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Abstract 
Correlated color temperature (CCT) is one of the primary metrics used to characterize the visual 
appearance of light and is most informative when coupled with distance from the Planckian locus (Duv). 
Given a set of chromaticity coordinates—which are calculated from a light source’s spectral power 
distribution—it is possible to compute CCT and Duv with varying levels of accuracy. Over the last six 
decades at least a dozen methods have been proposed to compute CCT while balancing accuracy with 
calculation complexity. CCT values become inconsistent at some level of precision when calculated using 
different methods, which in turn can lead to discrepancies in dependent or subsequent calculations 
used by lighting professionals and may be problematic in software. Although methods are now 
documented that can provide extremely high accuracy, no consensus body has recommended a 
preferred method. This analysis examines both the calculation speed and the CCT and Duv accuracy of 
previously proposed and new methods. With consideration of the calculation accuracy, computational 
burden, calculation complexity, and considerations of practical implementation, we recommend a 
recent modification of the Robertson method.  
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1 Introduction 
Correlated color temperature (CCT) has long been one of the primary metrics by which lighting 
professionals evaluate light sources, but there is not an official calculation method recommended by 
consensus bodies such as the Illuminating Engineering Society (IES), National Electrical Manufacturers 
Association (NEMA), or International Commission on Illumination (CIE). IES defines CCT as “the absolute 
temperature of a blackbody whose chromaticity most nearly resembles that of the light source” (IES 
2020a). CIE provides a more detailed definition, which reads in part: “Temperature of a Planckian 
radiator having the chromaticity nearest the chromaticity associated with the given spectral distribution 
on a modified 1976 UCS [Uniform Chromaticity Scale] diagram where u', (2/3)v' are the coordinates of 
the Planckian locus and the test stimulus” CIE 2011). This CIE definition was updated in the 2004 version 
of CIE 15 (CIE 2018) to be purely a numerical definition—tied to a specific chromaticity diagram—
without any implication that CCT represents the closest visual match to a Planckian radiator, as was 
previously part of the definition. Nonetheless, neither IES nor CIE explicitly recommends a calculation 
method to be used to determine CCT, despite reporting precise values for some standard illuminants 

(e.g., ISO 2022). CIE provides the following note with its definition of CCT, but this describes a concept, 
rather than a specific and actionable standard calculation method: 

“Note 2 to entry: Correlated colour temperature can be calculated by a simple minimum search 
computer program that searches for that Planckian temperature that provides the smallest chromaticity 
difference between the test chromaticity and the Planckian locus, or for example by a method 
recommended by Robertson, A.R. "Computation of correlated color temperature and distribution 
temperature", J. Opt. Soc. Am. 58, 1528-1535, 1968. (Note that the values in some of the tables in this 
reference are not up to date.)” 

Many methods for calculating CCT have been proposed. Early methods date to the 1930s (Davis 1931; 
Judd 1936), as the increasing availability of light sources with off-Planckian chromaticity required a 
method to characterize the relative appearance of the light. Despite being different from the methods 
that are familiar today, these early works helped formalize the concept of iso-temperature lines and a 
closest match (Harding 1950; Kelly 1963; MacAdam 1977; Wyszecki and Stiles 1982).  

In 1968, Robertson defined a method for estimating CCT based on a lookup table (LUT) and interpolation 
formula in the CIE 1960 (u, v) UCS diagram (Robertson 1968). In 2014, Ohno proposed updates to the 
LUT and interpolation method to improve the accuracy of this approach, with two distinct options for 
the LUT depending on the desired accuracy (1% increments totaling approximately 300 rows or 0.25% 
increments totaling approximately 1,200 rows covering a CCT range of 1000 K to 20,000 K, with the 
exact number of rows depending on the treatment of the start and end conditions) (Ohno 2014). In the 
intermediate period, several researchers proposed methods based on a formula fit to the Planckian 
locus or chromaticity diagram (Schanda et al. 1978; Krystek 1985; Xingzhong 1987; McCamy 1992; 
Hernández-Andrés et al. 1999; Gardner 2000; Guo and Houser 2004), with varying degrees of success in 
improving the accuracy of calculations within a range of interest (Zheleznikova 2020; Prytkov and 
Kolyadin 2021). These prescriptive approaches require parameter refitting (i.e., recreation of the 
formulas) when using different color matching functions or a different UCS, while LUTs are more readily 
updated.  

As computing resources have improved, iterative methods that provide an estimation of CCT based on 
an accuracy stopping criterion have been proposed. Li et al. (2016) proposed augmenting the Robertson 
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method with a Newton-Raphson (NR) algorithm (Ypma 1995). The latter is a root finding algorithm that 
finds progressively better roots of a function starting from an initial guess and the function’s derivative. 
The additional algorithm can, in theory, provide accuracy up to any specified tolerance. Likewise, Zhang 
documented the performance of a golden section search method, which utilizes consecutively more 
refined LUTs—in this case reducing the size of the LUT using the golden ratio—to achieve a 
predetermined accuracy tolerance (Zhang 2019). More recently, Baxter, Royer, and Smet (2023) 
described how a Fibonacci search (Avriel and Wilde 1966; Overholt 1973) may improve the speed of 
searching a LUT, in conjunction with an interpolation method like those described by Robertson or 
Ohno, or as a standalone method. The presence of many alternatives means that choosing a preferred 
method for determining CCT cannot only be dependent on accuracy but should also consider 
computation speed. Speed matters, for example, in simulation analyses requiring millions or billions of 
calculations, or in control software when values must be determined rapidly in real time. Notably, nearly 
any level of accuracy can be achieved by altering the specific details of different methods but increasing 
the accuracy of a given method can increase calculation time and complexity. 

For engineering and specification purposes, almost any of the proposed methods including and after 
Robertson’s proposal likely provides sufficient accuracy for determining CCT. The lack of a single 
recommendation, however, is undesirable. For example, different versions of the method proposed by 
Ohno have been used in calculators supplied with ANSI/IES TM-30 (0.25% increment LUT) (IES 2020b) 
and CIE 224 (1% increment LUT) (CIE 2017)—neither written standard specifies the CCT calculation 
method used, nor is it readily apparent in the calculation software. This results in slightly different 
calculated CCT values, which in turn results in slightly different values for Rf—though the differences are 
negligible in normal use. The differences in both CCT and Rf are immaterial to practice, but 
consequential when debugging or validating software. 

Duv (symbol: Duv) is an important companion metric, such that CCT and Duv together provide an exact 
specification of chromaticity. This also compensates the incompleteness of CCT in conveying relative 
color appearance information (Durmus 2022). For some methods, such as those of Ohno, Duv is 
computed as part of the CCT calculation. In other cases, as when applying a Newton-Raphson algorithm, 
precise calculation of Duv is only possible after the final CCT is determined. Ohno also proposed a 
formula for approximating Duv based on chromaticity alone (Ohno 2014). Given that Duv is more 
straightforward to calculate, there is little existing literature investigating the accuracy of Duv 
calculations. 

1.1 Scope 
This study investigated the accuracy and speed of CCT and Duv calculations by implementing a selection 
of existing methods and new combinations. Each method’s accuracy was determined by comparing 
estimated values for a reference set of chromaticity coordinates with known CCT and Duv values. Speed 
was assessed using independent implementations of the methods coded in Python and C. Together with 
subjective evaluations of calculation complexity and feasibility of implementation, results of the 
accuracy and speed assessments were used to reach a consensus recommendation. 

The analysis was instigated by a working group of the Color Committee of the Illuminating Engineering 
Society to inform future decisions regarding standardization of a method for calculating CCT and Duv. A 
consensus process established a priori accuracy limits of 0.1 K maximum error for CCT and 0.0001 
maximum error for Duv, which are an order of magnitude smaller than typical reporting practices and 
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should be sufficient for applied lighting purposes. While much higher accuracy is possible, the greatest 
benefit of a standardized method is the consistency and repeatability of the calculations, rather than 
accuracy beyond practical or scientific relevance. The committee also deemed it important to identify a 
method that would not be restricted to a specific set of color matching functions or chromaticity 
coordinate system. 

2 Method 
2.1 Determination of Reference Test Coordinates  
Determining the accuracy of CCT and Duv calculations requires a set of reference values, which have 
traditionally been determined by converting a regular grid of CCT and Duv values to (u, v) chromaticity 
coordinates that fall along iso-temperature lines (Ohno 2014; Li et al. 2016; Zhang 2019), or at the 
bounds of the quadrangles specified in ANSI C78.377 (Prytkov and Kolyadin 2021). The reference 
coordinates are used as inputs to the CCT calculation method, such that the estimated CCT and Duv 
values can be compared to the index CCT and Duv values. Several methods have been proposed for 
computing iso-temperature lines and their associated chromaticity coordinates. Ohno  (2014) proposed 
an “offset” approximation method (i.e., a numerical derivative method using the slope of the Planckian 
locus), and more recently, Prytkov and Kolyadin (2021) proposed a method based on the derivatives of 
the chromaticity coordinates with respect to the CCT. However, Prytkov and Kolyadin used numerical 
central derivatives based on finite differences in their calculations, and it can be shown that this method 
is equivalent to Ohno’s offset method, except that the latter is based on forward or backward numerical 
derivatives. Decades ago, Robertson (1968) discussed a more accurate method, first proposed by Mori 
et al. (1964), that is based on analytical derivatives of a Planckian radiator, which therefore does not 
depend on the choice of the size of the “offset” or the finite differences. The difference between 
numerical and analytical derivative-based methods is substantially smaller than the CCT accuracy 
tolerance chosen for this work. Nonetheless, the exact analytical derivative method described by Mori 
et al. and Robertson was used to determine the reference coordinates. Equations are available in those 
publications. 

The extents and resolution of the reference grids used in past work have varied. The extents in both CCT 
and Duv are critical in determining the maximum error for non-iterative methods, with resolution 
expected to only influence mean error. For this analysis, we considered the range of 1500 K to 40,000 K, 
with a Duv range of -0.05 to 0.05, excluding points that fall outside the spectrum locus. This range fully 
covers the characteristics of nominally “white” light sources typically employed in the built environment.  

While in the past many studies adopted a reference set with a regular interval (usually in terms of 
reciprocal megakelvin), a preliminary analysis found that the interaction of the interval of a given LUT 
and the sampling of CCT and Duv in the reference set can bias the resulting accuracy determination. For 
example, a LUT with a resolution of 100 K would produce zero error if the evaluated reference CCTs 
were always in increments of 100 K, meaning that no computation would be required beyond the table 
lookup. To avoid such bias, a reference set was constructed by first creating an intermediate grid of CCT 
and Duv targets with values within the range of CCT and Duv specified above. Forty CCT targets were 
chosen: 1500, 1550, 1600, 1650, 1700, 1750, 1800, 1850, 1900, 1950, 2000, 2100, 2200, 2300, 2400, 
2500, 2600, 2700, 2800, 3000, 3250, 3500, 3750, 4000, 4250, 4500, 4750, 5000, 5500, 6000, 6500, 7000, 
8000, 9000, 10,000, 12,500, 15,000, 20,000, 30,000, and 40,000 K. Five Duv targets were chosen: -0.050, 
-0.025, 0.000, 0.025, and 0.050. Next, for each target grid coordinate (CCTi, Duvi), ten random (CCT, Duv) 
value pairs were generated within the following intervals: [(Xi-1 – Xi)/2, (Xi+1 – Xi)/2], with X representing 
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either CCT or Duv. With the appropriate selection of CCT targets, this results in a set of (CCT, Duv) pairs 
that are also approximately uniformly distributed in the CIE 1960 UCS. The final 1,270 tested coordinates 
are shown in Figure 1, with the numerical data provided in the supplemental data file. 

2.2  CCT Calculation Methods 
The final analysis reported here includes 40 methods, as summarized in Table 1. They are variations of 
three base approaches: Robertson (R) (Robertson 1968), Ohno (O) (Ohno 2014), and Fibonacci (F) 
(Baxter et al. 2023), with different calculation options, all of which meet the accuracy requirements 
specified in Section 1.1. New LUTs were created and used for these methods, replacing the original LUTs 
described in their references (e.g., Robertson [1968] used obsolete values in the original tables).  The 
methods have LUTs with different increments: fixed kelvin increments (0.2 K, 1 K, 5 K, 10 K, 25 K, 50 K) 
or percentage change increments (0.25%, 0.5%, 0.75%, 1%). Not all increments are reported for all base 
approaches, but several hundred combinations (including additional LUT increments: 100 K, 250 K, 500 
K, 1000 K, 5%, 15%) were examined in preliminary analyses, as described in Section 2.2.1. Note that for 
the Ohno-based methods, the triangular-to-parabolic transition point was not updated for each LUT, 
while the CCT-based correction factor was. Instead, for the former the previously published value of 
0.002 was used, though we note that fine tuning this transition point can marginally reduce the 
maximum error. With optimized parameters, the Ohno method can meet the accuracy criteria with a 
LUT of 0.2%, but this variation is not further considered in this report because it does not have speed or 
data-size advantages. 

Twenty-eight of the reported methods include a Newton-Raphson algorithm to improve upon the initial 
estimate, as described by Li et al. (2016) When a Newton-Raphson algorithm was applied, it included a 
stopping criterion of 0.1 K. However, the final accuracy was better by roughly 4 orders of magnitude (or 
better) due to the marked improvement possible with just one iteration.  

 

Figure 1. CIE 1960 UCS coordinates of the reference set (1,270 points). 
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In accordance with CIE guidelines (CIE 2018), all LUTs were determined with Planckian radiation 
calculated from 360 nm to 830 nm in 1 nm increments, with constants c1 = 3.74177185x 10-16 W·m², 
c2 =  1.4388x 10-2m·K, and index of refraction n = 1—though c1 does not affect color calculations.  These 
conditions and the constant values were used consistently in this analysis, as changing the wavelength 
range or intervals or the parameters c2 or n would change the reference (u, v) coordinates. The LUTs 
extended from 1000 K to 40,000 K—1000 K being below the lowest test coordinate at nominally 1500 K.  

2.2.1 Preliminary Analyses 
The final group of 40 methods was selected through an iterative, exploratory process, where 
refinements were made to the specific implementations of the methods. In total, several hundred 
different methods were tested (not including different reference coordinate tests, different 
programming languages, etc.). The full gamut of methods comprised different combinations of base 
approach, LUT increment, secondary improvement algorithm (none, Newton-Raphson, or cascading 

Table 1. Description of reported methods, including the maximum CCT and Duv errors found in this analysis. All LUTs were 
generated from 1,000 K to 40,000 K. The abbreviation for each method is: Primary Algorithm (R, O, or F) [LUT Increment, 
Secondary Algorithm (NO for None or NR for Newton-Raphson)]. 

 
LUT 
Increment 

LUT 
Rows Primary Algorithm Secondary Algorithm Abbreviation 

Maximum 
CCT Error 

Maximum 
Duv error 

1 50 K 781 Robertson None R[50K,NO] 7.50E-02 7.70E-06 
2 50 K 781 Robertson Newton-Raphson R[50K,NR] 8.90E-06 2.90E-08 
3 25 K 1,561 Robertson None R[25K,NO] 1.80E-02 1.90E-06 
4 25 K 1,561 Robertson Newton-Raphson R[25K,NR] 5.30E-07 2.20E-09 
5 10 K 3,901 Robertson None R[10K,NO] 2.90E-03 3.10E-07 
6 10 K 3,901 Robertson Newton-Raphson R[10K,NR] 1.40E-08 4.30E-11 
7 5 K 7,801 Robertson None R[5K,NO] 7.20E-04 7.70E-08 
8 5 K 7,801 Robertson Newton-Raphson R[5K,NR] 1.30E-08 1.30E-12 
9 1 K 39,001 Robertson None R[1K,NO] 2.80E-05 3.10E-09 
10 1 K 39,001 Robertson Newton-Raphson R[1K,NR] 1.40E-08 4.50E-15 
11 1 % 372 Robertson None R[1%,NO] 9.70E-02 1.20E-06 
12 1 % 372 Robertson Newton-Raphson R[1%,NR] 8.50E-07 2.40E-09 
13 0.75 % 495 Robertson None R[0.75%,NO] 5.00E-02 6.60E-07 
14 0.75 % 495 Robertson Newton-Raphson R[0.75%,NR] 2.60E-07 1.70E-10 
15 0.50 % 741 Robertson None R[0.5%,NO] 2.50E-02 3.00E-07 
16 0.50 % 741 Robertson Newton-Raphson R[0.5%,NR] 6.00E-08 1.60E-10 
17 0.25 % 1,479 Robertson None R[0.25%,NO] 6.00E-03 7.40E-08 
18 0.25 % 1,479 Robertson Newton-Raphson R[0.25%,NR] 1.80E-08 1.10E-11 
19 50 K 781 Ohno Newton-Raphson O[50K,NR] 9.60E-09 1.20E-14 
20 25 K 1,561 Ohno Newton-Raphson O[25K,NR] 1.30E-08 5.60E-16 
21 10 K 3,901 Ohno Newton-Raphson O[10K,NR] 6.70E-09 3.60E-15 
22 5 K 7,801 Ohno None O[5K,NO] 3.50E-02 4.50E-07 
23 5 K 7,801 Ohno Newton-Raphson O[5K,NR] 6.20E-07 1.90E-08 
24 1 K 39,001 Ohno None O[1K,NO] 7.70E-03 1.20E-08 
25 1 K 39,001 Ohno Newton-Raphson O[1K,NR] 3.80E-08 3.00E-11 
26 1 % 372 Ohno Newton-Raphson O[1%,NR] 1.70E-08 1.50E-13 
27 0.75 % 495 Ohno Newton-Raphson O[0.75%,NR] 1.30E-08 1.10E-14 
28 0.50 % 741 Ohno Newton-Raphson O[0.5%,NR] 7.80E-09 5.60E-16 
29 0.25 % 1,479 Ohno Newton-Raphson O[0.25%,NR] 1.70E-08 6.30E-16 
30 50 K 781 Fibonacci Newton-Raphson F[50K,NR] 9.70E-09 8.50E-12 
31 25 K 1,561 Fibonacci Newton-Raphson F[25K,NR] 5.90E-09 2.80E-14 
32 10 K 3,901 Fibonacci Newton-Raphson F[10K,NR] 2.70E-06 3.20E-09 
33 5 K 7,801 Fibonacci Newton-Raphson F[5K,NR] 1.70E-07 3.30E-10 
34 1 K 39,001 Fibonacci Newton-Raphson F[1K,NR] 1.80E-08 1.10E-12 
35 0.2 K 195,001 Fibonacci None F[0.2K,NO] 1.00E-01 4.90E-07 
36 0.2 K 195,001 Fibonacci Newton-Raphson F[0.2K,NR] 1.60E-05 4.90E-07 
37 1 % 372 Fibonacci Newton-Raphson F[1%,NR] 1.70E-08 1.20E-15 
38 0.75 % 495 Fibonacci Newton-Raphson F[0.75%,NR] 2.20E-08 9.40E-16 
39 0.50 % 741 Fibonacci Newton-Raphson F[0.5%,NR] 5.60E-09 5.80E-16 
40 0.25 % 1,479 Fibonacci Newton-Raphson F[0.25%,NR] 6.00E-09 5.50E-16 
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LUT—a method whereby new LUTs are created between the two closest estimates of another method—
and repeated several times). The final group of 40 methods was analyzed with and without batch 
processing (i.e. converting multiple chromaticity coordinates in a single call to the conversion function) 
for the Python-based calculations (batches of 25 or no batches), but only results without batch 
processing are reported here because it did not change the recommended combination of base method 
and LUT. Nonetheless, the use of batch processing in Python resulted in substantial decreases in 
computation time for all methods due to a reduction of the size and memory requirements of some of 
the arrays created by the highly vectorized code. Formulaic methods, such as that of McCamy (1992), 
were excluded from the analysis based on previously demonstrated inferiority in accuracy (Prytkov and 
Kolyadin 2021), as well as the difficulty to adapt the method to other color matching functions or 
coordinate systems. Developing a method that is not restricted to a specific set of color matching 
functions or coordinate system was deemed an important consideration by the committee that initiated 
this work. 

Methods that were initially considered but not reported here were not explored further due to poor 
performance in speed or accuracy. For example, the method of Zhang (2019) utilizing cascading LUTs 
based on a golden section search was found to be considerably slower than other alternatives at the 
desired tolerance level, regardless of the resolution of the original LUT. Cascading LUTs in general 
resulted in longer calculation times. Likewise, a recent alteration of the Ohno method by Li et al. (2022) 
that uses a spline fit instead of a parabolic fit was tested but was found to offer no significant 
advantages—it was slightly slower than the original Ohno method, and while the median error was 
improved, the maximum error was not substantially different. 

Without a secondary improvement algorithm, base methods (Robertson, Ohno, or Fibonacci) with a 
1000 K, 500 K, 250 K, 100 K, 15%, and 5% increment LUT could not reach the required 0.1 K accuracy for 
all 1,270 reference coordinates, so they were also omitted from Table 1. The original 30-row, variable-
increment LUT of Robertson also did not meet the accuracy thresholds (max CCT error = 151.7 K), nor 
did either of the methods described by Ohno (1% LUT max CCT error = 2.6 K; 0.25% LUT max CCT error = 
0.4 K). Only methods that met the 0.1 K CCT and 0.0001 Duv thresholds without a secondary 
improvement algorithm are reported in this article.  

All methods utilizing a secondary algorithm met the accuracy criteria. For each LUT type (fixed kelvin 
increments and fixed % increments) and each base method, a subset of methods employing a secondary 
Newton-Raphson algorithm is reported. This includes two Robertson-based approaches with lower 
resolution LUTs.  

2.3 Duv Calculation 
As Duv is defined as the signed distance between the (u, v) chromaticity coordinates of a light and those 
of the closest Planckian radiator, it can readily be calculated once the CCT has been estimated using any 
of the methods. This is done by calculating a Planckian spectrum with the estimated color temperature, 
calculating its chromaticity coordinates, and then determining the distance to the chromaticity 
coordinates of the test source. However, this additional step increases the calculation time, and it can 
be avoided while incurring only minor additional errors by calculating Duv directly from some of the 
intermediate quantities calculated while determining the CCT. This is already done in the Ohno base 
approach, and it can also be done for the other base approaches or after the Newton-Raphson 
algorithm has been applied.  
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Duv for the Ohno base approach was determined using equations 8 and 11 in Ohno (2014) for the 
triangular and parabolic solutions, respectively. For the Robertson base approach, Duv was determined 
by first estimating the (u, v) chromaticity coordinates of the closest Planckian using equation 5b in 
Robertson (1968), but with the reciprocal color temperature, 1/T (which is assumed by Robertson to be 
a linear function of the distance along the arc of the Planckian locus between Tj and Tj+1), replaced by the 
u and v chromaticity coordinates corresponding to the various color temperatures in the equation. For 
the Fibonacci base approach, the (u, v) chromaticity coordinates of the closest Planckian in the LUT were 
used, after which the distance to the source chromaticity was calculated. 

When the Newton-Raphson secondary algorithm was applied, the (u, v) chromaticity coordinates were 
estimated by using those of the Planckian spectrum calculated in the last iteration (see step 2 of the 
proposed method in Section 3 in Li et al. (Li et al. 2016)). While these do not always correspond to those 
of the final estimated CCT (step 11 in Li et al.) the incurred error on the Duv was usually found to be 
substantially smaller than the required Duv tolerance when the estimated CCT was sufficiently accurate. 
If the color temperature correction step size DT (step 10 in Li et al.) was larger than 1 K in the final 
iteration, the (u, v) chromaticity coordinates were calculated directly from a Planckian radiator 
corresponding to the final estimated CCT; this resulted in an additional increase in computation time.  

Except for the Ohno base approach, which has its own technique, after the Duv absolute distance was 
determined for all methods, the sign of the Duv was determined by identifying the positive angle 
(between 0° and 360°) of the iso-temperature line passing through the source and Planckian 
chromaticity coordinates. If the angle was larger than 180°, a value of 360° was subtracted from the 
angle. Finally, the sign of the final angle was assigned to the absolute Duv value. 

The code in the cct.py module in the Luxpy Python package provides more details on the calculation of 
the Duv (and CCT) for the various methods (Smet 2020).   

2.4 Calculation Speed Considerations 
Calculation speed can be an important consideration, especially when many SPDs are calculated for 
spectral optimizations; thus, it is an aspect of performance for comparison between methods. 
Calculation speed is dependent on several factors beyond the specifics of the calculation method. It can 
vary with the programming language used for the code (e.g., Python, C, etc.), the specific 
implementation of the method given a specific language (e.g., programming efficiency, batch 
processing, etc.), the computing resources (e.g., processor, memory), and the total number of 
conversions to be performed at once. Given the breadth of these variables, it is impossible to 
comprehensively sample each factor, but several options were considered.  

An extensive investigation was first carried out with coding in Python (version 3.7.11), with heavy 
reliance on Numpy (version 1.21.5) (Harris et al. 2020) and vectorization. The analysis was performed in 
a Jupyter Notebook (version 6.4.6, core version: 4.9.1) running in Chrome (version 98.0.4758.82) on a 
64-bit Windows 10 operating system on a HPa laptop with an Intel® Core™ i7-8665 CPU @ 1.9 GHz. For 
each method considered, calculation speeds were determined for 1, 10, 100, 1000, 10,000 and 30,000 
conversions. Each test was performed 20 times with chromaticity coordinates to be converted to CCT 

 
a The company and product names are given in this paper for technical information only to assist in understanding 
the results presented in this paper. They do not represent endorsement of this product or this manufacturer by 
the National Institute of Standards and Technology nor by any of authors’ organizations. 
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and Duv randomly chosen from the 1,270-coordinate reference set—the process of choosing 
chromaticity coordinates was not included in the time calculation. The randomly chosen chromaticity 
coordinates were held constant across all methods for an unbiased comparison. Calculations in Python 
were performed with and without batch processing with a batch size of 25. For iterative methods, the 
CCT tolerance was set to 0.1 K, and the maximum number of iterations was set to 100, although this was 
never found to be a limiting factor. In all cases, LUTs were precalculated and stored in memory, so that 
computing the LUT is not part of the reported calculation time.  

In Python, the number of calculations performed can influence the time per calculation due to how 
memory is allocated and freed during the calculation. More calculations can increase memory pressure 
on the chase and page table, reducing speed. While Python is widely used—and thus the calculation 
time in Python is important to understand—a clearer test of the pure computational efficiency of the 
methods was attained with a high-performance parallel programming implementation in C. Specific 
candidate methods were tested in C (abbreviations as noted in Table 1): R[1%,NO], O[1 K,NO] and 
F[0.2K,NO], R[1%,NR], and the original Newton-Raphson method proposed by Li et al. (Li et al. 2016) For 
these calculations, precise time per calculation was determined by averaging the difference between 20 
pairs of 2 billion and 1 billion calculations—this makes a total calculation on the order of a minute. 
Loading of the LUT and any other auxiliary data was timed separately as the difference between 30 
million and 15 million loads. The code was executed on a Linux-based computer with a 2.8 GHz AMD 
EPYC 7282 processor. The maximum errors for CCT and Duv matched those determined in Python, as 
error is independent of the programming language. In this implementation, time per CCT and Duv 
calculation is highly consistent. The loading time showed more variability, because it can be influenced 
by other system noise coming from the operating system that cannot be controlled. 

3 Results 
3.1 Accuracy 
Figure 2 shows boxplots of the CCT and Duv errors for each of the methods considered in the final set. 
The 40 methods that are reported here were selected because they met the specified accuracies of ±0.1 
K and ±0.0001 units for CCT and Duv, respectively, for all 1,270 reference coordinates. Only a small 
number of the methods initially considered could achieve this performance—in particular the 0.1 K CCT 
threshold—without the secondary Newton-Raphson algorithm. Of the 12 methods without a secondary 
algorithm (Figure 2, top), some had accuracy greater than deemed necessary (i.e., the LUT had 
unnecessarily high resolution). A 1% increment LUT for the Robertson base method resulted in error 
closer to the threshold and reduced calculation time (as subsequently discussed). At an equal LUT 
resolution and without a secondary algorithm, the Robertson base approach produced lower maximum 
errors than Ohno or Fibonacci approaches. When a secondary Newton-Raphson algorithm was included 
(Figure 2, bottom), the accuracy improved by approximately four orders of magnitude, even while the 
initial LUT increments were sometimes greater.  

Figure 3a shows the maximum CCT error as a function of CCT for the methods that did not include a 
secondary Newton-Raphson algorithm; Figure 3b shows the same for methods that did. Note that the 
datapoints at each nominal CCT value represent the maximum error found within the interval in the 
reference set with that CCT as its center. In Figure 3a, methods with a fixed LUT increment generally 
showed greater maximum error at lower CCTs, whereas methods with a percentage increment in the 
LUT generally showed greater maximum error at higher CCTs. This is logical when considering the 
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variable LUT increments in kelvin when percentage increments are used. When the secondary Newton-
Raphson algorithm was applied, the maximum CCT error was almost always highest at lower CCTs. In 
general, there was no apparent pattern to the maximum CCT error based on Duv (not shown). 

While always much smaller than deemed necessary, the maximum Duv error was consistently highest at 
lower CCTs (under 10,000 K) and followed a more regular pattern across all methods. Without a 
secondary algorithm, maximum Duv error was generally constant across Duv—errors were slightly lower 

Figure 2. Boxplots of CCT error and Duv error for each method considered in the final analysis (the 
dashed line indicates the 0.1 K CCT and 0.0001 Duv error thresholds). The whiskers extend from the 
minimum to maximum value. The latter has also been highlighted with a black pentacle. The median 
has been indicated with an orange line and a diamond marker.  Top: Base approaches. Bottom: Base 
approaches supplemented with a secondary algorithm; in these charts the minimums are typically not 
shown. Abbreviations are identified in Table 1. 
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at higher Duv values, but the maximum Duv is bounded by the spectrum locus at lower CCTs, where 
error was generally higher.  

3.2 Speed 
Figure 4 shows boxplots of time to complete a single (u, v) to (CCT, Duv) conversion and 1,000 
conversions for each of the 40 methods in Python. The variation arises from the 20 successive trials of 
each method making the conversion, and principally results from fluctuations in computing 
performance. Some variation may result from Python’s global interpreter lock, which does not allow the 
user to dictate how memory is used. As expected, methods with a higher-resolution LUT generally had 
longer calculation times. Except for those with the highest resolution, the calculation time per CCT was 
less than a millisecond.  

Adding a secondary Newton-Raphson algorithm to an existing method with the same LUT will increase 
the median calculation time—with the previously reported benefit of approximately four orders of 

 

Figure 3. Maximum CCT error as a function of nominal CCT. 
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magnitude improvement in accuracy. Many LUT resolutions—as coarse as 1000 K and 15%—were 
evaluated for methods using a Newton-Raphson algorithm. Adding a secondary algorithm, such as NR, 
always increased calculation time for all the base methods considered in this study. Said another way, all 
the fastest methods in this study did not include a secondary algorithm. 

Figure 5 explores the relationship between calculation time and number of conversions, showing 
median calculation time in Python as a function of number of conversions, all relative to the fastest (or 

 

Figure 4. Left column: Boxplots of time for a single conversion for each of the 40 methods in Python. 
Right columns: Boxplots of time for 1,000 conversions for each of the 40 methods in Python (note 
logarithmic scale). The whiskers extend from the minimum to maximum value. The median has been 
highlighted with an orange line and a diamond marker.   
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close to) single-conversion method, R[1%,NO], at the tested number of conversions. Values greater than 
1 reveal a relatively slower calculation compared to the reference method, whereas values less than 1 
reveal a relatively faster calculation. Figure 5 shows the point around 400 conversions where the 
F[0.2K,NO] became slightly faster than the R[1%,NO]. This result did not change substantially when the 
secondary Newton-Raphson was applied, although the speed advantage of the R[1%,NO] diminished 
somewhat.  

The results from the computations in C generally agree with those from Python, but as previously noted, 
they provide a better raw indication of each method’s efficiency and do not change with the number of 
calculations performed. Table 2 provides key results for selected candidate methods—not all methods 
were programmed and timed in C. The fastest method that reached the desired accuracy threshold of a 
maximum error of 0.1 K was the R[1%,NO] method. This method had about a 40% faster mean time per 
calculation than the Ohno-based method with the greatest maximum error under the limit, O[5K,NO]. 
With the exact same 1%-increment LUT, the Robertson interpolation calculations are about 10% more 
efficient than the Ohno interpolation calculations, and about 26 times more accurate. Lastly, R[1%,NO] 
was also about 73 times faster per CCT than the same method with a secondary Newton-Raphson 
R[1%,NR].  

 

 

Figure 5. Relative calculation time compared to the R[1%,NO] method, at each tested number of 
conversions. 
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4 Discussion 
Consistent with prior research, preliminary analyses found that the original Robertson (max CCT error = 
151.7 K) and Ohno (1% LUT max CCT error = 2.6 K; 0.25% LUT max CCT error = 0.4 Kb) methods with their 
native LUTs failed to achieve the a priori tolerance thresholds of 0.1 K for CCT over the considered range 
of 1500 K to 40,000 K and Duv of -0.05 to 0.05, using the 1,270 reference coordinates. This is principally 
because for their corresponding base method, their LUTs have (increasing) kelvin increments that are 
too large for some CCTs. Increasing the resolution of the LUTs to a maximum increment of 50 K or 1% 
(i.e., R[50 K,NO] or R[1%,NO]) for the Robertson method or 5 K (i.e., O[5K,NO]) for the Ohno method 
allows each to meet the maximum error tolerance. The Fibonacci method required an increment of 0.2 
K or smaller. Notably, the interpolation method of Robertson can be used with larger LUT increments 
than the Ohno method while still meeting the accuracy threshold. An alternative to substantially 
reducing the LUT increment is applying a secondary Newton-Raphson algorithm.  

In terms of speed, for LUTs from 1000 K to 40,000 K, the Robertson approach with a 1% LUT and no 
secondary algorithm, R[1%,NO], was generally the fastest method per CCT and Duv calculation that met 
the accuracy criteria. This was true in both C and Python. For larger number of conversions the 
F[0.2K,NO] method was the fastest in Python due to the way that Python processes data. In the C 
implementation, CCT calculation speed was independent of the number of conversions performed, and 
the R[1%,NO] was 40% faster than the Ohno-based method with the lowest-resolution LUT (5 K) from 
the tested set that met the CCT accuracy criterion. This is primarily because of the higher resolution of 
the LUT needed for Ohno to meet the accuracy threshold, but also because the Robertson interpolation 
algorithm is slightly more efficient.  

Iterative methods based on cascading LUTs or adding a Newton-Raphson algorithm to the initial 
estimate met the tolerance threshold, but also added considerable calculation time and complexity. The 
Newton-Raphson algorithm, regardless of initial LUT and interpolation method, decisively outperformed 
the cascading LUT algorithm in terms of calculation speed (details not reported). With the Newton-

 
b The maximum error for the Ohno method with a 0.25% LUT can be reduced to 0.12 K by optimizing the CCT-
based correction factor and parabolic-to-triangular crossover point for that specific LUT. 

Table 2. Mean calculation times for selected methods programmed in C. Each 
time is the average of billions of calculations. *Uses original 31-row LUT 
proposed by Robertson (1968). **Does not meet accuracy criterion for all points 
in reference set—included for direct comparison of mean time per calculation.  

Method Mean Time per Calculation (ns) 
R[1%,NO]  80  
O[1%,NO]** 89 
O[5K,NO] 132 
O[1K,NO] 165  
F[0.2,NO] 143 
R[Orig,NR]* 9,600 
R[1%,NR] 5,900 
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Raphson approach, there was a tradeoff between the resolution of the LUT used for the initial 
estimate—and thus the accuracy of the initial estimate—and the number of iterations needed to reach 
the tolerance threshold. Decreasing the increment of the LUT to rely more on the Newton-Raphson 
algorithm did not improve calculation time compared to just using a higher-resolution LUT with no 
secondary algorithm—additional iterations in the method add more calculation time than is saved with 
a faster LUT search. Any method using a secondary Newton-Raphson algorithm was more than 70 times 
slower for performing the CCT and Duv calculations in C—but offered considerably improved accuracy. 
In Python, methods adopting a Newton-Raphson were minimally 1.5 times slower than R[1%,NO], but 
could be as much as 1,000 times slower depending on the method, the LUT size and the number of 
conversions being performed. Adding a Newton-Raphson in Python to R[1%,NO] was 4 times slower for 
30,000 conversions. 

It is evident that there are multiple possible ways to achieve the desired level of accuracy for CCT and 
Duv calculations: very-high-resolution tables with no interpolation (e.g., efficiently searched with the 
Fibonacci approach), moderately high-resolution tables with an interpolation algorithm (e.g., Robertson 
and Ohno approaches), or lower resolution tables with an interpolation algorithm for an initial estimate 
and then iterative methods (e.g., Newton-Raphson). The most efficient approach depends on the 
particulars of the implementation, including the programming language, number of calculations 
performed, and the components included in the time (i.e., with or without table loading).  

The Robertson method with a 1% LUT offers several advantages: with or without a secondary Newton-
Raphson algorithm, it is among the most efficient methods regardless of implementation or number of 
calculations (where relevant). Furthermore, its accuracy can be easily increased by several orders of 
magnitude by “turning on” the Newton-Raphson secondary algorithm. A single, simple base method, 
with relatively low storage LUT, can provide accurate (without a secondary Newton-Raphson) to 
extremely accurate (with a secondary Newton-Raphson) CCT and Duv calculations at speeds which are 
the fastest or close to the fastest for any number of conversions. For these reasons, if one reference 
method is to be chosen, we recommend the Robertson method with a 1% LUT approach (denoted 
[R[1%,NO] in this article) for consideration by lighting standards organizations, which currently do not 
recommend any single method for calculating CCT and Duv.  

4.1 Limitations 
This work considered a broad range of combinations of methods that were candidates to deliver a fast 
calculation while meeting a priori targets for CCT and Duv accuracy. It is possible that LUT increments 
could be further optimized to deliver gains in calculation speed without the CCT and Duv errors 
exceeding their tolerances. 

Computation time is dependent on many factors, including the computer performance the calculations 
and the implementation of the method in a specific coding language. We compared performance using 
two implementations. It is likely that additionally implementations could produce slightly different 
results, but the general trends are not expected to change.  

Achieving the specified accuracies requires that computations are performed—and intermediate data 
stored—with sufficient precision. Standard double precision was used for this analysis. 
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5 Conclusion 
This work explored various methods for computing CCT and Duv considering accuracy, speed, 
complexity, and ease of use. The goal was to recommend a method for standardization by a consensus 
body that could achieve a maximum CCT error of 0.1 K and a maximum Duv error of 0.0001 in the CCT 
range of 1500 K to 40,000 K and Duv range of 0.05 to -0.05, with a fast calculation time, reasonable data 
storage needs, and that is practical to implement. The latter three considerations go beyond traditional 
evaluations, which have focused on demonstrating improved accuracy in estimating CCT. After an 
extensive exploration of several hundred methods, 40 were thoroughly evaluated, with independent 
implementation in Python. A subset of the 40 methods evaluated in Python was then implemented in C. 
Accuracy was examined using a set of 1,270 reference coordinates. Speed in Python was determined by 
converting randomly selected 1, 10, 100, 1,000, 10,000, and 30,000 (u, v) coordinates to CCT and Duv 
values, with 20 replications of each. Speed in C was determined by averaging the difference between 2 
billion and 1 billion calculations, repeated 20 times. 

Existing methods from Robertson and Ohno with LUTs in their original publication did not meet the 
desired accuracy maxima. Finer resolution LUTs for Robertson (25 K, 10 K, 5 K, 1 K, 0.2 K, 1%, 0.75%, 
0.5%, 0.25%) and for Ohno (5 K, 1 K, 0.2 K, and 0.2 %) were defined that could achieve the accuracy 
limits without any changes to the prescribed interpolation algorithms of each method. For less than 
around 400 conversions, the Robertson method with a 1% LUT—having 372 rows—was the fastest 
method meeting the accuracy thresholds in the Python implementation. The Robertson approach with a 
1% LUT was always the fastest method in C. This implementation only marginally increases the initial 
load time compared to a coarse 30-row LUT, as used in Robertson’s original work. In addition, using a 
Fibonacci method to search the LUT, as recently described, means it is typically as fast at calculating CCT 
(and Duv) values as the original, less-accurate method. For these reasons, we recommend the Robertson 
method with a 1% LUT for consideration and adoption by lighting standards organizations.  
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