Final Radiological Final Status Survey of Building 4006

Santa Susana Field Laboratory Ventura County, California

Contract Number 114579

Prepared for:

The Boeing Company
Santa Susana Field Laboratory
5800 Woolsey Canyon Road
Canoga Park, CA 91304-1148

Prepared by:

3620 N Rancho Drive, Suite 114, Las Vegas, Nevada 89130

Cabrera Project No.07-1016.00

June 2008

Table of Contents

1.0	Introduction and Site Background	
1.1	Historical Background and Radiological Overview	8
1.2	Release Criteria	
2.0	Data Quality Objectives	12
2.1	Step 1 – State the Problem	12
2.1.1	Problem Description	12
2.1.2	Planning Team Members	12
2.1.3	Primary Decision Maker	12
2.1.4	Available Resources and Relevant Deadlines	12
2.2	Step 2 – Identify the Decision	12
2.2.1	Principal Study Question	12
2.2.2	Alternative Actions	12
2.2.3	Decision Statement	12
2.3	Step 3 – Identify Inputs to the Decision	13
2.3.1	Radionuclides of Concern	13
2.3.2	Potentially Affected Media	13
2.3.3	Action Levels	13
2.3.4	Measurement Inputs	
2.4	Step 4 – Define the Study Boundaries	15
2.4.1	Define the Target Population	15
2.4.2	Spatial Boundaries of the Decision Statement	15
2.4.3	Scale of Decision Making	15
2.5	Step 5 – Develop a Decision Rule	16
2.6	Step 6 – Specify Limits on Decision Errors	16
3.0	Data Collection	18
3.1	Survey Units	18
3.1.1	High Bay	18
3.1.2	Laboratory Area	18
3.1.3	Office Area	19
3.1.4	Roof	19
3.1.5	Exterior Walls	20
3.2	Survey and Sampling	20
3.2.1	Exposure Rate Measurements	21
3.2.2	Scan Measurements	21
3.2.3	Static Measurements	
3.2.4	Smear Samples – Alpha/Beta	22
3.2.5	Smear Samples – Tritium	23
3.3	Background Reference Areas	24
4.0	Data Evaluation	
4.1	Data Validation and Verification	30
4.2	Exploratory Data Analysis	
4.3	Surface Residual Radioactivity Release Criterion	31
5.0	Quality COntrol	
5.1	Precision, Accuracy, Representativeness, Comparability, and Completeness	
5.2	Field Survey Instrumentation	34

5.2.1 Calibration and Maintenance	34
5.2.2 Instrument Response	35
5.2.3 Detection Sensitivity	
5.3 Analytical Laboratory Performance	
5.4 Data Quality Assessment	36
6.0 Summary and Conclusion	
7.0 References	40
<u>List of Figures</u>	
Figure 1-1 Building 4006	9
Figure 3-1 Building 4006 High Bay Sampling Grids	
Figure 3-2 Building 4006 Laboratory Sampling Grids	26
Figure 3-3 Building 4006 Office Sampling Grids	27
Figure 3-4 Building 4006 Exterior Walls Sampling Grids	28
<u>List of Tables</u>	
Table 1-1 Surface Residual Radioactivity Guidelines for SSFL Facilities	10
Table 2-1 Background Count Rates	13
Table 2-2 Action Levels	15
Table 2-3 Decision Rules	
Table 3-1 Summary of Static Measurement Results	
Table 3-2 Summary of Alpha/Beta Smear Sample Data	
Table 3-3 Summary of Tritium Smear Sample Data	
Table 4-1 Summary of Sum of Fractions Calculations	
Table 5-1 CABRERA Operating Procedures Used for Survey Data Collection	
Table 5-2 Field Instrumentation.	
Table 5-3 Field Instrumentation Detection Sensitivities	35

List of Appendices

Appendix A Field Measurement Results

Appendix B Field Survey Data Sheets – Electronic Files

Appendix C Laboratory Analytical Results

Appendix D Field Survey Instrumentation QC Data

List of Acronyms, Abbreviations, and Units of Measurement

Bq/cm² Becquerel per square centimeter

Boeing The Boeing Company CABRERA Cabrera Services, Inc.

cm centimeter

cm/sec centimeters per second cm² square centimeters cpm counts per minute Cs Cesium (e.g., ¹³⁷Cs)

DoD U.S. Department of Defense DOE U. S. Department of Energy

DPH California Department of Public Health

dpm disintegration per minute DQO Data Quality Objective EDA Exploratory Data Analysis

EPA U. S. Environmental Protection Agency ETEC Energy Technology Engineering Center

f² square foot

FSP Field Sampling Plan FSS Final Status Survey

H Hydrogen (e.g., ³H or tritium) HSA Historical Site Assessment K Potassium (e.g., ⁴⁰K)

keV kilo electron Volts
Kr Krypton (e.g., 85Kr)

LSC Liquid Scintillation Counting

m meter

m² square meters

MARSSIM Multi-Agency Radiation Survey and Site Investigation Manual

mCi millicurie

MDC Minimum Detectable Concentration

Mn Manganese (e.g., ⁵⁴Mn)

ml milliliter

mrem/yr millirem per year Na Sodium (e.g., ²²Na)

NASA National Aeronautics and Space Administration

NELAP National Environmental Laboratory Accreditation Program

NIST National Institute of Standards and Technology

NRC U. S. Nuclear Regulatory Commission

Pb Lead (e.g., ²⁰⁶Pb)
pCi/g picocurie per gram
Pu Plutonium (e.g., ²³⁸Pu)
QC Quality Control
Ra Radium (e.g., ²²⁶Ra)

RMDF Radioactive Materials Disposal Facility
RMHF Radioactive Materials Handling Facility

Sr

 SSFL

Th

TPU

Strontium (e.g., ⁹⁰Sr)
Santa Susana Field Laboratory
Thorium (e.g., ²³²Th)
Total Propagated Uncertainty
Uranium (e.g., ²³⁸U) U United States Code U.S.C. micro Roentgen per hour μR/hr

μrem/yr microrem per year $\mu Sv/yr$ micro sievert per year This Page Left Intentionally Blank

EXECUTIVE SUMMARY

This report presents the results of the radiological survey performed of Building 4006 at the Santa Susana Field Laboratory (SSFL) in Ventura County, California. The survey was performed in May, 2008 by Cabrera Services, Inc. (CABRERA). Radiological data were collected in accordance with the *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)* (EPA, 2000) and the *Field Sampling Plan for the Radiological Final Status Survey of Building 4006* (FSP, Cabrera, 2008). The purpose of the survey was to verify the building meets the *Approved Sitewide Release Criteria for Remediation of Radiological Facilities at the SSFL* (Rocketdyne, 1999). These criteria for release to unrestricted use have been approved by the U.S. Department of Energy (DOE) and California Department of Public Health (CDPH).

The building was cleaned by Boeing personnel prior to performing the radiological survey. The interior of the building was divided into three Class 3 survey units; the high bay, laboratory, and office areas. The exterior of the building was divided into two additional Class 3 survey units; the roof and exterior walls. The building was divided into grids and survey data were collected from a minimum of 15 randomly selected grids in each survey unit. Survey data were also collected from targeted areas selected based on professional judgment. Targeted areas included floor drains, ventilation exits, and entry doors.

Each randomly selected or targeted grid was scanned for alpha- and beta-emitting surface residual radioactivity over 100% of accessible surfaces. A 1-minute static measurement of total alpha and total beta radioactivity was performed near the center of the grid, and then a dry smear was collected from a 100 cm² area at the same location as the static measurement. A wet smear was collected to evaluate the potential presence of tritium from a 100 cm² area adjacent to the static measurement location. A dose rate reading was taken on contact at the same location as the static measurement. If the scanning within the grid identified any location with detectable radioactivity above background (i.e., greater than 2,500 dpm/100 cm²) a static measurement, dry smear, and dose rate measurement were performed at that location.

Measurements confirmed surface residual radioactivity to be below the levels given in the *Approved Sitewide Release Criteria for Remediation of Radiological Facilities at the SSFL* (Rocketdyne, 1999). Based on the measured surface residual radioactivity levels, Building 4006 can be released for unrestricted use.

This Page Left Intentionally Blank

1.0 INTRODUCTION AND SITE BACKGROUND

This report presents the results of the radiological survey performed of Building 4006 at the Santa Susana Field Laboratory (SSFL) in Ventura County, California. The survey was performed in May, 2008 by Cabrera Services, Inc. (CABRERA). Radiological data were collected in accordance with the *Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)* (EPA, 2000) and the *Field Sampling Plan for the Radiological Final Status Survey of Building 4006* (FSP, Cabrera, 2008). The purpose of the survey was to verify the building meets the *Approved Sitewide Release Criteria for Remediation of Radiological Facilities at the SSFL* (Rocketdyne, 1999). These criteria for release to unrestricted use have been approved by the U.S. Department of Energy (DOE) and California Department of Public Health (DPH).

The Boeing Company (Boeing) contracted with CABRERA to perform the survey. Boeing operates Area IV of the SSFL for the DOE. Under the authority of the Atomic Energy Act [42 United States Code (U.S.C.) 201 et seq.], DOE is responsible for establishing a comprehensive health, safety, and environmental program for managing facilities. As an Agreement State under the Atomic Energy Act, the State of California has jurisdiction over non-DOE radiological activities at the SSFL. Data of sufficient type, quantity, and quality were needed to satisfactorily demonstrate to the California DPH, formerly the Department of Health Services, that residual radioactivity in Building 4006 demonstrates compliance with the approved release criteria for unrestricted use.

1.1 Historical Background and Radiological Overview

In the late 1940s, North American Aviation acquired land in the Simi Hills between the Simi and San Fernando Valleys. That land, now known as SSFL, was used primarily for the testing of rocket engines. Atomics International, a division of North American Aviation, was formed in 1955 and part of Area IV at SSFL was set aside and used for nuclear reactor development and testing. In 1984 Atomics International merged with Rocketdyne. Boeing purchased Rocketdyne in 1996. Area IV of the SSFL is used for DOE-sponsored activities. Boeing, the National Aeronautics and Space Administration (NASA), and the U.S. Department of Defense (DoD)have used the balance of the SSFL for rocket and laser testing.

Activities in Area IV started in the mid 1950s. Until 1964, these activities were primarily related to sodium-cooled nuclear power plant development and development of space power systems with sodium and potassium as coolants. The Energy Technology Engineering Center (ETEC, originally known as the Liquid Metal Engineering Center) was formed in the mid 1960s as an Atomic Energy Commission (now DOE) laboratory for the development of liquid metal heat transfer systems in support of the Liquid Metal Fast Breeder Reactor Program. Nuclear operations at Area IV included 10 nuclear research reactors, seven critical facilities, the Hot Laboratory, the Nuclear Materials Development Facility, and various test and nuclear material storage areas. All nuclear operations ended in 1988. Since that time DOE-funded activities have focused on decontamination and decommissioning of the ETEC facilities.

The Historical Site Assessment of Area IV, Santa Susana Field Laboratory, Ventura County, California (HSA, Sapere, 2005) describes the history and use of Building 4006. Building 4006 is centrally located in Area IV and was operated as a non-nuclear sodium laboratory. Its principal function was research and development for sodium systems and components. While the building was predominantly a non-radiological facility, there are records of minor uses of radioactive materials, including encapsulated cylinders of uranium oxide powder, components

activated with Manganese-54 (⁵⁴Mn), tritiated titanium foils in gas chromatographs, and sodium loop level gauges possibly employing Cesium-137 (¹³⁷Cs) sources. Several minor radiation surveys have been performed in the past related to these activities. No radioactivity was detected. In addition, soil sampling following removal of the building septic tank and leach-field did not detect any contamination. The building is not a designated or posted radiological facility. Only limited amounts of radioactivity were used in Building 4006 and results of historical radiological monitoring activities detected no contamination in Building 4006. The potential for detectable levels of residual radioactivity to be present in Building 4006 is very low. Therefore, Building 4006 is classified as a Class 3 area based on MARSSIM guidance.

Building 4006 is shown in Figure 1-1. It was constructed with a steel frame and walls and measures 1,234 square meters (m²). The building is oriented length-wise on a northwest to southeast axis. It was closed for operations in 1999.

Figure 1-1 Building 4006

(southeast end of building; view from south corner)

(northeast side of building; view from south corner)

1.2 Release Criteria

The criteria for releasing Building 4006 for unrestricted use is found in the *Approved Sitewide Release Criteria for Remediation of Radiological Facilities at the SSFL* (Rocketdyne, 1999), specifically the surface contamination and ambient gamma exposure rate guidelines presented in Sections 4 and 5, respectively. These criteria have been approved by the DOE and California DPH.

Based on the Historical Site Assessment (HAS), the radionuclides of concern that may be present as residual radioactivity in Building 4006 are Uranium-234 (234 U), 235 U, 238 U, 137 Cs, 54 Mn, and Tritium. The surface residual radioactivity guidelines for these radionuclides are given in Table 1-1. The ambient gamma exposure rate guideline is 5 microRoentgen per hour (μ R/hr) above natural background, measured at one meter above the surface.

Since a combination of alpha-emitting (i.e. uranium isotopes), beta/gamma-emitting (⁵⁴Mn and ¹³⁷Cs), and tritium surface residual radioactivity may be present, the sum of fractions rule was applied to demonstrate compliance with the approved release criteria. Using the sum of fractions rule, the release criterion for surface residual radioactivity is met where the sum of fractions is less than or equal to unity.

Table 1-1 Surface Residual Radioactivity Guidelines for SSFL Facilities

Radionuclide	Type of Radiation	Average over 1 m ² (dpm/100 cm ²)	Maximum over 100 cm ² (dpm/100 cm ²)	Removable (dpm/100 cm²)
uranium (²³⁴ U, ²³⁵ U, ²³⁸ U)	alpha	5,000	15,000	1,000
mixed fission products (¹³⁷ Cs)	beta, gamma	5,000	15,000	1,000
activation products (⁵⁴ Mn)	beta, gamma	5,000	15,000	1,000
tritium	beta			10,000

This Page Left Intentionally Blank

2.0 DATA QUALITY OBJECTIVES

Data Quality Objectives (DQOs) were developed to define the purpose of the radiological survey, clarify what data should be collected to satisfy the purpose, and specify the performance requirements for the quality of information to be obtained from the data.

2.1 Step 1 – State the Problem

2.1.1 Problem Description

Building 4006 is identified in the *Historical Site Assessment* (Sapere, 2005) as radiologically impacted. Radiological data are needed to verify that the building meets the guidelines in the *Approved Release Criteria* (Rocketdyne, 1999) for release of the building for unrestricted use.

2.1.2 Planning Team Members

CABRERA is responsible for developing this work plan and providing the necessary materials, consumables, and qualified personnel, including qualified radiation survey technicians, to conduct the radiological survey. Boeing provides information on current and past activities in the form of historical radiological data.

2.1.3 Primary Decision Maker

The primary decision maker is the Boeing Project Manager.

2 1 4 Available Resources and Relevant Deadlines

Sufficient resources have been allocated for CABRERA to develop and implement this work plan. The radiological Final Status Survey (FSS) will be performed once the Field Sampling Plan (FSP) is approved. Upon completion of the radiological FSS, a report will be prepared summarizing the survey data and documenting the conclusion regarding the suitability of Building 4006 for release for unrestricted use.

2.2 Step 2 – Identify the Decision

2.2.1 Principal Study Question

The principal study question is: "Do the levels of residual radioactivity in Building 4006 meet the guidelines in the *Approved Release Criteria* (Rocketdyne, 1999)?"

2.2.2 Alternative Actions

The following alternative actions will result from resolution of the principle study question:

- If the levels of residual radioactivity meet the guidelines (see Section 1.2), then the building will be considered suitable for release for unrestricted use.
- If the levels of residual radioactivity do not meet the guidelines, then the primary decision maker or designee will be consulted to determine further action. Such action may include recommendations for remediation, additional survey data collection, and/or the calculation of incremental risk or dose.

2.2.3 Decision Statement

Based on the principal study question and the alternative actions listed above, the decision statement is: Determine whether or not the levels of residual radioactivity in Building 4006 meet the guidelines for release for unrestricted use.

2.3 Step 3 – Identify Inputs to the Decision

2.3.1 Radionuclides of Concern

The radionuclides of concern that may be present as residual surface radioactivity in Building 4006 are ²³⁴U, ²³⁵U, ²³⁸U, ¹³⁷Cs, ⁵⁴Mn, and tritium.

2.3.2 Potentially Affected Media

The potentially affected media are the interior and exterior building surfaces, which primarily consist of the following materials: corrugated metal, structural steel, sheet metal, concrete, sheetrock, linoleum, carpet, and acoustical ceiling tile.

2.3.3 Action Levels

Action levels, shown in Table 2-1, have been established that will cause further evaluation of identified areas of elevated surface residual radioactivity.

The action level for scan measurements specified in the FSP was three standard deviations above the mean. Since the scan data were not recorded, it was not possible to calculate a mean and standard deviation. Therefore, the action level for scanning was changed to be any detectable alpha or beta radiation. The minimum detectable concentration (MDC) for scanning, or scan MDC, is determined by the background count rate. The background count rate varies for different media, so the scan MDC varies for different media.

Background measurements were performed for the different media found in Building 4006 by performing 1-minute static measurements on non-impacted materials. Table 2-1 lists the results of the background measurements on different media.

Medium	Background Count Rate (counts per minute)			
Concrete Floor	225			
Tile Floor, Drywall, Ceiling Tile	140			
Carpet	185			
Sheet Metal, Lights, Vents	180			
Porcelain Sinks	289			
Tar and Gravel Roof	210			

Table 2-1 Background Count Rates

MARSSIM provides guidance on calculating scan MDCs for alpha-emitting radionuclides (MARSSIM Appendix J). The alpha scan MDC is based on the probability of detecting a single count when a known activity concentration is present. The equation for calculating the probability of detecting a single count (MARSSIM Equation J-5) is:

$$P(n \ge 1) = 1 - e^{-\frac{GEd}{60v}}$$

Where:

 $P(n \ge 1) =$ probability of observing one or more counts

G = source activity (1,000 dpm)

E = 4-π detector efficiency (0.216)

d = width of the detector in the direction of scanning (10 cm)

v = scan speed (5 cm/sec)

60 = conversion factor (sec/min)

The probability of observing at least 1 count when scanning an area larger than 100 cm² with an activity of 1,000 dpm/100 cm² is greater than 0.99, or 99%. Therefore, the scan speed of 5 cm/sec is adequate for detecting activity concentrations equal to the release criterion. The actual scan MDC for alpha-emitting radionuclides can be calculated by setting the probability of observing one or more counts to 95% and solving the equation for the source activity, G. The equation becomes:

$$0.05 = e^{-\frac{GEd}{60v}}$$

Inserting the values for E, d, and v listed above, the equation simplifies to:

$$\ln 0.05 = -0.0072 \times G$$

Solving this equation for G results in a value of 420 dpm/100 cm². There is a 95% probability that the surveyor will stop and investigate alpha activity greater than or equal to 420 dpm/100 cm² while scanning. Therefore, the scan MDC for alpha-emitting radionuclides is 420 dpm/100 cm².

MARSSIM also provides guidance on calculating scan MDCs for beta/gamma-emitting radionuclides (MARSSIM Section 6.7.2.1). The beta/gamma scan MDC for surfaces is based on a 2-stage scanning process described by signal detection theory. The two stages of scanning are continuous monitoring for areas where the instrument response is consistent, followed by stationary counting when the technician observes an increase in the count rate. The equation for calculating the beta-emitting radionuclide scan MDC (MARSSIM Equations 6-8, 6-9, and 6-10) is:

$$Scan \ MDC = \frac{d' \times \sqrt{b_i} \times 60/i}{\sqrt{p} \times \varepsilon_i \times \varepsilon_s \times \frac{probe \ area}{100 \ cm^2}}$$

Where:

d' = index of sensitivity (2.32, assumes 25% false positives)

 b_i = background during counting interval (max 289 cpm = 9.63 counts/2 sec)

i = observation interval (10 cm wide by 5 cm/sec = 2 sec)

p = surveyor efficiency (0.5 from MARSSIM)

 ε_i = instrument efficiency (0.224)

 ε_s = surface efficiency (0.500 from ISO 7503)

probe area = Ludlum Model $43-68 (126 \text{ cm}^2)$

Since the scan MDC is directly proportional to the square root of the background count rate, the maximum background count rate will result in the maximum scan MDC. The maximum background count rate is 289 counts per minute (cpm). The scan MDC corresponding to a background of 289 cpm is approximately 1,300 dpm/100 cm² (1287.7 dpm/100 cm²) above background. Therefore, the scan MDC for beta/gamma-emitting radionuclides is adequate for detecting activity concentrations equal to the release criterion.

The action levels for static and removable measurements of alpha- and beta-emitting surface residual radioactivity are given in units of disintegrations per minute per 100 square centimeters (dpm/100 cm²) and are based on one-half the surface residual radioactivity guidelines for average and removable residual radioactivity given in Table 1-1.

Action Levels^(a)
Scan Measurements Static Measurements Removable Measurements^(b)

 $500 \text{ dpm}/100 \text{ cm}^2$

Table 2-2 Action Levels

Note

(a) Values given are distinguishable from background for both alpha and beta radiation.

 $2.500 \text{ dpm}/100 \text{ cm}^2$

(b) Does not apply to tritium measurements.

any detectable activity

The action level for gamma exposure rate measurements is 5 μ R/hr above background based on the *Approved Release Criteria* (Rocketdyne, 1999). There is no action level for tritium surface residual radioactivity since this type of radioactivity cannot be reliably measured in the field.

2.3.4 Measurement Inputs

Static measurements of alpha- and beta-emitting surface residual radioactivity, smear samples analyzed for gross alpha and beta radioactivity and tritium, and gamma exposure rate measurements will be used as quantitative inputs to the principal study question. Scan measurements of alpha- and beta-emitting surface residual radioactivity will be used as qualitative inputs to the principal study question.

2.4 Step 4 – Define the Study Boundaries

2.4.1 Define the Target Population

The target population is the surface residual radioactivity concentrations of the radionuclides of concern and ambient gamma exposure rates.

2.4.2 Spatial Boundaries of the Decision Statement

Survey data will be collected from exposed, accessible floor, wall, and ceiling surfaces in each survey unit. Biased survey data will also be collected equipment, systems, and components inside and outside the building such as roof vents, conduit, piping, ductwork, and entry doors, which are considered to have been susceptible to radioactive contamination from building activities.

2.4.3 Scale of Decision Making

Decisions will be made on two fundamental levels:

■ Localized areas – a decision to collect additional data will be made for discrete areas where measurement results exceed one or more action levels.

 Survey unit – a decision will be made for each survey unit as to the suitability of the survey unit for release for unrestricted use or, alternatively, the need for remediation, additional data collection, and/or calculation of incremental risk or dose.

2.5 Step 5 – Develop a Decision Rule

The decision statement resulted in the decision rules, listed in Table 2-3, for data collection and analysis using the statistical test and retrospective power analysis. If no alternative to the action (i.e., "then" statement) given in Table 2-3 was listed, no action was required.

IF **THEN** Parameter Scan Areas where activity above Select one or more biased measurement locations background was detected during in each identified area; collect: Measurements alpha and beta static measurements, and the scan survey, alpha/beta smear samples. Perform 100% scan coverage (if not already done) Static Residual radioactivity exceeds of 4 m² area around measurement; select four $2,500 \text{ dpm}/100 \text{ cm}^2 \text{ alpha or}$ Measurements biased measurement locations; collect: beta. **Smear Samples** Residual radioactivity exceeds alpha and beta static measurements, and 500 dpm/100 cm² alpha or beta, alpha/beta smear samples. Step out as needed to define area; compare results to Table 1-1 values. Consult Boeing Project Manager to determine Surface Residual Average, maximum, or Radioactivity removable levels exceed further action, if any.

Table 2-3 Decision Rules

2.6 Step 6 – Specify Limits on Decision Errors

allowable values in Table 1-1,

False positive (Type I) and false negative (Type II) decision error rates associated with the calculation of instrument MDCs and the number of static measurements were set at 0.05 (5%). Deterministic release criteria will be applied to the data themselves (see Section 1.2).

This Page Left Intentionally Blank

3.0 DATA COLLECTION

The data collected according to project DQOs and survey data collection requirements specified in the FSP are both quantitative and qualitative in nature. Both probability-based (random) and judgmental (targeted) methods were used to collect data, as described in the survey design in Section 3.0 of the FSP (CABRERA, 2008). The data were reviewed, verified, and validated during and after collection. Data were quantitatively analyzed for direct comparison to action levels and qualitatively reviewed to determine further investigation during the project.

3.1 Survey Units

Building 4006 was divided into 5 Class 3 survey units. Each of the survey units and the data collection activities in that survey unit are described in the following sections.

3.1.1 High Bay

The high bay occupies the southwest half of Building 4006. The high bay consists of a single large room. The interior of the high bay in Building 4006 was identified as a single Class 3 survey unit. The floor area of the high bay is approximately 710 m². The high bay was divided into 100 square foot (ft²) grids. Grids were either 10-feet by 10-feet or 5-feet by 20-feet along the northeast wall. Figure 3-1 shows the grids defined for the high bay.

Fifteen grids were randomly selected on the floor (A-10, 15, 23, 24, 28, 32, 40, 41, 47, 50, 52, 54, 60, 66, and 70), 4 grids were randomly selected on the walls (B-10, D-4, E-29, and E-43), and 1 grid was randomly selected on the ceiling (F-42). The random grids are identified on Figure 3-1. One hundred percent of the accessible surfaces in each randomly selected grid were surveyed for alpha and beta radiation. Static measurements, dry smears, wet smears, and dose rate measurements were performed in the center of each randomly selected grid. Targeted measurements were collected in 3 of the randomly selected grids based on professional judgment. Grid A-15 included a sink where a static measurement and dry smear were collected, grid E-29 included an air duct where a static measurement and dry smear were collected, and grid F-42 (ceiling) included a light where a static measurement and dry smear were collected.

Five grids on the floor included penetrations that were identified for targeted measurements (A-19, 20, 39, 55, and 68). Six grids on the walls included air ducts and vents that were identified for targeted measurements (C-20, 26, E-18, 23, 27, and 31). The targeted grids are identified on Figure 3-1. A static measurement, dry smear, and dose rate reading on contact were collected from each targeted location.

A total of 39 static measurements, 39 dry smears, 39 dose rate measurements, and 20 wet smears were collected inside the high bay.

3.1.2 Laboratory Area

The laboratory area occupies the northeast corner of Building 4006. The laboratory area consists of 2 large rooms and a central hallway. The floor area of the laboratory is approximately 310 m². The laboratory area was identified as a single Class 3 survey unit. The laboratory area was divided into 100 ft² grids. Grids were either 10-feet by 10-feet or 5-feet by 20-feet along the northeast wall. Figure 3-2 shows the grids defined for the laboratory area.

Ten grids were randomly selected on the floor (N-4, 7, 10, 13, 15, 16, 18, 19, 20, and 21). Four grids were randomly selected on the walls (P-2, P-3, R-2, and R-4). One grid was randomly selected on the ceiling (S-4). The random grids are identified on Figure 3-2. One hundred

percent of the accessible surfaces in each randomly selected grid were surveyed for alpha and beta radiation. Static measurements, dry smears, wet smears, and dose rate measurements were performed in the center of each randomly selected grid. Targeted measurements were collected in 1 of the randomly selected grids based on scanning survey results. Grid N-18 identified a location with beta radiation potentially exceeding background where a static measurement and dry smear were collected.

One grid on the floor included a floor drain identified as a targeted location (N-6). Three grids on the ceiling included lights that were investigated as targeted locations (S-3, S-7, and S-15). Three grids on the ceiling included air ducts or vents that were investigated as targeted locations (S-5, S-9, and S-10). The targeted grids are identified on Figure 3-2. A static measurement, dry smear, and dose rate reading on contact were collected from each targeted location.

A total of 23 static measurements, 23 dry smears, 23 dose rate measurements, and 15 wet smears were collected inside the laboratory area.

3.1.3 Office Area

The office area occupies the southeast quarter of Building 4006. The office area includes a large room divided into cubicles, 2 smaller offices, 2 bathrooms, and a utility closet. The office area has a floor area of approximately 210 m². The office area was identified as a single Class 3 survey unit. The office area was divided into 100 ft² grids. Grids were either 10-feet by 10-feet or 5-feet by 20-feet along the northeast wall. Figure 3-3 shows the grids defined for the office area.

Ten grids were randomly selected on the floor (H-1, 2, 10, 12, 16, 25, 32, 33, 34, and 35). Four grids were randomly selected on the walls (J-6, J-7, K-1, and L-1). One grid was randomly selected on the ceiling (M-28). The random grids are identified on Figure 3-3. One hundred percent of the accessible surfaces in each randomly selected grid were surveyed for alpha and beta radiation. Static measurements, dry smears, wet smears, and dose rate measurements were performed in the center of each randomly selected grid.

Two grids on the floor included floor drains identified as targeted locations (H-19 and H-20). Two grids on the wall included sinks identified as targeted locations (J-9 and J-10). Two grids on the ceiling included lights that were investigated as targeted locations (M-12 and M-15). Two grids on the ceiling included air ducts or vents that were investigated as targeted locations (M-4 and M-7). The targeted grids are identified on Figure 3-3. A static measurement, dry smear, and dose rate reading on contact were collected from each targeted location.

A total of 30 static measurements, 30 dry smears, 30 dose rate measurements, and 15 wet smears were collected inside the office area.

3.1.4 Roof

The roof included the two-story high bay roof (area G), the single story roof for the laboratory and office areas (area T), and a small overhang on the south side of Building 4006 (area U). The roof was identified as a single Class 3 survey area. The roof area was approximately 1,300 m². The roof was divided into 100 ft² grids. Grids were either 10-feet by 10-feet or 5-feet by 20-feet along the northeast wall and correspond to the same grid numbers on the corresponding floor areas. Figures 3-1, 3-2, and 3-3 show the grids defined for the roof.

Thirteen grids were randomly selected to investigate the roof (G-18, 24, 31, 49, 57, 63, T-35, 37, 41, U-1, 2, 3 and 4). The random grids are identified on Figures 3-1, 3-2, and 3-3. One hundred percent of the accessible surfaces in each randomly selected grid were surveyed for alpha and beta radiation. Static measurements, dry smears, and dose rate measurements were performed in the center of each randomly selected grid. Wet smears were not performed because weathering outdoors would remove any traces of tritium from building surfaces.

Sixteen grids on the roof were identified as targeted locations because of the presence of air vents, air conditioning ducts, or fume hoods (G-36, 38, 40, 42, 44, 46, T-5, 8, 15, 16, 18, 20, 23, 27, 30, and 48). Measurements were performed both inside and outside the items located in each of these grids. The targeted grids are identified on Figures 3-1, 3-2, and 3-3. Static measurements, dry smears, and dose rate measurements were performed in the center of each targeted grid.

A total of 48 static measurements, 48 dry smears, and 48 dose rate measurements were collected on the roof.

3.1.5 Exterior Walls

The exterior walls of Building 4006 were identified as a single Class 3 survey unit. The area of the exterior walls is approximately 800 m². The exterior walls were divided into 100 ft² grids. Grids were either 10-feet by 10-feet or 5-feet by 30-feet at the ends of the high bay. Figure 3-4 shows the grids defined for the exterior walls.

Eight grids were randomly selected to investigate the exterior walls (V-9, V-11, W-37, W-44, X-10, X-12, Y-20, and Y-28). The random grids are identified in Figure 3-4. One hundred percent of the accessible surfaces in each randomly selected grid were surveyed for alpha and beta radiation. Static measurements, dry smears, and dose rate measurements were performed in the center of each randomly selected grid. Wet smears were not performed because weathering outdoors would remove any traces of tritium from building surfaces. Targeted measurements were collected in 2 of the randomly selected grids based on professional judgment. Grid W-44 included an air intake vent where static measurements and dry smears were collected inside and outside the unit. Grid X-12 included a heater room and a compressor room where static measurements and dry smears were collected on metal equipment and the concrete floors of the rooms.

One grid was identified as a targeted location because it included an air intake vent. The area surrounding the vent was scanned and static measurements and dry smears were collected both inside and outside the unit. Four grids were identified as targeted locations because they included doors into the building (V-10, V-12, W-42, and Y-14). The doors were scanned and direct measurements and dry smears were collected on the door handles. The targeted grids are identified in Figure 3-4.

A total of 20 static measurements, 20 dry smears, and 20 dose rate measurements were collected on the exterior walls.

3.2 Survey and Sampling

Survey and sampling were performed in accordance with the FSP. Quality control measures implemented as part of the data collection process are discussed in Section 5.0.

3.2.1 Exposure Rate Measurements

Exposure rate measurements were performed using a Bicron MicroRem[®] tissue-equivalent scintillation detector. The measurements were taken using the "slow" response time constant setting. The detector was positioned in contact with the surface being measured and allowed to stabilize prior to recording the measurement (approximately 30 seconds). Dose rate readings ranged from 10 to 14 μ R/hr with an average of 11 μ R/hr. None of the results exceeded the release criterion of 5 μ R/hr above the background dose rate of 11 μ R/hr. The individual dose rate readings are listed in Appendix A. The raw data sheets are provided in Appendix B.

3.2.2 Scan Measurements

Scan measurements were performed to locate radiation anomalies that might indicate areas with elevated residual radioactivity where further data collection was warranted. Scan measurements were performed using a Ludlum Model 43-68 126 cm² gas proportional detector with a Ludlum Model 2360 alpha/beta data logger. The scan coverage was 100% of accessible building surfaces in grids where measurements were performed. Only one of the scan surveys identified a potential for beta radiation greater than background in grid N-18 on the floor of the laboratory area. The static measurement and dry smear collected at this location did not identify any alpha or beta activity concentrations significantly above background. The raw data sheets documenting the scan survey results for individual grids are provided in Appendix B.

3.2.3 Static Measurements

Static measurements were performed using a Ludlum Model 43-68 126 cm² gas proportional detector with a Ludlum Model 2360 alpha/beta data logger. Static measurements were performed by placing the detector on the surface to be measured, taking one-minute alpha and beta scaler counts, and recording the readings. Static measurement data are summarized in Table 3-1.

Survey Unit Median Average Standard Minimum Maximum Number of (dpm/100)(dpm/100)(dpm/100)Deviation (dpm/100)Measurements $(dpm/100 cm^2)$ cm^2) cm^2) cm^2) cm^2) High Bay 17 25 15 -15 88 39 Alpha High Bay 203 42 202 138 314 39 Beta Laboratory 0.0 5.1 34 -15 147 23 Alpha Laboratory 82 306 28 -305 23 1176 Beta Office 23 42 15 -15 162 30 Alpha Office 99 163 284 -432 843 30 Beta Roof 169 154 96 0.0 529 48 Alpha Roof 295 331 305 -3761148 48 Beta Exterior 59 61 29 0.0 206 20 Alpha Exterior 255 1190 316 312 -12820 Beta

Table 3-1 Summary of Static Measurement Results

Static measurements were collected at 20 or more measurement locations in each survey unit. A random pattern was used to select initial measurement locations. Additional targeted locations were selected based on results of the scanning survey (grid N-18 only) or based on professional judgment. All floor drains, sinks, and air vents were identified as targeted locations. Hand drawn maps were used to document measurement locations. Gross counts were converted to net dpm/100 cm² by subtracting the daily instrument background response check value and dividing the difference by the total efficiency (see Section 5.2). None of the static measurement results exceeded the project action level of 2,500 dpm/100 cm². None of the static measurement results exceeded the release criterion of 5,000 dpm/100 cm² average or 15,000 dpm/100 cm² maximum. The individual static measurement readings are listed in Appendix A. The raw data sheets are provided in Appendix B.

3.2.4 Smear Samples – Alpha/Beta

Alpha/beta smear samples were collected from building surfaces using dry smears over an area of approximately 100 cm² each. A dry smear sample was collected at each static measurement location and analyzed onsite for removable alpha and beta radioactivity using a Ludlum Model 43-10-1 dual phosphor Zincsulfide (silver activated) alpha/beta scintillation detector with a Ludlum Model 2929 alpha/beta scaler using a one-minute count time. The alpha/beta smear sample results are summarized in Table 3-2. Gross counts were converted to net dpm/100 cm² by subtracting the daily instrument background response check value and dividing the difference by the total efficiency (see Section 5.2).

Survey Unit Median Average Standard Minimum Maximum Number of (dpm/100)(dpm/100)(dpm/100)Deviation (dpm/100)Measurements $(dpm/100 cm^2)$ cm^2) cm^2) cm^2) cm^2) High Bay 0.14 1.5 -0.57-0.8539 5.1 Alpha High Bay -25 43 -19 -15041 39 Beta Laboratory 1.9 -0.57 -0.85 0.56 5.1 23 Alpha Laboratory -38 42 -42 32 23 -133 Beta Office 1.8 -0.8530 0.23 -0.855.4 Alpha Office -14 38 -6.8 -91 74 30 Beta Roof 1.4 2.4 0.85 -0.85 8.0 48 Alpha Roof -14 43 48 -11 -110 75 Beta Exterior 0.48 1.7 -0.57-0.8548 20 Alpha Exterior -4.4 46 -2.3 -73 109 20 Beta

Table 3-2 Summary of Alpha/Beta Smear Sample Data

None of the alpha/beta smear results exceeded the project action level of 500 dpm/100 cm². None of the alpha/beta smear results exceeded the release criterion of 1,000 dpm/100 cm². The individual dry smear results are listed in Appendix A. The raw data sheets are provided in Appendix B.

3.2.5 Smear Samples – Tritium

Tritium smear samples were collected over approximately 100 cm² using a moistened paper smear. The smears were placed in 20 milliliters (ml) liquid scintillation counter vials provided by the offsite laboratory containing 5 ml of de-ionized water. The wet smears were sent to an analytical laboratory and analyzed for gross beta activity by liquid scintillation counting (LSC). The region of interest for beta particle energies was set for low-energy beta particles between 0 and 19 kiloelectron volts (keV) and calibrated using tritium as a beta particle source. The tritium smear sample results are summarized in Table 3-3. Gross counts were converted to dpm by dividing by the tritium efficiency. The laboratory results are reported in units of dpm. Since each wet smear was collected over an area of 100 cm², the tritium smear results are reported in units of dpm/100 cm². No tritium smears were collected on exterior building surfaces.

Survey Unit Average Standard Median Minimum Maximum Number of Measurements (dpm/100)Deviation (dpm/100)(dpm/100)(dpm/100) cm^2) $(dpm/100 cm^2)$ cm^2) cm^2) cm^2) High Bay 0.61 2.4 0.0 -1.211 20 2.1 0.80 1.9 0.81 3.6 15 Laboratory 14 9.1 Office 13 1.2 47 15

Table 3-3 Summary of Tritium Smear Sample Data

None of the tritium smear results exceeded the release criterion of 10,000 dpm/100 cm². The individual tritium smear results are listed in Appendix A. The field survey sheets are provided in Appendix B. The laboratory results and chains of custody are provided in Appendix C.

3.3 Background Reference Areas

No background reference areas were established, but representative material background measurements were performed using radiologically non-impacted materials. For example, the background for sheet metal was determined by performing measurements on a metal storage container located on the west side of Building 4006. Other non-impacted materials were located in various locations in the vicinity of Building 4006. Sample location 2 in grid X-12 reported the highest count rate for beta radiation associated with Building 4006. The concentration is 2,246 dpm/100 cm² without correcting for background (or 1,190 dpm/100 cm² after correcting for background). Therefore, the selection of background reference materials is not considered critical for supporting compliance decisions for this site. However media-specific backgrounds listed in Table 2-1 were subtracted for scan, static and smear measurements.

G (Roof) (Same as Floor) F (Ceiling) E (East Wall) B (North Wall) 28 29 1 🛦 D (South Wall) A (Floor) C (West Wall) Random Grid Selection Targeted Grid Selection

Figure 3-1 Building 4006 High Bay Sampling Grids

T (Roof) (North Half) > S (Ceiling) O (North) R (East) Q (South) N (Floor) P (West) Random Grid Selection **Targeted Grid Selection**

Figure 3-2 Building 4006 Laboratory Sampling Grids

Figure 3-3 Building 4006 Office Sampling Grids

T (South Half of Lower Roof)

Contract No. 114579

Figure 3-4 Building 4006 Exterior Walls Sampling Grids

U (Overhang) (South of Building 4006)

Y (East) (Lower - Lab and Office) (Upper - High Bay)

This Page Left Intentionally Blank

4.0 DATA EVALUATION

Data were evaluated to determine whether or not the residual radioactivity exceeds the approved release criterion listed in Table 1-1. As applied here, the building material is not considered suitable for unrestricted release unless all of the survey data are less than or equal to the corresponding release criterion.

4.1 Data Validation and Verification

Survey data were reviewed to verify they are authentic, appropriately documented, and technically defensible. The review criteria for data acceptability were:

- The instruments used to collect the data were capable of detecting the radiation types and energies of interest at or below the action levels.
- The calibration of the instruments used to collect the data was current and radioactive sources used for calibration were NIST traceable.
- Instrument response was checked before and, where required, after instrument use each day data were collected.
- The MDCs and the assumptions used to develop them were appropriate for the instruments and the survey methods used to collect the data.
- The survey methods used to collect the data were appropriate for the media and types of radiation being measured.
- The custody of samples collected for laboratory analysis was tracked from the point of collection until final results were obtained.

All of the survey data met all of the applicable criteria. All of the survey data were verified and validated for use in demonstrating compliance with the release criterion.

4.2 Exploratory Data Analysis

The data were evaluated using exploratory data analysis (EDA), which uses statistical tools to investigate data sets in order to understand their important characteristics. Summary statistics provided numerical values for measures of central tendency (e.g., mean, median), variation (e.g., standard deviation), and spread (e.g., minimum, maximum). Data evaluation and statistical analysis were performed and a separate decision was made for each of the 5 survey units as to its suitability for release. Static measurement and smear data are summarized in Tables 3-1, 3-2, and 3-3.

Exploratory data analysis was used to understand the characteristics of the data populations as well as to validate assumptions underlying the statistical test, which are that the data are symmetric, statistically independent, and have no trends. For a normally distributed population in smaller data sets like these, a range larger than approximately five times the standard deviation would be considered unusual. None of the populations have an unusually large range since the ranges are generally between 4 and 5 standard deviations. Large differences between the average and the median are an indication of the skewness (i.e., non-symmetry) in the data. Skewness is a function of the difference between the mean and the median relative to the standard deviation. None of the populations appear to be skewed based on the similar values for the mean and median and the relatively large standard deviations.

4.3 Surface Residual Radioactivity Release Criterion

Static measurements of alpha- and beta/gamma-emitting surface residual radioactivity were compared to the limits for surface contamination of existing structures by alpha- and beta/gamma-emitting radionuclides given in Table 1-1. The limits for alpha- and beta/gamma-emitting radionuclides were compared to the appropriate release criterion independently. The sum of fractions was calculated for each grid location and compared to a release criterion of 1.0. The sum of fractions for each grid location was calculated using the following equations:

$$SOF_{t} = \frac{Static \ \alpha + Static \ \beta}{5,000 \ dpm/100 \ cm^{2}} + \frac{Tritium}{10,000 \ dpm/100 \ cm^{2}}$$

$$SOF_{r} = \frac{Smear \ \alpha + Smear \ \beta}{1,000 \ dpm/100 \ cm^{2}} + \frac{Tritium}{10,000 \ dpm/100 \ cm^{2}}$$

Where:

 SOF_t = sum of fractions for total radioactivity SOF_r = sum of fractions for removable radioactivity $Static \alpha$ = static measurement dpm/100 cm² α $Static \beta$ = static measurement dpm/100 cm² β $Smear \alpha$ = dry smear dpm/100 cm² α $Smear \beta$ = dry smear dpm/100 cm² β $Smear \beta$ = wet smear dpm/100 cm²

The static measurement of total activity at a specific location includes the removable activity since the static measurement was performed prior to collecting the smear sample. Therefore, it is not necessary to include both static and smear measurements in the same sum of fractions calculation because the result would account for the same radioactivity twice. However, to ensure all the release criteria are accounted for it is necessary to calculate a sum of fractions based on the total activity and a second sum of fractions based on the removable activity. If either of the sum of fractions calculations provides a result greater than 1.0, that grid location does not demonstrate compliance with the release criteria.

When a count rate was less than background providing a negative result, zero was substituted for the negative result when calculating the sum of fractions. Table 4-1 summarizes the results of the sum of fractions calculations for each of the survey units in Building 4006. The maximum sum of fractions for any of the grid locations is 0.31 for location 2 (i.e., outside the vent) in grid G-44 on the roof of the high bay.

Table 4-1 Summary of Sum of Fractions Calculations

Survey Unit	Average	Standard Deviation	Median	Minimum	Maximum	Number of Measurements	
Static Measurer	ments and Tri	tium	•				
High Bay	0.023	0.029	0.013	0.0	0.13	39	
Laboratory	0.031	0.052	0.0059	0.0	0.24	23	
Office	0.046	0.051	0.024	0.0	0.18	30	
Roof	0.099	0.080	0.085	0.0	0.31	48	
Exterior	0.076	0.063	0.069	0.0059	0.25	20	
Smear Measurements and Tritium							
High Bay	0.0068	0.012	0.000091	0.0	0.043	39	
Laboratory	0.0054	0.010	0.00033	0.0	0.034	23	
Office	0.010	0.017	0.0022	0.0	0.076	30	
Roof	0.013	0.019	0.0028	0.0	0.075	48	
Exterior	0.016	0.027	0.0020	0.0	0.11	20	

None of the sums of fractions exceeds the release criterion of 1.0. Results of individual sum of fraction calculations are listed in Appendix A.

This Page Left Intentionally Blank

5.0 QUALITY CONTROL

Survey data collection activities were performed in a controlled, deliberate manner by trained individuals with calibrated instruments following written procedures and/or protocols. Data were recorded and reviewed, and documentation is auditable. Instrumentation capable of detecting the radiation types and energies of interest were selected, calibrated, and maintained for survey data collection (see Appendix D).

5.1 Precision, Accuracy, Representativeness, Comparability, and Completeness

Quality control (QC) measures were implemented to ensure data met known and suitable data quality criteria, i.e., precision, accuracy, representativeness, comparability, and completeness. Variables related to data precision and accuracy was monitored by instrument response checks designed to monitor the performance of the instrumentation used to collect the data. Duplicate analyses were performed by the analytical laboratory and the results compared. The representativeness of the data was ensured by the use of standardized data collection methods and techniques established in written procedures, listed in Table 5-1. Routine monitoring of surveyor performance and environmental factors was performed to ensure data comparability. The type and quantity of collected data were reviewed against project DQOs (see Section 2.0) to ensure data completeness.

Number	Title
OP-001	Radiological Surveys
OP-005	Volumetric and Material Sampling
OP-008	Chain of Custody
OP-009	Use and Control of Radioactive Check Sources
OP-020	Operation of Contamination Survey Meters
OP-023	Operation of Micro-R Meters

Table 5-1 CABRERA Operating Procedures Used for Survey Data Collection

5.2 Field Survey Instrumentation

Commercially available radiation detection and measurement instrumentation were selected based on reliable operation, detection sensitivity, operating characteristics, and expected performance in the field. Table 5-2 lists the types of field instrumentation used.

Measurement Type	Detector Type	Physical Detector Area and Window Density	Instrument Model	Detector Model
Exposure Rate Static	Tissue-equiv. scintillation	N/A	Bicron MicroRem®	N/A
Alpha/Beta	Gas	126 cm^2	Ludlum	Ludlum
Scan/Static	Proportional	1.2 mg/cm ² aluminized mylar	2360	43-68
Alpha/Beta	ZnS(Ag)	2" (5.1cm) diameter	Ludlum	Ludlum
Smears	scintillation	0.4 mg/cm ²	2929	43-10-1

Table 5-2 Field Instrumentation

5.2.1 Calibration and Maintenance

Survey instruments were calibrated prior to use. Radiation detection instruments were calibrated for the radiation types and energies of interest. Radioactive sources used for calibration purposes

are traceable to the National Institute of Standards and Technology (NIST). Instrumentation was inspected prior to use to ensure its proper working condition, and properly protected against inclement weather conditions in the operation. Copies of the instrument calibration sheets are provided in Appendix D.

5.2.2 Instrument Response

Instrument response checks were conducted to assure constancy in instrument response, to verify the detector was operating properly, and to demonstrate that measurement results were not the result of detector contamination. Instrument response was checked before and after instrument use each day data were collected. A check source was used that emits the same type of radiation (i.e., alpha, beta, and/or gamma) as the radiation being measured and that gives a similar instrument response. The response check was performed at a set location using a specified source-detector alignment that could easily be repeated.

Prior to initial instrument use, at least 10 measurements were made using a source representative of the radiation types and energies of interest. At least 10 one-minute measurements were also made with the source removed to determine the instrument's expected response to ambient background. Background was monitored qualitatively to assess daily variations that may have impacted instrument MDCs. From the initial source measurements, the mean of the observed count rate was calculated. The acceptance criterion was \pm 20% of the mean of the initial source counts. Source checks were monitored using a control chart, with control limits set at \pm 20% of the average count rate. For the alpha/beta smear counter, the acceptance criterion for each channel was set at \pm 2 σ or 3 σ from the mean. If an alpha/beta counting system channel fell outside 2 σ of the mean but within 3 σ of the mean, the source check was repeated. The results of the daily source checks are provided in Appendix D.

5.2.3 Detection Sensitivity

The detection sensitivities of field instrumentation are shown in Table 5-3. The results shown are based on representative count times, background counts and instrument and surface efficiencies. Instrument-specific values based on actual field conditions and backgrounds were used to establish a priori MDC values for scan and static measurements prior to instrument use. The MDC values were calculated as described in MARSSIM Section 6.7.1.

Detector Model	Type of Emission	Count Time (min)	Back- ground (cpm)	Instrument Efficiency (cpm/dpm)	Scan MDC ^(a) (dpm/100 cm ²)	Static MDC ^(b) (dpm/100 cm ²)
Ludlum 43-68	Alpha	1	1	0.054	416 ^(c)	112 ^(c)
Ludlum 43-68	Beta	1	289	0.112	1,300 ^(c,d)	580 ^(c)
Ludlum 43-10-1	Alpha	1	<1	0.38 ^(e)	N/A	10
Ludlum 43-10-1	Beta	1	60	$0.18^{(e)}$	N/A	150

Table 5-3 Field Instrumentation Detection Sensitivities

Notes:

- (a) Scan MDC is calculated per MARSSIM Equation 6-10 and assumes a surveyor efficiency of 0.5, and a value of 1.38 for acceptable false indications.
- (b) Static MDC is calculated per MARSSIM Equation 6-7.
- (c) Based on surface efficiencies for alpha and beta of 0.25 and 0.50, respectively.
- (d) Scan MDC is for activity concentration above background as described in Section 2.3.3.
- (e) 4π detection efficiency assumed; i.e., surface efficiency equals unity.

The instrument efficiency, i.e., the ratio between the net count rate of the instrument and the 2π surface emission rate of a radiation source, was determined by counting the source with the detector in a fixed position from the source (reproducible geometry). A jig was used to create the reproducible geometry and a source to detector distance of 1 cm was used for scan measurements. For static measurements, the detector was placed on contact with the source. A surface efficiency of 0.5 was used for beta-emitting radiations. A value of 0.25 was used for alpha-emitting radiations. These values were established based on surface geometry considerations. The surface efficiency is the ratio between the number of radiation particles emerging from the measurement surface of the area being surveyed (the source) and the total number of radiation particles being released within that source per unit time.

5.3 Analytical Laboratory Performance

Eberline is certified by a state that is authorized to provide National Environmental Laboratory Accreditation Program (NELAP) certification. Three types of QC samples were analyzed to evaluate laboratory performance:

- Laboratory control samples to evaluate potential bias in the measurement results.
- Replicate samples to precision and the effectiveness of sample preparation techniques.
- Reagent blank samples to evaluate the potential for laboratory contamination.

The analytical laboratory reviewed the data for consistency and reasonableness and determined program requirements had been satisfied. The QC sample results are found with the laboratory analytical data in Appendix C.

5.4 Data Quality Assessment

Survey data were verified to be reliable, appropriately documented, and technically defensible. Specifically, the following conclusions were made:

- The instruments used to collect the data were capable of detecting the radiation types and energies of interest at or below the action levels.
- The calibration of the instruments used to collect the data was current and radioactive sources used for calibration were NIST traceable.
- Instrument response was checked before and after instrument use each day data were collected
- The MDCs and the assumptions used to develop them were appropriate for the instruments and the survey methods used to collect the data.
- The survey methods used to collect the data were appropriate for the media and types of radiation being measured.
- The custody of samples collected for laboratory analysis was tracked from the point of collection until final results were obtained.
- The survey data consist of qualified measurement results that are representative of the area of interest and collected as prescribed by the survey design.

6.0 SUMMARY AND CONCLUSION

The purpose of the survey was to collect data to demonstrate compliance with the approved release criteria listed in Table 1-1.

Measurements of alpha- and beta/gamma-emitting surface residual radioactivity were compared individually to the appropriate release criteria, and sums of fractions for each grid location were compared to the release criterion of 1.0. None of the individual measurement results for static measurements or dry smears exceeded any of the individual release criteria. None of the sums of fractions exceeded the release criterion of 1.0. Therefore, the survey data demonstrate compliance with the approved release criteria. Building 4006 is recommended for unrestricted release.

7.0 REFERENCES

The following works were consulted in preparing this report.

CABRERA, 2008. Field Sampling Plan for the Radiological Final Status Survey of Building 4006, Cabrera Services, Inc., Final, April 2008.

DOE, 1993. <u>Radiation Protection of the Public and the Environment</u>, United States Department of Energy, Order DOE 5400.5, Change 2, January 1993.

EPA, 2000. <u>Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)</u>, 402-R-97-016, Revision 1, U. S. Environmental Protection Agency, August 2000.

NRC, 1995. <u>Minimum Detectable Concentrations with Typical Radiation Survey Instruments for Various Contaminants and Field Conditions</u>, United States Nuclear Regulatory Commission, NUREG-1507, August 1995.

NRC, 1997. <u>A Proposed Nonparametric Statistical Methodology for the Design and Analysis of Final Status Decommissioning Surveys</u>, NUREG-1505, U.S. Nuclear Regulatory Commission, 1997.

Rocketdyne, 1999. <u>Approved Sitewide Release Criteria for Remediation of Radiological Facilities at the SSFL</u>, Report No. N001SRR140131, prepared by Rocketdyne for the U.S. Department of Energy, February 18, 1999.

Sapere, 2005. <u>Historical Site Assessment of Area IV</u>, <u>Santa Susana Field Laboratory</u>, <u>Ventura County</u>, <u>California</u>, Sapere Consulting, Inc., and The Boeing Company, May 2005.

Appendix A: Field Measurement Results

FINAL

					Hiç	h Bay Field Re	esults					
			Direct F	Reading					Dry S	Smear		
		Alpl	na		Be	ta		Alpl	na		Bet	ta
Survey Grid	bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2
A10	1	1	0	225	254	205.5	0.2	0	-0.6	61.4	58	-19.3
A15 (1)	1	2	15	225	159	-467.7	0.2	1	2.3	61.4	64	14.8
A15 (2)	1	5	59	225	163	-439.3	0.2	0	-0.6	61.4	56	-30.7
A19	1	2	15	147	168	148.8	0.3	0	-0.9	62	62	0.0
A20 (1)	1	0	-15	147	156	63.8	0.3	0	-0.9	62	65	17.0
A20 (2)	1	4	44	147	173	184.2	0.3	0	-0.9	62	60	-11.4
A23	1	2	15	225	202	-163.0	0.2	0	-0.6	61.4	35	-150.0
A24	1	3	29	225	236	77.9	0.2	0	-0.6	61.4	55	-36.4
A28	1	0	-15	225	245	141.7	0.2	0	-0.6	61.4	62	3.4
A32	1	3	29	225	266	290.5	0.2	1	2.3	61.4	48	-76.1
A39	1	7	88	225	227	14.2	0.3	0	-0.9	62	62	0.0
A40	1	1	0	225	237	85.0	0.2	1	2.3	61.4	61	-2.3
A41	1	3	29	225	230	35.4	0.2	0	-0.6	61.4	64	14.8
A47	1	4	44	225	278	375.6	0.2	0	-0.6	61.4	58	-19.3
A50	1	2	15	225	218	-49.6	0.2	0	-0.6	61.4	51	-59.1
A52	1	3	29	225	225	0.0	0.2	2	5.1	61.4	60	-8.0
A54	1	4	44	225	179	-326.0	0.2	0	-0.6	61.4	66	26.1
A55	1	4	44	225	233	56.7	0.3	0	-0.9	62	61	-5.7
A60	1	4	44	225	314	630.7	0.2	0	-0.6	61.4	52	-53.4
A66	1	2	15	225	202	-163.0	0.2	0	-0.6	61.4	45	-93.2
A68	1	5	59	225	214	-77.9	0.3	0	-0.9	62	53	-51.1
A70	1	1	0	225	282	403.9	0.2	0	-0.6	61.4	44	-98.9
B10	1	1	0	225	205	-141.7	0.3	0	-0.9	59.8	53	-38.6
C20	1	3	29	205	199	-42.5	0.3	0	-0.9	59.8	57	-15.9
C26	1	2	15	180	144	-255.1	0.3	1	2.0	59.8	67	40.9
D4	1	1	0	140	151	77.9	0.3	0	-0.9	62	57	-28.4
E18	1	1	0	180	211	219.7	0.3	1	2.0	59.8	67	40.9
E23 (1)	1	1	0	180	205	177.2	0.3	0	-0.9	59.8	64	23.9
E23 (2)	1	0	-15	180	148	-226.8	0.3	0	-0.9	59.8	66	35.2
E27	1	4	44	180	164	-113.4	0.3	1	2.0	59.8	46	-78.4
E29 (1)	1	1	0	180	171	-63.8	0.3	1	2.0	59.8	48	-67.0
E29 (2)	1	1	0	180	180	0.0	0.3	0	-0.9	59.8	55	-27.3
E31 (1)	1	2	15	180	194	99.2	0.3	1	2.0	59.8	53	-38.6

					Hig	h Bay Field Re	esults						
			Direct F	Reading			Dry Smear						
		Alpl	na		Bet	ta		Alpl	ha		Bet	ta	
Survey Grid							bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2	
E31 (2)	1	0	-15	180	167	-92.1	0.3	1	2.0	59.8	61	6.8	
E31 (3)	1	0	-15	180	165	-106.3	0.3	1	2.0	59.8	51	-50.0	
E43	1	0	-15	180	138	-297.6	0.3	0	-0.9	59.8	44	-89.8	
F20	1	0	-15	180	233	375.6	0.3	0	-0.9	59.8	52	-44.3	
F42 (1)	1	1	0	180	194	99.2	0.3	0	-0.9	59.8	62	12.5	
F42 (2)	1 3 29 180 175 -35.4					-35.4	0.3	0	-0.9	59.8	60	1.1	

Average	17	203		0.14		-25
St. Dev.	25	42		1.5		43
Median	15	202		-0.57		-19
Minimum	-15	138		-0.85		-150
Maximum	88	314		5.1		41
# of Measurements	39	39		39		39

			High Bay Su	ım of Fraction	Results			
	Direct F	Reading	Dry S	Smear	Wet Smear	Dose Rate	SOF _t	SOF _r
	Alpha	Beta	Alpha	Beta	Tritium (dpm/100 cm ²)			
Survey Grid	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	Concentration	uR/h		
A10	0	205.5	-0.6	-19.3	0.063	11	0.0411	0.0000
A15 (1)	15	-467.7	2.3	14.8	-0.472	11	0.0029	0.0170
A15 (2)	59	-439.3	-0.6	-30.7		11	0.0118	0.0000
A19	15	148.8	-0.9	0.0		12	0.0327	0.0000
A20 (1)	-15	63.8	-0.9	17.0		12	0.0128	0.0170
A20 (2)	44	184.2	-0.9	-11.4		12	0.0457	0.0000
A23	15	-163.0	-0.6	-150.0	-0.347	11	0.0029	0.0000
A24	29	77.9	-0.6	-36.4	0.495	11	0.0215	0.0000
A28	-15	141.7	-0.6	3.4	1.73	10	0.0285	0.0036
A32	29	290.5	2.3	-76.1	-0.227	11	0.0640	0.0023
A39	88	14.2	-0.9	0.0		11	0.0205	0.0000
A40	0	85.0	2.3	-2.3	0.13	11	0.0170	0.0023
A41	29	35.4	-0.6	14.8	1.14	11	0.0131	0.0149
A47	44	375.6	-0.6	-19.3	-0.061	12	0.0839	0.0000
A50	15	-49.6	-0.6	-59.1	-0.251	14	0.0029	0.0000
A52	29	0.0	5.1	-8.0	0.249	12	0.0059	0.0051
A54	44	-326.0	-0.6	26.1	-0.471	12	0.0088	0.0261
A55	44	56.7	-0.9	-5.7		11	0.0202	0.0000
A60	44	630.7	-0.6	-53.4	0.021	11	0.1350	0.0000
A66	15	-163.0	-0.6	-93.2	0.906	12	0.0030	0.0001
A68	59	-77.9	-0.9	-51.1		11	0.0118	0.0000
A70	0	403.9	-0.6	-98.9	0.579	13	0.0808	0.0001
B10	0	-141.7	-0.9	-38.6	0.145	11	0.0000	0.0000
C20	29	-42.5	-0.9	-15.9		11	0.0059	0.0000
C26	15	-255.1	2.0	40.9		11	0.0029	0.0429
D4	0	77.9	-0.9	-28.4	-0.533	11	0.0156	0.0000
E18	0	219.7	2.0	40.9		11	0.0439	0.0429
E23 (1)	0	177.2	-0.9	23.9		11	0.0354	0.0239
E23 (2)	-15	-226.8	-0.9	35.2		11	0.0000	0.0352
E27	44	-113.4	2.0	-78.4		11	0.0088	0.0020
E29 (1)	0	-63.8	2.0	-67.0	10.5	11	0.0011	0.0030
E29 (2)	0	0.0	-0.9	-27.3		11	0.0000	0.0000
E31 (1)	15	99.2	2.0	-38.6		11	0.0228	0.0020

	_		High Bay Su	m of Fraction	Results			
	Direct F	Reading	Dry S	Smear	Wet Smear	Dose Rate	SOF _t	SOF,
	Alpha	Beta	Alpha	Beta	Tritium (dpm/100 cm ²)			
Survey Grid	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	Concentration	uR/h		
E31 (2)	-15	-92.1	2.0	6.8		11	0.0000	0.008
E31 (3)	-15	-106.3	2.0	-50.0		11	0.0000	0.002
E43	-15	-297.6	-0.9	-89.8	-1.17	11	0.0000	0.000
F20	-15	375.6	-0.9	-44.3		11	0.0751	0.000
F42 (1)	0	99.2	-0.9	12.5	-0.213	11	0.0198	0.012
F42 (2)	29	-35.4	-0.9	1.1		11	0.0059	0.001
Average	17	18	0.14	-25	0.61	11	0.023	0.006
St. Dev.	25	230	1.5	43	2.4	0.7	0.029	0.012
Median	15	14	-0.57	-19	0.0	11	0.013	0.0000

-150

41

39

-1.2

11

20

10

14

39

0.0

0.13

39

0.0

0.043

39

Minimum

Maximum

of Measurements

-15

88

39

-468

631

39

-0.85

5.1

39

					Lab	oratory Field R	esults					
			Direct I	Reading					Dry S	Smear		
		Alpł	na		Bet	a		Alph	na		Bet	a
Survey Grid	bkgd cpm	cpm	dpm/100 cm ²	bkgd cpm	cpm	dpm/100 cm ²	bkgd cpm	cpm	dpm/100 cm ²	bkgd cpm	cpm	dpm/100 cm
N4	1	11	147	140	168	198.4	0.2	1	2.3	61.4	67	31.8
N6	1	1	0	140	132	-56.7	0.3	0	-0.9	62	58	-22.7
N7	1	0	-15	140	171	219.7	0.2	0	-0.6	61.4	49	-70.5
N10	1	1	0	140	171	219.7	0.2	0	-0.6	61.4	61	-2.3
N13	1	0	-15	140	135	-35.4	0.2	0	-0.6	61.4	50	-64.8
N15	1	1	0	140	141	7.1	0.2	0	-0.6	61.4	55	-36.4
N16	1	0	-15	140	128	-85.0	0.2	2	5.1	61.4	57	-25.0
N18 (1)	1	1	0	140	133	-49.6	0.2	1	2.3	61.4	65	20.5
N18 (2)	1	0	-15	140	155	106.3	0.2	0	-0.6	61.4	60	-8.0
N19	1	0	-15	140	179	276.4	0.2	2	5.1	61.4	51	-59.1
N20	1	1	0	140	197	403.9	0.2	0	-0.6	61.4	38	-133.0
N21	1	1	0	140	152	85.0	0.2	0	-0.6	61.4	46	-87.5
P2	1	0	-15	140	143	21.3	0.3	0	-0.9	62	52	-56.8
P3	1	1	0	140	144	28.3	0.2	1	2.3	61.4	52	-53.4
R2	1	2	15	140	124	-113.4	0.3	0	-0.9	62	64	11.4
R4	1	4	44	140	149	63.8	0.3	0	-0.9	62	63	5.7
S3	1	2	15	180	230	354.3	0.2	0	-0.6	61.4	54	-42.0
S4	1	1	0	140	306	1176.3	0.3	0	-0.9	62	52	-56.8
S5	1	1	0	180	145	-248.0	0.3	1	2.0	62	55	-39.8
S7	1	0	-15	180	137	-304.7	0.3	0	-0.9	62	50	-68.2
S9	1	3	29	180	151	-205.5	0.3	0	-0.9	62	52	-56.8
S10	1	0	-15	180	143	-262.2	0.3	1	2.0	59.8	65	29.5
S15	1	0	-15	180	192	85.0	0.2	1	2.3	61.4	46	-87.5
Aver			5.1			82			0.56			-38
St. D			34			306			1.9			41.6
Med	ian		0.0			28			-0.57			-42
Minin	num		-15			-305			-0.85			-133
Maxir	num		147			1176			5.1			32
# of Measu	urements		23			23			23			23

			aboratory Area				205	
	Direct I	Reading	Dry S	Smear	Wet Smear	Dose Rate	SOF _t	SOF,
	Alpha	Beta	Alpha	Beta	Tritium (dpm/100 cm ²)			
Survey Grid	dpm/100 cm ²	dpm/100 cm ²	dpm/100 cm ²	dpm/100 cm ²	Concentration	uR/h		
N4	147	198.4	2.3	31.8	1.93	10	0.0693	0.034
N6	0	-56.7	-0.9	-22.7		12	0.0000	0.000
N7	-15	219.7	-0.6	-70.5	2.73	13	0.0442	0.000
N10	0	219.7	-0.6	-2.3	3.62	12	0.0443	0.000
N13	-15	-35.4	-0.6	-64.8	2.94	12	0.0003	0.000
N15	0	7.1	-0.6	-36.4	3.33	12	0.0018	0.000
N16	-15	-85.0	5.1	-25.0	1.57	12	0.0002	0.005
N18 (1)	0	-49.6	2.3	20.5	0.808	12	0.0001	0.022
N18 (2)	-15	106.3	-0.6	-8.0		10	0.0213	0.000
N19	-15	276.4	5.1	-59.1	2.39	12	0.0555	0.005
N20	0	403.9	-0.6	-133.0	2.05	12	0.0810	0.000
N21	0	85.0	-0.6	-87.5	1.5	12	0.0172	0.000
P2	-15	21.3	-0.9	-56.8	1.62	11	0.0044	0.000
P3	0	28.3	2.3	-53.4	1.25	12	0.0058	0.002
R2	15	-113.4	-0.9	11.4	1.26	10	0.0031	0.011
R4	44	63.8	-0.9	5.7	2.27	10	0.0218	0.005
S3	15	354.3	-0.6	-42.0		12	0.0738	0.000
S4	0	1176.3	-0.9	-56.8	1.92	10	0.2355	0.000
S5	0	-248.0	2.0	-39.8		12	0.0000	0.002
S7	-15	-304.7	-0.9	-68.2		12	0.0000	0.000
S9	29	-205.5	-0.9	-56.8		12	0.0059	0.000
S10	-15	-262.2	2.0	29.5		12	0.0000	0.031
S15	-15	85.0	2.3	-87.5		12	0.0170	0.002
Average	5.1	82	0.56	-38	2.1	12	0.031	0.005
St. Dev.	34	306	1.9	41.6	0.80	0.9	0.052	0.01
Median	0.0	28	-0.57	-42	1.9	12	0.0059	0.000
Minimum	-15	-305	-0.85	-133	0.81	10	0.0	0.0
Maximum	147	1176	5.1	32	3.6	13	0.24	0.03
of Measurements	23	23	23	23	15	23	23	23

					Offic	ce Area Field F	Results					
			Direct F	Reading					Dry S	Smear		
		Alpl	na		Be	ta		Alpl	na		Be	ta
Survey Grid	bkgd cpm	cpm	dpm/100 cm2	bkgd cpm			bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	
HÍ1	1	2	15	185	238	375.6	0.2	0	-0.6	61.4	60	-8.0
H2	1	3	29	185	220	248.0	0.2	1	2.3	61.4	64	14.8
H10	1	1	0	140	180	283.4	0.3	0	-0.9	62	61	-5.7
H12	1	0	-15	185	186	7.1	0.2	0	-0.6	61.4	58	-19.3
H16	1	2	15	185	179	-42.5	0.2	0	-0.6	61.4	52	-53.4
H19 (1)	1	2	15	140	160	141.7	0.3	0	-0.9	62	65	17.0
H19 (2)	1	0	-15	140	154	99.2	0.3	0	-0.9	62	48	-79.5
H19 (3)	1	3	29	140	148	56.7	0.3	0	-0.9	62	58	-22.7
H20 (1)	1	1	0	289	340	361.4	0.3	0	-0.9	62	64	11.4
H20 (2)	1	2	15	140	169	205.5	0.3	0	-0.9	62	63	5.7
H20 (3)	1	6	73	140	170	212.6	0.3	0	-0.9	62	55	-39.8
H25	1	4	44	185	192	49.6	0.2	1	2.3	61.4	64	14.8
H32	1	0	-15	185	179	-42.5	0.2	0	-0.6	61.4	68	37.5
H33	1	1	0	185	188	21.3	0.2	2	5.1	61.4	58	-19.3
H34	1	0	-15	185	180	-35.4	0.2	0	-0.6	61.4	58	-19.3
H35	1	0	-15	185	182	-21.3	0.2	1	2.3	61.4	62	3.4
J6	1	0	-15	140	127	-92.1	0.3	0	-0.9	62	51	-62.5
J7	1	0	-15	140	154	99.2	0.3	0	-0.9	62	51	-62.5
J9 (1)	1	6	73	289	408	843.3	0.3	0	-0.9	62	62	0.0
J9 (2)	1	9	118	289	358	488.9	0.3	1	2.0	62	75	73.9
J9 (3)	1	0	-15	289	403	807.8	0.3	0	-0.9	62	53	-51.1
J10 (1)	1	12	162	289	368	559.8	0.1	2	5.4	58.6	60	8.0
J10 (2)	1	3	29	289	348	418.1	0.1	1	2.6	58.6	50	-48.9
K1	1	2	15	140	164	170.1	0.3	0	-0.9	62	61	-5.7
L1	1	6	73	140	149	63.8	0.2	0	-0.6	61.4	66	26.1
M4	1	5	59	180	136	-311.8	0.3	0	-0.9	62	59	-17.0
M7	1	1	0	180	119	-432.3	0.3	1	2.0	62	64	11.4
M12	1	2	15	180	237	403.9	0.3	0	-0.9	62	46	-90.9
M15	1	2	15	180	186	42.5	0.3	0	-0.9	62	50	-68.2
M28	1	1	0	140	127	-92.1	0.3	0	-0.9	62	68	34.1

					Offic	ce Area Field R	esults						
			Direct F	Reading					Dry S	Smear			
		Alpl	na		Beta			Alpha			Beta		
Survey Grid	 			bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2	
Avera	Average 23				163			0.23			-14		
St. D	ev.		42.4			284.4			1.8			38.3	
Med	ian		15			99			-0.85			-6.8	
Minim	Minimum -15		-15			-432			-0.85			-91	
Maxin	Maximum 162		162			843			5.4			74	
# of Measu	# of Measurements 30					30			30			30	

			Office Area S	Sum of Fraction	n Results			
	Direct I	Reading	Dry S	Smear	Wet Smear	Dose Rate	SOF _t	SOF _r
	Alpha	Beta	Alpha	Beta	Tritium (dpm/100 cm ²)			
Survey Grid	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	Concentration	uR/h		
H1	15	375.6	-0.6	-8.0	17.5	12	0.0798	0.0018
H2	29	248.0	2.3	14.8	34.9	12	0.0590	0.0205
H10	0	283.4	-0.9	-5.7	9.07	13	0.0576	0.0009
H12	-15	7.1	-0.6	-19.3	11.7	12	0.0026	0.0012
H16	15	-42.5	-0.6	-53.4	18.4	13	0.0048	0.0018
H19 (1)	15	141.7	-0.9	17.0		13	0.0313	0.0170
H19 (2)	-15	99.2	-0.9	-79.5		12	0.0198	0.0000
H19 (3)	29	56.7	-0.9	-22.7		12	0.0172	0.0000
H20 (1)	0	361.4	-0.9	11.4		13	0.0723	0.0114
H20 (2)	15	205.5	-0.9	5.7		13	0.0440	0.0057
H20 (3)	73	212.6	-0.9	-39.8		13	0.0572	0.0000
H25	44	49.6	2.3	14.8	3.8	12	0.0191	0.0174
H32	-15	-42.5	-0.6	37.5	46.9	12	0.0047	0.0422
H33	0	21.3	5.1	-19.3	15.5	12	0.0058	0.0067
H34	-15	-35.4	-0.6	-19.3	26.3	12	0.0026	0.0026
H35	-15	-21.3	2.3	3.4	1.98	12	0.0002	0.0059
J6	-15	-92.1	-0.9	-62.5	1.24	12	0.0001	0.0001
J7	-15	99.2	-0.9	-62.5	7.99	12	0.0206	0.0008
J9 (1)	73	843.3	-0.9	0.0		12	0.1833	0.0000
J9 (2)	118	488.9	2.0	73.9		12	0.1213	0.0759
J9 (3)	-15	807.8	-0.9	-51.1		12	0.1616	0.0000
J10 (1)	162	559.8	5.4	8.0		12	0.1443	0.0134
J10 (2)	29	418.1	2.6	-48.9		12	0.0895	0.0026
K1	15	170.1	-0.9	-5.7	4.03	12	0.0374	0.0004
L1	73	63.8	-0.6	26.1	5.33	12	0.0280	0.0267
M4	59	-311.8	-0.9	-17.0		11	0.0118	0.0000
M7	0	-432.3	2.0	11.4		11	0.0000	0.0134
M12	15	403.9	-0.9	-90.9		12	0.0837	0.0000
M15	15	42.5	-0.9	-68.2		11	0.0114	0.0000
M28	0	-92.1	-0.9	34.1	7.67	12	0.0008	0.0349

			Office Area S	Sum of Fraction	n Results			
	Direct F	Reading	Dry S	Smear	Wet Smear	Dose Rate	SOF_t	SOF _r
	Alpha	Beta	Alpha	Beta	Tritium (dpm/100 cm ²)			
Survey Grid	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	Concentration	uR/h		
Average	23	163	0.23	-14	14	12	0.046	0.010
St. Dev.	42.4	284.4	1.8	38.3	13.1	0.5	0.051	0.017
Median	15	99	-0.85	-6.8	9.1	12	0.024	0.0022
Minimum	-15	-432	-0.85	-91	1.2	11	0.0	0.0
Maximum	162	843	5.4	74	47	13	0.18	0.076
# of Measurements	30	30	30	30	15	30	30	30

				Bu	ilding	4006 Roof Fie	ld Results					
			Direct F	Reading					Dry S	Smear		
		Alpl	na		Be	ta		Alpl	na		Bet	ta
Survey Grid	bkgd cpm	cpm	dpm/100 cm2	bkgd cpm		dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2
G18	1	5	59	210	230	141.7	0.2	0	-0.6	61.4	67	31.8
G24	1	5	59	210	332	864.5	0.2	0	-0.6	61.4	65	20.5
G31	1	5	59	210	265	389.7	0.2	1	2.3	61.4	67	31.8
G36 (1)	1	2	15	180	162	-127.6	0.2	0	-0.6	61.4	73	65.9
G36 (2)	1	37	529	180	252	510.2	0.2	1	2.3	61.4	59	-13.6
G38 (1)	1	4	44	180	145	-248.0	0.2	1	2.3	61.4	53	-47.7
G38 (2)	1	25	353	180	232	368.5	0.2	1	2.3	61.4	50	-64.8
G40 (1)	1	3	29	180	191	77.9	0.2	0	-0.6	61.4	65	20.5
G40 (2)	1	31	441	180	291	786.6	0.2	3	8.0	61.4	66	26.1
G42 (1)	1	2	15	180	200	141.7	0.2	1	2.3	61.4	60	-8.0
G42 (2)	1	25	353	180	293	800.7	0.2	0	-0.6	61.4	62	3.4
G44 (1)	1	6	73	180	157	-163.0	0.2	0	-0.6	61.4	63	9.1
G44 (2)	1	27	382	180	342	1148.0	0.2	2	5.1	61.4	64	14.8
G46 (1)	1	8	103	180	197	120.5	0.2	0	-0.6	61.4	69	43.2
G46 (2)	1	34	485	180	282	722.8	0.2	2	5.1	61.4	64	14.8
G49 ´	1	4	44	210	208	-14.2	0.2	1	2.3	61.4	62	3.4
G57	1	5	59	210	259	347.2	0.2	0	-0.6	61.4	50	-64.8
G63	1	3	29	210	192	-127.6	0.2	1	2.3	61.4	44	-98.9
T5 (1)	1	2	15	180	166	-99.2	0.2	0	-0.6	61.4	43	-104.5
T5 (2)	1	14	191	180	203	163.0	0.2	0	-0.6	61.4	55	-36.4
T8 (1)	1	4	44	210	201	-63.8	0.2	0	-0.6	61.4	60	-8.0
T8 (2)	1	26	367	210	201	-63.8	0.2	2	5.1	61.4	42	-110.2
T15 (1)	1	5	59	180	212	226.8	0.2	1	2.3	61.4	59	-13.6
T15 (2)	1	12	162	180	220	283.4	0.2	3	8.0	61.4	66	26.1
T16 (1)	1	5	59	180	215	248.0	0.2	0	-0.6	61.4	53	-47.7
T16 (2)	1	24	338	180	252	510.2	0.2	2	5.1	61.4	48	-76.1
T16 (3)	1	25	353	180	246	467.7	0.2	2	5.1	61.4	56	-30.7
T18 (1)	1	1	0	180	127	-375.6	0.2	1	2.3	61.4	60	-8.0
T18 (2)	1	14	191	180	226	326.0	0.2	1	2.3	61.4	51	-59.1
T20 (1)	1	2	15	180	145	-248.0	0.2	1	2.3	61.4	52	-53.4
T20 (2)	1	7	88	180	189	63.8	0.2	0	-0.6	61.4	62	3.4
T23 (1)	1	4	44	180	197	120.5	0.2	0	-0.6	61.4	54	-42.0
T23 (2)	1	31	441	180	242	439.3	0.2	1	2.3	61.4	60	-8.0

				Bu	ilding	4006 Roof Fie	eld Results					
			Direct F	Reading					Dry S	Smear		
		Alpl	na		Bet			Alpl			Bet	
Survey Grid	bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2
T27 (1)	1	4	44	180	191	77.9	0.2	1	2.3	61.4	52	-53.4
T27 (2)	1	18	250	180	233	375.6	0.2	0	-0.6	61.4	62	3.4
T30 (1)	1	4	44	180	205	177.2	0.2	0	-0.6	61.4	74	71.6
T30 (2)	1	28	397	180	231	361.4	0.2	0	-0.6	61.4	63	9.1
T35	1	4	44	210	307	687.4	0.2	2	5.1	61.4	54	-42.0
T37	1	6	73	210	234	170.1	0.1	0	-0.3	59.8	73	75.0
T41	1	4	44	210	291	574.0	0.2	0	-0.6	61.4	66	26.1
T48 (1)	3	26	338	180	284	737.0	0.2	1	2.3	61.4	57	-25.0
T48 (2)	3	12	132	180	206	184.2	0.2	0	-0.6	61.4	52	-53.4
T48 (3)	3	17	206	180	226	326.0	0.2	0	-0.6	61.4	55	-36.4
T48 (4)	3	28	367	180	276	680.3	0.2	0	-0.6	61.4	58	-19.3
U1	1	10	132	180	261	574.0	0.3	0	-0.9	59.8	57	-15.9
U2	1	12	162	180	264	595.2	0.3	1	2.0	59.8	54	-33.0
U3	1	13	176	180	233	375.6	0.3	0	-0.9	59.8	55	-27.3
U4	1	15	206	180	256	538.5	0.3	1	2.0	59.8	65	29.5
Aver	age		169			295			1.4			-14
St. D	ev.		154.0			331.1			2.4			43.4
Med	ian		96			305			0.85			-10.8
Minin	num		0.0			-376			-0.85			-110
Maxin	num		529			1148			8.0			75
# of Measi	urements		48		•	48			48			48

		Building 4006	Roof Sum of Fracti	on Results			
	Direct I	Reading	Dry S	Smear	Dose Rate	SOF _t	SOF _r
	Alpha	Beta	Alpha	Beta			
Survey Grid	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	uR/h		
G18	59	141.7	-0.6	31.8	11	0.0401	0.0318
G24	59	864.5	-0.6	20.5	11	0.1847	0.020
G31	59	389.7	2.3	31.8	11	0.0897	0.034
G36 (1)	15	-127.6	-0.6	65.9	11	0.0029	0.065
G36 (2)	529	510.2	2.3	-13.6	11	0.2079	0.002
G38 (1)	44	-248.0	2.3	-47.7	11	0.0088	0.002
G38 (2)	353	368.5	2.3	-64.8	11	0.1442	0.002
G40 (1)	29	77.9	-0.6	20.5	11	0.0215	0.020
G40 (2)	441	786.6	8.0	26.1	11	0.2455	0.034
G42 (1)	15	141.7	2.3	-8.0	11	0.0313	0.002
G42 (2)	353	800.7	-0.6	3.4	11	0.2307	0.003
G44 (1)	73	-163.0	-0.6	9.1	11	0.0147	0.009
G44 (2)	382	1148.0	5.1	14.8	11	0.3060	0.019
G46 (1)	103	120.5	-0.6	43.2	11	0.0447	0.043
G46 (2)	485	722.8	5.1	14.8	11	0.2416	0.019
G49	44	-14.2	2.3	3.4	11	0.0088	0.005
G57	59	347.2	-0.6	-64.8	11	0.0812	0.000
G63	29	-127.6	2.3	-98.9	11	0.0059	0.002
T5 (1)	15	-99.2	-0.6	-104.5	11	0.0029	0.000
T5 (2)	191	163.0	-0.6	-36.4	11	0.0708	0.000
T8 (1)	44	-63.8	-0.6	-8.0	11	0.0088	0.000
T8 (2)	367	-63.8	5.1	-110.2	11	0.0735	0.005
T15 (1)	59	226.8	2.3	-13.6	11	0.0571	0.002
T15 (2)	162	283.4	8.0	26.1	11	0.0890	0.034
T16 (1)	59	248.0	-0.6	-47.7	11	0.0614	0.000
T16 (2)	338	510.2	5.1	-76.1	11	0.1696	0.005
T16 (3)	353	467.7	5.1	-30.7	11	0.1641	0.005
T18 (1)	0	-375.6	2.3	-8.0	11	0.0000	0.002
T18 (2)	191	326.0	2.3	-59.1	11	0.1034	0.002
T20 (1)	15	-248.0	2.3	-53.4	11	0.0029	0.002
T20 (2)	88	63.8	-0.6	3.4	11	0.0304	0.003
T23 (1)	44	120.5	-0.6	-42.0	11	0.0329	0.000
T23 (2)	441	439.3	2.3	-8.0	11	0.1761	0.002

		Building 4006	Roof Sum of Fraction	on Results			
	Direct F	Reading	Dry S	Smear	Dose Rate	SOF _t	SOF _r
	Alpha	Beta	Alpha	Beta			
Survey Grid	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	uR/h		
T27 (1)	44	77.9	2.3	-53.4	11	0.0244	0.0023
T27 (2)	250	375.6	-0.6	3.4	11	0.1251	0.0034
T30 (1)	44	177.2	-0.6	71.6	11	0.0442	0.0716
T30 (2)	397	361.4	-0.6	9.1	11	0.1516	0.0091
T35	44	687.4	5.1	-42.0	11	0.1463	0.0051
T37	73	170.1	-0.3	75.0	11	0.0487	0.0750
T41	44	574.0	-0.6	26.1	11	0.1236	0.0261
T48 (1)	338	737.0	2.3	-25.0	11	0.2150	0.0023
T48 (2)	132	184.2	-0.6	-53.4	11	0.0633	0.0000
T48 (3)	206	326.0	-0.6	-36.4	11	0.1063	0.0000
T48 (4)	367	680.3	-0.6	-19.3	11	0.2095	0.0000
U1	132	574.0	-0.9	-15.9	11	0.1413	0.0000
U2	162	595.2	2.0	-33.0	11	0.1514	0.0020
U3	176	375.6	-0.9	-27.3	11	0.1104	0.0000
U4	206	538.5	2.0	29.5	11	0.1489	0.0315
Average	169	295	1.4	-14	11	0.099	0.013
St. Dev.	154.0	331.1	2.4	43.4	0.0	0.080	0.019
Median	96	305	0.85	-10.8	11	0.085	0.0028
Minimum	0.0	-376	-0.85	-110	11.0	0.0	0.0
Maximum	529	1148	8.0	75	11	0.31	0.075
# of Measurements	48	48	48	48	48	48	48

					Exteri	or Walls Field	Results					
			Direct I	Reading					Dry S	Smear		
		Alpł	na		Bet	а		Alpł	na		Bet	a
Survey Grid	bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2	bkgd cpm	cpm	dpm/100 cm2
V9	1	5	59	180	187	49.6	0.3	1	2.0	62	61	-5.7
V10	1	1	0	180	202	155.9	0.3	0	-0.9	59.8	58	-10.2
V11	1	2	15	180	190	70.9	0.3	0	-0.9	62	51	-62.5
V12	1	3	29	180	185	35.4	0.3	0	-0.9	59.8	60	1.1
W37	1	7	88	180	217	262.2	0.3	0	-0.9	62	59	-17.0
W38 (1)	1	4	44	180	227	333.0	0.3	1	2.0	59.8	79	109.1
W38 (2)	1	15	206	180	252	510.2	0.3	1	2.0	59.8	47	-72.7
W42	1	3	29	180	177	-21.3	0.3	1	2.0	59.8	61	6.8
W44	1	2	15	180	249	488.9	0.3	1	2.0	62	60	-11.4
W44 (1)	1	3	29	180	212	226.8	0.3	0	-0.9	59.8	68	46.6
W44 (2)	1	15	206	180	250	496.0	0.3	2	4.8	59.8	65	29.5
X10	1	12	162	180	205	177.2	0.3	0	-0.9	62	53	-51.1
X12 (1)	1	5	59	180	234	382.7	0.3	1	2.0	62	65	17.0
X12 (2)	1	4	44	180	348	1190.5	0.3	0	-0.9	59.8	66	35.2
X12 (3)	1	3	29	180	303	871.6	0.3	0	-0.9	59.8	65	29.5
X12 (4)	1	5	59	180	190	70.9	0.1	0	-0.3	59.8	62	12.5
X12 (5)	1	3	29	180	162	-127.6	0.1	0	-0.3	59.8	63	18.2
Y14	1	2	15	180	215	248.0	0.3	1	2.0	59.8	49	-61.4
Y20	2	4	29	180	246	467.7	0.3	0	-0.9	62	56	-34.1
Y28	2	4	29	180	240	425.2	0.3	0	-0.9	62	50	-68.2
Aver	age		59			316			0.48			-4.4
St. D			60.9			312.4			1.7			45.6
Med	ian		29			255			-0.57			-2.3
Minin	num		0			-128			-0.85			-73
Maxir	num		206			1190			4.8			109
# of Measu	urements		20			20			20			20

		Exter	ior Walls Sum of F	raction Results			
	Direct F	Reading	Dry S	Smear	Dose Rate	SOF _t	SOF _r
	Alpha	Beta	Alpha	Beta			
Survey Grid	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	dpm/100 cm2	uR/h		
V9	59	49.6	2.0	-5.7	11	0.0217	0.0020
V10	0	155.9	-0.9	-10.2	11	0.0312	0.0000
V11	15	70.9	-0.9	-62.5	11	0.0171	0.0000
V12	29	35.4	-0.9	1.1	11	0.0130	0.0011
W37	88	262.2	-0.9	-17.0	11	0.0701	0.0000
W38 (1)	44	333.0	2.0	109.1	11	0.0754	0.1111
W38 (2)	206	510.2	2.0	-72.7	11	0.1432	0.0020
W42	29	-21.3	2.0	6.8	11	0.0059	0.0088
W44	15	488.9	2.0	-11.4	11	0.1007	0.0020
W44 (1)	29	226.8	-0.9	46.6	11	0.0512	0.0466
W44 (2)	206	496.0	4.8	29.5	11	0.1404	0.0344
X10	162	177.2	-0.9	-51.1	11	0.0678	0.0000
X12 (1)	59	382.7	2.0	17.0	11	0.0883	0.0190
X12 (2)	44	1190.5	-0.9	35.2	11	0.2469	0.0352
X12 (3)	29	871.6	-0.9	29.5	11	0.1802	0.0295
X12 (4)	59	70.9	-0.3	12.5	11	0.0259	0.0125
X12 (5)	29	-127.6	-0.3	18.2	11	0.0059	0.0182
Y14	15	248.0	2.0	-61.4	11	0.0525	0.0020
Y20	29	467.7	-0.9	-34.1	11	0.0994	0.0000
Y28	29	425.2	-0.9	-68.2	11	0.0909	0.0000
Average	59	316	0.48	-4.4	11	0.076	0.016
St. Dev.	60.9	312.4	1.7	45.6	0.0	0.063	0.027
Median	29	255	-0.57	-2.3	11	0.069	0.0020
Minimum	0	-128	-0.85	-73	11	0.0059	0.0
Maximum	206	1190	4.8	109	11	0.25	0.11
of Measurements	20	20	20	20	20	20	20

Appendix B: Field Survey Data Sheets Electronic Files

FINAL

Appendix C Laboratory Analytical Results

FINAL

EBERLINE ANALYTICAL CORPORATION
2030 Wright Avenue
Richmond, California 94804-3849
Phone (510) 235-2633 Fax (510) 235-0438
Toll Free (800) 841-5487
www.eberlineservices.com

June 12, 2008

Mr. Tony Mason Cabrera Services 3620 N. Rancho Dr, Ste. 114 Las Vegas, NV 89130

Ref: Cabrera P.O. 114579 CA 010

Eberline Services Report R805157-8215

Dear Mr. Mason:

Enclosed are tritium results for fifty filter samples received at Eberline Services on May 20, 2008. The samples were analyzed by direct liquid scintillation counting i.e. the received samples were placed in counting vials with scintillation cocktail and counted. No problems were encountered during the analyses, all QC sample results were within the control limits described in Eberline Services Quality Control Procedures Manual.

Please call if you have any questions concerning the enclosed report.

Regards,

Melissa Mannion

Senior Program Manager

MCM/njv

Enclosure: Report/CoC

ANALYSIS RESULTS

SDG <u>8215</u>
Work Order <u>R805157-01</u>
Received Date <u>05/20/08</u>

Client CABRERA SERV
Contract 114579 CA 010

Matrix FILTER

Client	Lab					
Sample ID	Sample ID	Collected Analyzed	Nuclide	Results ± 20	<u>Units</u>	MDA
A-10	8215-001	05/16/08 05/30/08	H-3	0.063 ± 1.4	DPM/Smpl	2.33
A-15	8215-002	05/16/08 05/30/08	H-3	-0.472 ± 1.3	DPM/Smpl	2.27
A-23	8215-003	05/16/08 05/30/08	H-3	-0.347 ± 1.3	DPM/Smpl	2.26
A-24	8215-004	05/16/08 05/30/08	H-3	0.495 ± 1.4	DPM/Smpl	2.28
A-28	8215-005	05/16/08 05/30/08	H-3	1.73 ± 1.5	DPM/Smpl	2.43
A-32	8215-006	05/16/08 05/30/08	H-3	-0.227 ± 1.3	DPM/Smpl	2.28
A-40	8215-007	05/16/08 05/30/08	H-3	0.130 ± 1.4	DPM/Smpl	2.40
A-47	8215-008	05/16/08 05/30/08	H-3	-0.061 ± 1.3	DPM/Smpl	2.24
A-50	8215-009	05/16/08 05/30/08	H-3	-0.251 ± 1.4	DPM/Smpl	2.32
A-52	8215-010	05/16/08 05/30/08	H-3	0.249 ± 1.4	DPM/Smpl	2.29
A-54	8215-011	05/16/08 05/30/08	H-3	-0.471 ± 1.3	DPM/Smpl	2.26
A-60	8215-012	05/16/08 05/30/08	H-3	0.021 ± 1.4	DPM/Smpl	2.32
A-66	8215-013	05/16/08 05/29/08	H-3	0.906 ± 1.5	DPM/Smpl	2.45
A-70	8215-014	05/16/08 05/29/08	H-3	0.579 ± 1.5	DPM/Smpl	2.45
B-10	8215-015	05/16/08 05/29/08	H-3	0.145 ± 1.5	DPM/Smpl	2.45
D-4	8215-016	05/16/08 05/29/08	H-3	-0.533 ± 1.4	DPM/Smpl	2.40
E-29	8215-017	05/16/08 05/29/08	H-3	10.5 ± 1.7	DPM/Smpl	2.46
E-43	8215-018	05/16/08 05/29/08	H-3	-1.17 ± 1.4	DPM/Smpl	2.40
F-42	8215-019	05/16/08 05/29/08	H-3	-0.213 ± 1.4	DPM/Smpl	2.40
H-1	8215-020	05/16/08 05/29/08	H-3	17.5 ± 1.9	DPM/Smpl	2.49

Certified by By
Report Date <u>06/11/08</u>
Page 1

ANALYSIS RESULTS

 SDG
 8215
 Client
 CABRERA SERV

 Work Order
 R805157-01
 Contract
 114579 CA 010

 Received Date
 05/20/08
 Matrix
 FILTER

Client	Lab						
Sample ID	Sample ID	Collected Ar	nalyzed	Nuclide	Results ± 20	<u>Units</u>	MDA
H-2	8215-021	05/16/08 05	5/29/08	H-3	34.9 ± 2.3	DPM/Smpl	2.64
H-10	8215-022	05/16/08 05	5/29/08	H-3	9.07 ± 2.1	DPM/Smpl	3.20
H-12	8215-023	05/16/08 05	5/29/08	H-3	11.7 ± 1.8	DPM/Smpl	2.52
H-16	8215-024	05/16/08 05	5/30/08	H-3	18.4 ± 2.0	DPM/Smpl	2.60
H-25	8215-025	05/16/08 05	5/30/08	H-3	3.80 ± 1.6	DPM/Smpl	2.51
H-32	8215-026	05/16/08 09	5/30/08	H-3	46.9 ± 2.6	DPM/Smpl	2.61
H-33	8215-027	05/16/08 06	6/05/08	H-3	15.5 ± 2.3	DPM/Smpl	3.23
H-34	8215-028	05/16/08 09	5/30/08	H-3	26.3 ± 2.7	DPM/Smpl	3.43
H-35	8215-029	05/16/08 09	5/30/08	H-3	1.98 ± 1.6	DPM/Smpl	2.54
J-6	8215-030	05/16/08 09	5/30/08	H-3	1.24 ± 1.5	DPM/Smpl	2.51
J-7	8215-031	05/16/08 09	5/30/08	H-3	7.99 ± 1.7	DPM/Smpl	2.53
K-1	8215-032	05/16/08 09	5/30/08	H-3	4.03 ± 1.6	DPM/Smpl	2.53
L-1	8215-033	05/16/08 09	5/30/08	H-3	5.33 ± 1.7	DPM/Smpl	2.62
M-28	8215-034	05/16/08 09	5/30/08	H-3	7.67 ± 1.7	DPM/Smpl	2.51
N-4	8215-035	05/16/08 09	5/30/08	H-3	1.93 ± 1.5	DPM/Smpl	2.48
N-7	8215-036	05/16/08 0	5/30/08	H-3	2.73 ± 1.6	DPM/Smpl	2.62
N-10	8215-037	05/16/08 0	5/30/08	H-3	3.62 ± 1.6	DPM/Smpl	2.53
N-13	8215-038	05/16/08 0	5/30/08	H-3	2.94 ± 1.6	DPM/Smpl	2.54
N-15	8215-039	05/16/08 0	5/29/08	H-3	3.33 ± 1.6	DPM/Smpl	2.51
N-16	8215-040	05/16/08 0	5/29/08	H-3	1.57 ± 1.5	DPM/Smpl	2.46

Certified by 79

Report Date 06/11/08

Page 2

ANALYSIS RESULTS

SDG <u>8215</u>

Client CABRERA SERV

Work Order <u>R805157-01</u>

Contract 114579 CA 010

Received Date 05/20/08

Matrix FILTER

Client	Lab					
Sample ID	Sample ID	Collected Analyzed	Nuclide	Results ± 20	<u>Units</u>	MDA
N-18	8215-041	05/16/08 05/29/08	H-3	0.808 + 1.4	DPM/Smpl	2.29
N 10	0213 011	03/10/00 03/23/00	5	0,000 1 1,1		
N-19	8215-042	05/16/08 05/29/08	H-3	2.39 ± 1.5	DPM/Smpl	2.45
N-20	8215-043	05/16/08 05/29/08	H-3	2.05 ± 1.6	DPM/Smpl	2.64
N-21	8215-044	05/16/08 05/29/08	H-3	1.50 ± 1.4	DPM/Smpl	2.36
P-2	8215-045	05/16/08 05/29/08	H-3	1.62 ± 1.4	DPM/Smpl	2.30
P-3	8215-046	05/16/08 05/29/08	H-3	1.25 ± 1.4	DPM/Smpl	2.30
R-2	8215-047	05/16/08 05/29/08	H-3	1.26 ± 1.4	DPM/Smpl	2.32
R - 4	8215-048	05/16/08 05/29/08	H-3	2.27 ± 1.4	DPM/Smpl	2.27
S-4	8215-049	05/16/08 05/29/08	H-3	1.92 ± 1.4	DPM/Smpl	2.27
A-41	8215-050	05/16/08 05/29/08	H-3	1.14 ± 1.5	DPM/Smpl	2.44

Certified by Report Date 06/11/08

Page 3

QC RESULTS

 SDG
 8215
 Client
 CABRERA SERV

 Work Order
 R805157-01
 Contract
 114579
 CA 010

Received Date 05/20/08 Matrix FILTER

Lab Sample ID	Nuclide	<u>Results</u>	<u>Units</u>	Amount Added	MDA	<u>Evaluation</u>
LCS 8215-051	H-3	594 ± 19	DPM/Smpl	523	6.92	114% recovery
BLANK 8215-052	H-3	-0.796 ± 1.3	DPM/Smpl	NA	2.32	<mda< td=""></mda<>
LCS 8215-054	H-3	580 ± 8.3	DPM/Smpl	523	3.10	111% recovery
BLANK 8215-055	H-3	-0.134 ± 1.4	DPM/Smpl	NA	2.43	<mda< td=""></mda<>
LCS 8215-057	H-3	553 ± 7.3	DPM/Smpl	523	2.65	106% recovery
BLANK 8215-058	H-3	0.606 ± 1.4	DPM/Smpl	NA	2.34	<mda< td=""></mda<>

Andreadown	DUPLICATES				ORIGINALS				
								3σ	
Sample ID	Nuclide	Results ± 20	MDA	Sample ID	Results ± 20	MDA	RPD	(Tot)	<u>Eval</u>
8215-053	H-3	-0.580 ± 1.3	2.30	8215-006	-0.227 ± 1.3	2.28	-	0	satis.
8215-056	H-3	19.4 ± 2.4	3.12	8215-027	15.5 ± 2.3	3.23	22	36	satis.
8215-059	H-3	0.825 ± 1.4	2.32	8215-049	1.92 ± 1.4	2.27	-	0	satis.

Certified by Report Date 06/11/08
Page 4

Service Servic		PURCHASE ORDER NO.		2-1/-5
	cho Dr	PARAMETERS	35	
Suite 114 LV, NV 89130	JNV 89130			$^{''}_{\text{C}}$ TAT (IN DAYS) $^{3}O_{\text{C}}$
PROJECT: SSFL				T A OBSERVATIONS, COMMENTS,
SAMPLERS SIGNATURE:	\$		SAMPLE TYPE OR	I VOLUMES,SPECIAL N OR ADDITIONAL TEST R
SAMPLE NO. DATE TIME	H		MATRIX	<i>:</i> ທ
A-10 S-16-080800	SSFL		ti.1ter	
A-15 (0802	-2		-	
A-23	2			
A-24 6806	7			
A-28 0808	7			
A-32 0810	2			
A-40 0812	7			
A-47 0814	7			
A-50.	7			
A-52 0818	2			
A-54 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7			
A-60 S-11-08 08-2			_>	
1) RELINQUISHED BY / DATE:	2) RECEIVED BY / DATE:	3) RELINQUISHED BY / DATE:	4) RECEIVED BY / DATE:	TOTAL NO. OF CONTAINERS: /
No Company.				METHOD OF SHIPMENT: FEDEX
Cobresa	COMPANY: EPETICINE	COMPANY:	COMPANY:	SPECIAL SHIPMENT-HANDLING,
5) RELINQUISHED BY / DATE:	6) RECEIVED BY / DATE:	7) RELINQUISHED BY / DATE:	8) RECEIVED BY / DATE:	STORAGE REQUIREMENTS, OR POSSIBLE HAZARDS
COMPANY:	COMPANY:	COMPANY:	COMPANY:	
2030 wright Avenue P.O. Box 4040	Richmond, CA	94804-0040 (510) 235-2633 F	FAX NO. (510) 235-0438	

Form SCP-1-5 04-26-00

2-16-08	:	# # Z (IN DAYS) 30		Д Н :	SAMPLE N OR ADDITIONAL TEST TYPE E OR ADDITIONAL TEST OR A DITIONAL TEST	×	F. 1+ev									→	2十二上	: 4) RECEIVED BY / DATE: TOTAL NO. OF CONTAINERS: 1	METHOD OF SHIPMENT: $FEDEX$	COMPANY: SPECIAL SHIPMENT-HANDLING,	S) RECEIVED BY / DATE: POSSIBLE HAZARDS	
PURCHASE ORDER NO.	PARAMETERS					£Η	`											: 3) RELINQUISHED BY / DATE:	· A	COMPANY:	: 7) RELINQUISHED BY / DATE:	-
), U	11 89130			40-	LOCATION	Krel											2) RECEIVED BY / DATE:	80 22 S9 My	COMPANY: ENERGINE	6) RECEIVED BY / DATE:	
Territory of and of	CLIENT: CAUPER & SEVO. EC	ADDRESS: Seco 10: NAMERS DY SU: Je 114 LV, NV 89130	PROJECT: SSFL		SAMPLERS SIGNATURE: Donly	SAMPLE NO. DATE TIME	A-66 S-16-08 0824	8-10 0828	0.830 H-Q	E-29 0832	E-43 0834	F-42 18836	H-1 0838	0H-2	7 h80 01-H	->	9/80 80-91-8 11-H	1) RELANQUISHED BY / DATE:	8 - 10 - 2 - 10 - 10	Cabrera Cabrera	5) RELINQUISHED BY / DATE:	

2030 Wright Avenue

Richmond, CA 94804-0040

P.O. Box 4040

(510) 235-2633

FAX NO. (510) 235-0438

'quality environmental services"

Form SCP-1-5 04-26-00

CLIENT: Cabr	abvera Services	-	CANTINATE CROEK NO.	L	DATE 5/16/04 3 OF 5
ADDRESS: 3626	N. Kanc	he Dr	7AX42H - Hr.		
So: 42 114 LV, NV 89130	114 17	NV 89130			C TAT (IN DAYS) 30
JASS . SSFL) Z F
SAMPLERS SIGNATURE:	'RE:	8-1		SAMPLE TYPE OR	1 VOLUMES, SPECIAL N OR ADDITIONAL TEST E
SAMPLE NO.	DATE TIME	LOCATION	9	MATRIX	· v
H-25	8-16-08 0848	8 SSFL		Filter	
H-32	0880	0.			
H-33	2580	7 2			
H-34	1580	/I h			
H-35	0826	9			
J-6	0858	8			
5-7	0080				
下 下	2060	7 2			
	4060	4			
M-28	7060	و			
ナ-2	8060	1			
N-7	0/60 80-91-5			\Rightarrow	
1) RELINQUISHED	BY / DATE:	2) RECEIVED BY / DATE:	3) RELINQUISHED BY / DATE:	4) RECEIVED BY / DATE:	TOTAL NO. OF CONTAINERS:
10-9/-5 -09/9/	20-9/-2	W. 20 65 726 65			METHOD OF SHIPMENT: FEDEX
Cabrera	e ra	COMPANY: EBERLINE	COMPANY:	COMPANY:	SPECIAL SHIPMENT-HANDLING,
5) RELINQUISHED BY / DATE:	BY / DATE:	6) RECEIVED BY / DATE:	7) RELINQUISHED BY / DATE:	8) RECEIVED BY / DATE:	SIORAGE REQUIREMENTS, OR POSSIBLE HAZARDS
COMPANY:		COMPANY:	COMPANY:	COMPANY:	

P.O. Box 4040

2030 Wright Avenue

Richmond, CA 94804-0040

(510) 235-2633

3 FAX NO. (510) 235-0438

"quality environmental services"

(510) 235-2633

94804-0040

Richmond, CA

P.O. Box 4040

2030 Wright Avenue

Form SCP-1-5 04-26-00

"quality environmental services"

77	DATE PAGE S	. ()	Z -	A OBSERVATIONS, COMMENTS, I VOLUMES.SPECTAL		« v	 1													TOTAL NO. OF CONTAINERS:	METHOD OF SHIPMENT: FEOFX	SPECIAL SHIPMENT-HANDLING,	STORAGE REQUIREMENTS, OR POSSIBLE HAZARDS	
	RS				SAMPLE TYPE	OR		Filter											→	4) RECEIVED BY / DATE:		COMPANY:	8) RECEIVED BY / DATE:	COMPANY:
PURCHASE ORDER NO.	PARAMETERS																			3) RELINQUISHED BY / DATE:		COMPANY:	7) RELINQUISHED BY / DATE:	COMPANY:
	70	189130			8-1	en par	LOCATION		7	7	7	\	7	7	7		ζ.	>	>	2) RECEIVED BY / DATE:	Solarso Land	COMPANY: Whenthink	6) RECEIVED BY / DATE:	COMPANY:
Cally to Say and	3620 N. Rancho	Suite 114 LV,NV 89130	PROJECT: SSFL		SAMPLERS SIGNATURE:	\	NO. DATE TIME	2-16-08 0915	1169	9160	0918	0930	7260	h760	0426	0928	0830	V 0932	5-16-08 CA34	1) RELINQUISHED BY / DATE:	80-91-5	abreva	5) RELINQUISHED BY / DATE:	
	CLIENT:		PROJECT:		SAMPLERS		SAMPLE NO.	N-10	N-13	N-15	و ٧-٦	81-N	N-19	N-20	N-21	8-5	p-3	R-2	R-4	1) RELING	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3). I WE	5) RELINQ	COMPANY:

235-0438	
(510)	
FAX NO.	
235-2633	
(510)	

"quality environmental services"

V: 11-2	DATE PAGE KOF S		C TAT (IN DAYS)	, Z	A OBSERVATIONS, COMMENTS,			×.	4: HeV II. 110 88							BY / DATE: TOTAL NO. OF CONTAINERS:	METHOD OF SHIPMENT: FEDEX	SPECIAL SHIPMENT-HANDLING,	BY / DATE: POSSIBLE HAZARDS	
		S					4		T							4) RECEIVED		COMPANY:	8) RECEIVED	
	PURCHASE ORDER NO.	PARAMETERS														3) RELINQUISHED BY / DATE:		COMPANY:	7) RELINQUISHED BY / DATE:	
	PUR		59130					NOCLESON NO.	3	7						2) RECEIVED BY / DATE:	150 or 20 my	COMPANY: CINCOLLINE	6) RECEIVED BY / DATE:	
	CLIENT: Cabreve Sevuices		So: 4 1 LV/NV 89130	PROJECT: SSFL		SAMPLERS SIGNATURE: 1)	SAMPI F NO.	(-0 kg	80-91-5		4	/2			1) RELINQUISHED BY / DATE:	80-9/-5	Company:	5) RELINQUISHED BY / DATE:	COMPANY:

Form SCP-1-5 04-26-00

RICHMOND, CA LABORATORY

SAMPLE RECEIPT CHECKLIST

Client: CABRE	FRA SEPUICES C	City	KS VEGAS	State	NV	
Date/Time received	05/20/08 09:27/20C NO.	SSF	= L			
Container LD. No. 1	E UST Requested T	TAT (Days)	か P.O. Rec	eived Yes [] No[]	
(1	INSPECT				
1. Custody sea	ils on shipping container inta			Yes[]	No[] N/A	[y]
-	ils on shipping container dat		1	Yes[]	No[] N/A	41
 Custody sea 	ils on sample containers inta	act?			No[] N/A	
4. Custody sea	ils on sample containers dat	ted & signed?	,	Yes[]	No[] N/A	[y]
5. Packing mat		÷ 4		Wet[]	Dry [χ]	
	amples in shipping containe					
7. Number of c	containers per sample:					
8. Samples are	e in correct container		Yes[y]			
·	agrees with samples?		Yes [x]			
'	ve: Tape[] Hazard la				/	
· ·	In good condition $[4]$					
•	e: Preserved [] Not pre	eserved []	oH Pres	servative		
13. Describe an	y anomalies:					
		AND THE PROPERTY OF THE PROPER				
		Ven [: 1 No.] Date		
NAME OF THE PROPERTY OF THE PR	notified of any anomalies?		1 - 1		3	
15. Inspected b	y Mu	Date: 43	Time:			
Customer Bet Sample No.	ta/Gamma \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Wipe	Customer Sample No.	Beta/Gamma cpm	lon Chamber mR/h r	wipe
ALL SHEEPILES	<60					
	And the second s					
Ion Chamber Ser. No.			Calibration date			
Alpha Meter Ser. No.			Calibration date			
Beta/Gamma Meter S	er. No. <u>113722</u>		Calibration date	13SEP	08	

Appendix D: Field Survey Instrumentation QC Data

This Page Intentionally Left Blank

Equipment Chi-Square Distribution Worksheet

Count No.	<u>X</u> i	$X_{m}-X_{i}$	$(X_m-X_i)^2$		
1	<u>5</u> 731	-96.4	9292.96	Instrument/Detector	2360 w/43-68
2	5627	7.6	57.76	Serial # / Serial#	184951/ PR126794
3	5726	-91.4	8353.96	Date Performed	13-May-08
4	5500	134.6	18117.16	Count time interval (minutes)	1
5	5602	32.6	1062.76	Source Used	TH-230
6	5634	0.6	0.36		
7	5657	-22.4	501.76		
8	5689	-54.4	2959.36		
9	5597	37.6	1413.76		
10	5635	-0.4	0.16		
11	5649	-14.4	207.36		
12	5684	-49.4	2440.36		
13	5618	16.6	275.56		
14	5583	51.6	2662.56		
15	5568	66.6	4435.56		
16	5662	-27.4	750.76		
17	5575	59.6	3552.16		
18	5756	-121.4	14737.96		
19	5517	117.6	13829.76		
20	5682	-47.4	2246.76		
Sum total	112692		86898.8	-	

Sum total 112692 X_m 5634.6

 $X^2 = 15.42$

Note: Accept χ^2 if between 8.91 and 32.8

Instrument Efficiency Calculator (Rev 2)

PROJECT NAME

B. Badaoui

4/8/2008

Boeing SSFL RMHF Building Survey

			Initial Source DPM	half life, yrs			decay, yrs	DPM on Date Efficiency Performed
		SOURCE	26,100	7.54E+04	4/28/2008	9.193E-06	5.84	26099
ISOTOPE	SOURCE ID #:	CREATION DATE:						
Th-230	4006-02	6/26/2002						μCi on Date
			Source μCi	half life, yrs	Decay-to-Date	lamda, yr-1	decay, yrs	Efficiency Performed
			DPM Based	μCi Based				
	Average	Average Source	Calculated	Calculated			Source plus	
	background	plus background	Efficiency,	Efficiency,		Background	Background	
	counts, cpm	counts, cpm	cpm/dpm	cpm/dpm		Counts, cpm	Counts, cpm	
	1.4	4244.0	0.163			2	4175	
					•	0	4256	
						3	4141	
For:						0	4285	
Instrument/Probe	Ludlum 2360	w/43-68				0	4151	
Serial numbers	184933/ PR 190490					1	4379	
						1	4212	
						2	4364	
Ву:						3	4212	
	Name	Date Performed				2	4265	

Average

1.4

4244.0

Equipment Chi-Square Distribution Worksheet

Count No.	Xi	X_m-X_i	$(X_m-X_i)^2$]	
1	4827	193.45	37422.90	Instrument/Detector	2360 w/43-68
2	4977	43.45	1887.90	Serial # / Serial#	184933/ PR190490
3	5014	6.45	41.60	Date Performed	12-May-08
4	5082	-61.55	3788.40	Count time interval (minutes)	1
5	5116	-95.55	9129.80	Source Used	Tc-99
6	5093	-72.55	5263.50		
7	4974	46.45	2157.60		
8	4999	21.45	460.10		
9	5019	1.45	2.10		
10	5114	-93.55	8751.60		
11	5043	-22.55	508.50		
12	5023	-2.55	6.50		
13	4941	79.45	6312.30		
14	5119	-98.55	9712.10		
15	4964	56.45	3186.60		
16	5011	9.45	89.30		
17	4991	29.45	867.30		
18	4982	38.45	1478.40		
19	5038	-17.55	308.00		
20	5082	-61.55	3788.40		
Sum total	100409		95163.0	-	

Sum total 100409 X_m 5020.5

 $X^2 = 18.96$

Note: Accept χ^2 if between 8.91 and 32.8

Instrument Efficiency Calculator (Rev 2)

PROJECT NAME

B. Badaoui

4/8/2008

Boeing SSFL RMHF Building Survey

			Initial Source DPM	half life, yrs			decay, yrs	DPM on Date Efficiency Performed
		SOURCE	21,800	2.11E+05	4/28/2008	3.285E-06	5.84	21800
ISOTOPE	SOURCE ID #:	CREATION DATE:						
Tc-99	4003-02	6/26/2002						μCi on Date
			Source μCi	half life, yrs	Decay-to-Date	lamda, yr-1	decay, yrs	Efficiency Performed
			DPM Based	μCi Based				
	Average	Average Source	Calculated	Calculated			Source plus	
	background	plus background	Efficiency,	Efficiency,		Background	Background	
	counts, cpm	counts, cpm	cpm/dpm	cpm/dpm		Counts, cpm	Counts, cpm	
	131.5	5021.5	0.224			129	4827	
					_	137	4977	
						120	5014	
For:						141	5082	
Instrument/Probe	Ludlum 2360	w/43-68				130	5116	
Serial numbers	184933/ PR 190490					114	5093	
						143	4974	
						126	4999	
By:						130	5019	
-	Name	Date Performed				145	5114	

131.5

Average

5021.5

CABRERA ALPHA-BETA COUNTING INSTRUMENT (Rev 2)

Со	unting Inst	trument:	Ludl	um 2360	Detector:	43-	68		Cal. Date:	4/22/2008						
		Serial #:		34933	Serial #:	PR19		Cal. Du	ie Date OK?	OK						
	Detec	tor Active	e Area or A	rea Covered b	y Smear (cm²):	100										
	Efficiency (fraction)	Source Nuclide	Source Number	Original Source Activity (DPM)	Source Creation Date	T _{1/2} (yr)	Source Decayed Activity	Required MDA (DPM/100cm ²)	Control Chart & Daily Bkg Count Time	Control Chart & Daily Source- Sample Count Time	Control Chart bkg Average α/β cpm	Control Chart bkg 1 sigma, cpm	Control Chart Source-bkg Average α/β cpm	Control Chart source 1 sigma, cpm		
Alpha	0.1630	Th-230	4006-02	26,100	6/26/2002	7.70E+04	26,099	2500	1	1	1.40	1.17	4318.3	103.31		
Beta	0.2240	Tc-99	4003-02	21,800	6/26/2002	2.13E+05	21,800	2500	1	1	131.50	10.08	4890.0	87.64		
	_															
Date	Daily Bkg			Source Counts	Daily Bkg Ra	te (cpm)		ource Rate (cpm)	Bkg QC F	Pass/Fail	Source QC				α MDA	β MDA
Date	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	MDA α (dpm)	MDA β (dpm)	OK?	OK?
5/12/2008	1	113	4377	5048	1.0	113.0	4376.0	4935.0	PASS	PASS	PASS	PASS	46.95	234	Yes	Yes
5/13/2008	1	128	4502	5104	1.0	128.0	4501.0	4976.0	PASS	PASS	PASS	PASS	46.95	248	Yes	Yes
5/14/2008	0	115	4296	5061	0.0	115.0	4296.0	4946.0	PASS	PASS	PASS	PASS	18.40	236	Yes	Yes
5/15/2008	1	126	4416	5141	1.0	126.0	4415.0	5015.0	PASS	PASS	PASS	PASS	46.95	247	Yes	Yes
5/16/2008	1	144	4520	5132	1.0	144.0	4519.0	4988.0	PASS	PASS	PASS	PASS	46.95	263	Yes	Yes
5/19/2008	0	134	4378	5098	0.0	134.0	4378.0	4964.0	PASS	PASS	PASS	PASS	18.40	254	Yes	Yes

Ludlum Model 2360, Serial #184933

Initial Background and Source Counts for Control Chart Initial bkg counts Initial source plus bkg counts												
		Initial bk						counts				
#	Alpha	cpm	Beta	cpm	Alpha	cpm	Beta	cpm				
1	2.00	2	129.00	129	4175	4175	4827	4827				
2	0.00	0	137.00	137	4276	4276	4977	4977				
3	3.00	3	120.00	120	4482	4482	5014	5014				
4	0.00	0	141.00	141	4482	4482	5082	5082				
5	0.00	0	130.00	130	4256	4256	5116	5116				
6	1.00	1	114.00	114	4242	4242	5093	5093				
7	1.00	1	143.00	143	4363	4363	4974	4974				
8	2.00	2	126.00	126	4379	4379	4999	4999				
9	3.00	3	130.00	130	4285	4285	5019	5019				
10	2.00	2	145.00	145	4257	4257	5114	5114				
Mean		1.40		131.5		4319.7		5021.5				
S _(n-1)		1.17		10.08		103.36		87.49				
-3 sigma		-2.12		101.26		4009.62		4759.02				
+3 sigma		4.92		161.74		4629.78		5283.98				
-2 sigma		-0.95		111.34		4112.98		4846.51				
+2 sigma		3.75		151.66		4526.42		5196.49				
					Mean-bkg	4318.3		4890.0				
					S _(n-1)	103.31		87.64				
				Mean-bkg	-3 sigma	4008.36		4627.07				
				Mean-bkg		4628.24		5152.93				
				Mean-bkg	-2 sigma	4111.68		4714.72				
				Mean-bkg		4524.92		5065.28				

Equipment Chi-Square Distribution Worksheet

Count No.	<u>X</u> i	X_m-X_i	$(X_m-X_i)^2$		
1	4175	57.4	3294.76	Instrument/Detector	2360 w/43-68
2	4276	-43.6	1900.96	Serial # / Serial#	184933/ PR190490
3	4193	39.4	1552.36	Date Performed	12-May-08
4	4190	42.4	1797.76	Count time interval (minutes)	1
5	4256	-23.6	556.96	Source Used	TH-230
6	4242	-9.6	92.16		
7	4141	91.4	8353.96		
8	4245	-12.6	158.76		
9	4285	-52.6	2766.76		
10	4257	-24.6	605.16		
11	4265	-32.6	1062.76		
12	4282	-49.6	2460.16		
13	4103	129.4	16744.36		
14	4151	81.4	6625.96		
15	4379	-146.6	21491.56		
16	4141	91.4	8353.96		
17	4128	104.4	10899.36		
18	4364	-131.6	17318.56		
19	4363	-130.6	17056.36		
20	4212	20.4	416.16		
Sum total	84648		123508.8	-	

X_m 4232.4

 $X^2 = 29.18$

Note: Accept χ^2 if between 8.91 and 32.8

Instrument Efficiency Calculator (Rev 2)

PROJECT NAME

B. Badaoui

4/8/2008

Boeing SSFL RMHF Building Survey

			Initial Source DPM	half life, yrs	Decay-to-Date	lamda, yr-1	decay, yrs	DPM on Date Efficiency Performed
		SOURCE	26,100	7.54E+04	4/28/2008	9.193E-06	5.84	26099
ISOTOPE	SOURCE ID #:	CREATION DATE:						
Th-230	4006-02	6/26/2002						μCi on Date
			Source μCi	half life, yrs	Decay-to-Date	lamda, yr-1	decay, yrs	Efficiency Performed
	_		DPM Based	μCi Based				
	Average	Average Source	Calculated	Calculated			Source plus	
	background	plus background	Efficiency,	Efficiency,		Background	_	
	counts, cpm	counts, cpm	cpm/dpm	cpm/dpm	1		Counts, cpm	ı
	0.9	5631.1	0.216			0	5726	
						0	5500	
						0	5602	
For:						1	5634	
Instrument/Probe		w/43-68				0	5657	
Serial numbers	184951 w/ PR12679	94				0	5662	
						2	5575	
_						2	5756	
Ву:						3	5517	
	Name	Date Performed				1	5682	

0.9

Average

5631.1

Equipment Chi-Square Distribution Worksheet

Count No	v	V V	/v v \ ²		
Count No.	<u>X</u> i	X _m -X _i	$(X_m-X_i)^2$		
1	5108	-31.65	1001.72	Instrument/Detector	2360 w/43-68
2	4940	136.35	18591.32	Serial # / Serial#	184951/ PR1267
3	4999	77.35	5983.02	Date Performed	8-May-08
4	5031	45.35	2056.62	Count time interval (minutes)	1
5	5165	-88.65	7858.82	Source Used	Tc-99
6	5136	-59.65	3558.12		
7	5066	10.35	107.12		
8	5243	-166.65	27772.22		
9	4975	101.35	10271.82		
10	5036	40.35	1628.12		
11	5100	-23.65	559.32		
12	5044	32.35	1046.52		
13	4990	86.35	7456.32		
14	5134	-57.65	3323.52		
15	5265	-188.65	35588.82		
16	5049	27.35	748.02		
17	5033	43.35	1879.22		
18	5009	67.35	4536.02		
19	5050	26.35	694.32		
20	5154	-77.65	6029.52		
Sum total	101527	•	140690.6	•	

Sum total 101527 $X_m = 5076.4$

 $X^2 = 27.71$

Note: Accept χ^2 if between 8.91 and 32.8

Instrument Efficiency Calculator (Rev 2)

PROJECT NAME

B. Badaoui

Boeing SSFL RMHF Building Survey

			Initial Source DPM	half life, yrs	Decay-to-Date	lamda, yr-1	decay, yrs	DPM on Date Efficiency Performed
		SOURCE	21,800	2.11E+05	4/28/2008	3.285E-06	5.84	21800
ISOTOPE	SOURCE ID #:	CREATION DATE:						
Tc-99	4003-02	6/26/2002						μCi on Date
			Source μCi	half life, yrs	Decay-to-Date	lamda, yr-1	decay, yrs	Efficiency Performed
			DPM Based	μCi Based				
	Average	Average Source	Calculated	Calculated			Source plus	
	background	plus background	Efficiency,	Efficiency,		Background	Background	
	counts, cpm	counts, cpm	cpm/dpm	cpm/dpm		Counts, cpm	Counts, cpm	
	185.9	5069.9	0.224			206	5108	
					_	200	4940	
						187	4999	
For:						189	5031	
Instrument/Probe		w/43-68				183	5165	
Serial numbers	184951 w/ PR12679	94				158	5136	
						189	5066	
						170	5243	
Ву:	_					199	4975	
	Name	Date Performed				178	5036	

4/8/2008

185.9

5069.9

Average

CABRERA ALPHA-BETA COUNTING INSTRUMENT (Rev 2)

Со	unting Inst	rument:	Ludl	um 2360	Detector:	43-	68		Cal. Date:	1/30/2008						
		Serial #:	18	34951	Serial #:	PR12	6794	Cal. Du	ue Date OK?	OK						
	Detec	tor Activ	e Area or A	rea Covered b	y Smear (cm²):	100										I
	Efficiency (fraction)	Source Nuclide	Source Number	Original Source Activity (DPM)		T _{1/2} (yr)	Source Decayed Activity	Required MDA (DPM/100cm ²)	Control Chart & Daily Bkg Count Time	Control Chart & Daily Source- Sample Count Time	Control Chart bkg Average α/β cpm	Control Chart bkg 1 sigma, cpm	Control Chart Source-bkg Average α/β cpm	Control Chart source 1 sigma, cpm		
Alpha	0.2160	Th-230	4006-02	26,100	6/26/2002	7.70E+04	26,099	2500	1	1	0.90	1.10	5630.2	83.89		l
Beta	0.2240	Tc-99	4003-02	21,800	6/26/2002	2.13E+05	21,800	2500	1	1	185.90	14.52	4884.0	102.50		<u> </u>
							7						,			<u> </u>
Date	Daily Bkg		,	Source Counts	Daily Bkg Ra	_ ` ' ' ' '		ource Rate (cpm)	Bkg QC F		Source QC				α MDA	βMDA
	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	MDA α (dpm)	MDA β (dpm)	OK?	OK?
5/13/2008	0	187	5587	5179	0.0	187.0	5587.0	4992.0	PASS	PASS	PASS	PASS	13.89	297	Yes	Yes
5/14/2008	0	199	5610	5220	0.0	199.0	5610.0	5021.0	PASS	PASS	PASS	PASS	13.89	306	Yes	Yes
5/15/2008	1	190	5520	5087	1.0	190.0	5519.0	4897.0	PASS	PASS	PASS	PASS	35.43	300	Yes	Yes
5/16/2008	1	199	5563	5250	1.0	199.0	5562.0	5051.0	PASS	PASS	PASS	PASS	35.43	306	Yes	Yes
5/19/2008	1	189	5643	5189	1.0	189.0	5642.0	5000.0	PASS	PASS	PASS	PASS	35.43	299	Yes	Yes
5/21/2008	1	198	5730	5108	1.0	198.0	5729.0	4910.0	PASS	PASS	PASS	PASS	35.43	306	Yes	Yes

Ludlum Model 2360, Serial #184951

	Initial E	Backgrou	nd and S	Source C	ounts for	Control	Chart	
		Initial bk	g counts	3	Initial	source p	lus bkg	counts
#	Alpha	cpm	Beta	cpm	Alpha	cpm	Beta	cpm
1	0.00	0	206.00	206	5726	5726	5108	5108
2	0.00	0	200.00	200	5500	5500	4940	4940
3	0.00	0	187.00	187	5602	5602	4999	4999
4	1.00	1	189.00	189	5634	5634	5031	5031
5	0.00	0	183.00	183	5657	5657	5165	5165
6	0.00	0	158.00	158	5662	5662	5136	5136
7	2.00	2	189.00	189	5575	5575	5066	5066
8	2.00	2	170.00	170	5756	5756	5243	5243
9	3.00	3	199.00	199	5517	5517	4975	4975
10	1.00	1	178.00	178	5682	5682	5036	5036
Mean		0.90		185.9		5631.1		5069.9
S _(n-1)		1.10		14.52		83.69		93.34
-3 sigma		-2.40		142.35		5380.04		4789.88
+3 sigma		4.20		229.45		5882.16		5349.92
-2 sigma		-1.30		156.86		5463.73		4883.22
+2 sigma		3.10		214.94		5798.47		5256.58
					Mean-bkg	5630.2		4884.0
					S _(n-1)	83.89		102.50
				Mean-bkg	-3 sigma	5378.52		4576.50
				Mean-bkg		5881.88		5191.50
				Mean-bkg	-2 sigma	5462.41		4679.00
				Mean-bkg	+2 sigma	5797.99		5089.00

Equipment Chi-Square Distribution Worksheet

Count No.	X _i	X_m-X_i	$(X_m-X_i)^2$		
1	9213	-33.3	1108.89	Instrument/Detector	2929
2	9486	-306.3	93819.69	Serial # / Serial#	137607
3	9140	39.7	1576.09	Date Performed	28-Apr-08
4	9007	172.7	29825.29	Count time interval (minutes)	1
5	9352	-172.3	29687.29	Source Used	TH-230
6	9069	110.7	12254.49		
7	9120	59.7	3564.09		
8	9237	-57.3	3283.29		
9	8995	184.7	34114.09		
10	9232	-52.3	2735.29		
11	9085	94.7	8968.09		
12	9089	90.7	8226.49		
13	9163	16.7	278.89		
14	9127	52.7	2777.29		
15	9096	83.7	7005.69		
16	9311	-131.3	17239.69		
17	9153	26.7	712.89		
18	9140	39.7	1576.09		
19	9236	-56.3	3169.69		
20	9343	-163.3	26666.89		
Sum total	183594		288590.2	•	

Sum total 183594 X_m 9179.7

 $X^2 = 31.44$

Note: Accept χ^2 if between 8.91 and 32.8

Instrument Efficiency Calculator (Rev 2)

PROJECT NAME

Name

B. Badaoui

Date Performed

4/29/2008

Boeing SSFL RMHF Building Survey

				Initial Source DPM	half life, yrs	Decay-to-Date	lamda, yr-1	decay, yrs	DPM on Date Efficiency Performed
			SOURCE	26,100	7.54E+04	4/28/2008	9.193E-06	5.84	26099
	ISOTOPE	SOURCE ID #:	CREATION DATE:						
Į	Th-230	4006-02	6/26/2002						μCi on Date
				Source μCi	half life, yrs	Decay-to-Date	lamda, yr-1	decay, yrs	Efficiency Performed
				DPM Based	μCi Based				
		Average	Average Source	Calculated	Calculated			Source plus	
		la a a learna con al	plus bookersund	Efficiency	Efficiency,		Background	Background	
		background	plus background	Efficiency,	Elliciency,		Background	Background	
	_	counts, cpm	counts, cpm	cpm/dpm	cpm/dpm	_	_	Counts, cpm	
	[_	•	• .	•		_	_	
	[counts, cpm	counts, cpm	cpm/dpm	•]	Counts, cpm	Counts, cpm	
	[counts, cpm	counts, cpm	cpm/dpm	•]	Counts, cpm 0.5	Counts, cpm 9213	
	For:	counts, cpm 0.5	counts, cpm 9185.1	cpm/dpm	•]	0.5 0.6	9213 9486	
	Instrument/Probe	counts, cpm 0.5 Ludlum 2929 w 43-	counts, cpm 9185.1	cpm/dpm	•	1	0.5 0.6 0.3 0.4	9213 9486 9140 9007 9352	
	Instrument/Probe	counts, cpm 0.5	counts, cpm 9185.1	cpm/dpm	•]	0.5 0.6 0.3 0.4 1 0.7	9213 9486 9140 9007 9352 9069	
	Instrument/Probe	counts, cpm 0.5 Ludlum 2929 w 43-	counts, cpm 9185.1	cpm/dpm	•]	0.5 0.6 0.3 0.4 1 0.7 0.3	9213 9486 9140 9007 9352 9069 9120	
	Instrument/Probe	counts, cpm 0.5 Ludlum 2929 w 43-	counts, cpm 9185.1	cpm/dpm	•		0.5 0.6 0.3 0.4 1 0.7	9213 9486 9140 9007 9352 9069	

0.8

0.5

Average

9232

9185.1

Equipment Chi-Square Distribution Worksheet

Count No.	X _i	X_m-X_i	$(X_m-X_i)^2$		
1	3932	-22.25	495.06	Instrument/Detector	2929
2	3866	43.75	1914.06	Serial # / Serial#	137607
3	3905	4.75	22.56	Date Performed	28-Apr-08
4	3864	45.75	2093.06	Count time interval (minutes)	1
5	3910	-0.25	0.06	Source Used	Tc-99
6	3980	-70.25	4935.06		
7	3843	66.75	4455.56		
8	3997	-87.25	7612.56		
9	3808	101.75	10353.06		
10	3965	-55.25	3052.56		
11	3918	-8.25	68.06		
12	3913	-3.25	10.56		
13	3875	34.75	1207.56		
14	3856	53.75	2889.06		
15	3809	100.75	10150.56		
16	4061	-151.25	22876.56		
17	3900	9.75	95.06		
18	3912	-2.25	5.06		
19	4005	-95.25	9072.56		
20	3876	33.75	1139.06		
Sum total	78195		82447.8	-	

Sum total X_m 3909.8

 $X^2 = 21.09$

Note: Accept χ^2 if between 8.91 and 32.8

Instrument Efficiency Calculator (Rev 2)

PROJECT NAME

Boeing SSFL RMHF Building Survey

ISOTOPE Tc-99	SOURCE ID #: 4003-02	SOURCE CREATION DATE: 6/26/2002	Initial Source DPM 21,800 Source μCi	half life, yrs 2.11E+05 half life, yrs	4/28/2008	3.285E-06	decay, yrs 5.84 decay, yrs	DPM on Date Efficiency Performed 21800 μCi on Date Efficiency Performed
	Average background counts, cpm 59.8	Average Source plus background counts, cpm	DPM Based Calculated Efficiency, cpm/dpm 0.176	μCi Based Calculated Efficiency, cpm/dpm]	61.1	Counts, cpm 3932	
	Ludlum 2929 w 43- 137607/PR142936 Name					57.4 56.7 59.5 59.5 60.3 60.7 60.2 61.8 60.5	3866 3905 3864 3910 3980 3843 3997 3808 3965	
	Name B. Badaoui	Date Performed 4/29/2008			Average	60.5 59.8	3965 3907.0	

CABRERA ALPHA-BETA COUNTING INSTRUMENT (Rev 2)

Со	unting Inst	rument:	Ludl	um 2929	Detector:	43-1	0-1		Cal. Date:	4/22/2008						
	,	Serial #:	13	37607	Serial #:	PR14	2936	Cal. Du	ue Date OK?	OK						
	Detec	tor Activ	e Area or A	rea Covered b	y Smear (cm ²):	100										
	Efficiency (fraction)	Source Nuclide	Source Number	Original Source Activity (DPM)	Source Creation Date	T _{1/2} (yr)	Source Decayed Activity	Required MDA (DPM/100cm ²)	Control Chart & Daily Bkg Count Time	Control Chart & Daily Source- Sample Count Time	Control Chart bkg Average α/β cpm	Control Chart bkg 1 sigma, cpm	Control Chart Source-bkg Average α/β cpm	Control Chart source 1 sigma, cpm		
Alpha	0.3520	Th-230	4006-02	26,100	6/26/2002	7.70E+04	26,099	500	10	1	0.53	0.27	9184.6	153.20		
Beta	0.1760	Tc-99	4003-02	21,800	6/26/2002	2.13E+05	21,800	500	10	1	59.77	1.60	3847.2	62.24		
Date	Daily Bkg		•	Source Counts	Daily Bkg Ra			ource Rate (cpm)	Bkg QC F		Source QC				αMDA	βMDA
	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta	Alpha	Beta		MDA β (dpm)	OK?	OK?
4/29/2008	6	604	9147	3907	0.6	60.4	9146.4	3846.6	PASS	PASS	PASS	PASS	16.12	169	Yes	Yes
4/30/2008	3	589	9122	3895	0.3	58.9	9121.7	3836.1	PASS	PASS	PASS	PASS	13.89	168	Yes	Yes
5/1/2008	2	605	9014	3891	0.2	60.5	9013.8	3830.5	PASS	PASS	PASS	PASS	12.91	170	Yes	Yes
5/2/2008	1	574	9035	3874	0.1	57.4	9034.9	3816.6	PASS	PASS	PASS	PASS	11.62	166	Yes	Yes
5/5/2008	4	625	9099	3900	0.4	62.5	9098.6	3837.5	PASS	PASS	PASS	PASS	14.72	172	Yes	Yes
5/6/2008	9	581	9244	3802	0.9	58.1	9243.1	3743.9	PASS	PASS	PASS	PASS	17.82	166	Yes	Yes
5/7/2008	2	615	9012	3860	0.2	61.5	9011.8	3798.5	PASS	PASS	PASS	PASS	12.91	171	Yes	Yes
5/8/2008	4	603	9097	3908	0.4	60.3	9096.6	3847.7	PASS	PASS	PASS	PASS	14.72	169	Yes	Yes
5/9/2008	3	597	9066	3915	0.3	59.7	9065.7	3855.3	PASS	PASS	PASS	PASS	13.89	169	Yes	Yes
5/12/2008	1	581	9053	3959	0.1	58.1	9052.9	3900.9	PASS	PASS	PASS	PASS	11.62	166	Yes	Yes
5/13/2008	1	628	9118	3950	0.1	62.8	9117.9	3887.2	PASS	PASS	PASS	PASS	11.62	172	Yes	Yes Yes
5/14/2008 5/15/2008	2	614 620	9005 9068	3885 3995	0.2	61.4 62.0	9004.8 9067.7	3823.6 3933.0	PASS	PASS PASS	PASS PASS	PASS PASS	12.91	171 171	Yes Yes	Yes
5/15/2008	3	598	9068	3998	0.3 0.3	59.8	9194.7	3938.2	PASS PASS	PASS	PASS	PASS	13.89 13.89	169	Yes	Yes
5/19/2008	1	586	9065	3939	0.3	58.6	9064.9	3880.4	PASS	PASS	PASS	PASS	11.62	167	Yes	Yes
5/20/2008	2	600	9242	3844	0.2	60.0	9241.8	3784.0	PASS	PASS	PASS	PASS	12.91	169	Yes	Yes
5/21/2008	3	598	9256	3987	0.3	59.8	9255.7	3927.2	PASS	PASS	PASS	PASS	13.89	169	Yes	Yes
3/21/2000	3	390	9200	3901	0.3	59.0	9200.7	3921.2	PASS	PASS	PASS	PASS	13.09	109	3	100

Ludlum Model 2929 Smear Counter

	Initial E	Backgrou	nd and S	Source C	ounts for	Control	Chart	
		Initial bk	g counts	3	Initial	source p	lus bkg	counts
#	Alpha	cpm	Beta	cpm	Alpha	cpm	Beta	cpm
1	5.00	0.5	611.00	61.1	9213	9213	3932	3932
2	6.00	0.6	574.00	57.4	9486	9486	3866	3866
3	3.00	0.3	567.00	56.7	9140	9140	3905	3905
4	4.00	0.4	595.00	59.5	9007	9007	3864	3864
5	10.00	1	595.00	59.5	9352	9352	3910	3910
6	7.00	0.7	603.00	60.3	9069	9069	3980	3980
7	3.00	0.3	607.00	60.7	9120	9120	3843	3843
8	6.00	0.6	602.00	60.2	9237	9237	3997	3997
9	1.00	0.1	618.00	61.8	8995	8995	3808	3808
10	8.00	0.8	605.00	60.5	9232	9232	3965	3965
Mean		0.53		59.8		9185.1		3907.0
S _(n-1)		0.27		1.60		153.36		62.23
-3 sigma		-0.27		54.98		8725.02		3720.30
+3 sigma		1.33		64.56		9645.18		4093.70
-2 sigma		0.00		56.58		8878.38		3782.53
+2 sigma		1.06		62.96		9491.82		4031.47
					Mean-bkg	9184.6		3847.2
					S _(n-1)	153.20		62.24
				Mean-bkg	-3 sigma	8724.98		3660.50
				Mean-bkg		9644.16		4033.96
				Mean-bkg		8878.17		3722.74
				Mean-bkg	+2 sigma	9490.97		3971.72

Inst.# 104556								
	QC Daily Source							
Date	Result (cpm)	P/F						
4/28/2008	10	Pass						
4/29/2008	10	Pass						
4/30/2008	12	Pass						
5/1/2008	10	Pass						
5/2/2008	12	Pass						
5/5/2008	12	Pass						
5/6/2008	10	Pass						
5/7/2008	10	Pass						
5/8/2008	14	Pass						
5/9/2008	14	Pass						
5/12/2008	10	Pass						
5/13/2008	10	Pass						
5/14/2008	10	Pass						
5/15/2008	10	Pass						
5/16/2008	10	Pass						
5/19/2008	10	Pass						
5/20/2008	10	Pass						

Inst.	# 104556	Source Ser. #	53
Initial Sou	urce Readings	Nuclide	Co-57
Date	Result (cpm)		
4/28/2008	10		
4/28/2008	12		
4/28/2008	10		
4/28/2008	10		
4/28/2008	15		
4/28/2008	12		
4/28/2008	10		
4/28/2008	10		
4/28/2008	15		
4/28/2008	15		
	Average		
	12		

Inst.# 104556									
QC Daily Source Date Result (cpm) P/F									
Date	· · · · ·								
4/28/2008	1,000	Pass							
4/29/2008	900	Pass							
4/30/2008	1000	Pass							
5/1/2008	900	Pass							
5/2/2008	900	Pass							
5/5/2008	900	Pass							
5/6/2008	1000	Pass							
5/7/2008	900	Pass							
5/8/2008	900	Pass							
5/9/2008	900	Pass							
5/12/2008	900	Pass							
5/13/2008	900	Pass							
5/14/2008	1000	Pass							
5/15/2008	900	Pass							
5/16/2008	1000	Pass							
5/19/2008	900	Pass							
5/20/2008	1000	Pass							

Inst	:.# 104556	Source Ser. #	1698-03
Initial So	urce Readings	Nuclide	Cs-137
Date	Result (cpm)		
4/28/2008	900		
4/28/2008	1,000		
4/28/2008	900		
4/28/2008	1,000		
4/28/2008	900		
4/28/2008	900		
4/28/2008	1,000		
4/28/2008	900		
4/28/2008	900		
4/28/2008	1,000		
	Average		
	940		

CERTIFICATE OF CALIBRATION

		Electropl	ated Beta Sta	ndard		
Description of S	tandard:				S.O.# P.O.#	3905 0423
Model No. DN	IS-12	Serial No.	4003-0)2 <u> </u>	sotope	rc-99
Electroplated on						
Total diameter o	f4.77	CI	m and an activ	ve diamete:	c of4.	45 cm
The radioactive covering over th	material is p	ermanently àce.	fixed to the	disc by h	neat treatme	nt without any
Measurement Meth	ođ:					
The 2pi beta emi Absolute counting verified by cour traceable to NIS	g of beta part nting above,	icles emitt below, and	ed in the hem at the oper	isphere ab ative volt	ove the act:	ive surface was
Measurement Resu	lt:					
The observed be calibration date	ta count rate was:	e from the	surface of	the disc	per minute	(cpm) on the
	13,600	+	409			
The total disinte the surface of t	he disc, was:					
	21,800	+	654	(0.00983	μCi)
The uncertainty of the the 99% confinence of the 199% confinence of the 1998 confinence of	idence level,	and the es	timated upper	limit of	n of random systematic	counting error error in this
Calibrated by:	ART REUST		Reviewed by	:)DT	<u>ــــــ</u>	
Calibration Tech	~)				tiv June	MchoerSele
Calibration Date	: 6-26-3	2002	Pavia	wad Data.	/ 1	

Analytical Services
7021 Pan American Freeway NE
Albuquerque, New Mexico 87109-4238
(505) 345-3461 Fax (505) 761-5416
Tolla Free (\$66) Free 2-488 (723-5227)
www.eberlineservices.com

CERTIFICATE OF CALIBRATION

	Electroplated	d Alpha Standa	rd		
				S.O.#	<u>3905</u> 0423
Description of Standard:				P.O.#	0423
Model No. DNS-11	_Serial No	4006-02	Isot	tope	Th-230
Electroplated on polished	SS disc	0.79		mm t	hick.
Total diameter of 4.77	cm and	an active dia	meter of	4.45	cm.
The radioactive material is p covering over the active surf	permanently fix	ked to the dis	c by heat	t treatme	nt without any
Measurement Method:					
chamber. Absolute counting of active surface was verified here the calibration is traceable S/N 2393/91 . Measurement Result: The observed alpha particles the calibration date was:	by counting about to NIST by ref	ove, below, an ference to an	d at the NIST cal:	operativ ibrated a	e voltage. lpha source
13.200	+	397			
The total disintegration rate the surface of the disc, was	e (dpm) assumir :	ng 1.5% backsc			
The uncertainty of the measurerror at the 99% confidence of this measurement.	rement is 3 level, and the	%, which is estimated upp	the sum er limit	of rando	om counting
Calibrated by: ART REUST	F	Reviewed by:)ADD		
Calibration Technician:			•		Whilesenlal
	6-2002		Date:	/	27-02

2 Channel Scaler Certificate of Calibration

ERG

Environmental Restoration Group, Inc. 8809 Washington St. NE, Suite 150 Albuquerque, NM 87113 (505) 298-4224

Manufacturer:	Ludlum Model:	2929 Serial N	lo.:137607						
All Ranges Calibr	ated Electronically; Ludlur	n Pulser Generator S	erial No.: 97743 🗖 :	201932 🖸					
This cal	ibration conforms to the requirements a NMRCB Registration No. 481-			323D - 2002					
☑Mechanical ck. ☐Meter Zeroed ☐Geotropism ck. ☐F/S Response ck. ☑Audio ck.									
☐THR/WIN ck.	High Voltage ck. 🖸 500	v ☑ 1000v ☑ 150	0v 🗖 Battery ck. (min	1 4.4 vdc)					
Alpha Threshold.:	mV Beta Thres	shold.: 4 m	V Beta Window.:	50mV					
Voltage setting: _	650 volts = 2.70	on HV Dial (Pot.)							
Instrument found	within tolerance (+/- 10%)	□Yes □No							
Reference	Alpha Channel D	igital Readout	Beta Channel D	igital Readout					
Setting	Instrument "As Found Reading"	Integrated Counts (1-minute count)	Instrument "As Found Reading"	Integrated Counts (1-minute count)					
400 Kcpm	400 Kcpm	399843	400 Kcpm	399854					
40 Kepm	40 Kcpm	39995	40 Kepm	39988					
4 Kepm	4 Kepm	3999	4 Kepm	4000					
400 cpm	400 cpm	399	400 cpm	398					
Calibration Date: 4-22-08 Calibration Due: 4-22-09									
	•	(Calibration Due: 4	22.09					
Reviewed By:	real p. 2		Date: 4/23/8						

Voltage Plateau Form

ERG

Environmental Restoration Group, Inc. 8809 Washington St. NE, Suite 150 Albuquerque, NM 87113 (505) 298-4224

Detector Mfg.:	Ludlum	Model:	43-10-1	Serial No.:	PR142936					
Counter Mfg.: Ludlum Model: 2929 Serial No.: 137607										
					ditions of ANSI N32.					
Alpha Threshold: 170 mV Beta Threshold: 4 mV Beta Window: 50 mV Geometry / Distance to source: In planchett Cable Length: 2 39 inch Other: Alpha Source: Image: Threshold: 4 mV Beta Window: 50 mV Alpha Source: Image: Threshold: 4 mV Beta Window: 50 mV Alpha Source: Image: Threshold: 4 mV Beta Window: 50 mV Beta Source: Image: Threshold: 4 mV Beta Window: 50 mV Beta Source: Image: Threshold: 4 mV Beta Window: 50 mV Beta Source: Image: Threshold: 4 mV Beta Window: 50 mV Beta Source: Image: Threshold: 4 mV Beta Window: 50 mV Beta Source: Image: Threshold: 4 mV Beta Window: 50 mV										
Count Time:	l_minute(s)								
High Voltage	Alpha Sou	rce Counts	Beta Sour	ce Counts	Backgrou	nd Counts	Pot.			
	Alpha	Beta	Alpha	Beta	Alpha	Beta	Setting			
600	4559	240	3	2493	0	39	2.50			
650	4742	303	2	3177	1	63	2.70			
700	4876	482	4	3915	I	73	3.90			
750	4840	743	5	4135	0	97	3.10			
			•							
					:					
				<u> </u>						
Comments: Recommended Operating High Voltage: 650 volts										
Calibrated By:	JAK.			Ca	alibration Date:	4-22-00	5			
- :	Calibration Due: 4-22-09									
Reviewed By:	Charl	12]	Date: 4/23	108				

Designer and Manufacturer Scientific and Industrial Instruments

CERTIFICATE OF CALIBRATION

LUDLUM MEASUREMENTS, INC.

POST OFFICE BOX 810 PH. 325-235-5494 501 OAK STREET FAX NO. 325-235-4672

SWEETWATED TOWAS

CUSTO	MER ERG (ENVIRC	SES GRP)				K, IEXAS 7955 DER NO.	-
Mfa.	Ludlum Measur	ements. Inc.	Model				,
			Model				
			Due Date24				
Check m	ark 🗹 applies to app	olicable instr. and/a	or detector IAW mfg. spe	c. T. <u>73</u> °F	RH	<u>59</u> % Alf	697.8 mm Hg
			Within Toler. +-10%				
	chanical ck.				cqc##Jg ,		
-	Resp. ck	✓ Meter Zer ✓ Reset ck.		Background Subtract			s. Linearity
✓ Auc		Alarm Set		Window Operation		Geofropi	sm
				Batt. ck. (Min. Volt)			
	orated in accordance			Calibrated in accordan		أمام مأم ماما	
			34 mV Det. Oper			Dial Ratio	=
	HV Readout (2 points)	Ref./Inst	/	V Ref./In	st	/	V
COMM	ENTS:						
Gamma Calibr	ration: GM detectors positioned p		ot for M 44-9 in which the front of probe				
	DANICEAUUTID		EFERENCE	INSTRUMENT RE		INSTRUMEN	
	RANGE/MULTIPI		CAL. POINT	"AS FOUND RE	ADING"	METER REA	DING*
	5000		uR/hr	4000		4000	
	5000		uR/hr	1000		1000	
	500	400 UI	R/hr = 71,600 cpm UR/hr		390		400
	500	100	UR/hr		100		100
	250		R/hr = 37,400 cpm			200	
			uR/hr /	100		100	
	50	<u>7160</u>			40		40
	50	1790			10_		10
	25	3740	cpm	_20		20	
	25	935	cpm			5	
	*Uncertainty within ± 109	6 C.F. within ± 20%			<u>50, 25</u> R	ange(s) Calib	rated Electronically
	REFERÊNCE	INSTRUMENT	Instrument	REFERENCE	INSTRU	IMENT	INSTRUMENT
	CAL. POINT	RECEIVED	METER READING*	CAL. POINT	RECEI	VED `	METER READING*
Digital Beadout				Log Scale			
.caace,		Trems.		<u></u>			
			"···		<u></u>		
idhim Maga	uroments inc. cortifies that the	an about instrument heal	been calibrated by standards trac				
ther internat	tional Standards Organization	n members, or have been	n derived from accepted values of	f natural physical constants or t	iave been derived	by the ratio type o	f calibration techniques.
			7540-1-1994 and ANSI N323-1978		State a	f Texas Calibrati	on License No. LO-1963
	ce Instruments and		5-394/1122	781	□794 □ T(1	/ Date::4	ron Am-241 Be S/N T-304
	ha S/N						
	500 S/N189			Colonia de	Other _	.,,	£7200412
	. •	m Tensle		141/47/			<u> </u>
Calibrate	ed By: William	n Iconsle	4	Date ,	44 - Muzic	uac -07	
Reviewe	ed Bv: $\prec \!$	and Has	∱¹	Date	74 ČL	.e 0.7	

This certificate shall not be reproduced except in full, without the written approval of Ludlum Measurements, Inc. $FORM\ C22A\ 01/24/2007$

AC Inst. Passed Dielectpup (Hérfithis) Drieagenzionuity Test Only Failed:

ERG

Ratemeter Certificate of Calibration

Environmental Restoration Group, Inc. 8809 Washingtion St. NE, Suite 150 Albuquerque, NM 87113 (505) 298-4224

Manufacturer: Ludlum Moo	del: 2360 Serial No.:_	184951	
All Ranges Calibrated Electronically	; Ludlum Pulser Generator Seria	l No.: ☑ 97743 ☐ 201932	
	requirements and acceptable calibration condit to. 481-3 • Calibration of Radiation Detection I		
-	ta Threshold.:4mV Bet	■ Battery ck. (min 4.4 vdc) a Window.: 50 mV	
Reference Setting	Instrument "As Found Reading"	Instrument Meter Reading	
400 Kcpm	<u>+/- 10%</u>	400 Kepm	
<u>100 Kepm</u>	+/- 10%	<u>100 Kepm</u>	
<u>40 Kcpm</u>	+/- 10%	<u>40 Kepm</u>	
<u>10 Kcpm</u>	<u>+/- 10%</u>	<u>10 Kcpm</u>	
4 Kcpm	<u>+/- 10%</u>	4 Kepm	
1 Kcpm	+/- 10%	1 Kcpm	
<u>400 cpm</u>	<u>+/- 10%</u>	400 cpm	
<u>100 cpm</u>	<u>+/- 10%</u>	<u>100 cpm</u>	
Reference Setting	Instrument "As Found Reading"	Integrated Counts (1-minute count)	
400 Kepm	+/- 10%	398305	
40 Kcpm	+/- 10%	39896	
4 Kcpm		4003	
400 cpm	<u>+/- 10%</u>	400	
10-1			
Calibrated By:	Calibration Dat	e: 1-30-08	
,	Calibration Du	e: 1-30·09	
Reviewed By: 44Amm	Date: /-3	0-08	

Voltage Plateau Form

ERG

Environmental Restoration Group, Inc. 8809 Washington St. NE, Suite 150 Albuquerque, NM 87113 (505) 298-4224

Detector Mfg.	: Ludlum	Model:	43-68	Serial No.:_	PR1	26794
		Model:		Serial No.:_	18	4951
				alibration conditions o tion Detection Instrum		77.
Alpha Thresh	old:120	_mV Beta Th	reshold: 4	mV Be	ta Window: _5	0mV
Detector geon	netry to source	☐ Face, ☐ S	Side, 🗖 Belo	w, 🗖 Other:		
Distance to so	urce: 🗹 Conta	ct, 🛮 6-Inche	s, DOther:_			
				Other:		
				ner:		
Count Time:	1 Minute			······································		
High	Alpha Sou	rce Counts	Beta Sou	rce Counts	Backgrou	nd Counts
Voltage	Alpha	Beta	Alpha	Beta	Alpha	Beta
1550	1959	1064	5	4012	3	229
1575	1952	1094	9	4198	3	219
1600	2162	1186	25	4440	4	317
1625	2411	1099	104	3983	4	326
1650	2599	954	364	3143	21	300

Comments: Re	ecommended (perating High	المالي Voltage: ا	€s# 1650 volt	S	
	ml					
Calibrated By					oate: 1-30 ·	
	1/11	. ,		Calibration I	Due: 1-30	0.09
Reviewed By:	SHOW	ruk		Date:/_	30-08	

->

Ratemeter Certificate of Calibration

ERG

Environmental Restoration Group, Inc. 8809 Washingtion St. NE, Suite 150 Albuquerque, NM 87113 (505) 298-4224

Manufacturer: Ludlum Mode	el: 2360 Serial No.	.:184933
All Ranges Calibrated Electronically;	Ludlum Pulser Generator Ser	ial No.: □ 97743 ☑ 201932
	equirements and acceptable calibration con 481-3 • Calibration of Radiation Detection	
☑ Mechanical ck. ☑ Meter Zeroed	☑Geotropism ck. ☐F/S F	Response ck.
☐THR/WIN ck. High Voltage ck.	☑500v ☑1000v ☑1500v	☑ Battery ck. (min 4.4 vdc)
Alpha Threshold.: 120 mV Beta	Threshold.: 4 mV Be	eta Window.: 30 CmV
Internal Calibration Date Reset 🔽 In	strument found within toleran	nce (+/- 10%) Yes ☑ No ☐
Reference Setting	Instrument "As Found Reading"	Instrument Meter Reading
400 Kcpm	400 Kcpm	400 Kcpm
<u>100 Kcpm</u>	100 Kcpm	<u>100 Kcpm</u>
<u>40 Kepm</u>	40 Kcpm	<u>40 Kcpm</u>
<u>10 Kcpm</u>	10 Kcpm	<u>10 Kcpm</u>
4 Kcpm	4 Kcpm	4 Kcpm
1 Kcpm	1 Kcpm	1 Kcpm
400 cpm	<u>400 cpm</u>	<u>400 cpm</u>
<u>100 cpm</u>	<u>100 cpm</u>	<u>100 cpm</u>
Reference Setting	Instrument "As Found Reading"	Integrated Counts (1-minute count)
400 Kcpm	+ /- 10%	398814
40 Kepm	+/- 10%	39889
4 Kcpm	+/- 10%	3989
400 cpm	<u>+/- 10%</u>	399
Calibrated By:	Calibration Da	te: 4-22-08
	Calibration Du	te: <u>4-22-08</u> e: <u>4-22-09</u>
Reviewed By: Clark	Date: 4/2	3/08

Voltage Plateau Form

€RG

Environmental Restoration Group, Inc. 8809 Washington St. NE, Suite 150 Albuquerque, NM 87113 (505) 298-4224

etector Mfg.:	Ludlum	_ Model:	43-68	Serial No.:	PRI	90490
ounter Mfg.:_	Ludlum		2360	Serial No.:	184	1933
Tì				libration conditions of ion Detection Instrume		7.
lpha Thresho	ld: 120	mV Beta Th	reshold: 4	mV Beta	a Window: 50)mV
etector geome	etry to source:	☑ Face, ☐	Side, 🗖 Belo	w, 🗖 Other:		
istance to sou	irce: 🗹 Conta	ct, 🗖 6-Inche	es, Other:_			
lpha Source :	☑ Th230 @ 13,0	000 dpm (2/14/08)	sn: 4098-03 🗖	Other:		
eta Source:☑	Tc99 @ 16,800	dpm (2/14/08) sn:	4099-03 🗖 Otl	ner:		
ount Time:	1 Minute					
High	Alpha Sou	rce Counts	Beta Sou	rce Counts	Backgrou	nd Counts
Voltage	Alpha	Beta	Alpha	Beta	Alpha	Beta
1500	907	1046	16	2967	ì	127
1550	1509	1103	21	4248	5	228
1575	1816	1091	37	4324	1	235
1600	1813	1157	28	4351	3	311
1625	1816	1091	99	3832	8	295
1650	2035	886	411	3028	29	257
1700	3637	391	4297	289	266	53
omments: Re	ecommended (Operating High	Voltage:	1600 volt	ts	
	1.0					
alibrated By:			>	Calibration I	Date: 4-22	-08
				Calibration !	Date: <u>4-22</u> Due: <u>4-2</u>	2-09
		202		Outionation i	123/08	

Voltage Plateau Form

€RG

Environmental Restoration Group, Inc. 8809 Washington St. NE, Suite 150 Albuquerque, NM 87113 (505) 298-4224

Detector Mfg.	: Ludlum	Model:	43-37	Serial No.:	PR1	13577
Counter Mfg.:	Ludlum	Model:	2224	Serial No.:	143	8031
7				alibration conditions of tion Detection Instrume		7.
Detector geom	etry to source:	☑ Face, ☐ S	Side, 🗖 Belo	mV Beta		
Alpha Source	: 2 Th230 @ 13,0	000 dpm (2/14/08)	sn: 4098-03	Other:		
Beta Source:	Z T¢99 @ 16,800 €	dpm (2/14/08) sn:	4099-03 🗖 Otl	ner:		
Count Time:_	I Minute			****		
High	Alpha Sou	rce Counts	Beta Sou	rce Counts	Backgrou	nd Counts
Voltage	Alpha	Beta	Alpha	Beta	Alpha	Beta
1650	1142	1700	18	4142	21	891
1675	1254	1913	23	4225	13	1116
1700	1580	2273	30	4531	21	1454
1725	1740	2342	126	4359	38	1653
·						
				<u> </u>		
Comments: F	Recommended (Operating High	Voltage:	1675_volt	s	
	1			·		
Calibrated By				Calibration D	Pate: 4-22	08
				Calibration I	Due: 4-23	2.09
Reviewed By	: Ou	eph		Date: 4/		

Ratemeter Certificate of Calibration

ERG

Environmental Restoration Group, Inc. 8809 Washingtion St. NE, Suite 150 Albuquerque, NM 87113 (505) 298-4224

Manufacturer: Ludlum Mod	del: 2224 Serial No.:	143031								
All Ranges Calibrated Electronically	; Ludlum Pulser Generator Seria	ıl No.: □97743 🗹 201932								
This calibration conforms to the requirements and acceptable calibration conditions of ANSI N323A - 1997. NMRCB Registration No. 481-3 • Calibration of Radiation Detection Instruments & Devices										
Mechanical ck. Meter Zeroed Geotropism ck. F/S Response ck. Audio ck. THR/WIN ck. High Voltage ck. 500v 1000v 1500v Battery ck. (min 4.4 vdc) Alpha Threshold.: nV Beta Threshold.: nV Beta Window.: nV Meter Zeroed Audio ck. Mo number 1500v Response ck. Audio ck. Mo number 1500v Response ck. Audio ck. No number 1500v Response ck. No number 1500v No number 1500v										
Reference Setting	Instrument "As Found Reading"	Instrument Meter Reading								
400 Kcpm	400 Kcpm	400 Kcpm								
100 Kepm	100 Kcpm	100 Kcpm								
<u>40 Kcpm</u>	<u>40 Kepm</u>	40 Kcpm								
<u>10 Kcpm</u>	10 Kcpm	<u>10 Kcpm</u>								
4 Kcpm	4 Kcpm	4 Kepm								
1 Kepm	1 Kepm	1 Kepm								
<u>400 cpm</u>	400 cpm	400 cpm								
<u>100 cpm</u>	<u>100 cpm</u>	<u>100 cpm</u>								
Reference Setting	Instrument "As Found Reading"	Integrated Counts (1-minute count)								
400 Kcpm	+/- 10%	399801								
40 Kepm	+/- 10%	39982								
4 Kepm	+/- 10%	3994								
400 cpm	+/- 10%	400								
<u></u>										
Calibration Date: 4-22-08 Calibration Due: 4-22-09										
Reviewed By: (Jul 1) Date: 4/23/08										

Ratemeter Certificate of Calibration

€RG

Environmental Restoration Group, Inc. 8809 Washingtion St. NE, Suite 150 Albuquerque, NM 87113 (505) 298-4224

Manufacturer: Ludium Mo	del: 2224 Serial No.:	146714								
All Ranges Calibrated Electronically	; Ludlum Pulser Generator Seria	al No.: 🔲 97743 🗹 201932								
This calibration conforms to the requirements and acceptable calibration conditions of ANSI N323A - 1997. NMRCB Registration No. 481-3 • Calibration of Radiation Detection Instruments & Devices										
☑ Mechanical ck. ☑ Meter Zeroed	_	<u> </u>								
☐THR/WIN ck. High Voltage ck. ☐ 500v ☐ 1000v ☐ 1500v ☐ Battery ck. (min 4.4 vdc) Alpha Threshold.: 100 mV Beta Threshold.: 4 mV Beta Window.: 40 mV										
Internal Calibration Date Reset	<u> </u>									
Reference Setting	Instrument "As Found Reading"	Instrument Meter Reading								
400 Kcpm	400 Kcpm	<u>400 Kcpm</u>								
100 Kcpm	100 Kcpm	100 Kcpm								
<u>40 Kcpm</u>	40 Kcpm	<u>40 Kcpm</u>								
10 Kepm	<u>10 Kcpm</u>	10 Kcpm								
4 Kcpm	4 Kepm	4 Kcpm								
1 Kcpm	1 Kepm	1 Kcpm								
400 cpm	<u>400 cpm</u>	400 cpm								
<u>100 cpm</u>	<u>100 cpm</u>	100 cpm								
Reference Setting	Instrument "As Found Reading"	Integrated Counts (1-minute count)								
400 Kcpm	+/- 10%	398642								
40 Kcpm	+/- 10%	39869								
4 Kcpm	+/- 10%	3988								
400 cpm	+/- 10%	399								
Calibrated By: Calibration Date: 4.12-08										
Calibrated By: Calibration Date: 4-22-08 Calibration Due: 4-22-09										
Reviewed By: Chulf	Date: 1/23									

€RG

Voltage Plateau Form

Environmental Restoration Group, Inc. 8809 Washington St. NE, Suite 150 Albuquerque, NM 87113 (505) 298-4224

Detector Mfg.	: Ludlum	_ Model:	43-37	Serial No.:	PR124946	
Counter Mfg.:	Ludlum	Model:	2224	Serial No.:	146714	
Т				alibration conditions of		7.
Alpha Thresho	old: 100	mV Beta Th	reshold: 4	mV Beta	a Window: 40)mV
Detector geom	etry to source:	☑ Face, ☐	Side, 🗖 Belo	ow, 🗖 Other:		
Distance to so	urce: 🗹 Conta	ct, 🗖 6-Inche	es, 🗖 Other:_			
Alpha Source	: 1 Th230 @ 13,0	000 dpm (2/14/08)	sn: 4098-03 🗖	Other:		
Beta Source:	Tc99 @ 16,800 (lpm (2/14/08) sn:	4099-03 🗖 Ot	her:		
Count Time:	1 Minute					
High	Alpha Source Counts		Beta Sou	rce Counts	Background Counts	
Voltage	Alpha	Beta	Alpha	Beta	Alpha	Beta
	İ					
1650	1257	1553	13	4005	11	878
1675	1165	1835	9	4220	9	1160
1700	1366	2234	17	4138	17	1445
1725	1530	2112	108	4409	34	1528
	<u> </u>					
Comments: Re	ecommended C	perating High	Voltage:	1675 volts	3	
	ا ۵۰.					
Calibrated By:				Calibration D	ate: 4-22-0	08
·	•		_		nue: 4-22-	
Reviewed By: Chall Date: 4/2/08						