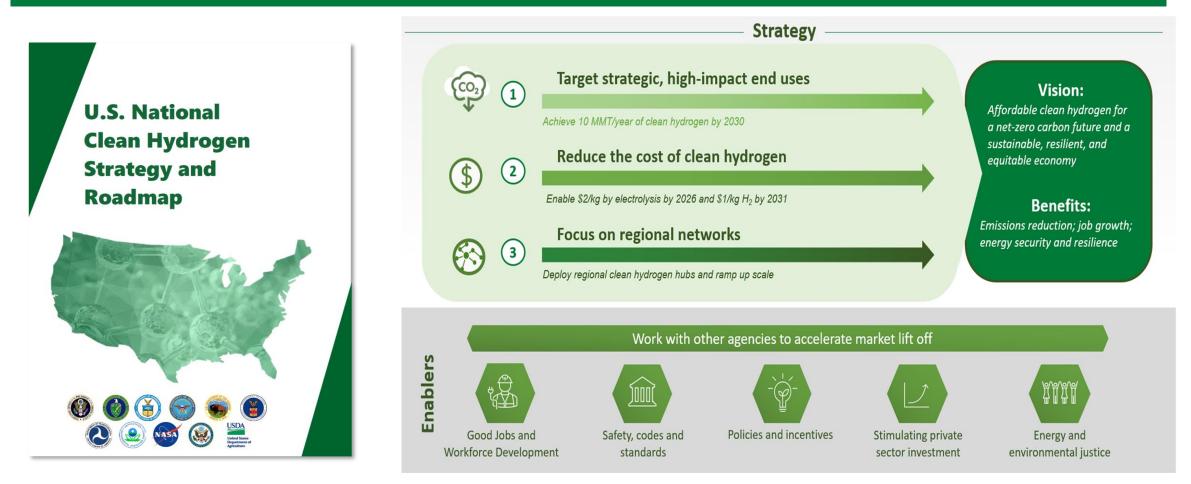


Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Electrolyzer Installations Webinar Opening Remarks


Dr. Sunita Satyapal, Director, Hydrogen and Fuel Cell Technologies Office and DOE Hydrogen Program Coordinator Dr. David Peterson, Acting Program Manager, Hydrogen Production U.S. Department of Energy

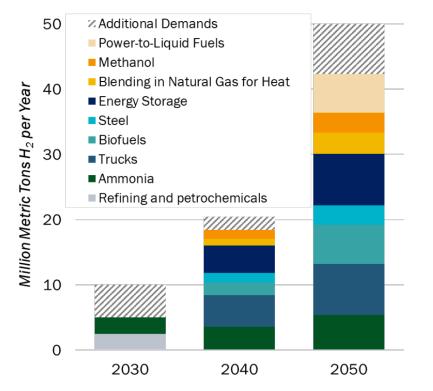
September 26, 2023

U.S. National Clean Hydrogen Strategy and Roadmap

U.S. Opportunity: 10MMT/yr by 2030, 20 MMT/yr by 2040, 50 MMT/yr by 2050. ~10% Emissions Reduction. ~100K Jobs by 2030

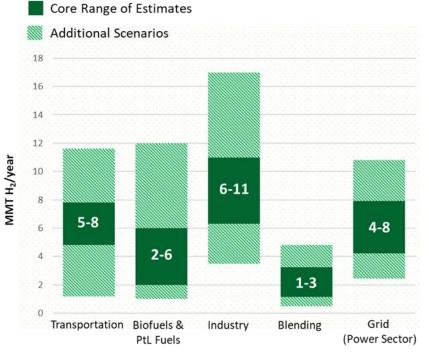
Released June 2023 . https://www.hydrogen.energy.gov/clean-hydrogen-strategy-roadmap.html

Hydrogen


Hydrogen Energy Earthshot

"Hydrogen Shot"

"1 1 1" \$1 for 1 kg clean hydrogen in 1 decade



Clean Hydrogen Use Scenarios

- Catalyze clean H₂ use in existing industries (ammonia, refineries), initiate new use (e.g., sustainable aviation fuels (SAFs), steel, potential exports)
- Scale up for heavy-duty transport, industry, and energy storage
- Market expansion across sectors for strategic, highimpact uses

Range of Potential Demand for Clean Hydrogen by 2050

- Core range: ~ 18–36 MMT H₂
- Higher range: ~ 36–56 MMT H₂

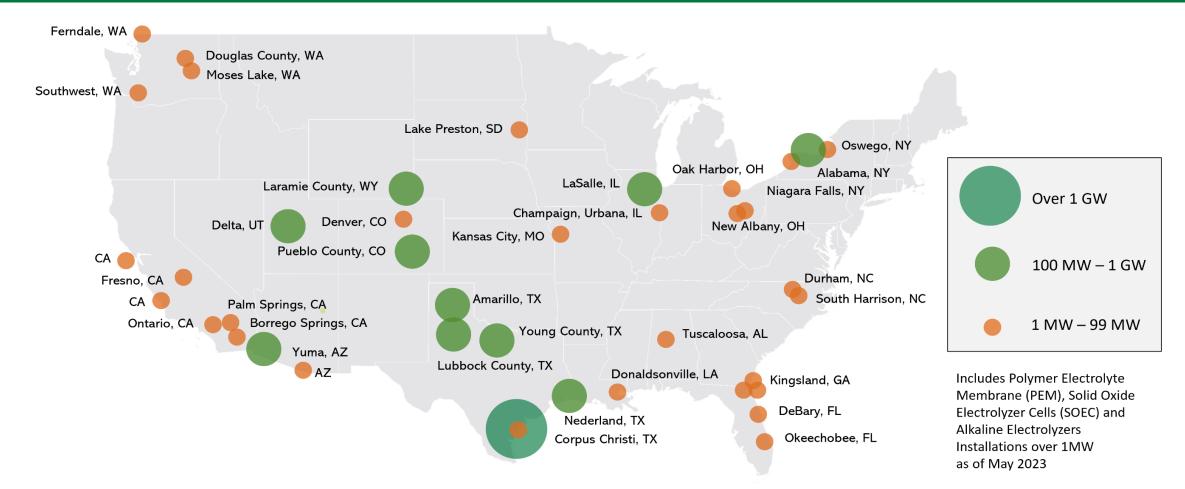
Refs: 1. NREL MDHD analysis using TEMPO model; 2. Analysis of biofuel pathways from NREL; 3. Synfuels analysis based off H2@Scale ; 4. Steel and ammonia demand estimates based off DOE Industrial Decarbonization Roadmap and H2@Scale. Methanol demands based off IRENA and IEA estimates; 5. Preliminary Analysis, NREL 100% Clean Grid Study; 6. DOE Solar Futures Study; 7. Princeton Net Zero America Study

U.S. Opportunity: 10MMT/yr by 2030, 20 MMT/yr by 2040, 50 MMT/yr by 2050. ~10% Emissions Reduction. ~100K Jobs by 2030

Legislation Highlights: 2021 – 2022

Bipartisan Infrastructure Law

- Includes \$9.5B for clean hydrogen:
 - \$1B for electrolysis
 - \$0.5B for manufacturing and recycling
 - \$8B for at least four regional clean hydrogen hubs
- Requires developing a National Clean
 Hydrogen Strategy and Roadmap


President Biden Signs the Bipartisan Infrastructure Bill into law on November 15, 2021. Photo Credit: Kenny Holston/Getty Images

Inflation Reduction Act

• Includes significant tax credits (e.g., up to \$3/kg for production of clean hydrogen)

Planned and Installed Electrolyzer Capacity in the US

Total 3.7 GW in Electrolyzer Capacity 5-fold increase since 2022

Source: Arjona, DOE Program Record #23003, June 2023

Hydrogen Cost from Electrolysis and Cost Reduction Strategies

7 -2020* 6 -~\$5/kg Electricity Capital Costs 5 Fixed O&M Cost of H_2 (\$/kg H_2) 2026 \$2/kg 2031 \$1/kg 1 0

Levelized Cost of Hydrogen from Electrolysis

Today's cost of H_2 from natural gas ~ \$1.50/kg.

Cost Reduction Strategies

- Reduce electricity cost, improve efficiency, and utilization
- Reduce capital cost stack and balance of plant, including platinum group metals
- Increase manufacturing volumes
- Reduce operating and maintenance cost

Today's Focus

Reduce cost and complexity of installation, siting, permitting (while addressing any environmental/energy justice concerns)

*2020 Baseline: PEM (Polymer Electrolyte Membrane) low volume capital cost ~\$1,500/kW, electricity at \$50/MWh. Pathways to targets include capital cost \$250-300/kW by 2026, < \$150/kW to meet \$1/kg (at scale). Chart shows calculation assuming \$50/MWh in 2020, \$30/MWh in 2025, \$20/MWh in 2030. Specific use case for 90% capacity factor. Multiples scenarios being assessed.

- Initiate dialogue between industry, utilities, and other stakeholders about large-scale electrolyzer installations, critical for:
 - Sharing lessons learned and developing best practices
 - Better understanding key challenges and cost drivers
 - Streamlining the installation process [without compromising environmental/environmental justice (EJ) concerns]
- Provide feedback to DOE on potential actions and next steps

Thank you

Dr. Sunita Satyapal Director, Hydrogen and Fuel Cell Technologies Office Coordinator, DOE Hydrogen Program U.S. Department of Energy And Director, Hydrogen Interagency Task Force

www.hydrogen.energy.gov www.hydrogen.gov

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE