

Status

- Current study phases of Soil Partitioning and Mercury are complete
 - Final reports are in production
- Phase 1 of Natural Attenuation is complete
 - Literature review report has been completed
- Bioremediation, Phytoremediation and Phase 2 of Natural Attenuation
 - Awaiting results of final EFH (Extractable Fuel Hydrocarbons) sample analyses
 - Samples were collected Tuesday
 - Results will be incorporated as soon as they are received from the laboratory (three to four weeks)

- Soil Partitioning
 - Contaminant concentrations are highest at the surface
 - We may be able to limit the amount of material we have to excavate
 - Soil size partitioning will not greatly reduce the amount of material we have to treat or dispose of
 - Still looking at the possibility of soil washing for addressing the contaminants found on coarse material and sands

- Mercury
 - The types of mercury found in the surface soils should, theoretically, be candidates for phytoremediation or soil washing
 - We did not see mercury accumulation in the plant tissues of our phytoremediation study
 - Soil washing may be our best option for removing mercury from surface soils
 - The types of mercury found in the deeper soils are tightly bound to the soil particles
 - We need to look at disposal or alternative treatment options for these types of mercury

- Bioremediation
 - Bacteria and fungi in SSFL Area IV soils should be capable of biodegrading the COIs, albeit slowly
 - Using known bioremediation stimulants, we were not able to significantly increase biodegradation rates
 - White-rot fungi may be an option for dioxin-contaminated soil
 - Bioremediation may be an option for areas with limited exposure potential and low contaminant concentrations

- Phytoremediation
 - Phytoremediation of the contaminants appears to be a slow process
 - Stimulants (e.g., fertilizer, chelating agents) did not significantly increase contaminant uptake by plants or contaminant degradation by the plants
 - Phytoremediation could be an option in areas with low contaminant concentrations

- Natural Attenuation
 - Literature suggests contaminants in Area IV soils will eventually biodegrade, but some compounds will degrade very slowly
 - Our bioremediation and phytoremediation studies suggest longer estimated times for remediation than originally predicted from the published studies
 - There is evidence that natural attenuation is occurring at SSFL, but it is and will be a long process

Next Steps

- Review analyses from most recent EFH samples
- Complete all study reports for publication
- Consider possible follow-on studies to build upon what we have learned
 - Soil washing
 - Field studies of biodegradation
- Incorporate what we have learned into future soil remedial actions for a more effective clean-up