

Soil Treatability Studies: Mercury Study

Haizhou Liu, PhD University of California, Riverside

February 12, 2015

Department of Chemical and Environmental Engineering UNIVERSITY OF CALIFORNIA, RIVERSIDE

Overview of Presentation

- Mercury Study
 - Motivation for the study
 - Description of mercury chemistry
 - Mercury speciation
 - Different valence states
 - Different tendencies to become mobilized
 - Sample locations
- Results
 - Distribution of mercury in SSFL
 - Variations of mercury levels with soil depths
 - Profiles of mercury speciation in different locations
- Summary
 - Conclusions
 - Recommendations

What is Mercury Study?

- Determine the current valence states of the spilled mercury in contaminated soil in SSFL.
- Understand the spatial distribution of valence states of mercury in different areas of SSFL.
- Quantify the speciation of mercury at different depths of contaminated soil in SSFL.
- Assess mercury remediation potential and recommend efficient mercury remediation technology.

Motivation of Mercury Study

Analytical Methods – Free Elemental Mercury

EPA method 1631: Elemental mercury Hg(0) volatilization and CV-AFS

Analytical Methods – Total Mercury

EPA method 7471A: cold-vapor atomic fluorescence spectroscopy (CV-AFS)

Results - Total Mercury Spatial Distribution

Mercury Speciation Sampling Area #1

Mercury Concentration in Soil (mg/kg)

Mercury Concentration in Soil (mg/kg)

Mercury Speciation Sampling Area #2

Mercury Concentration in Soil (mg/kg)

Mercury Speciation Sampling Area #3

Mercury Concentration in Soil (mg/kg)

Mercury concentration (mg/kg)

Results - Total Mercury Depth Analysis

- Total mercury was detected across multiple locations in SSFL.
- At 3 sampling locations, mercury concentrations were highest at the surface and decreased with depth in soil.
 - Total mercury exceeded LUT Value (0.10 mg/Kg) in top soil layers.
 - > Total mercury was below detection limit at soil depths below 9 ft.
- In 1 sampling location (STS-73-SA6), mercury concentrations were lowest at the surface and increased with soil depth.
 - Total mercury at the surface was below LUT Value.
 - Total mercury exceeded LUT Value (0.10 mg/Kg) in soil at depths between 3 and 5 ft.

Analytical Methods – Mercury Speciation

Sequential extraction of soil sample

Boszke, et al, *Environ. Geol.* **2008**, 55, 1075-1087.

Mercury Speciation vs. Mobility in Soil

Fraction	Mercury speciation	Mobility in soil	Bioavailability	Phytoremediation
F-1	Elemental mercury (vapor phase)	///	×	×
F-2	Methyl mercury	VVV	//	//
F-3	Water soluble mercury	VVV	///	///
F-4	Acid soluble mercury	V	•	~
F-5	Soil humic substance associated mercury	✓	•	•
F-6	Elemental mercury (surface bound)	V	×	×
F-7	Mercury sulfide	V	V	V

Results - Mercury Mobility

Results - Mercury Mobility

Sampling Location

Sampling Location

Results - Valence States of Mercury

Elemental mercury

- Samples from 4 selected sites
- Elemental mercury in vapor phase was not detected
- Elemental mercury bound to surface was detected at soil depths between 3.0 and 4.0 ft

Methyl mercury

- Trace amounts at 2 sites (SL-212-SA5B and SL-284-SA6)
- Only accounted for 0.003% of total mercury
- Occurrence at soil depths between 3.0 and 4.0 ft

Jonic Mercury

- Detected at different soil depths
- Existed in organic and inorganic mercury complexes
- Accounted for a majority of the total mercury on top soil between 0 and
 1.5 ft

Assessment on Mercury Distribution

- With respect to soil depth profile, the majority of total mercury was distributed in soil with depths between 0 and 4 ft.
- In top soil layers between 0 and 1.5 ft, a large percentage of total mercury (between 30% and 100%) exists as soluble Hg(II) and soil humic substances associated Hg(II).
 - Indicative of mercury that can be bioavailable.
 - Both sites in subarea 5 and 6 (SL-113-SA5DN and SL-284-SA6) has large percentage of mobile mercury in top soil.
- In soil with a depth below 3 ft, total mercury exists predominantly as elemental Hg(0) that is bound to soil particle surfaces.
 - Indicative of immobile fraction of mercury
 - > The mercury release site in subarea 6 (SL-284-SA6) has the highest surface-bound elemental Hg(0).

Assessment on Mercury Remediation

- Soil washing and phytoremediation can be a viable treatment for mercury remediation in surface soil layers.
 - Presence of a large fraction of mobile forms of mercury
 - Associated with soluble salts and soil organic matter
 - > Soil washing is potentially applicable, but require additional tests
- Bioremediation or phytoremediation is not likely be effective for deep soil.
 - Predominance of immobile mercury that is mostly in elemental valence state and tightly bound to soil particles
 - > Thermal treatment can be an alternative to remediate mercury in deep soil, especially at the original release site in subarea 6, but require additional lab tests for treatability.
 - Soil size partitioning has the potential to reduce volume for thermal treatment. Additional tests on mercury size distribution is necessary.

Thank you.

