

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: 187086H

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title:	Boeing SSFL RFI Group 8 Data Gap
Contract Task Order:	1261.500D.08.002
Sample Delivery Group:	187086H
Project Manager:	Dixie Hambrick
Matrix:	soil
QC Level:	V
No. of Samples:	6
No. of Reanalyses/Dilutions:	0
Laboratory:	GEL

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
FSBS0086S01	187086003	N/A	Soil	5/17/2007 9:12:00 AM	314.0-DI WET
FSBS0086S02	187086004	N/A	Soil	5/17/2007 9:17:00 AM	314.0-DI WET
FSBS0087S01	187086005	N/A	Soil	5/17/2007 10:25:00 AM	314.0-DI WET
FSBS0087S02	187086006	N/A	Soil	5/17/2007 10:31:00 AM	314.0-DI WET
FSBS0094S01	187086001	N/A	Soil	5/16/2007 1:21:00 PM	314.0-DI WET
FSBS0094S02	187086002	N/A	Soil	5/16/2007 1:26:00 PM	314.0-DI WET

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks Date Reviewed: June 27, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 28 days, was met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: The recovery was within the methodestablished QC limits of 85-115%.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on FSBS0094S02. The RPD was within the method-established control limit of ≤15%.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on a sample in this SDG.
- Sample Result Verification: The sample results reported on the Form I were verified against the raw data. No transcription errors or calculation errors were noted. A confirmation spike was performed on FSBS0094S02. The recovery was within the method-established control limit of 80-120%. Sample FSBS0094S01 was analyzed twice to confirm the perchlorate detect. The RPD between the analyses was 45%. Due to this RPD and the lack of a confirmation spike, the reviewer qualified the perchlorate detect in FSBS0094S01 as estimated, "J." Reported nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	ompany : ddress :	MECx. LLC 12269 East Vassar Aurora, Colorado						Re	port Date: June	e 12, 200)7	
C	Contact:	Ms. Elizabeth Wess	sling, M	ECx					263 			
P	roject:	SSFL Group 8 Ha	stings E	ata Gap Sampling	g							
		Client Sample II Sample ID: Matrix: Collect Date: Receive Date: Collector:):	FSBS0094S01 187086001 SOIL 16-MAY-07 13: 17-MAY-07 Client	21		Proie Clier	nt ID:	SSFL00507 SSFL001			
Parameter		Qualifier	Result		DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Perchlorate	14.0 Perch	lorate with Leaching	5.18	1	1.14	4.00	ug/L		1 MAR106/11/	07 1209	639829	9 1
The followin Method	g Analytic	al Methods were pe Description	riorme	1		An	alyst Comm	ents				
1		EPA 314.0					1.1.2.2.11					

LEVEL V

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company : Address :	MECx, LLC 12269 East Vassar Aurora, Colorado						Re	port Date: June	12, 200	07	
Contact:	Ms. Elizabeth We	ssling, M	ECx						,		
Project:	SSFL Group 8 H	astings I	Data Gap Sampling								
	Client Sample I Sample ID: Matrix: Collect Date: Receive Date: Collector:	D:	FSBS0094S02 187086002 SOIL 16-MAY-07 13:26 17-MAY-07 Client	5		Proje Clien		SSFL00507 SSFL001			
Parameter	Qualifier	Result		DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Ion Chromatography											
SSFL EPA 314.0 Perci	hlorate with Leaching	g									
Perchlorate	U U	4.00		1.14	4.00	ug/L	1	MAR106/08/0	7 1921	639829	1
The following Analytic	cal Methods were po	erformed	l								
Method	Description				An	alyst Comme	nts				
1	EPA 314.0										

LEVEL U

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

	ompany : idress :	MECx, LLC 12269 East Vassar Aurora, Colorado						Re	port Date: June	12, 200	07	
Co	ontact:	Ms. Elizabeth Wes	sling, M	ECx								
Pro	oject:	SSFL Group 8 Ha	stings I	ata Gap Sampling								
		Client Sample II Sample ID: Matrix: Collect Date: Receive Date: Collector:):	FSBS0086S01 187086003 SOIL 17-MAY-07 09:1 18-MAY-07 Client	2		Proie Clien	ect: at ID:	SSFL00507 SSFL001			
Parameter		Qualifier	Result		DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Ion Chromatog	graphy											
SSFL EPA 314	4.0 Perch	lorate with Leaching					m		MAR106/08/0	7 2006	620820	1
Perchlorate	U	U	4.00		1.14	4.00	ug/L	ļ	MAR100/08/0	7 2000	039825	1
The following	Analytic	al Methods were pe	rformed	l								
Method		Description				Ana	alyst Comme	ents				
1		EPA 314.0										

LEVEL V

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Compa Addres	· · · · · · · · · · · · · · · · · · ·					Re	port Date: June	12, 200	07	
Contac	: Ms. Elizabeth W	essling, MECx					F	,		
Project	SSFL Group 8 I	lastings Data	Gap Sampling							
	Client Sample Sample ID: Matrix: Collect Date: Receive Date: Collector:	187 SO 17- 18-	3S0086S02 '086004 IL MAY-07 09:17 MAY-07 ent		Proie Clier		SSFL00507 SSFL001			
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Ion Chromatograph	ny									
SSFL EPA 314.0 P	erchlorate with Leachir	ıg								
Perchlorate	U U	4.00	1.14	4.00	ug/L	1	MAR106/08/0	7 2021	639829	1
The following Ana	lytical Methods were I	erformed					······································			
Method	Description			An	alyst Comm	ents				
1	EPA 314.0									

LEVEL V

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

	ompany : ddress :	MECx, LLC 12269 East Vassar Aurora, Colorado						Re	port Date: June	2 12, 20	07	
C	ontact:	Ms. Elizabeth Wes	sling, M	ECx					1	,		
Pr	roject:	SSFL Group 8 Ha	stings I	Data Gap Sampling	g							
		Client Sample II Sample ID: Matrix: Collect Date: Receive Date: Collector:):	FSBS0087S01 187086005 SOIL 17-MAY-07 10: 18-MAY-07 Client	25		Proje Clien		SSFL00507 SSFL001			
Parameter		Qualifier	Result		DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Ion Chromatog	graphy											
SSFL EPA 31	4.0 Perchl	orate with Leaching										
Perchlorate	U	U	4.00		1.14	4.00	ug/L	1	MAR106/08/0	17 2036	639829	1
The following	Analytica	al Methods were pe	rformed	l								
Method		Description				Ana	alyst Comme	nts				
1		EPA 314.0				<u></u>						

LEVEL V

Company : Address :	MECx, LLC 12269 East Vassar Aurora, Colorado						Re	port Date: June	e 12, 20	07	
Contact:	Ms. Elizabeth Wes	sling, MEC	κ.								
Project:	SSFL Group 8 Ha	stings Data	Gap Sampling	5							
	Client Sample II Sample ID: Matrix: Collect Date: Receive Date: Collector:	18 SC 17 18	BS0087S02 7086006 DIL -MAY-07 10:: -MAY-07 ient	31		Proie Clier		SSFL00507 SSFL001			
Parameter	Qualifier	Result		DL	RL	Units	DF	AnalystDate	Time	Batch M	Method
Ion Chromatography											
SSFL EPA 314.0 Perch	lorate with Leaching								-	(20000	
Perchlorate U	U	4.00		1.14	4.00	ug/L]	MAR106/08/0)7 2052	. 639829	1
The following Analytic	al Methods were pe	rformed									
Method	Description				An	alyst Comme	ents				
1	EPA 314.0										

LE VEC V

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: 187202

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Contract Task Order: Sample Delivery Group: Project Manager: Matrix: QC Level: No. of Samples: No. of Reanalyses/Dilutions:	1261.500D.08.001 187202 Dixie Hambrick soil V 3 0	
QC Level: No. of Samples:	V 3	

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
FSBS0090S01	187202001	N/A	Soil	6/5/2007 8:00:00 AM	314.0-DI WET
FSBS0091S01	187202002	N/A	Soil	6/5/2007 8:13:00 AM	314.0-DI WET
FSBS0091S02	187202003	N/A	Soil	6/5/2007 8:33:00 AM	314.0-DI WET

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks Date Reviewed: June 15, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 28 days, was met.
- Calibration: Review is not applicable at a Level V validation. The reviewer noted that the closing CCV was above the project control limit of 110%, at 112%; therefore, perchlorate detected in FSBS0090S01 was qualified as estimated, "J."
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: The recovery was within the methodestablished QC limits of 85-115%.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on FSBS0090S01. The RPD exceeded the laboratory-established control limit; however, as the RPD was within the method-established control limit, no qualification was required.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed on a sample from this SDG.
- Sample Result Verification: The sample results reported on the Form Is were verified against the raw data. No transcription errors or calculation errors were noted. Reported nondetects are valid to the reporting limit. A confirmation spike was performed on FSBS0090S01. The recovery was above the method-established control limit at 122%; therefore, perchlorate detected in the sample was qualified as estimated, "J."
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

	Company : Address :	MECx, LLC 12269 East Vassar Aurora, Colorado						Report Date: June 12, 2007					
	Contact:	Ms. Elizabeth Wes	sling, M	ECx									
	Project:	SSFL Group 8 Ha	stings I	ata Gap Sampling									
		Client Sample II Sample ID: Matrix: Collect Date: Receive Date: Collector: Moisture:):	FSBS0090S01 187202001 SOIL 05-JUN-07 08:00 06-JUN-07 Client 4.17%		Project: SSFL00507 Client ID: SSFL001							
Parameter		Qualifier	Result		DL	RL	Units	DF	AnalystDate	Time	Batch N	Aethod	
Ion Chromatography SSFL EPA 314.0 Perchlorate with Leaching Perchlorate J Perchlorate J O R J 6.04 The following Analytical Methods were performed				a	1.14	4.00	ug/L		1 MAR106/11/	07 1254	640486	1	
The followi Method	ing Analytic	Description	eriorme	u	- LATTIC	An	alyst Comme	ents					
1		EPA 314.0											

LEVEL V

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company Address :	: MECx, LLC 12269 East Vassar D Aurora, Colorado 80			Report Date: June 12, 2007						
Contact:	Ms. Elizabeth Wessl	ing, MECx								
Project:	SSFL Group 8 Has	tings Data Gap Sampli	ng							
	Client Sample ID: Sample ID: Matrix: Collect Date: Receive Date: Collector: Moisture:	FSBS0091S01 187202002 SOIL 05-JUN-07 08 06-JUN-07 Client 4.79%			Proje Clien	t ID:	SSFL00507 SSFL001			
Parameter	Qualifier	Result	DL	RL	Units	DF	AnalystDate	Time	Batch	Method
Perchlorate	chlorate with Leaching	4.00	1.14	4.00	ug/L		1 MAR106/09/	07 1607	640486	1
The following Analy Method	tical Methods were per Description	formed		An	alyst Comme	ents				
1	EPA 314.0									

LEVEL V

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Company: MECx, LLC 12269 East Vassar Drive Address : Aurora, Colorado 80014 Report Date: June 12, 2007 Ms. Elizabeth Wessling, MECx Contact: SSFL Group 8 Hastings Data Gap Sampling Project: SSFL00507 SSFL001 Client Sample ID: Sample ID: Matrix: Project: FSBS0091S02 Client ID: 187202003 SOIL Collect Date: 05-JUN-07 08:33 Receive Date: 06-JUN-07 Collector: Client Moisture: 13.9% Time Batch Method AnalystDate DF RL Units Qualifier Result DL Parameter Ion Chromatography SSFL EPA 314.0 Perchlorate with Leaching 1 MAR106/09/07 1622 640486 1 ug/L 1.14 4.00 4.00 U Perchlorate The following Analytical Methods were performed **Analyst Comments** Description Method EPA 314.0 1

LEVEL V

28

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: 187451

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title:	Boeing SSFL RFI Group 8 Data Gap
Contract Task Order:	1261.500D.08.002
Sample Delivery Group:	187451
Project Manager:	Dixie Hambrick
Matrix:	soil
QC Level:	V
No. of Samples:	3
No. of Reanalyses/Dilutions:	0
Laboratory:	GEL

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
FSBS0036AS01	187451001	N/A	Soil	6/7/2007 1:55:00 PM	6020
FSBS0095S01	187451002	N/A	Soil	6/7/2007 2:31:00 PM	6020
FSBS0096S01	187451003	N/A	Soil	6/7/2007 2:59:00 PM	6020

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: June 27, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 6020 and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, six months for ICP-MS metals, were met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Review is not applicable at a Level V validation.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on a sample from this SDG.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Arsenic was not detected in field blank ESQW0002F01 (186314) or equipment rinsate FSQW0005E01 (186348).

• Field Duplicates: There were no field duplicate samples identified for this SDG.

METALS -1-INORGANICS ANALYSIS DATA PACKAGE

SDG No		CONTRACT: SSFL00507					METHOD TYPE: SW846						
SAMPLE ID:187451001BASIS: Dry WeightDATE COLLECTED07-JUN-07													
CLIENT	T ID: FSBS0036A		L	EVEL:	Low		DATE RECEIVED 08–JUN–07						
MATRIX: SOIL %SOLIDS: 97.9													
CAS No.	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-38-2	Arsenic	6.1	mg/kg		0.304	1.01	1	2	MS	BAJ	06/13/07 20:33	070613-1	641516

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
641516	641514	SW846 3050B	0.504	g	50	mL	06/12/07	FGA

LEVEL V

METALS -1-INORGANICS ANALYSIS DATA PACKAGE

SDG N	o: 187451		CONTRACT: SSFL00507				SFL00507 METHOD TYPE: SW846						
SAMPL	MPLE ID:187451002BASIS: Dry WeightDATE COLLECTED07-JUN-07					BASIS: Dry Weight							
CLIEN	NT ID: FSBS0095S01 LEVEL: Low				DATE RECEIVED 08–JUN–07								
MATRI	MATRIX: SOIL %SOLIDS: 98												
CAS No.	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-38-2	Arsenic	17	mg/kg		0.292	.972	1	2	MS	BAJ	06/13/07 20:39	070613-1	641516

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
641516	641514	SW846 3050B	0.525	g	50	mL	06/12/07	FGA

LEVEL V

METALS -1-INORGANICS ANALYSIS DATA PACKAGE

SDG No	o: 187451	CONTRACT: SSFL00507 METHOD TYPE: SW846					CONTRACT: SSFL00507						
SAMPL	SAMPLE ID: 187451003 BASIS: Dry Weight DATE COLLECTED 07–JUN-					BASIS: Dry Weight					JN-07		
CLIEN	Г ID: FSBS0096S	01	LEVEL: Low				Low DATE RECEIVED 08–JUN–07						
MATRIX: SOIL				9	6SOLID	S: 98							
CAS No.	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-38-2	Arsenic	30.7	mg/kg		1.53	5.08	1	10	MS	BAJ	06/13/07 19:31	070613-1	641516

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
641516	641514	SW846 3050B	0.502	g	50	mL	06/12/07	FGA

LEVEL V

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: 187884H

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

187884H

I. INTRODUCTION

Task Order Title:	Boeing SSFL RFI Group 8 Data Gap
Contract Task Order:	1261.500D.08.002
Sample Delivery Group:	187884H
Project Manager:	Dixie Hambrick
Matrix:	soil
QC Level:	V
No. of Samples:	3
No. of Reanalyses/Dilutions:	0
No. of Reanalyses/Dilutions:	0
Laboratory:	GEL

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
FSBS0088S01	187884003	N/A	Soil	5/30/2007 9:16:00 AM	6010B
FSBS0089S01	187884001	N/A	Soil	5/30/2007 8:44:00 AM	6010B
FSBS0089S02	187884002	N/A	Soil	5/30/2007 9:09:00 AM	6010B,

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of 4°C ±2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if The COCs were appropriately signed and dated by field and/or laboratory applicable. personnel. Custody seals were intact. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: July 5, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 6010B and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, six months for ICP metals, were met.
- Tuning: Not applicable to this analysis.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples: Review is not applicable at a Level V validation.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on FSBS0089S01. The RPD was within the laboratory-established control limit.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on FSBS0089S01. Recoveries and RPD were within laboratory-established QC limits.
- Serial Dilution: Serial dilution analyses were performed on FSBS0089S01. The %D was within the laboratory-established control limit.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Sodium was not detected in field blank ESQW0002F01 (196314) or equipment rinsate FSQW0005E01 (186359).

• Field Duplicates: There were no field duplicate samples identified for this SDG.

METALS -1-INORGANICS ANALYSIS DATA PACKAGE

SDG No		CONTRACT: SSFL00507					METHOD TYPE: SW846							
SAMPLE ID: 187884001				В	BASIS: Dry Weight				DATE COLLECTED 30-MAY-07					
CLIENT ID: FSBS0089S01					EVEL:	Low		DATE RECEIVED 31–MAY–07						
MATRI	X: SOIL		%SOLIDS: 92.8											
CAS No.	Analyte	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch			
7440-23-5	Sodium	111	mg/kg		4.69	15.6	50	1	Р	HSC	06/19/07 11:02	061907-1	643265	

Prep Information:

Analytic Batch	l Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
643265	643264	SW846 3050B	0.517	g	50	mL	06/18/07	FGA

LEVEL V

METALS -1-INORGANICS ANALYSIS DATA PACKAGE

SDG No	o: 187884H		CON	ONTRACT: SSFL00507 METHOD TYPE: SW846									
SAMPL	E ID: 187884	1002	BASIS: Dry Weight					DATE COLLECTED 30-MAY-07					
CLIENT	Г ID: FSBS0089	S02	LEVEL: Low				DATE RECEIVED 31-MAY-07						
MATRI	X: SOIL		% SOLIDS: 89										
CAS No.	Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-23-5	Sodium	301	mg/kg		4.89	16.3	50	1	Р	HSC	06/19/07 10:50	061907-1	643265
Prep Info	ormation:												

Analytical Batch Prep Batch Prep Method Units Final wt./vol. Units Initial wt./vol. Date Analyst 643265 643264 SW846 3050B 0.518 50 mL 06/18/07 FGA g

LEVEL V

METALS -1-INORGANICS ANALYSIS DATA PACKAGE

SDG No: 187884H		CONTRACT: SSFL00507				METHOD TYPE: SW846						
SAMPLE ID: 18788	4003	BASIS: Dry Weight				DATE COLLECTED 30-MAY-07						
CLIENT ID: FSBS008		I	EVEL:	Low		DATE RECEIVED 31-MAY-07						
MATRIX: SOIL			9	6SOLID	S: 95							
CAS No. Analyte	Result	Units	Qual	MDL	PQL	CRDL	DF	M*	Analyst	Run Date	Analytical Run	Analytical Batch
7440-23-5 Sodium	82.8	mg/kg		4.66	15.5	50	1	Р	HSC	06/19/07 10:56	061907-1	643265

Prep Information:

Analytical Batch	Prep Batch	Prep Method	Initial wt./vol.	Units	Final wt./vol.	Units	Date	Analyst
643265	643264	SW846 3050B	0.508	g	50	mL	06/18/07	FGA

LEVELV

12269 East Vassar Drive, Aurora, CO 80014 303.881.6816, Fax 720.535.7555

DATA ASSESSMENT FORM

	Boeing SSFL RFI, LOX
Project Manager:	D. Hambrick
Analysis/Method:	Volatiles by Method 8260B
QC Level:	V ¹
SDG:	IPG2469
Matrix:	Soil/Water
No. of Samples:	13
No. of Reanalyses:	0
Date Reviewed:	October 26, 2006
Reviewer:	P. Meeks
Reference:	USEPA Contract Laboratory Program National Functional
	Guidelines for Organic Data Review (2/94)
Samples Reviewed:	MJ838, MJ839, MJ842, MJ843, MJ844, MJ845, MJ846, MJ847,
	MJ848, MJ849, MJ850, MJ851, MJ852

Data Validation Findings

	Findings	Qualifications
1. <u>Sample</u> <u>Management</u>	The samples were received at Test America-Irvine within the temperature limits of 4° ±2°C, at 4°C. The samples were received intact and properly preserved. There was no information regarding the absence of headspace in the water VOA vials. As the samples were couriered directly from the field to the laboratory, custody seals were not necessary. The COC was signed and dated by field and laboratory personnel. Method 8260B analysis was requested on the COC but only trichloroethene was reported. The soil and water samples were analyzed within 14 days of collection.	No qualifications were required.
4. <u>Method Blanks</u> 6G31017-BLK1 6H01030-BLK1 6H01027-BLK1 6H01010-BLK1 6H02007-BLK1	Trichloroethene was detected below the reporting limit in 6H02007-BLK1; however, trichloroethene was not detected in the associated sample. Trichloroethene was not detected in the remaining method blanks.	No qualifications were required.

	Findings	Qualifications
5. <u>LCS/BS</u> 6G31017-BS1/BSD1 6H01030-BS1 6H01027-BS1/BSD1 6H01010-BS1 6H02007-BS1	The trichloroethene recoveries and RPDs were within the laboratory-established QC limits.	No qualifications were required.
6. <u>Surrogates</u>	The recoveries were within the laboratory- established QC limits.	No qualifications were required.
7. <u>MS/MSDs</u> None	MS/MSD analyses were not performed on the samples of this SDG.	No qualifications were required.
9. <u>Field QC Samples</u> TB: MJ852 FB: None ER: MJ851 FD: MJ847/MJ850	Trichloroethene was not detected in either the trip blank or the equipment rinsate. Trichloroethene was detected in both field duplicate samples with an RPD of 123%. It should be noted that the primary sample was reported on dry-weight basis while the field duplicate was reported on wet- weight basis. Correcting for percent moisture for MJ850 would increase the TCE concentration and increase the RPD for the duplicate pair.	No qualifications were required.
10. <u>Other</u>	Sample MJ848 was analyzed at an $83.5\times$ dilution in order to report trichloroethene within linear range of the calibration. The reporting limit and MDL were appropriately adjusted. According to the result summary report sample MJ850 was reported on a wet-weight basis and the remaining soil samples were reported on a dry-weight basis. The soils samples were reported in units of μ g/Kg.	None
<u>Comments</u>	None	None

¹ Level V validation consists of cursory review of the summary forms and chromatograms, and raw data is not evaluated. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed. Criteria not reviewed include instrument tunes, initial and continuing calibrations, compound identification, and compound quantification.

Test Analytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker

Project ID: LOX WPAA Boeing SSFL Report Number: IPG2469

Sampled: 07/27/06 Received: 07/27/06

1	VOLATILE	ORGANIC	CS by C	GC/MS (E	PA 5035	5/8260B)	nan e se ŝedan en concerta Arbander Cristen - Ka		
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifier
Sample ID: IPG2469-01 (MJ838 - Soil) Reporting Units: ug/kg dry Trichloroethene Surrogate: Dibromofluoromethane (80-12. Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120		6G31017	0.31	1.8	ND 113 % 98 % 92 %	0.814	07/31/06	07/31/06	Rev Qual U
Sample ID: IPG2469-02 (MJ839 - Soil) Reporting Units: ug/kg dry Trichloroethene Surrogate: Dibromofluoromethane (80-12. Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120		6G31017	0.32	1.9	ND 112 % 98 % 93 %	0.816	07/31/06	07/31/06	υ
Sample ID: IPG2469-05 (MJ842 - Soil) Reporting Units: ug/kg dry Trichloroethene Surrogate: Dibromofluoromethane (80-12: Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120		6G31017	0.37	2.2	ND 110 % 98 % 88 %	0.924	07/31/06	07/31/06	U
Sample ID: IPG2469-06 (MJ843 - Soil) Reporting Units: ug/kg dry Trichloroethene Surrogate: Dibromofluoromethane (80-12: Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120		6G31017	0.36	2.1	18 122 % 97 % 87 %	0.896	07/31/06	07/31/06	
Sample ID: IPG2469-07 (MJ844 - Soil) Reporting Units: ug/kg dry Trichloroethene Surrogate: Dibromofluoromethane (80-12: Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120	r	6G31017	0.32	1.9	ND 120 % 100 % 98 %	0.856	07/31/06	07/31/06	υ
Sample ID: IPG2469-08 (MJ845 - Soil) Reporting Units: ug/kg dry Trichloroethene Surrogate: Dibromofluoromethane (80-122 Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120	·	6G31017	0.33	2.0	ND 114 % 100 % 96 %	0.935	07/31/06	07/31/06	U

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

IPG2469 <Page 4 of 19>

Test Analytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

AWEINCAL LENNIG CON ON

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: LOX WPAA Boeing SSFL Report Number: IPG2469

Sampled: 07/27/06 Received: 07/27/06

VOLATILE ORGANICS by GC/MS (EPA 5035/8260B)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifi	ers
Sample ID: IPG2469-09 (MJ846 - Soil) Reporting Units: ug/kg dry									Rev	Qual Code
Trichloroethene Surrogate: Dibromofluoromethane (80-12) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120)	,	6G31017	0.34	2.0	ND 115 % 99 % 89 %	0.896	07/31/06	07/31/06	U	
Sample ID: IPG2469-10 (MJ847 - Soil) Reporting Units: ug/kg dry										
Trichloroethene Surrogate: Dibromofluoromethane (80-122 Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120	,	6H01030	0.33	2.0	6.2 110 % 105 % 98 %	0.87	08/01/06	08/01/06		
Sample ID: IPG2469-11 (MJ848 - Soil) Reporting Units: ug/kg dry Trichloroethene Surrogate: Dibromofluoromethane (55-140	EPA 8260B 9%)	6H01027	37	97	500 78 %	83.5	08/01/06	08/03/06		
Surrogate: Toluene-d8 (60-140%) Surrogate: 4-Bromofluorobenzene (65-140	%)				81 % 69 %					
Sample ID: IPG2469-12 (MJ849 - Soil) Reporting Units: ug/kg dry										
Trichloroethene Surrogate: Dibromofluoromethane (80-125 Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120		6G31017	0.42	2.5	370 123 % 98 % 89 %	1.13	07/31/06	07/31/06		
Sample ID: IPG2469-13 (MJ850 - Soil) Reporting Units: ug/kg wet										
Trichloroethene Surrogate: Dibromofluoromethane (80-125 Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120)		6G31017	0.30	1.8	26 121 % 98 % 95 %	0.882	07/31/06	07/31/06		

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

LEVEL

IPG2469 <Page 5 of 19>

Test Analytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing	Project ID: LOX WP	VPAA	
9444 Farnham Street, Suite 300	Boeing S	SSFL Sampled: 07/27/06	
San Diego, CA 92123	Report Number: IPG2469	59 Received: 07/27/06	
Attention: Lisa J. Tucker			

VOLATILE ORGANICS by GC/MS (EPA 5030B/8260B)

Analyte Sample ID: IPG2469-14 (MJ851 - Water Reporting Units: ug/l	Method r)	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers Rev Qual	Qual
Trichloroethene Surrogate: Dibromofluoromethane (80-12 Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-12	,	6H01010	0.26	2.0	ND 91 % 109 % 105 %	1	08/01/06	08/01/06	U	
Sample ID: IPG2469-15 (MJ852 - Water Reporting Units: ug/l Trichloroethene Surrogate: Dibromofluoromethane (80-12 Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-12)	EPA 8260B 20%)	6H02007	0.26	2.0	ND 91 % 103 % 109 %	1	08/02/06	08/02/06	U	

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

LEVEL V

IPG2469 <Page 3 of 19>

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: D7E180378

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order: Sample Delivery Group:	Boeing SSFL RFI Group 8 Data Gap 1261.500D.08.001 D7E180378
Project Manager:	Dixie Hambrick
Matrix:	soil
QC Level:	V
No. of Samples:	4
No. of Reanalyses/Dilutions:	0
Laboratory:	STL-Denver

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
BLBS0063S01SP	D7E180378004	N/A	Soil	5/17/2007 8:45:00 AM	9056
FSBS0084S01SP	D7E180378002	N/A	Soil	5/17/2007 8:43:00 AM	6010B, 9056
FSBS0086S01SP	D7E180378003	N/A	Soil	5/17/2007 9:12:00 AM	6010B, 9056
FSBS0093S01SP	D7E180378001	N/A	Soil	5/17/2007 7:57:00 AM	1613B, 6010B, 7471A, 8082, 9056

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. Custody seals were intact. If necessary, the client ID was added to the sample result summary by the reviewer.

• • • •		
Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: June 15, 2007

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *MEC[×] Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613,* and the *National Functional Guidelines Chlorinated Dioxin/Furan Data Review* (8/02).

- Holding Times: Extraction and analytical holding times were met. The samples were extracted and analyzed within one year of collection.
- Instrument Performance: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: OCDD was reported as an EMPC in the method blank; however, there were no target compound detects above the EDL in the sample.
- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Matrix Spike/ Matrix Spike Duplicate: MS/MSD analyses were performed on FSBS0093S01SP. The recoveries and RPDs were within the laboratory-established control limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: There were no reportable detects in field blank BLQW0019F01 (186235) or equipment rinsate FSQW0005E01 (186348).
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: Internal standard recoveries are not routinely evaluated at a Level V validation; however, the recoveries were reported on the sample result summaries. The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.

 Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. The laboratory calculated and reported compound-specific detection limits. Any reported estimated maximum possible concentration (EMPC) was qualified as an estimated nondetect, "UJ." Any detect below the laboratory lower calibration level was qualified as estimated, "J." The laboratory reported results in two significant figures rather that three. Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: June 15, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 6010B, 6020, 7470A/7471A, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, six months for ICP metals and 28 days for mercury, were met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: There were no applicable method blanks or CCBs detects.
- Interference Check Samples: Review is not applicable at a Level V validation.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: Laboratory duplicate analyses were not performed on a sample from this SDG.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on a sample from this SDG.
- Serial Dilution: Serial dilution analyses were not performed on a sample from this SDG.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.

- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: There were no applicable detects in field blank BLQW0019F01 (186235) or equipment rinsate FSQW0005E01 (186348).
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. EPA METHOD 8082—PCBs

Reviewed By: K. Shadowlight Date Reviewed: June 15, 2007

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Organochlorine Pesticides/PCBs by GC (DVP-4, Rev. 0), EPA Method 8082, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The soil samples were extracted within 14 days of collection and analyzed within 40 days of extraction.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on sample FSBS0093S01SP. The recoveries and RPDs were within the laboratory-established control limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: There were no reportable detects in field blank BLQW0019F01 (186235) or equipment rinsate FSQW0005E01 (186348).

- Field Duplicates: There were no field duplicate samples identified for this SDG.
- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for Aroclors by Method 8082.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. The laboratory reported results in two significant figures rather that three. Reported nondetects are valid to the reporting limit.

D. VARIOUS EPA METHODS—General Minerals

Reviewed By: P. Meeks Date Reviewed: June 15, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 300.0, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, 28 days from collection for fluoride, were met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries and the RPD were within laboratory-established QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on FSBS0093S01SP. Recoveries and the RPD were within laboratory-established QC limits.
- Sample Result Verification: Review is not applicable at a Level V validation. Nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Fluoride was not detected in field blank ESQW0002F01 (186314) or equipment rinsates BLQW0019E01 (186235) and FSQW0005E01 (186348).

• Field Duplicates: There were no field duplicate samples identified for this SDG.

Sample ID: FSBS0093S01SP

.

Trace Level Organic Compounds

Lot - Sample #:	D7E180378 - 001	Work Order #:	JXAPEIAH	Matrix: SO
Date Sampled:	05/17/07	Date Received:	05/18/07	Dilution Factor: 1
Prep Date:	05/25/07	Analysis Date:	06/01/07	Percent Moisture: 1.9
Prep Batch #:	7145343	_		
Initial Wgt/Vol :	10.2 g	Instrument ID:	M2A	Method: EPA-5 1613B
Analyst ID:	Patricia(Trish) M. Parsly			

PARAMETER		RESU	ILT	MINIMUM LEVEL	ESTIMATED DETECTION LIMIT	UNITS
2,3,7,8-TCDD	U	ND		1.0	0.64	ng/kg
Total TCDD	. 1	ND	•	1.0	0.64	ng/kg
1,2,3,7,8-PeCDD	1	ND		5.0	0.24	ng/kg
Total PeCDD		ND		5.0	0.24	ng/kg
1,2,3,4,7,8-HxCDD		ND		5.0	0.19	ng/kg
1,2,3,6,7,8-HxCDD		ND		5.0	0.24	ng/kg
1,2,3,7,8,9-HxCDD		ND		5.0	0.20	ng/kg
Total HxCDD	V	ND		5.0	0.21	ng/kg
1,2,3,4,6,7,8-HpCDD	HH	1.9	J	5.0	0.30	ng/kg
Total HpCDD	J	4.7	J	5.0	0.30	ng/kg
OCDD		16	В	10	0.34	ng/kg
2,3,7,8-TCDF	U	ND		1.0	0.47	ng/kg
Total TCDF	45/400	2.6	Q	1.0	0.47	ng/kg
1,2,3,7,8-PeCDF	Ц	ND		5.0	0.26	ng/kg
2,3,4,7,8-PeCDF	. U	ND		5.0	0.18	ng/kg
Total PeCDF	4J/XII	3.1	JQ	5.0	0.22	ng/kg
1,2,3,4,7,8-HxCDF	. LI	ND.		5.0	0.11	ng/kg
1,2,3,6,7,8-HxCDF	1	ND		5.0	0.11	ng/kg
2,3,4,6,7,8-HxCDF		ND		5.0	0.12	ng/kg
1,2,3,7,8,9-HxCDF	Y	ND		5.0	0.18	ng/kg
Total HxCDF	UT/AIL	1.4	QJ	5.0	0.12	ng/kg
1,2,3,4,6,7,8-HpCDF	灯/和正	0.55	QJ	5.0	0.18	ng/kg
1,2,3,4,7,8,9-HpCDF	U	ND		5.0	0.25	ng/kg
Total HpCDF	UJ/HII	0.55	QJ	5.0	0.21	ng/kg
OCDF	WY#III	0.69	QJ	10	0.29	ng/kg

LevelF

.

MWH Americas, Inc. Total Metals Analysis Data Sheet

Lab Name:	Lab Name: <u>STL DENVER</u>			Client Sample	e ID: <u>F</u>	SBS0093S01SP	
Lot/SDG Nu	mber: <u>D7E</u>	<u>D7E180378</u>		Lab Sample ID:		D7E180378-001	
Matrix:	Matrix: <u>SOLID</u>			Lab WorkOr	der: <u>J</u>	XAPE	
% Moisture:	: <u>1.9</u>	1.9		Date/Time Collected:		05/17/07 07:57	
Basis:	Dry	Dry		Date/Time Re	eceived: <u>C</u>	05/18/07 08:45	
Analysis Me	thod: <u>6010</u>	<u>6010B</u>		Date Leached:			
Unit:	mg/l	mg/kg		Date/Time Extracted:		05/23/07 08:00	
QC Batch II	D: <u>714</u> 2	<u>142591</u>		Date/Time A	nalyzed: <u>(</u>	05/25/07_03:58	
Sample Aliq	Sample Aliquot: <u>1.01</u>		Instrument ID:		D: ()25	
Dilution Fac	tor: <u>1</u>						
CAS No.	·	Analyte		Сопс.	MDL	RL	· Q
7440-67-7	Zirconium		•	2.8	0.69	3.1	J

STL Denver

.

LEVEL V

STI

MWH Americas, Inc. Total Metals Analysis Data Sheet

CASNo	Analyte	Conc.	MDL	RL	Q
Dilution Fac	tor: <u>1</u>	T			
Sample Aliq	uot: <u>0.31 g</u>	Instrument II	Instrument ID:		
QC Batch II	D: <u>7141529</u>	Date/Time An	Date/Time Analyzed:		
Unit:	<u>ug/kg</u>	Date/Time Ex	Date/Time Extracted:		
Analysis Me	thod: <u>7471A</u>	Date Leached	:		
Basis:	Dry	Date/Time Re	Date/Time Received:		-
% Moisture:	<u>1.9</u>	Date/Time Co	llected:	<u>05/17/07 07:57</u> 05/18/07 08:45	
Matrix:	SOLID	Lab WorkOre	Lab WorkOrder:		
Lot/SDG Nu	mber: <u>D7E180378</u>	Lab Sample II	D:	D7E180378-001	
Lab Name:	STL DENVER	Client Sample	ID:	FSBS0093S01SP	

CAS No.	Analyte	Conc.	MDL	RL	Q	
7439-97-6	Мегсигу	3.9	2.9	34	J	

STL Denver

.

LEVEL V

٦

MWH Americas, Inc.

Total Metals Analysis Data Sheet

Lab Name:	STL DENVER	Client Sample ID:	FSBS0084S01SP
Lot/SDG Number:	D7E180378	Lab Sample ID:	D7E180378-002
Matrix:	SOLID	Lab WorkOrder:	JXAPF
% Moisture:	<u>3.3</u>	Date/Time Collected:	05/17/07 08:43
Basis:	Dry	Date/Time Received:	05/18/07 08:45
Analysis Method:	<u>6010B</u>	Date Leached:	
Unit:	mg/kg	Date/Time Extracted:	05/23/07 08:00
QC Batch ID:	<u>7142591</u>	Date/Time Analyzed:	05/25/07 04:03
Sample Aliquot:	<u>1.01 g</u>	Instrument ID:	<u>025</u>
Dilution Factor:	1		

CAS No.	Analyte	Conc.	MDL	RL	Q	
7440-67-7	Zirconium	3.8	0.70	3.1		

LEVEL V

7

MWH Americas, Inc. Total Metals Analysis Data Sheet

C	ASNO	Analuto	Conc	MDL	RI.	
	Dilution Factor:	1				
Sample Aliquot:		<u>1.01 g</u>	Instrument ID:		025	
	QC Batch ID:	7142591 Date/Time Analyzed:		alyzed:	05/25/07_04:08	
	Unit:	mg/kg	Date/Time Extracted:		05/23/07 08:00	
	Analysis Method:	<u>6010B</u>	Date Leached:	:		
	Basis:	Dry Date/Time Received: 0		05/18/07 08:45		
	% Moisture:	<u>7.7</u>	Date/Time Co	llected:	05/17/07 09:12	
	Matrix:	SOLID	Lab WorkOrder: JXAPG			
	Lot/SDG Number:	D7E180378	Lab Sample II	D:	D7E180378-003	
	Lab Name:	STL DENVER	Client Sample	ID:	FSBS0086S01SP	

	CAS No.	Analyte	Conc.	MDL	RL	Q
-	7440-67-7	Zirconium	4.0	0.74	3.3	

LEVEL V

٦

MWH Americas, Inc.

Analysis Data Sheet

Lab Name:	STL DENVER	Client Sample ID:	FSBS0093S01SP
Lot/SDG Number:	D7E180378	Lab Sample ID:	D7E180378-001
Matrix:	SOLID	Lab WorkOrder:	JXAPEIAK
% Moisture:	1.9	Date/Time Collected:	05/17/07 07:57
Basis:	Dry	Date/Time Received:	05/18/07 08:45
Analysis Method:	8082	Date Leached:	
Unit:	ug/kg	Date/Time Extracted:	05/21/07_07:15
QC Batch ID:	7141093	Date/Time Analyzed:	05/24/07 19:50
Sample Aliquot:	<u>30.3 g</u>	Instrument ID:	<u>W1</u>
Dilution Factor:	<u>1</u>		

CAS No.	Analy	te	Conc.	MDL	RL	Q
12674-11-2	Aroclor 1016	1)	5.2	5.2	34	U
11104-28-2	Aroclor 1221	1	16	16	48	U
11141-16-5	Aroclor 1232		5.2	5.2	34	U
53469-21-9	Aroclor 1242		9.3	9.3	34	U
12672-29-6	Aroclor 1248		5.7	5.7	34	U
1097-69-1	Aroclor 1254		5.6	5.6	34	U
1096-82-5	Arocior 1260	\ ,	2.7	2.7	34	U

CAS No.	CAS No. Surrogate		Lower Limit	Upper Limit	Q
.051-24-3	Decachlorobiphenyl	96	38	162	
377-09-8	Tetrachloro-m-xylene	87	53	132	

Level I

.

Client Sample ID: FSBS0093S01SP

General Chemistry

PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Fluoride	1.2 J	10	mg/kg	SW846 9056 Analysis Time: 19:40	05/25/07 MDL	7146065
	D	ilution Fact	or: 1	Analysis line 19.40		
Total Solids $ ightarrow $	98	0.10 Dilution Fact	% :or: 1	MCAWW 160.3 MOD Analysis Time: 11:30	05/23/07 MDL	7143403 .:

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

J Estimated result: result is less than RL and greater than or equal to the MDL.

LEVEL V

* Analysis not validated

Client Sample ID: FSBS0084S01SP

General Chemistry

Lot-Sample #: D7E Date Sampled: 05/			rder #: eceived:	UMALL	rix: S	0
PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Fluoride	2.0 J	10 ution Facto	mg/kg or: 1	SW846 9056 Analysis Time: 20:28	05/25/07 MDL	7146065 .: 0.85
Total Solids \measuredangle	97 Dil	0.10 ution Facto	% or: 1	MCAWW 160.3 MOD Analysis Time: 11:45	05/21/07 MDL	7141589 .:

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

J Estimated result: result is less than RL and greater than or equal to the MDL.

* Analysis not validated

LEVEL V

Client Sample ID: FSBS0086S01SP

General Chemistry

Lot-Sample #: D7E Date Sampled: 05/	10000.4	Work Or Date Re	der #: ceived:	UARIO	rix S	0.
PARAMETER		RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Fluoride	2.00	11 ion Facto	mg/kg r: 1	SW846 9056 Analysis Time: 20:43	05/25/07 MDL	7146065 .: 0.89
Total Solids \prec	226	0.10 tion Facto	% or: 1	MCAWW 160.3 MOD Analysis Time: 11:45	05/21/07 MDL	7141589

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

J Estimated result: result is less than RL and greater than or equal to the MDL.

* Analysis not validated

LEVEL V

Client Sample ID: BLBS0063S01SP

General Chemistry

Lot-Sample #: D7E Date Sampled: 05/			der #: eceived:	0201111	rix: S	0
PARAMETER	RESULT	RL	UNITS	METHOD	PREPARATION- ANALYSIS DATE	PREP BATCH #
Fluoride		11 tion Facto	mg/kg r: 1 [·]	SW846 9056 Analysis Time: 20:59	05/25/07 MDL	7146065
Total Solids $ \stackrel{\scriptstyle imes}{\leftarrow}$	20	0.10 tion Facto	% r: 1	MCAWW 160.3 MOD Analysis Time: 11:45	05/21/07 MDL	7141589

NOTE(S):

RL Reporting Limit

Results and reporting limits have been adjusted for dry weight.

J Estimated result: result is less than RL and greater than or equal to the MDL.

* Analysis not validated

LEVEL V

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: IQB1216

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order: Sample Delivery Group:	Boeing SSFL RFI Group 8 Data Gap 1261.500D.08.001 IQB1216
Project Manager:	Dixie Hambrick
Matrix:	Soil
QC Level:	V
No. of Samples:	8
No. of Reanalyses/Dilutions:	0
Laboratory:	Test America

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample name	Matrix Type	Collection Date	Method
FSBS0004S01	IQB1216-01	N/A	Soil	12-Feb-07	7471A, 8082, 9045C
					314.0-DI WET, 7471A, 8082,
FSBS0005S01	IQB1216-02	N/A	Soil	12-Feb-07	9045C
					314.0-DI WET, 7471A, 8082,
FSBS0006S01	IQB1216-03	N/A	Soil	12-Feb-07	9045C
					314.0-DI WET, 7471A, 8082,
FSBS0007S01	IQB1216-04	N/A	Soil	12-Feb-07	9045C
FSBS0071S01	IQB1216-05	N/A	Soil	12-Feb-07	9045C
					1613B, 314.0-DI WET, 6010B,
FSBS0069S01	IQB1216-06	N/A	Soil	12-Feb-07	6020, 7471A, 8082, 9045C
					1613B, 314.0-DI WET, 6010B,
FSBS0070S01	IQB1216-07	N/A	Soil	12-Feb-07	6020, 7471A, 8082, 9045C
FSBS0070S02	IQB1216-08	N/A	Soil	12-Feb-07	9045C

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered directly from the field to the laboratory, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present. Not applicable.	
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 26, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC[×]* Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The soil samples were extracted and analyzed within one year of collection.
- Instrument Performance: Review is not applicable at a level V validation.
- Calibration: Review is not applicable at a level V validation.
- Blanks: The method blank had detects for OCDD, 2,3,4,7,8-PeCDF and total PeCDFs above the EDL. Target compound 2,3,4,7,8-PeCDF was reported in both site samples at concentrations less than five times the concentration of the method blank; therefore, the results were qualified as estimated nondetects, "UJ," at the levels of interference. As a portion of total PeCDFs in both site samples included 2,3,4,7,8-PeCDF the results were qualified as estimated, "J," due to method blank contamination.
- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: There were several detects in the field blank BLQW0018F01 (IQB1202), and equipment rinsate, FSQW0002E01 (IQB2570). The result for 1,2,3,7,8-PeCDF was qualified as estimated, "J," in sample FSBS0069S01.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: Internal standard recoveries are not routinely evaluated at a Level V validation; however, the recoveries were reported on the sample result summaries. The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Review is not applicable at a level V validation. The laboratory

analyzed for polychlorinated dioxins/furans by EPA Method 1613. A confirmation analysis was not performed for the 2,3,7,8-TCDF detects reported in both site samples; therefore, the results for 2,3,7,8-TCDF were qualified as estimated, "J."

 Compound Quantification and Reported Detection Limits: Review is not applicable at a level V validation. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." Reported nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: 3/28/07

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 6010B, 6020, 7470A/7471A, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no applicable detects.
- Interference Check Samples: Boron was detected in the ICSA solution at 19.5 μg/L; therefore, boron detected in both samples was qualified as estimated, "J."
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: Antimony was recovered below 30% in both the MS and the MSD, and copper, selenium, zinc, and zirconium were recovered below the QC limits in both the MS and MSD. The aforementioned analytes were qualified as estimated, "J," in both samples. All remaining recoveries and all RPDs were within laboratoryestablished QC limits.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-

120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.

- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: There were no detects in the field blank, BLQW0018F01 (IQB1202), or the equipment rinsate, FSQW0002E01 (IQB2570). It should be noted that the equipment rinsate was not analyzed for aluminum, boron, lithium, potassium, sodium, or zirconium.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks Date Reviewed: 3/28/07

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 28 days, was met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within the methodestablished QC limits of 85-115%.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: Recoveries and RPDs were within methodestablished QC limits of 80-120% and ≤15%, respectively.
- Sample Result Verification: The sample results reported on the Form I were verified against the raw data. No transcription errors or calculation errors were noted. Reported nondetects are valid to the reporting limit.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Perchlorate was not detected in the field blank, BLQW0018F01 (IQB1202), or the equipment rinsate, FSQW0002E01 (IQB2570).
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 8082—PCBs

Reviewed By: L. Calvin Date Reviewed: March 28, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Organochlorine Pesticides/PCBs by GC (DVP-4, Rev. 0), EPA Method 8082, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The soil samples were extracted within 14 days of collection and analyzed within 40 days of extraction.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on sample FSBS0069S01. Recoveries and RPDs were within the laboratory-established QC limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Field blank BLQW0018F01 (IQB1202) and equipment rinsate FSQW0002E01 (IQB2570) had no reported target compound detects above the MDL.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

- Compound Identification: Review is not applicable at a Level V validation.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. The laboratory analyzed samples FSBS0005S01, FSBS0006S01, and FSBS0007S01 at 2× dilutions due to sample matrix effect. Reported nondetects are valid to the reporting limit.

E. EPA METHOD 9045C—General Minerals

Reviewed By: P. Meeks Date Reviewed: 3/28/07

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC[×]* Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 9045C, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 24 hours from preparation for pH, was met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Not applicable to this analysis.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on FSBS0004S01 and FSBS0069S01. The RPDs were within the laboratory-established control limits.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: Review is not applicable at a Level V validation.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Not applicable to this analysis.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Method 1613	
IQB1216-06	FSBS006950]
Test America	

		Analy	tical Data Su	mmary Shee	t		
Г	Analyte	Amount	EDL	Adj. RL	RT	Ratio	Qualifier
	-	(pg/g)	(pg/g)	(pg/g)	(min.)		
U I	2,3,7,8-TCDD	ND	0.161	0.936			
И	1,2,3,7,8-PeCDD	ND	0.130	4.68			
77	1,2,3,4,7,8-HxCDD	0.221	0.143	4.68	36:41	1.10	A
5	1,2,3,6,7,8-HxCDD	0.227	0.147	4.68	36:41	1.1	A
	1,2,3,7,8,9-HxCDD	ND	0.144	4.68			
5	1,2,3,4,6,7,8-HpCDD	1.17	0.191	4.68	39:57	1.02	A
	OCDD	12.6	0.340	9.36	44:08	0.90	
I III	2,3,7,8-TCDF	0.403	0.199	0.936	30:26	0.84	A
/ F	1,2,3,7,8-PeCDF	0.114	0.0867	4.68	33:14	1.46	A
	2,3,4,7,8-PeCDF	0.125	0.0888	4.68	33:51	1.6	A
	1,2,3,4,7,8-HxCDF	ND	0.0920	4.68			
	1,2,3,6,7,8-HxCDF	ND	0.0891	4.68			
	2,3,4,6,7,8-HxCDF	ND	0.0940	4.68			
T	1,2,3,7,8,9-HxCDF	0.170	0.125	4.68	37:14	1.09	A
	1,2,3,4,6,7,8-HpCDF	0.307	0.134	4.68	38:43	1.15	A
ũ	1,2,3,4,7,8,9-HpCDF	ND	0.197	4.68			
ù	OCDF	ND	0.281	9.36			
U	Total TCDDs	ND	0.161	0.936			
ů	Total PeCDDs	ND	0.130	4.68			
	Total HxCDDs	0.740	0.145	4.68			A
J	Total HpCDDs	2.89	0.191	4.68			A
Ŭ .	Total TCDFs	1.02	0.199	0.936			
JB	Total PeCDFs	0.891	0.0877	4.68			A
H B	Total HxCDFs	0.536	0.0987	4.68			A
J	Total HpCDFs	0.547	0.161	4.68			A
	ITEF TEQ (ND=0)	0.198					
	ITEF TEQ (ND=1/2)	0.333	<u> </u>	<u> </u>		L	

Client Information			Sample Information			
Project Name:	IQB1216		Report Basis:	Dry Weight		
			Matrix:	Soil		
Sample ID:	IQB1216-06		Weight / Volume:	12.15	Grams	
	-		Solids / Lipids:	87.9	%	
			Original pH :	NA		
Laboratory Information			Batch ID:	WG1412	3	
Project ID:	G579-222					
Sample ID:	G579-222-1	В	Filename:	a22feb07	'a-5	
Collection Date/Time:	12-Feb-07	13:25	Retchk:	a22feb07	'a-1	
Receipt Date:	15-Feb-07	11:35	Begin ConCal:	a22feb07	a-l	
Extraction Date:	19-Feb-07					
Analysis Date:	22-Feb-07	19:37	Initial Cal:	m1613-	071006e	

Level I

.

Method 1613 IOB1216-07	F5B5007050]
Test America	

		Analy	tical Data Su	mmary Shee	t		
Г	Analyte	Amount	EDL	Adj. RL	RT	Ratio	Qualifier
		(pg/g)	(pg/g)	(pg/g)	(min.)	aly go at a single of the second s	
4	2,3,7,8-TCDD	ND	0.192	0.880			
	1,2,3,7,8-PeCDD	ND	0.198	4.40			
	1,2,3,4,7,8-HxCDD	ND	0.252	4.40			
5	1,2,3,6,7,8-HxCDD	0.361	0.252	4.40	36:41	1.2	A
	1,2,3,7,8,9-HxCDD	0.429	0.250	4.40	36:56	1.13	A
	1,2,3,4,6,7,8-HpCDD	4.02	0.235	4.40	39:57	1.01	A
_	OCDD	30.0	0.526	8.80	44:08	0.87	
Jノ茶	2,3,7,8-TCDF	0.421	0.270	0.880	30:26	0.82	A
J L	1,2,3,7,8-PeCDF	ND	0.158	4.40			
UJ/B	2,3,4,7,8-PeCDF	0.319	0.158	4.40	33:51	1.34	A
	1,2,3,4,7,8-HxCDF	ND	0.172	4.40			
4	1,2,3,6,7,8-HxCDF	0.171	0.170	4.40	36:00	1.12	A
7	2,3,4,6,7,8-HxCDF	0.181	0.168	4.40	36:29	1.19	A
2 1717 2	1,2,3,7,8,9-HxCDF	ND	0.227	4.40			
J	1,2,3,4,6,7,8-HpCDF	0.642	0.196	4.40	38:43	0.99	A
ũ	1,2,3,4,7,8,9-HpCDF	ND	0.299	4.40			
5	OCDF	0.973	0.417	8.80	44:26	0.89	A
5	Total TCDDs	0.303	0.192	0.880			A
1	Total PeCDDs	0.519	0.198	4.40			A
	Total HxCDDs	3.22	0.252	4.40			A
v	Total HpCDDs	11.5	0.235	4.40			
	Total TCDFs	2.46	0.270	0.880			
JB	Total PeCDFs	3.03	0.158	4.40			A
J	Total HxCDFs	1.44	0.182	4.40			A
Ţ	Total HpCDFs	0.642	0.241	4.40		L	<u> </u>
	ITEF TEQ (ND=0)	0.393	1				
	ITEF TEQ (ND=1/2)	0.577					

Client Information			Sample Information		
Project Name:	IOB1216		Report Basis:	Dry Weig	ght
r tojeet runner	-		Matrix:	Soil	
Sample ID:	IQB1216-07		Weight / Volume:	12.16	Grams
Sumpto 12.			Solids / Lipids:	93.4	%
			Original pH :	NA	
Laboratory Information			Batch ID:	WG1412	.3
Project ID:	G579-222				
Sample ID:	G579-222-4	В	Filename:	a22feb07	/a-8
Collection Date/Time:	12-Feb-07	13:59	Retchk:	a22feb07	'a-1
Receipt Date:	15-Feb-07	11:35	Begin ConCal:	a22feb07	/a-1
Extraction Date:	19-Feb-07				
Analysis Date:	22-Feb-07	22:01	Initial Cal:	m1613-0	071006e

Level II Pm 3hs/07

Test/Merica

ANALYTICAL TESTING CORPORATION

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264

Report Number: IQB1216

Sampled: 02/12/07 Received: 02/13/07

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

		N	IETA	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
•		2						-	
Sample ID: IQB1216-06 (FSBS006 Reporting Units: mg/kg dry	i9S01 - Soil)								
Aluminum	EPA 6010B	7B14110	5.6	11	14000	0.995	02/14/07	02/15/07	MHA
Antimony	EPA 6020	7B14108	0.034	1.1	0.13	0.995	02/14/07	02/15/07	M2, J
Arsenic	EPA 6020	7B14108	0.28	0.56	3.6	0.995	02/14/07	02/15/07	
Barium	EPA 6020	7B14108	0.090	0.56	76	0.995	02/14/07	02/15/07	
Beryllium	EPA 6020	7B14108	0.045	0.34	0.51	0.995	02/14/07	02/15/07	_
Boron J/I	EPA 6010B	7B14110	1.1	5.6	2.9	0.995	02/14/07	02/15/07	J
Cadmium	EPA 6020	7B14108	0.028	0.56	0.16	0.995	02/14/07	02/15/07	J
Chromium	EPA 6020	7B14108	0.39	1.1	14	0.995	02/14/07	02/15/07	
Cobalt ,	EPA 6020	7B14108	0.090	0.56	5.1	0.995	02/14/07	02/15/07	
Copper J/Q	EPA 6020	7B14108	0.22	1.1	9.2	0.995	02/14/07	02/15/07	M2
Lead	EPA 6020	7B14108	0.056	0.56	6.6	0.995	02/14/07	02/15/07	
Lithium	EPA 6010B	7B14110	4.3	7.1	25	0.995	02/14/07	02/15/07	_
Molybdenum	EPA 6020	7B14108	0.11	1.1	0.52	0.995	02/14/07	02/15/07	J
Nickel	EPA 6020	7B14108	0.50	1.1	9.2	0.995	02/14/07	02/15/07	M2
Potassium	EPA 6010B	7B14110	21	56	3700	0.995	02/14/07	02/15/07	MHA
Selenium T/Q	EPA 6020	7B14108	0.22	1.1	0.27	0.995	02/14/07	02/15/07	M2, J
Silver	EPA 6020	7B14108	0.056	0.56	0.098	0.995	02/14/07	02/15/07	J
Sodium	EPA 6010B	7B14110	27	56	58	0.995	02/14/07	02/15/07	
Thallium	EPA 6020	7B14108	0.11	0.56	0.30	0.995	02/14/07	02/15/07	J
Vanadium	EPA 6020	7B14108	0.45	1.1	25	0.995	02/14/07	02/15/07	
Zinc J/g	EPA 6020	7B14108	1.5	11	42	0.995	02/14/07	02/15/07	B, M2
Zirconium J/Q	EPA 6010B	7B16119	1.7	28	1.7	1	02/16/07	02/16/07	M2, J

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

LEVEL V

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica. IQB1216 <Page 4 of 16>

Test/Merica

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB1216

Sampled: 02/12/07 Received: 02/13/07

		N	1ETA	LS					
Amerika da		D (1		Reporting				Date	Data
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IQB1216-07 (FSBS0 Reporting Units: mg/kg dry	070S01 - Soil)								
Aluminum	EPA 6010B	7B14110	5.3	11	12000	0.995	02/14/07	02/15/07	
Antimony	EPA 6020	7B14108	0.032	1.1	0.13	0.995	02/14/07	02/15/07	J
Arsenic	EPA 6020	7B14108	0.27	0.53	2.7	0.995	02/14/07	02/15/07	
Barium	EPA 6020	7B14108	0.085	0.53	81	0.995	02/14/07	02/15/07	
Beryllium	EPA 6020	7B14108	0.042	0.32	0.38	0.995	02/14/07	02/15/07	
Boron J/I	EPA 6010B	7B14110	1.1	5.3	3.7	0.995	02/14/07	02/15/07	J
Cadmium	EPA 6020	7B14108	0.027	0.53	0.22	0.995	02/14/07	02/15/07	J
Chromium	EPA 6020	7B14108	0.37	1.1	13	0.995	02/14/07	02/15/07	
Cobalt	EPA 6020	7B14108	0.085	0.53	4.4	0.995	02/14/07	02/15/07	
Copper J/Q	EPA 6020	7B14108	0.21	1.1	7.9	0.995	02/14/07	02/15/07	
Lead	EPA 6020	7B14108	0.053	0.53	12	0.995	02/14/07	02/15/07	
Lithium	EPA 6010B	7B14110	4.0	6.7	22	0.995	02/14/07	02/15/07	
Molybdenum	EPA 6020	7B14108	0.11	1.1	0.48	0.995	02/14/07	02/15/07	J
Nickel	EPA 6020	7B14108	0.48	1.1	8.3	0.995	02/14/07	02/15/07	
Potassium	EPA 6010B	7B14110	20	53	3300	0.995	02/14/07	02/15/07	
Selenium J/Q	EPA 6020	7B14108	0.21	1.1	0.27	0.995	02/14/07	02/15/07	J
Silver	EPA 6020	7B14108	0.053	0.53	0.071	0.995	02/14/07	02/15/07	J
Sodium	EPA 6010B	7B14110	25	53	59	0.995	02/14/07	02/15/07	
Thallium	EPA 6020	7B14108	0.11	0.53	0.29	0.995	02/14/07	02/15/07	J
Vanadium	EPA 6020	7B14108	0.42	1.1	22	0.995	02/14/07	02/15/07	
Zinc J/Q	EPA 6020	7B14108	1.4	11	42	0.995	02/14/07	02/15/07	В
Zirconium J/Q	EPA 6010B	7B16119	1.6	27	1.7	1	02/16/07	02/16/07	J

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

EVEL V

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica. IQB1216 <Page 5 of 16>

11

Report ID: 7021429 Project ID: IQB1216

Date Received: 02/14/07 11:40 Date Reported: 03/02/07 16:54

FSBS0004501

IQB1216-01 7021429-01 (Solid)

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids	87.8	% by Weight	0.100	1	Gravimetric	W7B0880	02/22/07	02/28/07 dj	

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.011	0.00074	mg/kg dry	0.011	1	EPA 7471A	W7B0623	02/15/07	02/22/07 jl	

* Analysis not validated

LEVEL V

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Report ID: 7021429 Project ID: IQB1216 Date Received: 02/14/07 11:40 Date Reported: 03/02/07 16:54

FSBSCOOSSO

IQB1216-02 7021429-02 (Solid)

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids	81.8	% by Weight	0.100	1	Gravimetric	W7B0880	02/22/07	02/28/07 đj	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.022	0.00079	mg/kg dry	0.012	1	EPA 7471A	W7B0623	02/15/07	02/22/07 jl	

* Analysis not validated

LEVEL V

Weck Laboratories, Inc Taylor Maligmat, Client Services The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Report ID: 7021429 Project ID: IQB1216 Date Received: 02/14/07 11:40 Date Reported: 03/02/07 16:54

FSBS6006501

IQB1216-03 7021429-03 (Solid)

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids 🔆	80.4	% by Weight	0.100	1	Gravimetric	W7B0880	02/22/07	02/28/07 dj	

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.033	0.00081	mg/kg dry	0.012	1	EPA 7471A	W7B0623	02/15/07	02/22/07 jl	

* Analysis not validated

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Report ID: 7021429 Project ID: IQB1216

FSBS0007SOI

IQB1216-04 7021429-04 (Solid)

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids 🚽	80.2	% by Weight	0.100	1	Gravimetric	W7B0880	02/22/07	02/28/07 dj	

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.055	0.00081	mg/kg dry	0.012	1	EPA 7471A	W7B0623	02/15/07	02/22/07 jl	

* Analysis not validated

LEVEL V

Report ID: 7021429 Project ID: IQB1216 Date Received: 02/14/07 11:40 Date Reported: 03/02/07 16:54

F5B50669501

IQB1216-06 7021429-05 (Solid)

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids 🖌	88.8	% by Weight	0.100	1	Gravimetric	W7B0880	02/22/07	02/28/07 dj	

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.017	0.00073	mg/kg dry	0.011	1	EPA 7471A	W7B0623	02/15/07	02/22/07 jl	

* Analysis not validated

LEVEL V

Report ID: 7021429 Project ID: IQB1216 Date Received: 02/14/07 11:40 Date Reported: 03/02/07 16:54

FSBS0070501

IQB1216-07 7021429-06 (Solid)

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids 🖌	93.7	% by Weight	0.100	1	Gravimetric	W7B0880	02/22/07	02/28/07 dj	

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.026	0.00069	mg/kg drv	0.011	1	EPA 7471A	W7B0623	02/15/07	02/22/07 jl	

* Analysis not validated

LEVEL V

Test/Merica

ANALYTICAL TESTING CORPORATION 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264

Report Number: IQB1216

Sampled: 02/12/07 Received: 02/13/07

		INC	RGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1216-01 (FSBS00) Reporting Units: %	04S01 - Soil)								
Cercent Solids	EPA 160.3 MOD	7B15123	0.10	0.10	88	1	02/15/07	02/16/07	
Sample ID: IQB1216-02 (FSBS00 Reporting Units: %	05801 - Soil)								
Percent Solids	EPA 160.3 MOD	7B15123	0.10	0.10	82	1	02/15/07	02/16/07	
Sample ID: IQB1216-03 (FSBS00) Reporting Units: %	06S01 - Soil)								
Percent Solids	EPA 160.3 MOD	7B15123	0.10	0.10	80	1	02/15/07	02/16/07	
Sample ID: IQB1216-04 (FSBS00)	07S01 - Soil)								
Reporting Units: % Percent Solids	EPA 160.3 MOD	7B15123	0.10	0.10	80	1	02/15/07	02/16/07	
Sample ID: IQB1216-06 (FSBS000 Reporting Units: %	69S01 - Soil)								
Percent Solids	EPA 160.3 MOD	7B15123	0.10	0.10	89	1	02/15/07	02/16/07	
Sample ID: IQB1216-07 (FSBS00 Reporting Units: %	70801 - Soil)								
Percent Solids	EPA 160.3 MOD	7B15123	0.10	0.10	94	1	02/15/07	02/16/07	
Sample ID: IQB1216-01 (FSBS000 Reporting Units: pH Units	04S01 - Soil)								
pH	EPA 9045C	7B13136	0.00	NA	7.43	1	02/13/07	02/13/07	
Sample ID: IQB1216-02 (FSBS000 Reporting Units: pH Units	05S01 - Soil)								
pH	EPA 9045C	7B13136	0.00	NA	8.03	1	02/13/07	02/13/07	
Sample ID: IQB1216-03 (FSBS000 Reporting Units: pH Units	06S01 - Soil)								
рН	EPA 9045C	7B13136	0.00	NA	8.00	1	02/13/07	02/13/07	
Sample ID: IQB1216-04 (FSBS000 Reporting Units: pH Units	07S01 - Soil)								
pH	EPA 9045C	7B13136	0.00	NA	8.31	1	02/13/07	02/13/07	

* Analysis not validated

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

LEVEL V

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica. IQB1216 <Page 6 of 16>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB1216

Sampled: 02/12/07 Received: 02/13/07

		INC	RGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit				Date Analyzed	Data Qualifiers
Sample ID: IQB1216-05 (FSBS00 Reporting Units: pH Units	71S01 - Soil)								
рН	EPA 9045C	7B13136	0.00	NA	7.02	1	02/13/07	02/13/07	
Sample ID: IQB1216-06 (FSBS00 Reporting Units: pH Units	69S01 - Soil)								
pH	EPA 9045C	7B13136	0.00	NA	6.94	1	02/13/07	02/13/07	
Sample ID: IQB1216-07 (FSBS00 Reporting Units: pH Units	70S01 - Soil)								
pH	EPA 9045C	7B13136	0.00	NA	6.61	1	02/13/07	02/13/07	
Sample ID: IQB1216-08 (FSBS00 Reporting Units: pH Units	-								
pH	EPA 9045C	7B13136	0.00	NA	6.98	1	02/13/07	02/13/07	
Sample ID: IQB1216-02 (FSBS00 Reporting Units: ug/l	05S01 - Soil)								
) Perchlorate	EPA 314.0 DI-RFI	7B21099	0.80	4.0	ND	1	02/21/07	02/21/07	
Sample ID: IQB1216-03 (FSBS00 Reporting Units: ug/l	,								
Perchlorate	EPA 314.0 DI-RFI	7B21099	0.80	4.0	ND	1	02/21/07	02/21/07	
Sample ID: IQB1216-04 (FSBS00 Reporting Units: ug/l									
Perchlorate	EPA 314.0 DI-RFI	7B21099	0.80	4.0	ND	1	02/21/07	02/21/07	
Sample ID: IQB1216-06 (FSBS00 Reporting Units: ug/l									
Perchlorate	EPA 314.0 DI-RFI	7B21099	0.80	4.0	ND	1	02/21/07	02/21/07	
Sample ID: IQB1216-07 (FSBS00 Reporting Units: ug/l	70S01 - Soil)								
Perchlorate	EPA 314.0 DI-RFI	7B21099	0.80	4.0	ND	1	02/21/07	02/21/07	

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. except in full, without written permission from TestAmerica. IQB1216 <Page 7 of 16>

TestAmerica ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing	Project ID:	SSFL Group 8 - DOE	
9444 Farnham Street, Suite 300		1891264	Sampled: 02/12/07
San Diego, CA 92123	Report Number:	IQB1216	Received: 02/13/07
Attention: Lisa J. Tucker			

	POLYCHLO	RINATED	BIPH	ENYLS (EPA 354	(5/8082)			
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1216-01 (FSBS0004S01	- Soil)								
Reporting Units: ug/kg dry									
Aroclor 1016 U	EPA 8082	7B14097	17	57	ND	1	02/14/07	02/15/07	
Aroclor 1221	EPA 8082	7B14097	17	57	ND	1	02/14/07	02/15/07	
Aroclor 1232	EPA 8082	7B14097	11	57	ND	1	02/14/07	02/15/07	
Aroclor 1242	EPA 8082	7B14097	11	57	ND	1	02/14/07	02/15/07	
Aroclor 1248	EPA 8082	7B14097	11	57	ND	1	02/14/07	02/15/07	
Aroclor 1254	EPA 8082	7B14097	11	57	ND	1	02/14/07	02/15/07	
Aroclor 1260 🗸	EPA 8082	7B14097	11	57	ND	1	02/14/07	02/15/07	
Surrogate: Decachlorobiphenyl (45-120%	6)				90 %				
Sample ID: IQB1216-02 (FSBS0005S01 Reporting Units: ug/kg dry	- Soil)								RL1
Aroclor 1016	EPA 8082	7B14097	37	120	ND	2	02/14/07	02/15/07	
Aroclor 1221	EPA 8082	7B14097	37	120	ND	2	02/14/07	02/15/07	
Aroclor 1232	EPA 8082	7B14097	24	120	ND	2	02/14/07	02/15/07	
Aroclor 1242	EPA 8082	7B14097	24	120	ND	2	02/14/07	02/15/07	
Aroclor 1248	EPA 8082	7B14097	24	120	ND	2	02/14/07	02/15/07	
Aroclor 1254	EPA 8082	7B14097	24	120	ND	2	02/14/07	02/15/07	
Aroclor 1260	EPA 8082	7B14097	24	120	ND	2	02/14/07	02/15/07	
Surrogate: Decachlorobiphenyl (45-120%			21		93%	-	0201100	02/10/07	
Sample ID: IQB1216-03 (FSBS0006S01	- Soil)								RL1
Reporting Units: ug/kg dry									
Aroclor 1016	EPA 8082	7B14097	37	120	ND	1.99	02/14/07	02/15/07	
Aroclor 1221	EPA 8082	7B14097	37	120	ND	1.99	02/14/07	02/15/07	
Aroclor 1232	EPA 8082	7B14097	25	120	ND	1.99	02/14/07	02/15/07	
Aroclor 1242	EPA 8082	7B14097	25	120	ND	1.99	02/14/07	02/15/07	
Aroclor 1248	EPA 8082	7B14097	25	120	ND	1.99	02/14/07	02/15/07	
Aroclor 1254	EPA 8082	7B14097	25	120	ND	1.99	02/14/07	02/15/07	
Aroclor 1260 🔸	EPA 8082	7B14097	25	120	ND	1.99	02/14/07	02/15/07	
Surrogate: Decachlorobiphenyl (45-120%	6)				84 %				

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

Leve I

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB1216 <Page 2 of 16>

Test Amalytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing	
9444 Farnham Street, Suite 300	
San Diego, CA 92123	
Attention: Lisa J. Tucker	

Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB1216

Sampled: 02/12/07 Received: 02/13/07

POLYCHLORINATED BIPHENYLS (EPA 3545/8082)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1216-04 (FSBS0007S01 - 5	Soil)								RL1
Reporting Units: ug/kg dry									
Aroclor 1016 U	EPA 8082	7B14097	37	120	ND	1.97	02/14/07	02/15/07	
Aroclor 1221	EPA 8082	7B14097	37	120	ND	1.97	02/14/07	02/15/07	
Aroclor 1232	EPA 8082	7B14097	25	120	ND	1.97	02/14/07	02/15/07	
Aroclor 1242	EPA 8082	7B14097	25	120	ND	1.97	02/14/07	02/15/07	
Aroclor 1248	EPA 8082	7B14097	25	120	ND	1.97	02/14/07	02/15/07	
Aroclor 1254	EPA 8082	7B14097	25	120	ND	1.97	02/14/07	02/15/07	
Aroclor 1260 😽	EPA 8082	7B14097	25	120	ND	1.97	02/14/07	02/15/07	
Surrogate: Decachlorobiphenyl (45-120%)					81 %				
Sample ID: IQB1216-06 (FSBS0069S01 - 5	Soil)								
Reporting Units: ug/kg dry									
Aroclor 1016 U	EPA 8082	7B14097	17	56	ND	0.999	02/14/07	02/15/07	
Aroclor 1221	EPA 8082	7B14097	17	56	ND	0.999	02/14/07	02/15/07	
Aroclor 1232	EPA 8082	7B14097	11	56	ND	0.999	02/14/07	02/15/07	
Aroclor 1242	EPA 8082	7B14097	11	56	ND	0.999	02/14/07	02/15/07	
Aroclor 1248	EPA 8082	7B14097	11	56	ND	0.999	02/14/07	02/15/07	
Aroclor 1254	EPA 8082	7B14097	11	56	ND	0.999	02/14/07	02/15/07	
Aroclor 1260 🗸	EPA 8082	7B14097	11	56	ND	0.999	02/14/07	02/15/07	
Surrogate: Decachlorobiphenyl (45-120%)					90 %				
Sample ID: IQB1216-07 (FSBS0070S01 - 5	Soil)								
Reporting Units: ug/kg dry									
Aroclor 1016	EPA 8082	7B14097	16	53	ND	0.998	02/14/07	02/15/07	
Aroclor 1221	EPA 8082	7B14097	16	53	ND	0.998	02/14/07	02/15/07	
Aroclor 1232	EPA 8082	7B14097	11	53	ND	0.998	02/14/07	02/15/07	
Aroclor 1242	EPA 8082	7B14097	11	53	ND	0.998	02/14/07	02/15/07	
Aroclor 1248	EPA 8082	7B14097	11	53	ND	0.998	02/14/07	02/15/07	
Aroclor 1254	EPA 8082	7B14097	11	53	ND	0.998	02/14/07	02/15/07	
Aroclor 1260	EPA 8082	7B14097	11	53	ND	0.998	02/14/07	02/15/07	
Surrogate: Decachlorobiphenyl (45-120%)					95 %				

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

Levelt

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB1216 <Page 3 of 16>

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: IQB1487

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order: Sample Delivery Group:	Boeing SSFL RFI Group 8 Data Gap 1261.500D.08.001 IQB1487
Project Manager:	Dixie Hambrick
Matrix:	Soil
QC Level:	V
No. of Samples:	12
No. of Reanalyses/Dilutions:	0
Laboratory:	Test America

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample name	Matrix Type	Collection Date	Method
FSBS0014S01	IQB1487-11	N/A	Soil	13-Feb-07	9045C
FSBS0014S02	IQB1487-13	N/A	Soil	13-Feb-07	9045C
FSBS0017S01	IQB1487-14	N/A	Soil	13-Feb-07	314.0-DI WET
FSBS0018S01	IQB1487-12	N/A	Soil	13-Feb-07	314.0-DI WET
FSBS0064S01	IQB1487-07	N/A	Soil	13-Feb-07	314.0-DI WET
FSBS0065S01	IQB1487-06	N/A	Soil	13-Feb-07	314.0-DI WET
FSBS0066D01	IQB1487-03	N/A	Soil	13-Feb-07	1613B, 314.0-DI WET, 6010B, 6020, 7471A, 8082, 9045C 1613B, 314.0-DI WET, 6010B,
FSBS0066S01	IQB1487-04	N/A	Soil	13-Feb-07	6020, 7471A, 8082, 9045C
FSBS0066S02	IQB1487-05	N/A	Soil	13-Feb-07	9045C 1613B, 314.0-DI WET, 6010B,
FSBS0067S01	IQB1487-01	N/A	Soil	13-Feb-07	6020, 7471A, 8082, 9045C
FSBS0067S02	IQB1487-02	N/A	Soil	13-Feb-07	9045C
FSBS0068S01	IQB1487-10	N/A	Soil	13-Feb-07	9045C

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered directly from the field to the laboratory, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present. Not applicable.	
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 26, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC[×]* Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The soil samples were extracted and analyzed within one year of collection.
- Instrument Performance: Review is not applicable at a level V validation.
- Calibration: Review is not applicable at a level V validation.
- Blanks: The method blank had detects for OCDD, 2,3,4,7,8-PeCDF, and total PeCDFs above the EDL; however, sample qualification was not required.
- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: There were numerous detects in the field blank, BLQW0018F01 (IQB1202), and the equipment rinsate, FSQW0002E01 (IQB2570). The detects for OCDD in sample FSBS0067S01 and 1,2,3,7,8-PeCDF in sample FSBS0066S01 were qualified as estimated, "J."
 - Field Duplicates: Samples FSBS0066S01 and FSBS0066D01 were identified as the field duplicate pair for this SDG. There were 13 common detects above the EDL with calculated RPDs >100% for most compounds. There were 12 additional compounds reported in FSBS0066S01 only.
- Internal Standards Performance: Internal standard recoveries are not routinely evaluated at a Level V validation; however, the recoveries were reported on the sample result summaries. The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Review is not applicable at a level V validation. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613. A confirmation

analysis was not performed for the 2,3,7,8-TCDF detect reported in the site sample; therefore, the result for 2,3,7,8-TCDF was qualified as estimated, "J."

 Compound Quantification and Reported Detection Limits: Review is not applicable at a level V validation. The laboratory calculated and reported compound-specific detection limits. The detect for OCDD in sample FSBS0066S01 exceeded the upper limit of the calibration; therefore the result for OCDD was qualified as estimated, "J," in the site sample. Any detects below the laboratory lower calibration level were qualified as estimated, "J." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: Patti Meeks Date Reviewed: 3/26/07

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 6010B, 6020, 7470A/7471A, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks had no applicable detects. Boron was detected in CCBs at 14.1 and 10.5 μg/L; therefore, all boron detects were qualified as estimated, "UJ."
- Interference Check Samples: Not applicable at a Level V validation.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on FSBS0067S01. Antimony was recovered below 30% in both the MS and the MSD and barium, copper, selenium, and zinc were recovered below the laboratory-established control limit in both the MS and the MSD. These compounds were qualified as estimated, "J."
- Serial Dilution: No serial dilution analyses were performed.

- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: There were no detects in the field blank, BLQW0018F01 (IQB1202), or the equipment rinsate, FSQW0002E01 (IQB2570). It should be noted that the equipment rinsate was not analyzed for aluminum, boron, lithium, potassium, sodium, or zirconium.
 - Field Duplicates: Samples FSBS0066S01 and FSBS0066D01 were identified as field duplicates. Silver was detected in the primary sample but was not detected in the duplicate and the RPD for lead was 125%. All remaining detects were in common and all other RPDs were ≤100%.

C. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks Date Reviewed: 3/26/07

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC[×]* Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 28 days, was met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within the methodestablished QC limits of 85-115%.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: Recoveries and the RPD were within methodestablished QC limits of 80-120% and ≤15%, respectively.

- Sample Result Verification: The sample results reported on the result summary forms were verified against the raw data. No transcription errors or calculation errors were noted. The confirmation spike for FSBS0067S01 was below the control limit at 67%; therefore, perchlorate detected in the sample was qualified as estimated, "J." Reported nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Perchlorate was not detected in the field blank, BLQW0018F01 (IQB1202), or the equipment rinsate, FSQW0002E01 (IQB1486).
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA Method 8082 – PCBs

Reviewed By: L. Calvin Date Reviewed: March 28, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Organochlorine Pesticides/PCBs by GC (DVP-4, Rev. 0), EPA Method 8082, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The soil samples were extracted within 14 days of collection and analyzed within 40 days of extraction.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the samples of this SDG.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: The field blank BLQW0018F01 (IQB1202) and the equipment rinsate FSQW0002E01 (IQB2570) had no reported target compound detects above the MDL.
- Field Duplicates: Samples FSBS0066S01 and FSBS0066D01 had common detects below the reporting limit for Aroclors 1254 and 1260 with RPDs of <100%.
- Compound Identification: Review is not applicable at a Level V validation.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. The laboratory flagged results for Aroclors 1254 and 1260 in samples FSBS0066D01 and FSBS0066S01 to indicate a possible high bias due to coelution of Aroclors 1254 and 1260. Those results were qualified as estimated, "J," in both samples. Results reported between the MDL and the reporting limit were qualified as estimated, "J." Reported nondetects are valid to the reporting limit.

E. VARIOUS EPA METHODS—General Minerals

Reviewed By: Patti Meeks Date Reviewed: 3/26/07

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 9045, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 24 hours from preparation for pH, was met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: Review is not applicable at a Level V validation.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: Not applicable to this analysis.
- Field Duplicates: Samples FSBS0066S01 and FSBS0066D01 were identified as field duplicate samples. The RPD was ≤100%.

 $\hat{}$

Method 1613 IQB1487-01 FSBS 606 7501 Test America

.

Analytical Data Summary Sheet						
Analyte	Amount	EDL	Adj. RL	RT	Ratio	Qualifier
	(pg/g)	(pg/g)	(pg/g)	(min.)		
2,3,7,8-TCDD	ND	0.188	0.927			
1,2,3,7,8-PeCDD	ND	0.159	4.63			
1,2,3,4,7,8-HxCDD	ND	0.231	4.63			
1,2,3,6,7,8-HxCDD	ND	0.247	4.63			
1,2,3,7,8,9-HxCDD	0.261	0.237	4.63	36:56	1.20	A
1,2,3,4,6,7,8-HpCDD	0.569	0.346	4.63	39:57	0.94	A
OCDD	5.58	0.616	9.27	44:08	0.92	A
2,3,7,8-TCDF	0.198	0.167	0.927	30:26	0.86	A
1,2,3,7,8-PeCDF	ND	0.116	4.63			
2,3,4,7,8-PeCDF	ND	0.120	4.63			
1,2,3,4,7,8-HxCDF	ND	0.150	4.63			
1,2,3,6,7,8-HxCDF	ND	0.151	4.63			
2,3,4,6,7,8-HxCDF	ND	0.148	4.63			
1,2,3,7,8,9-HxCDF	ND	0.195	4.63			
1,2,3,4,6,7,8-HpCDF	ND	0.224	4.63			
1,2,3,4,7,8,9-HpCDF	ND	0.331	4.63			
OCDF	ND	0.540	9.27			
Total TCDDs	ND	0.188	0.927			
Total PeCDDs	ND	0.159	4.63			
Total HxCDDs	0.261	0.238	4.63			A
Total HpCDDs	1.31	0.346	4.63			A
Total TCDFs	0.434	0.167	0.927			A
Total PeCDFs	ND	0.118	4.63			
Total HxCDFs	ND	0.160	4.63			
Total HpCDFs	ND	0.271	4.63			
ITEF TEQ (ND=0)	0.0572					1
ITEF TEQ (ND=1/2)	0.283					

Client Information			Sample Information		
Project Name:	IQB1487		Report Basis:	Dry Weig	ght
			Matrix:	Soil	
Sample ID:	IQB1487-01		Weight / Volume:	12.38	Grams
			Solids / Lipids:	87.2	%
			Original pH :	NA	
Laboratory Information			Batch ID:	WG1412	3
Project ID:	G579-225				
Sample ID:	G579-225-1	В	Filename:	a22feb07	a-10
Collection Date/Time:	13-Feb-07	08:40	Retchk:	a22feb07	a-1
Receipt Date:	16-Feb-07	11:55	Begin ConCal:	a22feb07	a-1
Extraction Date:	19-Feb-07				
Analysis Date:	22-Feb-07	23:36	Initial Cal:	m1613-0)71006e

Analytical Data Summary She

Level I

pm 3/28/07

Method 1613	
IQB1487-03	F5350066001
Test America	

	Analytical Data Summary Sneet							
	Analyte	Amount	EDL	Adj. RL	RT	Ratio	Qualifier	
	-	(pg/g)	(pg/g)	(pg/g)	(min.)			
K	2,3,7,8-TCDD	ND	0.218	0.889				
	1,2,3,7,8-PeCDD	ND	0.228	4.45				
\checkmark	1,2,3,4,7,8-HxCDD	ND	0.269	4.45				
5	1,2,3,6,7,8-HxCDD	1.07	0.284	4.45	36:41	1.15	A	
5	1,2,3,7,8,9-HxCDD	0.985	0.275	4.45	36:56	1.18	A	
	1,2,3,4,6,7,8-HpCDD	24.2	0.458	4.45	39:57	1.04		
	OCDD	648	0.554	8.89	44:08	0.89		
U	2,3,7,8-TCDF	ND	0.223	0.889				
1	1,2,3,7,8-PeCDF	ND	0.137	4.45				
	2,3,4,7,8-PeCDF	ND	0.146	4.45				
	1,2,3,4,7,8-HxCDF	ND	0.183	4.45				
	1,2,3,6,7,8-HxCDF	ND	0.178	4.45				
V	2,3,4,6,7,8-HxCDF	ND	0.184	4.45				
5	1,2,3,7,8,9-HxCDF	0.343	0.237	4.45	37:15	1.19	A	
5	1,2,3,4,6,7,8-HpCDF	1.56	0.226	4.45	38:43	1.09	A	
Ц	1,2,3,4,7,8,9-HpCDF	ND	0.354	4.45				
5	OCDF	• 4.45	0.481	8.89	44:26	0.91	A	
u	Total TCDDs	ND	0.218	0.889				
Û	Total PeCDDs	ND	0.228	4.45				
	Total HxCDDs	7.56	0.276	4.45				
	Total HpCDDs	125	0.458	4.45				
T	Total TCDFs	0.365	0.223	0.889			A	
	Total PeCDFs	0.565	0.142	4.45			A	
\checkmark	Total HxCDFs	3.12	0.194	4.45			A	
	Total HpCDFs	4.94	0.283	4.45		L		
	ITEF TEQ (ND=0)	1.15						
	ITEF TEQ (ND=1/2)	1.41	L	L		1		

Analytical	Noto	Summerv	Sheet
ANSIVUCSI	DHER	SHIRING A	JUCCU

Client Information			Sample Information		
Project Name:	IQB1487		Report Basis:	Dry Weig	ght
-			Matrix:	Soil	
Sample ID:	IQB1487-03		Weight / Volume:	12.60	Grams
•			Solids / Lipids:	89.3	%
			Original pH :	NA	
Laboratory Information			Batch ID:	WG1412	3
Project ID:	G579-225				
Sample ID:	G579-225-2	В	Filename:	a22feb07	a-11
Collection Date/Time:	13-Feb-07	09:27	Retchk:	a22feb07	a-1
Receipt Date:	16-Feb-07	11:55	Begin ConCal:	a22feb07	a-1
Extraction Date:	19-Feb-07				
Analysis Date:	23-Feb-07	0:24	Initial Cal:	m1613-()71006e

Method 1613 IQB1487-04 FSBS @066 S0 | Test America

		Analy	tical Data Su	immary Shee	Analytical Data Summary Sheet											
	Analyte	Amount	EDL	Adj. RL	RT	Ratio	Qualifier									
	, i i i i i i i i i i i i i i i i i i i	(pg/g)	(pg/g)	(pg/g)	(min.)											
U	2,3,7,8-TCDD	ND	0.220	0.911												
5	1,2,3,7,8-PeCDD	0.720	0.217	4.56	34:03	1.34	A									
5	1,2,3,4,7,8-HxCDD	1.48	0.428	4.56	36:36	1.39	A									
	1,2,3,6,7,8-HxCDD	8.56	0.433	4.56	36:42	1.29										
J	1,2,3,7,8,9-HxCDD	2.88	0.428	4.56	36:56	1.34	A									
	1,2,3,4,6,7,8-HpCDD	218	0.300	4.56	39:57	1.04										
JATT JAK	OCDD	4890	0.500	9.11	44:08	0.89	Е									
5/F	2,3,7,8-TCDF	0.915	0.276	0.911	30:26	0.77										
JF	1,2,3,7,8-PeCDF	0.722	0.139	4.56	33:15	1.58	A									
1	2,3,4,7,8-PeCDF	0.848	0.147	4.56	33:51	1.4	A									
1	1,2,3,4,7,8-HxCDF	1.64	0.272	4.56	35:54	1.28	A									
	1,2,3,6,7,8-HxCDF	0.733	0.281	4.56	36:00	1.27	A									
	2,3,4,6,7,8-HxCDF	0.950	0.284	4.56	36:29	1.30	A									
\checkmark	1,2,3,7,8,9-HxCDF	0.893	0.347	4.56	37:16	1.26	A									
	1,2,3,4,6,7,8-HpCDF	20.1	0.356	4.56	38:43	1.07										
J	1,2,3,4,7,8,9-HpCDF	1.23	0.542	4.56	40:37	1.09	A									
<u> </u>	OCDF	41.6	0.441	9.11	44:25	0.87										
J	Total TCDDs	0.434	0.220	0.911			A									
	Total PeCDDs	6.06	0.217	4.56												
	Total HxCDDs	64.5	0.430	4.56												
	Total HpCDDs	1010	0.300	4.56												
	Total TCDFs	4.04	0.276	0.911												
	Total PeCDFs	7.99	0.143	4.56												
	Total HxCDFs	37.5	0.294	4.56												
	Total HpCDFs	63.8	0.437	4.56		L										
	ITEF TEQ (ND=0)	9.95														
	ITEF TEQ (ND=1/2)	10.1	<u></u>	<u> </u>	L	l	1									

Client Information			Sample Information		
Project Name:	IQB1487		Report Basis:	Dry Weig	ght
			Matrix:	Soil	
Sample ID:	IQB1487-04		Weight / Volume:	12.71	Grams
-			Solids / Lipids:	86.3	%
			Original pH :	NA	
Laboratory Information			Batch ID:	WG1412	3
Project ID:	G579-225				
Sample ID:	G579-225-3	В	Filename:	a22feb07	/a-12
Collection Date/Time:	13-Feb-07	09:27	Retchk:	a22feb07	/a-1
Receipt Date:	16-Feb-07	11:55	Begin ConCal:	a22feb07	/a-1
Extraction Date:	19-Feb-07				
Analysis Date:	23-Feb-07	1:12	Initial Cal:	m1613-0	071006e

Level I

Test Amalytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker	Project ID: Report Number:	SSFL Group 8 - DOE 1891264 IQB1487	Sampled: Received:		
--	-------------------------------	--	-----------------------	--	--

		N	META	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1487-01 (FSBS0067S0	1 - Soil)								
Reporting Units: mg/kg dry							00115105	02/15/07	MHA
Aluminum	EPA 6010B	7B15107	5.8	12	14000	1	02/15/07	02/15/07	
Antimony J/Q	EPA 6020	7B15106	0.035	1.2	0.11	1	02/15/07	02/16/07	M2, J
Arsenic	EPA 6020	7B15106	0.29	0.58	2.5	1	02/15/07	02/16/07	
Barium J/Q	EPA 6020	7B15106	0.092	0.58	93	1	02/15/07	02/16/07	M2
Beryllium	EPA 6020	7B15106	0.046	0.35	0.55	1	02/15/07	02/16/07	
Boron UJ B	EPA 6010B	7B15107	1.2	5.8	4.0	1	02/15/07	02/15/07	J
Cadmium	EPA 6020	7B15106	0.029	0.58	0.23	1	02/15/07	02/16/07	J
Chromium	EPA 6020	7B15106	0.40	1.2	19	1	02/15/07	02/16/07	
Cobalt	EPA 6020	7B15106	0.092	0.58	5.5	1	02/15/07	02/16/07	
Copper J/Q	EPA 6020	7B15106	0.23	1.2	8.9	1	02/15/07	02/16/07	M2
Lead	EPA 6020	7B15106	0.058	0.58	4.5	1	02/15/07	02/16/07	
Lithium	EPA 6010B	7B15107	4.4	7.2	23	1	02/15/07	02/15/07	
Molybdenum	EPA 6020	7B15106	0.12	1.2	0.56	1	02/15/07	02/16/07	J
Nickel	EPA 6020	7B15106	0.52	1.2	11	1	02/15/07	02/16/07	
Potassium	EPA 6010B	7B15107	22	58	3500	1	02/15/07	02/15/07	MHA
Selenium J/Q	EPA 6020	7B15106	0.23	1.2	0.30	1	02/15/07	02/16/07	M2, J
Silver U	EPA 6020	7B15106	0.058	0.58	ND	1	02/15/07	02/16/07	
Sodium	EPA 6010B	7B15107	28	58	73	1	02/15/07	02/15/07	
Thallium	EPA 6020	7B15106	0.12	0.58	0.27	1	02/15/07	02/16/07	J
Vanadium	EPA 6020	7B15106	0.46	1.2	34	1	02/15/07	02/16/07	
Zinc J/Q	EPA 6020	7B15106	1.5	12	48	1	02/15/07	02/16/07	M2
Zirconium U	EPA 6010B	7B16119	1.7	29	ND	1	02/16/07	02/16/07	

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

LEVEL V

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB1487 <Page 4 of 18>

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7021518 Project ID: IQB1487 Date Received: 02/15/07 10:10 Date Reported: 03/02/07 16:55

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids ¥	86.9	% by Weight	0.100	1	Gravimetric	W7B0880	02/22/07	02/28/07 dj	

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.012	0.00075	mg/kg dry	0.012	1	EPA 7471A	W7B0623	02/15/07	02/22/07 jl	

+ Analysis not validated

LEVEL V

Test Amalytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker	Project ID: Report Number:	SSFL Group 8 - DOE 1891264 IQB1487	Sampled: Received:		
--	-------------------------------	--	-----------------------	--	--

		N	META	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1487-03 (FSBS0066D	01 - Soil)								
Reporting Units: mg/kg dry									
Aluminum	EPA 6010B	7B15107	6.1	12	14000	1	02/15/07	02/15/07	
Antimony J/Q	EPA 6020	7B15106	0.036	1.2	0.17	1	02/15/07	02/15/07	J
Arsenic	EPA 6020	7B15106	0.30	0.61	2.4	1	02/15/07	02/15/07	
Barium J/Q	EPA 6020	7B15106	0.097	0.61	88	1	02/15/07	02/15/07	
Beryllium	EPA 6020	7B15106	0.049	0.36	0.54	1	02/15/07	02/15/07	
Boron UT /B	EPA 6010B	7B15107	1.2	6.1	5.2	1	02/15/07	02/15/07	J
Cadmium	EPA 6020	7B15106	0.030	0.61	0.23	1	02/15/07	02/15/07	J
Chromium	EPA 6020	7B15106	0.43	1.2	18	1	02/15/07	02/15/07	
Cobalt	EPA 6020	7B15106	0.097	0.61	5.8	1	02/15/07	02/15/07	
Copper J/Q	EPA 6020	7B15106	0.24	1.2	8.1	1	02/15/07	02/15/07	
Lead	EPA 6020	7B15106	0.061	0.61	6.0	1	02/15/07	02/15/07	
Lithium	EPA 6010B	7B15107	4.6	7.7	20	1	02/15/07	02/15/07	
Molybdenum	EPA 6020	7B15106	0.12	1.2	0.71	1	02/15/07	02/15/07	J
Nickel	EPA 6020	7B15106	0.55	1.2	11	1	02/15/07	02/15/07	
Potassium	EPA 6010B	7B15107	23	61	3300	1	02/15/07	02/15/07	
Selenium J/Q	EPA 6020	7B15106	0.24	1.2	0.43	1	02/15/07	02/15/07	J
Silver U	EPA 6020	7B15106	0.061	0.61	ND	1	02/15/07	02/15/07	
Sodium	EPA 6010B	7B15107	29	61	67	1	02/15/07	02/15/07	
Thallium	EPA 6020	7B15106	0.12	0.61	0.36	1	02/15/07	02/15/07	J
Vanadium	EPA 6020	7B15106	0.49	1.2	31	1	02/15/07	02/15/07	
Zinc J/R	EPA 6020	7B15106	1.6	12	41	1	02/15/07	02/15/07	
Zirconium	EPA 6010B	7B16119	1.8	30	ND	1	02/16/07	02/16/07	

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

LEVEL V

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7021518 Project ID: IQB1487 Date Received: 02/15/07 10:10 Date Reported: 03/02/07 16:55

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids 🕌	82.3	% by Weight	0.100	1	Gravimetric	W7B0880	02/22/07	02/28/07 dj	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.019	0.00079	mg/kg dry	0.012	I	EPA 7471A	W7B0623	02/15/07	02/22/07 jl	

* Analysis not validated

LEVEL V

Test Amalytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

		ľ	META	LS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1487-04 (FSBS0066S0	1 - Soil)								
Reporting Units: mg/kg dry	,								
Aluminum	EPA 6010B	7B15107	5.6	11	12000	0.995	02/15/07	02/15/07	
Antimony J/Q	EPA 6020	7B15106	0.034	1.1	0.25	0.995	02/15/07	02/15/07	J
Arsenic	EPA 6020	7B15106	0.28	0.56	2.1	0.995	02/15/07	02/15/07	
Barium J/Q	EPA 6020	7B15106	0.090	0.56	82	0.995	02/15/07	02/15/07	
Beryllium	EPA 6020	7B15106	0.045	0.34	0.42	0.995	02/15/07	02/15/07	
Boron UJB	EPA 6010B	7B15107	1.1	5.6	5.0	0.995	02/15/07	02/15/07	J
Cadmium	EPA 6020	7B15106	0.028	0.56	0.25	0.995	02/15/07	02/15/07	J
Chromium	EPA 6020	7B15106	0.39	1.1	16	0.995	02/15/07	02/15/07	
Cobalt	EPA 6020	7B15106	0.090	0.56	4.9	0.995	02/15/07	02/15/07	
Copper J/Q	EPA 6020	7B15106	0.22	1.1	8.2	0.995	02/15/07	02/15/07	
Lead	EPA 6020	7B15106	0.056	0.56	26	0.995	02/15/07	02/15/07	
Lithium	EPA 6010B	7B15107	4.3	7.1	18	0.995	02/15/07	02/15/07	
Molybdenum	EPA 6020	7B15106	0.11	1.1	0.53	0.995	02/15/07	02/15/07	J
Nickel	EPA 6020	7B15106	0.50	1.1	9.9	0.995	02/15/07	02/15/07	
Potassium	EPA 6010B	7B15107	21	56	3000	0.995	02/15/07	02/15/07	
Selenium J/Q	EPA 6020	7B15106	0.22	1.1	0.35	0.995	02/15/07	02/15/07	J
Silver	EPA 6020	7B15106	0.056	0.56	0.060	0.995	02/15/07	02/15/07	J
Sodium	EPA 6010B	7B15107	27	56	56	0.995	02/15/07	02/15/07	
Thallium	EPA 6020	7B15106	0.11	0.56	0.28	0.995	02/15/07	02/15/07	J
Vanadium	EPA 6020	7B15106	0.45	1.1	27	0.995	02/15/07	02/15/07	
Zinc J/Q	EPA 6020	7B15106	1.5	11	47	0.995	02/15/07	02/15/07	
Zirconium U	EPA 6010B	7B16119	1.7	28	ND	1	02/16/07	02/16/07	

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

LEVEL V

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB1487 <Page 6 of 18>

Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7021518 Project ID: IQB1487 Date Received: 02/15/07 10:10 Date Reported: 03/02/07 16:55

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids 🔆	88.9	% by Weight	0.100	1	Gravimetric	W7B0880	02/22/07	02/28/07 dj	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.050	0.00073	mg/kg dry	0.011	I	EPA 7471A	W7B0623	02/15/07	02/22/07 jl	

* Analysis not validated

Pm 3/26/07

EVEL

Weck Laboratories, Inc Taylor Maligmat, Client Services The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Test Analytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1487-01 (FSBS0067S0) Reporting Units: %	1 - Soil)								
	EPA 160.3 MOD	7B16117	0.10	0.10	87	1	02/16/07	02/19/07	
Sample ID: IQB1487-03 (FSBS0066D0 Reporting Units: %	1 - Soil)								
Percent Solids	EPA 160.3 MOD	7B16117	0.10	0.10	82	1	02/16/07	02/19/07	
Sample ID: IQB1487-04 (FSBS0066S0 Reporting Units: %	1 - Soil)								
Percent Solids	EPA 160.3 MOD	7B16117	0.10	0.10	89	1	02/16/07	02/19/07	
Sample ID: IQB1487-01 (FSBS0067S0 Reporting Units: pH Units	1 - Soil)								
рН	EPA 9045C	7B15100	0.00	NA	6.86	1	02/15/07	02/15/07	
Sample ID: IQB1487-02 (FSBS0067S0) Reporting Units: pH Units									
рН	EPA 9045C	7B15100	0.00	NA	6.36	1	02/15/07	02/15/07	
Sample ID: IQB1487-03 (FSBS0066D0 Reporting Units: pH Units	1 - Soil)								
рН	EPA 9045C	7B15100	0.00	NA	5.45	1	02/15/07	02/15/07	
Sample ID: IQB1487-04 (FSBS0066S0 Reporting Units: pH Units	1 - Soil)								
рН	EPA 9045C	7B15100	0.00	NA	5.83	1	02/15/07	02/15/07	
Sample ID: IQB1487-05 (FSBS0066S0) Reporting Units: pH Units	2 - Soil)								
рН	EPA 9045C	7B15100	0.00	NA	6.61	1	02/15/07	02/15/07	
Sample ID: IQB1487-10 (FSBS0068S0 Reporting Units: pH Units	1 - Soil)		ì						
рН	EPA 9045C	7B15100	0.00	NA	6.00	1	02/15/07	02/15/07	
Sample ID: IQB1487-11 (FSBS0014S0 Reporting Units: pH Units	1 - Soil)								
рН	EPA 9045C	7B15100	0.00	NA	5.98	1	02/15/07	02/15/07	

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

LEVEL V

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

Test Analytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300	Project ID:	SSFL Group 8 - DOE 1891264	Sampled:	02/13/07
	Report Number:		Received:	
Attention: Lisa J. Tucker				

			INC	ORGA	NICS					
	Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
	Sample ID: IQB1487-13 (FSBS0014S02 Reporting Units: pH Units pH	- Soil) EPA 9045C	7B15100	0.00	NA	6.51	1	02/15/07	02/15/07	
	Sample ID: IQB1487-01 (FSBS0067S01 Reporting Units: ug/ Perchlorate 7/*	- Soil) EPA 314.0 DI-RFI	7B22090	0.80	4.0	3.3	1	02/22/07	02/22/07	J
U	Sample ID: IQB1487-03 (FSBS0066D01 Reporting Units: ug/l Perchlorate	- Soil) EPA 314.0 DI-RFI	7B22090	0.80	4.0	ND	1	02/22/07	02/22/07	
	Sample ID: IQB1487-04 (FSBS0066S01 Reporting Units: ug/l Perchlorate	- Soil) EPA 314.0 DI-RFI	7B22090	0.80	4.0	ND	1	02/22/07	02/22/07	
	Sample ID: IQB1487-06 (FSBS0065S01 Reporting Units: ug/l Perchlorate	- Soil) EPA 314.0 DI-RFI	7B22090	0.80	4.0	ND	1	02/22/07	02/22/07	
	Sample ID: IQB1487-07 (FSBS0064S01 Reporting Units: ug/l Perchlorate	- Soil) EPA 314.0 DI-RFI	7B22090	0.80	4.0	ND	1	02/22/07	02/23/07	
	Sample ID: IQB1487-12 (FSBS0018S01 Reporting Units: ug/l Perchlorate		7B22090	0.80	4.0	ND	1	02/22/07	02/23/07	
1	Sample ID: IQB1487-14 (FSBS0017S01 Reporting Units: ug/l / Perchlorate	- Soil) EPA 314.0 DI-RFI	7B22090	0.80	4.0	ND	1	02/22/07	02/23/07	

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing	Project ID:	SSFL Group 8 - DOE			
9444 Farnham Street, Suite 300		1891264		Sampled:	02/13/07
San Diego, CA 92123	Report Number:	IQB1487		Received:	02/14/07
Attention: Lisa J. Tucker			8		

POLYCHLORINATED BIPHENYLS (EPA 3545/8082) MDL Date Date Data Reporting Sample Dilution Result Qualifiers Analyte Method Batch Limit Limit Analyzed Factor Extracted Sample ID: IQB1487-01 (FSBS0067S01 - Soil) Reporting Units: ug/kg dry Aroclor 1016 U EPA 8082 7B19093 17 57 ND 0.998 02/19/07 02/20/07 Aroclor 1221 7B19093 57 EPA 8082 17 ND 0.998 02/19/07 02/20/07 02/20/07 Aroclor 1232 7B19093 57 ND 02/19/07 EPA 8082 11 0.998 Aroclor 1242 EPA 8082 7B19093 11 57 ND 0.998 02/19/07 02/20/07 Aroclor 1248 57 02/19/07 EPA 8082 7B19093 11 ND 0.998 02/20/07 Aroclor 1254 EPA 8082 7B19093 11 57 ND 0.998 02/19/07 02/20/07 Aroclor 1260 EPA 8082 7B19093 57 ND 0.998 02/19/07 02/20/07 11 Surrogate: Decachlorobiphenyl (45-120%) 110 % Sample ID: IOB1487-03 (FSBS0066D01 - Soil) Reporting Units: ug/kg dry Aroclor 1016 EPA 8082 7B19093 18 61 ND 0 997 02/19/07 02/20/07 Aroclor 1221 EPA 8082 7B19093 61 ND 0.997 02/19/07 02/20/07 18 Aroclor 1232 7B19093 ND 02/19/07 EPA 8082 12 61 0.997 02/20/07 Aroclor 1242 EPA 8082 7B19093 12 61 ND 0.997 02/19/07 02/20/07 Aroclor 1248 EPA 8082 7B19093 12 61 ND 0.997 02/19/07 02/20/07 Aroclor 1254 EPA 8082 7B19093 12 61 47 0.997 02/19/07 02/20/07 J. A-01 Aroclor 1260 EPA 8082 7B19093 12 61 34 0.997 02/19/07 02/20/07 A-01, J 95% Surrogate: Decachlorobiphenyl (45-120%) Sample ID: IQB1487-04 (FSBS0066S01 - Soil) Reporting Units: ug/kg dry 7B19093 ND Aroclor 1016 EPA 8082 17 56 Ŧ 02/19/07 02/20/07 Aroclor 1221 EPA 8082 7B19093 17 56 ND 1 02/19/07 02/20/07 Aroclor 1232 EPA 8082 7B19093 ND 02/19/07 02/20/07 11 56 1 Aroclor 1242 EPA 8082 7B19093 11 56 ND 1 02/19/07 02/20/07 Aroclor 1248 EPA 8082 7B19093 11 56 ND 02/19/07 02/20/07 1 Aroclor 1254 J *11 EPA 8082 7B19093 56 36 02/19/07 02/20/07 11 J, A-01 1 56 Aroclor 1260 EPA 8082 7B19093 13 02/19/07 02/20/07 11 1 J, A-01 107%

Surrogate: Decachlorobiphenyl (45-120%)

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

Level It 07:28.07

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB1487 <Page 3 of 18>

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: IQB1684

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order: Sample Delivery Group: Project Manager: Matrix:	Boeing SSFL RFI Group 8 Data Gap 1261.500D.08.001 IQB1684 Dixie Hambrick Soil
QC Level:	V
No. of Samples:	7
No. of Reanalyses/Dilutions:	2
Laboratory:	Test America

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample name	Matrix Type	Collection Date	Method
FSBS0022S01	IQB1684-02	N/A	Soil	14-Feb-07	314.0-DI WET
FSBS0022S01RE1	IQB1684-02 RE1	N/A	Soil	14-Feb-07	314.0-DI WET
FSBS0022S01RE2	IQB1684-02	D7C080187-01	Soil	14-Feb-07	8321A
FSBS0023S01	IQB1684-04	N/A	Soil	14-Feb-07	314.0-DI WET
FSBS0061S01	IQB1684-09	N/A	Soil	14-Feb-07	314.0-DI WET
FSBS0027S01	IQB1684-12	N/A	Soil	14-Feb-07	314.0-DI WET
FSBS0028S01	IQB1684-14	N/A	Soil	14-Feb-07	314.0-DI WET
FSBS0063S01	IQB1684-16	N/A	Soil	14-Feb-07	9045C
FSBS0015S01	IQB1684-17	N/A	Soil	14-Feb-07	6020, 9045C

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered directly from the field to the laboratory, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: Patti Meeks Date Reviewed: March 30, 2007

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 6020, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, six months for ICP-MS metals, was met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: There were no method blank or CCB detects for arsenic.
- Interference Check Samples: Not applicable.
- Blank Spikes and Laboratory Control Samples: The recovery was within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Field blank BLQW0018F01 (IQB1202) and equipment rinsate FSQW0002E01 (IQB2570) had no detects for arsenic.

• Field Duplicates: There were no field duplicate samples identified for this SDG.

B. EPA METHOD 314.0—Perchlorate

Reviewed By: Patti Meeks Date Reviewed: March 30, 2007

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{x} Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Methods 314.0 and 8321A, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 28 days, was met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within the methodestablished QC limits of 85-115%.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed by LC/MS/MS on FSBS0022S01. The recoveries and RPD were within the laboratory-established control limits of 70-130% and ≤20%, respectively.
- Sample Result Verification: The sample results reported on the Form I were verified against the raw data. No transcription errors or calculation errors were noted. Reported nondetects are valid to the reporting limit.

Matrix interference was evident in the confirmation spike performed for FSBS0022S01. Instead of a single perchlorate peak, two peaks were visible and the recovery was elevated, at 188%. The laboratory reanalyzed FSBS0022S01 and reported the reanalysis as FSBS0022S01 RE1. The confirmation spike performed for FSBS0022S01 exhibited a single peak at the perchlorate retention time and an acceptable recovery of 90%; however, due to the severity of the matrix interference in the original aliquot, the sample was subcontracted to Severn Trent Laboratory (STL) in Denver for definitive analysis by LC/MS/MS. This result was reported as FSBS0022S01 RE2. As LC/MS/MS is a definitive analysis, the reviewer rejected, "R," the original analysis result, FSBS0022S01, and the first reanalysis result, FSBS0022S01 RE1, in favor of the LC/MS/MS result, FSBS0022S01 RE2.

A confirmation spike was performed for FSBS0028S01. This recovery was above the control limit at 126%; therefore, perchlorate detected in FSBS0028S01 was qualified as estimated, "J." The reviewer also noted that the ICCS associated with the sample

analyses was recovered above the program control limit at 116%; therefore, perchlorate detected in FSBS0028S01 was qualified as estimated, "J."

Perchlorate was detected below the reporting limit in FSBS0022S01 RE2; therefore, this detect was qualified as estimated, "J."

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: This sample in this SDG was identified as a field blank.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

C. EPA METHOD 9045C—General Minerals

Reviewed By: Patti Meeks Date Reviewed: March 30, 2007

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 9045C, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 24 hours from preparation for pH, was met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Not applicable to this analysis.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: Review is not applicable at a Level V validation.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Not applicable to this analysis.

• Field Duplicates: There were no field duplicate samples identified for this SDG.

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing	Project ID:	SSFL Group 8 - SSPN	
9444 Farnham Street, Suite 300		1891263	Sampled: 02/14/07
San Diego, CA 92123	Report Number:	IQB1684	Received: 02/15/07
Attention: Lisa J. Tucker			

METALS								
Method	Batch	MDL Limit	Reporting Limit	Sample Result			Date Analyzed	Data Qualifiers
1 - Soil)								
EDA 6020	7022114	0.28	0.55	13	1	02/22/07	02/22/07	
		Method Batch l - Soil)	MDL Method Batch Limit I - Soil)	MDL Reporting Method Batch Limit Limit I - Soil)	MDL Reporting Sample Method Batch Limit Limit Result I - Soil)	MDL Reporting Sample Dilution Method Batch Limit Limit Result Factor I - Soil)	MDL Reporting Sample Dilution Date Method Batch Limit Limit Result Factor Extracted I - Soil)	MDL Reporting Sample Dilution Date Date Method Batch Limit Limit Result Factor Extracted Analyzed I - Soil)

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

Test Analytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

ANALYTICAL TESTING CORPORA

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker

-X

Project ID: SSFL Group 8 - SSPN 1891263

Report Number: IQB1684

Sampled: 02/14/07 Received: 02/15/07

		INC	RGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1684-17 (FSBS0015S01 Reporting Units: % Percent Solids	- Soil) - cont. EPA 160.3 MOD	7B16117	0.10	0.10	91	1	02/16/07	02/19/07	
Sample ID: IQB1684-16 (FSBS0063S01 Reporting Units: pH Units pH	- Soil) EPA 9045C	7B16073	0.00	NA	7.37	1	02/16/07	02/16/07	
Sample ID: IQB1684-17 (FSBS0015S01 Reporting Units: pH Units pH	EPA 9045C	7B16073	0.00	NA	7.33	1	02/16/07	02/16/07	
Sample ID: IQB1684-02 (FSBS0022S0) Reporting Units: ug/l Perchlorate R/D	EPA 314.0 DI-RFI	7B22090	0.80	4.0	44	1	02/22/07	02/23/07	N1
Sample ID: IQB1684-02RE1 (FSBS002 Reporting Units: ug/l Perchlorate R/D	EPA 314.0 DI-RFI) RG 0.80	4.0	19	1	02/22/07	02/28/07	N1
Sample ID: IQB1684-04 (FSBS0023S0) Reporting Units: ug/l Perchlorate	EPA 314.0 DI-RFI	7B22090	0.80	4.0	ND	1	02/22/07	02/23/07	
Sample ID: IQB1684-09 (FSBS0061S0) Reporting Units: ug/l Perchlorate	EPA 314.0 DI-RFI	7B22090	0.80	4.0	ND	1	02/22/07	02/23/07	
Sample ID: IQB1684-12 (FSBS0027S0) Reporting Units: ug/l Perchlorate U	EPA 314.0 DI-RFI	7B22090	0.80	4.0	ND	1	02/22/07	02/23/07	
Sample ID: IQB1684-14 (FSBS0028S0) Reporting Units: ug/l Perchlorate J/2 III	l - Soil) EPA 314.0 DI-RFI	7B22090	0.80	4.0	6.2	1	02/22/07	02/23/07	

* Analysis not validated

LEVEL V

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

EXECUTIVE SUMMARY - Detection Highlights

D7C080187

FSB50022501 02/14/07 09:20 001	RESULT	REPORTING LIMIT	UNITS	ANALYTICAI. METHOD
Perchlorate J/XIII	0.056 J	0.20	ug/L	SW846 8321A

3

STL Denver

's

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: IQB1815

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order: Sample Delivery Group:	Boeing SSFL RFI Group 8 Data Gap 1261.500D.08.001 IQB1815
Project Manager:	Dixie Hambrick
Matrix:	soil
QC Level:	V
No. of Samples:	4
No. of Reanalyses/Dilutions:	0
Laboratory:	Test America

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
FSBS0011D01	IQB1815-01	N/A	Soil	2/16/2007 8:36:00 AM	314.0-DI WET, 6010B, 6020, 7471A, 8015B, 8082, 8260B, 8270C SIM, 9045C
FSBS0011S01	IQB1815-02	N/A	Soil	2/16/2007 8:36:00 AM	314.0-DI WET, 6010B, 6020, 7471A, 8015B, 8082, 8260B, 8270C SIM, 9045C
FSBS0012S01	IQB1815-03	N/A	Soil	2/16/2007 9:21:00 AM	314.0-DI WET, 6010B, 6020, 7471A, 8015B, 8082, 8260B, 8270C SIM, 9045C
FSBS0013S01	IQB1815-04	N/A	Soil	2/16/2007 9:46:00 AM	9045C

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory above the temperature limits of 4°C ±2°C at 16°C. As the samples were transported directly from the field to the laboratory, the samples did not have sufficient time to cool. Qualifications were not assigned for the elevated cooler temperature. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. Information regarding lack of headspace in the VOA vials was not provided. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered directly from the field to the laboratory, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present. Not applicable.	
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Р	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
* , *	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 3, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 6010B, 6020, 7470A/7471A, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no applicable detects.
- Interference Check Samples: Review is not applicable at a Level V validation.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on FSBS0012S01 for mercury only; however, as the native concentration of mercury was ≥4× the spike concentration, the results were not assessed.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: There were no detects in field blank BLQW0018F01 (IQB1202) or equipment rinsate FSQW0002E01 (IQB2570).
- Field Duplicates: Samples FSBS0011S01 and FSBS0011D01 were identified as field duplicate samples. Boron was detected in the primary sample but was not detected in the duplicate. All remaining detects were in common and all RPDs were ≤100%.

B. EPA METHOD 8270C SIM—Polynuclear Aromatic Hydrocarbons (PAHs)

Reviewed By: L. Calvin Date Reviewed: March 31, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Semivolatile Organics (DVP-3, Rev. 0), EPA Method 8270C, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The soil samples were extracted within 14 days of collection and analyzed within 40 days of extraction.
- GC/MS Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries and RPDs were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: Recoveries were within laboratory-established QC limits. RPDs for 2-nitrophenol, 4-chloro-3-methylphenol, di-n-butyl phthalate, and dimethyl phthalate exceeded the QC limit of ≤20%. Qualifications were not assigned.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Field blank BLQW0018F01 (IQB1202) had a detect between the MDL and the reporting limit for naphthalene at 0.13 µg/L. Naphthalene was not detected in the associated site samples. Equipment rinsate FSQW0002E01 (IQB2570) had no target compounds detected above the MDL.

- Field Duplicates: Field duplicates FSB0011S01 and FSBS0011D01 had common detects for di-n-butyl phthalate with an RPD of <100%. Remaining detects were between the MDL and the reporting limit, and were not further evaluated. The pair was considered to be in agreement.
- Internal Standards Performance: Review is not applicable at a Level V validation.
- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for PAH compounds and added phthalates.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. Any results reported between the MDL and the reporting limit were qualified as estimated, "J." Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review is not applicable at a Level V validation.

C. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks Date Reviewed: April 3, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 28 days, was met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: The recovery was within the methodestablished QC limits of 85-115%.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on FSBS0012S01. Recoveries and RPD were within method-established QC limits of 80-120% and ≤15%, respectively.
- Sample Result Verification: The sample results reported on the sample result summaries were verified against the raw data. No transcription errors or calculation errors were noted. Reported nondetects are valid to the reporting limit.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Perchlorate was not detected in field blank BLQW0018F01 (IQB1202) or equipment rinsate FSBS0002E01 (IQB2570).
 - Field Duplicates: Samples FSBS0011S01 and FSBS0011D01 were identified as field duplicate samples. Perchlorate was not detected in either sample.

D. EPA METHOD 8082—PCBs

Reviewed By: K. Shadowlight Date Reviewed: March 29, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Organochlorine Pesticides/PCBs by GC (DVP-4, Rev. 0), EPA Method 8082, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The soil samples were extracted within 14 days of collection and analyzed within 40 days of extraction.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for sample FSBS0012S01. Recoveries and RPDs were within laboratory-established QC limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: There were no target compounds detected in the field blank, BLQW0018F01 (IQB1202), or equipment rinsate, FSQW0002E01 (IQB2570).

- Field Duplicates: Samples FSBS0011S01 and FSBS0011D01 were identified as field duplicate samples. There was a common detect for Aroclor 1254 with an RPD ≤100%..
- Compound Identification: Review is not applicable at a Level V validation.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. Any results reported between the MDL and the reporting limit were qualified as estimated, "J." Reported nondetects are valid to the reporting limit.

E. EPA METHOD 8015B—Extractable Total Fuel Hydrocarbons (EFHs)

Reviewed By: K. Shadowlight Date Reviewed: March 29, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Total Fuel Hydrocarbons (DVP-8, Rev. 0), EPA Method 8015B, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The soil samples were extracted within 14 days of collection and analyzed within 40 days of extraction.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The method blank had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: The recovery was within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed for sample FSBS0012S01. Recoveries and the RPD were within laboratory-established QC limits.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: There were no target compounds detected in the field blank, BLQW0018F01 (IQB1202), or equipment rinsate, FSQW0002E01 (IQB2570).

- Field Duplicates: Samples FSBS0011S01 and FSBS0011D01 were identified as the field duplicate pair for this SDG. There were no target compounds reported in the pair.
- Compound Identification: Review is not applicable at a Level V validation. Four EFH hydrocarbon ranges were reported: C8-C11, C12-C14, C15-C20, and C21-C30.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. Reported nondetects are valid to the reporting limit.

F. EPA METHOD 8260B—Volatile Organic Compounds (VOCs)

Reviewed By: L. Calvin Date Reviewed: March 31, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Volatile Organics (DVP-2, Rev. 0), EPA Method 8260B, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Analytical holding times were met. The soil samples were analyzed within 14 days of collection.
- GC/MS Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The method blank had no reported target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Acetone was recovered above the QC limits in the blank spike; however, as acetone was not detected in the associated samples, qualification was unnecessary. Remaining recoveries were within laboratory-established QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on a sample from this SDG.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Trip Blanks: Trip blank sample FSQW0003T01 had no reported target compound detects above the MDL.

- Field Blanks and Equipment Rinsates: Field blank BLQW0018F01 (IQB1202) and equipment rinsate FSQW0002E01 (IQB2570) had no reported target compound detects above the MDL.
- Field Duplicates: Field duplicates FSB0011S01 and FSBS0011D01 had no reported target compound detects above the MDL. The pair was considered to be in agreement.
- Internal Standards Performance: Review is not applicable at a Level V validation.
- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for volatile target compounds by Method 8260B. Added compounds 2-chloro-1,1,1-trifluoroethane and chlorotrifluoroethene were not calibrated for and were searched for only as TICs; therefore, these nondetected results were qualifications were qualified as estimated, "UJ."
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. Any results reported between the MDL and the reporting limit were qualified as estimated, "J." Reported nondetects are valid to the reporting limit.
- Tentatively Identified Compounds: TICs were not reported by the laboratory for this SDG.
- System Performance: Review is not applicable at a Level V validation.

G. EPA METHOD 9045C—General Minerals

Reviewed By: P. Meeks Date Reviewed: April 3, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 9045C, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 24 hours from preparation for pH, was met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Not applicable to this analysis.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on FSBS0013S01 and the RPD was within the laboratory-established control limit of ≤5%.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.

- Sample Result Verification: Review is not applicable at a Level V validation.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Not applicable to this analysis.
 - Field Duplicates: Samples FSBS0011S01 and FSBS0011D01 were identified as field duplicate samples. The RPD was ≤100%.

Test America

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

ANALYTICAL TESTING CORPORATION

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264

METALS

Report Number: IQB1815

Sampled: 02/16/07 Received: 02/16/07

nonedol 1 zaman "yrzaniz cesta cyczynik (nyw wys ar architekter).

		14							
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1815-01 (FSBS0011D	01 - Soil)								
Reporting Units: mg/kg dry							02/22/07	02/23/07	
Aluminum	EPA 6010B	7B22115	6.0	12	19000	1		02/22/07	J
	EPA 6020	7B22114	0.036	1.2	0.14	1	02/22/07		3
Antimony	EPA 6020	7B22114	0.30	0.60	3.7	1	02/22/07	02/22/07	
Arsenic	EPA 6020	7B22114	0.096	0.60	84	1	02/22/07	02/22/07	
Barium	EPA 6020	7B22114	0.048	0.36	0.63	1	02/22/07	02/22/07	
Beryllium	EPA 6010B	7B22115	1.2	6.0	4.8	1	02/22/07	02/23/07	J
Boron	EPA 6020	7B22114	0.030	0.60	0.31	1	02/22/07	02/22/07	J
Cadmium	EPA 6020	7B22114	0.42	1.2	23	1	02/22/07	02/22/07	
Chromium	EPA 6020	7B22114	0.096	0.60	10	1	02/22/07	02/22/07	
Cobalt		7B22114 7B22114	0.24	1.2	16	1	02/22/07	02/22/07	
Copper	EPA 6020	7B22114 7B22114	0.060	0.60	9.3	1	02/22/07	02/22/07	
Lead	EPA 6020	7B22114 7B22115	4.6	7.6	22	1	02/22/07	02/23/07	
Lithium	EPA 6010B		0.12	1.2	0.44	1	02/22/07	02/22/07	J
Molybdenum	EPA 6020	7B22114	0.12	1.2	16	1	02/22/07	02/22/07	
Nickel	EPA 6020	7B22114		60	5800	1	02/22/07	02/23/07	
Potassium	EPA 6010B	7B22115	23	1.2	0.34	1	02/22/07	02/22/07	J
Selenium	EPA 6020	7B22114	0.24	0.60	0.076	1	02/22/07	02/22/07	J
Silver	EPA 6020	7B22114	0.060		78	1	02/22/07	02/23/07	
Sodium	EPA 6010B	7B22115	29	60	0.29	1	02/22/07	02/22/07	J
Thallium	EPA 6020	7B22114		0.60		1	02/22/07	02/22/07	
Vanadium	EPA 6020	7B22114		1.2	36		02/22/07	02/22/07	
Zinc	EPA 6020	7B22114		12	58	1	02/22/07	02/23/07	J
Zirconium	EPA 6010B	7B22115	1.8	30	3.1	1	02/22/07	02125101	-
LII COMIUM									

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB1815 <Page 11 of 33>

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022010 Project ID: IQB1815 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/20/07 08:45 Date Reported: 03/06/07 15:02

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids ¥	85.6	% by Weight	0.100	1	Gravimetric	W7B1018	02/26/07	02/26/07 dj	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.027	0.00076	mg/kg dry	0.012	1	EPA 7471A	W7B0833	02/21/07	02/22/07 jl	

* Analysis not validated

EVEL V

Test Analytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

		N	META	LS					
			MDL	Reporting	Sample	Dilution	Date Extracted	Date Analyzed	Data Oualifiers
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Anatyzeu	Quanners
Sample ID: IQB1815-02 (FSBS0011	S01 - Soil)								
Reporting Units: mg/kg dry								00/00/07	
Aluminum	EPA 6010B	7B22115	6.1	12	18000	1	02/22/07	02/23/07	
Antimony	EPA 6020	7B22114	0.036	1.2	0.13	1	02/22/07	02/22/07	J
Arsenic	EPA 6020	7B22114	0.30	0.61	3.5	1	02/22/07	02/22/07	
Barium	EPA 6020	7B22114	0.097	0.61	74	1	02/22/07	02/22/07	
Beryllium	EPA 6020	7B22114	0.048	0.36	0.58	1	02/22/07	02/22/07	
Boron ()	EPA 6010B	7B22115	1.2	6.1	ND	1	02/22/07	02/23/07	
Cadmium	EPA 6020	7B22114	0.030	0.61	0.30	1	02/22/07	02/22/07	l
Chromium	EPA 6020	7B22114	0.42	1.2	21	1	02/22/07	02/22/07	
Cobalt	EPA 6020	7B22114	0.097	0.61	7.5	1	02/22/07	02/22/07	
Copper	EPA 6020	7B22114	0.24	1.2	14	1	02/22/07	02/22/07	
Lead	EPA 6020	7B22114	0.061	0.61	10	1	02/22/07	02/22/07	
Lithium	EPA 6010B	7B22115	4.6	7.6	20	1	02/22/07	02/23/07	
Molybdenum	EPA 6020	7B22114	0.12	1.2	0.42	1	02/22/07	02/22/07	J
Nickel	EPA 6020	7B22114	0.54	1.2	14	1	02/22/07	02/22/07	
Potassium	EPA 6010B	7B22115	23	61	5300	1	02/22/07	02/23/07	
Selenium	EPA 6020	7B22114	0.24	1.2	0.31	1	02/22/07	02/22/07	J
Silver	EPA 6020	7B22114	0.061	0.61	0.15	1	02/22/07	02/22/07	J
Sodium	EPA 6010B	7B22115	29	61	87	1	02/22/07	02/23/07	
Thallium	EPA 6020	7B22114	0.12	0.61	0.26	1	02/22/07	02/22/07	J
Vanadium	EPA 6020	7B22114	0.48	1.2	33	1	02/22/07	02/22/07	
Zinc	EPA 6020	7B22114	1.6	12	53	1	02/22/07	02/22/07	
Zirconium	EPA 6010B	7B22115	1.8	30	2.6	1	02/22/07	02/23/07	J

LEVEL V

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022010 Project ID: IQB1815

Date Received: 02/20/07 08:45 Date Reported: 03/06/07 15:02

FSBS0011501 1QB1815-02 7022010-02 (Solid)

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids_¥	82.8	% by Weight	0.100	1	Gravimetric	W7B1018	02/26/07	02/26/07 dj	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.079	0.00079	mg/kg dry	0.012	1	EPA 7471A	W7B0833	02/21/07	02/22/07 jl	

* Analysis not validated

LEVEL V

Test Analytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

		N	IETA	LS					
			MDL	Reporting	Sample	Dilution	Date	Date	Data Oralifiant
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: IQB1815-03 (FSBS0012S01	- Soil)								
Reporting Units: mg/kg dry					10000		00/00/07	00/02/07	
Aluminum	EPA 6010B	7B22115	5.6	11	10000	1	02/22/07	02/23/07	
Antimony	EPA 6020	7B22114	0.034	1.1	0.046	1	02/22/07	02/22/07	J
Arsenic	EPA 6020	7B22114	0.28	0.56	1.7	1	02/22/07	02/22/07	
Barium	EPA 6020	7B22114	0.090	0.56	58	1	02/22/07	02/22/07	
Beryllium	EPA 6020	7B22114	0.045	0.34	0.34	1	02/22/07	02/22/07	
Boron U	EPA 6010B	7B22115	1.1	5.6	ND	1	02/22/07	02/23/07	
Cadmium	EPA 6020	7B22114	0.028	0.56	0.13	1	02/22/07	02/22/07	J
Chromium	EPA 6020	7B22114	0.40	1.1	10	1	02/22/07	02/22/07	
Cobalt	EPA 6020	7B22114	0.090	0.56	4.3	1	02/22/07	02/22/07	
Copper	EPA 6020	7B22114	0.23	1.1	6.6	1	02/22/07	02/22/07	
Lead	EPA 6020	7B22114	0.056	0.56	5.0	1	02/22/07	02/22/07	
Lithium	EPA 6010B	7B22115	4.3	7.1	22	1	02/22/07	02/23/07	
Molybdenum	EPA 6020	7B22114	0.11	1.1	0.31	1	02/22/07	02/22/07	J
Nickel	EPA 6020	7B22114	0.51	1.1	7.1	1	02/22/07	02/22/07	
Potassium	EPA 6010B	7B22115	21	56	3400	1	02/22/07	02/23/07	
Selenium U	EPA 6020	7B22114	0.23	1.1	ND	1	02/22/07	02/22/07	
Silver	EPA 6020	7B22114	0.056	0.56	0.14	1	02/22/07	02/22/07	J
Sodium	EPA 6010B	7B22115	27	56	61	1	02/22/07	02/23/07	
Thallium	EPA 6020	7B22114	0.11	0.56	0.23	1	02/22/07	02/22/07	J
Vanadium	EPA 6020	7B22114	0.45	1.1	22	1	02/22/07	02/22/07	
Zinc	EPA 6020	7B22114	1.5	11	44	1	02/22/07	02/22/07	
Zirconium	EPA 6010B	7B22115	1.7	28	1.8	1	02/22/07	02/23/07	J

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/20/07 08:45 Date Reported: 03/06/07 15:02

Report ID: 7022010

Project ID: IQB1815

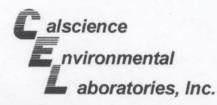
Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids \	90.6	% by Weight	0.100	1	Gravimetric	W7B1018	02/26/07	02/26/07 dj	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	2.2	0.029	mg/kg drv	0.44	40	EPA 7471A	W7B0833	02/21/07	02/22/07 jl	

* Analysis not validated


Calscience nvironmental aboratories, Inc.				Ana	alyti	cal Repo	rt		A660	n	Page 1	C	NUT WITH
1estAmerica 17461 Derian Avenue,	Suite 10	D					eceived Order No					/19/07	
Irvine, CA 92614-5845						Prepara Method Units:	ation:	J.		EP.	EPA A 8270		5
Project: IQB1815												mg/kg 1 of 2	-
Client Sample Number			Lab Sa Num			Date Collected	Matrix	Instrumer	Date nt Prepare		Date	C Batch	-
IQB1815-01			07-02	-1177-	1	02/19/07	Solid	GC/MS N			/23/07 07		
Comment(s): -Results are re	ported on a d	rv weight h	asis						010101	02	20101 01	OZ TOLUS	0
-Results were e				ons >=	to the		if found	the second second					
	Result	RL	MDL	DF	Qual	Parameter	in iound, a	re qualified v				1202-01	
1-Methylnaphthalene UL	ND	0.024	0.0021			Chrysene		J	Result	RL	MDL	DF	0
2-Methylnaphthalene	ND	0.024	0.0021			Di-n-Butyl P	hthalata	0	0.0064	0.024	0.0024		
Acenaphthene	ND	0.024	0.0022	1.18	1	Dibenz (a,h)			0.22	0.024	0.0025		
Acenaphthylene	ND	0.024	0.0019			Diethyl Phth	alate	T	ND 0.012	0.024	0.0023		
Anthracene	ND	0.024	0.0021	1.18	1	Fluoranthen		.u	0.012 ND	0.024	0.0024		
Benzo (a) Anthracene	ND	0.024	0.0025	1.18	i.	Fluorene	-	1	ND	0.024	0.0022		
Benzo (a) Pyrene	0.0063	0.024	0.0021	1.18	J		3-c,d) Pyre	ne	ND	0.024	0.0021		
Benzo (b) Fluoranthene	ND	0.024	0.0021	1.18		N-Nitrosodin	nethylamin	е	ND	0.024	0.0021		
Benzo (g,h,i) Perylene Benzo (k) Fluoranthene	ND	0.024	0.0022	1.18		Naphthalene	1		ND	0.024	0.0023		
Bis(2-Ethylhexyl) Phthalate J	ND	0.024	0.0030	1.18		Phenanthren			ND	0.024	0.0022		
Surrogates:	0.023 REC (%)	0.024 Control	0.0037	1.18	-	Pyrene		1	ND	0.024	0.0030		
2,4,6-Tribromophenol	REC (%)	Control			Qual	Surrogates:		-	REC (%)	Control			Q
2-Fluorophenol	57 64	32-143 15-138				2-Fluorobiph	enyl		81	14-146			
p-Terphenyl-d14	100					Nitrobenzene	e-d5		90	18-162			
IQB1815-02	100	34-148			_	Phenol-d6	,		62	17-141		_	
			07-02-	1177-2		02/19/07	Solid	GC/MS N	02/19/0	7 02/2	23/07 070	219L05	
Comment(s): -Results are rep	orted on a dr	weight ba	asis.										-
-Results were ev	aluated to th	e MDL, co	ncentratio	ns >= t	to the M	MDL but < RI	if found an	e dualified wi	th o " I" flee				
	Result	RL	MDL	DF	Qual	Parameter		e quaineu W			MOL	-	
1-Methylnaphthalene	ND	0.024	0.0021	1.19		Chrysene		N	Result	RL	MDL	DE C	20
2-Methylnaphthalene	ND	0.024	0.0021	1.19		Di-n-Butyl Ph	thalate	N.	ND 0.079	0.024	0.0024	1.19	
Acenaphthene	ND	0.024	0.0022	1.19		Dibenz (a,h)		N	0.079 ND	0.024	0.0025	1.19	
Acenaphthylene Anthracene	ND	0.024		1.19		Diethyl Phtha	late	J	0.0089	0.024	0.0023	1.19 1.19	
Anthracene Benzo (a) Anthracene	ND	0.024	0.0021	1.19		Fluoranthene		K	ND	0.024	0.0024	1.19	
Benzo (a) Pyrene	ND	0.024	0.0026	1.19		Fluorene		1	ND	0.024	0.0023	1.19	
Benzo (b) Fluoranthene	ND	0.024	0.0021	1.19		Indeno (1,2,3	-c,d) Pyren	ne	ND	0.024	0.0021	1.19	
Benzo (g,h,i) Perylene	ND	0.024	0.0021	1.19		N-Nitrosodim	ethylamine	1.1	ND	0.024	0.0023	1.19	
Benzo (k) Fluoranthene	ND ND	0.024	0.0022	1.19		Naphthalene		1	ND	0.024	0.0022	1.19	
Bis(2-Ethylhexyl) Phthalate	0.015	0.024		1.19	140	Phenanthrene	9		ND	0.024	0.0023	1.19	
Surrogates:	REC (%)	Control L		1.19	J	Pyrene		\checkmark		0.024	0.0030	1.19	
2,4,6-Tribromophenol	63	32-143	in this		Qual	Surrogates:			REC (%)	Control L		Q	U
2-Fluorophenol	92	32-143 15-138				2-Fluorobiphe				14-146			
p-Terphenyl-d14	116	34-148				Nitrobenzene-	d5		120	18-162			

Mulhmy_

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

LevelI

FS

Analytical Report

nela

TestAmerica					Date R	eceived:				02/1	9/07		
17461 Derian Avenue, Suit	te 100				Work C	order No:			0	7-02-	1177		
Irvine, CA 92614-5845					Prepara				0	EPA :			
1 VIIIC, CA 32014-3043													
			Method:						EPA 8270C SIM				
					Units:					m	g/kg		
Project: IQB1815									P	age 2	of 2		
	_					_					012		
Client Sample Number		- 1 -	Lab San Numb		Date Collected	Matrix	Instrument	Date Prepared	Date Analyz	0.0	Batch ID		
IQB1815-03			07-02-1	177-3	02/19/07	Solid	GC/MS N	02/19/07	02/22/	07 0702	219L05		
BS 00 12501 Comment(s): -Results are reported	d on a dr	weight ba	eie										
-Results were evalua	and the second s			ns >= to the l		if found are	qualified wi	th a " I" flag					
	Result	RL CO	MDL	DE Qual	Parameter	, in round, are	qualities wi	Result	RL	MDL	DE Qual		
	ND	0.022	0.0020	1.1			u	ND	0.022	0.0023	1.1		
	ND	0.022	0.0020	1.1	Chrysene Di-n-Butyl F			0.038	0.022	0.0023	1.1		
	ND	0.022	0.0020	1.1) Anthracene	4	0.038 ND	0.022	0.0023	1.1		
	ND	0.022	0.0018	1.1	Diethyl Pht		1	ND	0.022	0.0021	1.1		
	ND	0.022	0.0020	1.1	Fluoranther		1	ND	0.022	0.0022	1.1		
	ND	0.022	0.0024	1.1	Fluorene			ND	0.022	0.0019	1.1		
	ND	0.022	0.0019	1.1		(3-c,d) Pyrene		ND	0.022	0.0020	1.1		
	ND	0.022	0.0020	1.1		imethylamine	1	ND	0.022	0.0021	1.1		
The second se	ND	0.022	0.0020	1.1	Naphthalen			ND	0.022	0.0020	1.1		
	ND	0.022	0.0028	1.1	Phenanthre			ND	0.022	0.0021	1.1		
	0.039	0.022	0.0034	1.1	Pyrene		1	ND	0.022	0.0028	1.1		
	REC (%)	Control L		Qual	Surrogates:			REC (%)	Control Li		Qua		
	37	32-143	and a second		2-Fluorobip	henvl		88	14-146				
	31	15-138			Nitrobenzer			102	18-162				
	100	34-148			Phenol-d6			77	17-141				
Method Blank *			099-12-	413-26	N/A	Solid	GC/MS N	02/19/07		07 0702	219L05		
Commental Desite series		110											
Comment(s): -Results were evaluated and a comment of the second s	ated to the Result	RL CO	MDL	DE Qual	MDL but < RL Parameter	., if found, are	qualified wi	th a "J" flag. Result	RL	MDL	DE Qua		
	ND	0.020	0.0018	1	Chrysene	Diation a line of		ND	0.020	0.0020	1		
and a second	ND ND	0.020	0.0018	1	Di-n-Butyl F			ND	0.020	0.0021	1		
· · · · · · · · · · · · · · · · · · ·	ND	0.020	0.0018	1		i) Anthracene		ND	0.020	0.0020	1		
	ND ND	0.020	0.0018	1	Diethyl Pht Fluoranther			ND	0.020	0.0020	1		
	ND ND	0.020	0.0018	1	Fluoranther	le		ND ND	0.020	0.0019	1		
	ND	0.020	0.0022	1		(3-c,d) Pyrene		ND	0.020	0.0018	1		
	ND	0.020	0.0018	1		imethylamine	-	ND	0.020	0.0018	1		
	ND	0.020	0.0018	1	Naphthalen			ND	0.020	0.0020	1		
	ND	0.020	0.0015	1	Phenanthre			ND	0.020	0.0018	1		
	ND	0.020	0.0023	1	Pyrene			ND	0.020	0.0015	1		
	REC (%)	Control L		Qual	Surrogates:			REC (%)	Control Li		Qua		
	32	32-143		Second .	2-Fluorobip	benyl		95	14-146	L.LINK	<u>SKUG</u>		
	99	15-138			Z-Fluorobip Nitrobenzer			95	18-162				
Technologia		10-100			Tall ODer Zel	10-00		110	10-102				

* Analysis not validated

p-Terphenyl-d14

LevelI

17-141

99

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

34-148

106

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

Phenol-d6

Test Analytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB1815

Sampled: 02/16/07 Received: 02/16/07

POLYCHLORINATED BIPHENYLS (EPA 3545/8082)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1815-01RE2 (FSBS0011D	01 - Soil)								
Reporting Units: ug/kg dry	or sony								
Aroclor 1016 U	EPA 8082	7B26083	18	60	ND	1	02/23/07	02/27/07	
Aroclor 1221	EPA 8082	7B26083	18	60	ND	1	02/23/07	02/27/07	
Aroclor 1232	EPA 8082	7B26083	12	60	ND	1	02/23/07	02/27/07	
Aroclor 1242	EPA 8082	7B26083	12	60	ND	1	02/23/07	02/27/07	
Aroclor 1248	EPA 8082	7B26083	12	60	ND	1	02/23/07	02/27/07	
Aroclor 1254	EPA 8082	7B26083	12	60	14	1	02/23/07	02/27/07	J
Aroclor 1260 U	EPA 8082	7B26083	12	60	ND	1	02/23/07	02/27/07	
Surrogate: Decachlorobiphenyl (45-120%)					95 %				
Sample ID: IQB1815-02RE1 (FSBS0011S0)1 - Soil)								
Reporting Units: ug/kg dry									
Aroclor 1016 U	EPA 8082	7B26083	18	61	ND	1	02/26/07	02/27/07	
Aroclor 1221	EPA 8082	7B26083	18	61	ND	1	02/26/07	02/27/07	
Aroclor 1232	EPA 8082	7B26083	12	61	ND	1	02/26/07	02/27/07	
Aroclor 1242	EPA 8082	7B26083	12	61	ND	1	02/26/07	02/27/07	
Aroclor 1248	EPA 8082	7B26083	12	61	ND	1	02/26/07	02/27/07	
Aroclor 1254	EPA 8082	7B26083	12	61	19	1	02/26/07	02/27/07	J
Aroclor 1260	EPA 8082	7B26083	12	61	ND	1	02/26/07	02/27/07	
Surrogate: Decachlorobiphenyl (45-120%)					86 %				
Sample ID: IQB1815-03 (FSBS0012S01 - S	Soil)								
Reporting Units: ug/kg dry									
Aroclor 1016	EPA 8082	7B23106	17	56	ND	1	02/23/07	02/24/07	
Aroclor 1221	EPA 8082	7B23106	17	56	ND	1	02/23/07	02/24/07	
Aroclor 1232	EPA 8082	7B23106	11	56	ND	1	02/23/07	02/24/07	
Aroclor 1242	EPA 8082	7B23106	11	56	ND	1	02/23/07	02/24/07	
Aroclor 1248	EPA 8082	7B23106	11	56	ND	1	02/23/07	02/24/07	
Aroclor 1254	EPA 8082	7B23106	11	56	13	1	02/23/07	02/24/07	J
Aroelor 1260	EPA 8082	7B23106	11	56	ND	1	02/23/07	02/24/07	
Surrogate: Decachlorobiphenyl (45-120%)					106 %				

Level I

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

Test AMALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax: (949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB1815

Sampled: 02/16/07 Received: 02/16/07

EXTRACTABLE FUEL HYDROCARBONS (CADHS/8015 Modified)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1815-01 (FSBS0011D01	- Soil)							-	
Reporting Units: mg/kg dry									
EFH (C8 - C11)	EPA 8015B	7B20072	4.2	6.0	ND	1	02/20/07	02/21/07	
EFH (C12 - C14)	EPA 8015B	7B20072	4.2	6.0	ND	1	02/20/07	02/21/07	
EFH (C15 - C20)	EPA 8015B	7B20072	4.2	6.0	ND	1	02/20/07	02/21/07	
EFH (C21 - C30)	EPA 8015B	7B20072	4.2	6.0	ND	1	02/20/07	02/21/07	
Surrogate: n-Octacosane (40-125%)					79 %				
Sample ID: IQB1815-02 (FSBS0011S01 ·	Soil)								
Reporting Units: mg/kg dry									
EFH (C8 - C11)	EPA 8015B	7B20072	4.2	6.1	ND	1	02/20/07	02/21/07	
EFH (C12 - C14)	EPA 8015B	7B20072	4.2	6.1	ND	1	02/20/07	02/21/07	
EFH (C15 - C20)	EPA 8015B	7B20072	4.2	6.1	ND	1	02/20/07	02/21/07	
EFH (C21 - C30)	EPA 8015B	7B20072	4.2	6.1	ND	1	02/20/07	02/21/07	
Surrogate: n-Octacosane (40-125%)					72 %				
Sample ID: IQB1815-03 (FSBS0012S01 -	· Soil)								
Reporting Units: mg/kg dry									
EFH (C8 - C11)	EPA 8015B	7B20072	4.0	5.6	ND	1	02/20/07	02/20/07	
EFH (C12 - C14)	EPA 8015B	7B20072	4.0	5.6	ND	1	02/20/07	02/20/07	
EFH (C15 - C20)	EPA 8015B	7B20072	4.0	5.6	ND	1	02/20/07	02/20/07	
EFH (C21 - C30)	EPA 8015B	7B20072	4.0	5.6	ND	1	02/20/07	02/20/07	
Surrogate: n-Octacosane (40-125%)					62 %				

Level I

Test Analytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing	Project ID:	SSFL Group 8 - DOE		
9444 Farnham Street, Suite 300		1891264	Sampled: 02/16/07	
San Diego, CA 92123	Report Number:	IOB1815	Received: 02/16/07	
Attention: Lisa J Tucker	risport runioer.		Received: 02/16/07	

VOLATILE ORGANICS by GC/MS (EPA 5035/8260B) MDL Reporting Sample Dilution Date Date Data Analyte Method Batch Limit Limit Result Factor Extracted Analyzed **Oualifiers** Sample ID: IQB1815-01 (FSBS0011D01 - Soil) Reporting Units: ug/kg dry Acetone L EPA 8260B 7B19031 8.9 11 ND 0.919 02/19/07 02/19/07 Benzene EPA 8260B 7B19031 0.55 22 ND 0.919 02/19/07 02/19/07 Bromobenzene EPA 8260B 7B19031 0.93 55 ND 0.919 02/19/07 02/19/07 Bromochloromethane EPA 8260B 7B19031 1.0 5.5 ND 0.919 02/19/07 02/19/07 Bromodichloromethane EPA 8260B 7B19031 0.47 2.2 ND 0.919 02/19/07 02/19/07 Bromoform EPA 8260B 7B19031 0.89 5.5 ND 0.919 02/19/07 02/19/07 Bromomethane EPA 8260B 7B19031 1.0 55 ND 0.919 02/19/07 02/19/07 2-Butanone (MEK) EPA 8260B 7B19031 66 11 ND 0.919 02/19/07 02/19/07 n-Butylbenzene 7B19031 EPA 8260B 0.80 5.5 ND 0.919 02/19/07 02/19/07 sec-Butylbenzene EPA 8260B 7B19031 0.74 5.5 ND 0.919 02/19/07 02/19/07 tert-Butylbenzene 7B19031 EPA 8260B 0.69 5.5 ND 0.919 02/19/07 02/19/07 Carbon tetrachloride EPA 8260B 7B19031 0.55 5.5 ND 0.919 02/19/07 02/19/07 Chlorobenzene EPA 8260B 7B19031 0.58 2.2 ND 0.919 02/19/07 02/19/07 Chloroethane EPA 8260B 7B19031 1.7 55 ND 0.919 02/19/07 02/19/07 2-Chloroethyl vinyl ether EPA 8260B 7B19031 42 5.5 ND 0.919 02/19/07 02/19/07 Chloroform EPA 8260B 7B19031 0.55 22 ND 0.919 02/19/07 02/19/07 Chloromethane EPA 8260B 7B19031 1.1 5.5 ND 0.919 02/19/07 02/19/07 2-Chlorotoluene EPA 8260B 7B19031 0.96 55 ND 0.919 02/19/07 02/19/07 4-Chlorotoluene EPA 8260B 7B19031 0.82 5.5 ND 0.919 02/19/07 02/19/07 Dibromochloromethane EPA 8260B 7B19031 0.62 22 ND 0.919 02/19/07 02/19/07 1.2-Dibromo-3-chloropropane EPA 8260B 7B19031 17 5.5 ND 0.919 02/19/07 02/19/07 1,2-Dibromoethane (EDB) EPA 8260B 7B19031 0.89 2.2 ND 0.919 02/19/07 02/19/07 Dibromomethane EPA 8260B 7B19031 1.0 22 02/19/07 ND 0.919 02/19/07 1,2-Dichlorobenzene EPA 8260B 7B19031 1.1 2.2 02/19/07 ND 0 919 02/19/07 1.3-Dichlorobenzene EPA 8260B 7B19031 0.93 2.2 ND 0.919 02/19/07 02/19/07 1.4-Dichlorobenzene EPA 8260B 7B19031 1.0 2.2 ND 0.919 02/19/07 02/19/07 Dichlorodifluoromethane EPA 8260B 7B19031 1.7 55 ND 0.919 02/19/07 02/19/07 1,1-Dichloroethane EPA 8260B 7B19031 0.55 22 ND 0.919 02/19/07 02/19/07 1,2-Dichloroethane EPA 8260B 7B19031 0.89 22 ND 0.919 02/19/07 02/19/07 1,1-Dichloroethene EPA 8260B 7B19031 0.66 5.5 02/19/07 ND 0.919 02/19/07 cis-1,2-Dichloroethene EPA 8260B 7B19031 0.92 2.2 ND 0.919 02/19/07 02/19/07 trans-1,2-Dichloroethene EPA 8260B 7B19031 0.78 2.2 ND 0.919 02/19/07 02/19/07 1,2-Dichloropropane EPA 8260B 7B19031 0.39 22 ND 0.919 02/19/07 02/19/07 1,3-Dichloropropane EPA 8260B 7B19031 0.70 22 ND 0.919 02/19/07 02/19/07 2,2-Dichloropropane EPA 8260B 7B19031 0.50 2.2 ND 0.919 02/19/07 02/19/07 1,1-Dichloropropene EPA 8260B 7B19031 0.44 22 ND 0.919 02/19/07 02/19/07 cis-1,3-Dichloropropene EPA 8260B 7B19031 0.49 2.2 ND 0.919 02/19/07 02/19/07 trans-1,3-Dichloropropene EPA 8260B 7B19031 0 68 2.2 ND 0.919 02/19/07 02/19/07 Ethylbenzene EPA 8260B 7B19031 0 55 2.2 ND 0.919 02/19/07 02/19/07 Hexachlorobutadiene EPA 8260B 7B19031 0.81 55 ND 0.919 02/19/07 02/19/07 2-Hexanone EPA 8260B 7B19031 10 11 ND 0.919 02/19/07 02/19/07

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB1815 <Page 3 of 33>

Test America

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker

Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB1815

Sampled: 02/16/07 Received: 02/16/07

VOLATILE ORGANICS by GC/MS (EPA 5035/8260B)									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1815-01 (FSBS0011D0	01 - Soil) - cont.								
Reporting Units: ug/kg dry									
Isopropylbenzene	EPA 8260B	7B19031	0.60	2.2	ND	0.919	02/19/07	02/19/07	
p-Isopropyltoluene	EPA 8260B	7B19031	0.80	2.2	ND	0.919	02/19/07	02/19/07	
Methylene chloride	EPA 8260B	7B19031	7.2	22	ND	0.919	02/19/07	02/19/07	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	7B19031	3.5	5.5	ND	0.919	02/19/07	02/19/07	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	7B19031	1.1	5.5	ND	0.919	02/19/07	02/19/07	
Naphthalene	EPA 8260B	7B19031	1.2	5.5	ND	0.919	02/19/07	02/19/07	
n-Propylbenzene	EPA 8260B	7B19031	0.68	2.2	ND	0.919	02/19/07	02/19/07	
Styrene	EPA 8260B	7B19031	0.64	2.2	ND	0.919	02/19/07	02/19/07	
1,1,1,2-Tetrachloroethane	EPA 8260B	7B19031	0.63	5.5	ND	0.919	02/19/07		
1,1,2,2-Tetrachloroethane	EPA 8260B	7B19031	0.95	2.2	ND	0.919	02/19/07	02/19/07	
Tetrachloroethene	EPA 8260B	7B19031	0.54	2.2	ND	0.919	02/19/07	02/19/07	
Toluene	EPA 8260B	7B19031	0.55	2.2	ND	0.919	02/19/07	02/19/07	
1,2,3-Trichlorobenzene	EPA 8260B	7B19031	1.1	5.5	ND	0.919	02/19/07	02/19/07	
1,2,4-Trichlorobenzene	EPA 8260B	7B19031	1.1	5.5	ND	0.919	02/19/07	02/19/07	
1,1,1-Trichloroethane	EPA 8260B	7B19031	0.78	2.2	ND	0.919		02/19/07	
1,1,2-Trichloroethane	EPA 8260B	7B19031	0.96	2.2	ND	0.919	02/19/07	02/19/07	
Trichloroethene	EPA 8260B	7B19031	0.55	2.2	ND		02/19/07	02/19/07	
Trichlorofluoromethane	EPA 8260B	7B19031	0.60	5.5	ND	0.919	02/19/07	02/19/07	
1,2,3-Trichloropropane	EPA 8260B	7B19031	1.1	11	ND	0.919	02/19/07	02/19/07	
1,2,4-Trimethylbenzene	EPA 8260B	7B19031	0.86	2.2		0.919	02/19/07	02/19/07	
1,3,5-Trimethylbenzene	EPA 8260B	7B19031	0.70	2.2	ND	0.919	02/19/07	02/19/07	
Vinyl chloride	EPA 8260B	7B19031	1.0	2.2	ND	0.919	02/19/07	02/19/07	
o-Xylene	EPA 8260B	7B19031	0.55		ND	0.919	02/19/07	02/19/07	
m,p-Xylenes	EPA 8260B	7B19031	0.35	2.2	ND	0.919	02/19/07	02/19/07	
Trichlorotrifluoroethane (Freon 113)	EPA 8260B	7B19031	4.4	2.2	ND	0.919	02/19/07	02/19/07	
Surrogate: Dibromofluoromethane (80-1		/1515031	4.4	5.5	ND	0.919	02/19/07	02/19/07	
Surrogate: Toluene-d8 (80-120%)	2010				91%				
Surrogate: 4-Bromofluorobenzene (80-12	20%)				97%				
Gant i biomojnioi ovenzene 100-11	2070				84 %				

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

Leve V

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB1815 <Page 4 of 33>

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB1815

Sampled: 02/16/07 Received: 02/16/07

VOLATILE ORGANICS by GC/MS (EPA 5035/8260B) MDL Reporting Sample Dilution Data Date Date Analyte Method Batch Limit Limit Result Qualifiers Factor Extracted Analyzed Sample ID: IQB1815-02 (FSBS0011S01 - Soil) Reporting Units: ug/kg dry Acetone EPA 8260B 7B19031 9.6 12 ND 0.99 02/19/07 02/19/07 11 Benzene EPA 8260B 7B19031 0.60 24 ND 0.99 02/19/07 02/19/07 Bromobenzene EPA 8260B 7B19031 1.0 6.0 ND 0.99 02/19/07 02/19/07 Bromochloromethane EPA 8260B 7B19031 11 60 ND 0.99 02/19/07 02/19/07 Bromodichloromethane EPA 8260B 7B19031 0.50 24 ND 0.99 02/19/07 02/19/07 Bromoform EPA 8260B 7B19031 0.96 6.0 ND 0.99 02/19/07 02/19/07 Bromomethane EPA 8260B 7B19031 1.1 6.0 ND 0.99 02/19/07 02/19/07 2-Butanone (MEK) EPA 8260B 7B19031 7.2 12 ND 0.99 02/19/07 02/19/07 n-Butylbenzene EPA 8260B 7B19031 0.86 6.0 ND 0.99 02/19/07 02/19/07 sec-Butylbenzene EPA 8260B 7B19031 0.80 6.0 ND 0.99 02/19/07 02/19/07 tert-Butylbenzene EPA 8260B 7B19031 0.74 6.0 ND 0.99 02/19/07 02/19/07 Carbon tetrachloride EPA 8260B 7B19031 0.60 6.0 ND 0.99 02/19/07 02/19/07 Chlorobenzene EPA 8260B 7B19031 0.62 2.4 ND 0.99 02/19/07 02/19/07 Chloroethane EPA 8260B 7B19031 1.8 60 ND 0.99 02/19/07 02/19/07 2-Chloroethyl vinyl ether EPA 8260B 7B19031 46 6.0 ND 0.99 02/19/07 02/19/07 Chloroform EPA 8260B 7B19031 0.60 2.4 ND 0.99 02/19/07 02/19/07 Chloromethane EPA 8260B 7B19031 1.2 6.0 ND 0.99 02/19/07 02/19/07 2-Chlorotoluene EPA 8260B 7B19031 1.0 6.0 ND 0.99 02/19/07 02/19/07 4-Chlorotoluene EPA 8260B 7B19031 0.89 6.0 ND 0.99 02/19/07 02/19/07 Dibromochloromethane EPA 8260B 7B19031 0.67 2.4 ND 0.99 02/19/07 02/19/07 1,2-Dibromo-3-chloropropane EPA 8260B 7B19031 1.8 6.0 ND 0.99 02/19/07 02/19/07 1,2-Dibromoethane (EDB) EPA 8260B 7B19031 0.96 2.4 ND 0.99 02/19/07 02/19/07 Dibromomethane EPA 8260B 7B19031 11 24 ND 0.99 02/19/07 02/19/07 1,2-Dichlorobenzene EPA 8260B 7B19031 1.1 2.4 ND 0.99 02/19/07 02/19/07 1,3-Dichlorobenzene EPA 8260B 7B19031 2.4 1.0 ND 0.99 02/19/07 02/19/07 1,4-Dichlorobenzene EPA 8260B 7B19031 1.1 2.4 ND 0.99 02/19/07 02/19/07 Dichlorodifluoromethane EPA 8260B 7B19031 1.8 6.0 ND 0.99 02/19/07 02/19/07 1,1-Dichloroethane EPA 8260B 7B19031 0.60 24 ND 0.99 02/19/07 02/19/07 1,2-Dichloroethane EPA 8260B 7B19031 0.96 24 ND 02/19/07 0.99 02/19/07 1.1-Dichloroethene EPA 8260B 7B19031 0 72 6.0 ND 02/19/07 0.99 02/19/07 cis-1,2-Dichloroethene EPA 8260B 7B19031 0.99 24 ND 0.99 02/19/07 02/19/07 trans-1,2-Dichloroethene EPA 8260B 7B19031 0.84 24 ND 02/19/07 0.99 02/19/07 1,2-Dichloropropane EPA 8260B 7B19031 0.42 2.4 ND 0.99 02/19/07 02/19/07 1,3-Dichloropropane EPA 8260B 7B19031 0 76 2.4 ND 0.99 02/19/07 02/19/07 2,2-Dichloropropane EPA 8260B 7B19031 0.54 2.4 ND 0.99 02/19/07 02/19/07 1,1-Dichloropropene EPA 8260B 7B19031 0.48 24 ND 0.99 02/19/07 02/19/07 cis-1,3-Dichloropropene EPA 8260B 7B19031 0.53 24 ND 0.99 02/19/07 02/19/07 trans-1,3-Dichloropropene EPA 8260B 7B19031 0.732.4 ND 0.99 02/19/07 02/19/07 Ethylbenzene EPA 8260B 7B19031 0.60 2.4 ND 0.99 02/19/07 02/19/07 Hexachlorobutadiene EPA 8260B 7B19031 0.88 6.0 ND 0.99 02/19/07 02/19/07 2-Hexanone EPA 8260B 7B19031 11 12 ND 0.99 02/19/07 02/19/07

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

Level

IQB1815 <Page 5 of 33>

TestAmerica ANALYTICAL TESTING CORPORATION

Method

Analyte

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Date

Extracted

Date

Analyzed

Data

Oualifiers

Sample Dilution

Factor

Result

MWH-San Diego/Boeing	Project ID:	SSFL Group 8 - DOE		
9444 Farnham Street, Suite 300		1891264	Sampled:	02/16/07
San Diego, CA 92123	Report Number:	IQB1815	Received:	
Attention: Lisa J. Tucker				

Batch

VOLATILE ORGANICS by GC/MS (EPA 5035/8260B) MDL

Limit

Reporting

Limit

Sample ID: IQB1815-02 (FSBS0011S01 - Soil) - cont. Reporting Units: ug/kg dry Isopropylbenzene il EPA 8260B 7B19031 0.65 24 ND 0.99 02/19/07 02/19/07 p-Isopropyltoluene EPA 8260B 7B19031 0.86 2.4 ND 0.99 02/19/07 02/19/07 Methylene chloride EPA 8260B 7B19031 7.8 24 ND 0.99 02/19/07 02/19/07 4-Methyl-2-pentanone (MIBK) EPA 8260B 7B19031 3.8 6.0 ND 0.99 02/19/07 02/19/07 Methyl-tert-butyl Ether (MTBE) EPA 8260B 7B19031 12 6.0 ND 0.99 02/19/07 02/19/07 Naphthalene EPA 8260B 7B19031 13 6.0 ND 0.99 02/19/07 02/19/07 n-Propylbenzene EPA 8260B 7B19031 0.73 2.4 ND 0.99 02/19/07 02/19/07 Stvrene EPA 8260B 7B19031 0.70 2.4 ND 0.99 02/19/07 02/19/07 1,1,1,2-Tetrachloroethane EPA 8260B 7B19031 0.68 6.0 ND 0.99 02/19/07 02/19/07 1,1,2,2-Tetrachloroethane EPA 8260B 7B19031 10 2.4 ND 0.99 02/19/07 02/19/07 Tetrachloroethene EPA 8260B 7B19031 0.59 2.4 ND 0.99 02/19/07 02/19/07 Toluene EPA 8260B 7B19031 0.60 2.4 ND 02/19/07 0.99 02/19/07 1,2,3-Trichlorobenzene EPA 8260B 7B19031 1.2 6.0 ND 0.99 02/19/07 02/19/07 1,2,4-Trichlorobenzene 7B19031 EPA 8260B 1.2 6.0 ND 0.99 02/19/07 02/19/07 1,1,1-Trichloroethane EPA 8260B 7B19031 0.84 2.4 ND 0.99 02/19/07 02/19/07 1,1,2-Trichloroethane EPA 8260B 7B19031 1.0 2.4 ND 0.99 02/19/07 02/19/07 Trichloroethene EPA 8260B 7B19031 0.60 2.4 ND 0.99 02/19/07 02/19/07 Trichlorofluoromethane EPA 8260B 7B19031 0.65 6.0 ND 0.99 02/19/07 02/19/07 1,2,3-Trichloropropane EPA 8260B 7B19031 1.2 12 ND 0.99 02/19/07 02/19/07 1,2,4-Trimethylbenzene EPA 8260B 7B19031 0.93 2.4 ND 0.99 02/19/07 02/19/07 1,3,5-Trimethylbenzene EPA 8260B 7B19031 0.76 2.4 ND 0.99 02/19/07 02/19/07 Vinyl chloride EPA 8260B 7B19031 2.4 11 ND 0.99 02/19/07 02/19/07 o-Xylene EPA 8260B 7B19031 0.60 2.4 ND 0.99 02/19/07 02/19/07 m.p-Xylenes EPA 8260B 7B19031 0.96 2.4 ND 0.99 02/19/07 02/19/07 Trichlorotrifluoroethane (Freon 113) EPA 8260B 7B19031 48 6.0 ND 0.99 02/19/07 02/19/07 Surrogate: Dibromofluoromethane (80-125%) 89% Surrogate: Toluene-d8 (80-120%) 98 % Surrogate: 4-Bromofluorobenzene (80-120%) 84%

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

Levelt

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB1815 <Page 6 of 33>

Test Amalytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB1815

Sampled: 02/16/07 Received: 02/16/07

	VOLATILE	ORGANIC	S by C	GC/MS (E)	PA 5035	/8260B)			
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1815-03 (FSBS00125	501 - Soil)								
Reporting Units: ug/kg dry									
Acetone UL	EPA 8260B	7B19031	7.3	9.1	ND	0.809	02/19/07	02/19/07	
Benzene	EPA 8260B	7B19031	0.46	1.8	ND	0.809	02/19/07	02/19/07	
Bromobenzene	EPA 8260B	7B19031	0.77	4.6	ND	0.809	02/19/07	02/19/07	
Bromochloromethane	EPA 8260B	7B19031	0.82	4.6	ND	0.809	02/19/07	02/19/07	
Bromodichloromethane	EPA 8260B	7B19031	0.38	1.8	ND	0.809	02/19/07	02/19/07	
Bromoform	EPA 8260B	7B19031	0.73	4.6	ND	0.809	02/19/07	02/19/07	
Bromomethane	EPA 8260B	7B19031	0.84	4.6	ND	0.809	02/19/07	02/19/07	
2-Butanone (MEK)	EPA 8260B	7B19031	5.5	9.1	ND	0.809	02/19/07	02/19/07	
n-Butylbenzene	EPA 8260B	7B19031	0.66	4.6	ND	0.809	02/19/07	02/19/07	
sec-Butylbenzene	EPA 8260B	7B19031	0.61	4.6	ND	0.809	02/19/07	02/19/07	
tert-Butylbenzene	EPA 8260B	7B19031	0.57	4.6	ND	0.809	02/19/07	02/19/07	
Carbon tetrachloride	EPA 8260B	7B19031	0.46	4.6	ND	0.809	02/19/07	02/19/07	
Chlorobenzene	EPA 8260B	7B19031	0.48	1.8	ND	0.809	02/19/07	02/19/07	
Chloroethane	EPA 8260B	7B19031	1.4	4.6	ND	0.809	02/19/07	02/19/07	
2-Chloroethyl vinyl ether	EPA 8260B	7B19031	3.5	4.6	ND	0.809	02/19/07	02/19/07	
Chloroform	EPA 8260B	7B19031	0.46	1.8	ND	0.809	02/19/07	02/19/07	
Chloromethane	EPA 8260B	7B19031	0.91	4.6	ND	0.809	02/19/07	02/19/07	
2-Chlorotoluene	EPA 8260B	7B19031	0.80	4.6	ND	0.809	02/19/07	02/19/07	
4-Chlorotoluene	EPA 8260B	7B19031	0.68	4.6	ND	0.809	02/19/07	02/19/07	
Dibromochloromethane	EPA 8260B	7B19031	0.51	1.8	ND	0.809	02/19/07	02/19/07	
1,2-Dibromo-3-chloropropane	EPA 8260B	7B19031	1.4	4.6	ND	0.809	02/19/07	02/19/07	
1,2-Dibromoethane (EDB)	EPA 8260B	7B19031	0.73	1.8	ND	0.809	02/19/07	02/19/07	
Dibromomethane	EPA 8260B	7B19031	0.82	1.8	ND	0.809	02/19/07	02/19/07	
1,2-Dichlorobenzene	EPA 8260B	7B19031	0.87	1.8	ND	0.809	02/19/07	02/19/07	
1,3-Dichlorobenzene	EPA 8260B	7B19031	0.77	1.8	ND	0.809	02/19/07	02/19/07	
1,4-Dichlorobenzene	EPA 8260B	7B19031	0.86	1.8	ND	0.809	02/19/07	02/19/07	
Dichlorodifluoromethane	EPA 8260B	7B19031	1.4	4.6	ND	0.809	02/19/07	02/19/07	
1,1-Dichloroethane	EPA 8260B	7B19031	0.46	1.8	ND	0.809	02/19/07	02/19/07	
1,2-Dichloroethane	EPA 8260B	7B19031	0.73	1.8	ND	0.809	02/19/07	02/19/07	
1,1-Dichloroethene	EPA 8260B	7B19031	0.55	4.6	ND	0.809	02/19/07	02/19/07	
cis-1,2-Dichloroethene	EPA 8260B	7B19031	0.76	1.8	ND	0.809	02/19/07	02/19/07	
trans-1,2-Dichloroethene	EPA 8260B	7B19031	0.64	1.8	ND	0.809	02/19/07	02/19/07	
1,2-Dichloropropane	EPA 8260B	7B19031	0.32	1.8	ND	0.809	02/19/07	02/19/07	
1,3-Dichloropropane	EPA 8260B	7B19031	0.58	1.8	ND	0.809	02/19/07	02/19/07	
2,2-Dichloropropane	EPA 8260B	7B19031	0.41	1.8	ND	0.809	02/19/07	02/19/07	
1,1-Dichloropropene	EPA 8260B	7B19031	0.37	1.8	ND	0.809	02/19/07	02/19/07	
cis-1,3-Dichloropropene	EPA 8260B	7B19031	0.40	1.8	ND	0.809	02/19/07	02/19/07	
trans-1,3-Dichloropropene	EPA 8260B	7B19031	0.56	1.8	ND	0.809	02/19/07	02/19/07	
Ethylbenzene	EPA 8260B	7B19031	0.46	1.8	ND	0.809	02/19/07	02/19/07	
Hexachlorobutadiene	EPA 8260B	7B19031	0.67	4.6	ND	0.809	02/19/07	02/19/07	
2-Hexanone	EPA 8260B	7B19031	8.3	9.1	ND	0.809	02/19/07	02/19/07	
m				1000	1.570772	1000000		0.000.0004.000	

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

IQB1815 <Page 7 of 33>

TestAmerica ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing	Project ID:	SSFL Group 8 - DOE			
9444 Farnham Street, Suite 300		1891264	Sampled:	02/16/07	
San Diego, CA 92123	Report Number:	IQB1815	Received:	02/16/07	
Attention: Lisa J. Tucker					

VOLATILE ORGANICS by GC/MS (EPA 5035/8260B)									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1815-03 (FSBS0012S01 -	Soil) - cont.								
Reporting Units: ug/kg dry									
Isopropylbenzene U	EPA 8260B	7B19031	0.49	1.8	ND	0.809	02/19/07	02/19/07	
p-Isopropyltoluene	EPA 8260B	7B19031	0.66	1.8	ND	0.809	02/19/07	02/19/07	
Methylene chloride	EPA 8260B	7B19031	5.9	18	ND	0.809	02/19/07	02/19/07	
4-Methyl-2-pentanone (MIBK)	EPA 8260B	7B19031	2.9	4.6	ND	0.809	02/19/07	02/19/07	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	7B19031	0.91	4.6	ND	0.809	02/19/07	02/19/07	
Naphthalene	EPA 8260B	7B19031	1.0	4.6	ND	0.809	02/19/07	02/19/07	
n-Propylbenzene	EPA 8260B	7B19031	0.56	1.8	ND	0.809	02/19/07	02/19/07	
Styrene	EPA 8260B	7B19031	0.53	1.8	ND	0.809	02/19/07	02/19/07	
1,1,1,2-Tetrachloroethane	EPA 8260B	7B19031	0.52	4.6	ND	0.809	02/19/07	02/19/07	
1,1,2,2-Tetrachloroethane	EPA 8260B	7B19031	0.79	1.8	ND	0.809	02/19/07	02/19/07	
Tetrachloroethene	EPA 8260B	7B19031	0.45	1.8	ND	0.809	02/19/07	02/19/07	
Toluene	EPA 8260B	7B19031	0.46	1.8	ND	0.809	02/19/07	02/19/07	
1,2,3-Trichlorobenzene	EPA 8260B	7B19031	0.91	4.6	ND	0.809	02/19/07	02/19/07	
1,2,4-Trichlorobenzene	EPA 8260B	7B19031	0.91	4.6	ND	0.809	02/19/07	02/19/07	
1,1,1-Trichloroethane	EPA 8260B	7B19031	0.64	1.8	ND	0.809	02/19/07	02/19/07	
1,1,2-Trichloroethane	EPA 8260B	7B19031	0.80	1.8	ND	0.809	02/19/07	02/19/07	
Trichloroethene	EPA 8260B	7B19031	0.46	1.8	ND	0.809	02/19/07	02/19/07	
Trichlorofluoromethane	EPA 8260B	7B19031	0.49	4.6	ND	0.809	02/19/07	02/19/07	
1,2,3-Trichloropropane	EPA 8260B	7B19031	0.91	9.1	ND	0.809	02/19/07	02/19/07	
1,2,4-Trimethylbenzene	EPA 8260B	7B19031	0.71	1.8	ND	0.809	02/19/07	02/19/07	
1,3,5-Trimethylbenzene	EPA 8260B	7B19031	0.58	1.8	ND	0.809	02/19/07	02/19/07	
Vinyl chloride	EPA 8260B	7B19031	0.83	1.8	ND	0.809	02/19/07	02/19/07	
o-Xylene	EPA 8260B	7B19031	0.46	1.8	ND	0.809	02/19/07	02/19/07	
m,p-Xylenes	EPA 8260B	7B19031	0.73	1.8	ND	0.809	02/19/07	02/19/07	
Trichlorotrifluoroethane (Freon 113)	EPA 8260B	7B19031	3.7	4.6	ND	0.809	02/19/07	02/19/07	
Surrogate: Dibromofluoromethane (80-125	%)				93 %				
Surrogate: Toluene-d8 (80-120%)					98 %				

Surrogate: 4-Bromofluorobenzene (80-120%)

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

Leve

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

86 %

IQB1815 <Page 8 of 33>

Test Amalytical Testing Corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker

Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB1815

Sampled: 02/16/07 Received: 02/16/07

PURGEABLES BY GC/MS, TENTATIVELY IDENTIFIED COMPOUNDS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1815-01 (FSBS0011D01 - 5 Reporting Units: ug/kg dry	Soil)								
2-Chloro-1,1,1-trifluoroethane UT +10	EPA 8260B	7B19031	N/A	11	ND	0.919	02/19/07	02/19/07	
Chlorotrifluoroethene	EPA 8260B	7B19031	N/A	11	ND	0.919	02/19/07	02/19/07	
Sample ID: IQB1815-02 (FSBS0011S01 - S Reporting Units: ug/kg dry									
2-Chloro-1,1,1-trifluoroethane UJ/\$10	EPA 8260B	7B19031	N/A	12	ND	0.99	02/19/07	02/19/07	
Chlorotrifluoroethene	EPA 8260B	7B19031	N/A	12	ND	0.99	02/19/07	02/19/07	
Sample ID: IQB1815-03 (FSBS0012S01 - S Reporting Units: ug/kg dry	oil)								
2-Chloro-1,1,1-trifluoroethane UJ *10	EPA 8260B	7B19031	N/A	9.1	ND	0.809	02/19/07	02/19/07	
Chlorotrifluoroethene	EPA 8260B	7B19031	N/A	9.1	ND	0.809	02/19/07	02/19/07	

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

Leve I

IQB1815 <Page 9 of 33>

Test America

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

ANALYTICAL TESTING CORPORATION

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264

Report Number: IQB1815

Sampled: 02/16/07 Received: 02/16/07

INORGANICS										
	Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result		Date Extracted	Date Analyzed	Data Qualifiers
X	Sample ID: IQB1815-01 (FSBS0011D01 Reporting Units: % Percent Solids	- Soil) EPA 160.3 MOD	7B19107	0.10	0.10	83	1	02/19/07	02/20/07	
A DESCRIPTION OF THE OWNER OWNE	Sample ID: IQB1815-02 (FSBS0011801 Reporting Units: % Percent Solids	EPA 160.3 MOD	7B19107	0.10	0.10	83	1	02/19/07	02/20/07	
ŀ	Sample ID: IQB1815-03 (FSBS0012S01 Reporting Units: % Percent Solids	EPA 160.3 MOD	7B19107	0.10	0.10	88	1	02/19/07	02/20/07	
	Sample ID: IQB1815-01 (FSBS0011D01 Reporting Units: pH Units pH	EPA 9045C	7B17034	0.00	NA	7.69	1	02/17/07	02/17/07	
	Sample ID: IQB1815-02 (FSBS0011S01 Reporting Units: pH Units pH	EPA 9045C	7B17034	0.00	NA	7.56	1	02/17/07	02/17/07	
	Sample ID: IQB1815-03 (FSBS0012S01 Reporting Units: pH Units pH	EPA 9045C	7B17034	0.00	NA	7.38	1	02/17/07	02/17/07	
	Sample ID: IQB1815-04 (FSBS0013S01 Reporting Units: pH Units pH	EPA 9045C	7B17034	0.00	NA	7.22	1	02/17/07	02/17/07	
Ų	Sample ID: IQB1815-01 (FSBS0011D01 Reporting Units: ug/l Perchlorate	EPA 314.0 DI-RFI	7B26114	0.80	4.0	ND	1	02/26/07	02/26/07	
	Sample ID: IQB1815-02 (FSBS0011S01 Reporting Units: ug/l Perchlorate	EPA 314.0 DI-RFI	7B26114	0.80	4.0	ND	1	02/26/07	02/26/07	
V	Sample ID: IQB1815-03 (FSBS0012S01 Reporting Units: ug/l Perchlorate	- Soil) EPA 314.0 DI-RFI	7B26114	0.80	4.0	ND	1	02/26/07	02/26/07	

* Analysis not validated

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

LEVEL V

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: IQB1861

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order: Sample Delivery Group:	Boeing SSFL RFI Group 8 Data Gap 1261.500D.08.001 IQB1861
Project Manager:	Dixie Hambrick
Matrix:	soil
QC Level:	V
No. of Samples:	7
No. of Reanalyses/Dilutions:	0
Laboratory:	Test America

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
FSBS0032S01	IQB1861- 20	N/A	Soil	2/15/2007 1:29:00 PM	314.0-DI WET
FSBS0033S01	IQB1861- 18	N/A	Soil	2/15/2007 1:20:00 PM	314.0-DI WET
FSBS0036S01	IQB1861- 22	N/A	Soil	2/15/2007 1:59:00 PM	314.0-DI WET
FSBS0051S01	IQB1861- 12	N/A	Soil	2/15/2007 10:32:00 AM	314.0-DI WET
FSBS0052S01	IQB1861- 13	N/A	Soil	2/15/2007 10:35:00 AM	314.0-DI WET
FSBS0054S01	IQB1861- 16	N/A	Soil	2/15/2007 10:44:00 AM	314.0-DI WET
FSBS0062S01	IQB1861- 11	N/A	Soil	2/15/2007 10:08:00 AM	314.0-DI WET

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered directly from the field to the laboratory, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	er Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present. Not applicable.	
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

- D The analysis with this flag should not be used because another more technically sound analysis is available.
- P Instrument performance for pesticides was poor.
- DNQ The reported result is above the method detection limit but is less than the reporting limit.
- *II, *III Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

The analysis with this flag should not be used because another more technically sound analysis is available.

Post Digestion Spike recovery was not within control limits.

The reported result is above the method detection limit but is less than the reporting limit.

Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

A. EPA METHOD 314.0—Perchlorate

Reviewed By: P. Meeks Date Reviewed: 3/28/07

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC[×]* Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 28 days, was met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within the methodestablished QC limits of 85-115%.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: Recoveries and RPDs were within methodestablished QC limits of 80-120% and ≤15%, respectively.
- Sample Result Verification: The sample results reported on the result summary form were verified against the raw data. No transcription errors or calculation errors were noted. Reported nondetects are valid to the reporting limit.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Perchlorate was not detected in either the field blank, BLQW0018F01 (IQB1202), or the equipment rinsate, FSQW0002E01 (IQB2570).
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Test America

U

Reporting Units: ug/l

Sample ID: IQB1861-16 (FSBS0054S01 - Soil)

Sample ID: IQB1861-18 (FSBS0033S01 - Soil)

Sample ID: IQB1861-20 (FSBS0032S01 - Soil)

Sample ID: IQB1861-22 (FSBS0036S01 - Soil)

Perchlorate

Perchlorate

Perchlorate

Perchlorate

Perchlorate

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker		roject ID: Number:	1891264	up 8 - DOE			200 A. SHEALD BE ACCOMPLETE	l: 02/15/07 l: 02/16/07	
		IN	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB1861-11 (FSBS0062: Reporting Units: ug/l									
Perchlorate Sample ID: IQB1861-12 (FSBS0051) Reporting Units: ug/l	EPA 314.0 DI-RFI 501 - Soil)	7B26114	0.80	4.0	ND	1	02/26/07	02/27/07	
Perchlorate Sample ID: IQB1861-13 (FSBS0052	EPA 314.0 DI-RFI 501 - Soil)	7B26114	0.80	4.0	ND	1	02/26/07	02/27/07	

0.80

0.80

0.80

0.80

8.0

4.0

4.0

4.0

4.0

40

ND

ND

ND

ND

ND

1

1

1

1

10

02/26/07

02/26/07

02/26/07

02/27/07

02/26/07

02/27/07

02/27/07

02/27/07

02/27/07

02/27/07

RL1

EPA 314.0 DI-RFI 7B26114

EPA 314.0 DI-RFI 7B26114

EPA 314.0 DI-RFI 7B26114

EPA 314.0 DI-RFI 7B27069

EPA 314.0 DI-RFI 7B26114

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

> The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

LEVEL

IQB1861 <Page 2 of 5>

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: IQB2448

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order: Sample Delivery Group:	Boeing SSFL RFI Group 8 Data Gap 1261.500D.08.001 IQB2448
Project Manager:	Dixie Hambrick
Matrix:	soil
QC Level:	V
No. of Samples:	9
No. of Reanalyses/Dilutions:	0
Laboratory:	Test America

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
PRBS0001S01	IQB2448-07	N/A	Soil	2/21/2007	6010B, 6020, 7471A,
				1:05:00 PM	9045C
PRBS0001S02	IQB2448-08	N/A	Soil	2/21/2007	9045C
				1:15:00 PM	
PRBS0002S01	IQB2448-03	N/A	Soil	2/21/2007	6010B, 6020, 7471A,
				11:00:00 AM	9045C
PRBS0002S02	IQB2448-04	N/A	Soil	2/21/2007	9045C
				11:30:00 AM	
PRBS0003S01	IQB2448-01	N/A	Soil	2/21/2007	6010B, 6020, 7471A,
				9:15:00 AM	9045C
PRBS0003S02	IQB2448-02	N/A	Soil	2/21/2007	9045C
				9:35:00 AM	
PRBS0004S01	IQB2448-09	N/A	Soil	2/21/2007	6010B, 6020, 7471A,
				1:40:00 PM	9045C
PRBS0005S01	IQB2448-05	N/A	Soil	2/21/2007	6010B, 6020, 7471A,
				12:30:00 PM	9045C
PRBS0005S02	IQB2448-06	N/A	Soil	2/21/2007	9045C
				12:45:00 PM	

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered directly from the field to the laboratory, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
М	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present. Not applicable.	
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: March 31, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 6010B, 6020, 7470A/7471A, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Boron and mercury were detected in the method blanks at 1.32 and 0.004 mg/kg, respectively; therefore, boron detected in all samples and mercury detected in PRBS0004S01 were qualified as estimated, "UJ." Lithium was detected in a CCB at 40.5 µg/L; therefore, lithium detected in PRBS0001S01, PRBS0002S01, and PRBS0005S01 was qualified as estimated, "UJ."
- Interference Check Samples: Boron was reported in the ICSA solution at -26.8 µg/L; therefore, nondetected boron in all samples except PRBS0005S01 was qualified as estimated, "UJ."
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on PRBS0001S01. Antimony was recovered below 30% in both the MS and the MSD; therefore, antimony detected in all samples was qualified as estimated, "J." All remaining recoveries and all RPDs were within laboratory-established QC limits.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.

- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Field blank BLQW0018F01 (IBQ1202) had no detects. There was no equipment rinsate associated with the samples in this SDG.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

B. EPA METHOD 9045C—General Minerals

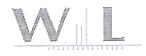
Reviewed By: P. Meeks Date Reviewed: March 31, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 9045C, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 24 hours from preparation for pH, was met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Not applicable to this analysis.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on PRBS0003S01 and the RPD was within the laboratory-established control limit of ≤5%.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: Review is not applicable at a Level V validation.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Not applicable to this analysis.

• Field Duplicates: There were no field duplicate samples identified for this SDG.

Test Amalytical testing corporation


17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2448-01 (PRBS0003S0	1 - Soil)								
Reporting Units: mg/kg dry							00/00/07	02/24/07	
Aluminum	EPA 6010B	7B23097	5.7	11	14000	1	02/23/07	02/24/07	Ţ
Antimony J/Q	EPA 6020	7B23087	0.034	1.1	0.30	1	02/23/07	02/23/07	J
Arsenic	EPA 6020	7B23087	0.28	0.57	2.5	1	02/23/07	02/23/07	
Barium	EPA 6020	7B23087	0.091	0.57	81	1	02/23/07	02/23/07	
Beryllium	EPA 6020	7B23087	0.046	0.34	0.51	1	02/23/07	02/23/07	
Boron UJ/B,I	EPA 6010B	7B23097	1.1	5.7	3.0	1	02/23/07	02/24/07	В, Ј
Cadmium	EPA 6020	7B23087	0.028	0.57	0.14	1	02/23/07	02/23/07	J
Chromium	EPA 6020	7B23087	0.40	1.1	19	1	02/23/07	02/23/07	
Cobalt	EPA 6020	7B23087	0.091	0.57	6.2	1	02/23/07	02/23/07	
Copper	EPA 6020	7B23087	0.23	1.1	8.9	1	02/23/07	02/23/07	
Lead	EPA 6020	7B23087	0.057	0.57	20	1	02/23/07	02/23/07	
Lithium UT B	EPA 6010B	7B23097	4.3	7.2	25	1	02/23/07	03/05/07	
Molybdenum	EPA 6020	7B23087	0.11	1.1	0.45	1	02/23/07	02/23/07	J
Nickel	EPA 6020	7B23087	0.51	1.1	11	1	02/23/07	02/23/07	
Potassium	EPA 6010B	7B23097	22	57	3100	1	02/23/07	02/24/07	
Selenium	EPA 6020	7B23087	0.23	1.1	0.32	1	02/23/07	02/23/07	J
Silver U	EPA 6020	7B23087	0.057	0.57	ND	1	02/23/07	02/23/07	
Sodium	EPA 6010B	7B23097	27	57	180	1	02/23/07	02/24/07	В
Thallium	EPA 6020	7B23087	0.11	0.57	0.29	1	02/23/07	02/23/07	J
Vanadium	EPA 6020	7B23087	0.46	1.1	36	1	02/23/07	02/23/07	
Zinc	EPA 6020	7B23087	1.5	11	41	1	02/23/07	02/23/07	
Zirconium	EPA 6010B	7B23097	1.7	28	2.3	1	02/23/07	02/27/07	J

LEVEL V

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Report ID: 7022339 Project ID: IQB2448 Date Received: 02/23/07 08:15 Date Reported: 03/12/07 12:09

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids 🖌	88.5	% by Weight	0.100	1	Gravimetric	W7C0195	03/06/07	03/08/07 clc	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.027	0.00073	mg/kg dry	0.011	1	EPA 7471A	W7B1093	03/10/07	03/10/07 jl	

* Analysis not validated

LEVEL V

Test/Merica

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

ANALYTICAL TESTING CORPORATION

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB2448

Sampled: 02/21/07 Received: 02/22/07

	METALS											
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers			
Sample ID: IQB2448-03 (PRBS0002S	01 - Soil)											
Reporting Units: mg/kg dry					1 (000		00/00/07	02/24/07				
Aluminum	EPA 6010B	7B23097	6.5	13	16000	1	02/23/07					
Antimony J/Q	EPA 6020	7B23087	0.039	1.3	2.7	1	02/23/07	02/23/07				
Arsenic	EPA 6020	7B23087	0.33	0.65	3.6	1	02/23/07	02/23/07				
Barium	EPA 6020	7B23087	0.10	0.65	95	1	02/23/07	02/23/07				
Beryllium	EPA 6020	7B23087	0.052	0.39	0.59	1	02/23/07	02/23/07				
Boron UJ/B,I	EPA 6010B	7B23097	1.3	6.5	3.2	1	02/23/07	02/24/07	В, Ј			
Cadmium	EPA 6020	7B23087	0.033	0.65	0.23	1	02/23/07	02/23/07	J			
Chromium	EPA 6020	7B23087	0.46	1.3	24	1	02/23/07	02/23/07				
Cobalt	EPA 6020	7B23087	0.10	0.65	7.1	1	02/23/07	02/23/07				
Copper	EPA 6020	7B23087	0.26	1.3	12	1	02/23/07	02/23/07				
Lead	EPA 6020	7B23087	0.065	0.65	420	1	02/23/07	02/23/07				
Lithium UJ/B	EPA 6010B	7B23097	5.0	8.2	31	1	02/23/07	03/05/07				
Molybdenum	EPA 6020	7B23087	0.13	1.3	0.63	1	02/23/07	02/23/07	J			
Nickel	EPA 6020	7B23087	0.59	1.3	15	1	02/23/07	02/23/07				
Potassium	EPA 6010B	7B23097	25	65	4500	1	02/23/07	02/24/07				
Selenium	EPA 6020	7B23087	0.26	1.3	0.39	1	02/23/07	02/23/07	J			
Silver	EPA 6020	7B23087	0.065	0.65	0.080	1	02/23/07	02/23/07	J			
Sodium	EPA 6010B	7B23097	31	65	230	1	02/23/07	02/24/07	В			
Thallium	EPA 6020	7B23087	0.13	0.65	0.31	1	02/23/07	02/23/07	J			
Vanadium	EPA 6020	7B23087	0.52	1.3	41	1	02/23/07	02/23/07				
	EPA 6020	7B23087	1.7	13	53	1	02/23/07	02/23/07				
Zinc	EPA 6010B	7B23097	2.0	33	3.5	1	02/23/07	02/27/07	J			
Zirconium	EFA WIVD	1023071	2.0	55		-	,					

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

EVEL V

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022339 Project ID: IQB2448 Date Received: 02/23/07 08:15 Date Reported: 03/12/07 12:09

PRBS 6003562 2501

IQB2448-03 7022339-02 (Solid)

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids ¥	80.0	% by Weight	0.100	1	Gravimetric	W7C0195	03/06/07	03/08/07 clc	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.35	0.00081	mg/kg dry	0.012	1	EPA 7471A	W7B1093	03/10/07	03/10/07 jl	

* Analysis not validated

LEVEL V

M 3/30/07

Test/America

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

ANALYTICAL TESTING CORPORATION

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB2448

Sampled: 02/21/07 Received: 02/22/07


METALS

	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Analyte	Michiou	Dutth						-	
Sample ID: IQB2448-05 (PRBS0005S0	1 - Soil)								
Reporting Units: mg/kg dry					12000		02/22/07	02/24/07	
Aluminum	EPA 6010B	7B23097	6.3	13	13000	1	02/23/07		т
Antimony J 🖉	EPA 6020	7B23087	0.038	1.3	0.13	1	02/23/07	02/23/07	l
Arsenic	EPA 6020	7B23087	0.32	0.63	2.1	1	02/23/07	02/23/07	
Barium	EPA 6020	7B23087	0.10	0.63	61	1	02/23/07	02/23/07	
Beryllium	EPA 6020	7B23087	0.051	0.38	0.42	1	02/23/07	02/23/07	
Boron UT/I U	EPA 6010B	7B23097	1.3	6.3	ND	1	02/23/07	02/24/07	
Cadmium	EPA 6020	7B23087	0.032	0.63	0.10	1	02/23/07	02/23/07	J
Chromium	EPA 6020	7B23087	0.44	1.3	14	1	02/23/07	02/23/07	
Cobalt	EPA 6020	7B23087	0.10	0.63	4.9	1	02/23/07	02/23/07	
Copper	EPA 6020	7B23087	0.25	1.3	7.3	1	02/23/07	02/23/07	
Lead	EPA 6020	7B23087	0.063	0.63	4.7	1	02/23/07	02/23/07	
Lithium UJ /B	EPA 6010B	7B23097	4.8	8.0	_26	1	02/23/07	03/05/07	
Molybdenum	EPA 6020	7B23087	0.13	1.3	0.46	1	02/23/07	02/23/07	J
Nickel	EPA 6020	7B23087	0.57	1.3	8.4	1	02/23/07	02/23/07	
Potassium	EPA 6010B	7B23097	24	63	2300	1	02/23/07	02/24/07	
Selenium	EPA 6020	7B23087	0.25	1.3	0.25	1	02/23/07	02/23/07	J
Silver U	EPA 6020	7B23087	0.063	0.63	ND	1	02/23/07	02/23/07	
Sodium	EPA 6010B	7B23097	30	63	200	1	02/23/07	02/24/07	В
Thallium	EPA 6020	7B23087	0.13	0.63	0.23	1	02/23/07	02/23/07	J
Vanadium	EPA 6020	7B23087	0.51	1.3	28	1	02/23/07	02/23/07	
Zinc	EPA 6020	7B23087	1.6	13	39	1	02/23/07	02/23/07	
Zirconium U	EPA 6010B	7B23097	1.9	32	ND	1	02/23/07	02/27/07	

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

EVEL V

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022339 Project ID: IQB2448 Date Received: 02/23/07 08:15 Date Reported: 03/12/07 12:09

PRB50005501

IQB2448-05 7022339-03 (Solid)

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids 🔆	84.0	% by Weight	0.100	1	Gravimetric	W7C0195	03/06/07	03/08/07 clc	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.029	0.00077	mg/kg dry	0.012	1	EPA 7471A	W7B1093	03/10/07	03/10/07 jl	

* Analysis not validated

LEVEL V

Test America

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

ANALYTICAL TESTING CORPORATION

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB2448

Sampled: 02/21/07 Received: 02/22/07

METALS


Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2448-07 (PRBS0001S01	- Soil)								
Reporting Units: mg/kg dry							00/00/07	00/04/07	NATIA
Aluminum	EPA 6010B	7B23097	5.4	11	15000	1	02/23/07	02/24/07	MHA
Antimony J/Q	EPA 6020	7B23087	0.032	1.1	0.40	1	02/23/07	02/23/07	M2, J
Arsenic	EPA 6020	7B23087	0.27	0.54	2.3	1	02/23/07	02/23/07	
Barium	EPA 6020	7B23087	0.086	0.54	75	1	02/23/07	02/23/07	
Beryllium	EPA 6020	7B23087	0.043	0.32	0.53	1	02/23/07	02/23/07	
Boron UJ/B,I	EPA 6010B	7B23097	1.1	5.4	3.1	1	02/23/07	02/24/07	В, Ј
Cadmium	EPA 6020	7B23087	0.027	0.54	0.11	1	02/23/07	02/23/07	J
Chromium	EPA 6020	7B23087	0.38	1.1	17	1	02/23/07	02/23/07	
Cobalt	EPA 6020	7B23087	0.086	0.54	5.5	1	02/23/07	02/23/07	
Copper	EPA 6020	7B23087	0.22	1.1	7.7	1	02/23/07	02/23/07	
Lead	EPA 6020	7B23087	0.054	0.54	5.4	1	02/23/07	02/23/07	
Lithium	EPA 6010B	7B23097	4.1	6.8	29	1	02/23/07	03/05/07	
Molybdenum	EPA 6020	7B23087	0.11	1.1	0.61	1	02/23/07	02/23/07	J
Nickel	EPA 6020	7B23087	0.49	1.1	9.7	1	02/23/07	02/23/07	
Potassium	EPA 6010B	7B23097	20	54	3500	1	02/23/07	02/24/07	MHA
Selenium	EPA 6020	7B23087	0.22	1.1	0.32	1	02/23/07	02/23/07	J
Silver ()	EPA 6020	7B23087	0.054	0.54	ND	1	02/23/07	02/23/07	
Sodium	EPA 6010B	7B23097	26	54	180	1	02/23/07	02/24/07	В
Thallium	EPA 6020	7B23087	0.11	0.54	0.32	1	02/23/07	02/23/07	J
Vanadium	EPA 6020	7B23087	0.43	1.1	32	1	02/23/07	02/23/07	
Zinc	EPA 6020	7B23087	1.4	11	46	1	02/23/07	02/23/07	
Zirconium 🔰	EPA 6010B	7B23097	1.6	27	ND	1	02/23/07	02/27/07	M2

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

MM 3/30/07

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

EVEL V

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022339 Project ID: IQB2448 Date Received: 02/23/07 08:15 Date Reported: 03/12/07 12:09

PRBSOCOLSOL

IQB2448-07 7022339-04 (Solid)

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids 🔆	93.4	% by Weight	0.100	1	Gravimetric	W7C0195	03/06/07	03/08/07 clc	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.022	0.00070	mg/kg dry	0.011	1	EPA 7471A	W7B1093	03/10/07	03/10/07 jl	

* Analysis not validated

LEVEL V

TestAmerica

ANALYTICAL TESTING CORPORATION

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker

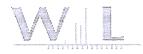
17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB2448

Sampled: 02/21/07 Received: 02/22/07

METALS

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2448-09 (PRBS0004S0)1 - Soil)								
Reporting Units: mg/kg dry					12000	,	02/22/07	02/24/07	
Aluminum	EPA 6010B	7B23097	5.6	11	12000	1	02/23/07		J
AntimonyJ	EPA 6020	7B23087	0.034	1.1	0.089	1	02/23/07	02/23/07	J
Arsenic	EPA 6020	7B23087	0.28	0.56	2.1	1	02/23/07	02/23/07	
Barium	EPA 6020	7B23087	0.089	0.56	80	1	02/23/07	02/23/07	
Beryllium	EPA 6020	7B23087	0.045	0.34	0.40	1	02/23/07	02/23/07	
Boron UJ/BJ	EPA 6010B	7B23097	1.1	5.6	1.9	1	02/23/07	02/24/07	В, Ј
Cadmium	EPA 6020	7B23087	0.028	0.56	0.21	1	02/23/07	02/23/07	J
Chromium	EPA 6020	7B23087	0.39	1.1	19	1	02/23/07	02/23/07	
Cobalt	EPA 6020	7B23087	0.089	0.56	5.3	1	02/23/07	02/23/07	
Copper	EPA 6020	7B23087	0.22	1.1	7.6	1	02/23/07	02/23/07	
Lead	EPA 6020	7B23087	0.056	0.56	7.8	1	02/23/07	02/23/07	
Lithium US /B	EPA 6010B	7B23097	4.3	7.0	35	1	02/23/07	03/05/07	
Molybdenum	EPA 6020	7B23087	0.11	1.1	0.37	1	02/23/07	02/23/07	J
Nickel	EPA 6020	7B23087	0.50	1.1	12	1	02/23/07	02/23/07	
Potassium	EPA 6010B	7B23097	21	56	3400	1	02/23/07	02/24/07	
Selenium	EPA 6020	7B23087	0.22	1.1	0.28	1	02/23/07	02/23/07	J
Silver	EPA 6020	7B23087	0.056	0.56	ND	1	02/23/07	02/23/07	
Sodium	EPA 6010B	7B23097	27	56	160	1	02/23/07	02/24/07	В
Thallium	EPA 6020	7B23087	0.11	0.56	0.24	1	02/23/07	02/23/07	J
Vanadium	EPA 6020	7B23087	0.45	1.1	32	1	02/23/07	02/23/07	
	EPA 6020	7B23087	1.5	11	48	1	02/23/07	02/23/07	
Zinc	EPA 6010B	7B23097	1.7	28	2.1	1	02/23/07	02/27/07	J
Zirconium	EFA 0010D	1025077	1.7	20		-			


TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

Mr 3/30/07

EVEL V

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

IQB2448 <Page 6 of 15>

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Report ID: 7022339 Project ID: IQB2448 Date Received: 02/23/07 08:15 Date Reported: 03/12/07 12:09

PRB56004501

IQB2448-09 7022339-05 (Solid)

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids —	90.8	% by Weight	0.100	1	Gravimetric	W7C0195	03/06/07	03/08/07 clc	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total UJ/B	0.017	0.00072	mg/kg dry	0.011	1	EPA 7471A	W7B1093	03/10/07	03/10/07 jl	

X Amelysis not validated

LEVEL V

San Diego, CA 92123 Attention: Lisa J. Tucker 17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing	Project ID: SSFL Group 8 - DOE
9444 Farnham Street, Suite 300	1891264

Report Number: IQB2448

Sampled: 02/21/07 Received: 02/22/07

INORGANICS Data Date Date Dilution Sample MDL Reporting Qualifiers Extracted Analyzed Result Factor Limit Limit Method Batch Analyte Sample ID: IQB2448-01 (PRBS0003S01 - Soil) **Reporting Units: %** 1 03/01/07 03/02/07 88 7C01145 0.10 0.10 EPA 160.3 MOD ¥Percent Solids Sample ID: IQB2448-03 (PRBS0002S01 - Soil) **Reporting Units: %** 03/01/07 03/02/07 7C01145 0.10 0.10 77 1 EPA 160.3 MOD Percent Solids Sample ID: IQB2448-05 (PRBS0005S01 - Soil) **Reporting Units: %** 03/01/07 03/02/07 1 7C01145 0.10 0.10 79 **Percent Solids** EPA 160.3 MOD Sample ID: IQB2448-07 (PRBS0001S01 - Soil) Reporting Units: % 03/01/07 03/02/07 0.10 93 1 7C01145 0.10 EPA 160.3 MOD **Percent Solids** Sample ID: IQB2448-09 (PRBS0004S01 - Soil) **Reporting Units: %** 03/02/07 1 03/01/07 0.10 89 EPA 160.3 MOD 7C01145 0.10 Percent Solids Sample ID: IQB2448-01 (PRBS0003S01 - Soil) Reporting Units: pH Units 02/23/07 02/23/07 NA 6.49 1 N/A EPA 9045C 7B23117 pН Sample ID: IQB2448-02 (PRBS0003S02 - Soil) Reporting Units: pH Units 02/23/07 02/23/07 6.91 1 NA N/A EPA 9045C 7B23117 pН Sample ID: IQB2448-03 (PRBS0002S01 - Soil) **Reporting Units: pH Units** 02/23/07 02/23/07 1 NA 7.43 7B23117 N/A EPA 9045C pН Sample ID: IQB2448-04 (PRBS0002S02 - Soil) **Reporting Units: pH Units** 02/23/07 02/23/07 7.35 1 7B23117 N/A NA EPA 9045C pН Sample ID: IQB2448-05 (PRBS0005S01 - Soil) **Reporting Units: pH Units** 1 02/23/07 02/23/07 NA 6.47 7B23117 N/A EPA 9045C pН

* Analysis not validated

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

Sur Diego, er i Dale	Project ID: Report Number:	SSFL Group 8 - DOE 1891264 IQB2448	Sampled: Received:	
Attention: Lisa J. Tucker				

		INC	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2448-06 (PRBS0005S02 Reporting Units: pH Units pH	2 - Soil) EPA 9045C	7B23117	N/A	NA	6.59	1	02/23/07	02/23/07	
Sample ID: IQB2448-07 (PRBS0001S0) Reporting Units: pH Units pH	EPA 9045C	7B23117	N/A	NA	5.23	1	02/23/07	02/23/07	
Sample ID: IQB2448-08 (PRBS0001S0) Reporting Units: pH Units pH	EPA 9045C	7B23117	N/A	NA	6.33	1	02/23/07	02/23/07	
Sample ID: IQB2448-09 (PRBS0004S0 Reporting Units: pH Units pH	1 - Soil) EPA 9045C	7B23117	N/A	NA	6.03	1	02/23/07	02/23/07	

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

LEVEL V

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: IQB2577

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order: Sample Delivery Group:	Boeing SSFL RFI Group 8 Data Gap 1261.500D.08.001 IQB2577
Project Manager:	Dixie Hambrick
Matrix:	water
QC Level:	V
No. of Samples:	10
No. of Reanalyses/Dilutions:	0
Laboratory:	Test America

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample name	Matrix Type	Collection Date	Method
FSBS0006S02	IQB2577-01	N/A	Soil	22-Feb-07	9045C
FSBS0005S02	IQB2577-02	N/A	Soil	22-Feb-07	9045C
FSBS0002S01	IQB2577-03	N/A	Soil	22-Feb-07	1613B
FSBS0010S01	IQB2577-04	N/A	Soil	22-Feb-07	314.0-DI WET
FSBS0003S01	IQB2577-05	N/A	Soil	22-Feb-07	7471A, 8082, 9045C
FSBS0003S02	IQB2577-06	N/A	Soil	22-Feb-07	9045C
FSBS0008S01	IQB2577-07	N/A	Soil	22-Feb-07	314.0-DI WET
FSBS0008S02	IQB2577-08	N/A	Soil	22-Feb-07	314.0-DI WET
FSBS0009S01	IQB2577-10	N/A	Soil	22-Feb-07	314.0-DI WET
FSBS0009S02	IQB2577-11	N/A	Soil	22-Feb-07	314.0-DI WET

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered directly from the field to the laboratory, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present. Not applicable.	
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: March 26, 2007

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the *MEC[×] Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613,* and the *National Functional Guidelines Chlorinated Dioxin/Furan Data Review* (8/02).

- Holding Times: Extraction and analytical holding times were met. The soil sample was extracted and analyzed within one year of collection.
- Instrument Performance: Review is not applicable at a level V validation.
- Calibration: Review is not applicable at a level V validation.
- Blanks: Target compounds OCDD, 2,3,7,8-TCDF, and total TCDFs were reported in the method blank at concentrations above the EDL. 2,3,7,8-TCDF was reported in the sample at a concentration less than five times the concentration reported in the method blank; therefore, the detect for 2,3,7,8-TCDF was qualified as an estimated nondetect, "UJ," at the level of interference. As a portion of total TCDFs included 2,3,7,8-TCDF, the result was qualified as estimated, "J," due to method blank contamination.
- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: There were numerous detects in the field blank, BLQW0018F01 (IQB1202), and the equipment rinsate, FSQW0002E01 (IQB2570); however, sample qualification was not required.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: Internal standard recoveries are not routinely evaluated at a Level V validation; however, the recoveries were reported on the sample result summary. The labeled standard recoveries were within the acceptance criteria listed in Table 7 of Method 1613.
- Compound Identification: Review is not applicable at a level V validation. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.

 Compound Quantification and Reported Detection Limits: Review is not applicable at a level V validation. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." Reported nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: Patti Meeks Date Reviewed: March 31, 2007

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{\times} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 7471A, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 28 days for mercury, was met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: There were no applicable method blanks or CCB detects.
- Interference Check Samples: Review is not applicable at a Level V validation.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD were performed for the mercury. Recoveries and RPDs were within the laboratory-established control limits.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC

Revision 0

data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: Mercury was not detected in field blank BLQW0018F01 (IQB1202) or equipment rinsate FSQW0002E01 (IQB2570).
- Field Duplicates: There were no field duplicate samples identified for this SDG.

C. EPA METHOD 314.0—Perchlorate

Reviewed By: Patti Meeks Date Reviewed: March 31, 2007

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-20, Rev. 0), EPA Method 314.0, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 28 days, was met.
- Calibration: Review is not applicable at a Level V validation; however, the reviewer noted that a CCV was recovered above the program control limit at 112%. Perchlorate detected in associated samples, FSBS0008S01 and FSBS0008S02, was qualified as estimated, "J." The reviewer also noted an ICCS recovery below the program control limit at 83%; therefore, perchlorate in all samples was qualified as estimated, "UJ," for nondetects and, "J," for detects.
- Blanks: Method blanks and CCBs had no detects.
- Blank Spikes and Laboratory Control Samples: Recoveries were within the methodestablished QC limits of 85-115%.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on FSBS0009S01. Recoveries were within the method-established QC limits of 80-120% and the RPD was within the method established control limit of ≤15%.
- Sample Result Verification: The sample result reported on the Form I were verified against the raw data. No transcription errors or calculation errors were noted. The recoveries for confirmation spikes performed for FSBS0008S01 and FSBS0008S02 were above the control limit at 133% and 147%, respectively; therefore, perchlorate detected in the two samples was qualified as estimated, "J." In order to report perchlorate within the linear range of the calibration, FSBS0008S01 and FSBS0008S02 were reported from 500× and 10× dilutions, respectively. Reported nondetects are valid to the reporting limit.

- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Perchlorate was not detected in field blank BLQW0018F01 (IBQ1202) or equipment rinsate FSBS0002E01 (IBQ2570).
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

D. EPA METHOD 8082—PCBs

Reviewed By: L. Calvin Date Reviewed: March 28, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Organochlorine Pesticides/PCBs by GC (DVP-4, Rev. 0), EPA Method 8082, and the National Functional Guidelines for Organic Data Review (2/94).

- Holding Times: Extraction and analytical holding times were met. The soil samples were extracted within 14 days of collection and analyzed within 40 days of extraction.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: The method blanks had no target compound detects above the MDL.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Surrogate Recovery: Recoveries were within laboratory-established QC limits.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on the samples of this SDG.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Field blank BLQW0018F01 (IQB1202) and equipment rinsate FSQW0002E01 (IQB2570) had no reported target compound detects above the MDL.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

- Compound Identification: Review is not applicable at a Level V validation.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. Any results reported between the MDL and the reporting limit were qualified as estimated, "J." Reported nondetects are valid to the reporting limit.

E. EPA METHOD 9045C—General Minerals

Reviewed By: Patti Meeks Date Reviewed: March 31, 2007

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for General Minerals (DVP-6, Rev. 0), EPA Method 9045C, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 24 hours from preparation, was met.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Not applicable to this analysis.
- Blank Spikes and Laboratory Control Samples: Not applicable to this analysis.
- Laboratory Duplicates: Laboratory duplicate analyses were performed on FSBS0006S01 and the RPD was within the laboratory-established control limit of ≤5%.
- Matrix Spike/Matrix Spike Duplicate: Not applicable to this analysis.
- Sample Result Verification: Review is not applicable at a Level V validation.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Not applicable to this analysis.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Method 1	
IQB257	17-03 FSB50002501
Test Am	erica

	Analytical Data Summary Sheet									
	Analyte	Amount	EDL	Adj. RL	RT	Ratio	Qualifier			
		(pg/g)	(pg/g)	(pg/g)	(min.)	and the second secon				
U	2,3,7,8-TCDD	ND	0.259	0.948		en-house de result				
1	1,2,3,7,8-PeCDD	ND	0.215	4.74						
1	1,2,3,4,7,8-HxCDD	ND	0.276	4.74						
huh	1,2,3,6,7,8-HxCDD	0.432	0.316	4.74	36:42	1.23	A			
U	1,2,3,7,8,9-HxCDD	ND	0.294	4.74						
J	1,2,3,4,6,7,8-HpCDD	2.02	0.359	4.74	39:58	0.94	A			
	OCDD	13.7	0.424	9.48	44:09	0.93				
IJ/B	2,3,7,8-TCDF	0.908	0.327	0.948	30:26	0.82	A			
Ű	1,2,3,7,8-PeCDF	ND	0.187	4.74		Charles and Charles				
5	2,3,4,7,8-PeCDF	0.209	0.167	4.74	33:51	1.4	A			
U	1,2,3,4,7,8-HxCDF	ND	0.143	4.74						
1	1,2,3,6,7,8-HxCDF	ND	0.132	4.74						
V	2,3,4,6,7,8-HxCDF	ND	0.139	4.74						
	1,2,3,7,8,9-HxCDF	0.409	0.182	4.74	37:15	1.17	A			
hh	1,2,3,4,6,7,8-HpCDF	0.739	0.213	4.74	38:43	1.11	A			
И	1,2,3,4,7,8,9-HpCDF	ND	0.303	4.74			1			
T	OCDF	1.29	0.442	9.48	44:26	0.83	A			
Ц	Total TCDDs	ND	0.259	0.948						
Ч	Total PeCDDs	ND	0.215	4.74						
T	Total HxCDDs	1.34	0.295	4.74			A			
hh	Total HpCDDs	4.50	0.359	4.74			A			
JB	Total TCDFs	2.23	0.327	0.948						
÷	Total PeCDFs	1.67	0.177	4.74			A			
	Total HxCDFs	1.36	0.147	4.74			A			
1	Total HpCDFs	2.04	0.254	4.74			A			
	WHO-2005 TEQ (ND=0)	0.270								
	WHO-2005 TEQ (ND=1/2)	0.850				1				


Client Information			Sample Information					
Project Name:	IQB2577		Report Basis:	Dry Weig	ght			
			Matrix:	Soil				
Sample ID:	IQB2577-03		Weight / Volume:	12.09	Grams			
			Solids / Lipids:	87.3	%			
			Original pH :	NA				
Laboratory Information			Batch ID:	9				
Project ID:	G579-230							
Sample ID:	G579-230-1	В	Filename:	a02mar0	7a_2-5			
Collection Date/Time:	22-Feb-07	10:40	Retchk:	a02mar0	7a-15			
Receipt Date:	24-Feb-07	10:00	Begin ConCal:	a02mar0'	7a-15			
Extraction Date:	28-Feb-07							
Analysis Date:	3-Mar-07	1:43	Initial Cal:	m1613-0)71006e			

LevelI

Γ

1/2

n

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 02/26/07 08:00 Date Reported: 03/13/07 09:50

FSB50003501

Report ID: 7022607

Project ID: IQB2577

IQB2577-05 7022607-01 (Solid)

Conventional Chemistry/Physical Parameters by APHA/EPA/ASTM Methods

Analyte	Result	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
% Solids -	84.0	% by Weight	0.100	1	Gravimetric	W7C0195	03/06/07	03/08/07 clc	

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	0.039	0.00077	mg/kg drv	0.012	1	EPA 7471A	W7B1093	03/10/07	03/10/07 jl	

* Analysis not validated

LEVEL V

Week Laboratories, Inc Taylor Maligmat, Client Services The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Test America

ANALYTICAL TESTING CORPORATION

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQB2577

Sampled: 02/22/07 Received: 02/23/07

POLYCHLORINATED BIPHENYLS (EPA 3545/8082)

Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2577-05 (FSBS0003S01 - S Reporting Units: ug/kg dry	Soil)								
Aroclor 1016 👢	EPA 8082	7B27094	19	62	ND	1	02/27/07	03/01/07	
Aroclor 1221	EPA 8082	7B27094	19	62	ND	1	02/27/07	03/01/07	
Aroclor 1232	EPA 8082	7B27094	12	62	ND	1	02/27/07	03/01/07	
Aroclor 1242	EPA 8082	7B27094	12	62	ND	1	02/27/07	03/01/07	
Aroclor 1248	EPA 8082	7B27094	12	62	ND	1	02/27/07	03/01/07	
Aroclor 1254	EPA 8082	7B27094	12	62	ND	1	02/27/07	03/01/07	
Aroclor 1260 😽	EPA 8082	7B27094	12	62	ND	1	02/27/07	03/01/07	
Surrogate: Decachlorobiphenyl (45-120%)					69 %				

TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

Lev IQB2577 <Page 3 of 9>

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

Test America

IUGULIII		12.	20 Carlos						
ANALYTICAL TESTI	NG CORPORATION	1	17	461 Derian Aven	ue. Suite 100,	Irvine, CA	92614 (949) 261	-1022 Fax:(949	9) 260-3297
MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker			SSFL Gro 1891264 IQB2577	up 8 - DOE			A CONTRACTOR OF A CONTRACT	: 02/22/07 : 02/23/07	
		I	ORGA	NICS					
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQB2577-05 (FSBS0003S01 Reporting Units: %	- Soil) - cont.								
Percent Solids	EPA 160.3 MOD	7C0114	5 0.10	0.10	81	1	03/01/07	03/02/07	
Sample ID: IQB2577-01 (FSBS0006S02 Reporting Units: pH Units pH	2 - Soil) EPA 9045C	7B2406	1 N/A	NA	7.93	1	02/24/07	02/24/07	
Sample ID: IQB2577-02 (FSBS0005S02 Reporting Units: pH Units	2 - Soil)								
pH	EPA 9045C	7B2406	1 N/A	NA	8.27	1	02/24/07	02/24/07	
Sample ID: IQB2577-05 (FSBS0003S01 Reporting Units: pH Units pH	- Soil) EPA 9045C	7B2406	1 N/A	NA	7.68	1	02/24/07	02/24/07	
Sample ID: IQB2577-06 (FSBS0003S02 Reporting Units: pH Units	2 - Soil)								
рН	EPA 9045C	7B2406	1 N/A	NA	8.32	1	02/24/07	02/24/07	
Sample ID: IQB2577-04 (FSBS0010S01 Reporting Units: ug/l Perchlorate UJ/R	EPA 314.0 DI-RFI	7C0113	8 0.80	4.0	ND	1	03/01/07	03/07/07	
Sample ID: IQB2577-07 (FSBS0008S0)	- Soil)								
Reporting Units: ug/l Perchlorate J/R, <u>*</u> III	EPA 314.0 DI-RFI	7C0113	8 400	2000	3600	500	03/01/07	03/07/07	
Sample ID: IQB2577-08 (FSBS0008S02 Reporting Units: ug/l	2 - Soil)								
Perchlorate J/R, XIII	EPA 314.0 DI-RFI	7C0113	8 8.0	40	110	10	03/01/07	03/07/07	
Sample ID: IQB2577-10 (FSBS0009S0)	l - Soil)								
Reporting Units: ug/l Perchlorate $\bigcup \mathcal{I}/\mathcal{R}$	EPA 314.0 DI-RFI	7C0113	8 0.80	4.0	ND	1	03/01/07	03/07/07	
Sample ID: IQB2577-11 (FSBS0009S02	2 - Soil)								

Reporting Units: ug/l Perchlorate $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$ EPA 314.0 DI-RFI 7C01138 0.80

LEVEL V TestAmerica - Irvine, CA Nicholas Marz For Michele Chamberlin Project Manager

only to the samples tested in the laboratory. This report snau non compared without written permission from TestAmerica. The results pertain only to the samples tested in the laboratory. This report shall not be reproduced,

4.0

ND

1

03/01/07 03/07/07

IQB2577 <Page 4 of 9>

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: IQC2076

Prepared by

MEC^x, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order: Sample Delivery Group:	Boeing SSFL RFI Group 8 Data Gap 1261.500D.08.002 IQC2076
Project Manager:	Dixie Hambrick
Matrix:	Soil
QC Level:	V
No. of Samples:	4
No. of Reanalyses/Dilutions:	0
Laboratory:	Test America

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
PRBS0001S02	IQC2076-04	N/A	Soil	2/21/2007 1:15:00 PM	6010B
PRBS0002S02	IQC2076-02	N/A	Soil	2/21/2007 11:30:00 AM	6010B, 6020
PRBS0003S02	IQC2076-01	N/A	Soil	2/21/2007 9:35:00 AM	6010B
PRBS0005S02	IQC2076-03	N/A	Soil	2/21/2007 12:45:00 PM	6010B

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of 4°C \pm 2°C. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered directly from the field to the laboratory, custody seals were not required. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
Н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not Applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHODS 6010B, 6020, 7470A/7471A—Metals and Mercury

Reviewed By: P. Meeks Date Reviewed: April 10, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC^X* Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 6010B and 6020, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: Analytical holding times, six months for ICP and ICP-MS metals, were met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blanks and CCBs had no detects.
- Interference Check Samples Review is not applicable at a Level V validation.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: No MS/MSD analyses were performed.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities measured in the initial calibration.
- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: Field blank BLQW0018F01 (IQB1202) had no detects. The samples in this SDG had no associated equipment rinsate.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

Test Analytical testing corporation

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker			891264	oup 8 - DOE			T	: 02/21/07 : 03/20/07	
		N	ИЕТА	LS					
and a	N. () . 1	Detal	Calendary Agent	Reporting				Date	Data Qualifiers
Analyte	Method	Batch	Limit	Limit	Result	Factor	Extracted	Analyzeu	Quanners
Sample ID: IQC2076-01 (PRBS0003 Reporting Units: mg/kg dry	S02 - Soil)	2							
Sodium	EPA 6010B	7C20108	27	56	160	0.995	03/20/07	03/21/07	
Sample ID: IQC2076-02 (PRBS0002 Reporting Units: mg/kg dry	S02 - Soil)								
Lead	EPA 6020	7C20121	0.057	0.57	5.4	0.99	03/20/07	03/21/07	

Sodium	EPA 6010B	7C20108	27	57	150	0.995	03/20/07	03/21/07	
Sample ID: IQC2076-03 (PRBS000 Reporting Units: mg/kg dry	5S02 - Soil)								
Sodium	EPA 6010B	7C20108	30	62	85	1	03/20/07	03/21/07	
Sample ID: IQC2076-04 (PRBS000 Reporting Units: mg/kg dry	1S02 - Soil)			×					
Sodium	EPA 6010B	7C20108	25	53	77	1	03/20/07	03/21/07	

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

LEVEL V

8

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: IQC2271

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order: Sample Delivery Group:	Boeing SSFL RFI Group 8 Data Gap 1261.500D.08.002 IQC2271
Project Manager:	Dixie Hambrick
Matrix:	soil
QC Level:	V
No. of Samples:	11
No. of Reanalyses/Dilutions:	0
Laboratory:	Test America

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
FSBS0066S02	IQC2271-01	N/A	Soil	2/13/2007	1613
FSBS0064S02	IQC2271-02	N/A	Soil	2/13/2007	6020
FSBS0064S03	IQC2271-03	N/A	Soil	2/13/2007	6020
FSBS0068S01	IQC2271-04	N/A	Soil	2/13/2007	1613
FSBS0022S02	IQC2271-05	N/A	Soil	2/14/2007	6020
FSBS0024S01	IQC2271-06	N/A	Soil	2/14/2007	6020
FSBS0041S01	IQC2271-07	N/A	Soil	2/15/2007	6020
FSBS0053S01	IQC2271-08	N/A	Soil	2/15/2007	6020
FSBS0031S01	IQC2271-09	N/A	Soil	2/15/2007	6020
FSBS0034S01	IQC2271-10	N/A	Soil	2/15/2007	6010B
FSBS0013S01	IQC2271-11	N/A	Soil	2/16/2007	7471A

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered directly from the field to the laboratory, custody seals were not required. If necessary, the client IDs were added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
		morganico
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

II. Method Analyses

A. EPA METHOD 1613—Dioxin/Furans

Reviewed By: K. Shadowlight Date Reviewed: April 26, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC[×]* Data Validation Procedure for Dioxins and Furans (DVP-19, Rev. 0), USEPA Method 1613, and the National Functional Guidelines Chlorinated Dioxin/Furan Data Review (8/02).

- Holding Times: Extraction and analytical holding times were met. The samples were extracted and analyzed within one year of collection.
- Instrument Performance: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: There were several detects above the EDL in the associated method blank. Any
 detects reported at less than five times the concentrations reported in the method blank
 were qualified as estimated nondetects, "UJ," at the reporting limits in the samples of this
 SDG. As a portion of the results for total TCDFs and total PeCDF in sample
 FSBS0068S01 included method blank contamination, these detects were qualified as
 estimated, "J."
- Blank Spikes and Laboratory Control Samples: Recoveries were within the acceptance criteria listed in Table 6 of Method 1613.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Sample FSQW0003F01 (SDG 183627) was the field blank and sample FSQW0003E01 (SDG 183627) was the equipment rinsate identified for this SDG. Total TCDFs was reported in both the field blank and the equipment rinsate and 1,2,3,4,7,8-HxCDF and 1,2,3,6,7,8-HxCDF were reported in the equipment rinsate only. There were no qualifications for the site samples of this SDG.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.
- Internal Standards Performance: Internal standard recoveries are not routinely evaluated at a Level V validation; however, the recoveries were reported on the sample result summaries. The labeled standard recoveries were within the acceptance criteria listed in

Table 7 of Method 1613.

- Compound Identification: Review is not applicable at a Level V validation. The laboratory analyzed for polychlorinated dioxins/furans by EPA Method 1613.
- Compound Quantification and Reported Detection Limits: Review is not applicable at a Level V validation. The laboratory calculated and reported compound-specific detection limits. Any detects below the laboratory lower calibration level were qualified as estimated, "J." Nondetects are valid to the estimated detection limit (EDL).

B. EPA METHODS 6010B, 6020, and 7471A—Metals

Reviewed By: P. Meeks Date Reviewed: April 26, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the *MEC[×]* Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Methods 6010B 6020, and 7471A, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding times, six months for ICP and ICP-MS metals and 28 days for mercury, were met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: There were no detects in the method blanks or CCBs.
- Interference Check Samples: Review is not applicable at a Level V validation.
- Blank Spikes and Laboratory Control Samples: The recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on FSBS0064S02 for arsenic and lead only. The recoveries and RPDs were within the laboratory-established control limits.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: All sample internal standard intensities were within 30-120% of the internal standard intensities measured in the initial calibration. All CCV and CCB internal standard intensities were within 80-120% of the internal standard intensities

measured in the initial calibration.

- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:
 - Field Blanks and Equipment Rinsates: Sodium was detected in field blank FSQW0003F01 (183627), but not at sufficient concentration to qualify the site samples. The samples in this SDG had no identified equipment rinsate sample.
 - Field Duplicates: There were no field duplicate samples identified for this SDG.

Method 1613-Boeing IQC2271-01 FSB5 0066502 * 12007
Test America

	Analytical Data Summary Sheet									
	Analyte	Amount	EDL	Adj. RL	RT	Ratio	Qualifier			
		(pg/g)	(pg/g)	(pg/g)	(min.)					
ч	2,3,7,8-TCDD	ND	0.109	0.840						
1	1,2,3,7,8-PeCDD	ND	0.0978	4.20						
1	1,2,3,4,7,8-HxCDD	ND	0.0961	4.20						
	1,2,3,6,7,8-HxCDD	ND	0.104	4.20						
	1,2,3,7,8,9-HxCDD	ND	0.0993	4.20						
¥	1,2,3,4,6,7,8-HpCDD	ND	0.182	4.20						
NJB	OCDD	2.40	0.338	8.40	44:25	0.91	A			
UJ (B	2,3,7,8-TCDF	0.267	0.102	0.840	30:34	0.87	A			
•	1,2,3,7,8-PeCDF	0.0857	0.0603	4.20	33:19	1.53	A			
u	2,3,4,7,8-PeCDF	0.0790	0.0563	4.20	33:56	1.58	A			
ŭ	1,2,3,4,7,8-HxCDF	ND	0.0761	4.20						
Î	1,2,3,6,7,8-HxCDF	ND	0.0746	4.20						
	2,3,4,6,7,8-HxCDF	ND	0.0758	4.20						
	1,2,3,7,8,9-HxCDF	ND	0.108	4.20						
	1,2,3,4,6,7,8-HpCDF	ND	0.110	4.20						
	1,2,3,4,7,8,9-HpCDF	ND	0.168	4.20						
\mathbf{V}	OCDF	ND	0.332	8.40						
u	Total TCDDs	ND	0.109	0.840						
	Total PeCDDs	ND	0.0978	4.20						
\checkmark	Total HxCDDs	ND	0.0998	4.20						
5	Total HpCDDs	0.281	0.182	4.20			A			
UJB	Total TCDFs	0.267	0.102	0.840			A			
4513	Total PcCDFs	0.165	0.0583	4.20			A			
•	Total HxCDFs	ND	0.0827	4.20						
u U	Total HpCDFs	ND	0.135	4.20						
	WHO-2005 TEQ (ND=0)	0.0537								
	WHO-2005 TEQ (ND=1/2)	0.329								

Client Information			Sample Information			
Project Name:	IQC2271		Report Basis:	Dry Weig	ght	
-			Matrix:	Soil		
Sample ID:	IQC2271-01		Weight / Volume:	12.93	Grams	
•			Solids / Lipids:	92.0	%	
			Original pH :	NA		
Laboratory Information			Batch ID:	WG14169		
Project ID:	G579-241					
Sample ID:	G579-241-1	В	Filename:	a30mar0	7Ь-10	
Collection Date/Time:	13-Feb-07	09:55	Retchk:	a30mar0	7b-1	
Receipt Date:	22-Mar-07	10:00	Begin ConCal:	a30mar0	7Ъ-1	
Extraction Date:	26-Mar-07					
Analysis Date:	31-Mar-07	5:24	Initial Cal:	m1613-0)71006e	

1/2

Method 1613Boeing	
IQC2271-04 FSB5006850	
Test America	

	Analytical Data Summary Sheet								
	Analyte	Amount	EDL	Adj. RL	RT	Ratio	Qualifier		
		(pg/g)	(pg/g)	(pg/g)	(min.)				
U	2,3,7,8-TCDD	ND	0.159	0.827					
1	1,2,3,7,8-PeCDD	ND	0.163	4.14					
	1,2,3,4,7,8-HxCDD	ND	0.187	4.14					
	1,2,3,6,7,8-HxCDD	ND	0.205	4.14			1		
\mathbf{V}	1,2,3,7,8,9-HxCDD	ND	0.195	4.14			1		
5	1,2,3,4,6,7,8-HpCDD	2.18	0.333	4.14	40:07	0.97	A		
	OCDD	19.9	0.844	8.27	44:25	0.88			
4JB	2,3,7,8-TCDF	0.382	0.167	0.827	30:34	0.81	A		
1	1,2,3,7,8-PeCDF	0.103	0.0923	4.14	33:19	1.72	A		
	2,3,4,7,8-PeCDF	0.159	0.0847	4.14	33:56	1.34	A		
ù	1,2,3,4,7,8-HxCDF	ND	0.130	4.14					
1	1,2,3,6,7,8-HxCDF	ND	0.124	4.14		,			
	2,3,4,6,7,8-HxCDF	ND	0.123	4.14					
	1,2,3,7,8,9-HxCDF	ND	0.194	4.14					
7	1,2,3,4,6,7,8-HpCDF	0.566	0.200	4.14	38:52	1.04	A		
ū	1,2,3,4,7,8,9-HpCDF	ND	0.341	4.14					
U r L	OCDF	1.03	0.724	8.27	44:41	0.97	A		
しん	Total TCDDs	ND	0.159	0.827					
	Total PeCDDs	ND	0.163	4.14					
J	Total HxCDDs	0.700	0.196	4.14			A		
	Total HpCDDs	4.99	0.333	4.14					
33	Total TCDFs	0.860	0.167	0.827					
JB	Total PeCDFs	0.940	0.0885	4.14			A		
5	Total HxCDFs	0.630	0.140	4.14			A		
1 1 1 1 1 1 1 1 1 1 1	Total HpCDFs	1.21	0.260	4.14			A		
	WHO-2005 TEQ (ND=0)	0.123							
	WHO-2005 TEQ (ND=1/2)	0.564							

<u>Client Information</u>			Sample Information		
Project Name:	IQC2271		Report Basis:	Dry Weig	ght
			Matrix:	Soil	
Sample ID:	IQC2271-04		Weight / Volume:	13.16	Grams
			Solids / Lipids:	91.8	%
			Original pH :	NA	
Laboratory Information			Batch ID:	WG1416	9
Project ID:	G579-241				
Sample ID:	G579-241-2B		Filename:	a31mar07	7a_6-4
Collection Date/Time:	13-Feb-07	12:05	Retchk:	a31mar07	7a_5-13
Receipt Date:	22-Mar-07	10:00	Begin ConCal:	a31mar07	7a_5-13
Extraction Date:	26-Mar-07				
Analysis Date:	2-Apr-07	18:07	Initial Cal:	m1613-0	71006e

1/2

Level I

Test America

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

ANALYTICAL TESTING CORPORATION

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker Project ID: SSFL Group 8 - DOE 1891264

METALS

Report Number: IQC2271

Sampled: 02/13/07-02/16/07 Received: 03/21/07

METALS									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQC2271-02 (FSBS0064S02 - Reporting Units: mg/kg dry	- Soil)				Sample	ed: 02/13/	07		
Lead	EPA 6020	7C23088	0.054	0.54	5.9	0.995	03/23/07	03/23/07	
Sample ID: IQC2271-03 (FSBS0064S03 - Reporting Units: mg/kg dry	- Soil)				Sample	ed: 02/13/0	07		
Lead	EPA 6020	7C23088	0.055	0.55	5.7	0.995	03/23/07	03/23/07	
Sample ID: IQC2271-05 (FSBS0022S02 - Reporting Units: mg/kg dry	- Soil)				Sample	ed: 02/14/	07		
Arsenic	EPA 6020	7C23088	0.26	0.53	7.4	1	03/23/07	03/23/07	
Sample ID: IQC2271-06 (FSBS0024S01 - Reporting Units: mg/kg dry	- Soil)				Sample	ed: 02/14/0	07		
Arsenic	EPA 6020	7C23088	0.28	0.55	14	0.995	03/23/07	03/23/07	
Sample ID: IQC2271-07 (FSBS0041S01 - Reporting Units: mg/kg dry	- Soil)				Sample	ed: 02/15/	07		
Arsenic	EPA 6020	7C23088	0.27	0.54	7.7	0.995	03/23/07	03/23/07	
Sample ID: IQC2271-08 (FSBS0053S01 Reporting Units: mg/kg dry	- Soil)				Sample	ed: 02/15/	07		
Arsenic	EPA 6020	7C23088	0.27	0.54	10	0.99	03/23/07	03/23/07	
Sample ID: IQC2271-09 (FSBS0031S01 Reporting Units: mg/kg dry	- Soil)				Sample	ed: 02/15/	07		
Arsenic	EPA 6020	7C23088	0.27	0.54	4.6	0.995	03/23/07	03/23/07	
Sample ID: IQC2271-10 (FSBS0034S01 Reporting Units: mg/kg dry	- Soil)				Sample	ed: 02/15/	07		
Sodium	EPA 6010B	7C23117	27	56	28	1	03/23/07	03/27/07	J

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

LEVEL V

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from TestAmerica.

TestAmerica, Inc. - Irvine 17461 Derian Ave, Suite 100 Irvine CA, 92614 Weck Laboratories, Inc. 14859 E. Clark Ave. Industry, CA 91745 Phone 626.336.2139 Fax 626.336.2634

Date Received: 03/22/07 12:30 Date Reported: 04/05/07 09:42

IQC2271-11 7032218-01 (Solid)

Report ID: 7032218

Project ID: IQC2271

O-09

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods

Analyte	Result	MDL	Units	Reporting Limit	Dilution Factor	Method	Batch Number	Date Prepared	Date Analyzed	Data Qualifiers
Mercury, Total	6.1	0.015	mg/kg dry	0.22	20	EPA 7471A	W7C1010	03/23/07	03/30/07 tl	

LEVEL V

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: IQD0788

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Task Order Title: Contract Task Order: Sample Delivery Group:	Boeing SSFL RFI Group 8 Data Gap 1261.500D.08.002 IQD0788
Project Manager:	Dixie Hambrick
Matrix:	soil
QC Level:	V
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Laboratory:	Test America

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
FSBS0014S01	IQD0788-01	7041003-01	Soil	2/13/2007	7471A

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered directly from the field to the laboratory, custody seals were not required. If necessary, client IDs were added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
		morganico
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
Ι	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
A	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

II. Method Analyses

A. EPA METHOD 7471A—Mercury

Reviewed By: P. Meeks Date Reviewed: April 26, 2007

The sample listed in Table 1 for this analysis was validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 7471A, and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, 28 days for mercury, was exceeded; therefore, mercury was qualified as estimated, "J."
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: There were no detects in the method blanks or CCBs.
- Interference Check Samples: Review is not applicable at a Level V validation.
- Blank Spikes and Laboratory Control Samples: The recovery was within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were performed on FSBS0014S012 for mercury. The recoveries and RPDs were within the laboratoryestablished control limits.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: Not applicable to this analysis.
- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

- Field Blanks and Equipment Rinsates: Mercury was not detected in field blank FSQW0003F01 (183627). The samples in this SDG had no identified equipment rinsate sample.
- Field Duplicates: There were no field duplicate samples identified for this SDG.

TestAmerica

ANALYTICAL TESTING CORPORATION

MWH-San Diego/Boeing 9444 Farnham Street, Suite 300 San Diego, CA 92123 Attention: Lisa J. Tucker

Project ID: SSFL Group 8 - DOE 1891264 Report Number: IQD0788

Sampled: 02/13/07 Received: 04/09/07

Metals (Non-Aqueous) by EPA 6000/7000 Series Methods									
Analyte	Method	Batch	MDL Limit	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IQD0788-01 (FSBS0014S01 - Soil) - cont.									
Reporting Units: mg/kg dry Mercury, Total ゴ/升	EPA 7471A	W7D0360	0.00075	0.012	0.16	1	04/11/07	04/12/07	O-09

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

LEVEL V

IQD0788 <Page 3 of 7>

DATA VALIDATION REPORT

Boeing SSFL RFI Group 8 Data Gap

SAMPLE DELIVERY GROUP: IQE1350

Prepared by

MEC^X, LLC 12269 East Vassar Drive Aurora, CO 80014

I. INTRODUCTION

Boeing SSFL RFI Group 8 Data Gap 1261.500D.08.002 IQE1350 Dixie Hambrick soil V 2
0
STL

Table 1. Sample Identification

Sample Name	Lab Sample Name	Sub-Lab Sample Name	Matrix	Collection	Method
FSBS0003S01	IQE1350-01	N/A	Soil	2/22/2007 11:35:00 AM	6010B
FSBS0003S02	IQE1350-02	N/A	Soil	2/22/2007 11:39:00 AM	6010B

II. Sample Management

No anomalies were observed regarding sample management. The samples in this SDG were received at the laboratory within the temperature limits of $4^{\circ}C \pm 2^{\circ}C$. According to the case narrative for this SDG, the samples were received intact, on ice, and properly preserved, if applicable. The COCs were appropriately signed and dated by field and/or laboratory personnel. As the samples were couriered directly from the field to the laboratory, custody seals were not required. The samples were initially placed on hold by MWH staff and were subsequently released from hold and analyzed. If necessary, the client ID was added to the sample result summary by the reviewer.

Qualifie	r Organics	Inorganics
		morganico
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit. The associated value is the quantitation limit or the estimated detection limit for dioxins.	The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit. The associated value is the sample detection limit or the quantitation limit for perchlorate only.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.	The associated value is an estimated quantity.
Ν	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."	Not applicable.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.	Not applicable.
UJ	The analyte was not deemed above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.	The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.	The data are unusable. The sample results are rejected due to serious deficiencies in the ability to analyze the sample and to meet quality control criteria. The presence or absence of the analyte cannot be verified.

Data Qualifier Reference Table

Qualifier	Organics	Inorganics
н	Holding times were exceeded.	Holding times were exceeded.
S	Surrogate recovery was outside QC limits.	The sequence or number of standards used for the calibration was incorrect
С	Calibration %RSD or %D was noncompliant.	Correlation coefficient is <0.995.
R	Calibration RRF was <0.05.	%R for calibration is not within control limits.
В	Presumed contamination as indicated by the preparation (method) blank results.	Presumed contamination as indicated by the preparation (method) or calibration blank results.
L	Laboratory Blank Spike/Blank Spike Duplicate %R was not within control limits.	Laboratory Control Sample %R was not within control limits.
Q	MS/MSD recovery was poor or RPD high.	MS recovery was poor.
Е	Not applicable.	Duplicates showed poor agreement.
I	Internal standard performance was unsatisfactory.	ICP ICS results were unsatisfactory.
А	Not applicable.	ICP Serial Dilution %D were not within control limits.
Μ	Tuning (BFB or DFTPP) was noncompliant.	Not applicable.
Т	Presumed contamination as indicated by the trip blank results.	Not applicable.
+	False positive – reported compound was not present.	Not applicable.
-	False negative – compound was present but not reported.	Not applicable.
F	Presumed contamination as indicated by the FB or ER results.	Presumed contamination as indicated by the FB or ER results.
\$	Reported result or other information was incorrect.	Reported result or other information was incorrect.
?	TIC identity or reported retention time has been changed.	Not applicable.

Qualification Code Reference Table

Qualification Code Reference Table Cont.

D	The analysis with this flag should not be used because another more technically sound analysis is available.	The analysis with this flag should not be used because another more technically sound analysis is available.
Ρ	Instrument performance for pesticides was poor.	Post Digestion Spike recovery was not within control limits.
DNQ	The reported result is above the method detection limit but is less than the reporting limit.	The reported result is above the method detection limit but is less than the reporting limit.
*11, *111	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.	Unusual problems found with the data that have been described in Section II, "Sample Management," or Section III, "Method Analyses." The number following the asterisk (*) will indicate the report section where a description of the problem can be found.

III. Method Analyses

A. EPA METHODS 6010B—Metals

Reviewed By: E. Wessling Date Reviewed: May 31, 2007

The samples listed in Table 1 for this analysis were validated based on the guidelines outlined in the MEC^{X} Data Validation Procedure for Metals (DVP-5, Rev. 0 and DVP-21, Rev. 0), EPA Method 6010B and the National Functional Guidelines for Inorganic Data Review (2/94).

- Holding Times: The analytical holding time, six months for ICP metals, was met.
- Tuning: Review is not applicable at a Level V validation.
- Calibration: Review is not applicable at a Level V validation.
- Blanks: Method blank 7E18136-BLK1 had a detect for sodium; therefore the detect for sodium in sample FSBS0003S01 was qualified as an estimated nondetect, "UJ," at the reporting limit. No other detects were noted in the blanks.
- Interference Check Samples: Review is not applicable at a Level V validation.
- Blank Spikes and Laboratory Control Samples: Recoveries were within laboratoryestablished QC limits.
- Laboratory Duplicates: No laboratory duplicate analyses were performed.
- Matrix Spike/Matrix Spike Duplicate: MS/MSD analyses were not performed on a sample from this SDG; therefore, accuracy evaluation was based upon LCS recoveries only.
- Serial Dilution: No serial dilution analyses were performed.
- Internal Standards Performance: Not applicable for this analysis.
- Sample Result Verification: Review is not applicable at a Level V validation. Reported nondetects are valid to the MDL.
- Field QC Samples: Field QC samples were evaluated, and if necessary, qualified based on method blanks and other laboratory QC results affecting the usability of the field QC data. Any remaining detects were used to evaluate the associated site samples. Following are findings associated with field QC samples:

5

 Field Blanks and Equipment Rinsates: This SDG had no identified field blank or equipment rinsate samples. • Field Duplicates: There were no field duplicate samples identified for this SDG.

Test Analytical testing corporation

MWH-San Diego/Boeing Project ID: SSFL Group 8 - DOE 9444 Farnham Street, Suite 300 1891264 Sampled: 02/22/07 San Diego, CA 92123 Report Number: IQE1350 Received: 05/11/07 Attention: Lisa J. Tucker METALS Kert 00 2.0 Data MDL Reporting Sample Dilution Date Date **Result Factor Extracted Analyzed Qualifiers** Limit Limit Analyte Method Batch Sample ID: IQE1350-01 (FSBS0003S01 - Soil) Reporting Units: mg/kg dry Aluminum 16000 EPA 6010B 7E18136 6.1 12 0.995 05/18/07 05/19/07 EPA 6010B 7E18136 29 61 68 0.995 05/18/07 05/19/07 В Sodium B UN Sample ID: IQE1350-02 (FSBS0003S02 - Soil) Reporting Units: mg/kg dry EPA 6010B Aluminum 7E18136 5.6 11 16000 0.995 05/18/07 05/19/07 56 Sodium EPA 6010B 7E18136 27 360 0.995 05/18/07 05/19/07

TestAmerica - Irvine, CA Michele Chamberlin Project Manager

level V

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. except in full, without written permission from TestAmerica. IQE1350 <Page 2 of 7>

0

DATA ASSESSMENT FORM

Project Title:	Rocketdyne
Project Manager:	D. Hambrick
Analysis/Method:	Dioxins and Furans/EPA Method 8290
<u>QC Level</u> :	V^1
<u>SDG</u> :	IJJ0179
Matrix:	Soil
No. of Samples:	2
No. of Reanalyses/Dilutions:	0
Date Reviewed:	February 27, 2002
<u>Reviewer</u> :	L. Calvin
<u>References</u> :	National Functional Guidelines for Organic Data Review (2/94) and SW-846
	Method 8290 (9/94).
Samples Reviewed:	PCS-46B, PCS-47B

Data Validation Findings

		Findings	Qualifications
1.	Sample Management	The COC had appropriate relinquish and receipt signatures. The samples were received at Triangle Laboratories with a cooler temperature within the limits of $4^{\circ}C \pm 2^{\circ}C$. The COC noted that the samples were received intact. The samples were extracted within 30 days of collection and analyzed within 45 days of extraction.	No qualifications were required.
4.	<u>Method Blanks</u>	One soil method blank was extracted and analyzed with the samples in this SDG. Detects for 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8- HpCDD, 1,2,3,4,6,7,8,9-OCDD, 2,3,7,8-TCDF, 2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, 1,2,3,6,7,8- HxCDF, 1,2,3,4,6,7,8-HpCDF, and all totals were reported in the method blank. Results reported only as EMPCs in the method blank were considered nondetects.	All reported sample detects for the aforementioned target compounds and total HpCDF in the associated samples were less than five times the blank concentrations, and were therefore qualified as estimated nondetects, "UJ," at the levels of interference. As all other total concentrations in the samples included isomer concentrations other than the reported individual congeners, the sample totals were not qualified as method blank contamination.

	Findings	Qualifications
5. <u>LCS/BS</u>	One soil LCS/LCSD pair was extracted and analyzed with the samples in this SDG. All percent recoveries were within the laboratory QC limits of 70- 130%, and all RPDs were within the QC limit of 20%.	No qualifications were required.
6. <u>MS/MSDs</u>	No MS/MSD analyses were performed in this SDG. Evaluation of method accuracy and precision were based on the LCS/LCSD results.	No qualifications were required.
7. <u>Field QC Samples</u> ER: None FB: None FD: None	No field QC samples were identified for the samples in this SDG.	No qualifications were required.
9. <u>Internal Standards</u>	All internal standard recoveries were within the method QC limits of 40-135%.	No qualifications were required.
10. <u>Other</u>	Any individual congener results reported as EMPCs were considered nondetects, as were any totals reported only as EMPCs.	All target compound and total EMPCs were qualified as estimated nondetects, "UJ."
	Some total results which included individual congener results were also reported as EMPCs.	Any totals also including individual congener concentrations were qualified as estimated, "J."
	Confirmation analyses on a DB-225 column were performed for the 2,3,7,8- TCDF sample results reported as EMPCs.	Results for 2,3,7,8-TCDF on the DB-5 column were rejected, "R," in favor of the confirmation results.
	The sample results were reported on a dry-weight basis. Results reported with the laboratory qualifier "J," were concentrations below the lower calibration level.	
Comments	None	None

 $^{^{1}}$ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

			Del Mar An	alytical		
TLI Project: Client Sample	52059 : IJJ0178-	01/PCS-4		Aethod 8290	PCDD/PCDF Analysis Fil	
Client Project: Sample Matrix: TLI ID:	IJJ0178 SOIL 271-89-1		Date Received: Date Extracted: Date Analyzed:	10/07/2000 10/12/2000 10/18/2000	Spike File: ICal: ConCal:	SPMIT32S TF57140 T005054
Sample Size: Dry Weight: GC Column:	11.800 g 10.006 g DB-5		Dilution Factor: Blank File: Analyst:	n/a U159401 DPW	% Moisture: % Lipid: % Solids:	15.2 n/a 84.8
Analytes	Jual Doal	Çonc. (pç	1/g) DL	EMPC	Ratio	RT Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-PeCDD 2,3,7,8-TCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF	$\begin{array}{c} u \rightarrow 5 \overline{u} \rightarrow F \\ \hline \\ \mu \rightarrow 5 \overline{u} \rightarrow F \\ \hline \\ \mu \rightarrow F \\ \hline \\ \mu \rightarrow 1 \\ \hline \hline \\ \mu \rightarrow 1 \\ \hline \hline \\ \mu \rightarrow 1 \\ \hline \hline \hline \\ \mu \rightarrow 1 \\ \hline \hline \hline \\ \mu \rightarrow 1 \\ \hline \hline \hline \hline \\ \mu \rightarrow 1 \\ \hline \hline$	ND ND 0.45 0.89 0.82 1.9 1.5 EMPC 0.59 0.60 1.2 EMPC EMPC EMPC ND 1.4 ND ND	0.3 0.3 0.3 0.3 0.4 0.7	1.0 0.50 0.56	1.21 3 1.28 3 1.33 3 1.11 3 1.00 4 1.78 3 1.41 3 1.31 3	34:11 JB_ 34:17 JB_ 34:37 JB_ 37:44 JB_ 41:40 JB_ 30:46 JB_ 33:28 JB_ JB_ JB_ 36:36 JB_
Totals	1	Conc. (pg	/g) Number DL	EMPC		Flags
Total TCDD Total PeCDD Total HxCDD Total HpCDD	W2 ×10	EMPC 3.0 4.8 3.0	2 5 2	0.53 3.5 6.5		
Total TCDF Total PeCDF Total HxCDF	J *10	2.4 1.7 3.3		5.4 4.6		

ľ

4.3

MIT3_PSR v1.00, LARS 6.25.001

3 3

1

3.3

1.4

Triangle Laboratories, Inc.® 801 Capitola Drive • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

UST

B

Total HxCDF

Total HpCDF

		Del	l Mar An	alytical			
TLI Project: Client Sample	52059 IJJ0178) 3-01/PCS-46B	Method	8290 TCDD	/TCDF Ana Analysis F	•	
Client Project: Sample Matrix: TLI ID:	IJJ0178 SOIL 271-89-1	Dat	te Received: te Extracted: te Analyzed:	10/07/2000 10/12/2000 10/18/2000	ICal: Spike File 1st CCal: End CCal:	: SPC P003	
Sample Size: Dry Weight: GC Column:	11.800 g 10.006 g DB-225	Bla	ution Factor: nk File: alyst:	n/a U159401 JMM	% Moistur % Lipid: % Solids:	re: 15.2 n/a 84.8	
Analytes Yell	quate	Conc. (pg/g)	DL	EMPC	Ratio	RT	Flags
2,3,7,8-TCDF	B	0.43			0.72	24:08	JB_
Internal Standard		Conc. (pg/g)	% Reco	very QC Limits	Ratio	RT	Flags
¹³ C ₁₂ -2,3,7,8-TCDF		146	73.3	40%-130%	0.81	24:07	
Recovery Standar	1				Ratio	RT	Flags
¹³ C ₁₂ -1,2,3,4-TCDD					0.84	22:56	

		AMEC VALI	DATED
Data Reviewer:	Jan		W.
	Page 1 of 1		C2NF_PSR v2.03, LARS 6.25.001

Γ

Printed: 18:44 10/18/2000

]	Del Mar An	alytical		
CLI Project: Client Sample:		2059 (0178-0	2/PCS-4		Aethod 8290	PCDD/PCDF (Analysis Fil	• • • •
Client Project: Sample Matrix: TLI ID:	IJJ01 SOII 271-8		*	Date Received: Date Extracted: Date Analyzed:	10/07/2000 10/12/2000 10/18/2000	Spike File: ICal: ConCal:	SPMIT32S TF57140 T005054
Sample Size: Dry Weight: GC Column:	11.70 10.08 DB-5	5 g		Dilution Factor: Blank File: Analyst:	n/a U159401 DPW	% Moisture: % Lipid: % Solids:	13.8 n/a 86.2
Analytes	qual	Fide	ionc. (pç	l/g) DL	EMPC	Ratio	RT Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF	A MAR A REPARA	B	ND ND ND 1.2 0.81 2.4 2.5 EMPC 0.78 1.00 1.3 EMPC 0.54 ND 1.4 ND ND	0.4 0.3 0.4 0.4 0.5 0.9	1.2 0.56	1.06 2 1.01 2 0.87 2 1.47 2 1.45 2 1.27 2 1.41 2	34:16 JB_ 34:36 JB_ 37:43 JB_ 41:39 JB_ 30:07 JB_ 30:46 JB_ 33:28 JB_ JB_ JB_ 34:05 JB_ 36:36 JB_
Totais		(Conc. (pç	ı/g) Number Dl	. ЕМРС		Flags
Total TCDD Total PeCDD Total HxCDD Total HpCDD			0.90 2.9 6.8 4.0	1 2 5 2	,		
Total TCDF Total PeCDF Total HxCDF Total HpCDF		*10 *10	1.7 5.4 3.9 1.4	2 4 4 1	6.2 4.5		

AMEC VALIDATED

Printed: 18:31 10/18/2000

MIT3_PSR v1.00, LARS 6.25.001

Del Mar Analytical

TLI Project: Client Sample	52059 IJJ0178	9 N 8-02/PCS-47B	Aethod 82	290 TCDD/	TCDF Anal Analysis F	lysis (] ile:]	DB-225) P003695
Client Project: Sample Matrix: TLI ID:	IJJ0178 SOIL 271-89-2	Date Ex	xtracted: 10	0/07/2000 0/12/2000 0/18/2000	ICal: Spike File: 1st CCal: End CCal:		
Sample Size: Dry Weight: GC Column:	11.700 g 10.085 g DB-225	Dilution Blank H Analyst	-	a 159401 4M	% Moisture % Lipid: % Solids:	2: 13.8 n/a 86.2	
Analytes ver	i Reade	Conc. (pg/g)	DL	EMPC	Ratio	RT	Flags
2,3,7,8-TCDF	LB	0.47			0.77	24:07	JB_
Internal Standard		Conc. (pg/g)	% Recover	/ QC Limits	Ratio	RT	Flags
¹³ C ₁₂ -2,3,7,8-TCDF		160	80.6	40%-130%	0.81	24:06	
Recovery Standard	1				Ratio	RT	Flags
¹³ C ₁₂ -1,2,3,4-TCDD					0.83	22:55	

A	M	C	V	10	D	Д		D
			orret 1959d Miliad		Ţ			

Data Reviewer: _____

_____ 10/18/2000

Page 1 of 1

C2NF_PSR v2.03, LARS 6.25.001

DATA ASSESSMENT FORM

Project Title:	Rocketdyne
Project Manager:	D. Hambrick
Analysis/Method:	Dioxins and Furans/EPA Method 8290
<u>QC Level</u> :	V^1
<u>SDG</u> :	IJH0606
<u>Matrix</u> :	Soil
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Date Reviewed:	February 28, 2002
<u>Reviewer</u> :	L. Calvin
References:	National Functional Guidelines for Organic Data Review (2/94) and SW-846
	Method 8290 (9/94).
Samples Reviewed:	CBC-80S

Data Validation Findings

	Findings	Qualifications
1. <u>Sample Management</u>	The COC had appropriate relinquish and receipt signatures. The sample was received at Triangle Laboratories with a cooler temperature within the limits of $4^{\circ}C \pm 2^{\circ}C$. The COC noted that the sample was received intact. The sample was extracted within 30 days of collection and analyzed within 45 days of extraction.	No qualifications were required.
4. <u>Method Blanks</u>	One soil method blank was extracted and analyzed with the sample in this SDG. There were no reported target compound detects in the method blank.	No qualifications were required.
5. <u>LCS/BS</u>	One soil LCS/LCSD pair was extracted and analyzed with the sample in this SDG. All percent recoveries were within the laboratory QC limits of 70- 130%, and all RPDs were within the QC limit of 20%.	No qualifications were required.

	Findings	Qualifications
6. <u>MS/MSDs</u>	No MS/MSD analyses were performed in this SDG. Evaluation of method accuracy and precision were based on the LCS/LCSD results.	No qualifications were required.
7. <u>Field QC Samples</u> ER: None FB: None FD: None	No field QC samples were identified for the samples in this SDG.	No qualifications were required.
9. <u>Internal Standards</u>	All internal standard recoveries were within the method QC limits of 40-135%.	No qualifications were required.
10. <u>Other</u>	The sample results were reported on a dry-weight basis. Results reported with the laboratory qualifier "J," were concentrations below the lower calibration level.	No qualifications were required.
Comments	None	None

 $^{^{1}}$ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

			Del Mar Aı	nalytical		
TLI Project: Client Sample:	: IJ	1687 H0606-04 B [E] LBC - 80°	MC1]	Method 829	0 PCDD/PCDI Analysis File	F Analysis (b) e: W169006
Client Project: Sample Matrix: TLI ID:	IJH0 SOII 268-1		Date Received: Date Extracted: Date Analyzed:	08/18/2000	ICal: Spike File: 1st CCal: End CCal:	WF57130 SPMIT32S W001688 W001692
Sample Size: Dry Weight: GC Column:	12.00 11.35 DB-5	2 g	Dilution Factor: Blank File: Analyst:	n/a W169001 JSY	% Moisture: % Lipid: % Solids:	5.4 n/a 94.6
Analytes	fual	Cole Conc. (p)	pt) DL	EMPC	Ratio	RT Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD	4	ND ND ND ND 2.9 30.3	0.2 0.2 0.2 0.2 0.2			
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF		ND ND ND ND ND ND	0.1 0.1 0.1 0.1 0.1 0.1 0.1			
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF	J K T	0.54 ND 0.89	0.2			7:11 J 2:16 J
Totals		Conc. (pp	t) Number DL	EMPC		Flags
Total TCDD Total PeCDD Total HxCDD Total HpCDD	Ц •	ND ND ND 5.3	0.2 0.2 0.2 2	2		
Total TCDF Total PeCDF Total HxCDF Total HpCDF		ND ND ND 1.5	0.1 0.1 0.1			
	3			AMEC	VALIDAT	TED
			Page 1 of			

mit3_PSR v1.00, LARS 6.25.00

DATA ASSESSMENT FORM

Project Title:	Rocketdyne
Project Manager:	D. Hambrick
Analysis/Method:	Dioxins and Furans/EPA Method 8290
QC Level:	V^1
<u>SDG</u> :	IJF0961
<u>Matrix</u> :	Soil
No. of Samples:	13
No. of Reanalyses/Dilutions:	0
Date Reviewed:	February 28, 2002
<u>Reviewer</u> :	L. Calvin
References:	National Functional Guidelines for Organic Data Review (2/94) and SW-846
	Method 8290 (9/94).
Samples Reviewed:	PC-1, PC-3, PC-4, PC-6, PC-8, PC-9, PC-10, PC-12, PC-14B, PC-14T, PC-16B,
	PC-16BD, PC-16T

Data Validation Findings

		Findings	Qualifications
1. <u>Sample Mana</u>	and re login s within The sa days o	OC had appropriate relinquish ceipt signatures. The laboratory sheet noted a cooler temperature a the limits of $4^{\circ}C \pm 2^{\circ}C$. amples were extracted within 30 of collection and analyzed within ys of extraction.	No qualifications were required.
4. <u>Method Blank</u>	and ar SDG.	bil method blank was extracted halyzed with the samples in this There were no reported target bund detects in the method blank.	No qualifications were required.
5. <u>LCS/BS</u>	analyz All pe	bil LCS was extracted and ted with the samples in this SDG. rcent recoveries were within the tory QC limits of 50-150%.	No qualifications were required.
6. <u>MS/MSDs</u>	in this	S/MSD analyses were performed SDG. Evaluation of method acy was based on the LCS results.	No qualifications were required.

	Findings	Qualifications
7. <u>Field QC Samples</u> ER: None FB: None FD: None	No field QC samples were identified for the samples in this SDG.	No qualifications were required.
9. <u>Internal Standards</u>	All internal standard recoveries were within the method QC limits of 40-135%.	No qualifications were required.
10. <u>Other</u>	The sample results were reported on a dry-weight basis.	No qualifications were required.
Comments	None	None

 $^{^{1}}$ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: PC-1

Lot-Sample #:	G0F300201-001	Work Order #:	DFKP7102	Matrix:	COT TO
Date Sampled:	6/28/00	Date Received:	6/30/00	Instrument:	SOLID 6D5
Prep Date:	7/5/00	Analysis Date:	7/8/00	Units:	
Prep Batch #:	0187203	Dilution Factor;	1		pg/g
	. 1		Ţ	% Moisture:	6.2
PARAMETER	el qua RESULT	REPORTI	NG TEF		
	al code	LIMIT	FACTOR	TEQ Cor	nc.
2,3,7,8-TCDD	K ND	0.58	1.000	0.00	
Total TCDD	ND	0.58		0.00	
1,2,3,7,8-PeCDD	ND	1.3	0.500	0.00	
Total PeCDD	ND	1.3		0.00	
1,2,3,4,7,8-HxCDD	ND	0.83	0.100	0.00	
1,2,3,6,7,8-HxCDD	ND	0.80	0.100	0.00	
1,2,3,7,8,9-HxCDD	ND	0.73	0.100	0.00	
Total HxCDD	ND	0.83		0.00	
1,2,3,4,6,7,8-HpCDD	- ND	0.79	0.010	0.00	
Total HpCDD	ND	0.79		0.00	
OCDD	ND	1.4	0.001	0.00	
2,3,7,8-TCDF	ND	0.37	0.100	0.00	
Total TCDF	ND	0.37		0.00	
1,2,3,7,8-PeCDF	ND	0.69	0.050	0.00	
2,3,4,7,8-PeCDF	ND	0.69	0.500	0.00	
Total PeCDF	ND	0.69		0.00	
1,2,3,4,7,8-HxCDF	ND	0.54	0.100	0.00	
1,2,3,6,7,8-HxCDF	ND	0.41	0.100	0.00	
2,3,4,6,7,8-HxCDF	ND	0.57	0.100	0.00	
1,2,3,7,8,9-HxCDF	ND	0.57	0.100	0.00	
Total HxCDF	ND	0.57		0.00	
1,2,3,4,6,7,8-HpCDF	ND	0.47	0.010	0.00	
1,2,3,4,7,8,9-HpCDF	ND	0.51	0.010	0.00	
Total HpCDF	ND	0.51		0.00	
OCDF	₩ ND	1.4	0.001	0.00	
Total TEQ Concentrati	Lon *	• • • • • • • • • • • • • • • • • • •		0.00	
	PERCENT	ידס	OVERY		
INTERNAL STANDARDS	RECOVERY	LIM			
13C-2,3,7,8-TCDD	82	40	- 135		

INTERNAL STANDARDS	RECOVERY	LIMITS
13C-2,3,7,8-TCDD	82	40 - 135
13C-1,2,3,7,8-PeCDD	66	40 - 135
13C-1,2,3,6,7,8-HxCDD	99	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	93	40 - 135
13C-OCDD	77	40 - 135
13C-2,3,7,8-TCDF	90 -	40 - 135
13C-1,2,3,7,8-PeCDF	68	40 - 135
13C-1,2,3,4,7,8-HxCDF	76	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	94	40 _ 135

NOTES: Calculations are performed before rounding to avoid round-off errors in calculated results ANEC VALIDATED

LEVEL V

٠

AMEC VALIDATED

LEVELV

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: PC-3

Lot-Sample #: Date Sampled:	6/	F300201-003 28/00	Work Orde Date Rece	eived:	DFKP 6/30		Matrix: Instrument:	SOLID 6D5
Prep Date:	7/	5/00	Analysis		7/9/	00	Units:	pg/g
Prep Batch #:	01	87203	Dilution	Factor:	1		% Moisture:	6.9
PARAMETER	<u>, 1</u> 17	RESULT		REPORT LIMIT	ING	TEF FACTOR	TEQ Cor	nc.
2,3,7,8-TCDD	K	ND		0.73		1.000	0.00	
Total TCDD		ND		0.73				
1,2,3,7,8-PeCDD		ND		2.0		0.500	0.00	
Total PeCDD		ND		2.0				
1,2,3,4,7,8-HxCDD		ND		1.4		0.100	0.00	
1,2,3,6,7,8-HxCDD		ND		1.4		0.100	0.00	
1,2,3,7,8,9-HxCDD		ND		1.2		0.100	0.00	
Total HxCDD		ND		1.4			0.00	
1,2,3,4,6,7,8-HpCDD		ND		1.0		0.010	0.00	
Total HpCDD		ND		1.0			0.00	
OCDD		ND		2.5		0.001	0.00	
2,3,7,8-TCDF		ND		0.52		0.100	0.00	
Total TCDF		ND		0.52			0.00	
1,2,3,7,8-PeCDF		ND		1.1		0.050	0.00	
2,3,4,7,8-PeCDF		ND		1.1		0.500	0.00	
Total PeCDF		ND		1.1		0,000	0.00	
1,2,3,4,7,8-HxCDF		ND		0.76		0.100	0.00	
1,2,3,6,7,8-HxCDF		ND		0.56		0.100	0.00	
2,3,4,6,7,8-HxCDF		ND		0.80		0.100	0.00	
1,2,3,7,8,9-HxCDF		ND		0.80		0.100	0.00	
Total HxCDF		ND		0.80			0.00	
1,2,3,4,6,7,8-HpCDF		ND		0.72		0.010	0.00	
1,2,3,4,7,8,9-HpCDF		ND		0.80		0.010	0.00	
Total HpCDF		ND		0.80			0.00	
OCDF	\mathbf{V}	ND		2.2		0.001	0.00	
Total TEQ Concentra	tion†	k					0.00	
INTERNAL STANDARDS		PERCENT RECOVERY			COVERY			
13C-2,3,7,8-TCDD	***	86			0 - 135			
13C-1 2 3 7 0 Doctor		<u> </u>						

	00	40 - 135
13C-1,2,3,7,8-PeCDD	69	40 - 135
13C-1,2,3,6,7,8-HxCDD	94	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	83	40 - 135
13C-OCDD	68	40 - 135
13C-2,3,7,8-TCDF	91	40 - 135
13C-1,2,3,7,8-PeCDF	68	40 - 135
13C-1,2,3,4,7,8-HxCDF	75	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	83	40 _ 135

NOTES:

* Not validated.

Calculations are performed before rounding to avoid round-off errors in calculated results

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: PC-4

Lot-Sample #: Date Sampled: Prep Date Prep Batch #:	G0F300201-004 6/28/00 7/5/00 0187203	Work Order #: Date Received: Analysis Date: Dilution Factor:	DFKPV102 6/30/00 7/9/00 1	Matrix: Instrument: Units: % Moisture:	SOLID 6D5 Pg/g 14
PARAMETER 9	el qua al Codesult	REPORTING LIMIT	TEF FACTOR	TEQ Con	c.
2,3,7,8-TCDD	U ND	0.96	1.000	0.00	
Total TCDD	ND	0.96	2.000	0.00	
1,2,3,7,8-PeCDD	ND	2.5	0.500	0.00	
Total PeCDD	ND	2.5	0.000	0.00	
1,2,3,4,7,8-HxCDD	ND	1.4	0.100	0.00	
1,2,3,6,7,8-HxCDD	ND	1.4	0.100	0.00	
1,2,3,7,8,9-HxCDD	ND	1.2	0.100	0.00	
Total HxCDD	ND	1.4		0.00	
1,2,3,4,6,7,8-HpCDD	ND	1.6	0,010	0.00	
Total HpCDD	ND	1.6		0.00	
OCDD	ND	3.0	0.001	0.00	
2,3,7,8-TCDF	ND	0.62	0.100	0.00	
Total TCDF	ND	0.62	3,200	5.00	
1 0 0 0 0 0 0 0 0	1 1				

1.3

1.3

1.3

0.97

0.71

1.0

1.0

1.0

1.1

1.2

1.2

3.0

0.050

0.500

0.100

0.100

0.100

0.100

0.010

0.010

0.001

0.00

0,00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

			•
Total	TEQ	Concentration	2 *

1,2,3,7,8-PeCDF

2,3,4,7,8-PeCDF

1,2,3,4,7,8-HxCDF

1,2,3,6,7,8-HxCDF

2,3,4,6,7,8-HxCDF

1,2,3,7,8,9-HxCDF

1,2,3,4,6,7,8-HpCDF

1,2,3,4,7,8,9-HpCDF

Total PeCDF

Total HxCDF

Total HpCDF

OCDF

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	81	40 - 135
13C-1,2,3,7,8-PeCDD	62	40 - 135
13C-1,2,3,6,7,8-HxCDD	95	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	80	40 - 135
13C-OCDD	65	40 - 135
13C-2,3,7,8-TCDF	86	40 - 135
13C-1,2,3,7,8-PeCDF	64	40 - 135
13C-1,2,3,4,7,8-HxCDF	75	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	81	40 - 135

ND

ND

ND

ND

ND

ND

ND

ND

 \mathbf{ND}

ND

ND

ND

NOTES:

Calculations are performed before rounding to avoid round-off errors in calculated results * Not validated.

Dioxins/Furans, HRGC/HRMS (8290)

			Client Sa	mple ID: P	PC-6			
Lot-Sample #:	G0F3	00201-005	Work Ord	er #	DFKP	W1 0 2	Matrix:	207
Date Sampled:	6/28	/00	Date Rec		6/30			SOLID
Prep Date:	7/5/		Analysis		7/9/		Instrument: Units:	6D5
Prep Batch #:	0187	203	Dilution		1	00		pa/a
-			222622011	FACTOF.	Ŧ		% Moisture:	14
PARAMETER 4	ral doc	RESULT		REPORTI: LIMIT	NG	TEF FACTOR	TEQ Con	с.
2,3,7,8-TCDD	U	ND		0.70		1.000	0.00	
Total TCDD		ND		0.70				
1,2,3,7,8-PeCDD		ND		2.0		0.500	0.00	
Total PeCDD		ND		2.0			- /	
1,2,3,4,7,8-HxCDD		ND		1.2		0.100	0.00	
1,2,3,6,7,8-HxCDD		ND		1.2		0.100	0.00	
1,2,3,7,8,9-HxCDD		ND		1.1		0.100	0.00	
Total HxCDD		ND		1.2				
1,2,3,4,6,7,8-HpCDD	-	ND		1.3		0.010	0.00	
Total HpCDD		ND		1.3			0.00	
OCDD		ND		2.1		0.001	0.00	
2,3,7,8-TCDF		ND		0.48		0.100	0.00	
Total TCDF		ND		0.48			0.00	
1,2,3,7,8-PeCDF		ND		1.0		0.050	0.00	
2,3,4,7,8-PeCDF		ND		1.0		0.500	0.00	
Total PeCDF		ND		1.0			0.00	
1,2,3,4,7,8-HxCDF		ND		0.83		0.100	0.00	
1,2,3,6,7,8-HxCDF		ND		0.61		0.100	0.00	
2,3,4,6,7,8-HxCDF		ND		0.85		0.100	0.00	
1,2,3,7,8,9-HxCDF		ND		0.85		0.100	0.00	
Total HxCDF		ND		0.85		0.200	0.00	
1,2,3,4,6,7,8-HpCDF		ND		0.85		0.010	0.00	
1,2,3,4,7,8,9-HpCDF	- Contraction of the Contraction	ND		0.93		0.010	0.00	
Total HpCDF	de rescarator	ND		0.93		01010	0.00	
OCDF 🗸	/	ND		2.4		0.001	0.00	
Total TEQ Concentrat:	ion≯			,			0.00	
INTERNAL STANDARDS		PERCENT RECOVERY			OVERY			
13C-2,3,7,8-TCDD		83		-10	1 7 6			
13C-1,2,3,7,8-PeCDD		63			- 135			
13C-1,2,3,6,7,8-HxCDI	r	78			- 135			
13C-1 2 3 4 6 7 9 Hpc		70		40	- 135			

		-0 - 100
13C-1,2,3,6,7,8-HxCDD	78	40 - 135
13C-1,2,3,4,6,7,8-HpCDD	72	40 - 135
13C-OCDD	54	40 - 135
13C-2,3,7,8-TCDF	89	40 - 135
13C-1,2,3,7,8-PeCDF	65	40 _ 135
13C-1,2,3,4,7,8-HxCDF	66	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	66	40 - 135

NOTES:

Calculations are performed before rounding to avoid round-off errors in calculated results * Not validated

AMEC VALIDATED

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: PC-8

Lot-Sample #:	GOE	300201-006	Work Orde	ar #	DFKP	8102	Matrix:	601 mm
Date Sampled:	6/2	28/00	Date Rece		6/30,		Instrument:	SOLID
Prep Date:		5/00	Analysis		7/9/0		Units:	6D5
Prep Batch #:			Dilution		1	50		ba\a
2	. 1	I	21401011	raccor:	T		% Moisture:	3.2
PARAMETER V	al	ade RESULT		REPORTIN LIMIT	1G	TEF FACTOR	TEQ Cor	nc.
2,3,7,8-TCDD		ND						
Total TCDD	r I	ND		0.59 0.59		1.000	0.00	
1,2,3,7,8-PeCDD		ND		1.6		0 500	0.00	
Total PeCDD		ND		1.6		0.500	0.00	
1,2,3,4,7,8-HxCDD		ND		1.0		0.100	0.00	
1,2,3,6,7,8-HxCDD		ND		0.99		0.100	0.00	
1,2,3,7,8,9-HxCDD		ND		0.90		0.100	0.00	
Total HxCDD		ND		1.0		0.200	0.00	
1,2,3,4,6,7,8-HpCDD		ND		1.5		0.010	0.00	
Total HpCDD	∤	ND		1.7			0.00	
OCDD	anito statuta	12				0.001	0.01	
2,3,7,8-TCDF	<u> </u>	ND		0.44		0.100	0.00	
Total TCDF		ND		0.44			0.00	
1,2,3,7,8-PeCDF	Constant of the local diversion of the local	ND		0.93		0.050	0.00	
2,3,4,7,8-PeCDF	This was a second	ND		0.94		0.500	0.00	
Total PeCDF		ND		0.94				
1,2,3,4,7,8-HxCDF	- Manual And	ND		0.61		0.100	0.00	
1,2,3,6,7,8-HxCDF		ND		0.44		0.100	0.00	
2,3,4,6,7,8-HxCDF		ND		0.63		0.100	0.00	
1,2,3,7,8,9-HxCDF		ND		0.63		0.100	0.00	
Total HxCDF		ND		0.63			0.00	
1,2,3,4,6,7,8-HpCDF		ND		0.52		0.010	0.00	
1,2,3,4,7,8,9-HpCDF		ND		0.56		0.010	0.00	
Total HpCDF		ND		0.56			0.00	
OCDF	V	ND		1.4		0.001	0.00	
Total TEQ Concentrat	ion⊀						0.01	
		PERCENT		R F C	OVERY			
INTERNAL STANDARDS		RECOVERY		LIM				
13C-2,3,7,8-TCDD		80						
13C-1,2,3,7,8-PeCDD		61			- 135			
13C-1,2,3,6,7,8-HxCDI	٦	90			- 135			
13C-1,2,3,4,6,7,8-Hp		83			- 135			
13C-OCDD					- 135			
		65			- 135			
13C-2,3,7,8-TCDF		89	-		- 135			
13C-1,2,3,7,8-PeCDF	-	67			- 135			
13C-1,2,3,4,7,8-HxCDI		78			- 135			
13C-1,2,3,4,6,7,8-Hp0	CDF	81		40	- 135			
NOTES:								

Calculations are performed before rounding to avoid round-off errors in calculated results * Not validated. AMEC VALIDATED

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: PC-9

Lot-Sample #:	G0F300201-007	Work Order #:	DFKQ0102	Matrix:	007 75
Date Sampled:	6/28/00	Date Received:	6/30/00	Instrument:	SOLID 6D5
Prep Date:	7/5/00	Analysis Date:	7/9/00	Units:	
<pre>Prep Batch #:</pre>	0187203	Dilution Factor:	1	% Moisture:	pg/g 19
PARAMETER	al gua RESULT	REPORTIN LIMIT	IG TEF FACTOR	TEQ Cor	
2,3,7,8-TCDD	U ND	0.85	1 000		
Total TCDD	ND	0.85	1.000	0.00	
1,2,3,7,8-PeCDD	ND	1.8	0.500		
Total PeCDD	ND	1.8	0.500	0.00	
1,2,3,4,7,8-HxCDD	ND	1.2	0 1 0 0	0.00	
1,2,3,6,7,8-HxCDD	ND	1.2	0.100	0.00	
1,2,3,7,8,9-HxCDD	ND	1.1	0.100	0.00	
Total HxCDD	ND	1.2	0.100	0.00	
1,2,3,4,6,7,8-HpCDD	ND	1.2	0 010		
Total HpCDD	ND	1.0	0.010	0.00	
OCDD	ND	2.5	0.001		
2,3,7,8-TCDF	ND	0.58	0.001	0.00	
Total TCDF	ND	0.58	0.100	0.00	
1,2,3,7,8-PeCDF	ND	1.0	0.050		
2,3,4,7,8-PeCDF	ND	1.0	0.050	0.00	
Total PeCDF	ND	1.0	0.500	0.00	
1,2,3,4,7,8-HxCDF	ND	0.79	0 100		
1,2,3,6,7,8-HxCDF	ND	0.58	0.100	0.00	
2,3,4,6,7,8-HxCDF	ND	0.82	0.100	0.00	
1,2,3,7,8,9-HxCDF	ND	0.82	0.100	0.00	
Total HxCDF	ND	0.82	0.100	0.00	
1,2,3,4,6,7,8-HpCDF	ND	0.82	0 01 0		
1,2,3,4,7,8,9-HpCDF	ND	0.53	0.010	0.00	
Total HpCDF	ND	0.58	0.010	0.00	
OCDF	ND	1.5	0 001		
Total TTO Concertant		±.5	0.001	0.00	
Total TEQ Concentrati	Lonが	,		0.00	
	PERCENT	RECO	OVERY		
INTERNAL STANDARDS	RECOVERY	LIM			
13C-2,3,7,8-TCDD	84				
13C-1,2,3,7,8-PeCDD	69		- 135		
13C-1,2,3,6,7,8-HxCDE			- 135		
13C-1,2,3,4,6,7,8-HpC			- 135		
13C-OCDD			- 135		
	81		- 135		
13C-2,3,7,8-TCDF	92		- 135		
13C-1,2,3,7,8-PeCDF	72		- 135		
13C-1,2,3,4,7,8-HxCDF			- 135		
13C-1,2,3,4,6,7,8-HpC	DF 96	40	- 135		
NOTES:					

ANEC VALIDATED

Calculations are performed before rounding to avoid round-off errors in calculated results

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: PC-10

Lot-Sample #:	G0F300201-008	Work Order #:	DFKQ1102	Matrix:	SOLID
Date Sampled:	6/28/00	Date Received:	6/30/00	Instrument:	6D5
Prep Date:	7/5/00	Analysis Date:	7/9/00	Units:	pg/g
Prep Batch #:	0187203	Dilution Factor:	1	% Moisture:	22
PARAMETER VE	a gua cote	REPORTI LIMIT	NG TEF FACTO	R TEQ Cor	nc.
2,3,7,8-TCDD	K ND	0.86	1.000	0.00	
Total TCDD	ND	0.86	1.000	0.00	
1,2,3,7,8-PeCDD	ND	1.8	0.500	0.00	
Total PeCDD	ND	1.8	0.000	0.00	
1,2,3,4,7,8-HxCDD	ND	1.3	0.100	0.00	
1,2,3,6,7,8-HxCDD	ND	1.2	0.100	0.00	
1,2,3,7,8,9-HxCDD	ND	1.1	0.100	0.00	
Total HxCDD	ND	1.3	5.200	0.00	
1,2,3,4,6,7,8-HpCDD	ND	1.4	0.010	0.00	
Total HpCDD	ND	1.4		0.00	
OCDD	ND	2.2	0.001	0.00	
2,3,7,8-TCDF	ND	0.60	0.100	0.00	
Total TCDF	ND	0.60	0.200	0.00	
1,2,3,7,8-PeCDF	ND	1.1	0.050	0.00	
2,3,4,7,8-PeCDF	ND	1.1	0.500	0.00	
Total PeCDF	ND	1.1	0.000	0.00	
1,2,3,4,7,8-HxCDF	ND	0.77	0.100	0.00	
1,2,3,6,7,8-HxCDF	ND	0.56	0.100	0.00	
2,3,4,6,7,8-HxCDF	ND	0.79	0.100	0.00	
1,2,3,7,8,9-HxCDF	ND	0.79	0.100	0.00	
Total HxCDF	ND	0.79		0.00	
1,2,3,4,6,7,8-HpCDF	ND	0.69	0.010	0.00	
1,2,3,4,7,8,9-HpCDF	ND	0.77	0.010	0.00	
Total HpCDF	ND	0.77		0.00	
OCDF N	ND	2.0	0.001	0.00	
Total TEQ Concentrati	.on¥	×		0.00	
INTERNAL STANDARDS	PERCENT RECOVERY		COVERY 11TS		
13C-2,3,7,8-TCDD	74) - 135		
13C-1,2,3,7,8-PeCDD	63) - 135		
13C-1,2,3,6,7,8-HxCDD	91) = 135		
13C-1,2,3,4,6,7,8-HpC) - 135		
13C-OCDD	69) - 135		
13C-2,3,7,8-TCDF	81) - 135		
13C-1,2,3,7,8-PeCDF	62	•			
13C-1,2,3,4,7,8-HxCDF			- 135		
13C-1,2,3,4,6,7,8-HpC			- 135		
,-,-,-,-,,-,-npc		40	- 135		

Calculations are performed defore rounding to avoid round-off errors in calculated results * Not salud M salidated. ANEC VALIDATED

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: PC-12

Lot-Sample #:	a.								
Date Sampled:						DFKQ2102		Matrix:	
			Date Received:		6/30/00		Instrument:		6D5
Prep Date:		/5/00	Analysis		7/9/	00	Units.	• • • • • •	pg/g
<pre>Prep Batch #:</pre>	01	87203	Dilution	Factor:	1		% Mois	sture:	4.2
PARAMETER	reij qual	gua Ood ^{BESULT}		REPORTI LIMIT	NG	TEF FACTOR		TEQ Cor	10.
2,3,7,8-TCDD	U	ND		0.21		1.000	Realized)	0.00	
Total TCDD	1	ND		0.21				0.00	
1,2,3,7,8-PeCDD		ND		0.48		0.500		0.00	
Total PeCDD		ND		1.1					
1,2,3,4,7,8-HxCDD		ND		0.28		0.100		0.00	
1,2,3,6,7,8-HxCDD		ND		0.27		0.100		0.00	
1,2,3,7,8,9-HxCDD		ND		0.25		0.100		0.00	
Total HxCDD		ND		0.28					
1,2,3,4,6,7,8-HpCD	D -	ND		0.34		0.010		0.00	
Total HpCDD		ND		0.53					
OCDD		ND		2.6		0.001		0.00	
2,3,7,8-TCDF		ND		0.16		0.100		0.00	
Total TCDF		ND		0.16					
1,2,3,7,8-PeCDF		ND		0.24		0.050		0.00	
2,3,4,7,8-PeCDF		ND		0.24		0.500		0.00	
Total PeCDF		ND		0.24					
1,2,3,4,7,8-HxCDF		ND		0.18		0.100		0.00	
1,2,3,6,7,8-HxCDF		ND		0.13		0.100		0.00	
2,3,4,6,7,8-HxCDF		ND		0.18		0.100		0.00	
1,2,3,7,8,9-HxCDF		ND		0.18		0.100		0.00	
Total HxCDF		ND		0.18					
1,2,3,4,6,7,8-HpCD	F	ND		0.16		0.010	1	0.00	
1,2,3,4,7,8,9-HpCD	F	ND		0.18		0.010		0.00	
Total HpCDF		ND		0.24					
OCDF	- ↓	ND		0.34		0.001	(0.00	
Total TEQ Concentra	ation	*					(0.00	
INTERNAL STANDARDS		PERCENT RECOVERY			COVERY MITS				
13C-2,3,7,8-TCDD		80		40) - 135				
13C-1,2,3,7,8-PeCDI)	69) - 135				
13C-1,2,3,6,7,8-HxC	DD	86) - 135				
13C-1,2,3,4,6,7,8-H	IpCDD	85) - 135				
13C-OCDD	•	70) - 135) - 135				
13C-2,3,7,8-TCDF		85			- 135 - 135				
13C-1,2,3,7,8-PeCDF	7	68	-		- 135				
13C-1,2,3,4,7,8-HxC		80							
		00		40	- 135				

40 _ 135

AMEC VALIDATED

Level V

NOTES:

13C-1,2,3,4,6,7,8-HpCDF

* Not validated.

Calculations are performed before rounding to avoid round-off errors in calculated results

84

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: PC-14B

	OF300201-010	Work Order #:	DFKQ7102	Matrix:	SOLID
Date Sampled: 6	/28/00	Date Received:	6/30/00	Instrument:	6D5
Prep Date 7	/5/00	Analysis Date:	7/9/00	Units:	pg/g
Prep Batch #: 0	187203	Dilution Factor:	1	% Moisture:	23
Seit	qua	REPORTI	NG TEF		£.)
PARAMETER qua	addesult	LIMIT	FACTOR	TEQ Cor	nc.
2,3,7,8-TCDD 人	ND	0.29	1.000	0.00	
Total TCDD	ND	0.29	1.000	0.00	
1,2,3,7,8-PeCDD	ND	0.52	0.500	0.00	
Total PeCDD	ND	1.4	0.000	0.00	
1,2,3,4,7,8-HxCDD	ND	0.40	0.100	0.00	
1,2,3,6,7,8-HxCDD	ND	0.38	0.100	0.00	
1,2,3,7,8,9-HxCDD	ND	0.35	0.100	0.00	
Total HxCDD	ND	0.65	0.100	0.00	
1,2,3,4,6,7,8-HpCDD	ND	2.2	0.010	0.00	
Total HpCDD	3.4		0.010	0.00	
OCDD	16		0.001		
2,3,7,8-TCDF U	ND	0.22		0.02	
Total TCDF	ND	0.22	0.100	0.00	
1,2,3,7,8-PeCDF	ND	0.30	0.050	0.00	
2,3,4,7,8-PeCDF	ND	0.31	0.030	0.00	
Total PeCDF	ND	0.35	0.500	0.00	
1,2,3,4,7,8-HxCDF	ND	0.29	0 100	0.00	
1,2,3,6,7,8-HxCDF	ND	0.23	0.100	0.00	
2,3,4,6,7,8-HxCDF	ND	0.30	0.100	0.00	
1,2,3,7,8,9-HxCDF	ND	0.30	0.100	0.00	
Total HxCDF	ND	0.30	0.100	0.00	
1,2,3,4,6,7,8-HpCDF	ND	0.33	0 01 0		
1,2,3,4,7,8,9-HpCDF	ND	0.26	0.010	0.00	
Total HpCDF	ND	0.28	0.010	0.00	
OCDF	ND	0.69	0 001		
		0.09	0.001	0.00	
Total TEQ Concentration	17			0.02	
	PERCENT	REC	OVERY		
INTERNAL STANDARDS	RECOVERY		ITS		
13C-2,3,7,8-TCDD	80		- 135		
13C-1,2,3,7,8-PeCDD	69				
13C-1,2,3,6,7,8-HxCDD	88		- 135		
13C-1,2,3,4,6,7,8-HpCDD			- 135		
13C-OCDD	75		- 135		
			- 135		
13C-2,3,7,8-TCDF	86		- 135		
13C-1,2,3,7,8-PeCDF	70		- 135		
13C-1,2,3,4,7,8-HxCDF	78		- 135		
13C-1,2,3,4,6,7,8-HpCDF	. 88	40	- 135		
NOTES:					

AMEC VALIDATED

LEVEL V

Calculations are performed before rounding to avoid round-off errors in calculated results * Not validated

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: PC-14T

Lot-Sample #: (G0F300201-013	Work Order #:	DFKQC102	Matrix:	6 07
Date Sampled:	5/28/00	Date Received:	6/30/00	Instrument:	SOLID
Prep Date	7/5/00	Analysis Date:	7/9/00	Units:	6D5
Prep Batch #: (0187203	Dilution Factor:	1		bd\d
			-	% Moisture:	20
PARAMETER YEL	l ede	REPORTII LIMIT	NG TEF FACTOF	TEQ Cor	nc.
2,3,7,8-TCDD U	ND	0.69	1.000	0.00	
Total TCDD	ND	0.69			
1,2,3,7,8-PeCDD	ND	2.0	0.500	0.00	
Total PeCDD	ND	2.0			
1,2,3,4,7,8-HxCDD	ND	1.3	0.100	0.00	
1,2,3,6,7,8-HxCDD	ND	1.3	0.100	0.00	
1,2,3,7,8,9-HxCDD	ND	1.2	0.100	0.00	
Total HxCDD	ND	1.3			
1,2,3,4,6,7,8-HpCDD	ND	1.8	0.010	0.00	
Total HpCDD	ND	1.8			
OCDD	ND	2.8	0.001	0.00	
2,3,7,8-TCDF	ND	0.56	0.100	0.00	
Total TCDF	ND	0.56			
1,2,3,7,8-PeCDF	ND	1.0	0.050	0.00	
2,3,4,7,8-PeCDF	ND	1.0	0.500	0.00	
Total PeCDF	ND	1.0			
1,2,3,4,7,8-HxCDF	ND	0.97	0.100	0.00	
1,2,3,6,7,8-HxCDF	ND	0.71	0.100	0.00	
2,3,4,6,7,8-HxCDF	ND	1.0	0.100	0.00	
1,2,3,7,8,9-HxCDF	ND	1.0	0.100	0.00	
Total HxCDF	ND	1.0			
1,2,3,4,6,7,8-HpCDF	ND	0.94	0.010	0.00	
1,2,3,4,7,8,9-HpCDF	ND	1.0	0.010	0.00	
Total HpCDF	ND	1.0			
ocdf √	ND	2.5	0.001	0.00	
Total TEQ Concentration	n¥	κ.		0.00	
	PERCENT	1		0.00	
INTERNAL STANDARDS	RECOVERY	REC	OVERY ITS		
13C-2,3,7,8-TCDD	75	40	- 135		
13C-1,2,3,7,8-PeCDD	59	40	- 135		
13C-1,2,3,6,7,8-HxCDD	71	40	- 135		
13C-1,2,3,4,6,7,8-HpCDD	59	40	- 135		
13C-OCDD	45		- 135		
13C-2,3,7,8-TCDF	78		- 135		
13C-1,2,3,7,8-PeCDF	58		- 135		
13C-1,2,3,4,7,8-HxCDF	55		- 135		
13C-1,2,3,4,6,7,8-HpCDF			- 135 - 135		
_					
NOTES:					

LEVEL V

Calculations are performed before rounding to avoid round-off errors in calculated results * Not Jalidated. AMEC VALIDATED

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: PC-16B

Date Sampled: 6/28/00 Date Received: 6/30/00 Instrument: 6DS Prep Date: 7/5/00 Analysis Date: 7/9/00 Units: pg/g Prep Batch #: 0.87203 Dilution Factor: 1 % Moisture: 23 PARAMETER Main ND 0.83 1.000 0.00 1,2,3,7,8-PECDD ND 1.6 0.500 0.00 1,2,3,7,8-PECDD ND 1.1 0.100 0.00 1,2,3,7,8,9-HXCDD ND 1.1 0.100 0.00 1,2,3,7,8,9-PECDD ND 0.57 0.100 0.00 7,2,3,7,8-PECDF ND 0.57 0.100 0.00 7,2,3,7,8-PECDF ND 0.57 0.100 0.00 7,2,3,7,8-PECDF ND 0.57	Lot-Sample #:		F300201-012	Work Order #		FKQA102	Matrix:	SOLID
Prep Batch #: 0187203 Dilution Pactor: 1 % Moisture: 23 PARAMETER Image Sourt REPORTING TEP TEQ Conc. 2.3,7,8-TCDD Image Sourt ND 0.83 1.000 0.00 1,2,3,4,7,8-TCDD ND 1.6 0.500 0.00 0.00 1,2,3,4,7,8-HxCDD ND 1.6 0.100 0.00 0.00 1,2,3,4,7,8-HxCDD ND 1.1 0.100 0.00 0.00 1,2,3,4,7,8-HxCDD ND 1.1 0.100 0.00 0.00 1,2,3,4,7,8-HxCDD ND 1.1 0.100 0.00 0.00 1,2,3,4,7,8-HxCDD ND 2.6 0.001 0.01 0.00 1,2,3,7,8-TCDF ND 0.57 0.100 0.00 0.00 1,2,3,4,7,8-HxCDF ND 0.63 0.100 0.00 1,2,3,4,7,8-HxCDF ND 0.63 0.100 0.00 1,2,3,4,7,8-HxCDF ND 0.66 0.100 <t< td=""><td>Date Sampled:</td><td></td><td></td><td></td><td></td><td></td><td></td><td>6D5</td></t<>	Date Sampled:							6D5
PARAMETER Model REPORTING TEP TEQ Conc. 2,3,7,8-TCDD ND 0.83 1.000 0.00 Total TCDD ND 0.83 1.000 0.00 1,2,3,7,8-PeCDD ND 1.6 0.500 0.00 Total TCDD ND 1.6 0.500 0.00 1,2,3,7,8-PeCDD ND 1.6 0.100 0.00 1,2,3,7,8-FECDD ND 1.1 0.000 0.00 1,2,3,7,8-FECDF ND 0.57 0.100 0.00 1,2,3,7,8-FECDF ND 0.57 0.100 0.00 1,2,3,4,7,8-FECDF ND 0.57 0.100 0.00 1,2,3,4,7,8-FECDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HECDF ND 0.66	_		-			/9/00	Units:	pg/g
PARADILA LIMIT FACTOR TEQ Conc. 2,3,7,8-TCDD ND 0.83 1.000 0.00 1,2,3,7,8-TCDD ND 0.83 1.000 0.00 Total TCDD ND 1.6 0.500 0.00 1,2,3,4,7,8-FACDD ND 1.6 0.100 0.00 1,2,3,4,7,8-HACDD ND 1.1 0.100 0.00 1,2,3,4,7,8-FHCDD ND 1.1 0.100 0.00 1,2,3,4,6,7,8-HACDD ND 1.1 0.001 0.00 1,2,3,4,6,7,8-HACDD ND 1.1 0.001 0.00 1,2,3,7,8-TCDF ND 1.1 0.001 0.00 1,2,3,7,8-TCDF ND 0.57 0.100 0.00 2,3,7,8-TCDF ND 0.57 0.100 0.00 2,3,7,8-TCDF ND 0.57 0.100 0.00 2,3,4,7,8-PECDF ND 0.57 0.100 0.00 1,2,3,7,8-FECDF ND 0.66 0.100 0.00	Prep Batch #:	01	87203	Dilution Facto	or: 1		% Moisture:	23
Total TCDD ND 0.83 1.000 0.00 1,2,3,7,8-PeCDD ND 1.6 0.500 0.00 1,2,3,7,8-PeCDD ND 1.6 0.100 0.00 1,2,3,7,8-PeCDD ND 1.1 0.100 0.00 1,2,3,7,8-PeCDD ND 1.0 0.100 0.00 1,2,3,7,8,9-HxCDD ND 1.1 0.100 0.00 Total PeCDD ND 1.1 0.100 0.00 1,2,3,7,8,9-HxCDD ND 2.6 0.001 0.00 CCDD 13 0.001 0.00 0.00 7.3,7,8-TCDF ND 0.57 0.100 0.00 7.3,7,8-PeCDF ND 0.97 0.500 0.00 1,2,3,7,8-PeCDF ND 0.97 0.500 0.00 1,2,3,7,8-PeCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 </td <td></td> <td>ev al</td> <td>ode BESULT</td> <td></td> <td></td> <td></td> <td>TEQ Con</td> <td>.c.</td>		ev al	ode BESULT				TEQ Con	.c.
Total TCDD ND 0.83 1,2,3,7,8-PeCDD ND 1.6 0.500 0.00 1,2,3,7,8-PeCDD ND 1.6 0.100 0.00 1,2,3,7,8,9-HxCDD ND 1.1 0.100 0.00 1,2,3,7,8,9-HxCDD ND 1.1 0.100 0.00 Total PeCDD ND 1.1 0.100 0.00 1,2,3,7,8,9-HxCDD ND 1.1 0.001 0.00 Total HxCDD ND 2.0 0.010 0.00 Total HxCDD ND 2.0 0.001 0.00 Total HxCDD ND 2.0 0.001 0.00 2,3,7,8-TCDF ND 0.57 0.100 0.00 12,3,7,8-PeCDF ND 0.97 0.500 0.00 1,2,3,7,8-PeCDF ND 0.63 0.100 0.00 1,2,3,7,8-PeCDF ND 0.66 0.100 0.00 1,2,3,7,8-PeCDF ND 0.66 0.100 0.00 1,2,3,7,8-PeCDF ND 0.66 0.100 0.00 1,2,3,7,8,9-HxCDF <td>2,3,7,8-TCDD</td> <td>n</td> <td>ND</td> <td>0.8</td> <td>3</td> <td>1.000</td> <td>0.00</td> <td></td>	2,3,7,8-TCDD	n	ND	0.8	3	1.000	0.00	
Total PecDD ND 1.6 0.000 0.000 1,2,3,4,7,8-HXCDD ND 1.1 0.100 0.00 1,2,3,5,7,8-HXCDD ND 1.0 0.100 0.00 1,2,3,5,7,8-HXCDD ND 1.0 0.100 0.00 1,2,3,7,8-FXCDD ND 1.1 0.100 0.00 Total HxCDD ND 1.1 0.001 0.00 70tal HyCDD ND 2.0 0.010 0.00 70tal HyCDD ND 0.57 0.100 0.00 70tal HyCDF ND 0.57 0.100 0.00 70tal TCPF ND 0.96 0.050 0.00 1,2,3,4,7,8-PECDF ND 0.97 0.500 0.00 7,3,4,7,8-HXCDF ND 0.47 0.100 0.00 1,2,3,4,6,7,8-HXCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HXCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HXCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HXCDF ND 0.62 0.010 <			ND	0.8	3			
1,2,3,4,7,8-HXCDD ND 1.1 0.100 0.00 1,2,3,6,7,8-HXCDD ND 1.0 0.100 0.00 1,2,3,7,8,9-HXCDD ND 0.93 0.100 0.00 1,2,3,7,8,9-HXCDD ND 1.1 0.00 0.00 1,2,3,7,8,9-HXCDD ND 1.1 0.001 0.00 1,2,3,7,8,9-HXCDF ND 1.1 0.001 0.00 7otal HxCDD ND 2.6 0.001 0.01 0,0DD 0.57 0.100 0.00 0.00 7otal PeCDF ND 0.97 0.500 0.00 7,2,3,7,8-PECDF ND 0.97 0.500 0.00 7,2,3,4,7,8-HXCDF ND 0.63 0.100 0.00 7,2,3,4,7,8-HXCDF ND 0.66 0.100 0.00 1,2,3,4,7,8-HXCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HXCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HXCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HXCDF ND 0.62 0.01			ND	1.6		0.500	0.00	
1, 2, 3, 6, 7, 8-HxCDD ND 1.0 0.100 0.00 1, 2, 3, 7, 8, 9-HxCDD ND 0.93 0.100 0.00 1, 2, 3, 7, 8, 9-HxCDD ND 1.1 0.001 0.00 1, 2, 3, 4, 6, 7, 8-HxCDD ND 1.1 0.001 0.00 1, 2, 3, 4, 6, 7, 8-HxCDD ND 2.0 0.010 0.00 Total HxCDD ND 2.6 0.001 0.01 OCDD 13 0.001 0.01 0.00 Total HxCDF ND 0.57 0.100 0.00 Total PCDF ND 0.57 0.100 0.00 Total PCDF ND 0.97 0.500 0.00 Total PCDF ND 0.63 0.100 0.00 Total PCDF ND 0.66 0.100 0.00 1, 2, 3, 4, 7, 8-HxCDF ND 0.66 0.100 0.00 1, 2, 3, 4, 6, 7, 8-HxCDF ND 0.66 0.100 0.00 1, 2, 3, 4, 6, 7, 8-HxCDF ND 0.66 0.100 0.00 1, 2, 3, 4, 6, 7, 8-HxCDF ND <	Total PeCDD		ND	1.6				
1,2,3,7,8,9-HxCDD ND 0.93 0.100 0.00 Total HxCDD ND 1.1 0.001 0.00 Total HxCDD ND 2.0 0.010 0.00 Total HxCDD ND 2.6 0.001 0.01 OCDD 13 0.97 0.100 0.00 Total TCDF ND 0.57 0.100 0.00 Total PCDF ND 0.97 0.500 0.00 7,2,3,4,7,8-PeCDF ND 0.97 0.500 0.00 7,2,3,4,7,8-PeCDF ND 0.97 0.500 0.00 7,2,3,4,7,8-PeCDF ND 0.66 0.100 0.00 1,2,3,4,7,8-PECDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.62 0.01 0.00 1,2,3,4,6,7,8-HxCDF ND 0.62 0.01 <t< td=""><td></td><td></td><td>ND</td><td>1.1</td><td></td><td>0.100</td><td>0.00</td><td></td></t<>			ND	1.1		0.100	0.00	
Total HxCDD ND 1.1 0.000 1,2,3,4,6,7,8-HpCDD ND 2.0 0.010 0.00 Total HpCDD ND 2.6 0.001 0.01 2,3,7,8-TCDF ND 0.57 0.100 0.00 Total TCDF ND 0.57 0.100 0.00 Total TCDF ND 0.96 0.050 0.00 7,3,4,7,8-PeCDF ND 0.97 0.500 0.00 Total PeCDF ND 0.63 0.100 0.00 7,2,3,4,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,7,8,9-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.010 0.00 1,2,3,4,6,7,8-HxCDF ND 0.62 0.010 0.00 Total HxCDF ND 0.62 0.010 0.00 </td <td></td> <td></td> <td>ND</td> <td>1.0</td> <td></td> <td>0.100</td> <td>0.00</td> <td></td>			ND	1.0		0.100	0.00	
1,2,3,4,6,7,8-HpCDD ND 2.0 0.010 0.00 Total HpCDD ND 2.6 0.001 0.01 0CDD 13 0.001 0.01 7,3,7,8-TCDF ND 0.57 0.100 0.00 7,3,7,8-PeCDF ND 0.57 0.100 0.00 7,3,7,8-PeCDF ND 0.96 0.050 0.00 7,3,4,7,8-PeCDF ND 0.97 0.500 0.00 7,3,4,7,8-PeCDF ND 0.97 0.500 0.00 7,3,4,7,8-PeCDF ND 0.63 0.100 0.00 7,3,4,7,8-PeCDF ND 0.63 0.100 0.00 7,2,3,4,7,8-PeCDF ND 0.66 0.100 0.00 7,2,3,7,8-PeCDF ND 0.66 0.100 0.00 7,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 70tal HxCDF ND 0.62 0.010 0.00 70tal HxCDF ND 0.62 0.010 0.00 70tal HyCDF ND 0.62 0.010 0.00 <td< td=""><td></td><td></td><td>ND</td><td>0.9</td><td>3</td><td>0.100</td><td>0.00</td><td></td></td<>			ND	0.9	3	0.100	0.00	
Total HpCDD ND 2.6 0.001 0.01 2,3,7,8-TCDF 113 0.001 0.01 1,2,3,7,8-PeCDF ND 0.57 0.100 0.00 1,2,3,7,8-PeCDF ND 0.96 0.050 0.00 2,3,4,7,8-PeCDF ND 0.97 0.500 0.00 1,2,3,7,8-PeCDF ND 0.97 0.500 0.00 7.2,3,4,7,8-PeCDF ND 0.63 0.100 0.00 1,2,3,4,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.666 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.666 0.100 0.00 1,2,3,4,7,8,9-HxCDF ND 0.662 0.010 0.00 1,2,3,4,7,8,9-HxCDF ND 0.62 0.010 0.00 Total HxCDF ND 0.62 0.010 0.00 1,2,3,4,7,8-HpCDF ND 0.62 0.01 0.00 Total HxCDF ND 0.62 0.01 0.00 Total TEQ Concentration 51 40 - 135 135			ND	1.1				
OCDD 13 0.001 0.01 2,3,7,8-TCDF 1 ND 0.57 0.100 0.00 Total TCDF ND 0.96 0.050 0.00 2,3,4,7,8-PCDF ND 0.97 0.500 0.00 2,3,4,7,8-PCDF ND 0.97 0.500 0.00 70tal PeCDF ND 0.63 0.100 0.00 1,2,3,4,7,8-HxCDF ND 0.63 0.100 0.00 1,2,3,4,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HpCDF ND 0.62 0.010 0.00 1,2,3,4,7,8,9-HpCDF ND 0.62 0.001 0.00 Total HpCDF ND 1.7 0.001 0.00 ND 1.7 0.001 0.00			ND	2.0		0.010	0.00	
2,3,7,8-TCDF 1 ND 0.57 0.100 0.00 Total TCDF ND 0.96 0.050 0.00 1,2,3,7,8-PeCDF ND 0.97 0.500 0.00 2,3,4,7,8-PeCDF ND 0.97 0.500 0.00 2,3,4,7,8-PeCDF ND 0.97 0.500 0.00 70tal PeCDF ND 0.97 0.500 0.00 1,2,3,4,7,8-HxCDF ND 0.63 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HyCDF ND 0.62 0.010 0.00 Total HxCDF ND 0.62 0.001 0.00 Total HyCDF ND 0.62 0.001 0.00 Total HyCDF ND 1.7 0.001 0.00 Total HyCDF ND 1.7 0.	*	\mathbf{V}	ND	2.6				
Total TCDF ND 0.57 0.100 0.00 1,2,3,7,8-PeCDF ND 0.96 0.050 0.00 2,3,4,7,8-PeCDF ND 0.97 0.500 0.00 Total PeCDF ND 0.97 0.500 0.00 Total PeCDF ND 0.63 0.100 0.00 1,2,3,4,7,8-PeCDF ND 0.63 0.100 0.00 1,2,3,4,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,7,8,9-HxCDF ND 0.66 0.100 0.00 1,2,3,7,8,9-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.01 0.00 Total HxCFF ND 0.62 0.01 0.00 CCDF ND 1.7 0.001 0.00 Total TEQ Concentration 51 40 - 135 13C-1,2,3,7,8-PeCDD 44 40 - 135 13C-1,2,3,7,8-PeCDD 54 40 - 135 135 13C-1,2,3,4,6,7,8-HxCDD 65 40 - 135			13			0.001	0.01	
Total TCDF ND 0.57 1,2,3,7,8-PeCDF ND 0.96 0.050 0.00 2,3,4,7,8-PeCDF ND 0.97 0.500 0.00 Total PeCDF ND 0.63 0.100 0.00 1,2,3,4,7,8-HxCDF ND 0.63 0.100 0.00 1,2,3,4,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HyCDF ND 0.66 0.01 0.00 1,2,3,4,6,7,8-HyCDF ND 0.62 0.010 0.00 Total HyCDF ND 0.62 0.01 0.00 Total HyCDF ND 0.62 0.01 0.00 Total TEQ Concentration ND 1.7 0.001 0.00 Total TEQ Concentration 51 40 - 135 135 135 13C-1,2,3,7,8-PECDD 54 40 - 135 135 135 <td>2,3,7,8-TCDF</td> <td>K </td> <td>ND</td> <td>0.5</td> <td>7</td> <td>0.100</td> <td>0.00</td> <td></td>	2,3,7,8-TCDF	K	ND	0.5	7	0.100	0.00	
2,3,4,7,8-PeCDF ND 0.97 0.500 0.00 Total PeCDF ND 0.97 0.500 0.00 1,2,3,4,7,8-HxCDF ND 0.63 0.100 0.00 1,2,3,4,7,8-HxCDF ND 0.63 0.100 0.00 1,2,3,6,7,8-HxCDF ND 0.66 0.100 0.00 2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,7,8,9-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HxCDF ND 0.662 0.010 0.00 1,2,3,4,7,8,9-HxCDF ND 0.62 0.01 0.01 Total HyCDF ND 0.62 0.01 0.01 Total TEQ Concentration PERCENT RECOVERY LIMITS 0.01 13C-1,2,3,7,8-FCDD 51 40 135 13C-1,2,3,4,6,7,8-HxCDD 63 40 135 13C-1,2,3,4,6,7,8-HyCDD 65 40 135 135 <td></td> <td></td> <td>ND</td> <td>0.5</td> <td>7</td> <td></td> <td></td> <td></td>			ND	0.5	7			
Total PeCDF ND 0.97 0.00 0.00 1,2,3,4,7,8-HxCDF ND 0.63 0.100 0.00 2,3,4,6,7,8-HxCDF ND 0.47 0.100 0.00 2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,7,8,9-HxCDF ND 0.66 0.100 0.00 1,2,3,7,8,9-HxCDF ND 0.66 0.100 0.00 Total HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HpCDF ND 0.66 0.010 0.00 Total HxCDF ND 0.66 0.010 0.00 1,2,3,4,6,7,8-HpCDF ND 0.62 0.010 0.00 Total HpCDF ND 0.62 0.001 0.00 Total TEQ Concentration PERCENT RECOVERY LIMITS 0.01 INTERNAL STANDARDS 51 40 - 135 40 - 135 13C-1,2,3,7,8-FCDD 63 40 - 135 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 135 13C-1,2,3,4,6,7,8-HpCDD 55 40 - 135 135 135 135 <td>1,2,3,7,8-PeCDF</td> <td></td> <td>ND</td> <td>0.96</td> <td>5</td> <td>0.050</td> <td>0.00</td> <td></td>	1,2,3,7,8-PeCDF		ND	0.96	5	0.050	0.00	
1,2,3,4,7,8-HxCDF ND 0.63 0.100 0.00 1,2,3,6,7,8-HxCDF ND 0.47 0.100 0.00 2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,7,8,9-HxCDF ND 0.66 0.100 0.00 1,2,3,7,8,9-HxCDF ND 0.66 0.100 0.00 Total HxCDF ND 0.66 0.010 0.00 1,2,3,4,7,8,9-HpCDF ND 0.62 0.010 0.00 1,2,3,4,7,8,9-HpCDF ND 0.62 0.010 0.00 7otal HxCDF ND 0.62 0.010 0.00 Total HpCDF ND 0.62 0.001 0.00 Total TEQ Concentration PERCENT RECOVERY LIMITS 0.01 INTERNAL STANDARDS 51 40 - 135 0.01 0.01 ISC-1,2,3,7,8-TCDD 51 40 - 135 135 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 135 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 135 135 135			ND	0.91	7	0.500	0.00	
1,2,3,6,7,8-HxCDF ND 0.47 0.100 0.00 2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,7,8,9-HxCDF ND 0.66 0.100 0.00 1,2,3,7,8,9-HxCDF ND 0.66 0.100 0.00 Total HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HpCDF ND 0.66 0.100 0.00 1,2,3,4,7,8,9-HpCDF ND 0.62 0.010 0.00 1,2,3,4,7,8,9-HpCDF ND 0.62 0.010 0.00 Total HpCDF ND 0.62 0.001 0.00 OCDF ND 1.7 0.001 0.00 Total TEQ Concentration FRECOVERY LIMITS 0.01 INTERNAL STANDARDS 51 40 - 135 40 - 135 13C-1,2,3,7,8-TCDD 63 40 - 135 135 13C-1,2,3,4,6,7,8-HxCDD 65 40 - 135 135 13C-1,2,3,4,6,7,8-HpCDD 55 40 - 135 135			ND	0.97	7			
2,3,4,6,7,8-HxCDF ND 0.66 0.100 0.00 1,2,3,7,8,9-HxCDF ND 0.66 0.100 0.00 Total HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HpCDF ND 0.66 0.100 0.00 Total HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HpCDF ND 0.66 0.00 0.00 1,2,3,4,7,8,9-HpCDF ND 0.62 0.010 0.00 Total HpCDF ND 0.62 0.010 0.00 OCDF ND 0.62 0.001 0.00 Total TEQ Concentration ND 0.62 0.001 0.00 INTERNAL STANDARDS S1 40 - 135 0.01 0.01 INTERNAL STANDARDS 51 40 - 135 135 135 135 13C-1,2,3,7,8-PECDD 44 40 - 135 135 135 135 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 135 135 135 13C-0CDD 55 40 - 135 135 135 135 <td></td> <td></td> <td>ND</td> <td>0.63</td> <td></td> <td>0.100</td> <td>0.00</td> <td></td>			ND	0.63		0.100	0.00	
1,2,3,7,8,9-HxCDF ND 0.66 0.100 0.00 Total HxCDF ND 0.66 0.100 0.00 1,2,3,4,6,7,8-HpCDF ND 0.57 0.010 0.00 1,2,3,4,7,8,9-HpCDF ND 0.62 0.010 0.00 Total HpCDF ND 0.62 0.010 0.00 OCDF ND 0.62 0.001 0.00 Total TEQ Concentration ND 1.7 0.001 0.00 INTERNAL STANDARDS PERCENT RECOVERY RECOVERY LIMITS 0.01 ISC-1,2,3,7,8-PECDD 44 40 - 135 135 135 I3C-1,2,3,4,6,7,8-HpCDD 63 40 - 135 135 I3C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 135 I3C-0CDD 55 40 - 135 135			ND	0.47		0.100	0.00	
Total HxCDF ND 0.66 0.00 0.00 1,2,3,4,6,7,8-HpCDF ND 0.57 0.010 0.00 1,2,3,4,7,8,9-HpCDF ND 0.62 0.010 0.00 Total HpCDF ND 0.62 0.001 0.00 OCDF ND 0.62 0.001 0.00 Total TEQ Concentration PERCENT RECOVERY LIMITS INTERNAL STANDARDS 51 40 - 135 0.01 ISC-1,2,3,7,8-TCDD 51 40 - 135 135 I3C-1,2,3,6,7,8-HxCDD 63 40 - 135 135 I3C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 135 I3C-0CDD 55 40 - 135 135			ND	0.66		0.100	0.00	
1,2,3,4,6,7,8-HpCDF ND 0.57 0.010 0.00 1,2,3,4,7,8,9-HpCDF ND 0.62 0.010 0.00 Total HpCDF ND 0.62 0.001 0.00 OCDF ND 1.7 0.001 0.00 Total TEQ Concentration PERCENT RECOVERY 0.01 0.00 INTERNAL STANDARDS 51 40 - 135 0.01 13C-1,2,3,7,8-TCDD 51 40 - 135 135 13C-1,2,3,6,7,8-HxCDD 63 40 - 135 135 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 135 13C-0CDD 55 40 - 135 40 - 135			ND	0.66		0.100	0.00	
1,2,3,4,7,8,9-HpCDF ND 0.62 0.010 0.00 Total HpCDF ND 0.62 0.001 0.00 OCDF ND 1.7 0.001 0.00 Total TEQ Concentration PERCENT RECOVERY LIMITS INTERNAL STANDARDS 51 40 - 135 0.01 13C-1,2,3,7,8-PeCDD 44 40 - 135 0.135 13C-1,2,3,4,6,7,8-HxCDD 63 40 - 135 0.135 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 0.135 13C-0CDD 55 40 - 135 0.135			ND	0.66				
Total HpCDF ND 0.62 0.001 0.00 OCDF ND 1.7 0.001 0.00 Total TEQ Concentration PERCENT RECOVERY LIMITS INTERNAL STANDARDS 51 40 - 135 13C-1,2,3,7,8-TCDD 51 40 - 135 13C-1,2,3,6,7,8-HxCDD 63 40 - 135 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 13C-0CDD 55 40 - 135	-			0.57		0.010	0.00	
OCDF ND 1.7 0.001 0.00 Total TEQ Concentration PERCENT RECOVERY RECOVERY LIMITS 0.001 INTERNAL STANDARDS PERCENT RECOVERY RECOVERY LIMITS 13C-2,3,7,8-TCDD 51 40 - 135 13C-1,2,3,7,8-PeCDD 44 40 - 135 13C-1,2,3,6,7,8-HxCDD 63 40 - 135 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 13C-0CDD 55 40 - 135	_			0.62		0.010	0.00	
Total TEQ Concentration PERCENT RECOVERY RECOVERY LIMITS 0.001 INTERNAL STANDARDS 51 40 - 135 13C-1,2,3,7,8-PeCDD 44 40 - 135 13C-1,2,3,6,7,8-HxCDD 63 40 - 135 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 13C-0CDD 55 40 - 135	—			0.62				
PERCENT RECOVERY INTERNAL STANDARDS FECOVERY 13C-2,3,7,8-TCDD 51 13C-1,2,3,7,8-PeCDD 44 40 - 135 13C-1,2,3,6,7,8-HxCDD 63 13C-1,2,3,4,6,7,8-HpCDD 65 13C-0CDD 55	OCDF	V	ND	1.7		0.001	0.00	
INTERNAL STANDARDS RECOVERY LIMITS 13C-2,3,7,8-TCDD 51 40 - 135 13C-1,2,3,7,8-PeCDD 44 40 - 135 13C-1,2,3,6,7,8-HxCDD 63 40 - 135 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 13C-0CDD 55 40 - 135	Total TEQ Concentrat:	ion	K				0.01	
13C-1,2,3,7,8-PeCDD 44 40 - 135 13C-1,2,3,6,7,8-HxCDD 63 40 - 135 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 13C-0CDD 55 40 - 135	INTERNAL STANDARDS							
13C-1,2,3,7,8-PeCDD 44 40 - 135 13C-1,2,3,6,7,8-HxCDD 63 40 - 135 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 13C-0CDD 55 40 - 135	13C-2,3,7,8-TCDD		51		40 -	135		
13C-1,2,3,6,7,8-HxCDD 63 40 - 135 13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 13C-OCDD 55 40 - 135	13C-1,2,3,7,8-PeCDD		44					
13C-1,2,3,4,6,7,8-HpCDD 65 40 - 135 13C-0CDD 55 40 - 135	13C-1,2,3,6,7,8-HxCDI	D	63					
13C-OCDD 55 40 - 135	13C-1,2,3,4,6,7,8-Hp	CDD	65					
	-	_						
	13C-1,2,3,7,8-PeCDF			-				
13C-1,2,3,4,7,8-HxCDF 53 40 - 135		Ŧ						
13C-1,2,3,4,6,7,8-HpCDF 66 40 - 135								
NOTES:	-		•••		- V -	J J		

Calculations are performed before rounding to avoid round-off errors in calculated results * Not validated.

AMEC VALIDATED

La La V La La V

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: PC-16BD

Lot-Sample #:	GOF	300201-014	Work Ord	er #	: DFKQ	D102	Matrix		201 75
Date Sampled:	6/28	3/00	Date Rec		~		Instrume		SOLID
Prep Date:	7/5,	/00	Analysis		•		Units		6D5
Prep Batch #:		7203	Dilution		, ,	00	% Moistu		Pg/g 19
	1								10
	rev gu nal Q	de RESULT		REPOR LIMIT		TEF FACTOR	TE	Q Con	c.
2,3,7,8-TCDD	N	ND	· · · · · · · · · · · · · · · · · · ·	1.1		1.000	0.0	00	
Total TCDD		ND		1.1					
1,2,3,7,8-PeCDD		ND		3.2		0.500	0.0	00	
Total PeCDD		ND		3.2					
1,2,3,4,7,8-HxCDD		ND		2.4		0.100	0.0	00	
1,2,3,6,7,8-HxCDD		ND		2.3		0.100	0.0	00	
1,2,3,7,8,9-HxCDD		ND		2.1		0.100	0.0	00	
Total HxCDD	\checkmark	ND		3.5					
1,2,3,4,6,7,8-HpCDD	~	11				0.010	0.1	1	
Total HpCDD		29							
OCDD	A CONTRACTOR	71				0.001	0.0	7	
2,3,7,8-TCDF	N	ND		1.1		0.100	0.0	0	
Total TCDF		ND		1.1					
1,2,3,7,8-PeCDF		ND		1.8		0.050	0.0	0	
2,3,4,7,8-PeCDF		ND		1.8		0.500	0.0	0	
Total PeCDF		ND		1.8					
1,2,3,4,7,8-HxCDF		ND		1.5		0.100	0.0	0	
1,2,3,6,7,8-HxCDF		ND		1.1		0.100	0.0	0	
2,3,4,6,7,8-HxCDF		ND		1.6		0.100	0.0	0	
1,2,3,7,8,9-HxCDF		ND		1.6		0.100	0.0	0	
Total HxCDF	CONTRACTOR	ND		1.6					
1,2,3,4,6,7,8-HpCDF		ND		1.6		0.010	0.0	0	
1,2,3,4,7,8,9-HpCDF		ND		1.5		0.010	0.0	0	
Total HpCDF		ND		2.8					
OCDF	▼	ND		2.8		0.001	0.0	0	
Total TEQ Concentrat	:ion≯						0.1	8	
		PERCENT		I	RECOVERY				
INTERNAL STANDARDS		RECOVERY		1	LIMITS				
13C-2,3,7,8-TCDD		59			40 - 135	·			
13C-1,2,3,7,8-PeCDD		48			40 - 135				
13C-1,2,3,6,7,8-HxCE	D	70			40 - 135				
13C-1,2,3,4,6,7,8-Hp	CDD	62			40 - 135				
13C-OCDD		57			40 - 135				
13C-2,3,7,8-TCDF		61			40 - 135				
13C-1,2,3,7,8-PeCDF		48			40 - 135				
13C-1,2,3,4,7,8-HxCD	F	58			40 - 135				
13C-1,2,3,4,6,7,8-Hp		62			40 - 135				
· · · · · · · · · · · · · · · · · · ·		~							

AMEC VALIDATED

LEVEL V

NOTES:

÷.

Calculations are performed before rounding to avoid round-off errors in calculated results * Not validated.

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: PC-16T

	G0F300201-011	Work Order #:	DFKQ9102	Matrix:	SOLID
Date Sampled:	6/28/00	Date Received:	6/30/00	Instrument:	6D5
Prep Date:	7/5/00	Analysis Date:	7/9/00	Units:	pg/g
Prep Batch #:	0187203	Dilution Factor:	1	% Moisture:	26
PARAMETER YU	e qual Result	REPORTI LIMIT	NG TEF FACTOR	TEQ Cor	
2,3,7,8-TCDD	A ND	0.55	1.000	0.00	
Total TCDD	ND	0.55		0.00	
1,2,3,7,8-PeCDD	ND	1.3	0.500	0.00	
Total PeCDD	ND	1.6			
1,2,3,4,7,8-HxCDD	ND	1.1	0.100	0.00	
1,2,3,6,7,8-HxCDD	ND	1.1	0.100	0.00	
1,2,3,7,8,9-HxCDD	ND	0.98	0.100	0.00	
Total HxCDD	ND	1.1			
1,2,3,4,6,7,8-HpCDD	ND	0.88	0.010	0.00	
Total HpCDD	ND	1.3			
OCDD	ND	4.0	0.001	0.00	
2,3,7,8-TCDF	ND	0.44	0.100	0.00	
Total TCDF	ND	0.54			
1,2,3,7,8-PeCDF	ND	1.0	0.050	0.00	
2,3,4,7,8-PeCDF	ND	1.1	0.500	0.00	
Total PeCDF	ND	2.3			
1,2,3,4,7,8-HxCDF	ND	1.8	0.100	0.00	
1,2,3,6,7,8-HxCDF	ND	3.1	0.100	0.00	
2,3,4,6,7,8-HxCDF	ND	0.79	0.100	0.00	
1,2,3,7,8,9-HxCDF	ND	0.92	0.100	0.00	
Total HxCDF	ND	3.1			
1,2,3,4,6,7,8-HpCDF	ND	2.1	0.010	0.00	
1,2,3,4,7,8,9-HpCDF	ND	2.5	0.010	0.00	
Total HpCDF	ND	2.5			
ocdf 🗸 🗸	ND	1.2	0.001	0.00	
Total TEQ Concentratio	on¥	,		0.00	
INTERNAL STANDARDS	PERCENT RECOVERY	REC	COVERY		
13C-2,3,7,8-TCDD	82	40	- 135		
13C-1,2,3,7,8-PeCDD	66		- 135		
13C-1,2,3,6,7,8-HxCDD	92		- 135		
13C-1,2,3,4,6,7,8-HpCL	DD 90		- 135		
13C-OCDD	75		- 135		
13C-2,3,7,8-TCDF	86		- 135		
13C-1,2,3,7,8-PeCDF	68		- 135		
13C-1,2,3,4,7,8-HxCDF	76		- 135		
13C-1,2,3,4,6,7,8-HpCE			- 135 - 135		
NOTES:		-			

AMEC VALIDATED

Calculations are performed before rounding to avoid round-off errors in calculated results * Not validated.

7

DATA ASSESSMENT FORM

Project Title:	Rocketdyne
Project Manager:	D. Hambrick
Analysis/Method:	Dioxins and Furans/EPA Method 8290
<u>QC Level</u> :	V^1
<u>SDG</u> :	IJI0547
<u>Matrix</u> :	Soil
No. of Samples:	2
No. of Reanalyses/Dilutions:	0
Date Reviewed:	March 4, 2002
<u>Reviewer</u> :	L. Calvin
References:	National Functional Guidelines for Organic Data Review (2/94) and SW-846
	Method 8290 (9/94).
Samples Reviewed:	PCS-29, PCS-31, CAC-100BE

Data Validation Findings

	Findings	Qualifications
1. <u>Sample Manager</u>	tentThe COCs from the field to Del Mar Laboratory and from Del Mar to Triangle Laboratories had appropriate relinquish and receipt signatures, with recorded cooler temperatures within the limits of 4°C ±2°C.The samples were extracted within 30 days of collection and analyzed within 45 days of extraction.	No qualifications were required.
4. <u>Method Blanks</u>	One soil method blank was extracted and analyzed with the samples in this SDG. There were no reported target compound detects in the method blank other than a reported detect for total HxCDD.	As the sample concentrations for total HxCDD included isomers other than individual congener target compounds, total results were not qualified as method blank contamination.
5. <u>LCS/BS</u>	One soil LCS/LCSD pair was extracted and analyzed with the samples in this SDG. All percent recoveries were within the laboratory QC limits of 70- 130%, and all RPDs were less than the QC limit of 20%.	No qualifications were required.

	Findings	Qualifications
6. <u>MS/MSDs</u>	No MS/MSD analyses were performed in this SDG. Evaluation of method accuracy and precision was based on the LCS/LCSD results.	No qualifications were required.
7. <u>Field QC Samples</u> ER: None FB: None FD: None	No field QC samples were identified for the samples in this SDG.	No qualifications were required.
9. Internal Standards	All internal standard recoveries were within the method QC limits of 40-135%.	No qualifications were required.
10. <u>Other</u>	Any individual congener results reported as EMPCs were considered nondetects, as were any totals reported only as EMPCs.	All target compound and total EMPCs were qualified as estimated nondetects, "UJ."
	Some total results which included individual congener results were also reported as EMPCs.	Any totals also including individual congener concentrations were qualified as estimated, "J."
	Confirmation analysis on a DB-225 column was performed for the 2,3,7,8- TCDF result in sample PCS-29.	The result for 2,3,7,8-TCDF on the DB-5 column was rejected, "R," in favor of the confirmation result.
	The sample results were reported on a dry-weight basis. Results reported with the laboratory qualifier "J," were concentrations below the lower calibration level.	
Comments	None	None

¹ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

				Jel Mar An	alytical			
TLI Project: Client Sample		L 8951 [0535-(1)1/PCS-2		Method 829	0 PCDD/PCD Analysis Fi		
Client Project: Sample Matrix: TLI ID:	Boeir SOIL 270-2	,		Date Received: Date Extracted: Date Analyzed:	09/16/2000 09/26/2000 09/28/2000	ICal: Spike File: 1st CCal: End CCal:	SP U0	F57140 PMIT32S 001522 152312
Sample Size: Dry Weight: GC Column:	10.60 10.00 DB-5	6 g		Dilution Factor: Blank File: Analyst:	n/a U152301 DFS	% Moisture % Lipid: % Solids:	: 5.6 n/a 94	a
Analytes	qual	teod	Conc. (p	pt) DL	EMPC	Ratio	RT	Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD	5 × 1		ND ND 0.90 1.5 2.2 16.1 116	0.3 0.3		1.32 1.09 1.41 1.04 0.86	33:49 33:52 34:11 37:05 40:34	. J . J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	Ky Jo	D *10	1.2 ND 0.74 EMPC	0.3 0.3	0.26	0.84	25:39 33:07]]]
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF	15 1-1		0.34 0.30 2.3 ND 3.3	0.3		1.14 1.06 1.05 0.78	33:42 34:28 36:05 40:46	J
Totals			Conc. (p	pt) Number D	L EMPC			Flags
Total TCDD	U		ND	0.	3			

Total TCDD Total PeCDD	K KJ	* 10	ND EMPC	···· 7	0.3 0.47			
Total HxCDD Total HpCDD			16.3 42.3	2				
Total TCDF Total PeCDF		*10	3.0 1.6	3	2.1			
Total HxCDF Total HpCDF	Ý		4.8 6.1	6	5.1			
-					AM	EC VAL	IDATED	VP-IN-COMPRESSION

Page 1 of 2

LEVEL V

Printed: 06:13 09/30/2000

mit3_PSR v1.00, LARS 6.25.00

		Del Mar An	alytical			
TLI Project: Client Sample:	51895r1 IJI0535-01/PCS		8290 TCDD/	TCDF Anal Analysis Fi	• `	DB-225) P003369
Client Project: Sample Matrix: TLI ID:	Boeing SOIL 270-24-1	Date Received: Date Extracted: Date Analyzed:	09/16/2000 09/26/2000 09/29/2000	Spike File: ICal: ConCal:	PF2	22NF2S N229 3367
Sample Size: Dry Weight: GC Column:	10.600 g 10.006 g DB-225	Dilution Factor: Blank File: Analyst:	n/a U152301 JMM	% Moisture % Lipid: % Solids:	: 5.6 n/a 94.4	
Analytes rec	Code Conc. (ppt) DL	EMPC	Ratio	RT	Flags
2,3,7,8-TCDF J	0.72	2		0.65	23:01	J
Internal Standard	Conc. (ppt) % Reco	very QC Limits	Ratio	RT	Flags
¹³ C ₁₂ -2,3,7,8-TCDF	144	72.1	40%-130%	0.78	23:01	
Recovery Standard	1			Ratio	RT	Flags
¹³ C ₁₂ -1,2,3,4-TCDD				0.83	21:50	

	AMEC VALIDATED
Data Reviewer: KoseV, West	09/29/2000
Page 1 of 1	C2NF_PSR v2.03, LARS 6.25.00

Triangle Laboratories, Inc.® 801 Capitola Drive • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 20:20 09/29/2000

			I	Del Mar	An	alytical				
TLI Project:	51	.895r1	L		N	1ethod 8290				• • • •
Client Sample:	: IJI	0535-03	3/PCS-3	1			A	nalysis Fil	le: U	152304
Client Project: Sample Matrix: TLI ID:	Boeir SOIL 270-2	-		Date Receiv Date Extract Date Analyz	ed:	09/16/2000 09/26/2000 09/28/2000		ICal: Spike File: 1st CCal: End CCal:	UF57 SPM U001 U152	IT32S 522
Sample Size: Dry Weight: GC Column:	10.60 10.13 DB-5	4 g		Dilution Fac Blank File: Analyst:	tor:	n/a U152301 DFS		% Moisture: % Lipid: % Solids:	: 4.4 n/a 95.6	
Analytes	Jual	qua tode	onc. (p	pt) DL		EMPC		Ratio	RT	Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF	マトイト・シート 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*10	ND ND EMPC 0.42 1.6 5.9 0.28 ND ND 0.25 0.13 ND 0.29 0.66 ND 0.68	0.1 0.1 0.2 0.1 0.1 0.1 0.2		0.62		0.89	34:13 37:04 40:35 25:39 33:09 33:15 34:27 36:05 40:48	J J J J J J J J J J J J
Totals		(Sonc. (p	pt) Number	DI	EMPC				Flags
Total TCDD Total PeCDD Total HxCDD Total HpCDD	LL J	*10	0.19 ND 0.77 3.5	1 2 2	0.	1 3.8				
Total TCDF Total PeCDF Total HxCDF Total HpCDF	T	*10	0.28 0.33 1.5 1.7	1 1 5 2		0.75				
		Not the Third State				ANE	C	VALID	ATE	
							V			

			Del	Mar An	alytical			
TLI Project: Client Sample:		895r1 0535-06/C	CAC-100F		Aethod 829	0 PCDD/PCD Analysis Fi		ysis (b) 1 5230 7
Client Project: Sample Matrix: TLI ID:	Boein SOIL 270-24	0	Dat	te Received: te Extracted: te Analyzed:	09/16/2000 09/26/2000 09/29/2000	ICal: Spike File: 1st CCal: End CCal:	UF57 SPM U001 U152	IT32S 522
Sample Size: Dry Weight: GC Column:	12.100 10.340 DB-5		Bla	ution Factor: ink File: alyst:	n/a U152301 DFS	% Moisture % Lipid: % Solids:	2: 14.5 n/a 85.5	
Analytes	Jual	qual con	ic. (ppt)	DL	EMPC	Ratio	RT	Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8,9-OCDD	T Y	6	ND ND 0.50 0.48 11.4 10	0.2 0.2 0.2		1.11 1.07 1.03 0.87	33:53 34:12 37:04 40:34	. <u>J_</u>
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8,9-HpCDF 1,2,3,4,6,7,8,9-OCDF	ビストムアナロナン		EMPC ND 0.41 0.20 ND 0.24 1.0 ND EMPC	0.2 0.2 0.2 0.3	. 0.39 0.83	1.34 1.24 1.14 1.10	33:07 33:13 34:27 36:04	J J J J
Totals		Col	nc. (ppt)	Number E	L EMPC			Flags
Total TCDD Total PeCDD	U		ND 0.90	2	2.0			

3 2

1

5

2

Page 1 of 2

Rev Mort. 24.0W

<u>×10</u>

*10

1.7

EMPC

0.54

1.6

1.8

22.3

لک

LU

Total HxCDD

Total HpCDD

Total TCDF

Total PeCDF

Total HxCDF

Total HpCDF

LEVEL V

AMEC VALIDATED

3.0

1.0

mit3_PSR v1.00, LARS 6.25.00

Triangle Laboratories, Inc.® 801 Capitola Drive • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 05:57 09/30/2000

DATA ASSESSMENT FORM

Project Title:	Rocketdyne
Project Manager:	D. Hambrick
Analysis/Method:	Dioxins and Furans/EPA Method 8290
<u>QC Level</u> :	\mathbf{V}^1
<u>SDG</u> :	IJF0277
<u>Matrix</u> :	Soil
No. of Samples:	2
No. of Reanalyses/Dilutions:	0
Date Reviewed:	February 28, 2002
<u>Reviewer</u> :	L. Calvin
References:	National Functional Guidelines for Organic Data Review (2/94) and SW-846
	Method 8290 (9/94).
Samples Reviewed:	CAC-31SW, CAC-32SW

Data Validation Findings

	Findings	Qualifications
1. <u>Sample Management</u>	The COC from the field to Del Mar Laboratory had appropriate relinquish and receipt signatures, with a recorded cooler temperature within the limits of $4^{\circ}C \pm 2^{\circ}C$. The samples were received at Quanterra Laboratory without a COC. Quanterra generated a COC upon receipt of the samples. The COC noted that the samples were received intact. The laboratory login sheet noted that the samples were received with a cooler temperature of 15°C. The samples were extracted within 30 days of collection and analyzed within 45 days of extraction.	Due to the nonvolatile nature of the Method 8290 analysis, no qualifications were required for the elevated cooler temperature.
4. <u>Method Blanks</u>	One soil method blank was extracted and analyzed with the samples in this SDG. There were no reported target compound detects in the method blank.	No qualifications were required.

	Findings	Qualifications
5. <u>LCS/BS</u>	One soil LCS was extracted and analyzed with the samples in this SDG. All percent recoveries were within the laboratory QC limits of 50-150%.	No qualifications were required.
6. <u>MS/MSDs</u>	No MS/MSD analyses were performed in this SDG. Evaluation of method accuracy was based on the LCS results.	No qualifications were required.
7. <u>Field QC Samples</u> ER: None FB: None FD: None	No field QC samples were identified for the samples in this SDG.	No qualifications were required.
9. Internal Standards	All internal standard recoveries were within the method QC limits of 40-135%.	No qualifications were required.
10. <u>Other</u>	The result for 2,3,7,8-TCDF in sample CAC-32SW was reported from a confirmation analyses performed on a DB-225 column. The sample results were reported on a dry-weight basis.	No qualifications were required.
Comments	None	None

 $^{^{1}}$ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: CAC-31SW

Lot-Sample #:	G0F100161-001	Work Order #:	DEHKK102	Matrix:	SOLID
Date Sampled:	6/7/00	Date Received:	6/9/00	Instrument:	8D5
Prep Date:	6/26/00	Analysis Date:	7/6/00	Units:	pg/g
Prep Batch #:	0178326	Dilution Factor:	l	% Moisture:	3.8

PARAMETER	iev ial	qua RESULT	REPORTING LIMIT	TEF FACTOR	TEQ Conc.
2,3,7,8-TCDD	ų	ND	0.085	1.000	0.00
Total TCDD		ND	0.38		
1,2,3,7,8-PeCDD		ND	0.21	0.500	0.00
Total PeCDD	10 miles and 10	ND	0.21		
1,2,3,4,7,8-HxCDD		ND	0.12	0.100	0.00
1,2,3,6,7,8-HxCDD	100-11-10-12-12-12-12-12-12-12-12-12-12-12-12-12-	ND	0.40	0.100	0.00
1,2,3,7,8,9-HxCDD	None of the second seco	ND	0.61	0.100	0.00
Total HxCDD	\checkmark	ND	0.61		
1,2,3,4,6,7,8-HpCDD		5.6		0.010	0.06
Total HpCDD		12			
OCDD		51		0.001	0.05
2,3,7,8-TCDF	Ц I	ND	0.22	0.100	0.00
Total TCDF	and the second second	ND	0.38		
1,2,3,7,8-PeCDF	NOT LODING	ND	0,16	0.050	0.00
2,3,4,7,8-PeCDF	Contract line	ND	0.15	0.500	0.00
Total PeCDF		ND	0.43		
1,2,3,4,7,8-HxCDF		ND	0.10	0.100	0.00
1,2,3,6,7,8-HxCDF		ND	0.060	0.100	0.00
2,3,4,6,7,8-HxCDF		ND	0.069	0.100	0.00
1,2,3,7,8,9-HxCDF		ND	0.75	0.100	0.00
Total HxCDF		ND	0.75		
1,2,3,4,6,7,8-HpCDF		ND	0.50	0.010	0.00
1,2,3,4,7,8,9-HpCDF		ND	0.24	0.010	0.00
Total HpCDF		ND	0.54		
OCDF	V I	ND	0.40	0.001	0.00
Total TEQ Concentrat	ion	*			0.11

INTERNAL STANDARDS	PERCENT RECOVERY	RECOVERY LIMITS
13C-2,3,7,8-TCDD	80	40 - 135
13C-1,2,3,7,8-PeCDD	70	40 - 135
13C-1,2,3,6,7,8-HxCDD	79	40 _ 135
13C-1,2,3,4,6,7,8-HpCDD	88	40 - 135
13C-OCDD	84	40 - 135
13C-2,3,7,8-TCDF	83 ~	40 - 135
13C-1,2,3,7,8-PeCDF	73	40 - 135
13C-1,2,3,4,7,8-HxCDF	88	40 - 135
13C-1,2,3,4,6,7,8-HpCDF	86	40 - 135

NOTES:

NOTES: Calculations are performed before rounding to avoid round-off errors in calculated resulta X Hot validated. AMEC VALIDATED * Not validated.

Dioxins/Furans, HRGC/HRMS (8290)

Client Sample ID: CAC-32SW

Lot-Sample #:	GOF	100161-002	Work Orde	r #:	DEHKL	102	Matrix:	SOLID
Date Sampled:	6/7,	/00	Date Rece	ived:	6/9/0	0	Instrument:	8D5
Prep Date:	6/26	5/00	Analysis	Date:	7/6/0	0	Units:	pg/g
Prep Batch #:	0178	3326	Dilution	Factor:	1		% Moisture:	20
-		1			-		•	
PARAMETER	rev p	RESULT		REPORT LIMIT	ING	TEF FACTOR	TEQ Co	onc.
2,3,7,8-TCDD	u	ND		0.078	<u> </u>	1.000	0.00	
Total TCDD		ND		0.44				
1,2,3,7,8-PeCDD		ND		0.28		0.500	0.00	
Total PeCDD		ND		0.33				
1,2,3,4,7,8-HxCDD		ND		0.25		0.100	0.00	
1,2,3,6,7,8-HxCDD		ND		1.0		0.100	0.00	
1,2,3,7,8,9-HxCDD	*	ND		0.68		0.100	0.00	
Total HxCDD		3.2						
1,2,3,4,6,7,8-HpCDD		21				0.010	0.21	
Total HpCDD		53						
OCDD		210				0.001	0.21	
2,3,7,8-TCDF		5.7	CON			0.100	0.57	
Total TCDF		29						
1,2,3,7,8-PeCDF	<u>Ч</u>	ND		0.61		0.050	0.00	
2,3,4,7,8-PeCDF	↓	ND		1.6		0.500	0.00	
Total PeCDF		6.7						
1,2,3,4,7,8-HxCDF	4	ND		1.9		0.100	0.00	
1,2,3,6,7,8-HxCDF		ND		0.91		0.100	0.00	
2,3,4,6,7,8-HxCDF		ND		0.56		0.100	0.00	
1,2,3,7,8,9-HxCDF	*	ND		0.26		0.100	0.00	
Total HxCDF		11						
1,2,3,4,6,7,8-HpCDF		16				0.010	0.16	
1,2,3,4,7,8,9-HpCDF	u	ND		0.33		0.010	0.00	
Total HpCDF		30						
OCDF	U	ND		5.5		0.001	0.00	
Total TEQ Concentra	tion *	•					1.15	
		PERCENT			ECOVERY			
INTERNAL STANDARDS		RECOVERY			IMITS			
13C-2,3,7,8-TCDD		81			40 - 135			
13C-1,2,3,7,8-PeCDD		70			40 - 135			
13C-1,2,3,6,7,8-HxCI	DD	89			40 _ 135			
13C-1,2,3,4,6,7,8-H	PCDD	94			40 - 135			
13C-OCDD		108			40 - 135			
13C-2,3,7,8-TCDF		81	-		40 - 135			
13C-1,2,3,7,8-PeCDF		75			40 - 135			
13C-1,2,3,4,7,8-HxCI	OF	87			40 - 135			
13C-1,2,3,4,6,7,8-H	CDF	98			40 - 135			

NOTES:

Calculations are performed before rounding to avoid round-off errors in calculated results

* Not validated. CON

AMEC VALIDATED

LEVELV

DATA ASSESSMENT FORM

Project Title:	Rocketdyne
Project Manager:	D. Hambrick
Analysis/Method:	Dioxins and Furans/EPA Method 8290
<u>QC Level</u> :	\mathbf{V}^1
<u>SDG</u> :	IJI0967
<u>Matrix</u> :	Soil
No. of Samples:	1
No. of Reanalyses/Dilutions:	0
Date Reviewed:	March 4, 2002
<u>Reviewer</u> :	L. Calvin
References:	National Functional Guidelines for Organic Data Review (2/94) and SW-846
	Method 8290 (9/94).
Samples Reviewed:	PC-43

Data Validation Findings

	Findings	Qualifications
1. <u>Sample Management</u>	The COCs had appropriate relinquish and receipt signatures. The sample was received at Del Mar Laboratory with a cooler temperature within the limits of $4^{\circ}C \pm 2^{\circ}C$; however, the laboratory login sheet noted that the sample was received at Triangle with a cooler temperature of 7°C. The COC noted that the sample was received intact. The sample was extracted within 30 days of collection and analyzed within 45 days of extraction.	Due to the nonvolatile nature of the Method 8290 analysis, no qualifications were required for the elevated cooler temperature.
4. <u>Method Blanks</u>	One soil method blank was extracted and analyzed with the samples in this SDG. There were no reported target compound detects in the method blank.	No qualifications were required.
5. <u>LCS/BS</u>	One soil LCS/LCSD pair was extracted and analyzed with the sample in this SDG. All percent recoveries were within the laboratory QC limits of 70- 130%, and all RPDs were within the QC limit of 20%.	No qualifications were required.

	Findings	Qualifications	
6. <u>MS/MSDs</u>	No MS/MSD analyses were performed in this SDG. Evaluation of method accuracy and precision were based on the LCS/LCSD results.	No qualifications were required.	
7. <u>Field QC Samples</u> ER: None FB: None FD: None	No field QC samples were identified for the sample in this SDG.	No qualifications were required.	
9. Internal Standards	All internal standard recoveries were within the method QC limits of 40-135%.	No qualifications were required.	
10. <u>Other</u>	Any individual congener results reported as EMPCs were considered nondetects, as were any totals reported only as EMPCs.	All target compound and total EMPCs were qualified as estimated nondetects, "UJ."	
	The sample results were reported on a dry-weight basis. Results reported with the laboratory qualifier "J," were concentrations below the lower calibration level.		
Comments	None	None	

 $^{^{1}}$ Level V validation consists of cursory review of the summary forms only. The reported values on the summary forms are presumed to be correct and no verification of the values from the raw instrument output is performed.

			Del Mar Ar	nalytical		
TLI Project:)03r1		Method 8290) PCDD/PCDF	
Client Sample	: IJI	0970-16/P	C-43		Analysis File	e: S004551
Client Project:	IJI0970)	Date Received:	10/02/2000	ICal: Spike File:	SF57130 SPMIT32S
Sample Matrix: TLI ID:	SOIL 271-33-	-2	Date Extracted: Date Analyzed:	10/08/2000	1st CCal: End CCal:	S004544 S004558
Sample Size: Dry Weight: GC Column:	11.600 10.138 DB-5		Dilution Factor Blank File: Analyst:	: n/a S004545 JMM	% Moisture: % Lipid: % Solids:	12.6 n/a 87.4
	A .					
Analytes	17	GJ Conc. (p	g/g) DL	EMPC	Ratio	RT Flags
2,3,7,8-TCDD 1,2,3,7,8-PeCDD	Υ K	ND ND	0.10 0.10			
1.2,3,4,7.8-HxCDD	STILLOVERSER	ND	0.1			
1,2,3,6,7,8-HxCDD	2	ND	0.1			
1,2,3,7,8,9-HxCDD	A CONTRACTOR	ND	0.1 0.2			
1.2.3,4,6.7,8-HpCDD 1,2,3,4,6,7.8,9-OCDD	Ŧ	ND 0.88	0.2		0.95 4	():59 J_
2,3,7,8-TCDF	K	ND	0.07			
1,2,3,7,8-PeCDF		ND	0.08			
2,3,4,7,8-PeCDF		ND ND	0.08 0.08			
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	Shark - Lawrence	ND	0.08			
2,3,4,6,7,8-HxCDF		ND	0.08			
1,2,3,7.8,9-HxCDF		ND	0.09			
1,2,3,4,6,7,8-HpCDF		ND	0.1			
1,2.3,4,7,8.9-HpCDF	And the second se	ND	0.1			
1.2,3,4,6.7.8,9-OCDF	×	ND	, 0.2			
Totals		Conc. (p	g/g) Number E	DL EMPC		Flags
Total TCDD	X	ND	().10		
Total PeCDD	The second second	ND).10		
Total HxCDD	A DECEMBER OF	ND).1		Manual Provide
Total HpCDD	*	ND).2		
Total TCDF	8	★10 EMPO		0.41		
Total PeCDF	J V V	ND ND).08).08		
Total HxCDF Total HpCDF	*	0.30		7.00		
rota rija.		0.20	, <u> </u>	AMEC	VALIDAT	ED

Page 1 of 2

MIT3_PSR v1.00, LARS 6.25.001

Printed: 20:57 10/12/2000