#### U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY

Transformer Resilience and Advanced Components (TRAC) Program Peer Review

### &

Power Electronics Accelerator Consortium for Electrification (PACE) Annual Meeting

### **Andre Pereira**

6/27/23





# **TRAC Program Strategy** Enabling Research to Application





# **TRAC Portfolio**

| TRAC Technology Areas                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                      |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Component Design and Development                                                                                                                                                                                                                                                                                                                                               | Market and System Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Advanced Materials                                                                                                                                                                   |  |  |  |  |  |
| <ul> <li>+ Advanced Low voltage &amp; Medium voltage<br/>DC/DC Intelligent Power Stage (IPS)</li> <li>+ Modular Solid-State Switch (MS3)</li> <li>+ High Voltage, High Power WBG Module<br/>Development</li> <li>+ SSPS 1.0 Hardware Prototype<br/>Development</li> <li>+ LPT FOA GA Tech</li> <li>+ LPT FOA University of Texas Austin</li> <li>+ LPT FOA Nextwatt</li> </ul> | <ul> <li>SuperFACTS</li> <li>Multiport HUB: GMLC</li> <li>SSPS Hardware in the loop (HIL) validation</li> <li>SSPS 1.0 node Use case Validation with Smart Universal Power Electronics Regulators (SUPERs)</li> <li>Solid State Power Substation (SSPS) 1.0 Controller</li> <li>SSPS Field Demonstration</li> <li>Scalable Hybrid Large-Scale dc-ac Grid Analysis Methods</li> <li>MVDC Use Case</li> <li>Transmission Optimization with Grid Enhancing Technologies (TOGETs)</li> </ul> | <ul> <li>+ Optical Fiber Sensors for<br/>Acetylene Detection</li> <li>+ Al/Ca Composite<br/>Conductor</li> <li>+ Soft Magnetics for<br/>Power Conversion<br/>Applications</li> </ul> |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                      |  |  |  |  |  |



### What is PACE?

PACE is a U.S. Department of Energy cross-cut initiative, currently supported by the DOE Office of Electricity's Transformer Resilience and Advanced Components (TRAC) program.

PACE is a coalition of partner research institutions, utilities, and industry manufacturers working to take innovative research in power electronics to grid-level pilot demonstration.

**Vision**: Accelerate the development and demonstration of integrated grid systems with power electronics technologies for electrification

**Focus:** Solve power electronics and grid hardware barriers of cost, integration, and reliability

**Impact**: Increase in adoption of power electronics technologies, create domestic manufacturing, and enable new market opportunities





### Increasing role and Opportunities for power electronics

+ Interfacing Power conditioning and grid integration: DER and energy storage

#### + Delivery

Long distance power transfer: Off-shore wind, utility-scale solar

# Management and conversion Megawatt-scale charging infrastructure, industrial processes and equipment





# **PACE Framework and Collaboration**

|                                                                                                            | PACE Technology Areas                                                       |                                                                                                             |                                                                                                        |                                                                 |  |  |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
| TRAC<br>Applications                                                                                       | Advanced<br>Components &<br>Power Stages                                    | Advanced<br>Converter Systems                                                                               | Resource Integration<br>& Management<br>Systems                                                        | Grid Integration & Demonstrations                               |  |  |
| Advanced Power<br>Electronics                                                                              | Materials & Components,<br>Intelligent power stages<br>Embedded Controllers | Converter, Inverter, controls<br>and protection, prototypes,<br>Diagnostics, prognostics,<br>Cyber security | Mutli-stage converters,<br>Software Platforms,<br>Algorithms, Grid systems<br>Architecture & Modelling | Grid Integration ,<br>Demonstration Use<br>Cases                |  |  |
| High Voltage Direct<br>Current (HVDC)<br>Advanced<br>Transformers<br>Grid Enhancing<br>Technologies (GETs) | VALLEY OF<br>CHALLENGES<br>COMPONENT<br>MANUFACTURERS                       | VALLEY OF<br>CHALLENGES<br>UNIVERSITIES                                                                     | VALLEY OF<br>CHALLENGES<br>NATIONAL<br>LABORATORIES                                                    | VALLEY OF<br>CHALLENGES<br>SYSTEM<br>MANUFACTURERS<br>UTILITIES |  |  |
|                                                                                                            | TRL 2–7                                                                     | TRL 3–7                                                                                                     | TRL 4–7                                                                                                | TRL 5–7                                                         |  |  |
| Accelerated Power Electronics Technologies                                                                 |                                                                             |                                                                                                             |                                                                                                        |                                                                 |  |  |



## **TRAC Portfolio and PACE**

|           | PACE Technology Areas                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                    |  |  |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|           | Advanced Components<br>& Power Stages                                                                                                                                                                                                                                                                             | Advanced Converter<br>Systems                                                                                                                                                                        | Resource Integration &<br>Management Systems                                                                                                                                                                                                                                                      | Grid Integration & Demonstrations                                                                                                                                                                                                                  |  |  |  |  |  |
|           | Materials & Components,<br>Intelligent power stages<br>Embedded Controllers                                                                                                                                                                                                                                       | Converter, Inverter, controls<br>and protection, prototypes,<br>Diagnostics, prognostics,<br>Cyber security                                                                                          | Mutli-stage converters, Software<br>Platforms, Algorithms, Grid<br>systems Architecture &<br>Modelling                                                                                                                                                                                            | Grid Integration ,<br>Demonstration<br>Use Cases                                                                                                                                                                                                   |  |  |  |  |  |
| + + + + + | Advanced Low voltage & Medium<br>voltage DC/DC Intelligent Power<br>Stage (IPS)<br>Modular Solid-State Switch (MS3)<br>High Voltage, High Power WBG<br>Module Development<br>Optical Fiber Sensors for<br>Acetylene Detection<br>Al/Ca Composite Conductor<br>Soft Magnetics for Power<br>Conversion Applications | <ul> <li>+ SSPS 1.0 Hardware<br/>Prototype<br/>Development</li> <li>+ SuperFACTS</li> <li>+ LPT FOA GA Tech</li> <li>+ LPT FOA University<br/>of Texas Austin</li> <li>+ LPT FOA Nextwatt</li> </ul> | <ul> <li>+ Multiport HUB: GMLC</li> <li>+ SSPS Hardware in the loop<br/>(HIL) validation</li> <li>+ SSPS 1.0 node Use case<br/>Validation with Smart<br/>Universal Power<br/>Electronics Regulators<br/>(SUPERs)</li> <li>+ Solid State Power<br/>Substation (SSPS) 1.0<br/>Controller</li> </ul> | <ul> <li>+ SSPS Field<br/>Demonstration</li> <li>+ Scalable Hybrid Large-<br/>Scale dc-ac Grid<br/>Analysis Methods</li> <li>+ MVDC Use Case</li> <li>+ Transmission<br/>Optimization with Grid<br/>Enhancing<br/>Technologies (TOGETs)</li> </ul> |  |  |  |  |  |



## **PACE Execution Framework**

![](_page_8_Figure_1.jpeg)

![](_page_8_Picture_2.jpeg)

# PACE Engagement & Funding Opportunities: DOE Initiatives

![](_page_9_Figure_1.jpeg)

![](_page_9_Picture_2.jpeg)

### **DOE TRAC Initiatives: Transformers**

**Funding Opportunity Announcement (FOA)**: FY18 \$7.5M FOA focused on the development of LPT prototypes that are more flexible and adaptable

**RFI Issued – April 2023:** A Request for Information (RFI) for Innovative Advanced Transformers to obtain public input regarding a potential future Funding Opportunity Announcement seeking the research, development, and demonstration of innovative advanced transformers that can be readily utilized across a range of distribution to transmission scale applications

#### **OE Transformer Technologies Workshop – May 2023:**

The goal of the workshop was to identify research, development, and demonstration (RD&D) opportunities for both distribution and power transformers

![](_page_10_Picture_5.jpeg)

![](_page_10_Picture_6.jpeg)

# **DOE TRAC Initiatives: HVDC**

#### National Labs R&D, Annual Operating Funds

![](_page_11_Picture_2.jpeg)

Models and methods for HVDC Technologies 2016-2019

Scalable Hybrid Large-Scale dc-ac Grid Analysis Methods: 2021-2024

### Activities

- + HVDC Workshop (2022 : TRAC+WETO)
  - + ORNL,PNNL,NREL,EPRI

#### + HVDC Technology Roadmap

- + ORNL,PNNL,NREL,EPRI
- + Anticipated Release December 2023

#### + HVDC Prize Competition

+ Winner Announcement – August 26th

### + HVDC Moonshot (TRAC+WETO)

- + Focus : HVDC Stations, HVDC Systems
- + ORNL,PNNL,NREL,EPRI
- + Currently working on drafting metrics
  - + Cost: BOS \$/MVA
  - + System reliability
  - + System Ratings
  - + Standardization

![](_page_11_Picture_21.jpeg)

# **DOE TRAC Initiatives: Advanced Power Electronics and SSPS**

### Solid State Power Substation Technology Roadmap

U.S. DOE Office of Electricity Transformer Resilience and Advanced Components (TRAC) Program June 2020

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

Workshop 2018

Roadmap 2020

### National Labs R&D, Annual Operating Funds

SSPS 1.0 Architecture Development-2020-2021

SSPS 1.0 Hardware Prototype Development – 2021-2023

Total. no. of publications ~ 20 Total. No. of. Patents - 5

![](_page_12_Picture_11.jpeg)

# **DOE Initiatives: GMLC**

#### PACE Lab Call: Medium Voltage subsystem development Supporting Offices: EERE, OE Funding: \$13.75 M

The focus is on addressing gaps in 'smart' mediumvoltage (MV, 4.16kV-34.5kV) electrical interfaces critical to a modernized grid through development of a medium voltage power and control electronics sub-system approach that is modular, scalable, and cost effective.

#### National Labs R&D Partners: Industry and Academia

![](_page_13_Picture_4.jpeg)

![](_page_13_Figure_5.jpeg)

![](_page_13_Picture_6.jpeg)

# DOE Initiatives: GETs

+ GETs FOA: Increasing Utilization and Reliability of Electric Infrastructure with Grid-enhancing technologies (GETs) (Feb 2023)

Supporting Offices: EERE, OE. Funding: \$6.5 M

The FOA aims to fill gaps in information on the real-world benefits and usage of GETs through at-scale field demonstrations. The FOA is focused on Power Flow Controllers (PFCs) and Dynamic Line Rating (DLR)

- + Grid-Enhancing Technologies: A Case Study in Ratepayer Impact (March 2022)
- Transmission Optimization with Grid
   Enhancing Technologies (TOGETs) Project
- + Advanced Transmission Technologies Report (December 2020)

![](_page_14_Picture_7.jpeg)

![](_page_14_Picture_8.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_15_Picture_1.jpeg)

# **Questions?**

### **Contact Information:**

Andre Pereira Program Manager Office of Electricity U.S. Department of Energy (202) 586-9010 andre.pereira@hq.doe.gov

![](_page_16_Picture_3.jpeg)

![](_page_16_Picture_4.jpeg)

# Why a Consortium?

### Benefits to DOE

- + Provides single point of contact for all aspects of the technical focus
- + Provides one stream of accountability
- + Provides streamlined reporting

Benefits to Utilities/Vendors/Labs/Universities

- + Single blended funding stream
- + Less administrative burden, more focus on delivery
- + Reduced need to interact with DOE by individual project owners
- + Results are owned and shared among consortium
- + Risk is reduced through extensive collaborations.

![](_page_17_Picture_11.jpeg)

### Andre Pereira

Program Manager

Office of Electricity

![](_page_18_Picture_3.jpeg)

www.energy.gov/oe/

![](_page_18_Picture_5.jpeg)

LinkedIn

![](_page_18_Picture_8.jpeg)

Facebook

![](_page_18_Picture_10.jpeg)

Sign Up for Office of Electricity Email Updates

Twitter