
 

Evaluating luminance uniformity metrics using 
online experiments  
 

 
Belal Abboushi, Lia Irvin, Eduardo Rodriguez-Feo Bermudez, Michael Royer 
Pacific Northwest National Laboratory, Portland, OR, U.S.A. 
 

 

Corresponding Author: Belal Abboushi, Pacific Northwest National Laboratory, 620 SW, 5th Ave, Suite 
810, Portland, OR 97204, USA. E-mail: Belal.Abboushi@pnnl.gov 
 

 

 
This is an archival copy of an article published in LEUKOS. Please cite as: 
 
Belal Abboushi, Lia Irvin, Eduardo Rodriguez-Feo Bermudez & Michael Royer (2023) Evaluating 
Luminance Uniformity Metrics Using Online Experiments, LEUKOS, 19:3, 308-323, DOI: 
10.1080/15502724.2022.2133964 
 

https://doi.org/10.1080/15502724.2022.2133964


 

 

 
 

2 

 

Evaluating luminance uniformity metrics using online experiments 
 

Abstract 

Luminance uniformity of luminaires is an important design aspect that can affect perceived 

discomfort glare, luminaire efficiency, and visual satisfaction. There is, however, a lack of 

studies that evaluated the performance of different luminance uniformity metrics. This article 

presents results of two studies where luminance patterns were presented via online 

questionnaires and subjective ratings of uniformity were collected. Study 1 examined the 

performance of a uniformity metric based on the human visual system (UHVS) using a priori 

hypotheses, whereas Study 2 compared UHVS to four other metrics: Max:Min, Avg:Min, entropy 

uniformity (EU), and coefficient of variation (CV) using correlations and non-linear models. Of 

the metrics evaluated, UHVS performed best for predicting perceived luminance uniformity. In 

situations where a tradeoff between metric calculation simplicity and performance is acceptable, 

the use of CV is recommended. 

Keywords: luminaire luminance uniformity, luminance patterns, uniformity metrics. 

1. Introduction 

Luminaire luminance uniformity (LU) is a characteristic that describes the evenness of 

luminance across the luminous aperture. In LED luminaires, LU can be influenced by several 

design factors such as the luminous intensity and photometric distribution of LEDs, the distance 

between the LED array and optical material, the spacing between LEDs, and the type of optical 

material (Tashiro et al. 2015). 
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Previous studies showed that uniform luminaires were perceived as less glaring compared to 

non-uniform luminaires at the same mean source luminance or illuminance at the eye from the 

source (Tashiro et al. 2015; Yang et al. 2017a; CIE 2019). To address differences in perceived 

glare between uniform and non-uniform sources, previous studies proposed different approaches 

such as accounting for maximum source luminance (Bullough and Hickcox 2012), adding a 

contrast term to discomfort glare models (Yang et al. 2017b), or considering the size and mean 

luminance for luminous areas above a certain luminance threshold (Kohko et al. 2015; CIE 

2019). 

In addition to potential effects on discomfort glare perception, luminaire LU may affect 

acceptance or satisfaction ratings. A field study in offices found differences in visual satisfaction 

ratings by luminaire type; luminaires with prismatic diffusers were associated with lower visual 

satisfaction compared to luminaires with direct/indirect distribution, which might be related to 

luminaire LU (Park et al. 2021). Another study found that uniform luminaires with maximum 

luminance of about 10 kcd/m2 had higher acceptance ratings than non-uniform luminaires with 

small bright spots and a maximum luminance of about 300 kcd/m2 (Geerdinck et al. 2014). It is 

unclear, however, if differences in acceptance ratings were due to differences in LU and/or 

maximum luminance. 

Design decisions that alter luminaire LU, such as optical material selection, may impact 

luminaire efficiency (Gago-Calderon et al. 2018; Rozowicz et al. 2016; Tashiro et al. 2015). For 

instance, placing an optical material with low transmittance farther away from an LED array 

could improve LU but is also likely to reduce the overall luminous flux from the luminaire, 

depending on the scattering behavior of the optical material. Hence, the tradeoffs between 

luminaire LU and efficiency should be investigated to balance the energy-benefit relationship. 
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Given the potential effects of LU on perceived discomfort glare, visual satisfaction, and 

luminaire efficiency, it is important to quantify LU in a way that closely matches human 

perception. A LU metric can help lighting manufacturers, designers, and users make informed 

decisions that balance LU and efficiency. Examples include selecting a luminaire with higher 

efficiency while delivering an acceptable level of uniformity or selecting a luminaire with higher 

uniformity without compromising efficiency. 

1.1 Uniformity metrics 

Several metrics have been proposed to quantify LU. The commonly used maximum-to-minimum 

luminance ratio (Max:Min) and average-to-minimum luminance ratio (Avg:Min) (Ngai 2000; 

CIE 2020) rely on extreme points, which make them sensitive to changes in luminance image 

resolution (CIE 2019; Irvin et al. 2020). Another potential limitation to these two metrics is that 

they may not distinguish between luminance patterns with different gradients and rates of 

change. 

A third metric is the coefficient of variation (CV) (Armstrong 1990), which is the ratio of the 

standard deviation (𝜎) to the mean (�̅�) as shown in (1). This means that the entire luminous area 

is sampled, producing a potentially more stable metric that is less likely to be affected by 

photometric measurement errors or other anomalies, compared to Max:Min and Avg:Min. Yang 

et al. (2017b) added CV to the unified glare rating (UGR) equation to account for differences in 

uniformity that can affect perceived discomfort glare. For CV, a lower value implies a more 

uniform pattern. 

𝐶𝑉 =  
𝜎

�̅�
          (1) 
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The recently proposed entropy uniformity (EU) was shown to be exponentially related to 

perceived uniformity (Yao et al. 2017). As shown in (2), EU uses the ratio of ith luminance value 

to total luminance (pi) which is calculated for all n luminance points. EU values range between 0 

and 1, where EU is equal to 1 when the luminous surface is completely uniform, and 0 when 

completely non-uniform. EU values range from 0 to 1 with 1 being a very uniform pattern. Yao 

et al. showed that the ranks of EU had a high goodness of fit with perceived uniformity scores 

(R2 = 0.96), which was higher than that for CV (R2 = 0.91). 

𝐸𝑈 =
1

𝑛
∙ 𝑒𝑥𝑝 (− ∑ 𝑝𝑖 𝑙𝑛(𝑝𝑖))         (2) 

The previously discussed metrics Max:Min, Avg:Min, CV, and EU are statistical and do not 

incorporate a term that accounts for how the human eye processes different contrast levels. The 

ability of the human eye to perceive complex patterns can be addressed by accounting for the 

spatial frequency of patterns and related contrast sensitivity (Ashdown 1996). The contrast 

sensitivity function (CSF) relates the visibility of a spatial pattern to its size and contrast (Dorr et 

al. 2017). Given that perceived uniformity describes the perceived evenness in luminance, 

quantifying perceived contrast provides insight into the detectability of luminance variations. 

Simonson et al. (2003) investigated correlations between CV and preference ratings for different 

luminance patterns produced by MR16 lamps. These lamps include a multi-faceted ellipsoidal 

reflector and a small quartz-halogen lamp. They calculated CV based on two luminance data 

sets. The first data set was from an unprocessed beam image captured with a camera, which was 

transformed to produce the second data set. The transformation included applying a Fast Fourier 

Transform, applying a contrast sensitivity function (CSF), and inverting the Fast Fourier 

Transform. The reason for applying CSF was to produce images that are more representative of 
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how the eye might interpret the patterns. This allowed the correlation coefficients for CV to be 

improved, compared to CV calculated using the first data set. 

Moreno (2010) proposed a metric called uniformity based on the human visual system (UHVS). In 

(3), non-uniformity based on the human visual system (NUHVS) is calculated by summing the 

Fourier transform of the luminance pattern F(ωn) weighted by the human visual contrast 

sensitivity function CSF(ωn). This is then divided by the quantity of the constant C added to the 

sum of the Fourier transform. CSF(ωn) describes the human eye’s sensitivity to luminance 

contrast as a function of spatial frequency (Barton 1992). Sensitivity increases up to about three 

cycles (spatial wavelengths) per degree in the visual field and then decreases slowly to ten cycles 

per degree, where there is little sensitivity to luminance contrast (Moreno 2010). This means that 

although the presence of high frequencies indicates a less uniform pattern; past a certain 

frequency, the human eye is less sensitive and therefore less able to discern these photometric 

differences. 

𝑁𝑈𝐻𝑉𝑆 =
∑ 𝐹(𝜔𝑛)𝐶𝑆𝐹(𝜔𝑛)𝑛

𝐶 + ∑ 𝐹(𝜔𝑛)𝑛
          (3) 

In (4), UHVS is calculated based on NUHVS and CV along with constants k, α, and β. UHVS values 

range from 0 to 1, with 1 being a very uniform pattern. 

𝑈𝐻𝑉𝑆 =
1

1 + 𝑘 ∙ 𝐶𝑉𝛼 ∙ 𝑁𝑈𝐻𝑉𝑆
𝛽

          (4) 

The relationship between uniformity metrics and perceived uniformity can be illustrated using 

data from Yao et al. (2017) as shown in Fig. 1. This figure leads to three main observations. 

First, it shows that under the conditions of Yao et al.’s experiment, UHVS, EU, and CV had non-
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linear relationships with perceived uniformity scores. Second, given that UHVS was the only 

metric that accounted for contrast sensitivity, it is unclear if that provided UHVS any advantage in 

distinguishing between patterns with different levels of perceived LU, as compared to other 

metrics. Yao et al. suggested that UHVS performed just as well as EU in quantifying uniformity, 

but this was based on linear regression models between metric ranking rather than absolute 

metric values. Lastly, Figure 1 shows some variation in mean uniformity scores for patterns 

within 0.01 UHVS. Hence, it is also unclear if patterns with similar UHVS values were similarly 

perceived. 

Fig. 1: The graph on the left shows a plot of UHVS, EU, and Min:Avg versus uniformity scores using data published 

in (Yao et al. 2017). The graph on the right shows a plot between CV and uniformity scores. 

1.2 Overview of studies 

The performance of a uniformity metric can be judged based on its ability to predict and 

correlate with perceived uniformity ratings. This article presents two studies. In Study 1, 

simulated patterns with specific differences in UHVS were used to test the ability of UHVS to 

predict perceived uniformity ratings. In Study 2, the predictions and correlations of UHVS were 

compared to four other metrics (EU, CV, Max:Min, and Avg:Min) using photographed 
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luminance patterns. Like Study 1, Study 2 also presented the patterns on a computer screen but 

used a larger number of patterns and a wider range of LU than Study 1. Both studies are 

presented together in this article to provide a more complete evaluation of the performance of 

UHVS compared to other LU metrics. The focus on UHVS in these two studies was motivated by 

reported improvements to LU predictions when incorporating the contrast sensitivity function 

(Yao et al. 2017; Simonson et al. 2003; Moreno 2010). 

2. Study 1: Evaluating the Ability of UHVS to Match Perceived Uniformity Ratings 

This study examined perceived uniformity ratings for patterns with similar UHVS values and 

patterns with larger differences in UHVS. The analysis and results presented in this article are 

revised from those previously reported (Abboushi et al. 2021). Given that the sensitivity level of 

UHVS has not been investigated—meaning that it is unclear how the magnitude of differences in 

UHVS relate to the magnitude of differences in perceived uniformity—we hypothesized that 1) 

differences smaller than 1% (0.01 UHVS) would not lead to significantly different uniformity 

ratings; and 2) patterns with a difference in UHVS larger than 1% (0.01 UHVS) would receive 

significantly different uniformity ratings. 

2.1 Method 

2.1.1 Stimuli 

Eight grayscale luminance patterns were created by keeping the same mean luminance and 

manipulating the number of modeled point sources, the distance between these sources, and the 

distance between the sources and modeled diffusing material (Fig. 2). Figure 2 shows the eight 

simulated patterns and corresponding UHVS metric values. For UHVS calculations, default constant 

values of k = 5, α = 1, β = 0.5, and C = 1x10-7 were used (Moreno 2010). 
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The patterns were generated such that 1) three pairs consisted of patterns with similar UHVS 

values within 0.01 (A-B, C-D, E-F); and 2) several patterns could be compared to investigate 

three levels of differences in UHVS: 0.02, 0.07, and 0.14. Two pairs consisted of patterns with a 

0.02 difference in UHVS (E-H and F-H), four pairs had patterns with a 0.07 difference in UHVS (A-

C, A-D, C-E, C-F), and two pairs had patterns with a 0.14 difference in UHVS (A-F and B-E). 

The patterns were simulated in Python3, primarily using the NumPy and matplotlib libraries 

(Harris et al. 2020; Hunter 2007). In the simulation, two two-dimensional arrays were created 

representing LED point sources and the diffusing material. Assuming a cosine distribution from 

each point source, the vector intensity was calculated at each receiving point on the diffusing 

plane. Vector intensities that landed outside the diffusing plane, such as those reaching side 

surfaces, were assumed to reflect inwards towards the diffusing plane with 80% Lambertian 

reflectance. Lastly, a linear grayscale was applied to the values of the diffusing plane to generate 

the patterns. 

Fig. 2: The eight patterns used in the experiment with corresponding UHVS values. 
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To calculate UHVS, the ends of the grayscale values (black = 0, white = 255) were assumed to 

linearly map to 0 and 310 cd/m2, respectively. These luminance values were based on 

measurements taken using a calibrated Konica Minolta LS-160 luminance meter placed 0.61 m 

away from a computer screen (Dell Precision 7730). These measurements were taken within two 

years of meter calibration (one-point calibration and within tolerance). 

2.1.2 Procedure 

While conducting online experiments has benefits, it also comes with limitations. For example, 

different computer screens and internet browsers might have different contrast and brightness 

settings, ambient illumination may vary among participants’ rooms, and computer screen size 

and resolution cannot be controlled. The procedure used in this study included steps aimed to 

address and document some of these variables. The perceived uniformity responses were 

collected using the online platform SurveyMonkey. Duplicate responses from the same 

participant were prevented without collecting any personally identifiable information. The 

procedure consisted of the following steps: 

(1) To reduce variability in screen sizes and viewing distance, after completing the digital 

consent form, participants were asked to view the questionnaire on the native laptop or PC 

screen, not to view the questionnaire using phones or tablets, and to sit an arm’s length away 

from the computer screen in a comfortable position. 

(2) Questions were asked about the computer screen make, internet browser, age group, and 

vision condition. Vision condition was included to eliminate any potential impacts by 

excluding participants that needed corrective lenses but weren’t wearing them, as well as 

those with a visual disability that could not be corrected. 
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(3) Participants were not instructed to adjust screen contrast or brightness; instead, a procedure 

was used to ensure that participants could discern between different gradient levels, similar to 

the procedure used in previous studies (Villa et al. 2013; Sprow et al. 2009). Two grayscale 

gradients (Fig. 3) were shown—one with black background and another with white 

background—and participants were asked to click on the darkest/brightest bar that they could 

distinguish from the black/white background. 

Fig. 3: The gray bars with a black background (top image) and white background (bottom image) that were used to 

check gradient discernment. The red arrows highlight reference RGB values. 

(4) To ensure a consistent viewing size of the patterns across participants, participants were 

asked to adjust the viewing size (zoom) settings of their internet browser. The questionnaire 

showed a picture of a driver’s license card and asked participants to hold their own license 

card against the screen while adjusting their browser viewing size to match the size of their 

actual card. When the browser viewing size was adjusted, the pattern size was approximately 

8.4 by 8.1 cm (3.3 by 3.2 inches). 
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(5) As a pre-trial demonstration, participants were shown a picture of an office space with a 

luminaire, and informed that in this study they will be presented with side-by-side images of 

light patterns that could occur on a lighting fixture and asked to select the image that looks 

more uniform. Lastly, they were provided with a definition of uniformity as “the 

consistency/evenness of color across the face of the fixture”, and were shown examples of a 

very uniform and a very non-uniform pattern (see Fig. S6 in supplement 2). 

(6) To collect uniformity ratings, a two-alternative forced-choice procedure was used by pairing 

each pattern with every other pattern resulting in 28 combinations. Additionally, eight null 

conditions were included by pairing each pattern with itself. Participants were asked to assess 

the uniformity of the resultant 36 comparisons, responding to the prompt: “Please look at the 

two light patterns and click on the one that looks more uniform.” The order of pairs was 

randomized to address order bias, and the left/right position of patterns was counterbalanced 

across participants to account for potential left/right bias. 

2.1.3 Participants 

To determine an appropriate sample size, a priori calculations were conducted using G*Power 

software (Faul et al. 2007). Assuming a medium Cohen’s D effect size of 0.3, a power of 0.8, 

and a two-tailed paired t-test, a minimum sample size of 90 was required. The sampling frame 

for this study was restricted to office employees working in one firm to improve the 

homogeneity of computer screens and laptop make. Participants were recruited using internal 

social media and information exchange sites. No compensation was provided for participation. 

This study was approved by the institutional review board at the Pacific Northwest National 

Laboratory (IRB No: 2020-21). At the beginning of the questionnaire, a consent form was shown 
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to participants and they were asked to click the ‘Next’ button on the questionnaire if they consent 

to participate. 

Responses from 118 participants were collected. Participants with incomplete responses (n = 8), 

those that needed corrective lenses but were not wearing them (n = 8), those with a visual 

disability that could not be corrected (n = 1), those that were not able to adjust their screen 

setting (n = 3), and those that could not distinguish at least the bar with RGB = 246 from the 

white background (n = 4, see Fig. 3) were excluded. The reason the RGB = 246 was assumed as 

an exclusion threshold is because responses below that value were outliers (i.e., values that lie 

beyond the 75th percentile + 1.5 x interquartile range). These criteria resulted in 94 responses that 

were included in the analysis. Median duration for completing this study was approximately 8 

minutes. 

Of the 94 participants whose data were included, 66 needed corrective lenses and were wearing 

them while completing the questionnaire. The majority of participants used a Dell computer 

screen (n = 62) and the Google Chrome browser (n = 83). The rest of participants used Hewlett 

Packard (n = 14), Apple Macintosh (n= 8), or other screen makes (n = 10). Few participants used 

the Firefox (n = 9) or Internet Explorer (n = 2) browsers. Participants’ ages were distributed 

across different age groups such that 17 participants were within the 18–29 years of age group, 

21 were 30–39 years of age, 22 were 40–49 years of age, 20 were 50–59 years of age, 12 were 

60–69 years of age, and two were 70–79 years of age. This study did not explore potential effects 

of computer screen make, internet browser, corrective lens use, or age. 
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2.2 Results 

The mean number of times each pattern was selected as being more uniform are shown in Fig. 4. 

The number of times each pattern was selected as more uniform is ordinal data, so a Friedman 

Rank Sum test was used to test whether there were any significant differences between the 

patterns. The test assumptions of ordinal data and randomized presentation order were met. This 

test showed a significant difference in uniformity ratings among the eight patterns Χ2(7) = 

427.95, p < 0.01. Post hoc comparisons of patterns with similar UHVS (A-B, C-D, E-F) and 

patterns with different UHVS (A-C, C-E) were conducted using the Wilcoxon Signed-Rank test. 

Testing five comparisons required adjusting α, using the Holm’s method (Holm 1979). In the 

results below, Holm’s corrected α levels were used. 

To address the first hypothesis, three pairs with patterns similar in UHVS (A-B, C-D, and E-F) 

were tested. The Wilcoxon Signed-Rank test showed that uniformity ratings for pattern B were 

significantly higher than A (p< 0.01) and ratings for E were significantly higher than F (p< 0.01). 

There was not a significant difference between patterns C and D. These results do not support the 

first hypothesis expecting patterns that had similar UHVS values (± 0.01) to not receive different 

uniformity ratings. 
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Fig. 4: Perceived uniformity ratings for the eight simulated patterns. The bars show 95% confidence intervals. Self-

pairs (null conditions) were not included in this analysis, hence the maximum number of times a pattern can be 

selected as more uniform was seven. 

For the second hypothesis, we evaluated whether differences in UHVS at three levels (0.02, 0.07, 

0.14) resulted in significantly different ratings. This includes two pairs with a 0.02 difference in 

UHVS (E-H and F-H), four pairs with a 0.07 difference in UHVS (A-C, A-D, C-E, C-F), and two 

pairs with a 0.14 difference in UHVS (A-F and B-E). With 0.07 or 0.14 difference in UHVS, we 

consistently found significant differences in uniformity ratings. A 0.02 difference in UHVS had 

mixed results such that one pair received significantly different ratings whereas the other pair did 

not. These results do not fully support the second hypothesis where we expected that a difference 

>0.01 in UHVS would consistently result in different ratings. This hypothesis was only true for 

patterns with a difference of 0.07 or 0.14 in UHVS. 
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The analysis of null condition pairs (i.e., each pattern paired with itself) examined the percentage 

of times the pattern on the left and right were selected. Wilcoxon Signed-Rank tests showed no 

significant differences in any of the null comparisons. There was also not a significant difference 

in overall left/right choices as indicated by a Friedman test, indicating no significant left/right 

position bias in the responses. 

3. Study 2: Examining Correlations and Predictability of Metrics 

This study compared the performance of UHVS to four other metrics (Max:Min, Avg:Min, EU, 

and CV) using a larger number of patterns, compared to Study 1. This evaluation consisted of 

examining correlations between these metrics and perceived uniformity ratings, and metric 

performance using non-linear models. 

3.1 Method 

3.1.1 Stimuli 

The stimuli used in this experiment were images of a 0.6 m by 0.6 m (2 ft by 2 ft) luminaire 

aperture produced using six different optical materials placed at a distance that ranged from 1.3 

to 6.4 cm (0.5 to 2.5 inches) from a 20 by 20 LED array. The aperture of the luminaire was 

photographed using a Canon 5D Mark II 24 mm DSLR camera with a 17-40 mm lens to create 

high dynamic range (HDR) images. HDR images capture a wider range of luminance compared 

to an individual image at a certain shutter speed. This technique ensures that images include the 

full range of luminance variations. To create HDR images, shutter speeds were varied from 

1/3200 seconds to 8 seconds while keeping the aperture at f/11 and ISO at 100. For each 

stimulus, 15 to 16 images were selected such that in the shortest exposure image every pixel had 

no RGB values above 228; whereas the longest exposure image was selected such that every 

pixel had no RGB values below 250. The RGB value of 228 allowed for the highest luminance 
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pixels to be captured while avoiding oversaturation and blooming (Pierson et al. 2021). The 

RGB value of 250 was chosen because it allowed for the lowest luminance pixels to be the only 

pixels under saturation, ensuring that minimum values were not lost (Irvin et al. 2020). 

The selected images were combined using raw2hdr Radiance tool to produce one HDR image 

for each material and distance combination (Ward 2011). The generated HDR image in standard 

RGB (sRGB) is converted to luminance using (5) (Inanici 2006). 

𝐿 = 179 ∗ (0.2127 ∗ 𝑅 + 0.7152 ∗ 𝐺 + 0.0722 ∗ 𝐵)         (5) 

 Each HDRI was calibrated using a spot luminance measurement, then cropped and tone mapped 

using a Reinhard02 tone mapper (key value = 0.18, Phi = 1) using Luminance HDR 2.5.1 

software (Comida and Anastasia 2017), and converted to grayscale images because the effect of 

hue on perceived LU was outside the scope of the current investigation. Each grayscale image 

was a 1056 by 1028 pixel matrix. 

To calculate LU metrics, the next step was to convert the grayscale images from values between 

0 and 255 to corresponding luminance values as displayed on a computer screen. To account for 

variability in computer screens among participants, the grayscale to luminance relationship was 

characterized for three computer screens at two levels of screen brightness (50% and 100%). The 

three computers were a Dell Precision 5540, a Dell Latitude 7480, and an HP EliteBook x360 

1040 G6. These three computer screens were selected based on availability and based on the 

results of Study 1 where Dell and HP computer screens were the most widely used within the 

sample. Study 2 used the same sampling frame and recruitment method as Study 1. 
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We measured the luminance of 21 grayscale levels equally distributed from black (grayscale = 0) 

to white (grayscale = 255) using the same luminance meter and procedure described in 2.1.1. 

These luminance measurements were then used to fit three-degree polynomial models as shown 

in Fig. 5, which were used to convert the grayscale matrices to luminance matrices. 

While the grayscale-luminance curve derived from three computers at two brightness levels may 

not be representative of all participants’ computer screens, these data provided an approximation 

of the uniformity metrics and confirmed that relative differences in uniformity metrics were 

largely consistent. For example, the HP EliteBook screen at 100% consistently yielded higher 

UHVS values than Dell Latitude (see supplement 1). 

 

Fig. 5: Fitted lines of three-degree polynomial equations used to convert grayscale values (0 to 255) to luminance 

[cd/m2] for the three computer screens at 50% and 100% screen brightness level. 

Figure 6 shows the 26 patterns used in Study 2. In this figure, the letters I through N refer to 

different optical materials, whereas the numbers 1 through 5 represent different distances 

between the optical material and the LED array ranging from 1.3 to 6.4 cm (0.5 to 2.5 inches). 

For optical materials M and N, the appearance of the aperture did not visually differ as a function 
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of distance, so not all combinations were presented. The optical material type and the distance 

were varied to create luminance patterns that differed in LU. Unlike Study 1 where mean 

luminance was kept the same for all patterns, the imaging procedure in Study 2 did not allow for 

controlling mean luminance, which varied from 136 cd/m2 to 285 cd/m2. Table 1 shows mean 

metric values for each pattern and mean luminance. 
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Fig. 6: The 26 luminance patterns used in Study 2. Six optical materials were used labeled I, J, K, L, M, and N; the 

numbers represent different distances from the LED array for the same material ranging from 1.3 to 6.4 cm (0.5 to 

2.5 inches). 
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Table 1: Luminance uniformity metrics and mean luminance for each pattern, shown as the mean for the six 

combinations of three screen types x two brightness levels. For each metric, cells with a black or gray shading 

represent the pattern with lowest or highest uniformity, respectively. 

Pattern Max:Min Avg:Min CV UHVS EU Mean luminance 

(cd/m2) 

I-1 24.80 12.02 0.60 0.38 0.84 157 

I-2 22.52 12.98 0.53 0.41 0.86 182 

I-3 16.03 10.74 0.43 0.46 0.90 208 

I-4 2.79 2.61 0.12 0.77 0.99 280 

I-5 2.14 2.04 0.09 0.82 1.00 285 

J-1 202.77 82.17 0.55 0.44 0.88 145 

J-2 38.92 19.21 0.60 0.43 0.84 160 

J-3 41.57 22.81 0.63 0.43 0.81 174 

J-4 21.51 15.72 0.39 0.59 0.91 225 

J-5 18.07 14.34 0.28 0.69 0.95 243 

K-1 2.92 2.48 0.09 0.88 1.00 258 

K-2 1.64 1.37 0.07 0.90 1.00 253 

K-3 1.77 1.45 0.07 0.90 1.00 249 

K-4 1.61 1.38 0.06 0.91 1.00 259 

K-5 1.68 1.41 0.07 0.88 1.00 254 

L-1 21.51 10.59 0.52 0.43 0.88 160 

L-2 13.33 7.79 0.39 0.50 0.92 186 

L-3 44.51 18.25 0.67 0.37 0.81 137 

L-4 47.81 19.53 0.69 0.36 0.80 136 

L-5 28.97 12.04 0.73 0.35 0.78 136 

M-1 2.49 1.91 0.13 0.81 0.99 236 

M-2 1.63 1.37 0.07 0.90 1.00 256 

M-3 2.16 1.60 0.10 0.85 1.00 228 

M-4 1.66 1.43 0.06 0.90 1.00 261 

N-1 1.20 1.12 0.05 0.89 1.00 279 

N-2 1.19 1.10 0.03 0.93 1.00 276 

3.1.2 Procedure 

The procedure used in this study is the same as that used in Study 1 and described in section 

2.1.2 with two exceptions. First, in the pre-trial demonstration, photographed images of a very 

uniform and a very non-uniform pattern were shown (see Fig. S7 in supplement 2). These were 

used for relevance to the photographed patterns presented in Study 2. Second, the 26 patterns 

were each individually presented and participants were asked to use an on-screen slider 

(controlled by the mouse) to rate the uniformity of each pattern on a scale from 0 (very non-

uniform) to 100 (very uniform). The prompt was: “Please rate the uniformity of the image 
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below.” The slider starting position was set to start from the middle (value of 50) and could be 

moved in either direction in 5-point increments. The order by which the patterns were presented 

was randomized across participants. 

3.1.3 Participants 

A priori analysis indicated that 44 participants would provide a power of 0.95 for correlations 

assuming α = 0.05, correlation coefficient of hypothesis = 0.7, and correlation coefficient of null 

hypothesis = 0.3. For recruitment, this study used a similar recruitment method as Study 1. A 

total of 69 responses were collected. Responses were excluded if they were incomplete (n = 9), if 

the participants needed glasses but were not wearing them (n = 4), had a vision condition that 

could not be corrected with lenses (n = 1), were not able to adjust their browser to match the size 

of driver’s license (n = 1), or could not distinguish at least RGB = 246 from RGB = 255 (n= 5) 

using the gray bar procedure described in 2.1.2. This resulted in 49 responses that were included 

in the analysis. Median duration for completing this study was approximately 9 minutes. 

Forty-five participants were less than 60 years old. Seven participants were 18–29 years of age, 

ten were 30–39 years of age, ten were 40–49 years of age, 18 were 50–59 years of age, three 

were 60–69 years of age, and one was 70–79 years of age. Dell was the most common type of 

computer screen (n = 29), followed by HP (n =9), Mac (n =6), and other types (n =5). The 

majority of participants used a Google Chrome browser (n =46) and the remaining participants 

used Firefox (n =3). Regarding vision conditions, 41 participants needed vision correction and 

were wearing their glasses, and eight did not need vision correction. 
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3.2 Results 

Mean uniformity ratings ranged from 33 to 86 as shown in Fig. 7. The patterns with the lowest 

uniformity ratings were for patterns L-1 to L-5 whereas the highest uniformity ratings were for 

patterns K-4, K-5, M-3, and M-4. Out of the 26 patterns, 14 patterns had a uniformity rating 

between 33 and 43. A visual inspection of the results suggests that patterns with higher 

uniformity ratings tended to have lower variability compared to lower uniformity patterns, as 

shown by the smaller  95% confidence intervals. 

 
Fig. 7: Mean uniformity ratings with 95% confidence interval on a scale 0 (very non-uniform)-100 (very uniform) 

sorted from lowest to highest uniform patterns. See Fig. 6 for the patterns. 

Initial boxplots showed that pattern J-1 was anomalous because its Max:Min and Avg:Min were 

beyond the whisker: 75th percentile + 1.5 x interquartile range. Including J-1 in the regression 

models may affect the fit line, so it was not included in the analysis for both correlations and 

regression models. Because five metrics were examined, it was necessary to adjust the p value to 

reduce chances of type I error. Like Study 1, Holm’s correction, which uses a gradual adjustment 

to the p value, was used. 
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Spearman correlations and regression models between the logarithm of mean ratings and mean 

metric values were calculated. Spearman correlations were used because the linearity assumption 

of Pearson’s correlations was not met. The correlation coefficients were significant with a large 

effect size for the five metrics (Cohen 1988). The lowest coefficient was -0.79 for Avg:Min and 

the highest coefficient was -0.85 for 1-UHVS as shown in Table 2. CV and 1-EU had the same 

coefficient of -0.83. Note that UHVS and EU were reversed (1-UHVS and 1-EU) to allow for a 

power function to be consistently applied to all metrics, as subsequently described. This 

transformation also maintains smaller metric values being more uniform across the five metrics. 

To examine the relationship between the metrics and uniformity ratings, initial plots showed 

nonlinear relationships that could be represented using power regression models. Regression 

assumptions that residuals have a mean of zero, normality of residuals, and homoscedasticity 

were evaluated and met. Regression analyses were conducted using the logarithm of the mean 

ratings to reduce heteroscedasticity. 

Figure 8 shows scatter plots and regression fit lines for each metric. Given that R2 is not a 

recommended performance indicator with non-linear models (Kvalseth 1983), Akaike 

information criteria (AIC)—which can be used for relative comparisons between the nonlinear 

models (Spiess and Neumeyer 2010)—was used instead. A smaller AIC value indicates a better 

model, such that a difference in AIC less than 2 suggests that both models are similar, a 

difference between 4 and 7 indicates that the model with lower AIC is considerably better, and a 

difference greater than 10 suggests that there is essentially no support for the model with higher 

AIC (Fabozzi et al. 2014). 
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Table 2 shows AIC values for the power regression models. 1-UHVS had the lowest AIC value 

with differences in AIC larger than 2 from other metrics, indicating best performance. On the 

other hand, Max:Min had the highest AIC value with differences larger than 2 compared to 1-

UHVS, 1-EU, and CV, and a difference smaller than 2 compared to Avg:Min. These results 

suggest that Max:Min performed similar to Avg:Min, and that neither of these ratio metrics 

performed as well as 1-UHVS, 1-EU, or CV. 

Table 2: Spearman correlations, regression models, and AIC of regression models for the five uniformity metrics. 

The regression models were between each uniformity metric and the logarithm of the mean ratings. 

 
Uniformity metrics 

1-UHVS Max:Min Avg:Min 1-EU CV 

Spearman correlation -0.85** -0.82** -0.79** -0.83** -0.83** 

Regression model 1.47x-0.1 1.87x-0.06 1.87x-0.07 1.45x-0.04 1.49x-0.07 

AIC of regression model -61.2 -55.1 -55.9 -58.2 -57.4 

** represents significance at the 1% level using Holm’s- corrected p value. 
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Fig. 8: Scatterplots showing the relationship between different metrics and Log(mean ratings) from Study 2. The 

continuous blue lines represent power regression fits. For each metric, the left and right side of the graph represent 

high and low uniformity, respectively. 

 

4. Discussion 

In Study 1, pairs of patterns with a UHVS difference of 0.07 or 0.14 consistently received 

significantly different uniformity ratings. A 0.02 difference in UHVS did not consistently indicate 

differences in uniformity ratings. On the other hand, two of the three comparisons between 
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patterns with UHVS values within 0.01 (A-B and E-F) received significantly different uniformity 

ratings. This means that larger differences in UHVS seemed to more reliably predict differences in 

perceived uniformity, however some patterns with small differences in UHVS were perceived as 

being different in LU. This reveals an underlying weakness in UHVS that warrants further 

exploration in future studies. 

In Study 2, the Spearman correlations were highest and similar for UHVS, EU, and CV. This is in 

line with results using data from Yao et al.’s (2017) Table 2 where significant Spearman 

correlation coefficients of 0.98, 0.97, and 0.95 were found for UHVS, EU, and CV, respectively. 

The regression models included the reversed UHVS (1-UHVS), the reversed EU (1-EU), Max:Min, 

Avg:Min, and CV. As mentioned earlier, UHVS and EU were reversed so their values align with 

the rest of the models: smaller values represent higher uniformity. The differences in AIC values 

between the models indicated that some metrics performed similarly, such as the pairs CV and 1-

EU, CV and Avg:Min, and Max:Min and Avg:Min. On the other hand, 1-EU performed better 

than Max:Min and Avg:Min. The finding that 1-UHVS was better than CV is in line with results 

from a previous study that found a slightly higher R2 for UHVS ranks than CV ranks (Yao et al. 

2017). We found difference greater than 2 in AIC between 1-UHVS and 1-EU, suggesting a better 

performance for 1-UHVS. This finding does not align with a result from Yao et al. that UHVS and 

EU were similar in their performance. It is important to note that the linear regression models in 

Yao et al. used the ranking of metrics, not absolute metric values. The use of metric ranks, rather 

than absolute values, reduces information about differences in metric values; regardless of the 

difference in metric values two patterns might receive the same ranks. 
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Fig. 8 shows that all metrics had a non-linear relationship with the logarithm of mean ratings. 

These non-linear relationships persisted even without applying the logarithm. This non-linearity 

was also shown for UHVS, EU, and CV using data from Yao et al. (2017) as shown earlier in Fig. 

1. 

The plots in Fig. 8 also show variability in ratings in the most uniform side of the five metrics. 

For example, patterns M2 and M4 had a UHVS value of 0.9, but M4 had a higher mean rating (85) 

than M2 (70). This variability in ratings in the most uniform side of UHVS is in line with that 

observed in Study 1 for UHVS; some patterns with a similar UHVS (pairs A-B and E-F) received 

different ratings. This issue was most notable for EU; 13 patterns had EU values between 0.99 

and 1, but these patterns had mean ratings that ranged between 42 and 86. 

While 1-UHVS had the lowest AIC—indicating best performance—calculating UHVS requires 

making assumptions about contrast sensitivity, pattern size, and adaptation luminance. Moreno 

(2010) assumed the adaptation luminance was the mean pattern luminance. Study 1 showed that 

patterns with a difference of 0.07 or 0.14 in UHVS were consistently perceived differently; but 

patterns with a difference smaller than 0.01 still received different uniformity ratings. CV, on the 

other hand, is simpler to calculate because it does not require making detailed assumptions but 

had higher AIC values compared to UHVS. Results of Study 2 support the use of UHVS to quantify 

LU, though further work in needed to improve its predictability. In situations where metric 

calculation simplicity is required, CV can be used. 

UHVS or CV can be used in practice to evaluate luminance uniformity. For instance, to evaluate 

luminance uniformity of a 61 x 61 cm (2 x 2 feet) luminaire from specific viewing points in a 

room. Because 1-UHVS had the lowest AIC, it means that it can provide better predictions 
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compared to CV. However, the complexity of calculating UHVS may limit its use in practice. The 

simplicity of a uniformity metric is important if the metric was to be incorporated into 

discomfort glare models as done using CV in a previous study (Yang et al. 2017b). 

5. Limitations 

The results of the two studies have to be interpreted considering the following limitations. First, 

in both studies, subjects viewed the luminance patterns on their own computer screens under 

potentially different lighting conditions. Maximum luminance was likely limited to between 100 

cd/m2 and 600 cd/m2 compared to likely higher luminance levels from a luminaire. Another 

inherent limitation in online studies is the variation in computer screen make and model, 

brightness and contrast settings, resolution, and ambient lighting conditions across participants. 

Second, in Study 1, only UHVS was investigated for its ability to indicate similarity or differences 

in uniformity ratings. This is because the patterns had to be generated with specific metric 

values. 

Third, the patterns used in both studies represent a perpendicular viewing condition. In buildings, 

the luminaire luminous areas are likely viewed at an angle. This might bring into play other 

factors such as the angle of view, position of luminance pattern within field of view, and the 

texture of optical materials. These factors were not explored in the two studies presented. 

6. Conclusion 

In this article, we explored the performance of different luminance uniformity metrics using 

simulated and photographed luminance patterns presented via online questionnaires. The metrics 

that had lowest AIC and highest correlations with mean ratings were 1-UHVS, 1-EU, and CV. To 

predict perceived luminance uniformity, 1-UHVS or CV can be used. The EU metric values 
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congregated within a small range (0.99-1) and this metric did not perform better than CV, hence 

its use is not recommended. 

Future laboratory studies are warranted to investigate the issue found in Study 1: determining if 

UHVS can be used to infer similarity or differences in perceived uniformity between two patterns. 

There is also a need for studies to quantify the extent to which the limited luminance range and 

maximum luminance of the patterns presented on a computer screen affects perceived uniformity 

ratings compared to viewing luminaire luminance patterns. The UHVS and CV metrics would 

benefit from further improvements to their predictions for patterns on most uniform side (UHVS 

or CV < 0.2). 
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