lpm Flow Rate 17.5 lpm Flow Rate 18.5 lpm I I I I I I I I I I I I I I I I I I I	23/202	22	
Ambient Temperature: Barometric Pressure: 16.7 Ipm Flow Rate 16.7 Ipm Flow Rate 14.0 Ipm Flow Rate 17.5 Ipm Flow Rate 17.5 Ipm Flow Rate 18.7 Ipm Flow Rate 19.0 Ipm IV, 72 Ipm IV, 72 Ipm IV, 75 Ipm IV,	Dof C	C+d	
Barometric Pressure: 16.7 Ipm Flow Rate 14.0 Ipm Flow Rate 14.0 Ipm Flow Rate 15.5 Ipm Flow Rate 16.7 Ipm Flow Rate 16.7 Ipm Flow Rate 16.8 Ipm Flow Rate 16.9 Ipm	Ref. S		
16.7 Ipm Flow Rate 14.0 Ipm Flow Rate 14.0 Ipm Flow Rate 17.5 Ipm Flow Rate Mechanical Audits (Y = Yes N = No) Sample nozzle clean: as found Y as left: Y as left Y as l	12.8	_	
14.0 Ipm Flow Rate as found: 14.0 Ipm 14.12 Ipm as left: 14.0 Ipm 14.12 Ipm as left: 14.0 Ipm 14.12 Ipm as left: 14.0 Ipm 14.15 Ipm 17.52	12.5		
Mechanical Audits (Y = Yes N = No) Sample nozzle clean: as found Y as left: Y Tape support vane clean: as found Y as left Y Tape support vane clean: as found Y as left Y PM10 particle trap clean: as found Y as left Y PM10 drip jar empty: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y PM10 bug sclear: as found Y as left Y Bug sclear: as found Y as left Y Bug sclear: as found Y as left Y Bug sclear:			
Mechanical Audits (Y = Yes N = No) Sample nozzle clean: as found Y as left Y Tape support vane clean: as found Y as left Y Tape spool covers tight: as found Y as left Y PM10 particle trap clean: as found Y as left Y PM10 drip jar empty: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y Manual Span Membrane Test Expected Span Mass (mg/cm2): 0.877 I4.0 - 15.0 Value Good / Marg Difference (mg/cm2): 0.877 I4.0 - 15.0 Value Good / Marg Difference / Passor Fail: 0.91% I4.9 Y 32.1 Margina Setup and Calibration Values Parameter Expected Found Parameter Expected Found Parameter Expected Clock 1014 1014 Analog Mode Hourly Houring Flow Type Act Location 3 Baud Rate 9600 9600 Restart Voltage 12. Tape Advance 24 hrs 24 hr RH Setpoint 45% 45% Std Cond Temp 25 Realtime Avg 60 mins 60 min 60 min 100 min Delta T Setpoint 15 C 15 c DAC 8.0 Machine Type PM-10 PM-10 RH Control On Dac RH Connect N Analog FS 1.0 V 1.0 V Flow Setpoint 16.7 16.7 Pump Protect O Last 6 Errors in E-BAM Error Log Error Date	7.52		
Sample nozzle clean: as found Y as left Y as l	1,00		
Tape support vane clean: as found Y as left Y as left Y as left Y as left Y PM10 particle trap clean: as found Y as left Y PM10 particle trap clean: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y As left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y PM10 bug screen clear: as found Y as left Y BM10 bug screen cl			
Tape spool covers tight: as found Y as left Y PM10 particle trap clean: as found Y as left Y PM10 drip jar empty: as found Y as left Y PM10 bug screen clear: as found Y as left Y as left Y BM10 bug screen clear: as found Y as left Y BM10 bug			
PM10 particle trap clean: as found Y as left Y PM10 drip jar empty: as found Y as left			
PM10 drip jar empty: as found Y as left Y PM10 bug screen clear: as found Y as left Y Manual Span Membrane Test Expected Span Mass (mg/cm2): 0,885 Measured Span Mass (mg/cm2): 0,877 Difference (mg/cm2): 0,08 Weasured Span Mass (mg/cm2): 0,877 Difference (mg/cm2): 0,08 Weasured Span Mass (mg/cm2): 0,877 Difference (mg/cm2): 0,877 Walue Good / Marge (lpm) (Hg) Weasured Span Mass (mg/cm2): 0,877 If .9			
Manual Span Membrane Test Expected Span Mass (mg/cm2): 0,885 Measured Span Mass (mg/cm2): 0,877 Difference (mg/cm2): 0,008 Parameter Expected Found Parameter Expected			
Expected Span Mass (mg/cm2): 0,885 Measured Span Mass (mg/cm2): 0,877 Difference (mg/cm2): 0,008 Notifierence (mg/cm2): 0,008 Setup and Calibration Values Parameter Expected Found Parameter E			
Expected Span Mass (mg/cm2): 0,885 Measured Span Mass (mg/cm2): 0,877 Difference (mg/cm2): 0,008 Notifierence (mg/cm2): 0,008 Setup and Calibration Values Parameter Expected Found Parameter E			
Measured Span Mass (mg/cm2): 0.877	ategor	r.,	
Difference (mg/cm2): 0,008 (lpm) (Hg) % Difference (Passor Fail: 0,91% 14.9 132.1 Marginal Setup and Calibration Values Parameter Expected Found Parameter Expected Found Parameter Expe Clock 1014 1014 Analog Mode Hourly Hourly Flow Type Act Location 3 3 Baud Rate 9600 9600 Restart Voltage 12. Tape Advance 24 hrs 24 hr RH Setpoint 45% 45% Std Cond Temp 25 Realtime Avg 60 mins 60 min Delta T Setpoint 15 C 15 C DAC 8.0 Machine Type PM-10 PM-10 RH Control On Delta T Setpoint 16.7 16.7 Pump Protect O Last 6 Errors in E-BAM Error Log Error Date Time Error Date			
Setup and Calibration Values Parameter Expected Found Parameter Parameter Found Parameter Parameter Found Parameter Parameter Found Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Paramete	,iiidi / i	1 001	
Setup and Calibration Values Parameter Expected Found Parameter Fo	A . 1		
Parameter Expected Found Flow Type Act Parameter Flow Type Act Parameter Flow Type Parameter Expected Found Flow Type Act Parameter Flow Type Act Paramete	-1		
Clock 1014 1014 Analog Mode Hourly Houring Flow Type Act Location 3 Baud Rate 9600 9600 Restart Voltage 12. Tape Advance 24 hrs 24 hr RH Setpoint 45% 45% Std Cond Temp 25 Realtime Avg 60 mins 60 min Delta T Setpoint 15 C 15 C DAC 8.0 Machine Type PM-10 PM-10 RH Control On Delta T Setpoint 16.7 16.7 Pump Protect O Last 6 Errors in E-BAM Error Log Error Date Time Error Date	ctod	Foun	
Location 3 Baud Rate 9600 9600 Restart Voltage 12. Tape Advance 24 hrs 24 hr RH Setpoint 45% 45% Std Cond Temp 25 Realtime Avg 60 mins 60 mins 60 min Delta T Setpoint 15 C 15 C DAC 8.0 Machine Type PM-10 PM-10 RH Control On Delta T Setpoint 16.7 Pump Protect O Last 6 Errors in E-BAM Error Log Error Date Time Error Date		Act	
Tape Advance 24 hrs 24 hr RH Setpoint 45% 45% Std Cond Temp 25 Realtime Avg 60 mins 60 min Delta T Setpoint 15 C 15 C DAC 8.0 Machine Type PM-10 PM-10 RH Control On Delta T Setpoint 16.7 16.7 Pump Protect O Last 6 Errors in E-BAM Error Log Error Date Time Error Date	- '	12,5	
Realtime Avg 60 mins 60 mins 60 mins Delta T Setpoint 15 C 15 C DAC 8.0 Machine Type PM-10 PM-10 RH Control On Do RH Connect N Analog FS 1.0 v 1.0 v Flow Setpoint 16.7 16.7 Pump Protect O Last 6 Errors in E-BAM Error Log Error Date Time Error Date		250	
Machine Type PM-10 PM-10 RH Control On D RH Connect N Analog FS 1.0 v 1.0 v Flow Setpoint 16.7 14.7 Pump Protect O Last 6 Errors in E-BAM Error Log Error Date Time Error Date		8.0	
Analog FS 1.0 v 1.0 v Flow Setpoint 16.7 14.7 Pump Protect O Last 6 Errors in E-BAM Error Log Error Date Time Error Date		No	
Error Date Time Error Date		00	
Error Date Time Error Date			
	T	Time	
	T		
2 5			
3 6			

Baseline Air Monitoring Program - DOE

E-BAM Monthly Audit and Maintenance Station # Serial # W23313 Audit Date: Audited By: T.S. Williford Flow Audit Flow Audit Device Model: BGI Delta Cal DC-1A Serial No: 158047 Calibration Date: 3/23/2022 Leak Check Value: as found: 1 5 as left: 0,5 E-BAM Ref. Std. E-BAM Ref. Std. Ambient Temperature: as found: 23. °c as left: 23.9 Barometric Pressure: as found: 108,8 mmHg mmHg as left: 708.8 mmHg 710,0 mmHg 16.7 lpm Flow Rate as found: lpm Ipm as left: lpm 14.0 lpm Flow Rate as found: Ipm as left: 14.0 14.0 lpm 14.07 14.07 lpm lpm 17.5 lpm Flow Rate as found: lpm Ipm as left: 17.5 17.30 lpm Mechanical Audits (Y = Yes N = No) Sample nozzle clean: as found as left Tape support vane clean: as found as left Tape spool covers tight: as found as left PM10 particle trap clean: as found as left PM10 drip jar empty: as found as left PM10 bug screen clear: as found as left Manual Span Membrane Test **Pump Test** Expected Span Mass (mg/cm2): 0.985 Flow Rate Vacuum **Quality Category** Measured Span Mass (mg/cm2): 0,893 14.0 - 15.0 Value Good / Marginal / Poor Difference (mg/cm2): 0,008 (lpm) (Hg) % Difference / Pass or Fail: 0,90% Margina 14.2 403.8 Setup and Calibration Values Parameter Expected Found Parameter Expected Found Parameter Expected Found Clock 1302 130Z Analog Mode Hourly Hour les Flow Type Actual Location **Baud Rate** 9600 9600 Restart Voltage 12.5 v 17.5v Tape Advance 24 hrs **RH Setpoint** 24 hr 45% 45% Std Cond Temp 25 C 25C Realtime Avg 60 mins Delta T Setpoint 60 min 15 C DAC 15C 8.0 v SOV Machine Type PM-10 PM-10 **RH Control** On **RH Connect** On No NO Analog FS 1.0 v 1.0 V Flow Setpoint 16.7 **Pump Protect** Off off Last 6 Errors in E-BAM Error Log Error Date Time Error Date Time 5/19/27 1310 5 6

Audit Notes:

	E-3					23		1 6 2	11.5	-	
Audit Date: 6/	24/20.	22			udited By :	7.5	tewar	it wi	Mitan	8	
				Flow							
Flow Audit Device	Model:	BGI Delt			al No:1	58047		ion Date:	3/23/20)22	
Leak Check Value:		as fo	ound: _	0.3			as left: _	0.3	_		
				E-BAM	Ref. St	td.		E-BAM	Ref.	Std.	
Ambient Temperat	ture:	as fou	nd:	30.4 °c	29.8	°c as	left: 2	0.4	°c 29.	8 0	
Barometric Pressu	re:	as fou	nd: 7	10.1 mmHg	711.5	mmHg as	left:	10.1 mm	Hg 7/1	5 mmH	
16.7 lpm Flow R	Rate	as fou	nd: 16	. 7 lpm	16.83	lpm as	left: /	6.7 1	m 16.8	3 Ipr	
14.0 lpm Flow R	ate	as fou	4.0 1	m 14.0	03 lpr						
17.5 lpm Flow R	ate	as fou	nd: /	7,5 lpm	17.6	7 Ipm as	left:	7.5 1	om /7. (07 lpr	
			Mecha	anical Audits	(Y=Yes	N = No)					
		Samp	le nozzl	e clean: as	found	Y	as left _	Y			
	T	ape supp	ort van	e clean: as	found	Y	as left _	Y			
		Tape spo	ool cove	rs tight: as	found	Y	as left _	Y			
	P	M10 par	ticle tra	p clean: as	found	Y	as left _	Y			
		PM10	drip jar	empty: as	found	Y	as left _	Y			
		PM10 b	ug scree	en clear: as	found	Y	as left _	Y			
Man	ual Span N	/lembrar	ne Test				Pum	p Test			
Expected Span	19	Flow Rate	e Va	cuum	Qua	lity Categ	ory				
Measured Span	23	14.0 - 15.	0 V	alue	Good /	Marginal	/ Poor				
Differ	ence (mg,	/cm2):	0.0	104	(lpm)	(Hg)				
% Differer	nce / Pass	or Fail:	0.4	3%	14.0 412.5 ma				rgmal		
			Se	tup and Cali	bration Va	lues		(
Parameter	Expected	Found	Pa	rameter	Expected	Found	Para	ameter	Expected	-	
Clock	1134	1134	A	analog Mode	Hourly	Howly	Flo	и Туре	Actual	Act	
Location	3	3		Baud Rate	9600	9600		rt Voltage	12.5 v	12.5V	
Tape Advance	24 hrs	24hr		RH Setpoint	45%	45%		ond Temp	25 C	25℃	
Realtime Avg		60 mis	Del	ta T Setpoint		150		DAC	8.0 v	8.0 V	
Machine Type		PM-10		RH Control		On		Connect	No	No	
Analog FS	1.0 v	1.0V	F	low Setpoint	16.7	16.7	Pump	Protect	Off	pff	
			Las	t 6 Errors in I	E-BAM Err	or Log					
Err	or		Date	Time		Erro	r		Date	Time	
1 No new pr	ussage	5	1140	6/24/224							
2	0			5							
3				6							
Audit Notes:											
This is the	initial	Andi	+ for	W2331	4 Uni	+ WZ	23313	went a	lown	n	

Baseline Air Monitoring Program - DOE E-BAM Monthly Audit and Maintenance

Station # Doe	P-3			ALCO COMP.	Se	erial# u	U 2	33	0			
Audit Date: 412	6120	2.2				udited By				ford		
				Flo		Audit						W-1-1-1
Flow Audit Device N	/lodel:	BGI De	lta Cal DO		_		58047		Calibrat	ion Date:	3/23/2	022
Leak Check Value:		as	found:	0,5		11/		a	s left:	0.5		
				E-BAM		Ref. S	td.			E-BAM	Ref	. Std.
Ambient Temperatu	ıre:	as fo	und: Z	3,9	°C	24,2		as I	eft: 2	3.9	°c 24.	
Barometric Pressure		as fo		3,3 mi	mHg			4		3.3 mm	67	O mmHg
16.7 lpm Flow Ra	ate	as fo		-46	lpm	16.9		as I			pm 16.9	
14.0 lpm Flow Ra	te	as fo			lpm	14.13		as I		-	om 14.1	
17.5 lpm Flow Ra	te	as fo		1.5	lpm	17.66		as l	100		om 17.66	
			Mecha	nical Au	dits	(Y=Yes	N = No)				
		Sam	ple nozzl			found	1		s left	Y		
	Т	ape sup	port van	e clean:	as	found	Y	a	s left	Y		
		Tape sp	ool cove	rs tight:	as	found	Y	a	s left	Ý		
	P	M10 pa	rticle tra	p clean:	as	found	4	a	s left	Y		
		PM1	0 drip jar	empty:	as	found	Y	as	s left	Y		
		PM10	bug scree	n clear:	as	found	Y	as	s left _	<u>Y</u>		
Manu	al Span N	/lembra	ne Test						Pum	Test		
Expected Span IV	lass (mg	/cm2):	0.915	5		Flow Rate	9	Vacu	ıum	Qua	lity Categ	ory
Measured Span M	lass (mg	/cm2):	0.89	8		14.0 - 15.	0	Val	ue	Good /	Marginal	/ Poor
Differe	nce (mg/	/cm2):	0,01	7		(lpm)	pm) (Hg)					
% Difference	e / Pass	or Fail:	1.87	%		15.0	4	13.	O Good		/ Margina 1	
					Calik	oration Va	_				0	
Parameter E	xpected	Found	l Pa	rameter		Expected	Fou	nd	Para	meter	Expected	Found
Clock	141	1141	А	nalog Mo	ode	Hourly	Hor	ılı	Flov	v Type	Actual	Act
Location	4	4		Baud R	ate	9600	96		Restar	t Voltage	12.5 v	125
Tape Advance	24 hrs	24 h	18	RH Setpo	int	45%	455		Std Co	nd Temp	25 C	25C
Realtime Avg	60 mins	60mm	n Delt	a T Setpo	int	15 C	15C			OAC	8.0 v	8.0 V
	PM-10	PM-10		RH Cont	rol	On	on		RH C	onnect	, No	NO
Analog FS	1.0 v	1.0 V	FI	ow Setpo	int	16.7	16.7		Pump	Protect	Off	off
			Last	6 Errors	in E	-BAM Erro	or Log					
Erro	r		Date	Time			E	ror			Date	Time
1 No new me	sage	S	4/26/22	1145	4							
2	0				5							
3					6							
Audit Notes:												

Baseline Air Monitoring Program - DOE

				Flov	v Audit					
Flow Audit Device		BGI De	lta Cal D	C-1A Se	rial No: 1	58047	Calibra	tion Date:	3/23/2	022
Leak Check Value:		as f	found:	0,4		a	s left: 6	0.4	- 100	
enal of Salar Salar				E-BAM	Ref. S	12.44.4		E-BAM	Ref	. Std.
Ambient Temperat		as fo			°c 22.9	°C as	left: 2	3.8	°C ZZ.	9
Barometric Pressu		as fo		01.8 mm	1g 703.5	mmHg as	left: 7	01,8mm	nHg 703	5 mm
16.7 lpm Flow R		as for			m 16.86	Ipm as	left: 1	6.7	lpm 16.8	36 IF
14.0 lpm Flow R		as for		4.0 lp	m 14,1	Ipm as	left:	40	lpm 14.	/ Ip
17.5 lpm Flow R	ate	as fo	und: 1	7.5 lp	m 17,63	lpm as	left:	7.5	lpm 17.6	3 1
					ts (Y = Yes	N = No)				
			ple nozzi		as found		s left	Y		
	- 3	1-510-0-0-4	port van		as found		s left _	Y		
			ool cove		as found		s left _	Y		
	F		rticle tra		as found		s left _	Y		
			0 drip jar		as found		s left _	Y		
		PM10 k	oug scree	en clear:	as found	<u>Y</u> a	s left _	y		
	ual Span I						Pum	p Test		
Expected Span N					Flow Rate	Vaci	uum	Qua	ality Categ	ory
Measured Span N					14.0 - 15.	0 Va	lue	Good /	Marginal	/ Poor
Differ	ence (mg	/cm2):	0.00	6	(lpm)	(H	lg)			
% Differen	ce / Pass	or Fail:	0.6	5%	14,1	389	0,	(90	ed	-
			Se	tup and Ca	libration Va					
Parameter	Expected	Found	Pa	rameter	Expected	Found	Para	meter	Expected	Found
Clock	1218	1218	A	nalog Mod	e Hourly	Hourh	Flov	v Туре	Actual	Act
Location	4	4		Baud Rat	e 9600	9600	Restar	t Voltage	12.5 v	12.5
Tape Advance	24 hrs	24hrs		RH Setpoin	t 45%	45%	Std Co	nd Temp	25 C	250
Realtime Avg	60 mins	60 mis	Delt	a T Setpoin	15 C	15C	E	DAC	8.0 v	8.0.
Machine Type				RH Contro		On	RH C	onnect	No	NO
Analog FS	1.0 v	1.00	FI	ow Setpoin	t 16.7	16.7	Pump	Protect	Off	O.ff
			Last	6 Errors in	E-BAM Erro	or Log				
Erro			Date	Time		Error			Date	Time
No new me	ssage	S.	5/19/22	1	4					
3					5 6					
Audit Notes:					0					

Station # DOE Audit Date: (6/	24/2	2			erial # <u> </u>	NZ33		42/4	Grad		
-6/	2-11-				Audit	1100	10-11	VOITO			
Flow Audit Device N	Model:	BGI Delt	a Cal DC-			8047	Calibrati	on Date:	3/23/20	022	
Leak Check Value:	_	as fo	und: 🔑	4		a	s left: 👅	2.4			
				E-BAM	Ref. St	d.		E-BAM	Ref.	Std.	
Ambient Temperati	ure:	as four		3.5 %	-	°c as I	eft:		c 3Z.		
Barometric Pressur		as four	_	3. O mmH		mmHg as I		103, Cmm		O mmH	
16.7 lpm Flow Ra		as four		1	0 -	Ipm as I		.7 lp	1.0		
14.0 lpm Flow Ra		as four	-	O Ipn		Ipm as I	eft: / L	1.0 lp	m 14.1	8 Ipn	
17.5 lpm Flow Ra		as fou	nd:	7.5 lpn	11000	lpm as I	eft: /	7.5 lp	m 17, 6	8 Ipr	
			Mechar	ical Audit	s (Y = Yes I	V = No)					
		Samp	le nozzle		s found		s left				
	Ta	ape supp	ort vane	clean: a	s found	Y a	s left	<u> </u>			
	- 9	Tape spo	ol covers	tight: a	s found	→ a	s left	1			
	PI	M10 par	ticle trap	clean: a	s found	<u>У</u> а	s left 🕒	(
		PM10	drip jar e	empty: a	s found	Y_ a	s left	Y			
		PM10 b	ug screer	clear: a	s found	Y a	s left	_			
Manu	ual Span N	/lembrar	ne Test				Pump	Test			
Expected Span N					Flow Rate	Vac	uum	Qua	lity Categ	ory	
Measured Span N	Mass (mg/	/cm2):	0.911		14.0 - 15.	0 Va	lue	Good /	Marginal	/ Poor	
Differe	ence (mg/	/cm2):	0.000	1	(lpm)	(H	lg)				
% Differen	ce / Pass	or Fail:	0.44	%	14.3	392	-,1	600	sd		
			Set	up and Ca	libration Va	lues					
Parameter	Expected	Found		ameter	Expected		Parameter		Expected	Found	
Clock	1731	123	Ar	alog Mod	e Hourly	Hourly	Flov	v Type	Actual	Act	
Location	4	4		Baud Rat	e 9600	9600		rt Voltage	12.5 v	12.5 V	
Tape Advance	24 hrs	24 hr	I	RH Setpoir	t 45%	45%	Std Co	ond Temp	25 C	258	
Realtime Avg	60 mins	60mm	Delta	T Setpoir	15 C	15°C		DAC	8.0 v	8.0 V	
Machine Type	PM-10	Pm-10		RH Contro	ol On	On		Connect	No	NO	
Analog FS	1.0 v	1.0V	Flo	w Setpoir	it 16.7	16.7	Pump	Protect	Off	off	
			Last	6 Errors in	E-BAM Err	or Log					
Erro	or		Date	Time		Error			Date	Time	
1 No new n	nessus	res	6/24/22	1240	4						
2	- 0		1		5						
3					6				1		
Audit Notes:											