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Evolution of Optoelectronic Properties During Degradation
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Stoddard, Dunlap-Shohl, Qiao, Meng, Kau, and Hillhouse. ACS Energy Lett., 2020, 3, 946-954
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Goal Develop forecasting models for device PCE T80 

• That account for device-to-device variation

ML model inputs

• time-series data of dark-field (DF) optical microscopy, 
summaries of wide-field photoluminescence (PL), 
current-voltage (JV) measurements

• all collected in-situ during degradation over a broad 
range of temperatures, relative humidity, oxygen, 
illumination intensity

• all early time features

Hierarchical ML learn inputs to forecasting model

• E.g. absorber material   and single-junction sub-cell 
degradation rates from unencapsulated devices

Validation with state-of-the art statistical methods

We use

this… …to predict this
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Prediction modeling pipeline

Small data (𝑛~10 − 102)

(xi,yi)i=1,…𝑛
Target Variable, 𝑦

Goals:

1. Accuracy: Predictive model for  y 

2. Interpretability: Feature selection

3. Uncertainty quantification: Conformal Prediction (CP)

Primary Feature 

construction, 𝐹0

(Physically-relevant features 

extracted from data anticipated by 

the scientist to describe 𝑦)

Expansion of feature 

pool (non-linear 

transformations, time 

differences, …)

Feature filtering  

(independent of y)

Large feature pool 

(𝑝 ~ 10 – 103)

Restricting to linear 

regression due to 

small data

Learn sparse (linear) predictive 

model f(x) for y
• Feature selection

• Parameter estimation (training)

• LOO Cross-Validation 

Reliable Prediction, ො𝑦

Conformal Prediction

Training + feature selection with small data

1. Algorithms Lasso, best-subset  selection, OMP, knockoffs

2. Prediction accuracy evaluation: Training errors, in-sample errors like 

AIC and BIC, and extra-sample test errors using leave-one-out cross 

validation.

3. .

• Confidence interval on each 

predictied y = f(x)

• Independent on model, 

algorithm

Challenges of small data
• Where experiment expensive: $$$, time, human effort, 

expertise
• Statistics and computation must make up for data paucity
• Benefits some computations possible that are intractable for 

large data

Physically derived 

features 

(kinetic rates)



Small data challenges and benefits

• Why small data setting?

– Small data = (statistical) asymptotics do not hold

– Domain knowledge needed to constrain the model

In degradation experiments n ~ 40-100 experiments, p ~ 100-300 features  

 -- Experiment expensive: $$$, time, human effort, expertise

• Statistics and computation must make up for data paucity

• Constraints from small data

– Only linear models 

– And only sparse models s features used out of p

– Informational limit  𝑛 ∝ 𝑠 log 2 𝑝  

10

Example  𝑛 = 35, 𝑝 = 128 = 27 

• for 𝑠 = 1:  𝑛 /slog 2 𝑝 = 5 data points/dof 

• For 𝑠 = 2:  𝑛 /𝑠log 2 𝑝 = 2.5 data points/dof

𝑛 ∝  𝑠 log 2 𝑝 Degrees of  
freedom (dof)[1]

[1] D. L. Donoho, "Compressed sensing," in IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289-1306, April 2006, doi: 10.1109/TIT.2006.871582.



Small data challenges and benefits

• Why small data setting?

– Small data = (statistical) asymptotics do not hold

– Domain knowledge needed to constrain the model

In degradation experiments n ~ 40-100 experiments, p ~ 100-300 features  

 -- Experiment expensive: $$$, time, human effort, expertise

• Statistics and computation must make up for data paucity

• Constraints from small data

– Only linear models 

– And only sparse models s features used out of p

– Informational limit  𝑛 ∝ 𝑠 log 2 𝑝  

– Must filter features before training model

• E.g remove redundant features 

• + transform features to conform with  linearity 

– Can leverage independent experiments to construct physically inspired features 

11

Example  𝑛 = 35, 𝑝 = 128 = 27 

• for 𝑠 = 1:  𝑛 /slog 2 𝑝 = 5 data points/dof 

• For 𝑠 = 2:  𝑛 /𝑠log 2 𝑝 = 2.5 data points/dof

𝑛 ∝  𝑠 log 2 𝑝



Physiochemical Inspired Feature: Kinetic Rate Equation for MAPbI3 Degradation
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Degradation

Conditions

25 oC with 1 Sun

[mol/(m2∙s)]

85 oC with 1 Sun

[mol/(m2∙s)]

Heat Only (0% O2, 0% RH) less than 10-10 less than 10-10 

Humid N2 (0% O2, 50% RH) 1 x 10-9 3 x 10-9

Dry Air (21% O2, 0% RH) 4 x 10-9 2 x 10-7

Humid Air (21% O2, 50% RH) 2 x 10-7 4 x 10-7

Degradation rate at 25 °C in humid air is ~2 orders of 
magnitude faster than the sum of all other processes. 

𝑟 = −
1

𝑊

𝑑𝑁

𝑑𝑡
= −

𝜌

 𝑀 ∙ 𝑙𝑜𝑔10 𝑒 ∙ 𝛼0

𝑑Δ𝐴

𝑑𝑡

The rate of disappearance of perovskite can be quantified from changes in the above bandgap absorbance using Beer’s Law: 

Absorbance of MAPbI3 films measured in-situ over broad 
range of conditions (41 unique environmental conditions)

𝑟 = −𝑘
𝑃𝐻2𝑂𝑃𝑂2

𝑛

1 + 𝐾2𝑃𝑂2
1 + 𝐾4𝑛

2

Rate equation derived from hypothesized elementary steps of 
the reaction with an assumption of a rate determining step

R2 = 0.89

T.D. Siegler, W.A. Dunlap-Shohl, Y. Meng, W.F. Kau, P.P. Sunkari, C.E. Tsai, Z.J. Armstrong & H.W. Hillhouse,

“Water-Accelerated Photo-oxidation of  CH3NH3PbI3 Perovskite: Mechanism, rate orders, and rate constants,” (2022)



Small data challenges and benefits: algorithms

• Constraints from small data

– Only linear models 

– And only sparse models s features used out of p

– Informational limit  𝑛 ∝ 𝑠 log 2 𝑝  

• Benefits

– can exploit computational methods that are prohibitive for larger data (e.g. 
exhaustive search)

• ML Algorithms incorporating feature selection (Many!)

– Lasso (l1 regularization)  -- convex optimization

– Orthogonal Matching Pursuit (OMP) -- greedy

– Best subset selection -- exhaustive search over all feature sets of size 𝑠 

– Knock-offs (Lasso + control of False Discovery Rate)

13



Sparse Linear Models
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Most commonly-used sparse linear models use penalized 

versions of the ordinary least-squares (OLS) cost function. 
OLS cost function, ℒ𝑂𝐿𝑆 = ෍

𝑖=1

𝑁

𝑦𝑖 − ෍

𝑗=0

𝑝

𝛽𝑗𝑋𝑗

2

• Generates a sparse coefficient array, 

𝜷∗ corresponding to a feature subset 

with size, 𝑠 that corresponds to the 

lowest error.

• Subset-size, 𝑠 is the only tunable 

parameter and is easy to interpret.

• Fails to perform well when the noise 

levels are large [1][2].

Exhaustive search over all subsets

𝒍𝟎

(a.k.a best-subset regression)

𝜷∗ = min
𝜷={𝛽𝑗: 𝑗=1,2,…,𝑝}

ℒ𝑂𝐿𝑆

such that 𝜷 0 = ෍

𝑗=1

𝑝

1 {𝛽𝑗 ≠ 0}  ≤ 𝑚

𝒍𝟏

(a.k.a lasso regression)

𝜷∗ = min
𝜷={𝛽𝑗: 𝑗=1,2,…,𝑝}

ℒ𝑂𝐿𝑆 + 𝜆1 𝜷 1

where 𝜷 1 = ෍

𝑗=1

𝑝

|𝛽𝑗|

• Generates a sparse coefficient array, 

𝜷∗

• The coefficients of the selected 

features are “shriunk” such that the 

error is minimized [1]; Robust to high 

noise levels [1].

• Complex iterative hyper-parameter (𝜆1) 

tuning is needed to obtain a feature 

subset with the desired size, 𝑠[1]; Less 

sparse compared to 𝒍𝟎
[2].

𝒍𝟎𝒍𝟐

𝜷∗ = min
𝜷={𝛽𝑗: 𝑗=1,2,…,𝑝}

ℒ𝑂𝐿𝑆 + 𝜆2 𝜷 2

where 𝜷 2 = ෍

𝑗=1

𝑝

𝛽𝑗
2

such that 𝜷 0  ≤ 𝑚

• Same as 𝒍𝟎 with Ridge Regression

• The coefficients of the selected 

features are “shrinked” such that the 

error is minimized [2]; Robust to high 

noise levels [2] and preserves the 

sparsifying ability of the 𝒍𝟎 method [2].

• Although setting s sets the resultant 

subset-size, tuning the hyper-

parameter (𝜆2) increases the runtimes.

[1] Hastie T., Tibshirani R., Tibshirani R. J., (2017) Extended Comparisons of Best Subset Selection, Forward Stepwise Selection, and the Lasso, arXiv: 1707.08692v2.

[2] Mazumder R., Radchenko P., Dedieu A. (2023) Subset Selection with Shrinkage: Sparse Linear Modeling When the SNR Is Low. Operations Research 71(1):129-147

Automatic efficient search for all 𝜆1 



Orthogonal Matching Pursuit (OMP)
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Sparsity 

reached?
Full Feature 

Pool

1. Take all 

features

2. Calculate ρPearson with 

residuals wrt. mean,

𝚫𝒚 = 𝒚 − ഥ𝒚

3. Take the feature 

with the highest 𝝆
1.

2.

3.

…

4. Add the feature with the highest 𝝆 to 

the selected features list

6. Calculate ρPearson 

remaining features with 

updated residuals

Simple Linear 

Regression 

Model

Nfeats < sparsity (m)

Nfeats = sparsity (m)

8. Train model 

with selected 

features

A Greedy algorithm, which selects features sequentially based on the correlations with the updated residuals.

The maximum features allowed (i.e. sparsity, m) is set initially, and 

selected features are used to train a simple linear regression.

5. Use the selected 

features to predict

𝒚 = 𝒕𝑷𝑪𝑬,𝟖𝟎 and update 

the residuals,

𝚫𝒚 = 𝒚 − 𝒚𝒑𝒓𝒆𝒅

Simple Linear 

Regression

𝑦 = tPCE,80

1.

ρ with 

𝚫𝒚 = 𝚫tPCE,80
ρ with 

𝚫𝒚 = 𝚫tPCE,80

7. Take the feature with 

the highest 𝝆 Count the number of 

features currently in the 
list of selected features

1.

The loop continues until sparsity, m is 

reached with selected features list
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LASSO Orthogonal Matching 
Pursuit (OMP) [s=2]

Median Model

Predictionsl

Coefficients

Positive

Negative

Test

Median test 

error: 36.6 

%

Mean test 

error: 47.3 

%

Median test 

error: 53.6 %

Mean test error: 

3.7x107 %

Example: Prediction of log(1/tLD80) in FA0.75Cs0.25(Pb0.5Sn0.5)I3 thin films

n = 48 features

• experimental conditions

• Kinetic rate

• early-time measurements  (based on LD, 

PLQY, 𝜎𝑑𝑎𝑟𝑘, 𝒯, DF, )

Temperature

25 C 55 C

0% RHRelative 

humidity

Stress intensity

0 sun

1 sun

Oxygen %

~3% O2

21% O2

50% RH

Selected features: 
𝑑𝜎

𝑑𝑎𝑟𝑘
, 

𝑑𝑡
, log 𝑃𝑂2 , 𝜎𝑑𝑎𝑟𝑘 𝑡 = 0 , log 𝑟, … . 



Knockoff Filter for the Sparse Linear Model
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• By incorporating the knockoff+ filter into the sparse linear model training, we can obtain feature subsets with guaranteed 

false-discovery rates.

Choose the optimal 

subset size, 𝒎∗ via 

cross-validation error.

𝑋1 𝑋2 𝑋3 𝑋𝑝

Feature data

matrix,
𝑋 =

…

𝑁
 o

b
s
e
rv

a
ti
o
n
s

# of features = 𝑝

𝑋1 𝑋2 𝑋3 𝑋𝑝

Feature data

matrix,
𝑋 =

…

𝑁
 o

b
s
e
rv

a
ti
o
n
s

෪𝑋1

…

෪𝑋2
෪𝑋3 ෪𝑋𝑝

# of features = 2𝑝

Knockoff feature data

Traditional feature selection via a sparse linear model (𝒍𝟎, 𝒍𝟏, or 𝒍𝟎𝒍𝟐):

Obtain feature subsets with different sizes, 

s = 1, 2, 3, … , 
(e.g  by varying λ the regularization coefficient)

Feature selection via a sparse linear model (Lasso) augmented with a knockoffs+ filter:

First, what are these knockoffs feature 

data?



Knockoff Feature Data
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• Knockoff feature data are built without seeing the target variable data, 𝑦, such that the joint distribution of the feature 

matrix doesn’t change with the swap operations as shown below [1].

𝑋1 𝑋2 𝑋3 𝑋𝑝

Feature data

matrix,
𝑋 =

…

𝑁
 o

b
s
e
rv

a
ti
o
n
s

෪𝑋1

…

෪𝑋2
෪𝑋3 ෪𝑋𝑝

# of features = 2𝑝

Knockoff feature data

In a swap operation, the indexing order of the column 

remains unchanged, while the positions of the original and its 

corresponding knockoff copy are exchanged

𝑋1 𝑋2 𝑋3 𝑋𝑝

…

෪𝑋1

…

෪𝑋2
෪𝑋3 ෪𝑋𝑝

𝑋1 𝑋2𝑋3 𝑋𝑝

…

෪𝑋1

…

෪𝑋2
෪𝑋3෪𝑋𝑝

“Full 

swap”

Knockoff feature data columns act as control group for the predictors that behaves in the same way as 

the original null variables but, unlike them, lack any potential correlation with the target variable.

[1] Barber R. F., Candes E. J., (2015) Controling the false-discovery rate via knockoffs. The Annals of Statistics Vol. 43, No. 5, 2055–2085



Knockoff Feature Data: Example
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𝑃(𝑋1, ෪𝑋2) 𝑃(𝑋2, ෪𝑋2)𝑃(𝑋1, 𝑋2)

Consider the feature matrix, 𝑋 (={𝑋1, 𝑋2, }) as shown below where 𝜌(𝑋1, 𝑋2) ~ 0.

Using a knockoff algorithm to produce ෩𝑿𝟐:

• preserves the underlying joint distribution and correlation of 𝑿𝟏 and 𝑿𝟐

• while ensuring that the correlation between 𝑿𝟐 and ෩𝑿𝟐 is as low as 

possible,

thus, making ෩𝑿𝟐 indistinguishable from 𝑿𝟐

Knockoff generator 

algorithm: Deep neural 

network [1]

[1] Romano Y., Sesia M., Candes E. J., (2018) Deep Knockoffs, arXiv:1811.06687v1



Knock-off Filter for the Sparse Linear Model
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𝑋1 𝑋2 𝑋3 𝑋𝑝

Feature data

matrix,
𝑋 =

…

𝑁
 o

b
s
e
rv

a
ti
o
n
s

෪𝑋1

…

෪𝑋2
෪𝑋3 ෪𝑋𝑝

# of features = 2𝑝

Knockoff feature data

Knock-off filter
subset with  

desired nominal 

FDR.

Vary 𝜆 to obtain 

feature subsets with 

all sizes,s 
= {1, 2, 3, … ,  2𝑝}

By incorporating the knockoff+ filter into the sparse linear model training, 

we can obtain feature subsets with guaranteed false-discovery rates.

𝐹𝐷𝑅 =
1

3
 

 False Discovery Rate

𝑋1

𝑋2

𝑋3

𝑋𝑝

෪𝑋1

෪𝑋2

෪𝑋3

෪𝑋𝑝

𝑠 = 3 features selected

max 𝜆 appearance

Select features 
appearing at   𝜆
> 𝜆𝑚𝑖𝑛(FDR)

guaranteed

𝜆𝑚𝑖𝑛(FDR)

desired FDR



Uncertainty quantification by Conformal Prediction intervals
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• Confidence Interval (CI): a small [Y-, Y+] at high confidence level (90%) that we believe contains the truth

• Conformal prediction (CP): recent powerful method to obtain confidence interval (CI) for a prediction

– CP Input: training data (Xi, Yi), prediction algorithm (e.g. LASSO), new input X, desired confidence level (e.g. 90%)

– CP Output: prediction Y(X) and 90% CP interval [Y-, Y+] that contains Y(X)

• Idea: we want to guess the error of Y(X). Calculate the leave-one-out errors for the n data points X1…Xn for 
which Y1…Yn are known. This gives a distribution of the errors that we can use.

• Methods before CP

– Classical Confidence Interval: depends on model used being correct

– Bootstrap, Jackknife (resampling based methods): independent
of model, but no proof of correctness

• With CP (here Jackknife+ algorithm [2] )

– The interval is correct no matter what data/model used

– Requires re-training the model multiple times

– Fast developing area of statistics

[2] Barber, Rina Foygel, et al. "Predictive inference with the jackknife+." arXiv preprint arXiv:1905.02928 (2019).



Conformal Prediction (CP) bands for MAPbI3 degradation
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• Predict: tPL10 (time when PL drops to 10% of initial value)

• Out of sample prediction (testing): leave-one-out 

• Uncertainty quantification: 90% conformal prediction (CP) 
band

• The LASSO has the narrowest CP band for most 
experiments
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Prediction modeling pipeline revisited

Small data (𝑛~10 − 102)

(xi,yi)i=1,…𝑛
Target Variable, 𝑦

Goals:

1. Accuracy: Predictive model for  y 

2. Interpretability: Feature selection

3. Uncertainty quantification: Conformal Prediction (CP)

Primary Feature 

construction, 𝐹0

(Physically-relevant features 

extracted from data anticipated by 

the scientist to describe 𝑦)

Expansion of feature 

pool (non-linear 

transformations, time 

differences, …)

Feature filtering  

(independent of y)

Large feature pool 

(𝑝 ~ 10 – 103)

Restricting to linear 

regression due to 

small data

Learn sparse (linear) predictive 

model f(x) for y
• Lasso: Feature selection 

• + Parameter estimation 

• + Knock-off (FDR guarantees)

• LOO Cross-Validation 

Reliable Prediction, ො𝑦

Conformal Prediction

• Confidence interval on each 

predictied y = f(x)

• Independent on model, 

algorithm

• Informational limits on degrees of freedom 𝑠 log  𝑝 
• Learning physically meaningful features from independent experiments (hierarchical modeling)
• Sparse Linear Regression (Lasso)
• Controlling the FDR with the Knock-offs filter 
• Uncertainty quantification by Conformal Prediction 

Physically derived 

features 

(kinetic rates)



Role of ML/AI expert
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ML/AI expert

• What is statistically possible (and what is not)

• What methods are applicable (and which are not)

• Access and rapid percolation of state of the art results (methods, theories, … )

– AI, ML, Statistics are fast developing 

• View of the entire data analysis pipeline

– New ML results are specialized 

• Optimize statistical power (get as much as possible from the given data/experiment)

• Validation

– Are predictions accurate? What part of model can be trusted/generalized to other problems?

In-house 

• Algorithms and methods

• Feature construction and transformation

• Exploratory data analysis

• Range of measurements, SNR, sample sizes (=experimental constraints)

• Performance requirements 

– Level of accuracy



Conclusions
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Statistical and ML strategies for valid inferences from small data

• Informational limits on degrees of freedom 𝑠 log  𝑝 [2004]

• Learning physically meaningful features from independent experiments (hierarchical modeling)

– Increase complexity,  allows non-linearity

• Sparse Linear Regression [~2004]

• Controlling the FDR with the Knock-offs filter [2018]

• Uncertainty quantification by Conformal Prediction [2014]



Thank you!
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Motivation

Most models are built to predict material properties obtained 
from experiments using non-experimental features. Hence, the 
size of these datasets are restricted by the complexity and the 
time scales of these experiments.

1. Need for Machine Learning in Applied Sciences

• Often, in applied research, mathematical relations 
describing the physiochemical properties and mechanisms 
are important for a deeper understanding.

• However, theoretical first-principle based calculations are 
often computationally expensive and are biased with 
several a priori assumptions.

• Hence recently, machine learning methods that can learn 
trends from experimental data have grown popular due to 
their ease, 

Schmidt, J., Marques, M.R.G., Botti, S. et al. Recent advances and applications of 
machine learning in solid-state materials science. npj Comput Mater 5, 83 (2019).
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Motivation

2. Small datasets from experiments

• Most data sets in engineering and medicine are small 
(Ndata~ 101 - 102) compared to the general ML standards 
(Ndata > 103).

• This calls for attention towards often machine learning 
techniques such as generalized linear regression etc. 
that can handle such small datasets.

• Along with the choice of the learning method,
• the choice of features and the relevant target variable 

to describe the desired phenomenon,
• the model testing protocol, 
• the metrics to interpret the final models to 

understand the underlying phenomenon
are important for every such dataset.

Hence, there is a need in the scientific community for machine learning techniques that 
can be used on small datasets.



Hollow 

Excitation Beam

Widefield 

Camera

Sample

Cube with 

central beam 

stop and mirror

Central 
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Lens
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Annular 

Condenser

Scattering from Grain

or Phase Boundaries

Scattering from Surface 

Roughness

Features in Dark-Field Microscopy Images Reveal Rate of Degradation

R.J. Stoddard, W. Dunlap-Shohl, H. Qiao, Y. Meng, W. Kau, and H.W. Hillhouse, ACS Energy Lett. 2020, 5, 3, 946

Dark-field image intensity and heterogeneity are both highly 

correlated with transmittance and can be used as features for 

forecasting perovskite PV device performance.

Degradation of MAPbI3 film at 25 °C, 60 %RH, 21 %O2, 8 Sun illumination

Increasing time

We pondered… What can we learn (quantitatively) about the 

rate of degradation from transmittance and reflectance?
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Year 1 Year 2 Year 3

Sept 2021 Dec 2021 Mar 2022 June 2022 Sept 2022 Dec 2022 Mar2022 June 2023 Sept 2023 Dec Mar 2024

Task 1. Forecasting the Absorber-Quality-Limited Lifetime for High-Bandgap and Low Bandgap Materials (Ld-T80) 
1.1. Data Collection M1.1 M1.2

1.2. Feature Selection M1.3

1.3. Forecasting Model GNG1

Task 2. Forecasting Low-Bandgap Sub-Cell PCE

2.1. Data Collection M2.1

2.2. Feature Selection M2.2

2.3. Forecasting Model GNG2

Task 3. Forecasting High-Bandgap Sub-Cell PCE

3.1. Data Collection M3.1

3.2. Feature Selection M3.2

3.3. Forecasting Model M3.3

Task 4. Forecasting Tandem T80

4.1. Data Collection M4.1

4.2. Feature Selection M4.2

4.3. Forecasting Model M4.3

4.4. Field Deployment M4.4

Task 5. Dissemination and Data Accessibility

GNG3 M5.1

Timeline of DOE Milestones and GNGs



Hougen-Watson-Langmuir-Hinshelwood (HWLH) Equations

Hougen and Yang [1] used the principles of the HWLH Equations to build a generalized rate expression. Every 
rate equation for a mechanism like above can be written in the form if a RDS is assumed:

Yang, K. H., and Hougen, 0. A., "Determination of Mechanism of Catalyzed Gaseous Reactions," Chem. Eng. Prog., 46,146 (1950).

𝑟𝑎𝑡𝑒 =
kinetic − group × (driving force − group)

(adsorption group)

Any single-step heterogenous reaction as shown below, can be written using the following three steps:

𝑎𝐴 → 𝑎𝐴∗

𝑏𝐵 → 𝑏𝐵∗

𝑟𝑅∗  → 𝑟𝑅

𝑠𝑆∗  → 𝑠𝑆

𝑎𝐴∗ + 𝑏𝐵∗ → 𝑟𝑅∗ + 𝑠𝑆∗

Step-1: Langmuir adsorption of the gaseous reactants 𝐴 & 𝐵

Step-2: Surface reaction of the adsorbed 𝐴 & 𝐵 to adsorbed 𝑅 & 𝑆

Step-3: Langmuir desorption of the gaseous products 𝑅 & 𝑆

This means for a given set of 𝑨, 𝑩, 𝑹 and 𝑺-

• if the parameters (𝒂, 𝒃, 𝒓, 𝒔) of the system of rate 

equations are known and,

• the RDS is assumed,

the overall rate expression can be easily written.

Overall Reaction: 𝒂𝑨 + 𝒃𝑩 → 𝒓𝑹 + 𝒔𝑺



Potential for Langmuir-Hinshelwood-Hougen-Watson (LHHW) equations for use in

perovskite-gas heterogenous reactions

The original[1] sets of LHHW have until been applied only for simple single-step solid-catalyzed heterogeneous reactions. With subtle 

adjustments, these equations can further be generalized to be applied for reactions occurring at the perovskite-gas interfaces.

1. Hougen, O. A., And Watson, K. M., “Chemical Process Principles,” Vol. 3. Wiley, New York, 1947.

1. Gases reacting on a solid surface → For 

perovskites, water and O2 react on the surface.

2. The active sites on the solid surface are 

invariant → For early-times we use, the active 

site concentration on the perovskite can be 

assumed to be constant. Although perovskite is 

involved in the reaction, very minimal change in 

the activity of the perovskite can be assumed.

3. Monolayer Langmuir adsorption and 

desorption of gaseous reactants and products → 

Reasonable assumption for perovskites under the 

operating environmental conditions.

Domain of applicability of LHHW equations:

4.   The charge-transfer reactions can be assumed to 

be fast and always in quasi-equilibrium.

A: O2
B: H2O



Generalized LHHW equations for use in perovskite-gas heterogenous reactions

{𝛼, 𝛽, 𝑎, 𝑏, 𝑥, 𝑦, 𝑝, 𝑞, 𝑘, 𝑠, 𝑐𝑖𝜅𝑖}

A given parameter set = 𝜙

Rate expression
𝑟𝑅𝐷𝑆(𝑝𝐴, 𝑝𝐵, 𝑛, 𝜙)

Rate-determining step (RDS)
+

After placing restraints on the 

parameter combinations, a total of 

132 candidate sets are obtained.


