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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or any agency thereof. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government or any
agency thereof.
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NATM Naturally abundant material

NBR Nitrile butadiene rubber

NCA LiNig.8Co00.15A10.0502

NCM Lij+w[NixCoyMn,]i-wO2

NEB Nudged elastic band (method)

NETL National Energy Technology Laboratory
NEXAFS Near-edge X-ray absorption fine structure (measurements)
NF Nanoflakes

NG Natural graphite (anode)

NHTSA National Highway Transportation Safety Administration
NIB Sodium (Na)-ion battery

NIR Near-infrared (emission)

NKB Nitrogen doped integrated Ketjen Black (particles)
NMA LiNio,qMﬂo,osAlo,ost

NMC Nickel manganese cobalt (oxide)

NMCA Nickel-manganese-cobalt-aluminium oxide (cathode)
NMFCN NaMnFeCoNiO»

NMP N-methylpyrrolidone

NMR Nuclear magnetic resonance

NP Nanoparticles

NPDF Neutron PDF

NR Neutron reflectometry

NREL National Renewable Energy Laboratory

NTO (Lithium manganese) nickel titanium oxide

NVP Na|[Na3V2(PO4); (cathode)

NVT Canonical ensemble (N, V, T conditions)

ocv Open circuit voltage

OEM Original equipment manufacturer

OER Oxygen evolution reactions

OES Optical Emission Spectroscopy

OMSH Ordered macroporous sulfur host

OPLS Optimized potentials for liquid simulations

ORNL Oak Ridge National Laboratory

ORR Oxygen reduction reaction

OSE Optical spectroscopic ellipsometry

OSU Oregon State University

P&E Processing Science & Engineering

P&ID Piping and instrumentation duagram

PAA Polyacrylic Acid

PAD Polymer Assisted Deposition

PAN Polyacrylonitrile

PAQ 9,10-phenanthrenequinone

PAW Projected augmented wave

PBDT Poly-2,2"-disulfonyl-4,4"-benzidine ter-ephthalamide

X Acronyms



FY 2022 Annual Progress Report

PBE Perdew, Burke, and Ernzerholf (parameters)
PBLM Parallel brick layer model

PC Propylene carbonate

PCC Project completion cell

PDF Pair density function

PE Polyethylene

PECVD Plasma-enhanced chemical vapor deposition
PEEK Polyetheretherketone

PEGDA Poly(ethylene glycol) diacrylate

PEGDGE Poly(ethylene glycol) diglycidyl ether
PEGDMA Polyethylene glycol dimethacrylate

PEI Polyethylenimine

PEM Poly(ethylene malonate)

PEO Polyethyleneoxide

PES Prop-1-ene-1,3-sultone

PET Polyethylene terephthalate

PEV Plug-in electric vehicle

PEY Partial electron yield

PFE Pentafluoroethane

PFIB-SEM Plasma focused ion beam scanning electron microscopy
PFM Poly (9,9-dioctylfluorene-co-fluorenone-comethylbenzoic ester
PFPE Perfluoropolyether

PFY Partial fluorescence yield

PHEV Plug-in hybrid electric vehicle

PHM Poly(hexylene malonate)

PI Principal investigator

PITT Potentiostatic intermittent titration technique
PL Photoluminescence

PLD Pulsed laser deposition

PLIF Planar Laser Induced Fluorescence

PMF Poly(melamine-co-formaldehyde) methylated
PMS Power management system

PMTH Dipentamethylenethiuram hexasulfide
PNCM Phosphate-affected NCM cathode

PNNL Pacific Northwest National Laboratory
PPM Poly(pentylene malonate)

PPO Polyphenylene oxide

PSD Particle size distribution

PSU Pennsylvania State University

PTF Post-Test Facility

PTFE Poly(tetrafluoroethylene) (cathode)

PTM Poly(trimethylene malonate)

PTO Pyrene-4,5,9,10-tetraone

PTSI p-toluenesulfonyl isocyanate

PVDF Poly(vinylidenefluoride)

Acronyms Xi



Batteries

PVP
PXRD
QC
R&D
RAFT

RCT
RE
RHS
RIM
RIXS
RM
RMD
RME
RNGC
RNMC
ROI
RPM
RPT
RR
RRDE
RST
RT
RTMS
SAED
SAXS
SBC
SBIR
SCA
SCN
SCP
SDS
SE
SECM
SEI
SEM
SLAC
SNL
SOA
SOC
SOW
SPAN
SPC
SPE
SPLE

Poly(vinylpolypyrrolidone)

Powder X-ray diffraction

Quantum chemistry

Research and Development
Reversible addition fragmentation chain-transfer
Resonant acoustic mixer

Rate capability test

Reference electrode

Right hand-side

Reflection interference microscope
Resonant inelastic x-ray scattering
Redox mediator

Reactive molecular dynamics
Relative molal enthalpy

Realizing Next Generation Cathodes
Reaction network-based Monte Carlo
Return on investment

Revolutions per minute

Reference performance test
Reduced-repulsion (channel)
Rotating ring disk electrode
Reactive Spray Technology

Room temperature

Reciprocal ternary molten salts
Selected area electrode diffraction
Small angle X-Ray scattering
Soluble base content

Small Business Innovation Research
Supply chain analysis

LisPSs

Sulfur containing polymer

Safety data sheet

Solid electrolyte

Scanning electrochemical microscope
Solid electrolyte interphase
Scanning electron microscopy
Stanford acceleration laboratory
Sandia National Laboratories

State of the art

State of charge

Statement of work

Sulfurized Polyacrylonitrile

Small particle cathodes

Solid polymer electrolyte
Single-particle-layer electrode

Xii Acronyms



SPM
SRL
SRO
SSB

SSE
SSE-A
SSLMB
SSR
SSRL
SSS
STEM
STEM-
STTR
SXRD
TAC
TARDEC
TCP
TEA
TEGDME
TEM
TES
TEY
TFE

TFP
TFSI
TGA
TGC
THF
TMA
TMB
TMDC
T™O
TMP
TMPMA
TOF-SIMS
TPP
TRL
TR-XAS
TR-XRD
TTE
TTT
TVR
TXM
UAH
UCB

FY 2022 Annual Progress Report

Scanning probe microscopy

Synchrotron Radiation Lightsource
Short-range order

Solid-state battery

Solid-state electrolyte

Anode-side solid secondary electrolytes
Solid-state Li-metal battery

Supersaturation ratio

Stanford Synchrotron Radiation Lightsource
Stainless steel spacers

Scanning transmission electron microscopy
Scanning transmission electron microscopy- high-angle annular dark-field
Small Business Technology Transfer Program
Surface X-ray diffraction

Technical Advisory Committee

(U.S. Army) Tank Automotive Research, Development and Engineering Center
Technology Collaboration Program
Technoeconomic analysis
Tetraethyleneglycoldimethyl

Transmission electron microscopy
Tender-energy x-ray absorption spectroscopy
Total electron yield

Trifluoroethanol

Tris(2,2,2-trifluoroethyl) phosphate
Bistriflimide (anion)

Thermal gravimetric analysis

Titration gas chromatography
Tetrahydrofuran

Trimethylaluminum

Trimethylboroxine

Transition metal dichalcogenide

Transition metal oxide

Trimethyl phosphate

Trimethylolpropane methacrylate
Time-of-flight secondary ion mass spectrometry
Triphenylphosphate

Technology Readiness Level

TR-XRD and absorption

Time-resolved x-ray diffraction
Tetrafluoropropyl ether
Time-temperature-transition

Taylor Vortex Reactor

Transmission X-ray microscopy

University of Alabama at Huntsville
University of Valifornia, Berkeley

Acronyms

xiii



Batteries

UcCl University of California, Irvine

UCSD University of California, San Diego

UuCcv Upper cutoff voltage

UF Ultra-Fine (concentrator)

UHE Ultra-high energy (cathode)

UHV Ultrahigh vacuum (system)

UIC University of Illinois at Chicago

UM University of Michigan

UMD University of Maryland

UNC University of North Carolina

UNCC University of North Carolina-Charlotte

URI University of Rhode Island

USABC United States Advanced Battery Consortium

USCAR United States Council for Automotive Research

USDRIVE U.S. Driving Research and Innovation for Vehicle efficiency and Energy sustainability

USGS United States Geological Survey

VC Vinylene carbonate

VCU Virginia Commonwealth University

VED Volumetric energy density

VNCM Virgin NCM cathode

VOC Volatile organic compounds

VR Voltage ramp

VSP Voucher Service Provider

VTO Vehicle Technologies Office

WAXS Wide-angle X-ray scattering

WT-EXAFS Wavelet-transformed EXAFS

XANES X-ray absorption near edge structure

XAS X-ray absorption spectroscopy

XCEL EXtreme Fast Charge Cell Evaluation of Lithium-ion Batteries

XFC Extreme fast charging

XPD X-ray powder diffraction

XPEEM X-ray photoemission electron microscopy

XPS X-ray photoelectron spectroscopy

XRD X-ray diffraction

XRF X-ray fluorescence (microscopy)

XRR X-ray reflectivity

XRS X-ray Raman Spectroscopy

XSEDE Extreme Science and Engineering Discovery Environment
Xiv Acronyms



FY 2022 Annual Progress Report

Executive Summary

Introduction

The U.S. Department of Energy's (DOE) Vehicle Technologies Office (VTO) funds research, deveopment,
demonstration, and deployment of new, efficient, and clean mobility options that are affordable for all
Americans. Technologies supported by VTO include electric drive components such as advanced energy
storage devices (primarily batteries); power electronics and electric drive motors; advanced structural
materials; energy efficient mobility systems; innovative powertrains to reduce greenhouse gas and criteria
emissions from hard-to-decarbonize off-road, maritime, rail, and aviation sectors; and fuels. One of the major
VTO objectives is to enable U.S. innovators to rapidly develop the next generation of technologies that achieve
the cost, range, and charging infrastructure necessary for the widespread adoption of plug-in electric vehicles
(PEVs). An important prerequisite for the electrification of the nation’s light duty transportation sector is
development of more cost-effective, longer lasting, and more abuse-tolerant PEV batteries. One of the ultimate
goals of this research, consistent with the current vehicle electrification trend, is an EV which can provide the
full driving performance, convenience, and price of an internal combustion engine (ICE) vehicle. To achieve
this, VTO has established the following overarching goal (Source: FY2023 Congressional Budget Request!):

... reducing electric vehicle (EV) battery cell cost by 50 percent to 360/kWh by 2030 to achieve EV
cost parity with internal combustion engine vehicles, eliminating dependence on critical materials
such as cobalt, nickel, and graphite, reducing battery supply chain vulnerabilities by 2030, and
establishing a lithium battery recycling ecosystem to recover 90 percent of spent lithium batteries and
re-introducing 90 percent of key materials into the battery supply chain by 2030.

VTO works with key U.S. automakers through the United States Council for Automotive Research (USCAR)
— an umbrella organization for collaborative research consisting of Stellantis N.V., the Ford Motor Company,
and General Motors. Collaboration with automakers through the partnership known as U.S. Driving Research
and Innovation for Vehicle Efficiency and Energy Sustainability (U.S. DRIVE) attempts to enhance the
relevance and the success potential of its research portfolio. VTO competitively selects projects for funding
through funding opportunity announcements (FOAs). Directly-funded work at the national laboratories are
awarded competitively through a lab-call process. Stakeholders for VTO R&D include universities, national
laboratories, other government agencies and industry (including automakers, battery manufacturers, material
suppliers, component developers, private research firms, and small businesses).

This document summarizes the progress of VTO battery R&D projects supported during the fiscal year 2022
(FY 2022). InFY 2022, the DOE VTO battery R&D funding was approximately $129 million. Its R&D focus
was on the development of high-energy batteries for PEVs. The electrochemical energy storage roadmap (which
can be found at the EERE Roadmap web page?) describes ongoing and planned efforts to develop
electrochemical storage technologies for EVs. To advance battery technology, which can in turn improve market
penetration of PEVs, the program investigates various battery chemistries to overcome specific technical barriers,
e.g., battery cost, performance, life (both the calendar life and the cycle life), its tolerance to abusive conditions,
and its recyclability/sustainability. VTO R&D has had considerable success, lowering the cost of EV battery
packs to $130/kWh in 2022, based on useable energy (representing a nearly 90% reduction since 2008) yet even
further cost reduction is necessary for EVs to achieve head-to-head cost competitiveness with internal
combustion engines (without Federal subsidies). In addition, today’s batteries also need improvements in such
areas as their ability to accept charging at a high rate, referred to as extreme fast charging (XFC) (15 minute
charge) — to provide a “refueling” convenience similar to ICEs, and the ability to operate adequately at low

! https://www.energy.gov/sites/default/files/2022-04/doe-fy2023-budget-volume-4.pdf, FY 2023 Congressional
Budget Request, Volume 4, Part 1, Page 9.
2 http://energy.gov/eere/vehicles/downloads/us-drive-electrochemical-energy-storage-technical-team-roadmap.
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temperatures. Research into “next-gen lithium-ion” batteries which would provide such functionalities is one of
the R&D focus areas. VTO is funding research on both “next gen” chemistries (which employ an alloy anode
and/or a high voltage cathode) and beyond lithium-ion (BLI) chemistries (which can, for example, employ a
lithium metal anode). Current cycle and calendar lives of next gen and BLI chemistries are well short of goals set
for EVs. To quantify the improvements needed to accelerate large-scale adoption of PEVs and HEVs, certain
performance and cost targets have been established. Some sample performance and cost targets for EV batteries,
both at cell level and at system (pack) level, are shown in Table ES- 1.

Table ES- 1: Subset of EV Requirements for Batteries and Cells

ARG EE S () Pack Level Cell Level
characteristic)
Cost @ 100k units/year (KWh = " "
useable energy) $100/kWh $75/kWh
Peak specific discharge power
(30s) 470 W/kg 700 W/kg
Peak specific regen power (10s) 200 W/kg 300 W/kg
Useable specific energy (C/3) 235 Wh/kg* 350 Wh/kg*
Calendar life 15 years 15 years
Deep discharge cycle life 1000 cycles 1000 cycles
>70% useable energy @C/3 >70% useable energy @C/3 discharge
Low temperature performance discharge at -20°C at -20°C

*Current commercial cells and packs not meeting the goal

The batteries R&D effort includes multiple activities, ranging from focused fundamental materials research to
prototype battery cell development and testing. It includes, as mentioned above, R&D on “next-gen” and BLI
materials and cell components, as well as on synthesis and design, recycling, and cost reduction. Those
activities are organized into mainly two program elements:

e Advanced Battery and Cell R&D
e Advanced Materials R&D.

A short overview of each of those program elements is given below.

Advanced Battery and Cell R&D

The Advanced Battery and Cell R&D activity focuses on the development of robust battery cells and modules
to significantly reduce battery cost, increase life, and improve performance. This work mainly spans the
following general areas:

e  United States Advanced Battery Consortium (USABC)-supported battery development & materials
R&D (11 projects)

Processing science and engineering (11 projects)

Recycling and sustainability (five projects)

Extreme fast-charging (multiple projects organized into three “thrust areas™)

Beyond batteries (a single comprehensive project)

Testing, Analysis, High-Performance Computing, Lab-14 (eight projects)

Small business innovative research (SBIR) (multiple Phase I and Phase II projects).

Chapters I through VII of this report describe projects under the Advanced Battery and Cell R&D activity. This
effort involves close partnership with the automotive industry, through a USABC cooperative agreement. In
FY 2022, VTO supported 11 USABC cost-shared contracts with developers to further the development of
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advanced automotive batteries and battery components. The estimated DOE share of those USABC contracts
(over the life of the contracts) is approximately $39M. These include fast-charge and low-cost lithium ion
batteries for electric vehicle applications (Zenlabs Energy), low-cost, high safety fast charge automotive cells
(Microvast, Inc.), high energy and power density lithium-ion battery based on neocarbonix™ polymer binder-
free electrode technology for EV applications (Nanoramic), evaluation of advanced Li-ion cell architectures
for extreme fast charging (XFC) batteries for EVs (EnPower, Inc.), solvent-free electrode manufacturing for
low cost/fast charging batteries (Worcester Polytechnic Institute), low-cost, fast-charge EV: system -Ni-rich
NCM cathode, coated anode, fluorinated solvents (Farasis), pre-lithiation of silicon-containing anodes for
high-performance EV batteries (Applied Materials), high performance electrolyte for LNMO/LTO batteries
(Gotion), integrated, zero discharge process train, no tipping model (ABMC), silicon-based EV cells meeting
cost, calendar life and power (Ionblox), and low cost, fast-charging silicon nanowire cell technology
(Amprius).

In addition to the USABC projects listed above, VTO also supports eleven processing science and engineering
projects at the national labs. Most strategies for increasing the performance (and reducing cost) of lithium-ion
batteries focus on novel battery chemistries, material loading modifications, and increasing electrode thickness.
The latter approach is generally considered useful for increasing energy density (and in turn, the overall cell
capacity). However, practical thicknesses are constrained by ionic transport limitations (which limit cell
power) and processing issues. Project participants in this area include ANL, BNL, LBNL, and ORNL. The
estimated value of those advanced processing projects (over project lifetime) is approximately $35M.

The Recycling and Sustainability activity involves studies of the full life-cycle impacts and costs of lithium-ion
battery production/use; cost assessments and impacts of various recycling technologies; and the available
material and cost impacts of recycling and secondary use. The participants include ANL, NREL, Farasis
Energy, and Worcester Polytechnic Institute and the associated budget is approximately $10M.

To become truly competitive with the internal combustion engine vehicle (ICEV) refueling experience, EV
charging times must also be significantly shorter than at present. A research project to understand/enable
extreme fast charging (XFC) in enhanced lithium-ion systems — charging an EV at power rates of up to 400
kW, began back in FY 2017. Projects on three “thrust areas”: anode & electrolyte thrust, electrode and cell
design thrust, and electrochemical and thermal performance thrust. Team members include LBNL, INL, ANL,
ORNL, NREL, and SLAC. In addition, a “behind the meter” storage project is taking place by a team which
includes NREL, and SNL. This area focuses on novel battery technologies to facilitate the integration of high-
rate EV charging, solar power generation technologies, and energy-efficient buildings while minimizing both
cost and grid impacts.

The battery testing, analysis, and high-performance computing activity develops requirements and test
procedures for batteries (to evaluate battery performance, battery life and abuse tolerance). Battery technologies
are evaluated according to USABC-stipulated battery test procedures. The battery testing activity includes
performance, life and safety testing, and thermal analysis and characterization. It currently includes four projects
based at ANL, INL, SNL, and NREL. The testing activity also supports cell analysis, modeling, and prototyping
(CAMP) projects at ANL, which include benchmarking and post-test analysis of lithium-ion battery materials at
three labs (ANL, ORNL, and SNL). Projects include testing (for performance, life and abuse tolerance) of cells
(for contract, laboratory-developed and university-developed cells), and benchmarking systems from industry;
thermal analysis, thermal testing, and modeling; cost modeling; and other battery use and life studies. Cost
assessments and requirements analysis includes an ANL project on developing the performance and cost model
BatPaC. This rigorously peer-reviewed model developed at ANL is used to design automotive lithium-ion
batteries to meet the specifications for a given vehicle, and estimate its cost of manufacture.

VTO also supports several small business innovation research (SBIR) contracts. These SBIR projects focus on
development of new battery materials and components and provide a source of new ideas and concepts. The
section on SBIR projects includes a short list of recent Phase I and Phase II projects awarded during FY 2022.
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Advanced Materials R&D

The Advanced materials research & development activity (covered in Chapters VIII to Chapter XX of this
report) addresses fundamental issues of materials and electrochemical interactions associated with
rechargeable automotive batteries. It develops new/promising materials and makes use of advanced material
models to discover them, utilizing scientific diagnostic tools and techniques to gain insight into their failure
modes and processes. It is conducted by various national labs, universities, and industry partners. The work is
divided into two general areas —“next gen” chemistries (which can, for example, employ an alloy anode and/or
a high voltage cathode) and beyond lithium-ion (BLI) chemistries (which can, for example, employ a lithium
metal anode). The projects are distributed as follows:

e Next generation (next-gen) lithium-ion battery technologies (24 projects)
Advanced anodes (17 projects)

Advanced cathodes (six projects)

Frontier science at interfaces (five projects)

No-cobalt/Low-cobalt cathodes (six projects)

Diagnostics (four projects)

Modeling of advanced material (four projects)

Low temperature electrolytes (three projects).

O O O 0O O O O

e Beyond lithium-ion battery technologies

Metallic lithium (four projects)

Solid-state batteries (32 projects)

Lithium sulfur (eight projects)

Lithium-air Batteries (three projects)

Sodium-ion batteries (four projects)

Battery500 Consortium (several keystone and seedling projects).

O O O O O O

The next generation lithium-ion battery R&D area’s goal is to advance material performances, designs, and
processes to significantly improve performance and reduce the cost of lithium-ion batteries using an alloy or
intermetallic anode and/or high voltage cathode. Specific areas of investigation include high-energy anodes
(e.g., those containing silicon or tin), high voltage cathodes, high voltage and non-flammable electrolytes,
novel processing technologies, high-energy and low-cost electrode designs, and certain other areas. This work
spans a range of U.S. DRIVE activities.

e Advanced anodes R&D includes 17 multi-lab collaborative projects — based in national laboratory
consortiums (NREL, PNNL, ANL, ORNL, and LBNL), in industry (Applied Materials, Enovix,
Group-14 Technology, Sila Nano, and Solid Power), and at universities (Stonybrook University,
University of Delaware, and University of Maryland).

e Advanced cathodes R&D includes six projects based at five national labs (ANL, ORNL, LBNL,
NREL, and PNNL) and a university (UC, Santa Barbara). In addition, there are six low-cobalt/no-
cobalt cathode projects based at two industry partners (Cabot and Nexersis), one national lab (ORNL),
and four universities (UCSD, UC Irvine, UTA, and PSU).

e Frontier science at interfaces R&D includes five projects, including those on molecular-level
understanding of cathode-electrolyte interfaces (SLAC and NREL), interfacial studies of emerging
cathode materials (LBNL), high-energy cathodes and their interfaces with electrolytes for next-
generation Li-ion batteries (PNNL), fluorinated deep eutectic solvent (FDES)-based electrolytes
(ANL), and in sifu microscopies for the model cathode/electrolyte interface (NREL).

xviii Executive Summary



FY 2022 Annual Progress Report

e Diagnostics R&D includes four projects ranging from interfacial processes to in situ diagnostic
techniques and advanced microscopy, thermal diagnostics, and synthesis and characterization. The
various researchers for these projects are based at LBNL, BNL, and PNNL.

o  There are four modeling projects: electrode materials design and failure prediction (ANL), model-system
synthesis and advanced characterization (LBNL), design of high-energy, high-voltage lithium batteries
through first-principles modeling (LBNL), and characterization and modeling of Li-metal batteries:
modeling and design of amorphous solid-state Li conductors (LBNL).

o  There are three low-temperature electrolyte projects: ethylene carbonate-lean electrolytes (LBNL),
fluorinated solvent-based electrolytes (ANL), and synthesis, screening and characterization of low
temperature electrolyte (BNL).

R&D on beyond lithium-ion battery technologies includes solid-state technology, lithium metal systems, lithium
sulfur, lithium air, and sodium-ion. The main areas of focus include new methods to understand/stabilize lithium
metal anodes; lithium polysulfides to enable the use of sulfur cathodes; and developing electrolytes for lithium air
and lithium sulfur cells. These systems offer further increases in energy and potentially reduced cost compared to the
next-gen lithium-ion batteries. However, they also require additional breakthroughs in materials (often at a
fundamental level) before commercial use. VTO is investigating the issues and potential solutions associated with
cycling metal anodes. The main research topics include: coatings, novel oxide and sulfide-based glassy electrolytes,
and in situ diagnostics approaches to characterize and understand Li metal behavior during electrochemical cycling.

o Metallic lithium R&D includes four projects based at three national laboratories (LLNL, PNNL, and
SLAC).

e Solid state batteries R&D includes 32 projects. These are based at multiple national laboratories
(ANL, PNNL, LBNL, NREL, LLNL, ORNL, BNL, SLAC), universities (University of California,
University of Maryland, College Park, lowa State University of Science and Technology, University
of Michigan, Virginia Polytechnic Institute and State University, Penn State University Park,
University of Wisconsin-Milwaukee, University of Houston, Virginia Commonwealth University, and
University of Louisville), and industry members (Solid Power, Inc, and General Motors LLC).

e Lithium sulfur R&D includes eight projects — four of them based at national laboratories (ANL,
LBNL, and PNNL) and the other four at universities (the University of Wisconsin Milwaukee,
University of California, San Diego, University of Pittsburgh, and Penn State University).

e Additional beyond lithium-ion projects include three on Lithium-Air batteries (two at ANL and one at
the University of Illinois) and four on Sodium-ion batteries (based at ANL, BNL, LBNL, and PNNL).

The Battery500 Innovation Center is a combined effort by a team of four national labs (PNNL, BNL, INL, and
SLAC) and five universities (University of Texas-Austin, Stanford University, Binghamton University,
University of Washington, and University of California, San Diego) with the goal to develop commercially
viable lithium battery technologies with a cell level specific energy of 500 Wh/kg while simultaneously
achieving 1,000 deep-discharge cycles. The consortium keystone projects focus on innovative electrode and
cell designs that enable maximizing the capacity from advanced electrode materials. The consortium works
closely with the R&D community, battery/materials manufacturers and end-users/OEMs to ensure that these
technologies align well with industry needs and can be transitioned to production.

Recent Highlights

LiNiO; Enabled by Optimized Synthesis Conditions (ANL)

The LiNiO2 (LNO) cathode has been of interest for many years because of its high energy and lack of
expensive cobalt. However, it has never achieved commercial success due, in part, to cycling instabilities
(presumed inherent to the material) at high states of charge. However, due to the sensitivity of LNO to
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synthesis conditions such as precursor control, temperature, and atmosphere, virtually all LNO cathodes
studied to date contain defects. Work at ANL has shown that near ideal, ‘defect-free’ LNO can be synthesized
through better control of synthesis. ANL’s ‘defect-free’ LNO cycles at high capacities (>220 mAh/g) over
many cycles without dopants, coatings, or electrolyte additives. Such high performance, including very low
initial irreversible capacity (~96%), has never been reported for LNO. Key to achieving such results was
precise control of synthesis parameters including novel precursor preparation, calcination conditions that
facilitate minimum local defects (Li*/Ni*>" mixing, O vacancies, stacking faults), optimized primary and
secondary particle morphologies, and a higher resistance to secondary particle cracking. Surprisingly, synthesis
of ‘defect-free’ LNO could be enabled within a wide range of O, partial pressures, even as low as 0.2 atm.
Full-cell tests with graphite anodes and Gen 2 electrolyte (1.2 M LiPFs in EC:EMC (3:7 by weight)) showed
performance on par with LiNip9Mng 05C00.0502, when cycled over similar states of charge, Figure ES- 1. Note
that three hour holds at the top of every charge were used to push stability limits.

250 -
25 Full cell cycle comparison

200 ud'—'ll_“,—--}lli____p.g:_.__.u
75 *~

150

NMC 90-5-5(4.2-3.0V)

No coalings, dopants, or additives

n. Graphite anode, Gen2 electrolyte
C/3 charge-discharge, 30°C
3- 3-hour holds at TOC (for accelerated degradation)
G i i i ' § i A i. : § J
0 2 40 60 80 100 120
Cycle (number)

Specific capacity (mAh/g)

Figure ES- 1. Full cell performance comparison of optimized LNO vs. LiNio.sMno.05Co.0502

Developing low-cost rechargeable lithium-sulfur batteries (Battery500 Consortium)

The Battery500 Consortium has advanced the performance of a lithium-sulfur (Li-S) battery through
innovation in battery electrolytes and improved understanding of a polymer-derived sulfur cathode. A 2 Ah
pouch cell with an energy density of 250Wh/kg (which is competitive with current lithium-ion EV cells) has
been demonstrated.

Sulfurized PolyAcryloNitrile (SPAN) is a low-cost material containing no critical materials and is readily
made by heating sulfur with PAN, an industrial product, at 300-500°C. Unlike elemental sulfur-based
cathodes, SPAN appears to avoid the generation of soluble polysulfide species, which lead to capacity fade and
is very sensitive to electrolyte amounts. To enable a long-life Li-SPAN battery, electrolytes need to be stable at
both the Li anode and the SPAN cathode. The Consortium has developed a localized concentrated electrolyte
consisting of 1.8 M lithium bis(fluorosulfonyl)imide (LiFSI) in diethyl ether (DEE) and Bis(2,2,2-
trifluoroethyl) ether (BTFE). This electrolyte forms a protection layer on the SPAN surface that prevents loss
of sulfur to the electrolyte. In addition, Li cycles stably due to the formation of a LiF-rich SEI. Both Li and
SPAN show around 1000 stable cycles in coin cells using this new electrolyte.

To further improve the capacity and reversibility of SPAN, it is essential to understand its molecular structure
and working mechanism. Using chemical analysis, electron microscopy, and surface analysis, we established
that SPAN undergoes an irreversible transformation during the 1% cycle that reduces its residual hydrogen
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content and produces a more extended conjugated molecular structure. As a result, its electronic conductivity
increases by > 100x and raises the working potential. This structural feature will serve as a blueprint for design
of next generation materials. Electrolyte innovation and electrode engineering have allowed the fabrication of a
first generation 2 Ah Li-SPAN battery with an energy density of 250 Wh/kg, Figure ES- 2. Cycling ended
when the Li metal anode caused an internal short. Work is in progress to further increase the capacity of SPAN
and formulate new electrolytes that will extend the cycle life of Li-SPAN batteries. Team members are now
scaling up SPAN cathode materials to enable more pouch cell manufacturing and testing.
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Figure ES- 2. Progress of developing a low-cost Li-S battery by the Battery500 Consortium. The sulfur cathode is sulfurized
polyacrylonitrile (SPAN). (a) and (b), Stable cycling of Li and SPAN in a localized concentrated electrolyte, respectively. (c)
Demonstration of a 1st Generation Li-SPAN pouch cell of 2 Ah with an energy density of 250 Wh/kg

High-Performance Low-Cobalt Cathode Materials for Li-ion Batteries - (Pennsylvania State University,
Pacific Northwest National Laboratory, and Oak Ridge National Laboratory)

Li[NixCoyMn.x.y]JO2 (NCM) cathode materials are a common choice for electric vehicles (EV) batteries due to
their high energy density and good cycling. However, the increased price of cobalt (Co) over the past few
years has increased the cost of the NMC. Therefore, developing cathode materials with low or no Co while still
achieving high energy density and low cost is essential. Unfortunately, the cycling stability of many low-Co
NMC cathodes is compromised by structural instability, non-uniform strain during cycling, and parasitic
reactions between the cathode and electrolyte. The coating methods developed in this project are an effective
strategy for alleviating these issues.

Specifically, we achieved a LiFePO4 (LFP) coated NCM811 cathode (LFP/NCMS811) via a dry coating
approach, where the nanosized LFP is uniformly coated at the surface of NCM811 particles. Then, 2.5 Ah
pouch cells were assembled using 10 wt% LFP coated NCMS811 cathode and graphite anode. The cathode
loading is 17.5 mg/cm?, the N/P ratio = 1.1, and the cell achieved 450 Wh/L and 200 Wh/kg. Figure ES- 3
demonstrates that the pouch cells can cycle stably at room temperature (RT), with capacity retention of 76.7%
after 2413 cycles. Moreover, the cell could still achieve 67.3% capacity retention after 1609 cycles at 40°C.

In summary, LiFePO4 coating significantly improves the cycling performance of pouch cells with low-Co
layered structured cathode. The team continues to investigate more effective coating materials for
Li[NixCoyMni.xy]O2 cathode materials with a cobalt content < 0.04.
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Figure ES- 3. Capacity retention pouch cells during C/3 cycling at RT and 40°C

Rational electrolyte solvent molecule tuning for high-performance lithium metal and anode free
batteries (Stanford University and SLAC National Accelerator Laboratory)

Lithium (Li) metal batteries offer improved energy density compared to current Li-ion batteries but are held
back by relatively poor cycle life. Conventional electrolytes fall short when paired with Li metal anodes, let
alone anode-free batteries. To enable practical Li metal and anode-free batteries, several requirements should
be fulfilled: 1) high Coulombic efficiency (CE) including initial cycles, i.e. fast activation of Li anode; 2)
anodic stability to avoid cathode corrosion; 3) practical conditions such as lean electrolyte and limited Li
inventory; 4) high ionic conductivity for realistic cycling rates; 5) moderate Li salt concentration for low cost;
6) high boiling point and the absence of gassing to ensure processability and safety.

In 2022, researchers at Stanford University and SLAC investigated a family of fluorinated 1,2-diethoxyethanes
(fluorinated-DEEs) as electrolyte solvents. Selected positions on DEEs are functionalized with various
numbers of fluorine (F) atoms through iterative tuning, to reach a balance between CE, oxidative stability, and
ionic conduction. Paired with 1.2 M LiFSI salt, we found that a partially fluorinated, locally polar -CHF2
group results in higher ionic conduction than fully fluorinated —CF3 while still maintaining excellent electrode
stability. Specifically, the best-performing FADEE and FSDEE both contain -CHF2 group. In addition to high
ionic conductivity and low and stable overpotential, they achieve roughly 99.9% Li CE with +0.1% fluctuation
(Figure ES- 4a) as well as fast activation, i.e. the CEs of the Li||Cu half cells reach >99.3% from the second
cycle (Figure ES- 4b). Aluminum corrosion is also suppressed due to the oxidative stability that originates
from fluorination. These features enable roughly 270 cycles in thin-Li||high-loading-

LiNipgMng.1C00.10> (NMC811) full batteries (Figure ES- 4c) and >140 cycles in fast-cycling anode-free
Cul|LiFePOs (LFP) pouch cells (Figure ES- 4d), both of which are state-of-the-art performances.

The above solvents can be readily scaled up with low cost. Their high boiling point, high flash point, non-
flammability and absence of gassing issue during battery cycling are desirable features.
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Figure ES- 4. Cycling performance of Li| | Cu half cells, practical Li metal batteries and industrial anode-free pouch cells using
NMC811 and LFP cathodes

Collaborative Activities

In addition to the above, VTO has in place extensive and comprehensive ongoing coordination efforts in
energy storage R&D across all of DOE and with other government agencies. It coordinates efforts on energy
storage R&D with both the Office of Science and the Office of Electricity. Coordination and collaboration
efforts also include program reviews and technical meetings sponsored by other government agencies and
inviting participation of representatives from other government agencies to contract and program reviews of
DOE-sponsored efforts. DOE coordinates such activities with the Army’s Advanced Vehicle Power
Technology Alliance, the Department of Transportation/National Highway Traffic Safety Administration
(DOT/NHTSA), the Environmental Protection Agency (EPA), and the United Nations Working Group on
Battery Shipment Requirements. Additional international collaboration occurs through the International
Energy Agency’s (IEA’s) Hybrid Electric Vehicles Technology Collaboration Program (HEV TCP); and
bilateral agreements between the U.S. and China.

Organization of this Report

This report covers all the FY 2022 projects which are part of the advanced battery R&D program in VTO. We
are pleased with the progress made during the year and look forward to continued cooperation with our
industrial, government, and scientific partners to overcome the remaining challenges to delivering advanced
energy storage systems for vehicle applications.
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anode-free (red) cells. The shaded areas show the error bands in the theoretical estimates from the 3w
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Vehicle Technologies Office Overview

Vehicles move our national economy. Annually, vehicles transport 18 billion tons of freight—about $55
billion worth of goods each day’>—and move people more than 3 trillion vehicle-miles.* Growing our economy
requires transportation, and transportation requires energy. The transportation sector accounts for
approximately 30% of total U.S. energy needs’ and the average U.S. household spends over 15% of its total
family expenditures on transportation,® making it, as a percentage of spending, the most costly personal
expenditure after housing. Transportation is critical to the overall economy, from the movement of goods to
providing access to jobs, education, and healthcare.

The transportation sector has historically relied heavily on petroleum, which supports over 90% of the sector’s
energy needs today,’ and, as a result, surpassed electricity generation to become the largest source of CO,
emissions in the country.® The Vehicle Technologies Office (VTO) will play a leading role to decarbonize the
transportation sector and address the climate crisis by driving innovation within and deployment of clean
transportation technologies.

VTO funds research, development, demonstration, and deployment (RDD&D) of new, efficient, and clean
mobility options that are affordable for all Americans. VTO leverages the unique capabilities and world-class
expertise of the National Laboratory system to develop new innovations in vehicle technologies, including:
advanced battery technologies; advanced materials for lighter-weight vehicle structures and better powertrains;
energy-efficient mobility technologies and systems (including automated and connected vehicles as well as
innovations in connected infrastructure for significant systems-level energy efficiency improvement);
combustion engines to reduce greenhouse gas and criteria emissions; and technology integration that helps
demonstrate and deploy new technology at the community level. Across these technology areas and in
partnership with industry, VTO has established aggressive technology targets to focus RDD&D efforts and
ensure there are pathways for technology transfer of federally supported innovations into commercial
applications.

VTO is uniquely positioned to accelerate sustainable transportation technologies due to strategic public—
private research partnerships with industry (e.g., U.S. DRIVE, 21% Century Truck Partnership) that leverage
relevant expertise. These partnerships prevent duplication of effort, focus DOE research on critical RDD&D
barriers, and accelerate progress. VTO advances technologies that assure affordable, reliable mobility solutions
for people and goods across all economic and social groups; enable and support competitiveness for industry
and the economy/workforce; and address local air quality and use of water, land, and domestic resources.

Annual Progress Report

As shown in the organization chart (below), VTO is organized by technology area: Batteries R&D;
Electrification R&D; Materials Technology R&D; Decarbonization of Offroad, Rail, Marine, and Aviation;
Energy Efficient Mobility Systems; and Technology Integration. Each year, VTO’s technology areas prepare
an Annual Progress Report (APR) that details progress and accomplishments during the fiscal year. VTO is
pleased to submit this APR for Fiscal Year (FY) 2022. The APR presents descriptions of each active project in
FY 2022, including funding, objectives, approach, results, and conclusions.

3 Bureau of Transportation Statistics, DOT, Transportation Statistics Annual Report 2020, Table 4-1, https:/www.bts.gov/tsar.

4 Davis, Stacy C., and Robert G. Boundy. Transportation Energy Data Book: Edition 39. Oak Ridge National Laboratory, 2021, https:/doi.org/10.2172/1767864.
Table 3.8 Shares of Highway Vehicle-Miles Traveled by Vehicle Type, 1970-2018.

5 Ibid. Table 2.2 U.S. Consumption of Total Energy by End-use Sector, 1950-2018.

¢ Ibid. Table 11.1 Average Annual Expenditures of Households by Income, 2019.

7 Ibid. Table 2.3 Distribution of Energy Consumption by Source and Sector, 1973 and 2019.

8 Environmental Protection Agency, Draft U.S. Inventory of Greenhouse Gas Emissions and Sinks, 1990-2019, Table 2-11. Electric Power-Related Greenhouse Gas
Emissions and Table 2-13. Transportation-Related Greenhouse Gas Emissions.
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Batteries Program Overview

Introduction

During the fiscal year 2022 (FY 2022), the Vehicle Technologies Office (VTO) battery program continued
research and development (R&D) support of battery technologies for plug-in electric vehicles (PEVs), e.g.,
plug-in hybrids, extended range electric vehicles, and all-electric vehicles. One objective of this support is to
enable U.S. innovators to rapidly develop next generation of technologies that achieve the cost, range, and
charging infrastructure necessary for the widespread adoption of PEVs. Stakeholders involved in VTO R&D
activities include universities, national laboratories, other government agencies and industry partners —
including automakers, battery manufacturers, material suppliers, component developers, private research firms,
and small businesses. VTO works with key U.S. automakers through the United States Council for Automotive
Research (USCAR) — an umbrella organization for collaborative research consisting of Stellantis N.V., the
Ford Motor Company, and the General Motors Company. Collaboration with automakers through the U.S.
DRIVE (Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability) partnership
enhances the relevance and the success potential of the research platform. An important prerequisite for the
electrification of the nation’s light duty transportation sector is the development of more cost-effective, longer
lasting, and more abuse-tolerant PEV batteries and accordingly, VTO battery R&D is focused on the
development of high-energy batteries for PEVs.

Goals

The goal of this research is to address barriers to EVs reaching the full driving performance, convenience, and
price of an internal combustion engine (ICE) vehicle. EVs have the advantage of a very high efficiency
compared to other vehicle types, a simplified drivetrain, and a flexible primary energy source (i.e., the
electricity needed to charge an EV can come from coal, natural gas, wind turbines, hydroelectric, solar energy,
nuclear, or any other resource). Another current focus is the 12V start/stop (S/S) micro-hybrid architecture, in
which the engine is shut down whenever a vehicle stops. Vehicles with the S/S functionality are being
deployed worldwide. Table 1 shows a subset of the targets for high-performance EVs set by U.S. DRIVE’.

Table 1: Subset of Requirements for Advanced High-Performance EV Batteries and Cells
(Cost and Low Temperature Performance are Critical Requirements)

Energy Storage Goals (by characteristic) System Level Cell Level
Cost @ 100k uni(tesn/gg; (kWh = useable $125/kWh* $100/KWh
Peak specific discharge power (30s) 470 W/Kg 700 W/kg
Peak specific regen power (10s) 200 W/kg 300 W/kg

Useable specific energy (C/3) 235 Wh/kg* 350 Wh/kg
Calendar life 15 years 15 years

Deep discharge cycle life 1000 cycles 1000 cycles

>70% useable energy @C/3 >70% useable energy @C/3

ol B 2B LIS AR discharge at -20°C discharge at -20°C

State of the Art

Battery R&D attempts to advance battery technology to help improve the market penetration of PEVs by
overcoming the current barriers. To accomplish this, it focuses on: (1) a significantly reduced battery cost, (2)
increased battery performance, e.g., extreme fast charge (XFC) and low temperature performance for enhanced

? https://uscar.org/download/246/energy-storage-system-goals/12837/goals-for-advanced-high-performance-
batteries-for-electric-vehicle-ev-applications.pdf
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lithium-ion, (3) improved life advanced chemistry cells, (4) increased tolerance to abusive conditions; and (5)
more cost-effective recycling and sustainability.

The current status of the broad battery chemistry types (current lithium-ion, next gen, and BLI) is summarized
in Figure 1. Battery R&D spans mainly three areas:

e Current technology (enhanced lithium-ion): including cells with current materials (graphite
anode/transition metal oxide cathode) and features like XFC compatibility, low temperature
performance and improved abuse tolerance.

e Next-gen lithium-ion: Cells containing an alloy anode, usually silicon-based, and/or a high voltage
(>4.5 V) cathode.

e Beyond lithium-ion (BLI): Cells containing Li metal anodes.

Over the past 12 years, PEVs have become more commercially viable, with battery costs dropping almost 90%
since 2010. Further cost reductions in high-energy batteries for PEVs are always desirable. In addition,
although today’s batteries approach very attractive cost numbers, they still need the ability to accept extreme
fast charging (XFC) and to perform better in low-temperature operations to compete with ICEs in all-weather
performance and “refueling” convenience. Research into “enhanced lithium-ion” batteries (which would
providing these functionalities) is one of the R&D focus areas. For further gains in energy density and cost
reduction, research is needed in both “next gen” chemistries (which employ an alloy anode and/or a high
voltage cathode) and BLI chemistries (see Figure 1). Cycle and calendar lives of next-gen and BLI chemistries
fall well short of EV goals. Most cells employing a significant amount of silicon provide around 1,000 deep-
discharge cycles but with less than five years of calendar life; BLI cells typically provide much less of a cycle
life (400 cycles or less). In addition, the requisite low temperature performance and extreme fast charge
capability are lacking in all chemistries.

Current Technology Next Generation Longer-term
Lithium-ion Lithium-ion Battery Technology
(Graphite/NMC) Silicon Composite’High -voltage NIMC) (Lithium Metal)

Battery Pack Cost

= Current:*5320/kWh
* Potential: 570-5120/kKWh

Battery Pack Cost

= Current: 5235/k\Wh
= Potential: S100-5160/ KW h

Battery Pack Cost

= Curpent: 5256/ kKWh
= Potential: 590-5125/kWh

Large-format EV cells 20-60AhK Largaformat EV calls 20-60 Ah Large-format EV calls TBD I {Today)
Current cycle life 1.000-5,000 Cumrent cycle life 500 -700 Cumrant oycle life 400
Calendar life 10-15 years Calendar life Low Calendar life TBD
IMature manufacturing llature manufacturing Idature manufacturing
Fast-charge Fast-charge Fast-charge

R&D Needs R&D Needs R&D Needs

* High-voltags cathode/ elactrolyte
* Lower-cost electrods processing

= BE«treme fast-charging

silicon content

High-voltage cathode/ lactrolyte
Lowssr-cost electrode processing
Durable silicon anode with increased

= High-volage cathode

= Lithium protaction

= Highly-conductive solid electrolyte

Figure 1. Chemistry classes, status, and R&D needs

Because of the large variation in different battery technologies, battery research also includes multiple
activities focused to address remaining high cost areas within the entire battery supply chain.
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Battery Technology Barriers

The major remaining challenges to commercializing batteries for PEVs are as follows:

A. Cost. The current cost of high-energy lithium-ion batteries is approximately $150 — $200/kWh (on usable
energy basis), a factor of two-three times too high from where it needs to be. The main cost drivers are the high
cost of raw materials, costs associated with materials processing, the cell and module packaging, and
manufacturing.

B. Performance. Historically, a higher energy density was needed to reduce the weight and volume of PEV
batteries, but those weight and volume issues have been to a large degree been addressed. The use of higher
energy materials is still an effective way to reduce costs further and extend driving range, but cell chemistries
that provide higher energy have life and performance issues. Also, existing chemistries (e.g., graphite anodes
paired with transition metal oxide cathodes) need improvement in XFC and low temperature performance to
compete favorably with gas-powered vehicles in the areas of performance and customer convenience.

C. Life. The life issue for mature lithium-ion technologies has mainly been mostly addressed. However, both
next-gen and BLI cell technologies still suffer major cycle and calendar life issues.

D. Abuse Tolerance. Many lithium-ion batteries are not intrinsically tolerant to abusive conditions; however,
full packs have been engineered by automotive OEMs to mitigate much of the risk. The reactivity of high
nickel cathodes and flammability of current lithium-ion electrolytes are areas for possible improvement. The
characteristics of next-gen and BLI chemistries to abusive conditions are not well-understood. However,
silicon anode cells show very high temperatures during thermal runaway and lithium metal-based batteries
have a long history of problematic dendrite growth which can lead to internal shorts and thermal runaway.
Thus, research into enhanced abuse tolerance strategies will continue.

E. Recycling and Sustainability. Currently, automotive OEMs pay a relatively large cost (5-15% of the
battery cost) to recycle end of life PEV batteries. The various chemistries used in lithium-ion cells results in
variable backend value. Alternatively, unless they get recycled, lithium-ion batteries could lead to a shortage of
key materials (lithium, cobalt, and nickel) vital to the technology. Finding ways to decrease the cost of
recycling could thus significantly reduce the life cycle cost of PEV batteries, avoid material shortages, lessen
the environmental impact of new material production, and potentially provide low-cost active materials for
new PEV battery manufacturing.

Program Organization Matrix

VTO’s energy storage effort includes multiple activities, ranging from focused fundamental materials research
to prototype battery cell development and testing. The R&D activities can involve either shorter-term pre-
competitive research by commercial developers or exploratory materials research generally spearheaded by
national laboratories and universities. The program elements are organized as shown in Figure 2. Battery R&D
activities are organized into the following program elements: Advanced Batteries and Cells R&D, Battery
Materials R&D, and the current focus.
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Figure 2. Battery R&D Program Structure

Advanced Cell and Battery Research and Development activity. This activity focuses on the development
of robust battery cells to significantly reduce battery cost, increase life, and improve performance. Part of this
effort takes place in close partnership with the automotive industry, through a cooperative agreement with the
United States Advanced Battery Consortium (USABC). In FY 2022, the USABC supported eleven cost-shared
contracts with developers to further the development of batteries and battery components for PEVs. In addition
to the USABC projects, DOE supports battery and material suppliers via contracts administered by the
National Energy Technology Laboratory (NETL). Other projects in this area include performance, life and
abuse testing of contract deliverables, laboratory- and university-developed cells, and benchmarking new
technologies from industry; thermal analysis, thermal testing and modeling; cost modeling; secondary usage
and life studies; and recycling studies for core materials. The processing science & engineering activity
supports the development and scale-up of manufacturing technologies needed to enable market entry of next-
generation battery materials and cell components — emphasizing disruptive materials and electrode production
technologies that could significantly reduce cost and environmental impact while increasing yield and process
control relative to existing production technologies. Several small business innovation research (SBIR)
projects, also supported by VTO, are focused on the development of new battery materials/components and are
the source of new ideas and concepts and are covered in that chapter.

Advanced Materials Research activity. This activity addresses fundamental issues of materials and
electrochemical interactions associated with rechargeable automotive batteries. It develops new/promising
materials and uses advanced material models to discover them and their failure modes, as well as scientific
diagnostic tools and techniques to gain insight into why they fail. This work is carried out by researchers at
national labs, at universities, and at commercial facilities. It includes the next generation lithium-ion research
activity focused on the optimization of next generation, high-energy lithium-ion electro-chemistries that
incorporate new battery materials. It emphasizes identifying, diagnosing, and mitigating issues that impact the
performance and lifetime of cells constituted of advanced materials. Research continues in the six areas of
advanced anodes, advanced cathodes, advanced electrolytes, electrode issues, interfaces, diagnostics, and
modeling. The beyond lithium-ion (BLI) Technology activity addresses fundamental issues associated with
lithium metal batteries, develops new/promising materials and uses advanced material models to discover such
materials using scientific diagnostic tools/techniques. It includes solid-state battery technologies, lithium
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metal, lithium sulfur, lithium air, and sodium-ion systems. The VTO Battery500 projects are also managed in
conjunction with this program element.

Special Focus. The current focus targets three areas of battery research. The first area is concerned with
enabling extreme fast charging (XFC) in enhanced lithium-ion systems. It started with a 2017 research project
to understand XFC, followed by a set of XFC awards (listed in the last year’s report). In the second area,
recognizing the issues of price volatility and supply reliability with cobalt, DOE started several projects to
develop and optimize low cobalt cathode materials. The third area consists of a set of recycling and
sustainability projects, which involve studies of full life-cycle impacts and costs of battery production and use;
cost assessments and impacts of various battery recycling technologies; and the material availability for
recycling and secondary usage and their cost impacts.

As a further resource, the Electrochemical Energy Storage Roadmap describes ongoing and planned efforts to
develop battery technologies for PEVs and can be found at the EERE Roadmap page
http://energy.gov/eere/vehicles/downloads/us-drive-electrochemical-energy-storage-technical-team-roadmap.
VTO also has extensive ongoing collaboration efforts in batteries R&D across the DOE and with other
government agencies. It coordinates efforts on energy storage with the DOE Office of Science, and the DOE
Office of Electricity. Coordination and collaboration efforts include membership and participation in program
reviews and technical meetings by other government agencies, and the participation of representatives from
other government agencies in the contract and program reviews of DOE-sponsored efforts. DOE also
coordinates with the Department of Army’s Advanced Vehicle Power Technology Alliance, the Department of
Transportation/National Highway Traffic Safety Administration (DOT/NHTSA), the Environmental Protection
Agency (EPA), and the United Nations Working Group on Battery Shipment Requirements. Additional
international collaboration occurs through a variety of programs and initiatives. These include: the
International Energy Agency’s (IEA’s) Hybrid Electric Vehicles Technology Collaboration Program (HEV
TCP); and the G8 Energy Ministerial’s Electric Vehicle Initiative (EVI); as well as bilateral agreements
between the U.S. and China.

Battery Highlights from FY 2022

The following are some of the highlights associated with battery R&D funded by VTO (including highlights
related to market developments, R&D breakthroughs, and commercial applications).

Electrolytes for Li-metal Anodes via Solvation-Protection Strategy (ANL)

The development of a stable electrolyte system is crucial to the use of Li metal batteries (LMBs). Researchers
at ANL have developed a new “solvation-protection” strategy to stabilize Li metal anodes. Fluoroethylene
carbonate (FEC) was introduced into the difluoroethylene carbonate/fluoroethyl methyl carbonate
(DFEC/FEMC) electrolyte system to serve as a solvation protection agent. Although DFEC enables stable
cycling of a Li metal anode, a Li||[NMC811 cell with DFEC/FEMC electrolyte (and no FEC) displays inferior
cycling performance because of Li complexes solvated solely by FEMC. Owing to the relatively high solvating
power of FEC, the solution structures of Li complexes can be altered. The FEC/DFEC/FEMC electrolyte not
only maintains the beneficial effect of DFEC in forming a robust SEI on the Li, but also confers outstanding
anodic stability provided by FEMC, evidenced by the stable cycling of Li||[NMC cells (Figure 3).
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Figure 3. Cycling performance of Li| INMC811 cells using 1.2M LiPFe-FEC/DFEC/FEMC in different ratios.

LiNiO; Enabled by Optimized Synthesis Conditions (ANL)

The LiNiO, (LNO) cathode has been of interest for many years because of its high energy and lack of
expensive cobalt. However, it has never achieved commercial success due, in part, to cycling instabilities
(presumed inherent to the material) at high states of charge. However, due to the sensitivity of LNO to
synthesis conditions such as precursor control, temperature, and atmosphere, virtually all LNO cathodes
studied to date contain defects. Work at ANL has shown that near ideal, ‘defect-free’ LNO can be synthesized
through better control of synthesis. ANL’s ‘defect-free’ LNO cycles at high capacities (>220 mAh/g) over
many cycles without dopants, coatings, or electrolyte additives. Such high performance, including very low
initial irreversible capacity (~96%), has never been reported for LNO. Key to achieving such results was
precise control of synthesis parameters including novel precursor preparation, calcination conditions that
facilitate minimum local defects (Li*/Ni?>" mixing, O vacancies, stacking faults), optimized primary and
secondary particle morphologies, and a higher resistance to secondary particle cracking. Surprisingly, synthesis
of ‘defect-free’ LNO could be enabled within a wide range of O, partial pressures, even as low as 0.2 atm.
Full-cell tests with graphite anodes and Gen 2 electrolyte (1.2 M LiPFs in EC:EMC (3:7 by weight)) showed
performance on par with LiNio9Mng0sC00.0s02, when cycled over similar states of charge, Figure 4. Note that
three hour holds at the top of every charge were used to push stability limits.
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Figure 4. Full cell performance comparison of optimized LNO vs. LiNio.sMno.05Co.0502
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Use of synthetic data and deep learning enable rapid identification of failure modes (INL)

Early identification of battery aging modes/mechanisms can enable accurate forecasting of battery life and
possibly shorten the research and development cycle for new battery designs. An INL team developed a deep-
learning (DL) algorithm for rapidly classifying and quantifying battery aging modes. The DL framework
classifies and quantifies the dominant aging modes upon training with synthetic data and was used to classify
the dominant aging modes in less than 100 fast charge cycles of graphite/ LiNipsMng3C0020> (NMC532)
cells. Upon classification, the framework tracked the evolution of the aging modes through 600 cycles at
different charging rates (1C—9C) (Figure 5). The method has been used for NMC532, NMC811 and
Li4Ti5012/LiMn204 cells to show its applicability.
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Figure 5. Flow of synthetic-data-based DL modeling framework to classify and quantify the dominant aging modes

Cyclable All-Solid-State Cell Chemistries with High Energy Densities (LBNL)

All-solid-state batteries (ASSBs) with Li metal anodes are capable of delivering higher energy densities and
better abuse tolerance than current Li ion cells. The development of practical ASSBs, however, has met
challenges such as Li dendrites, cathode instabilities due to oxidative degradation of the solid electrolyte (SE),
and loss of mechanical integrity. In this work, we report novel solutions with the following features: 1)
conductive halide SEs with high oxidative stability to enable use of 4 V CAM and 2) single-crystal CAM
particles to eliminate intergranular cracking associated with volume changes. Results obtained on ASSB cells
with a single-crystal LiNiosMno.1C00.102 (SC-NMC) CAM with 9.04 mg/cm? loading, a 300 um thick LizYCls
(LYC) SE, and a Li-In alloy anode are shown in Figure 6, along with data for an equivalent ASSB cells with a
commercial polycrystalline NMC811 (PC-NMC). Much improved cycling performance was obtained in the
SC-NMC cell. At C/2 rate, the discharge capacity decreased from ~105 to 80 mAh/g after 830 cycles in the
PC-NMC cell and ~140 to 125 mAh/g after 1000 cycles in the SC-NMC cell, a capacity retention of ~76%
and 89%, respectively. Post-mortem analysis reveals superior mechanical stability of the SC-NMC cathode
whereas large morphological changes were observed on the cycled PC-NMC counterparts, including cracking
within the NMC particles and disconnections between the LYC and NMC. The design principle described here
is general and it can be expanded to ASSB cells with other types of halide SEs and CAM materials.
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Figure 6. a-b) Voltage profiles of PC-NMC and SC-NMC ASSB cells, respectively. c-d) Discharge capacity and energy density
retentions of the ASSB cells, respectively. e-f) Cross-sectional SEM images showing better mechanical stability of SC-NMC cathode
composite upon cycling. All cells were cycled at room temperature at C/2 rate for 200 cycles followed by 3 cycles at C/5. This
sequence was repeated throughout the testing. The performance fluctuation shown in ¢) and d) is due to room temperature
variation in the laboratory, which ranged from 25+5°C during the test

Polymer catholyte for solid state batteries enhanced with residual solvent (LBNL)

All-solid state batteries (ASSB) promise high energy density via the use of a Li metal anode, and improved
safety due to the absence of a flammable liquid electrolyte. Favorable cathode performance and durability are
challenging to achieve, however, when restricting the choice of electrolyte materials to only solids. Here, we
show that retained residual solvent improves the performance of a cathode containing solid polymer binder.
The very small amount of solvent retained in the polymer/Li-salt composite plasticizes the polymer, increasing
Li-ion conductivity. The cathode was combined with a solid sintered ceramic separator and Li metal anode
(Figure 7), demonstrating a pathway to a viable ASSB. Drying the cathode to different extents greatly impacts
conductivity of the composite and therefore total cathode performance (Figure 8). By optimizing the amount of
residual solvent and polymer/Li-salt ratio, promising performance and capacity retention was achieved (Figure
8). The positive effect of residual solvent was observed over a very wide temperature range from -10°C to
60°C. Multiple solvents produced a similar effect, providing flexibility to select the solvent based on cost,
safety, reactivity, and manufacturing considerations. The cycling data were obtained using a
LiNi;sMny3C01302 cathode (2mg/cm?2 loading), Li metal anode, and a 300-micron thick Lis25Alo.2sLas Zr2O12
electrolyte. It was found that, without the residual solvent, the cell impedance was too high to cycle the cell.
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Figure 7. Cross-section image of the separator/cathode structure. The separator is an oxide ceramic and the cathode is a solid
composite of NMC active material, carbon, polymer catholyte, and trace residual solvent
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Figure 8. Capacity retention of a cell with residual solvent cycled at 25°C and 20 hour full charge/discharge cycle. Right most
figure shows the conductivity of the polymer/Li-salt composite with and without residual solvent

Machine Learning Enhances Battery Life Prediction (NREL)

Accurate lifetime predictions are crucial for optimizing battery system design and use. Examples include
maximizing battery revenue, extending battery life, establishing fast-charge control policies, and maintenance.
But identifying accurate battery lifetime models is challenging because degradation rates are sensitive to many
factors including temperature, state-of-charge, depth-of-discharge, and dis/charging current rates. Thus battery
life-predictive models may require six to nine months of test data. NREL researchers developed the
‘Autonomous Identification of Battery Lifetime Models’ toolkit, AI-Batt, which uses machine-learning (ML)
to autonomously identify high-performing models from tens of millions of possibilities, resulting in models
that have roughly twice the accuracy of models identified by humans (Figure 9) (Gasper et al, 2021, J. Echem.
Soc. 168 020502). After training life models to fit accelerated aging data, lifetime predictions can then be
made for real-world applications with dynamic loads or varying use (Figure 10) (Gasper et al, 2022, J. Echem.
Soc. 169 080518). Battery life models identified via ML are used for a variety of applications, such as
electric-vehicle battery life prediction (Smith et al, 2021, J. Echem. Soc. 168 100530), health prediction
(Gasper et al, 2022, Cell Rpts. Phys. Sci., 101184), and for stationary energy storage optimization. NREL has
incorporated battery lifetime models into several open-source technoeconomic energy system simulation tools,
such as REOpt ® and System Advisor Model. Presently, NREL is merging ML-based lifetime prediction with
physics-based electrochemical models. This physics/ML hybrid method promises to improve accuracy across a
wide variety of use cases, such as during extreme fast charge. It also enables early life prediction by requiring
less test data, as well as provides transferrable learnings across cell designs and chemistries.
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Figure 9. Calendar degradation of lithium-ion battery predicted by human-expert and ML models with 90% confidence intervals.
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Figure 10. Validation of ML lithium-ion battery life model on dynamic aging test with monthly variation of cycling and storage. Total
degradation is the sum of three aging modes identified from accelerated aging test data and fit using ML

A New Hydrothermal Manufacturing Process for Lithium-Ion Cathodes (ORNL)

As demand for electric cars increases, so does the need for sustainable production of battery components,
including cathodes. But a variety of problems are associated with traditional cathodes and the methods of
processing them. The first obstacle is a reliance on cobalt, a rare metal mined and refined abroad, which poses
risks to American manufacturing supply chains. The balance of other metals common in cathodes can also
make the manufacturing process longer and more hazardous. For example, high nickel concentration has led to
the widespread use of a chemical mixing method for cathode production that requires large quantities of
ammonia for corrosive reactions. Using the toxic chemical increases costs, heightens health and environmental
concerns, and wastes large amounts of water to reduce acidity.

Researchers at ORNL recently developed a new, ammonia free, hydrothermal synthesis process for producing
Li-ion cathodes, including a cobalt-free cathode material, LiNip.9oMnog 05Alo.0502, termed NMA9055 (Figure
11a). This novel process offers the key advantage of moving the cathode industry to cleaner and more cost-
competitive production while putting less burden on our environment. The developed material has properties
like the conventional Co-based cathodes and thus can be seamlessly manufactured and integrated into current
industrial scale manufacturing techniques.
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Figure 11. Development of Co-free cathode materials for next generation Li-ion batteries

Developing low-cost rechargeable lithium-sulfur batteries (Battery500 Consortium)

The Battery500 Consortium has advanced the performance of a lithium-sulfur (Li-S) battery through
innovation in battery electrolytes and improved understanding of a polymer-derived sulfur cathode. A 2 Ah
pouch cell with an energy density of 250Wh/kg (which is competitive with current lithium-ion EV cells) has
been demonstrated.

Sulfurized PolyAcryloNitrile (SPAN) is a low-cost material containing no critical materials and is readily
made by heating sulfur with PAN, an industrial product, at 300-500°C. Unlike elemental sulfur-based
cathodes, SPAN appears to avoid the generation of soluble polysulfide species, which lead to capacity fade and
is very sensitive to electrolyte amounts. To enable a long-life Li-SPAN battery, electrolytes need to be stable at
both the Li anode and the SPAN cathode. The Consortium has developed a localized concentrated electrolyte
consisting of 1.8 M lithium bis(fluorosulfonyl)imide (LiFSI) in diethyl ether (DEE) and Bis(2,2,2-
trifluoroethyl) ether (BTFE). This electrolyte forms a protection layer on the SPAN surface that prevents loss
of sulfur to the electrolyte. In addition, Li cycles stably due to the formation of a LiF-rich SEI. Both Li and
SPAN show around 1000 stable cycles in coin cells using this new electrolyte.

To further improve the capacity and reversibility of SPAN, it is essential to understand its molecular structure
and working mechanism. Using chemical analysis, electron microscopy, and surface analysis, we established
that SPAN undergoes an irreversible transformation during the 1% cycle that reduces its residual hydrogen
content and produces a more extended conjugated molecular structure. As a result, its electronic conductivity
increases by > 100x and raises the working potential. This structural feature will serve as a blueprint for design
of next generation materials. Electrolyte innovation and electrode engineering have allowed the fabrication of a
first generation 2 Ah Li-SPAN battery with an energy density of 250 Wh/kg, Figure 12. Cycling ended when
the Li metal anode caused an internal short. Work is in progress to further increase the capacity of SPAN and
formulate new electrolytes that will extend the cycle life of Li-SPAN batteries. Team members are now scaling
up SPAN cathode materials to enable more pouch cell manufacturing and testing.
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Figure 12. Progress of developing a low-cost Li-S battery by the Battery500 Consortium. The sulfur cathode is sulfurized
polyacrylonitrile (SPAN). (a) and (b), Stable cycling of Li and SPAN in a localized concentrated electrolyte, respectively. (c)
Demonstration of a 1st Generation Li-SPAN pouch cell of 2 Ah with an energy density of 250 Wh/kg

High-Performance Low-Cobalt Cathode Materials for Li-ion Batteries (Pennsylvania State University,
Pacific Northwest National Laboratory, and Oak Ridge National Laboratory)

Li[NixCoyMn|.x.y]JO2 (NCM) cathode materials are a common choice for electric vehicles (EV) batteries due to
their high energy density and good cycling. However, the increased price of cobalt (Co) over the past few
years has increased the cost of the NMC. Therefore, developing cathode materials with low or no Co while still
achieving high energy density and low cost is essential. Unfortunately, the cycling stability of many low-Co
NMC cathodes is compromised by structural instability, non-uniform strain during cycling, and parasitic
reactions between the cathode and electrolyte. The coating methods developed in this project are an effective
strategy for alleviating these issues.

Specifically, we achieved a LiFePO4 (LFP) coated NCMS811 cathode (LFP/NCM&811) via a dry coating
approach, where the nanosized LFP is uniformly coated at the surface of NCM811 particles. Then, 2.5 Ah
pouch cells were assembled using 10 wt% LFP coated NCMS811 cathode and graphite anode. The cathode
loading is 17.5 mg/cm?, the N/P ratio = 1.1, and the cell achieved 450 Wh/L and 200 Wh/kg. Figure 13
demonstrates that the pouch cells can cycle stably at room temperature (RT), with capacity retention of 76.7%
after 2413 cycles. Moreover, the cell could still achieve 67.3% capacity retention after 1609 cycles at 40°C.

In summary, LiFePO4 coating significantly improves the cycling performance of pouch cells with low-Co
layered structured cathode. The team continues to investigate more effective coating materials for
Li[NixCoyMni.xy]O2 cathode materials with a cobalt content < 0.04.
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Figure 13. Capacity retention pouch cells during C/3 cycling at RT and 40°C

Rational electrolyte solvent molecule tuning for high-performance lithium metal and anode free
batteries (Stanford University and SLAC National Accelerator Laboratory)

Lithium (Li) metal batteries offer improved energy density compared to current Li-ion batteries but are held
back by relatively poor cycle life. Conventional electrolytes fall short when paired with Li metal anodes, let
alone anode-free batteries. To enable practical Li metal and anode-free batteries, several requirements should
be fulfilled: 1) high Coulombic efficiency (CE) including initial cycles, i.e. fast activation of Li anode; 2)
anodic stability to avoid cathode corrosion; 3) practical conditions such as lean electrolyte and limited Li
inventory; 4) high ionic conductivity for realistic cycling rates; 5) moderate Li salt concentration for low cost;
6) high boiling point and the absence of gassing to ensure processability and safety.

In 2022, researchers at Stanford University and SLAC investigated a family of fluorinated 1,2-diethoxyethanes
(fluorinated-DEESs) as electrolyte solvents. Selected positions on DEEs are functionalized with various
numbers of fluorine (F) atoms through iterative tuning, to reach a balance between CE, oxidative stability, and
ionic conduction. Paired with 1.2 M LiFSI salt, we found that a partially fluorinated, locally polar -CHF2
group results in higher ionic conduction than fully fluorinated —CF3 while still maintaining excellent electrode
stability. Specifically, the best-performing FADEE and FSDEE both contain -CHF2 group. In addition to high
ionic conductivity and low and stable overpotential, they achieve roughly 99.9% Li CE with +0.1% fluctuation
(Figure 14a) as well as fast activation, i.e. the CEs of the Li||Cu half cells reach >99.3% from the second cycle
(Figure 14b). Aluminum corrosion is also suppressed due to the oxidative stability that originates from
fluorination. These features enable roughly 270 cycles in thin-Li|[high-loading-LiNig sMng.1C0o.102 (NMC811)

full batteries (Figure 14c) and >140 cycles in fast-cycling anode-free Cu||LiFePO4 (LFP) pouch cells (Figure
14d), both of which are state-of-the-art performances.

The above solvents can be readily scaled up with low cost. Their high boiling point, high flash point, non-
flammability and absence of gassing issue during battery cycling are desirable features.
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Figure 14. Cycling performance of Li| | Cu half cells, practical Li metal batteries and industrial anode-free pouch cells using
NMC811 and LFP cathodes

Explainable machine-learning model for battery aging and lifetime prediction (SLAC National
Accelerator Laboratory & Stanford University)

The long lifetime and diverse operating conditions of EV Li-ion batteries is a key bottleneck in the R&D cycle.
Even under accelerated testing conditions, hundreds to thousands of batteries must be aged for one or more
years to fully assess the performance and degradation modes, even for just one battery chemistry/cell design.
As such, accelerating battery testing represents a substantial opportunity to speed up the adoption of new
battery chemistry and cell design. SLAC National Accelerator Laboratory and Stanford University have
established the Battery Informatics Lab to harness the power of artificial intelligence and machine learning to
predict battery performance using minimal experimental data. The goal is this work is three-fold: (1) use early
aging data to predict battery performance such as cycle life, calendar aging, resistance growth and probability
of lithium plating; (2) estimate and identify battery degradation modes across a diverse set of operating
conditions, including real vehicle driving cycles; (3) predict battery aging modes to accelerate materials and
cell design via rational and actionable feedback.

We have experimentally demonstrated early prediction of cycle life on both lithium iron phosphate/graphite
and nickel-cobalt-aluminum/Silicon-graphite cylindrical cells, generating a dataset totaling more than 600 cells
cycled over four years. The cycling conditions included extreme fast charging conditions (10 minutes to 80%
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state-of-charge). Using the first 5 to 100 cycles, we successfully predict the cycle life of cells spanning
hundreds to thousands of cycles, Figure 15. Beyond cycle life, our machine learning model also predicts
resistance/power fade and other cell characteristics relevant to EVs. Beyond performance predictions, our
machine learning models are also interpretable, mapping the aging behavior to both cycling conditions (such as
charging and discharging rates, depth of discharge, and cutoff voltages) to internal cell conditions (such as
anode and cathode state-of-lithiation). We expect this artificial intelligence/machine learning approach for
predicting battery aging and lifetime to dramatically shorten the R&D cycle, from years to month, enabling
more rapid materials and cell design innovations.
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Figure 15. Early prediction of LFP/graphite cycle life under extreme fast charging conditions using data from the 10t and 100t
discharge cycle. Reproduced from Severson et al. Nature Energy 4, 383 (2019)

Zero-cobalt, zero-strain, high-rate cathodes with improved thermal stability (University of California,
Irvine)

Cobalt (Co) is considered the highest material supply chain risk for electric vehicle (EV) batteries. However,
eliminating Co from LiNi\Mn,Co,0, (NMC) cathodes can exacerbate thermal and chemomechanical
instabilities due to high-nickel (Ni) concentrations sometimes used, particularly at the material surface where it
is exposed to reactive electrolyte. In addition, the volume change in high-Ni cathode materials can cause both
structural degradations and mechanical failures. Another drawback is that nearly all high-Ni cathodes,
irrespective of Co-level, suffer from intrinsically poor thermal tolerance in the charged (delithiated) state,
owing to the combination of the strong oxidizability of Ni*" and oxygen release. Although high-Ni cathodes
enable higher capacities, it inevitably results poorer stability and abuse tolerance particularly at elevated
voltages.

To address these issues, the team at UC Irvine has developed a new class of concentration-complex
stoichiometric layered oxides®* that have 1) zero cobalt content, 2) zero strain (<1% relative volume change)
between 2.5V — 4.3V window, and 3) high thermal stability. At the same time, they can deliver equal or higher
capacity, energy density, and rate capability as their NMC counterparts with the same Ni content. They have
demonstrated two zero-cobalt chemistries. The first has high Ni content (Ni content = 80%, HE-N80) targeting
high-power and long-range EV applications aiming to displace NMC-811. Differential scanning calorimetry
(DSC), capacity, rate capability, and cycling data for HE-N8O is shown in Figure 16 and demonstrates the
advantage of this material compared to NMCS811. A second cathode with lower Ni content (Ni content = 50%,
HE-N50), targeting medium-range EV applications, is comparable in energy to NMC-532. Both cathodes have
excellent cycle life due to the combined effect of zero strain, high oxygen retention, suppressed phase
transformation and reduced transition metal (TM) dissolution. The manufacturing process of these cathodes are
the same as NMC-811 and NMC-532 respectively allowing them to be quickly scaled up in domestic
manufacturing facilities.
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Figure 16. The electrochemical and thermal stability performance of UCI's HE-N8O cathode. (a) DSC measurements of charged
cathodes. (b) Comparison of HE-N8O and NMC-811. (c) Rate capability. (d) Cycle life in a single layer Li-ion pouch cell.

Enabling Long Cycle Life in High Voltage Co-Free Spinel Oxide Cathode (University of California San
Diego)

LiNio.sMn 504 (LNMO) is a promising cathode for next generation lithium ion batteries due to its high
operation voltage (~4.7V) and cobalt-free nature. However, it is still facing challenges such as poor cycling
stability and low electronic conductivity. In this work, researchers at UCSD developed a dry electrode
fabrication method to enable high areal loading LNMO (up to 9.5 mAh/cm?, over two times that of current
electric vehicle battery cells) as shown in Figure 17A. Compared to 3 mAh/cm? loading, the cell performance
at this high loading is unaffected. This fabrication method is also a solvent-free process, rendering this method
environmentally benign. Researchers also used plasma focused ion beam scanning electron microscopy (PFIB-
SEM) to investigate phase uniformity. The results (Figure 17B) show that active materials and conductive
carbon are uniformly distributed, which allows fast electron transport.

Assisted with computation at different facets of the material, researchers found that fluoroethylene carbonate
(FEC) molecules have the highest energy barrier which allows stronger oxidation stability at high voltage
(Figure 17C). Together with novel all-fluorinated electrolyte, the cycling stability the LNMO/graphite full cell
is also significantly enhanced (Figure 17D). This developed dry electrode methodology can be applied to other
cathode materials operating with voltages higher than 4.5 V.
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Figure 17. (A) Electrochemical performance of both low and high loading LNMO and the SEM cross-sections. (B) PFIB-SEM of dry-
LNMO. Purple represents LNMO, green represent carbon and yellow represents porosity. (C) A three-component framework for the
computational screening of electrolyte/cathode interface materials (D) Long-term cycling of LNMO full cell.

Low and no cobalt containing high energy cathodes, (University of Texas at Austin)

Despite the success of lithium (Li)-ion technology, energy and cost requirements remain extremely stringent,
especially for electric vehicles (EV). University of Texas at Austin researchers are working to advance Li-ion
cathodes with no- and low-cobalt high-nickel cathodes produced using industrially scalable methods. The team
developed a cathode with 85% nickel-content and only 5% cobalt (LiNig 85C00.0sMno.075Al0.02Mg0.00502,
NMCAM-85). The cathode achieved over 1,000 cycles in 2Ah pouch cells (1M LiPFs in EC/EMC (3:7 wt.) +
2% VC electrolyte), with cathode-level energy densities above 650 Wh/kg (Figure 18).

Recently, they developed a completely cobalt-free cathode (LiNig.9oMng.05Al0.0502, NMA-90) which delivers
performance similar to the cobalt-containing NMCAM-85. NMA-90 achieves 500 cycles with 88% capacity
retention in 200 mAh pouch full cells using the same electrolyte as in the NCAM-85 cells (Figure 19).

In addition, the team has worked to scale-up cathode synthesis. Cathode production in kilogram quantities
introduces additional challenges typically overlooked at lab scale. Of critical importance are homogeneous
dispersion of lithium sources and oxygen diffusion within the precursor bed. The team found that calcination
crucibles have a critical packing depth, above which the material receives insufficient oxygen. Furthermore,
heavy crucible loadings caused lithium congregation at the bottom of the crucible. These problems may be
circumvented by stacking multiple half-filled crucibles inside the furnace, and by remixing the reagents after a
brief initial heating to redistribute lithium. In doing so, the team produced multiple kilograms of high-
performance cathode material for large-format pouch cells.
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| USABC Battery Development & Materials R&D

The United States Advanced Battery Consortium (USABC) is a subsidiary of USCAR and a cooperative
agreement with the DOE. The USABC mission is to develop electrochemical energy storage technologies that
advance commercialization of next generation EV applications through funding precompetitive development
contracts. The consortium, comprised of General Motors, Ford, and Stellantis, competitively awards battery
and material development contracts, for which the recipient contributes a 50% cost share. USABC issues
requests for proposal information, evaluates submitted proposals, and manages the resulting development
contracts. The USABC working structure consists of a technical advisory committee (TAC) which makes
technical recommendations to the USABC management committee (MC).

USABC has developed mid- and long-term battery goals for EV applications, plug-in hybrid vehicle
applications, separators, 12V start-stop batteries, and other vehicular applications. In addition, it developed
standard test procedures to evaluate performance of batteries and progress towards goals. The goals and test
procedures can be found at https://uscar.org/usabc/. Table 1.0.1 and Table 1.0.2 show some of the goals.

In 2022, the USABC continued to fund and manage multiple contracts in the areas of low cost and fast charge
EV batteries, beyond Li-ion batteries (i.e. cells using a Li metal anode), high voltage electrolytes, novel
recycling technology, and prelithiation technology.

Table 1.1 USABC Goals for low-cost/fast-charge advanced batteries for EVs (CY 2023)

End of Life Parameter Units Value

Peak Discharge Power Density, 30 s Wi/l 1400
Peak Specific Discharge Power, 30 s Wikg 700
Usable Energy Density Wh/l 550
Specific Usable Energy (defined at power target) Wh/lg 275
Calendar Life Years 10

Cycle Life (25% FC) Cycles 1000
Cost (@ 250k annual volume) $/kWh 75
Normal Recharge Time Hours <7

Fast Rate Charge Minutes 8 Minutes 80% UE in 15 minutes

Table 1.2 USABC Goals for non fast-charge batteries for EVs (CY 2023)

End of Life Parameter Units Value

Peak Discharge Power Density, 30 s Wil 1500
Peak Specific Discharge Power, 30 s Wikg 700
Usable Energy Density Wh/l 750
Specific Usable Energy (defined at power target) Wh/lg 350
Calendar Life Years 15

Cycle Life (25% FC) Cycles 1000
Cost (@ 250k annual volume) $/kWh 100
Normal Recharge Time Hours <7
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The rest of this chapter contains detailed reports on the status of the following individual projects.

e Fast-Charge and Low-Cost Lithium Ion Batteries for Electric Vehicle Applications (Ionblox)
Low-Cost, High Safety Fast Charge Automotive Cells (Microvast, Inc.)

o Low-Cost and Fast-charging Lithium-ion Battery based on Neocarbonixtm NMP/PVDF-binder Free
Electrode Processing for EV Applications (Nanoramic)

e Evaluation of Advanced Li-ion Cell Architectures for Extreme Fast Charging (XFC) Batteries for
Electric Vehicles (EnPower, Inc.)

e Solvent-free Electrode Manufacturing for Low Cost/Fast Charging Batteries (Worcester Polytechnic

Institute)

e Development of Advanced Low-Cost / Fast-Charge (LC/FC) Batteries for EV Applications (Farasis
Energy USA)

e  Pre-lithiation of Silicon-containing Anodes for High-Performance EV Batteries (Applied Materials,
Inc.)

Electrolyte Development: High Performance Electrolyte for High Voltage Batteries (Gotion)

e Strategic Collaboration for the Development of a Self-Sustaining Model for the Recycling of Large-
Format Lithium-Ion Batteries (American Battery Technology Company)
Silicon-based EV Cells Meeting Cost, Calendar Life and Power (Ionblox, Inc.)

o Low-cost, Fast-charging Silicon Nanowire Cell Technology (Amprius).
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.1 Fast-Charge and Low-Cost Lithium lon Batteries for Electric
Vehicle Applications (lonblox)

Herman Lopez, Principal Investigator
Tonblox Inc.

3390 Gateway Blvd.

Fremont, CA 94538

E-mail: herman@jionblox.com

Brian Cunningham, DOE Technology Development Manager

U.S. Department of Energy
E-mail: brian.cunningham@ee.doe.gov

Start Date: February 1, 2019 End Date: June 30, 2022
Project Funding: $1,245,738 DOE share: $622,869 Non-DOE share: $622,869

Project Introduction

To reduce our dependence on fossil fuels and decrease greenhouse gas emissions, electric vehicles (EVs) have
received intense attention as a possible solution. Electrification of automobiles is gaining momentum with the
main barrier preventing widespread adoption being the lack of available low cost, high energy, fast-charging
and safe energy storage solutions. Lithium-ion batteries (LIBs) are presently the best energy storage solution
used in current and upcoming EVs. Further improvements to the performance of LIBs by integrating high-
capacity active materials, novel passive components and unique cell designs will be critical for the success and
mass adoption of EVs.

This project has been based on developing novel electrolyte formulations, optimized cell designs and a
scalable pre-lithiation solution that enables the use of high-capacity silicon oxide anodes that would result in
lithium-ion batteries capable of meeting the Low-Cost and Fast-Charge (LC/FC) USABC goals for advanced
EV batteries in CY 2023. High specific capacity anodes containing high amounts of active silicon (>50%),
Nickle-rich Ni-Co-Mn (NCM) cathodes and uniquely tailored electrolyte formulations have been integrated in
large capacity (10-50 Ah) pouch cells targeting Fast-Charge and Low-Cost energy solutions. During this
program, lonblox has demonstrated Fast-Charge and Low-Cost LIBs maintaining other performance
requirements of EV cells, including energy, power, cycle life, calendar life, and safety.

Objectives
The key objectives in this program are:

e Develop unique electrolyte formulations integrating commercially available organic solvents, salts and
additives that will improve performance with Silicon anodes and Ni-rich NCM cathodes.

e Evaluate and support the development of a pre-lithiation solution for high capacity and high percent
active silicon anodes addressing manufacturability, reproducibility, cost, and safety.

e Develop optimized cell designs to build and deliver cells that will meet the USABC EV battery goals for
commercialization in calendar year 2023.

e Evaluate and integrate cost effective and high performing active and passive materials, processing steps
and cell designs to meet the Low-Cost and Fast-Charge targets.

e Build, deliver and test large format (10 Ah - 50 Ah capacity) pouch cells integrating optimized high-
capacity silicon-based anode, NCM cathode, electrolyte, separator and pre-lithiation to meet the USABC
EV goals of fast-charge, low cost, energy, power, cycle life, calendar life, safety, and temperature.
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Approach

Ionblox has utilized a system-level approach to screen, develop and optimize the critical cell components
(cathode, anode, electrolyte, separator), pre-lithiation process (process, dose), cell design (N/P ratio, electrode
design) and cell formation and testing protocols that would enable meeting the USABC EV cell level goals for
the year 2023. The development was based on integrating pre-lithiated silicon-based high-capacity anodes,
high-capacity Ni-rich NCM cathodes, high voltage electrolytes and composite separators into large capacity
(10-50 Ah) pouch cells. The developed cells were optimized to meet the Low-Cost and Fast-Charge targets
along with high energy density and power, good cycle life and calendar life, safety, and low and high
temperature performance. During the program, lonblox used three cell build iterations to meet the program
targets and deliver cells to the National Laboratories for independent testing. Cells have been tested both at
Ionblox and independently by three National Laboratories: Idaho National Laboratory (INL), Sandia National
Laboratory (SNL) and National Renewable Energy Laboratory (NREL).

During the program, Ionblox leveraged its material, processing and cell design and development expertise to
screen, engineer and optimize various electrolyte formulations, pre-lithiation approaches and cell design
solutions addressing the challenges associated with meeting the USABC Low-Cost and Fast-Charge cell
targets. lonblox identified development areas that have been addressed and improved during the program.
Significant material and cell development in the areas of electrolyte engineering, pre-lithiation development
and cell design engineering have been implemented. Material and cell development typically started at the
coin-cell level where initial screening, testing and optimization took place. Ionblox has extensive experience
working with coin-cells ensuring that identical electrode formulations, specifications, cell designs,
components, formation, etc. are identical to what is used in the pouch cell designs and therefore ensuring
similar results are obtained. Once the critical parameters were optimized at the coin-cell level, results were
validated and fine-tuned at the pouch cell level typically in 12 Ah capacity pouch cells.

Ionblox has shown a path for their silicon-dominant cell technology to meet the USABC program EV cell cost
target of 75 $/kWh. The path to reach the target cell cost is achieved by several approaches. First, the high
energy density of the cells increases the kWh of a given system, which reduce the $/kWh ratio and cost target
gap. In addition, by utilizing a high-capacity silicon-based anode, the quantity of active material reduced, and
cost decreased. While the current costs for silicon oxide and pre-lithiation are higher compared to graphite-
based cells, Ionblox continues to evaluate and qualify cost effective options and believes that the cost of these
important components and processes will continue to decrease significantly as existing suppliers scale
production and additional suppliers come online. Ionblox has identified and qualified cost-effective silicon
suppliers that are projecting similar costs to graphite once manufacturing production levels continue to scale.
Ionblox has also partnered with a cell manufacturing partner and equipment vendors to build pre-lithiation
equipment capable of meeting the Low-Cost and manufacturing program targets.

During the duration of this program, lonblox met the majority of the USABC Low-Cost and Fast-Charge cell
specifications by integrating silicon-dominant anodes, unique electrolyte formulations and cell designs that
have improved fast charging, cycle life and calendar life. The final cell build of the program is anticipated to
further improve the calendar life and cost of the cells by integrating an optimized electrolyte formulation and a
lower cost pre-lithiation solution, respectively.

The program consists of 3 cell builds that include a baseline cell build at the beginning of the program (CB#1),
a second cell build (CB#2) midpoint in the program and a final cell build (CB#3) at the conclusion of the
program. The cell builds were structured in a way that as the program progressed, the cell targets increased
with respect to specific energy, energy density, and cycle life and lowered with respect to cell cost.

Figure I.1.1 shows the projected usable BOL (beginning of life) and EOL (end of life) cycle life (a), cell cost
(b), specific energy (c) and energy density (d) for the three cell builds. The measured cell paraments and
calculated cost for the baseline cells (CB#1), CB#2 and final CB#3 cells are shown in the figure. Cycle life at
100% fast charge (4C rate - 15-minute) from CB#1 is already nearing the target 1,000 cycles and Zenlabs
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anticipates CB#2 and CB#3 to exceed the cycle life target. Cell cost for CB#2 is identical to CB#1 and higher
than anticipated because CB#2 continued to use the costlier pre-lithiation process. CB#3 was intended to use a
cost effective pre-lithiation solution that would greatly reduce the cell cost. There are two cost calculations for
CB#3, the first uses a costlier lithium metal powder Pre-Li process and the second uses a more cost-effective
Li-doped SiOx material that eliminates the need for Pre-Li. CB#1, CB#2 and CB#3 are on track with the
anticipated specific energy, energy density and cost targets.
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Figure I.1.1 Projected & measured cell performance progression throughout the program CB#1, CB#2, & CB#3

Results

Development during 2022 focused on delivery and testing of the final program Cell Build #3 (CB#3) cells both
at lonblox and at the National Labs (INL, NREL, SNL). This USABC program was completed on June 30,
2022, with the successful completion of the final cell deliverable (CB#3) to the National Labs and submission
of the final USABC program report.

For the final CB#3 cell deliverable of the program, cathode #19 and electrolyte #50 were down-selected based
on capacity retention, resistance growth, cycle life, gassing, and fast charge rate performance. CB#3 used two
different approaches to compensate for the high irreversible capacity loss (IRCL) of the SiOx anodes. The first
approach used lithium metal powder as the pre-lithiation source and the second used Li-doped SiOx anode
with low IRCL. As shown in Figure 1.1.2, two different cell formats were prepared and delivered to the
National Labs as the final CB#3 cell deliverable. 39 cells of 12 Ah capacity footprint and 5 cells of 50 Ah
capacity footprint lithiated by lithium metal powder were delivered to the National Labs for independent
testing. 6 additional cells of 12 Ah capacity footprint prepared by Li-doped SiOx were also delivered to Idaho
National Laboratory.
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Figure 1.1.2 Footprints for 12 Ah and 50 Ah pouch cells that were prepared for CB#3

CB#3 Pouch Cells Performance Measurements at lonblox

Cell performance measurements are ongoing at lonblox in parallel with the testing at the National Labs. The
testing status of the CB#3 cells at lonblox is ongoing and are summarized in Figure 1.1.3. Testing results will
continue to be presented in future USABC reports as part of the new USABC program.
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Figure 1.1.3 Status of ongoing performance testing on baseline pouch cells

CB4#3 Pouch Cells- 12 Ah Footprint

The 70 cells that were built as part of CB#3 showed consistent capacity, energy, OCV, weight and thickness.
The summary of these measurements is shown in Figure I.1.4. The cell results are consistent across the cells
with standard deviations < +/- 1% across the measured capacity, average voltage, thickness, and energy.

The capacity and energy measurement during charge and discharge on eight 12 Ah cells are shown in Figure
I.1.5. The identical measurements confirm consistent charge and discharge curves for both energy and
capacity.

The power and resistance measurements in Figure I.1.6 show that the CB#3 cells at RPT-0 are meeting the
discharge and Regen power requirements of the USABC program. Additionally, these measurements confirm
consistent power and resistance results for eight cells.

26 USABC Battery Development & Materials R&D



FY 2022 Annual Progress Report

MEEEE R e BRS8N
wak e Pl gt an Maan | S0d Dev
sl e o I " iuu -.-‘?."M‘ Copeemyian) | 1221 o1
j l ‘«.“""-"-V"br-"*'." pa r_:-b’ i ‘ fasgy fan/ng | oy 1
::':: ihj' l:':'::::.l [« &% 3
s L) wey re— wra oA
B 5 in!. ™ “ﬁ.' .- L [ Perepe—, il ¥
o R " - L] LT o I=ih
§rot BB mae? | BB TR ST T
! e | - . o S * ocv v i | oam
Lad + * P W B X & B ®u N
[ (1% Cadl v
' - - .
ol . ¥ ey Consistent capacity, energy, OCV, average
] :: 1 . pr L voltage, weight and thickness (<+/-1%) are
= observed for CB#3 - 12 Ah cells

R EE EEE
Coutl Msmites

Figure 1.1.4 Measurements (Capacity, Average Voltage, Thickness, Weight, Energy) on CB#3 cells after formation for 12 Ah cells.

Capacity vs. Voltage Energy vs. Voltage

o 2 4 B E 10 12 14
Capacity (Ah} Energy (Wh/Kg)

AGd

Figure 1.1.5 Capacity and energy measurement versus voltage during charge and discharge for 12 Ah pouch cells.
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Figure .1.6 Power and resistance measurement versus depth of discharge for 12 Ah pouch cells
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CB#3 Pouch Cells- 50 Ah Footprint

The capacity, OCV, resistance, average voltage, weight, thickness and energy measurements from 50 Ah
footprint cells are summarized in Figure 1.1.7. The measurements confirmed the consistency in cell production
standard deviations of < +/-1%.
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Figure I.1.7 Measurements (Capacity, OCV, Resistance, Average Voltage, Weight, Thickness and Energy) after formation on 50 Ah
footprint cells

CB#3 Pouch Cells- Cycling Data

During 2022, the CC-CV cycling tests of two CB#3 cells completed. The CC-CV cycling results at standard
1C/1C rate and fast charge (4C/1C rate) are shown in Figure 1.1.8. The measurements show the cycling data of
~850 cycles before the cells reach 80% capacity retention cycled at room temperature under a 1C/1C charge
and discharge rate at the voltage window of 4.2V to 2.5V. The cycle life results under a 4C/1C rate CC-CV
cycling protocol (4.2V to 2.5V) show ~450 cycle before reaching 80% capacity retention.
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Figure 1.1.8 Cycling of two 12 Ah cells (CB#3) prepared with lithium metal powder at 1C/1C rate (left) and 4C/1C rate (right) at
room temperature.
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The summary of the measured performance vs USABC requirements and the Gap Chart of the CB#1, CB#2,
and CB#3 cells are shown in Figure 1.1.9. The table shows the data for CB#1 (DST cycling at 0% fast charge,
DST cycling under 100% fast charge, and Calendar life at 30°C), CB#2 and CB3 BOL and estimated EOL.
The EOL values for CB2 & CB3 are estimated because the testing is ongoing. As the program progressed, the
goals for the different cell builds increased with respect to cycle life, specific energy, energy density, and
decreased for cell cost. The cell cost for CB#2 did not decrease as anticipated. Reduction in cell cost ($/kWh)
for the final cell build of the program took place by integrating a lower cost lithiation method using Li-doped
SiOx. CB#3 consists of two types of cells integrating lithium metal powder pre-lithiation and Li-doped SiOx.
The cost for CB#3 cells using lithium doped SiOx is lower because there is no additional pre-lithiation cost
that is required. Ionblox leveraged its learning from previous USABC programs and focused on all aspects of
the cell to enhance the fast-charge capability and decrease cost while meeting the various USABC cell
performance metrics (capacity, energy, power, cycle life, calendar life, safety, and high and low temperature
performance). The cell specifications for CB#1 exceeded the cycle life and energy goals at the beginning of
the program with cell cost being above the target. Energy specifications for CB#2 and CB#3 at the beginning
of life also meet the anticipated program targets. Cycle life and calendar life testing for CB#2 and CB#3 are
ongoing at INL and at Ionblox.

USARC EOL CB#1{#1) - DST 0% FC CB#1 (#T) - DST 100% FC

L End of Life (EOL) Characterstics at 30°C Units Cell Level Targets BOL EOL BOL EOL

1 |Peak Discharge Power Dimsity, 30 5 Pulse WL 1400

2 |Peak Specific Discharge Power, 30 s Pulse Wikg 700

3 _[Peak Specific Regen Power, 10 5 Pulse Wikg 300

4 |Available Energy Density @ €3 Discharge Rate WhiL £50)

5 |Availible Specific Energy @ (/3 Discharge Rate Whig 275

6 |Available Energy @ C/3 Discharge Rate kWh ]

7 |Calendar Life Years 10

§ |DST Cycle bfe Creles 1000

9 |[Cost SkWh 75

10 [Nomnal Recharge Tene Hours = 7 Hours, J1772

11 [Fast High Rate Charge Minutes B0 ASOC m15 min

12 |Minimum Operating Volage v =085 Vmax

? ; > M E, . @ C3

13 |Unassisted Operating af Low Temperatore %% Discharge rate al .20°C
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Figure 1.1.9 Gap chart showing the USABC Targets versus data for CB#1, CB#2 & CB#3.
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Conclusions

The program focused on meeting the USABC low-cost and fast-charge USABC EV cell targets by developing
novel electrolyte formulations, a scalable pre-lithiation solution that enabled the use of high-capacity silicon
oxide anodes, and optimized cell designs. In addition to the low-cost and fast-charge specifications, the cells
also needed to meet the energy, power, rate, temperature, and safety metrics associated with the USABC EV
cell targets. At the conclusion of the program, the extensive materials, processing, and design development
culminated in multiple cells builds (CB#1, CB#2, & CB#3) that were delivered to the National Labs for
independent validation of performance. From the data collected from CB#1 by the National Labs, the cells
showed high energy density (>320 Wh/kg), high specific energy (>800 Wh/L), high discharge and Regen
power (>1500 W/kg), fast charging capabilities (80% of the C/3 capacity in a 10-minute charge), long cycle
life at a 3hr charge (1456 DST cycles), long cycle life at a 15-minute charge (920 DST cycles), long calendar
life at 30°C storage (> 2 years with >90% capacity retention) and low cost (projected < $100/kWh). Cell
testing of CB#2 and CB#3 continue, and results will be updated in future reports.

Testing results from both CB#2 and CB#3 will continue to be updated during the new lonblox Fast-Charge and
Low-Cost USABC program. The new USABC program continues to focus on meeting all USABC EV cell
specifications with special attention to meeting Calendar life, minimizing impedance growth and meeting the
cell cost targets.

Key Publications
1. “Fast-Charge and Low-Cost Lithium Ion Batteries for Electric Vehicles”, ES247 Lopez 2021 p, US
DOE Vehicle Technologies Program Annual Merit Review, AMR, 2021.
2. “Fast-Charge and Low-Cost Lithium Ion Batteries for Electric Vehicles”, ES247 Lopez 2020 p, US
DOE Vehicle Technologies Program Annual Merit Review, AMR, 2020.
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1.2 Low-Cost, High Safety Fast Charge Automotive Cells
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Wenjuan Mattis, PhD

Microvast, Inc.
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Orlando, FL 32826
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Start Date: January 15, 2020 End Date: January 15, 2023
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Project Introduction

Automakers worldwide have announced plans to begin transitioning from gasoline powered vehicles to ones
driven via electricity. To make these bold adoption plans a reality the lithium-ion battery must continue to
improve so electric drive trains can become competitive in cost and convenience to a traditional gasoline
powered vehicle.

Making the battery cost less is quite challenging, specifically for higher energy or higher power cells, as raw
materials make up a significant portion of the batteries cost; meaning the most significant cost benefits must
arise from lowering the material prices. Metals such as Li, Cu, Co, Ni, and Al are heavily used in today’s
battery cells with cobalt being the most expensive and least sustainable, historically. Therefore, one of the most
immediate challenges facing the Li-ion battery community today is how to eliminate the use of cobalt while
still having a high-performance material, especially if cost parity to internal combustion engine vehicles is to
be achieved.

Fast charge creates additional technical complications that must be overcome, mostly in high energy cells. It is
well-documented that Li plating and dendrite formation can occur, potentially leading to performance or safety
issues as the cells continue to age.

Objectives

This project is designed to develop low-cost (i.e., approaching 75 $/kWh when manufactured at significant
scale), high energy (> 310 Wh/kg), fast charge (< 15-minutes) Li-ion battery cells for use in electric vehicles.
These three terms have historically not been possible in one cell system, so careful engineering is necessary to
prepare a cell capable of meeting the power, energy and cost goals. In addition, the designed cell must consider
effects from temperature (hot and cold conditions), as well as safety, for the technologies under development
to be practically applied in a mainstream product.

Approach

In order to develop a high energy, low-cost, fast charging, and safe battery cell for automotive applications,
every aspect of the cell's components must be considered. A Li-ion cell is a complex system, and, as such, each
component within the cell can influence the cell’s eventual specifications.

One of the most important aspects of this project is to lower the cobalt content in the cathode while
simultaneously providing high capacity and durability. Eliminating cobalt is a significant technical challenge,
primarily because its use in the cathode does provide positive impact to material performance on matters such
as capacity, stability and rate. So, to reduce cobalt without sacrificing performance, the project will employ full
concentration gradient (FCG) cathode technology. FCG, as a designer cathode, will allow cobalt to be
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minimized and selectively delivered spatially within the cathode material to maximize its utility within the
powder particle.

Another unique material approach being explored in this project is the use of a fast charge electrolyte additive
that provides dual passivation to the SEI and CEI. A stable interface is important to slow resistance growth;
however, it hinders fast charge. The project will develop a new synthesis process for this compound which is
intended to lower the cost of production.

The project cell will also integrate a graphite/silicon composite based anode blend to help provide energy
density for the cell. In addition, it will incorporate Microvast’s specialty aramid separator that aids in cell
safety, as it is significantly more stable thermally than traditional polymer or polymer ceramic coated materials
used in automotive cells today. Through the combination of these advanced materials, the project goals for a
low-cost, fast charge cell will be attained.

Results

To evaluate the cell performance, USABC requested three testing conditions be considered: 0% fast charge
cycles, 25% fast charge cycles or 100% fast charge cycles with a dynamic stress test (DST) discharge in all
cases. The cells delivered at the end of year 1 (260 Wh/kg, graphite anode) were removed from testing after
2,000 cycles this past year to clear channel space. One interesting trial was the impact of using a C/3 charge
after fast charge to return the battery to 100% state of charge (SOC) before the DST occurs (Figure 1.2.1). By
topping off the SOC before the energy metered DST, the cycle life more than doubled on a battery undergoing
only fast charging under the prescribed test conditions.

Discharge Capacity (C/3 RPT)

=
<
- 80— w9
“5 Ay
a
8 30 F
) 90.7% 91.5%
2
225 ¢
)
=
20 I i i i i
0 500 1000 1500 2000 2500
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—&—Year 1; 25% Top-Off —@—Year 1; 100% Top-Off

Figure 1.2.1 Discharge capacity at RPT of year 1 deliverable cells undergoing DST cycling

The main effort in the past year has been to increase the energy density of the project batteries in order to reach
the goal while still maintaining fast charge performance. A set of cells with ~300 Wh/kg was delivered to
USABGC for testing validation. The performance is still under test, but some progress is shown in Figure 1.2.2.
These higher energy cells do show lower cycle life under 100% fast charge testing, but the 25% fast charge
retention shows good promise. These cells can reach high energy density because the cathode is higher in Ni
content, and the anode charge storage was improved by more than 25%. The cell, despite being near 300
Wh/kg, shows very little thermal change during the 3C fast charge with recorded temperature rise never going
beyond 10 °C at the anode tab when multiple cells were evaluated at beginning of life.
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Discharge Capacity (C/3 RPT)
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Figure 1.2.2 Discharge capacity at RPT of year 2 deliverable cells undergoing DST cycling

The cells delivered were also tested at Microvast for some basic safety performance (overcharge, short circuit,
thermal stability and crush). Using an international standard as the testing condition, all cells were found to
pass the safety testing. Developing a battery that is safe is of key importance. The fact that our cell is showing
tolerance to abuse testing is very encouraging. The changes in value from year 1 to year 2 are presented in
Table 1.2.1.

Table 1.2.1 Percent change in cell values between year 1 and year 2 deliverable cells

Characteristics at 30°C (BOL) Units Improvement
Available Energy Densit
gy y Wh/L 19%
Specific Available Ener
s & Wh/kg 17%
Usable Energy Densit
& y Wh/L 20%
Specific Usable Energy (defined at power target
p 8y ( p get) Wh/ke =
Fast Charge DST Depth .
Minutes 33%
Fast Charge Rate
© 36%
30s Discharge Power @ UET
W/kg -17%
10s Regen Power @ 20%DOD
W/kg -24%

In the past year a prototype cell has also reached the > 310 Wh/kg energy density goal that the project set for

fast charge cells. The 55 Ah cells show very similar performance to date compared to cells built > 290 Wh/kg,
which saw many cells able to cycle over 900 times under the 100%FC conditions. The prototypes meeting the
energy density require further evaluation and improvement to meet all the USABC project objectives, but it is
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encouraging that the energy density and fast charge cycle life are on track to meet project goals by the project
end.

Conclusions

The project is showing good progress in developing a 310 Wh/kg fast charge Li-ion battery. After year one's
focus on materials (cathode & electrolyte additive), this year centered on developing the cell to reach the target
energy density goals while still providing fast charge. There is some power loss as the cell grows in energy
density, but overall, most performance metrics are increased from year 1 to year 2. In addition, it appears very
feasible to reach > 1,000 cycles with our cell designs when cycling against the USABC protocols.

Acknowledgements
Microvast would like to thank Vijay Saharan, our USABC program manager, and all the members of the
USABC work group for their advice and support during the project.

34 USABC Battery Development & Materials R&D



FY 2022 Annual Progress Report

1.3 Low-Cost and Fast-charging Lithium-ion Battery based on
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Project Introduction

Nanoramic has re-invented the way electrodes are manufactured by completely removing high molecular
weight polymers such as PVDF and the toxic NMP solvent from the active material layer. This dramatically
improves LiB performance while decreasing the cost of manufacturing and the capital expenditures related to
mixing, coating, and drying, NMP solvent recovery, and calendering. In the Neocarbonix™ (NX) electrodes, a
3D nanoscopic carbon matrix works as a mechanical scaffold for the electrode active material and mimics the
polymer chain entanglement. Chemical bonds are also present between the surface of the carbon, the active
materials, and the current collector promoting adhesion and cohesion. As opposed to polymers, however, the
3D nanoscopic carbon matrix is very electrically conductive, which enables very high power (high C-rates).
This scaffold structure is also more suitable for producing thick electrode active material, which is a powerful
way to increase the energy density of LiB cells.

Objectives
e Nanoramic aims to advance the Li-ion battery energy storage devices ("pouch cells") by combining
Ni-rich NMC/NCMA (or other new types) Neocarbonix cathodes and Si-dominant (Si element
weight% >50%) Neocarbonix anodes.
e The R&D objectives of this LCFC EV battery project include (see Table 1.3.1):
1. LCFC-EV battery cell capacity > 9-10 Ah at BOL (with some 65 Ah large cells).
2. LCFC-EV battery energy density: > 330 Wh/kg, > 850 Wh/L at BOL.
3. LCFC-EV battery fast-charging: 80%SOC in 15 mins.
4. LCFC-EV battery DST cycle life with C/3 charge at 30°C: 1000 cycles with C/3 capacity
retention > 80%.
5. LCFC-EV battery DST cycle life with >3.5C 15 mins fast-charge (25%FC) at 30°C: 1000 cycles
with C/3 capacity retention > 80%.
6. LCFC-EV battery cost < $79/kWh at BOL.
Timeframe: 30 months
Budget and Cost Share: Total project budget ~$3.6M, 50% cost share.
PI: Dr. Ben Cao (Program Manager and Technical Lead)
Co-PI: Dr. Ji Chen (Electrode Engineering Lead).
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Table 1.3.1 LCFC-EV Neocarbonix Battery Parameters

Cell Capacity 265 Ah

Specific Energy 2330 Wh/kg

Energy Density 2850 Wh/L

Fast-charging 15 mins 280%S0C

DST Cycle Life with C/3 Charge at 30°C 21000 cycles with 80% capacity retention

DST Cycle Life with 23.5C 15 mins Fast-Charging 21000 cycles with 80% capacity retention
(25%FC) at 30°C

Cost < $79/kWh

Approach

Nanoramic has accomplished several sub-tasks proposed in the Statement of Work (SOW). The milestones are
shown below.

e Neocarbonix (NX) Ni-Rich NMC/NCMA Electrode Development

e Neocarbonix (NX) Low-Cost Silicon Anode Electrode Development

e Neocarbonix (NX) 14 Ah Battery Cell Development & Performance

e Neocarbonix (NX) Si-C Anode Electrode Pre-Lithiation (40-50 wt.% Si Element Content)

o Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%)
Progress

e Neocarbonix (NX) Si Anode Electrolyte Development (Higher Si Element wt.%>80%)

e Neocarbonix (NX) NCM91J|Si 4.5Ah Battery Prototype Cell Development (Based on current USABC
developed NX electrodes)

e Neocarbonix (NX) Ni-Rich NCM]||Si ~4Ah Battery Prototype Cell Safety Test Performance (3" Party
Validation Results).

Figure 1.3.1 shows the SOW plans for budget periods in 2022 and 2023.
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SOW PLAN FOR BUDGET PERIOD#1 2022 proec

2022
January Fabruary March Agpril May Juna July August - October Movembar _

Task 1: Neocarbonix Ni-rich NMCINCMA Cathode Electrode Development

1.1 High-capacity Ni-rich NMC/NCMA Cathode Active Matenal Selections and Evaluations

w,

1.2 Neacarbonix Cathode Electrode Formulation Cptimizstkons

1.1 High loading 5.6 mah/fcm2 NX cathode electrode manufactsing process

Task 2: Neocarbonix Si-Dominant Ancde Electrode Development
2.1 Various Si Anode Active Material Evaluations: Migo-Size and Nano-Size Si Matenals
2.2 NX Si-Dominant Andde Electrode Formulation Optimizations

2.3 NX High Loading 26.2 n]
Oplimizations

Task 3: Si-Dominant An

Task & LCFC-EV NX Battery Ca
0

SOW PLAN FOR BUDGET PERIOD#1 2023
2023
January February March April May June July August - October Movember _

Task 1: Neocarbonix Ni-rich NMIC/NCMA Cathode Electrode Developmant

1.2 Neocarbonix Cathode Electrode Formulation Optimizations

|

1.3 High loading 25.6 mAhfem2 NX cathade electrode manufacturing process optimizations

|

Task 2: Neocarbonix Si Anode Electrode Development

2.1 Various Si Anode Active Material Evaluations

|

2.2 NX 5i Anode Electrode Formulation Optimizations

|

2.3 NX High Loading 6.2 mAhfcm2 Si Anode Electrode Manufacturing Process
Optimizations

Task 3: Si-Dominant Anode Electrolyte Formulation Development

Task 4: LCFC-EV Neocarbonix Battery Cell Design & Manufacturing Process Development

Figure 1.3.1 SOW Plans for Budget Periods for 2022 and 2023
Results

Neocarbonix (NX) Ni-Rich NMC/NCMA Electrode Development

In this quarter, next generation Ni-rich NMC/NCMA (Ni%>90%), high specific capacity, low-cost cathode
active material (CAM) has been evaluated to decide which CAM will be utilized in the final LCFC-EV battery
design. The decision of which CAM to be used is still pending to wait for more evaluation results from cell
testing. Results for this task are shown in the figures below (Figure 1.3.2 to Figure 1.3.5).
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» 1.1: High-capacity Ni-rich NMC/NCMA cathode active material selections and evaluations
* To begin work at the beginning of Q1 2022 and completed at the end of Q3 2022

» 1.2: Neocarbonix cathode electrode formulation optimizations
* To begin work at the beginning of Q1 2022 and completed at the end of Q4 2022

+ 1.3: High loading 25.6 mAh/cm? NX cathode electrode manufacturing process optimizations
» To begin work at the beginning of Q1 2022 and completed at the end of Q1 2023

« NCMA#1 (=90%Ni) CAM based cathode electrodes: ~27.7 mg/cm? with 98.5%CAM, press density ~3.7 glcc.
+ NMCB811#1 CAM control (same as TAP cathode); ~27.5 mg/cm2 with 98.5%CAM, press density ~3.3 g/cc.
NX 1.5Ah R&D standard battery cells assembled using NX Si-C#1 anode (same as TAP).

HX 1.5Ah Cathode Initial Discharge Thickness w/ Energy Density
Battery Test | Type Discharge Capacity package (mm) wio package T ]
Cell Name Capacity c/3(mah) | soc30 [(WhiL) 5 -1:5 Ah Cell: NX Ni-Rich NMCINCMA[INX Si-C
(4.2-2.5V) CiH0 {mAh) (4.2-2.5V) SOLCTO EIS Comparison:
0.1 C-Rate WX Cathode Electrodes: S8 6%CAM
NMCB1 181 Control vi. NCMART (Ni80%)
~27.5 40 -
2 o
e | e 1618 1545 3.26 882 NCMA (Ni%>90%):
ontro ~3.3 glee, —_ 27.7 malem?®, 3.70 glee
88.5%CAM c 30
NCMAE1 E
(>80 Ni), "E’ NMCB11:
- w4
NCMAZ1 20 1898 1821 3.32 1021 = 20 27 e, 50 gles
mglem?, N
~3.7 glee, )
88 5% CAM
J Energy Density WhiL calculation was only based on stacked core: electrodes (after Si 10+
anode expansion) + separators (measured) wlo packages
J  Intent here is to compare the CAM NCMA#1 vs. NMCB11#1 influgnce to the initial 0.1C-
Rate energy density WhiL 0 . . . .
J NCMA#1 CAM is much easier to calender into higher press density 3.7-2.8 gicc to achieve 0 10 20 a0 40 50
much higher energy density in WhiL Zre [mn}

« NX 1.5Ah R&D cells 25%fast-charging (FC) cycling performance comparison: NMC811#1 control vs. NCMA#1
+ NCMAZ1 shows slightly worse FC capability compared with NMC811&#1 NX electrodes

110 Fast-Charging Cycling Performance

100

1C-Rate Cycling

e
=

3.5C-Rate CCCV

60 Fast-Charging 15mins MX NMC811##1 Control: ~27.5 mg/em?, ~3.3 g/ec: 280% Fast-Charging 15 mins
MX NCMA#H1: ~27.7 mgfem2, ~3.7 g/ec

S
o

Charge Capacity, %

20 Al NX Si-C Anode Electrodes
1.5 Ah Cells: 1C/1C (3 eycles) + 3.5C (CCCV 15mins)/1C (1 cycle) in every 4 cycles
Voltage range: 4.2-2.8 V (50C5 to 50C100)

1 2 3 4 5 b 7/ 8 9 10 11 172 13 14 15 16

0

Cycle Number

Figure 1.3.2 Results for Neocarbonix (NX) Ni-Rich NMC/NCMA Electrode Development
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« NX 1.5Ah R&D cells 25%fast-charging (FC) cycling performance comparison: NMC811#1 control vs. NCMA#1
+ NCMA#1 shows slightly worse FC capability compared with NMC81181 NX electrodes

185 LIB Cycling Performance
= 1C-Rate Cycli
‘:\_ e NX NMC811#1 Control, ~27.5 mglem?, ~3.3 glce
oy
o 75
g’- mllllln!- 11 1l
] 3.5C-Rate CCCV
(] Fast-Charging 15mins
& 50
Q-E:; NX NCMA#1: ~27.7 mglem2, ~3.7 glce
25
Lz..l All NX Si-C Anode
B, 1.5 Ah Cells: 1CM1C (3 cyclas) + 3.5C (CCCV 15mins)/1C (1 cycle) in every 4 cycles
O 0 Voltage range: 4.2-2.8V
0 50 |00 150 200 250 300 350 400 450 500

Cycle Number

+ NX 1.5Ah R&D cells 1C1C cycling performance comparison: NMC811#1 control vs. NCMA#1
+ NCMA#1 shows slightly worse 1C1C cycling capability compared with NMC811#1 NX electrodes

105 LIB Cycling Performance

,‘{ )

NX NMC811#1 Control, ~27.5 mglem?, ~3.3 glcc
NX NCMA#1: ~27.7 mgicm2, ~3.7 glce

=100
95
90
85
80

75 Anode: NX 5i-C Electrodes
1.5 &h Cells: 1C/1C Charge-Discharge
70 Voltage range: 4.2-2.8V
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Discharge Capacity
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Figure 1.3.3 Results for Neocarbonix (NX) Ni-Rich NMC/NCMA Electrode Development (continued)
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Ni-RICH NMC/NCMA CAM POWDER SEM IMAGES

HCMAS] CAM

NCMA#1 CAM

NMC#1 CAM Control

HMC#2 CAM

ERV KEODO  Bpm

EkW x1,000

o

NMCO181 CAM (NI%, 90-91%)

£ o

Gk CXE000  Sem

NMECS1#1 CAM (Ni% 90-915)

Average Dischargs

*Ave. Spacific Energy basad

**EV 100Ah Samplo-A

Capacity 0.1C on Electrode Mass + Predicted Specific Enargy
[ Ave.) Calculated Electrolyte Mass (Whikg)
(bazed on Porosity)
Control Group NMCE1171, NX =179.4 mAh =350 Whikg ~325 Whikg
98.75%CAM, ~27.7 mg/eny,
=350 glec
Test Group 1 MNCMAg1, MNX 98 T5%CAM,  ~205.8 mAh =381 Whikg =355 Whikg
~27.5 mg/cm?, ~3.55 gicc
Test Group 2 NMCE1182, NX ~180.6 mAh ~359 Whikg ~334 Whikg
98, 75%CAM, ~27.5 mg/eny’,
~3.52 glce
Test Group 3 MMCS 121 (Ni% 90-21%). NX ~195.8 mAh ~382 Whikg ~355 Whikg

98 T5%CAM, ~26.9 mg/en?,
~3 55 glec

U “Energy Density Whikg calculation was only based on electrode mass + calculated eloctrolyte mass based on porosity
O *“EV 100Ah Sample-A Predicted Specific Energy (Whikg) calculation s based on Nanoramic's inlarnal battary call modeling
O Intent here is to compare the various of CAM influence to the initial 0.1C-Rate spacific energy Whikg

Figure 1.3.4 Results for Neocarbonix (NX) Ni-Rich NMC/NCMA Electrode Development (continued)
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 NX Small R&D Bicells standard battery cells assembled using NX Si-C#1 anode (same as TAP for all anode)

NX NMC811]1SI-C LIB Full Cell Cycle Life Small Bicells
200

)

1C-Rate Cyeling 40 °C

100
3.5C-Rate CCCV .
, NX NCMA#1; ~27.5 mg/em, ~3.55 glcc
Fast-Charging 15mins NX NMC811#2: ~27.5 mglem?, ~3.52 glce
NX NMC81#1 (80-91%MNi): ~26.9 mg/cm?, ~3.55 glec

All NL Manufactured NX 5i-C Anode TAP Same Type; All NX Cathode: 98.75%CAM
1.5 Ah Cells: 1CMC (3 eycles) + 3.5C (CCCV 15mins)/1C (1 eyele) in avery 4 cycles (25%FC)
Valtage range: 4.2-2.8V

ischarge Capacity (mAh

(4]
0 25 50 /5 100 125 150 175 200 225 250 275 300

Cycle Number
O NX NMC91#1 (90-91%Ni) electrodes show the best 25%FC cycling performance compared with all other test groups

TASK#1 Q1 PROGRESS: CONTINUED
NX Ni-RICH NMC/NCMA ELECTRODE DEVELOPMENT

J HX NCM&1#1 Cathode Electrode R2R coating in manutacturing: NX high speed coating compared vs. NMP

Video: Cathode Coating w/ Neocarbonix
Standard Coating Process With NMP =

Tha current fimit for NMP with an identical setup is
~12-15 m/min

i . ]

Enables >3x faster coating speed

f
=

Figure 1.3.5 Results for Neocarbonix (NX) Ni-Rich NMC/NCMA Electrode Development (continued)

Nanoramic has demonstrated >3x faster coating speed (60m/min) in R2R coating during the manufacturing
process of the NX NCM91#1 Cathode Electrode compared to the conventional NMP method (~12-15 m/min)
using the same oven size (18m).

Neocarbonix (NX) Low-Cost Silicon Anode Electrode Development

In this quarter, Nanoramic has developed NX Si-dominant anode electrode with lower-cost micro-size Si-C
anode active material (AAM). Results for this task are shown in the figures below (Figure 1.3.6 to Figure
1.3.13).
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* 2.1: Various Si Anode Active Material Evaluations: Micro-Size and Nano-Size Si Materials
« To begin work at the beginning of Q1 2022 and completed at the end of Q4 2022

+ 2.2: NX Si-Dominant Anode Electrode Formulation Optimizations
« To begin work at the beginning of Q1 2022 and completed at the end of Q1 2023

» 2.3: NX High Loading 26.2 mAh/cm2 Si Anode Electrode Manufacturing Process Optimizations
« To begin work at the beginning of Q3 2022 and completed at the end of Q3 2023

* Neocarbonix Si-dominant anode electrode active material comparison: both the same NX anode formulations
¥ Micro-Size Si-C#1 Control (Same as TAP)
¥ Low-Cost (LC) Micro-Size Si-C#2 Test Group (50% in $/kg of Si-C#1 control with similar specific capacity
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+ Neocarbonix Si-dominant anode electrode active material comparison: both the same NX anode formulations
¥ Micro-Size Si-C#1 Control (Same as TAP)
¥ Low-Cost (LC) Micro-Size Si-C#2 Test Group (50% cost in $/kg of Si-C#1 control)
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Figure 1.3.6 Results for Neocarbonix (NX) Low-Cost Silicon Anode Electrode Development
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* Neocarbonix Si-dominant anode electrode active material comparison: both the same NX anode formulations
¥ Micro-Size Si-C#1 Control (Same as TAP)

v Low-Cost (LC) Micro-Size Si-C#2 Test Group (50% cost in $/kg of Si-C#1 control)
Discharge Capacity (%) vs. Cycle Number
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= Neocarbonix Si-dominant anode electrode active material comparison: both the same NX anode formulations
¥ Micro-Size Si-C#1 Control (Same as TAP)

¥ Low-Cost (LC) Micro-Size Si-C#2 Test Group (50% cost in $/kg of Si-C#1 control)
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Figure 1.3.7 Results for Neocarbonix (NX) Low-Cost Silicon Anode Electrode Development (continued)
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* Neocarbonix Si-dominant anode electrode active material comparison: both the same NX anode formulations
¥ Micro-Size Si-C#1 Control (Same as TAP)

¥ Low-Cost (LC) Micro-Size Si-C#2 Test Group (50% cost in $/kg of Si-C#1 control)
Discharge Capacity (%) vs. Cycle Number
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+ MNeocarbonix Si-dominant anode electrode active material comparison: both the same NX anode formulations
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Figure 1.3.8 Results for Neocarbonix (NX) Low-Cost Silicon Anode Electrode Development (continued)

e Neocarbonix LC Si-C#2 anode material based NX various formulations.
o Micro-Size Si-C#1 Control (Same as TAP)

o Low-Cost (LC) Micro-Size Si-C#2 Test Group (50% cost in $/kg of Si-C#1 control): LC Si-
C#2

o NXNCM9I cathode loading: ~5.8 mAh/cm? with 3.65 g/cm? press density

e Initial HPPC DCIR check shows that LC Si-C#2 best formula-1 still has higher resistance compared
with NX Si-C#1 control old formulas.
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Figure 1.3.9 Results for Neocarbonix (NX) Low-Cost Silicon Anode Electrode Development (continued)

For NX LC Si-C#2 AAM with various new NX formulations, the New Fomula-1 performs the best on
Crate discharge tests in average. (See adjacent figure.)

Comparing the NX LC Si-C#2 new formula-1 with NX Si-C#1 control two old formulas; it achieves

similar Crate performance as the control-old-formula-1 but still show worse performance compared
with control-old-formula-2 in average.
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Figure 1.3.10 Results for Neocarbonix (NX) Low-Cost Silicon Anode Electrode Development (continued)

When the C/3 capacity retention % is compared before and after Crate discharge cycling, after 30
cycles, the New Formula-3 shows the highest retention % (~94.1%) which is ~0.4% higher than New
Formula-1 (best Crate mAh/cm2 performance formula) (~93.7%). (See the adjacent figure.)
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Figure 1.3.11 Results for Neocarbonix (NX) Low-Cost Silicon Anode Electrode Development (continued)

After 30 cycles various Crate tests, NX LC Si-C#2 New Formula-1 shows the highest C/3 capacity
retention % (~93.7%) compared with the control groups. (See the adjacent figure.)
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Figure 1.3.12 Results for Neocarbonix (NX) Low-Cost Silicon Anode Electrode Development (continued)

After 250 cycles of 1C1C cycling, NX LC Si-C#2 New Formula-1 shows the highest capacity
retention % ~88.0% and a Delta V increase of 13.50% compared with the control groups of ~84.6%
Capacity Retention and 23.13% increase in Delta V. (See the adjacent figure.)
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Delta V Si-C#1 vs LC Si-C#2
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Figure 1.3.13 Results for Neocarbonix (NX) Low-Cost Silicon Anode Electrode Development (continued)

Neocarbonix (NX) 14 Ah Battery Cell Development & Performance

The results for Neocarbonix (NX) 14 Ah Battery Cell Development & Performance are summarized in the
figures below. Results are shown in the figures below (Figure 1.3.14 to Figure 1.3.19).

NX 14Ah Measured | Measured
Cell Volume Weight (g)

Seriesh (mL)

| 20211218801 36mL  170.84
CO4KO08120

20211216B01 62,7 mL 168.3 g
CO8K02120

20211216801 619 ml 169.8g
CooKDa120

20211216B01 E29mL 166.6 g
C10K08120

20211276801 §4.3 mL 172.0g
C11K08120

«  NX 14Ah cell energy density: 303 to 313 Wh/kg, 817 to 836 WhiL
+ NX NMC811 cathode: PVDF/INMP free (Alcohol solvent) processing

cio
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15.2 Ah

15.5Ah

with ~5.5 mAhfem? high areal capacity
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50% Si element content in anode with >1100 mAh/g based on anode

active layer
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Figure 1.3.14 Results for Neocarbonix (NX) 14 Ah Battery Cell Development & Performance

c3
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(40 °C)
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NX 14Ah cell development screening

Cell Voltage (V) vs. Capacity (mAh)
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Figure 1.3.15 Results for Neocarbonix (NX) 14 Ah Battery Cell Development & Performance (continued)
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NX 14Ah cell development
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Figure 1.3.16 Results for Neocarbonix (NX) 14 Ah Battery Cell Development & Performance (continued)
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NX 14Ah cell development
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Figure 1.3.17 Results for Neocarbonix (NX) 14 Ah Battery Cell Development & Performance (continued)
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NX 14Ah cell development
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Figure 1.3.18 Results for Neocarbonix (NX) 14 Ah Battery Cell Development & Performance (continued)

UPDATE NOTE: Previous data for LIB Cycling performance shown was for 300 cycles with a ~92.3%
Capacity retention.
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« NX 14Ah cell development
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Figure 1.3.19 Results for Neocarbonix (NX) 14 Ah Battery Cell Development & Performance (continued)

UPDATE NOTE: Previous data for LIB Cycling performance shown was for 98 cycles with a ~96.2%
Capacity retention.

Nx si-c anode electrode pre-lithiation (40-50 wt.% si element content)

The results for NX Si-C ANODE ELECTRODE PRE-LITHIATION (40-50 wt.% Si Element Content) are
shown below. Results for this task are shown in the figures below (Figure 1.3.20 to Figure 1.3.27).

e ithiatiOR
= [ lekthiation

PLCAAZ

Areal Capacity (mAh/em?®)

[ === Deithistion

| PLCAAE
| NX LC Si-C#2 Anode: ~6.0 mg/cm?, ~1.55 glcc — [ithintion
00 ===t
0 2 4 6 8 10 12 Gkl i
Cycle Number —t

=TT Deithistion

Figure 1.3.20 Results for NX Si-C ANODE ELECTRODE PRE-LITHIATION (40-50 wt.% Si Element Content)
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Various prelithiated NX Si-C#2 anodic half cells were tested with 0.2-0.7 mAh/cm? of prelithiation.
Test Protocol (Control and Prelithiated Anodic Half-Cell)
e Formation (2x)
o CC Charge (C/10) to 5mV + CV at 5 mV to C/20

o CC Discharge (C/10) to 1.0V.

e Cycling
o C/5(2x)
o C/3(20x)
o C/2 (20x).

Physical observations of electrode post lithiation:
e Electrode remains flat with no curling
e No discoloration
e No edge delamination.

Full Cell Formation and Cycling

Prelithiated bicell capacity retention at 75 cycles improved by ~3.5% under 4.3-2.75 V higher voltage cutoff
C/3 cycling test. (See adjacent figure.)

105 = Control Cell

Control Cell 2
= PLCell (0.7 mAh/em?)
— = PLCell (0.7 mAh/em?)
PL Cell (0.5 mAh/em?)

100 -

3.5% Improvement at Cycle 75

95

90

Capacity Retention (%)

gs NXNMC811 Cathode: ~5.6 mAh/cm?, ~3.6 g/cc
NX LC Si-C#2 Anode: ~6.0 mg/cm?2, ~1.55 glcc
Cell Voltage: 4.30-2.75V

80
o 10 20 30 40 50 60 70 80 90

Cycle Number

*% Improvement based on PL Cell Capacity Retention relative to average Control Cell Capacity Retention at Cycle 73

Figure 1.3.21 Results for NX Si-C ANODE ELECTRODE PRE-LITHIATION (40-50 wt.% Si Element Content) (continued)
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Test Protocol (Control and Prelithiated Full Cell: 2-layers cathode +1-layer anode bicells)
1. Conditions 24 hr. soak at 45°C:
e Formation and Cycling at 26.5°C
e  Clamp pressure: 60 psi.
2. Formation (2x):
e (CC Charge (C/10)to 4.3V + CV at 4.3V to C/20
e CC Discharge (C/10) to 2.75V.
3. Cycling:
o (C/5(x2)
e (/3 (ongoing cycles).

Prelithiated bicell shows higher average CE% during cycling under 4.3-2.75 V higher voltage cutoff C/3
charge-discharge test. (See adjacent figure.)

100.0 = [ontrol Cell |

99.9 _ = e e — oy Contral Ee_ll z )
a \ RPN —— PLCell (07 mAh/em?)
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}

T
o
N

Average Efficiency (%
X

NX NMC811 Cathode: ~5.6 mAh/cm?, ~3.6 glcc
991 NX LC 5i-C#2 Anode: ~6.0 mglecm?, ~1.55 glce
Cell Voltage: 4.30-2.75 V

0 10 20 30 40 50 60 70 BO 50

Cycle Number
Figure 1.3.22 Results for NX Si-C ANODE ELECTRODE PRE-LITHIATION (40-50 wt.% Si Element Content) (continued)
Prelithiated bicell shows ~9% improvement in specific energy at cycle#75 during cycling under 4.3-2.75 V
higher voltage cutoff C/3 charge-discharge test.

The specific energy density was calculated based on active electrode weight (cathode + anode electrode
weight) for both Control cells and Prelithiated (PL) cells.
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Figure 1.3.23 Results for NX Si-C ANODE ELECTRODE PRE-LITHIATION (40-50 wt.% Si Element Content) (continued)

Nx Si-C Anode Electrode Pre-Lithiation (40-50 wt.% Si Element Content) Conclusions

By cycle 75 under 4.30-2.75 V C/3 cycling, prelithiated full cells demonstrate the following gains relative to
controls:

e >3.5% Improvement in Capacity Retention
e Obvious Improvement of Coulombic Efficiency (CE) % during C/3 Cycling
e ~9% Increase in Specific Energy based on Active Electrode Total Weight.

Next steps: pre-lithiation cost model analysis will be conducted to see the impact on $/kWh while it improves
the energy density (Wh/kg) and cycling performance.

Prelithiation Mass Production Cost-Benefit Model

Cost-benefit model incorporates energy, capacity, and cycle life benefits of prelithiation to any specific cell
design, as well as including primary prelithiation operating costs, formation, and related costs savings.

The cost model is based extensive preliminary engineering such as raw materials, labor, preliminary estimate
of capital deprecation, and US energy, labor, and water rates. (See adjacent figure.)
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Example Prelithiation Design Line:

4.26 kg 0.51L/h

i 3 3

D0O0HDH =

| Doublesided Prelithiation Web Speed 454 m/h Supporting Full Cell Production of 113 kWh/h >

6 Module Design Providing

903 MWh Annual Throughput

for 66 cm Coated Anode Width

for 0.45 mAhfcm2 Prelithiation Dosage

100% Nanoramic Anode, Nickelate 10% Cathode Cell Design

Figure 1.3.24 Results for NX Si-C ANODE ELECTRODE PRE-LITHIATION (40-50 wt.% Si Element Content) (continued)

e 700mm anode
Planned 7x24 operations
e Modular design — scalable production.

e Example Throughput:
o 6 modules: annual throughput of 0.9 GWh/line for 0.45 mAh/cm? dosage
o Single pass design — simultaneous prelithiation across both sides.

e Environmentally beneficial
o Benign process
o Output — prelithiated cells have lower carbon footprint.
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Figure 1.3.25 Results for NX Si-C ANODE ELECTRODE PRE-LITHIATION (40-50 wt.% Si Element Content) (continued)

Prelithiated cell is compared to a conventional cell with the same materials.

Energy and cycle life improvements are taken directly from cell balance calculations.

Cell Cost/kWh-cycle considers the initial cell cost reduction/kWh and the cycle life improvement.
Carbon footprint impact is underestimated - it considers the energy and cycle life improvements, but
not the formation energy savings.

Conventional vs Prelithiated Cell Cost Comparison
Conventional cell cost @ $100/kWh -- note that value is not critical; this is just used to calculate the

comparison. Anode costs account for the higher N:P of a prelithiated cell versus a conventional cell, assuming
anode powder = $50.00/kg. Furthermore, a summary of key cost assumptions for other various components of
the model are summarized below:

Key Cost Assumptions®

$14.00
$5.60
$1.30
$0.74

50.06
$0.06
50.06
$0.06

50,0026
$0.0013
$30.00

perkg
perl
perkg
perdry kg

SfkWh
$/kWh
sfeWh
$/kWh

S
5L
5/h

Prelithiation Cost
Salt
6 Module Design Providing 503 MWh Arnual Theoughput Sohvent
for coz
1007 Nanoremic Ancde, Nickelate 10°% Cathode with 045 (Other Chemicals
mah/fomZ Dosage. 56 cm Coated Anode Width Energy
Per Ah of Electricity
Prelithiation  Per Full Cell] | Heating
Cost Cor Dosage kWh| | Cooling
Salt 5 o022 3 053 | | Dryair
Sobvent 3 0001 5 0.02 | |water
o2 s 000§ 0.03 | | purchase
Other Chemicals 5 0001 5 0.03 | | pisposal
Other $  o0po2 5 0.08 | [Labor
Energy 5 0007 5 0.16
Labsar % 0006 % 0,14
Subtotal Operating Costs. | § 0041 5 099
Depreciation H 0052 5 125
Total $ 009 % .24

Figure 1.3.26 Results for NX Si-C ANODE ELECTRODE PRE-LITHIATION (40-50 wt.% Si Element Content) (continued)
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Cost Comparison: Conventional vs Prelithiated Cell
100% Nanoramic Anode, Nickelate 10% Cathode with 0.45 mAh/cm2 Dosage, 66 cm Coated Anode Width
100

95 1 =
s = i Formation and related
= 90 I
- & Prelithiation
g 85 4 Cost Declines ® Anode
z 80 W All Other

75 1

70 4 -

Conventional Cell Prelithiated Cell

Savings from Prelithiation $5.73/kWh = 5.7%

Figure 1.3.27 Results for NX Si-C ANODE ELECTRODE PRE-LITHIATION (40-50 wt.% Si Element Content) (continued)

e (Capacity gain of 5.9% from prelithiation is taken directly from the cell balance calculations, which
also show 6.1% cycle life improvement.

o Estimated formation savings of 60%.

The results for prelithiation show great performance and cost savings, however, Nanoramic decides to not use
pre-lithiation for now to achieve the good performance battery cells during this project for the final battery cell
delivery; Nanoramic wants to focus on Neocarbonix electrode technology.

Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%2>80%)
Results for this task are shown in the figures below (Figure 1.3.28 to Figure 1.3.31).

Low-Cost Micro-Si (Msi) Aam Powder Sem Images

.

¥ A s Aam B s anm Y LA uSH#2 AAM : TN uSi2 AAM

PSis AAM

Figure 1.3.28 Results for Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%)
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Figure 1.3.29 Results for Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%) (continued)
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Figure 1.3.30 Results for Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%) (continued)
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Figure 1.3.31 Results for Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%) (continued)

Low-cost micro-si dominant anode electrode development (higher si element wt.%280%) progress
conclusions
e uSi#2 is the best performance without pre-lithiation

e  Pre-lithiation ~600 mAh/g can improve the cycling performance to 180 cycles

e However, we need to do more development work to further improve the cycle life of 80%micro-Si
anode electrodes.

Nx Si Anode Electrolyte Development (Higher Si Element wt.%=>80%)
Results for this task are shown in the figures below (Figure 1.3.32 to Figure 1.3.36).

For the Si anode electrolyte development, 10 electrolytes were compared using the following cell build:
e NX Ni-Rich NMCS811 || NX uSi (~80%Si) Small Bicells Build: one cathode + two anode layers

e NX Cathode NMC811: 26-27 mg/cm?, ~3.65 g/cc, ~5.5 mAh/cm? loading.
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e NX Anode puSi (~80%Si): 3.8-4.0 mg/cm?

e Electrolyte Amount: 5 mL/Ah

e Nominal Capacity: 150-160 mAh, 1C1C cycle life from 4.2-2.8 V at 25°C.

Li Salt Blend

1(baseiine)  22-224 1 1.2M LIFSILIPFG
2 22.224 2 12M LIFSULIPFS
3 222243 1.2MLIFSULIPFE
4 22224 4 1.2M LIFSILIPF6
5 22.224 5  1.2MLIFSULIPFS
6 22.224 6 1.2M LIFSULIPFS
7 22-224.7  12MLIFSULIPFG
8 22224 8 1.2M LIFSULIPFG
9 22.224 9 1.2MLIFSULIPFS
10 2222410 1.2M LIFSULIPFS

Solvent Blend

tenery carmonale co-solvent combination partialy substituted with FEC
tenery carbonate co-solvent combination partialy substifuted with FEC
tenery carbonate co-solvent combination partaly substituted with FEC
tenery carbonate to-solvent combination partialy substiuted with FEC
tenery carbonate co-solvent combination partialy substituted with FEC
tenery carbonale co-solvent combination partally substituted with FEC
lenery carbonale co-solvent combination partaly substiuted with FEC
tenary carbonate co-solvent combination partialy substifuted with FEC

various cychc and linear carbonate solvent combinations

Additive

tenery carbonate co-solvent combination partialy substituted with FEC  VC

VC and organosécon-1

VC and phosphite

WC and carbonitrile

VC and phophazine

VC and higher amount of organasiicon-2
VG and cychic sulfate-1

WVE and cyche sulfate-2

VC and lower amount of organosilicon-2

nitrite- and phosphate-based

Figure 1.3.32 Results for Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%) (continued)

The C/3 RPT capacity check at every 50 cycles was measured to understand cell SOH degradation.
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Figure 1.3.33 Results for Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%) (continued)
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Elyte#3: Phosphite-based additive
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Elyte#4: Carbonitrile-based additive
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Elyte#5: Phophazine-based additive
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Figure 1.3.34 Results for Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%) (continued)
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Elyte#7: Cyclic Sulfate-1 additive
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Figure 1.3.35 Results for Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%) (continued)

The absolute and relative discharge capacities of Electrolyte 8 (cyclic sulfate-2 additive) was one of the
highest, together with Electrolyte 6 (with organosilicon-based additive).
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Figure 1.3.36 Results for Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%) (continued)

Elyte#6 and #8 cells were able to retain a SOH of 90% after 100 cycles and overcoming the baseline Elyte#1.
These above results can also be applied to NX Si-C (40-50%Si) anode cell system, not only Micro-Si
(~80%Si). Next step will be that both above two best Elyte#6 & #8 will be tested in multi-layer cells with NX
Si-C (40-50%S1) anode electrodes.

NX NCM91| |Si 4.5Ah Battery Prototype Cell Development (Based On Current Usabc Developed Nx
Electrodes)

Results for this task are shown in the figures below (Figure 1.3.37 to Figure 1.3.40).

NX NCM31#1 Electrode Loading ~5.8 mAhfcm?

Core D (mm) 44.38 44 64
Core C (mm) 61.41 61.01
Thickness (~3 atm) T1 [mm] 6.43 6.91
Core Volume (mL}) 17.53 18.81
Total Volume (mL) (pouch edges) 17.96 19.23
Measured Weight (g) 48.73 4854
Voltage range (V) 42-25 42-25
C/3 Core Energy Density (Wh/L) (25°C) 908.73 839.45
C/3 Total Energy Density (WhiL) (25°C) 886.97 821.1
C/3 Total Specific Energy (Wh/kg) {25°C) 326.80 325.30

Figure 1.3.37 Results for Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%) (continued)
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Figure 1.3.38 Results for Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%) (continued)

o Combined developed NX NCMO1#1 cathode electrodes with NX Si-C#1 anode electrodes vs. NX LC
Si-C#2 anode electrodes

e  Both NX NCM91#1 cathode electrode loading: ~5.8 mAh/cm?2 with press density of ~3.6 g/cm3,
NCM91 CAM%: 98.75% in electrode active layers

e Same other cell components for both cell designs

Cell Parameters (25 °C)

C/3 Energy (Wh) (25°C) 15.93 15.79
CI3 Capacity (Ah) (25°C) 4643 4622
1C SOC50 30s @ 25°C (mQ) S5 i

Figure 1.3.39 Results for Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%) (continued)

o Initial charge-discharge curves show very typical Ni-rich NMC cathode combined with high Si%
anode electrodes.
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Figure 1.3.40 Results for Low-Cost Micro-Si Dominant Anode Electrode Development (Higher Si element wt.%>80%) (continued)

NX NCM91#1 || NX Si-C#1 - 4.5 Ah Cells
Results for this task are shown in the figures below (Figure 1.3.41 to Figure 1.3.51).
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Figure .3.41 Results for NX NCM91#1 | | NX Si-C#1 - 4.5 Ah Cells
e Cycle Life C/3 (left) from 4.2-2.8 V (SOC100-SOC5) achieves 400 cycles with ~91% capacity
retention
e Cycle Life 1.0C/1.0C (right) from 4.2-2.5 V (SOC100-SOCO0) achieves 400 cycles with ~84.5%
capacity retention
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Figure 1.3.42 Results for NX NCM91#1 | | NX Si-C#1 - 4.5 Ah Cells (continued)
e Discharge C-rate cycling test shows stable trends for all the C/3, C/2, 1C, 2C, 3C, and 4C

e Discharge 4C-rate capacity and retention to first 3 cycles of C/3 discharge is ~60% even with high
loading electrodes > 5.8 mAh/cm?.
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Figure 1.3.43 Results for NX NCM91#1 | | NX Si-C#1 - 4.5 Ah Cells (continued)

Figure 1.3.44 Results for NX NCMO91#1 || NX Si-C#1 - 4.5 Ah Cells (continued)

e Charge C-rate cycling test shows stable trends for all the C/3, C/2, 1C, 2C, 3C, and 3.5C CC-region
capacity.
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Figure 1.3.45 Results for NX NCM91#1 | | NX Si-C#1 - 4.5 Ah Cells (continued)

e  (C-rate charge curves show stable trends for all the C/3, C/2, 1C, 2C, 3C, and 3.5C: CC-region Charge
3.5C-rate capacity and retention to first 3 cycles of C/3 discharge is ~56%.
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Figure 1.3.46 Results for NX NCM91#1 | | NX Si-C#1 - 4.5 Ah Cells (continued)

e Under 3.5C-Rate fast-charge, SOC80 can be achieved at ~15 mins even with such high loading NX
battery electrodes > 5.8 mAh/cm?2.

e AIINXNCMOII#1||LC Si-C#2 cells’ electrochemical tests are in progress

e  Will share more data when tests completed.
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Nx Ni-Rich Nem | | Si ~4ah Battery Prototype Cell Safety Test Performance (3@ Party Validation Results)

Third Party testing was completed at a reputable testing facility using the NX 4.5 Ah pouch cells from section
g. The following test were performed:

Safety Test

Category Safety Test Protocol (SOC100)

Over Charge 1C Charge from SOC100 to SOC200

Short Circuit 1mQ External short circuit under 1 mQ

Short Circuit 10mQ  External short circuit under 10 mQ

5 °C/min hold at 130 °C, 150 °C, 170 °C

Thermal Ramp and 200 °C for 30 mins

Figure 1.3.47 Results for NX NCM91#1 | | NX Si-C#1 - 4.5 Ah Cells (continued)

Overcharge to SOC200

1C-Rate Overcharge to SOC200

Voltage (V), Current [A), Charge Capacity(Ah)

Time (min)

Figure 1.3.48 Results for NX NCM91#1 | | NXSi-C#1 - 4.5 Ah Cells (continued)

e No thermal runaway observed

e Cell Peak Temp: ~91°C.
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Figure 1.3.49 Slight gassing observed after the 200% SOC overcharge.

Short Circuit 1 mQ & 10 mQ

The 1 mQ & 10 m€Q short circuit tests were both performed with a calibrated 0.1039m€Q shunt with different

length test leads.
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Figure 1.3.50 Results for NX NCM91#1 | | NX Si-C#1 - 4.5 Ah Cells (continued)

e No thermal runaway
e Cell Peak Temp 1 mQ-SC: ~106°C

e Cell Peak Temp 10 mQ-SC: ~113°C.
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Figure 1.3.51 Results for NX NCM91#1 | | NX Si-C#1 - 4.5 Ah Cells (continued)
e No thermal runaway at 130°C-170°C hold

e  Most conventional battery cells will have thermal runaway between 150°C-170°C hold.
o Thermal runaway at ~2 mins into 200°C hold.

Conclusions

The widespread applications of lithium-ion batteries have prompted significant investment in research of
electrode and cell designs and further optimization for scale-up manufacturing of the said designs. Drastic
improvement in both the battery performance and manufacturing processing would enable greater use of
lithium-ion patties in sustainable applications, particularly in electric vehicles, while at the same time reducing
the economic and environment impacts of the use of such energy storage systems.

The technology, Neocarbonix, as described in this project would enable such aforementioned improvements.
Significantly higher gravimetric and volumetric energy density as well as high power density can be achieved
through increase in mass loading of electrochemically active materials on an electrode-level. Concurrently,
lower production costs in terms of $/kWh can be achieved using scalable and industrially proven aqueous
and/or other low boiling point based solution processing methods and elimination of toxic solvent from
manufacturing.

Successful demonstration and optimization of the described technology concepts in this project would achieve
the following:

1. Develop further NX battery electrodes for both cathode and anode based on various types of CAMs &
AAMs to achieve higher performance LCFC EV battery cells.

2. Achieve cell-level higher volumetric energy density (25%-30% improvement in energy density in
Wh/L)—thereby significantly increasing projected range of electrical vehicles using such battery
designs.

3. Pre-lithiation: C/3 Cycling improvements in Capacity retention (>3.5%), CE%, and Increase in
Specific Energy based on Active Electrode Total Weight (~9%)

a. Prelithiation mass production cost-benefit model demonstrates:

e Cost savings of large scale, modular designed prelithiation lines with example
throughputs shows improvements with a reduced cell cost/kWh-cycle of 11.1%
and -10.91% in carbon footprint.

e Capacity gain of 5.9% from prelithiation and 6.1% cycle life improvements with
assumption of current cell cost at $100/kWh and $50.00/kg for anode powder
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e 60% cost savings in formation.
Generate 14 Ah battery cell electrochemical performance results and more life test performance are
updated.
Demonstrated >3X NX NCM91#1 R2R coating speeds compared to conventional NMP electrodes: 60
m/min vs ~12-15 m/min in an 18m oven
Elyte #6 (VC w/ organosilicon-based additive) & #8 (VC w/ cyclic sulfate-2 additive) both retained
90% SOH after 100 cycles compared to the baseline Elyte #1 (VC w/ no additive) in NX Si Anode
development.
NX NCMOI1#1 || NX Si-C#1 - 4.5 Ah Cells

a. C/3 & 1C Cycle Life achieves ~91/84.5% capacity retention, respectively, after 400 cycles

b. Discharge C-rate stability up to the tested 4C rate with ~60% capacity retention

c. Charge C-rate stability up to the tested 3.5C rate with ~56% CC capacity retention

d. 3.5C-Rate fast-charge, SOC80 can be achieved at ~15 mins even with such high loading NX
battery electrodes > 5.8 mAh/cm?2.

NX NCMOI1#1 || NX Si-C#2 - 4.5 Ah Cells and full comparison study with NX NCM91#1 || NX Si-
C#1 - 4.5 Ah Cells

a. Initial HPPC DCIR check shows that LC Si-C#2 best formula-1 still has higher resistance
compared with NX Si-C#1 control old formulas.

b. For NX LC Si-C#2 AAM with various new NX formulations, the New Fomula-1 performs
the best on Crate discharge tests in average.

c. Comparing the NX LC Si-C#2 new formula-1 with NX Si-C#1 control two old formulas; it
achieves similar Crate performance as the control-old-formula-1 but still show worse
performance compared with control-old-formula-2 in average.

d.  When the C/3 capacity retention % is compared before and after Crate discharge cycling,
after 30 cycles, the New Formula-3 shows the highest retention % (~94.1%) which is ~0.4%
higher than New Formula-1 (best Crate mAh/cm? performance formula) (~93.7%).

e. After 30 cycles various Crate tests, NX LC Si-C#2 New Formula-1 shows the highest C/3
capacity retention % (~93.7%) compared with the control groups

f.  After 250 cycles of 1C1C cycling, NX LC Si-C#2 New Formula-1 shows the highest
capacity retention % ~88.0% and a Delta V increase of 13.50% compared with the control
groups of ~84.6% Capacity Retention and 23.13% increase in Delta V.

Safety Testing

a. No thermal runway after 200% SOC Overcharge

b. No thermal runaway after I1m€ and 10 mQ Short Circuit

c. No thermal runaway between 130°C -170°C Thermal Ramp; thermal runaway at 200°C.

Future Work

1.
2.
3.

Continue work with coating speeds in NX Si Anode

Test Elyte#6 & #8 in multi-layer cells with NX Si-C (40-50%S1i) anode electrodes.

NX NCMA (~90%Ni) new CAM based electrode R2R process development and performance tests:
still waiting for the new CAM to be delivered.

NX low-Cost SiGr anode electrode formulation optimizations for longer cycle life and tested in multi-
layer ~4.5 Ah & >=10Ah pouch cells.

NX Si anode new additive-based electrolyte formulation tests in multi-layer pouch cells: ~4.5Ah cells.
Start the NX battery cell ~50Ah Ni-Rich||SiGr A-sample cell design and modeling work.
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1.4 Evaluation of Advanced Li-ion Cell Architectures for Extreme
Fast Charging (XFC) Batteries for Electric Vehicles (EnPower,
Inc.)

Adrian Yao, Principal Investigator
EnPower, Inc.

8740 Hague Rd

Indianapolis IN 46256

E-mail: adrian@enpowerinc.com

Brian Cunningham, DOE Technology Development Manager

U.S. Department of Energy
E-mail: brian.cunningham@ee.doe.gov

Start Date: February 22, 2021 End Date: May 22, 2022
Project Funding: $367,799 DOE share: $183,899 Non-DOE share: $183,899

Project Introduction

As Battery Electric Vehicle (BEV) adoption increases to serve the needs of mainstream consumers, it is ever
more critical for battery cell technology to be low-cost with fast-charging capability, all while maintaining a
minimum required vehicular range to be practical. However, an inherent tradeoff between energy (range) and
power (fast-charge) exists for all Li-ion cells, and current battery cell technology is unable to satisfy both
requirements. EnPower addresses this fundamental energy-power tradeoff with its unique and proprietary
multilayer electrode architectures that increase the rate capability of thick, high energy density electrodes. By
using simultaneous multilayer slot-die coating, EnPower is also able to keep costs low with no detriment to
throughput and yield. In this Technology Assessment Program (TAP), EnPower will iterate through multiple
designs of multilayer graphite anodes and multilayer NMC811 cathodes to arrive at a semi-optimized cell
design. 4.2 Ah Pouch cells incorporating both multilayer anodes and cathodes will be shipped to Idaho
National Laboratory (INL) for final testing upon completion of the TAP.

Objectives

The objective of the project is to demonstrate the feasibility of EnPower’s multilayer electrode technology in
commercially relevant pouch cell form factors. Cell performance targets include:

e >250 Wh/kg (in 4.2Ah pouch cell form factor)
e 80% ASOC fast-charge in < 20-mins

Approach

In this TAP, EnPower first iterated through approximately (6) multilayer graphite anode designs all paired with
an identical NMC622 cathode pair to downselect a best-performing design. Subsequently, EnPower iterated
through approximately (6) multilayer NMCS811 cathode designs all paired with the previously downselected
multilayer anode, again identifying a best-performing architecture. Using this semi-optimized multilayer
anode-cathode pair, EnPower also iterated through several electrolyte formulations tailored for fast-charging
capability while keeping component costs in mind. Internal testing compared cells with multilayer electrode
architectures against cells having “homogeneous baseline” electrodes that are chemically- and dimensionally
identical references of their multilayer counterparts. These homogeneous baseline electrodes represent state-of-
art conventional electrode architectures. Once a cell stack design (anode, cathode, electrolyte) was selected,
final 4.2 Ah pouch cells were shipped to INL for third-party testing and validation.
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Results

During the first half of this project, the work progressed well, showing improvements as previously reported
(see the 2021 APR). EnPower developed using testing at 40°C. When tested at 30°C, the cells showed
noticeably lower rate performance.

Work begun on electrolyte formulation improvements provided some means to enhance the rate capability at
this lower temperature, at the expense of some other performance metrics. The long-term cycling with the best
rate capability electrolyte formulation turned out to yield lower capacity retention than with EnPower’s
standard electrolyte formulation comprised of typical solvents, salt concentration, and additive. Therefore, the
standard formulation was used in the final deliverable build.

Also, upon reaching the time of building the cells to be delivered to INL, EnPower encountered a production
issue surrounding the making of the multilayer cathode. The single crystal NMC811 material was in poor
condition (causing slurries to gel up) that was not caught during receipt months prior. For expediency, because
replacement material was not procurable in a short time frame, a typical polycrystalline single layer cathode
was substituted in the cell design.

Successful and encouraging results were found in the comparison between the multilayer (ML) design and the
homogeneous baseline (HBL) coating design. The HBL is the comparison by which EnPower demonstrates the
benefit of multilayer over the conventional single layer-coated electrode comprised of the same materials,
composition, loading, and calender density. Figure 1.4.1 shows the improved fast charge time by arranging the
same materials in the HBL electrode into the ML architecture. For these two cells, faster charging times led to
lithium plating as evidenced by characteristics in the voltage profiles, which are confirmed by selected cell
openings.

Fastest Charge Time Performance from 10-80% SOCt
Voltage and C-rate vs. Charge Time
Performed at 40°C
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Figure 1.4.1 Comparison of the multilayer graphite anode / NMC811 cell’'s fast charge capability with that of a cell built with a
homogeneous baseline anode comprised of the same graphite composition and density
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The final cell deliverable exhibited lower fast charge capability. Initial results from the INL testing
demonstrated the final cell design’s failure to meet the <20 min. fast charge and for cycling at either the 25%
or 100% FC condition. Contributing factors include the testing by EnPower to ~80% SOC and discharging the
capacity to low SOC instead of charging to the maximum operating voltage and discharging only 80% of the
usable energy, thereby starting the fast charging protocol at a higher SOC condition than that used in
development.

Otherwise, the cell performs well on all other metrics, including peak discharge power density, and was of
consistent manufacturing quality. Figure 1.4.2 shows results from the Hybrid Pulse Power Characterization
(HPPC) test results of the deliverable cell. The specific energy as determined using the development pouch cell
format employed by EnPower (4.2 Ah) scaled to a >13 Ah cell size meets the >250 Wh/kg objective.

HPPC Test
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Figure .4.2 Hybrid Pulse Power Characterization (HPPC) for the EnPower multilayer anode / NMC811 cell

Ways in which EnPower is addressing these multiple production and development challenges include
qualifying new suppliers, expanding incoming quality control procedures, and committing more testing time to
verify long-term performance in addition to the quick screening tests for assessing improvements and short-
term performance metrics. Primarily, the predominant factor leading to the ultimate poor FC cycling
performance in the INL testing is the different testing conditions during development — test temperature and
SOC range. EnPower is focusing development testing toward the higher SOC conditions to address the more
aggressive charging conditions.

Conclusions

EnPower has successfully validated the feasibility of the multilayer electrode technology, demonstrating its
ability to significantly enhance cell performance at >30°C, especially with respect to fast-charge cycling.
EnPower is now focused on tuning its technology to perform at lower temperatures and under higher states of
charge conditions for which the USABC/INL testing emphasizes.

Using only graphite-based anode active materials in this drop-in technology enables a low-cost cell based on
both the materials and scalability in existing manufacturing infrastructure. The combined performance and cost
benef