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Evolution of Optoelectronic Properties During Degradation
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Forecasting Perovskite Photovoltaic Device Performance
Using Dark-Field Imaging and Machine Learning
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Goal Develop forecasting models for device PCE T80
® That account for device-to-device variation
ML model inputs

® time-series data of dark-field (DF) optical microscopy,
summaries of wide-field photoluminescence (PL),
current-voltage (JV) measurements

® all collected in-situ during degradation over a broad
range of temperatures, relative humidity, oxygen,
illumination intensity

® all early time features
Hierarchical ML learn inputs to forecasting model

® E.g. absorber material and single-junction sub-cell
degradation rates from unencapsulated devices

Validation with state-of-the art statistical methods
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Forecasting Perovskite Photovoltaic Device Performance
Using Dark-Field Imaging and Machine Learning
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Prediction modeling pipeline

Small data (n~10 — 10?) Goals: :
(X- y_)__ 1. Accuracy: Predictive model for y Target Variable,
pYi/i=l,..n 2. Interpretability: Feature selection
3. Uncertainty quantification: Conformal Prediction (CP)

Restricting to linear
Primary Feature regression due to
construction, Fy small data

v

(Physically-relevant features Feature filterin g
extracted from data anticipated by .
the scientist to describe y) (mdependem of y)

Expansion of feature
pool (non-linear
transformations, time Large feature pool
differences, ...) (p~10- 107

Physically derived
features
(kinetic rates)

Challenges of small data

*  Where experiment expensive: $S$S, time, human effort,
expertise

* Statistics and computation must make up for data paucity

* Benefits some computations possible that are intractable for
large data

Learn sparse (linear) predictive
model f(x) fory
« Feature selection

Parameter estimation (training)
LOO Cross-Validation Y

Conformal Prediction

» Confidence interval on each
predictied y = f(x)

Reliable Prediction, ¥ p *  Independent on model,

algorithm

Training + feature selection with small data

=

Algorithms Lasso, best-subset selection, OMP, knockoffs

2. Prediction accuracy evaluation: Training errors, in-sample errors like
AIC and BIC, and extra-sample test errors using leave-one-out cross
validation.

3. . 9



Small data challenges and benefits

Why small data setting?
— Small data = (statistical) asymptotics do not hold
— Domain knowledge needed to constrain the model

In degradation experiments n ~ 40-100 experiments, p ~ 100-300 features

-- Experiment expensive: $SS, time, human effort, expertise

* Statistics and computation must make up for data paucity

Constraints from small data
— Only linear models
— And only sparse models s features used out of p

— Informational limit n < s 108 2P

Example n = 35, p = 128 = 27
 for s =1: n/slog,p =5 data points/dof
* Fors=2: n/slog,p = 2.5 data points/dof

[1] D. L. Donoho, "Compressed sensing," in IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289-1306, April 2006, doi: 10.1109/TIT.2006.871582.
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Small data challenges and benefits

Why small data setting?

Small data = (statistical) asymptotics do not hold
Domain knowledge needed to constrain the model

In degradation experiments n ~ 40-100 experiments, p ~ 100-300 features
-- Experiment expensive: $SS, time, human effort, expertise
* Statistics and computation must make up for data paucity Example n = 35, p = 128 = 27

Constraints from small data

 for s =1: n/slog,p =5 data points/dof
* Fors=2: n/slog,p = 2.5 data points/dof

Only linear models
And only sparse models s features used out of p

Informational limit SEEFESCERT log 2P

Must filter features before training model
* E.gremove redundant features

* + transform features to conform with linearity

Can leverage independent experiments to construct physically inspired features

11



Physiochemical Inspired Feature: Kinetic Rate Equation for MAPDbI; Degradation

The rate of disappearance of perovskite can be quantified from changes in the above bandgap absorbance using Beer’s Law:
1dN p dAA
M -log,o(e) - a, dt

wWdt

Rate equation derived from hypothesized elementary steps of
the reaction with an assumption of a rate determining step

Absorbance of MAPbl, films measured in-situ over broad
range of conditions (41 unique environmental conditions)
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.
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®
5 .
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Heat Only (0% O,, 0% RH) less than 10710 less than 1010 % 2
& -
Humid N, (0% O,, 50% RH) 1x 107 3x10° % v
Dry Air (21% O,, 0% RH) 4x10° 2x107 1 Vi
Humid Air (21% O,, 50% RH) 2x107 4x107
Voo
°
° 1 2 3

Degradation rate at 25 °C in humid air is ~2 orders of
magnitude faster than the sum of all other processes.

Observed Rate [mol/m?s)

1o=T

T.D. Siegler, W.A. Dunlap-Shohl, Y. Meng, W.F. Kau, P.P. Sunkari, C.E. Tsai, Z.J. Armstrong & H.W. Hillhouse,
“Water-Accelerated Photo-oxidation of CH3;NH;Pbl; Perovskite: Mechanism, rate orders, and rate constants,” (2022)
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Small data challenges and benefits: algorithms

Constraints from small data

Only linear models

— And only sparse models s features used out of p

Informational limit n « slog,p

Benefits

can exploit computational methods that are prohibitive for larger data (e.g.
exhaustive search)

ML Algorithms incorporating feature selection (Many!)

Lasso (11 regularization) -- convex optimization

Orthogonal Matching Pursuit (OMP) -- greedy

Best subset selection -- exhaustive search over all feature sets of size s
Knock-offs (Lasso + control of False Discovery Rate)

13



Sparse Linear Models

2
. . N P
Mos_t commonly us_ed sparse linear models use penallz_ed > OLS cost function, £y = Z y _Zﬂfo
versions of the ordinary least-squares (OLS) cost function. L =
Iy Ly lol,
(a.k.a best-subset regression) (a.k.alasso regression) -
B = min Lors + A21IBll2
* = i L * = min L + 1 B={Bj: j=1.2,...p}
B ﬂ={ﬁj:nj1£11,2,....p} OLS B B=(8} 1=12...0) OLS Bl P
p % where 1Bz = Zﬁ,-z such that [IBllo =m
such that [IBlly = Z 1{f; #0} <m where Bl = Z 1B;1 =
j=1 Jj=1
. Generates a sparse coefficient array, « Generates a sparse coefficient array, + Same as [, with Ridge Regression
B corresponding to a feature subset B .
with size, s that corresponds to the * The coefficients of the selected * The coefficients of the selected
lowest error. features are “shriunk” such that the features are “shrinked” such that the
error is minimized [¥I; Robust to high error is minimized ©); Robust to high
. Subset-size, s is the only tunable noise levels [11. noise levels Yland preserves the

parameter and is easy to interpret. sparsifying ability of the 1, method [2,

* Complex iterative hyper-parameter (1,)

. Fails to perform well when the noise tuning is needed to obtain a feature ¢ Although Setting_ s sets the resultant
levels are large (2] subset with the desired size, s!; Less subset-size, tuning the hyper-
sparse compared to 1,2. parameter (1) increases the runtimes.
Exhaustive search over all subsets Automatic efficient search for all A4

[1] Hastie T., Tibshirani R., Tibshirani R. J., (2017) Extended Comparisons of Best Subset Selection, Forward Stepwise Selection, and the Lasso, arXiv: 1707.08692v2.
[2] Mazumder R., Radchenko P., Dedieu A. (2023) Subset Selection with Shrinkage: Sparse Linear Modeling When the SNR Is Low. Operations Research 71(1):129-147



Orthogonal Matching Pursuit (OMP)

A Greedy algorithm, which selects features sequentially based on the correlations with the updated residuals.

>
The loop continues until sparsity, m is 4. Add the feature with the highest p to
reached with selected features list the selected features list
3. Take the feature S ]
with the highest p "= 2

g

7. Take the feature with

the highest p Count the number of

features currently in the
list of selected features

Nfeats < sparsity (m)

Sparsity
reached?

Full Feature p with Simple Linear

2 with Regression
Ay = Atpce go ¥ = tocego

Pool Ay = Atpce g0

5. Use the selected

6. Calculate Ppearson

1. Take all Z'rgg:gﬂgtsevcﬁeaﬁe”;ith remaining features with features to predict
features Ay—y b 5 : updated residuals y= iﬁCeEfgs?dnSalljsp,date Njeure = SPArsity (m)
AY =Y — Ypred
<
i i i i initi i i 8. Train model
The maximum features allowed (l.e. sparsny,_ m) is set |n|t!ally, and Simple Lincar | N
selected features are used to train a simple linear regression. Model features
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Example: Prediction of log(1/t ggo) iN FA 75CS 25(PbysSng 5)l5 thin films

Median Model

Temgerature LASSO
R Predictionsl
S cE G :,,...1 e :

. ‘L. Median test ‘5‘ !
Relative 0% RH O O » E error: 36.6 Q. 1
humidity [ % Vv ]

50% RH . . s | Mean test 2
& 10 E-error: 47.3 . 9 3
E% Q § =
Stress intensity Oxygen % i f”
10 E
A Osun o ~3%O0, '“’_ml s rcoy sokTestld
10" 10° 10"
. 1 sun ’ 21% O, Yoos
Coefficients
0.40 preeepermpreee e PSS T
n = 48 features 035 M Negative -
* experimental conditions o 050
+ Kinetic rate E
+ early-time measurements (based on L, g S
PLQY, 644rk, T, DF,) ; "
3’.
010
0.05
do
Selected features: ——az ,log PO,,0,,..,(t =0),log , .... TR RN
dt — ‘\085 W \)\6}56 é)(f\b A
W » 6.\3'

8“@“

l)Q\’

Orthogonal Matching

Pursuit (OMP) [s= 2]

Py ,
L Median test V/Q
"WE  error: 53.6 % %,’

[ Mean testerror: W )
3.7x107 % 77
10°F /6 -
[ A
{ ',v'
w0 'F 3 -
E 2 9
e sl usvanal o]
-1 0 1
10 10 10
Yobs
0.8 perrrrrry T T T T T
07 -

,§ 06~ =l

%u.u- ~

o4l -

c

8

1= 03 —

&

Qo2 —
01p= =
00
¥

Featuro

16



Knockoff Filter for the Sparse Linear Model

* By incorporating the knockoff+ filter into the sparse linear model training, we can obtain feature subsets with guaranteed
false-discovery rates.

Traditional feature selection via a sparse linear model (I,, 14, or lyl,):

Xy X, X3 X,

Feature data
matrix,
X =

Obtain feature subsets with different sizes, Choose the optimal

) . i\:h{l’ 2, 3I } . —>» subset size, m* via
(e.g by varying A the regularization coefficient) -

N observations

# of features = p

Feature selection via a sparse linear model (Lasso) augmented with a knockoffs+ filter:

Knockoff feature data
I
I I

WX LT GLEG

(2]
e .
Feature data S First, what are these knockoffs feature
matrix, g data?
X = 2 '
Qo
o
=

# of features = 2p

17



Knockoff Feature Data

Knockoff feature data are built without seeing the target variable data, y, such that the joint distribution of the feature
matrix doesn’t change with the swap operations as shown below 11,

Knockoff feature data

X, X, X3 X, X, X, X5 X

X, X X3 X,

0
Feature data S «
. = Full _
ma’[rIX, S ” =
X = g swap
o
o
=

# of features = 2p
X, X1 X X3 Xp

In a swap operation, the indexing order of the column
remains unchanged, while the positions of the original and its
corresponding knockoff copy are exchanged

Knockoff feature data columns act as control group for the predictors that behaves in the same way as
the original null variables but, unlike them, lack any potential correlation with the target variable.

[1] Barber R. F., Candes E. J., (2015) Controling the false-discovery rate via knockoffs. The Annals of Statistics Vol. 43, No. 5, 2055-2085
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Knockoff Feature Data: Example

Consider the feature matrix, X (={X;, X3, }) as shown below where p(X;, X;) ~ 0.

P(Xy, X,) P(X1,X7) P(X5, X3)
50 - . 50 4 '
0- 0 -
KE e p=-0027 3 e ;»=0028
2 2

-2 0 2 0 50 -2 0 2 0 50 -2 0 2 0 50
Xy X X
Knockoff generator Using a knockoff algorithm to produce X,:
algorithm: Deep neural » preserves the underlying joint distribution and correlation of X; and X,
network [ + while ensuring that the correlation between X, and X, is as low as
possible,
thus, making X, indistinguishable from X,

[1] Romano Y., Sesia M., Candes E. J., (2018) Deep Knockoffs, arXiv:1811.06687v1



Knock-off Filter for the Sparse Linear Model

______ » | Select features
max A appearance appearingat 4
4 > A,..,(FDR)
X uaranteed
X3 P [
1% |
1 Xv FDR = 3
p X3 X‘; False Discovery Rate

H
s = 3 features selected E

Knockoff feature data

X, X, X3 X% XK X X
%]
Feature data §
matrix, :
X = ?
e
=

# of features = 2p

v

Vary 1 to obtain
feature subsets with
all sizes,s
={1,2,3,.., 2p}

desired FDR

N

Knock-

off filter

)\ 4

By incorporating the knockoff+ filter into the sparse linear model training,

A

min(FDR)

¢

subset with
desired nominal
FDR.

we can obtain feature subsets with guaranteed false-discovery rates.
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Uncertainty quantification by Conformal Prediction intervals

® Confidence Interval (Cl): a small [Y-, Y+] at high confidence level (90%) that we believe contains the truth

® Conformal prediction (CP): recent powerful method to obtain confidence interval (Cl) for a prediction
— CP Input: training data (X, Y;), prediction algorithm (e.g. LASSO), new input X, desired confidence level (e.g. 90%)
— CP Output: prediction Y(X) and 90% CP interval [Y-, Y+] that contains Y(X)

® Idea: we want to guess the error of Y(X). Calculate the leave-one-out errors for the n data points X,...X, for
which Y,...Y, are known. This gives a distribution of the errors that we can use.

®* Methods before CP " B-1(Xns1) £ -
— Classical Confidence Interval: depends on model used being correct

fio(Xns1) £ REOC
— Bootstrap, Jackknife (resampling based methods): independent \

of model, but no proof of correctness ﬁ_:z'(an) + RLOO
® With CP (here Jackknife+ algorithm [2] )
— The interval is correct no matter what data/model used

— Requires re-training the model multiple times Bn(Xny1) £ REOO

L

— Fast developing area of statistics

—e .

(?Vjackknife—f (Xn ‘ l)
+

1,0

[2] Barber, Rina Foygel, et al. "Predictive inference with the jackknife+." arXiv preprint arXiv:1905.02928 (2019). 21



Conformal Prediction (CP) bands for MAPDI; degradation
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Prediction modeling pipeline revisited

Small data (n~10 — 10?) Goals: ,
(X- y_)__ 1. Accuracy: Predictive model for y Target Variable,
pYiJi=1,..n 2. Interpretability: Feature selection
3. Uncertainty quantification: Conformal Prediction (CP)

Restricting to linear
Primary Feature regression due to *

small data

construction, F,

(Physically-relevant features Feature filtering Learn sparse (linear) predictive
extracted from data anticipated by . —» model f(x) fory
the scientist to describe ) (independent of y) . Lasso: Feature selection

* + Parameter estimation

: * + Knock-off (FDR guarantees) \ 4
Exgggls?r)]r;rifli;eeﬁlrjre *+ LOO Cross-Validation Conformal Prediction
transformations, time Large feature pool . .
» Confidence interval on each

(»~10- 10%)

differences, ...)

predictied y = f(x)
* Independent on model,
algorithm

Reliable Prediction, § »

Physically derived
features
(kinetic rates)

* Informational limits on degrees of freedom s log p

* Learning physically meaningful features from independent experiments (hierarchical modeling)
* Sparse Linear Regression (Lasso)

» Controlling the FDR with the Knock-offs filter

* Uncertainty quantification by Conformal Prediction
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Role of ML/AI expert

ML/Al expert

What is statistically possible (and what is not)

What methods are applicable (and which are not)

Access and rapid percolation of state of the art results (methods, theories, ... )
— Al, ML, Statistics are fast developing

View of the
— New ML results are specialized

Optimize (get as much as possible from the given data/experiment)

— Are predictions accurate? What part of model can be trusted/generalized to other problems?

In-house

Algorithms and methods
Feature construction and transformation
Exploratory data analysis
Range of measurements, SNR, sample sizes (=experimental constraints)
Performance requirements
— Level of accuracy

27



Conclusions

Statistical and ML strategies for valid inferences from small data

Informational limits on degrees of freedom s log p [2004]

Learning physically meaningful features from
— Increase complexity, allows non-linearity

Sparse Linear Regression [~2004]
Controlling the FDR with the Knock-offs filter [2018]
Uncertainty quantification by

[2014]

experiments

28
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Motivation

1. Need for Machine Learning in Applied Sciences

Often, in applied research, mathematical relations
describing the physiochemical properties and mechanisms
are important for a deeper understanding.

However, theoretical first-principle based calculations are
often computationally expensive and are biased with
several a priori assumptions.

Hence recently, machine learning methods that can learn
trends from experimental data have grown popular due to
their ease,

Most models are built to predict material properties obtained
from experiments using non-experimental features. Hence, the
size of these datasets are restricted by the complexity and the

time scales of these experiments.

Table 1. Summary of material properties predicted with machine
fearmning methods and corresponding references

Property References

Curle temperature

Vibrational free energy and entropy
Band gap

Dielectric breakdown strength
Lattice parameter

Debye temperature and heat capacity
Glass transition temperature
Thermal expansion coefficient
Thermal boundary resstance
Thermal conductivity

Local magnetic moments

Melting temperature
Magnetocaloric effects

Grain boundaries

Grain boundary energy

Grain boundary mobdity

Interface energy

Seebeck coefficient

Thermoelectric hgure of ment

Bulk and shear moduli

Blectrical resistivity

Density of states

Fermi energy and Poisson ratio
Dopant solution energy
Metal-insulator classification
Topological invanants
Superconducting critical temperature

Li-ion conductivity and battery state-of-charge

Schmidt, J., Marques, M.R.G., Botti, S. et al. Recent advances and applications of
machine learning in solid-state materials science. npj Comput Mater 5, 83 (2019).
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Motivation

. Small datasets from experiments

Bubble size commesponds to training dataset size

N = size of training datase
Most data sets in engineering and medicine are small Linear e g
(Ngat~ 101 - 10%) compared to the general ML standards —agEeewon
(Nyats > 103).
Decision
Trees
This calls for attention towards often machine learning N<10r o Random
. . . . 2 Forests Support
techniques such as generalized linear regression etc. = Vector
that can handle such small datasets. 3 N0 | N-102 Machines
o
i N~
Along with the choice of the learning method, = 10%-10°
* the choice of features and the relevant target variable “wine datasst. % i
to describe the desired phenomenon, T AKX
* the model testing protocol, Ne62902)

Deep Leaming
Neural Networks

N~108

* the metrics to interpret the final models to
understand the underlying phenomenon
are important for every such dataset.

Prediction accuracy

Hence, there is a need in the scientific community for machine learning techniques that
can be used on small datasets.
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Features in Dark-Field Microscopy Images Reveal Rate of Degradation

Degradation of MAPDI, film at 25 °C, 60 %RH, 21 %0,, 8 Sun illumination

Scattering from Grain
or Phase Boundaries

Widefield
Camera

Cube with
central beam

LED stop and mirror

101
Central T 8

Objective §
S 6

Annular . :
Condenser Scattering from Surface . o

Roughness Q
Eey il 2

Hollow "::::::f

Excitation Beam

3.0

10% | | 0 min

25 min

2.5 10° D 1 12% min
2R 0 225 min

N
o
Trans. [norm)
Number of pixels
-~
°

107 = \
-
<.\(‘

L o

20000 40000 60000

250 0
Dark Field Intensity [cts/s]

100 1%0
time [min]

o 50 200

. Incident Light

Scattered Light

Dark-field image intensity and heterogeneity are both highly
correlated with transmittance and can be used as features for
forecasting perovskite PV device performance.

We pondered... What can we learn (quantitatively) about the
rate of degradation from transmittance and reflectance?

R.J. Stoddard, W. Dunlap-Shohl, H. Qiao, Y. Meng, W. Kau, and H.W. Hillhouse, ACS Energy Lett. 2020, 5, 3, 946
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UNIVERSITY of ~Jimeline of DOE Milestones and GNGs

| _vear: | _vea2 ] ________VYear3
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N 1.1. Data Collection M1.1 M1.2

- 1.2. Feature Selection M1.3

- 1.3. Forecasting Model GNG1

Task 2. Forecasting Low-Bandgap Sub-Cell PCE

- 2.1. Data Collection M2.1

- 2.2. Feature Selection M2.2

- 2.3. Forecasting Model GNG2

N 3.1. Data Collection M3.1

- 3.2. Feature Selection M3.2

- 3.3. Forecasting Model M3.3

4. Forecasting Tandem T80
4.1. Data Collection M4.1

—
Q
"
.

4.2. Feature Selection M4.2
4.3. Forecasting Model M4.3

4.4. Field Deployment

Task 5. Dissemination and Data Accessibility

GNG3



Hougen-Watson-Langmuir-Hinshelwood (HWLH) Equations

Any single-step heterogenous reaction as shown below, can be written using the following three steps:
Overall Reaction: aA + bB - rR + sS

aA — aA” ]
bB — bB* ~ Step-1: Langmuir adsorption of the gaseous reactants A & B

ad” +bB" - TR" + 557 } Step-2: Surface reaction of the adsorbed A & B to adsorbed R & S
rR* > 1R ]

— Step-3: Langmuir desorption of the gaseous products R & S
s§* - sS

Hougen and Yang [ used the principles of the HWLH Equations to build a generalized rate expression. Every
rate equation for a mechanism like above can be written in the form if a RDS is assumed:

; (kinetic — group) X (driving force — group) e T
rate = - o 2l

(adsorption group)

[ ————
N %

This means for a given set of 4, B,R and §-

- if the parameters (a, b, r,s) of the system of rate ~ —., .~ = . L W A ¥ S
equations are known and, — O T BT e
+ the RDSis assumed, iy

the overall rate expression can be easily written.

Yang, K. H., and Hougen, 0. A., "Determination of Mechanism of Catalyzed Gaseous Reactions," Chem. Eng. Prog., 46,146 (1950).



Potential for Langmuir-Hinshelwood-Hougen-Watson (LHHW) equations for use in

1.

perovskite-gas heterogenous reactions

The originall¥! sets of LHHW have until been applied only for simple single-step solid-catalyzed heterogeneous reactions. With subtle
adjustments, these equations can further be generalized to be applied for reactions occurring at the perovskite-gas interfaces.

Domain of applicability of LHHW equations:

1. Gases reacting on a solid surface - For
perovskites, water and O, react on the surface.

2. The active sites on the solid surface are
invariant - For early-times we use, the active
site concentration on the perovskite can be
assumed to be constant. Although perovskite is
involved in the reaction, very minimal change in
the activity of the perovskite can be assumed.

3. Monolayer Langmuir adsorption and
desorption of gaseous reactants and products ->
Reasonable assumption for perovskites under the
operating environmental conditions.

4. The charge-transfer reactions can be assumed to
be fast and always in quasi-equilibrium.

A: O,

B: H,O

4 1A: Generation of adsorbed A species? }

Kﬁoi Am,+a[*] 2a A

4 1B: Generation of adsorbed B species F

Kgo:  Bmot + Bl*] = BB’

2: Surface reactiont )

Ke:  Cimor + Ki[*] = K C;

Hougen, O. A., And Watson, K. M., “Chemical Process Principles,” Vol. 3. Wiley, New York, 1947.

Kggp: perov. (solid) + aA'P"+bB 7"+ ke  +s([+] = other/perov.(solid)
+¢,C1+ 4 ¢ Coy
; q : 1 The charge transfer reactions are assumed to be fast,
3: Desorption of products? } and always in quasi-equiibrium

£ Desorbed products are shown on the left to indicate that
the equilibrium constant is defined with the adsorption as
the forward reaction



Generalized LHHW equations for use in perovskite-gas heterogenous reactions

Rate controlling step

Rate expression

1A. AD controlling:
(Adsorption of A)

18. B0 controlling:
(Adsorption of B}

2. SR controlling:

f
ko Pa
r

= l|,' i
[1 +1"a'ﬂ|:ﬁ’$a + Kgy 4 Kgan® + - + Ké}.n-"'}l

Kpo Po
o=

- 1 .
[1 + 2Ry + Kiyn + Kpn? + -+ Hj_tn‘}ll

by
' ; LI

a+bes
149y " (Kjp + Kyyn + Kjgn? + = + K;,n*)
+p:|,m{h’,;u + Kp o+ Kgan® + -+ J’f,;}.nﬂl

3A: ¢; controlling and
is the only gaseous
product:

{Desorption of ;)

by e
. ay ) "

kg - [:J-',J. * g ! '”[pmqbﬂ"]

1z

I
14 p (K + Kjgn 4 o+ Kin®) 4]
Pj:-fﬁ{”:ru + HJ:'!I" + ot H.'.'Iry"r}

|_|'f|

ay by
+ K- (e py? -nvararssn

A given parameter set = ¢
{a,B,a,b,x,y,p,9,k,s,ciK;}

+
Rate-determining step (RDS)

Rate expression
TRDS (pAr b, 1N, ¢)

After placing restraints on the
parameter combinations, a total of
132 candidate sets are obtained.

3B: €, controlling
(Desorption of C;)

_om
r = kI




