

How Does Phytoremediation Work?

Volatilization and Transpiration into the Atmosphere

Mercury; TCE; Organics, possibly including PAHS, PCBs, and dioxins

Accumulation in Plant Tissues

Metals; Radionuclides; TCE; Organics, including PAHs, PCBs, and dioxins

Chemical Degradation in Plant Tissues

Organics, including PAHs, PCBs, and dioxins

Uptake in the Root Zone

Metals; Radionuclides;
Organics, including PAHs, PCBs,
and dioxins

Chemical Degradation in the Root Zone:
Microbial Degradation

Organics, including PAHs, PCBs, and dioxins

Phytoremediation Objectives

Phase I: Field Study

- Identify & Select Potential Plant Species
 - → Collect plants from field site& analyze for contaminant uptake

Phase II: Controlled-Growth Study

- Determine Mechanism(s) of Phytoremediation
- Estimate Remediation Rates
 - → Grow candidate plants in controlled experiments & measure uptake/volatilization/degradation

Phytoremediation Research Plan

Phase I: Identify Suitable Plant Species

- Collect plant tissue samples from plants currently growing at Area IV to ascertain contaminant uptake
- Analyze plant tissues for metals, dioxins, PAHs,
 PCBs/PCTs, and TPH

Sampling of both native & naturalized species

Phytoremediation using best native or naturalized remediators

Restoration later using local natives only

Potential SSFL Plant Species for Phytoremediation

Species	Metals	Dioxins	PAHs	PCBs	PCTs	Petroleum
Mustards	•					
Legumes			•	•	•	•
Sunflowers	•					
Cottonwoods		•				
Willows				•	•	
Grasses Barley	•					
Brome	•					
Fescue	?		•	•	•	•
Wildrye	?		•	•	•	•
Needlegrass	?		?	?	?	?

Proposed Analytical Methods

Analyte	Analytical Method				
	Soil matrix	Plant tissue matrix			
Dioxin/PCB	EPA 1613B	EPA 1613B/1668C			
TPH (DRO and GRO)	EPA 8015B/C/D	GC/FID			
Metals	EPA 6010C/6020A/7471A	ICP/HRMS			
Mercury	Cold Vapor AA	Cold Vapor AA			
PAHs	EPA 8270C/D SIM	GC/HRMS			
PCBs	EPA 8082A	EPA 8082A			

Phase II: Assessment of Remediation Potential using Controlled-Growth Experiments

Controlled-Growth Experiments

1. Determine the Mechanism of Phytoremediation

- Measure potential volatilization of contaminants
- Measure soil contaminant concentration changes
- Run controls with soil bacteria/fungi killed
- Examine mercury conversion?

2. Determine Remediation Rates

- Estimate from change in soil contaminant concentrations
- Can nutrients/additives stimulate/increase phytoremediation rates?

SSFL Phytoremediation Timeline

