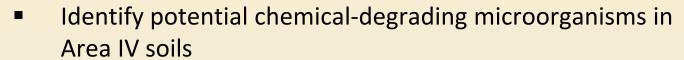
STIG Meeting February 12, 2015

Bioremediation Study FINAL RESULTS

Dr. Yarrow Nelson

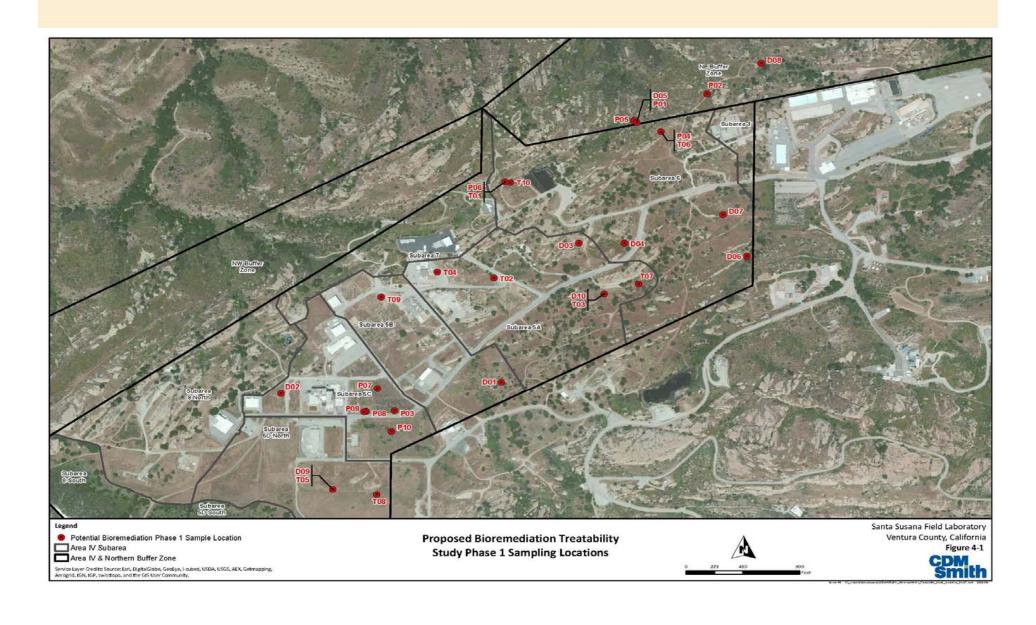
Mackenzie Billings and Kenny Croyle


California Polytechnic State University

Bioremediation Study: Two Parts

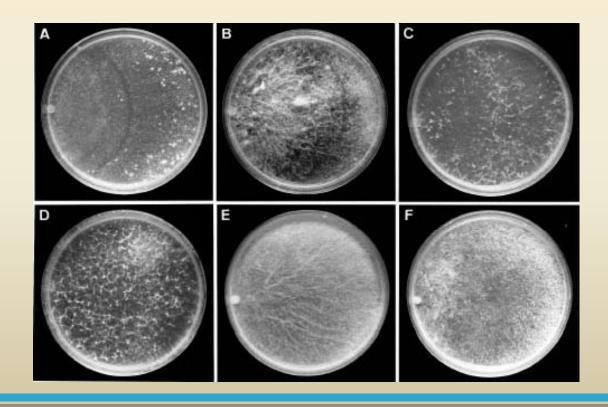
Objective: Determine the potential for microbial biodegradation of contaminants of interest (COIs) in SSFL Area IV soils

Part 1: Analysis of microbial communities in the field


- Culturing of microorganisms from Area IV soils & sequencing
- DNA analyses
 - Quantitative polymerase chain reaction (qPCR)
 - Terminal restriction fragment analysis (TRFLP)

Part 2: Laboratory microcosms using soil from Area IV

- Incubate in the laboratory under controlled conditions
- Measure biodegradation rates under natural attenuation conditions
- Estimate efficacy of biostimulation and bioaugmentation



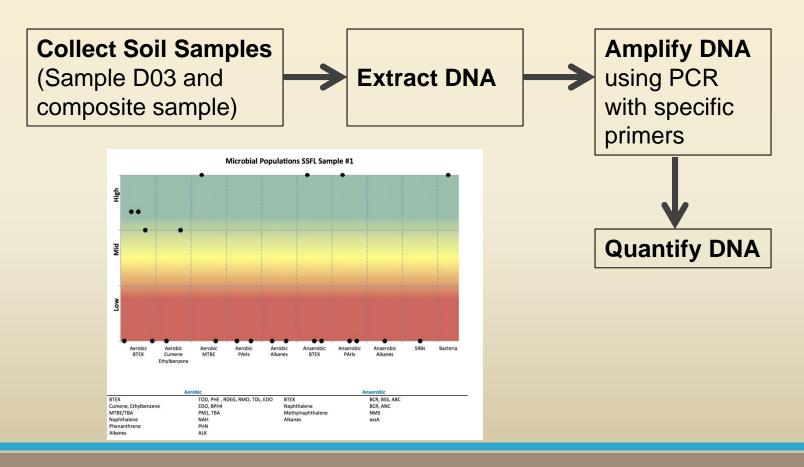
Part 1 Field Study: Soil samples collected from 30 locations in SSFL Area IV

Isolated pure-cultures of soil bacteria and fungi from Area IV soils

- Grown on COI model compounds with no other carbon source
- Sequenced 16s DNA
- Compared to known degraders of Area IV chemicals

e.g. *Phanerochaete chrysosporium*, White-Rot Fungi PCB degrader

Results of Culturing

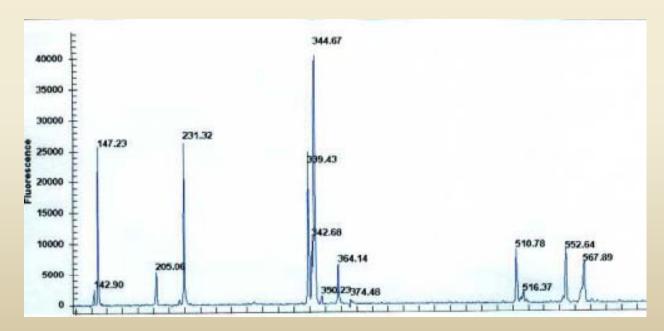

- 21 unique organisms were identified growing on plates enriched with the COIs, including 14 bacteria and 7 fungi
- Fungi isolated include 3 strains of the fungi *Phanerochaete* chrysosporium
- Bacteria isolated include, Arthrobacter, Streptomyces,
 Micromonospora, and Variovorax, and 6 strains of Pseudomonas
- 10 of the bacteria and 3 of the fungi isolated are known degraders of the COIs or come from a genus that contains known degraders

	Petroleum Hydrocarbons	Polyaromatic hydrocarbons (PAHs)	Polychlorinate d biphenyls (PCBs)	Dioxins
Bacteria Isolated	10	8	9	9
Fungi Isolated	2	2	2	3

qPCR Analysis:

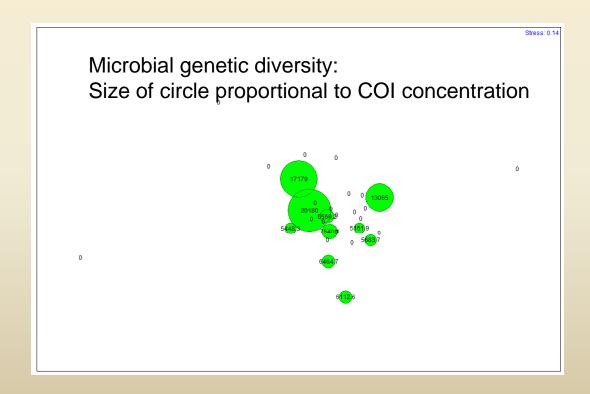
Quantitative polymerase chain reaction assay for specific microbial species or genes

Assay performed by Microbial Insights, Inc.



qPCR Findings

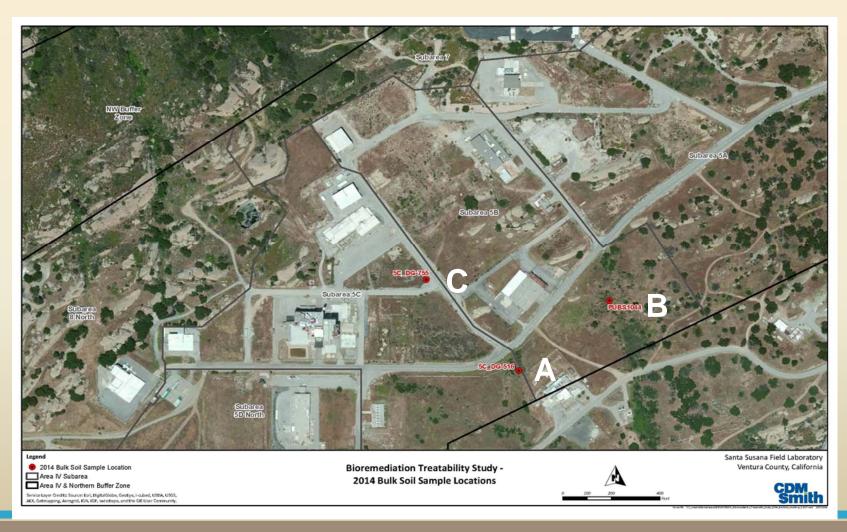
- Six genes associated with aerobic biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) were detected, 4 of which were detected in both samples
- No anaerobic target genes were detected in either soil sample with the exception of benzoyl coenzyme A in both samples
- No aerobic or anaerobic PAH biodegradation targets were detected
- A very small amount (2.3x10⁴ cells per g) of *Dehalococcoides* was found in the fresh soil sample (this bacterial species is known to dechlorinate PCBs and dioxins)


Microbial diversity of soil microorganisms: Terminal Restriction Fragment Length Polymorphism (TRFLP) Analysis

- Each peak represents a genetic sequence
- Provides the relative abundance of specific genetic sequences
- Gives a good indication of the microbial population diversity in a sample
- Attempted to correlate these genetic sequences to COI concentrations to identify sequences associated with potential microbial degraders

Findings from TRFLP Assays

- Soil samples exhibited good microbial diversity
- No significant correlations between specific TRFLP patterns and specific COIs

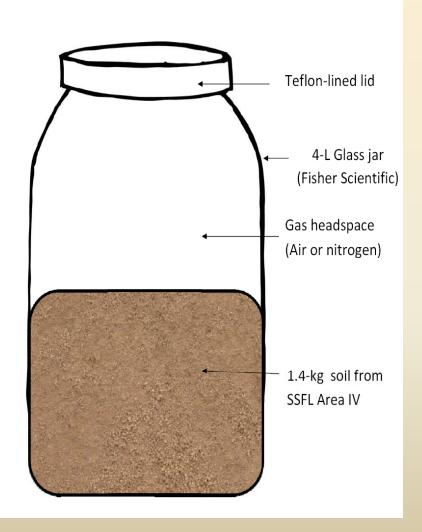


Conclusions from Field Microbial Assays

- Culturing and qPCR assays indicated the presence of many strains of bacteria and fungi which are known to be capable of biodegrading the COIs.
- These assays do not provide an indication of biodegradation rates in SSFL soils: Microcosm experiments are necessary for this determination.
- Anaerobic conditions were not observed in site soils
 - Bacterially-mediated reductive dechlorination of PCBs and chlorinated dioxins unlikely
 - Fungi, such as *Phanerochaete chrysosporium*, are capable of degrading these COIs under aerobic conditions

Part 2: Bioremediation Microcosms

 Soil collected from three locations and processed for use in controlled laboratory microcosms


Bioremediation Study: Soil Collection

Bioremediation Microcosm Experimental Design

- Place soil from SSFL Area IV into 1-gallon glass jars
- Incubate under conditions simulating conditions at SSFL
 - Aerobic
 - $27 \pm 3^{\circ}C$
 - Dark
 - 12-16% moisture
- Measure COI concentrations in soil after 0, 4 and 8 months

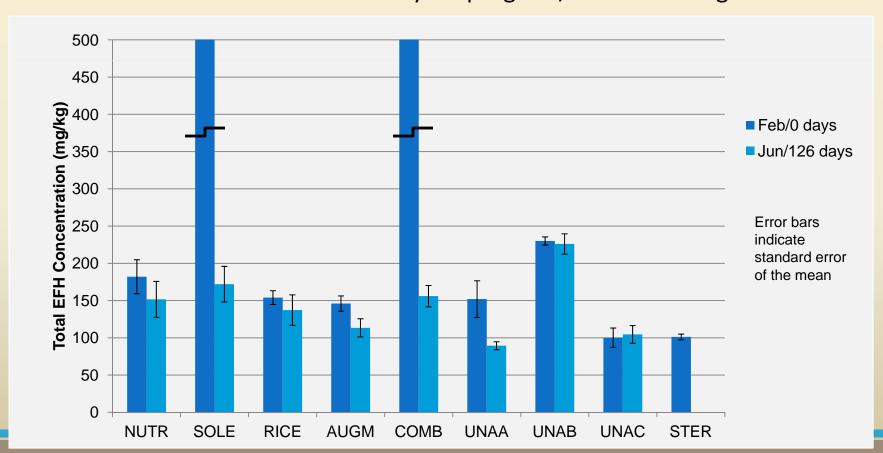
Microcosm Amendments and Controls

	Microcosm Type		
Un-	Sterilized (Soil A)		
amended	Unsterilized: Soils A, B and C		
	Fertilizer		
Amandad	Rice hulls		
Amended (Soil A)	Rice hulls + fertilizer + P. chrysosporium fungi		
(Suil A)	Soya lecithin		
	Combination		

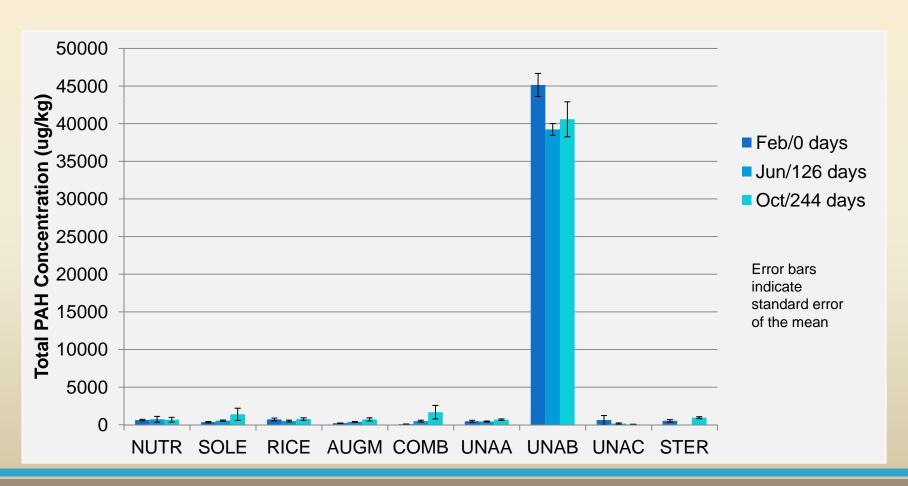
Five replicates for each treatment (45 total)

Microcosm Soil Amendments

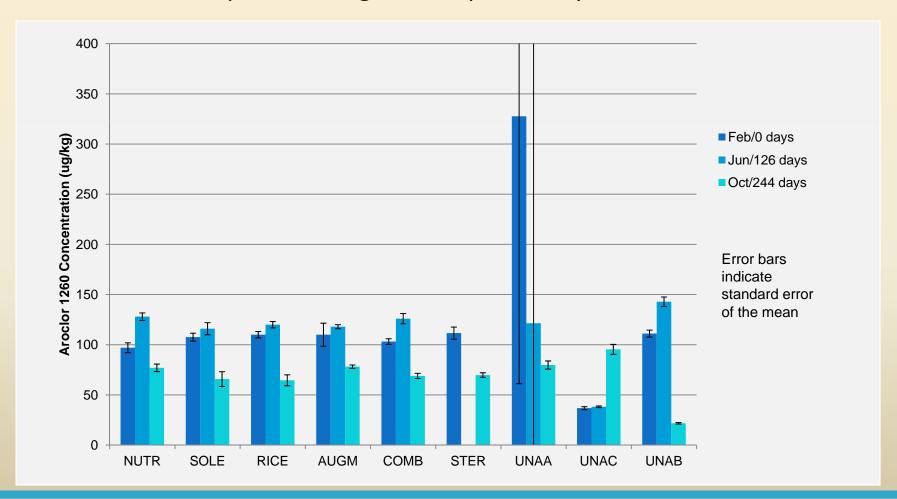
Microcosm ID	Abbreviation	Collection Location	Amendments	Amount Amendment Added	Sterilized (Control)	Sample Collection
A1	NUTR	5C_DG-516	Nutrient solution	2.0 g/L KH2PO4, 0.3 g/L MgSO ₄ •7H ₂ O 0.4 g/L CaCl2H2O	No	0, 4, 8 months
A2	SOLE	5C_DG-516	Soya lecithin	1.5% w/w	No	0, 4, 8 months
A3	RICE	5C_DG-516	Rice hulls	10% w/w	No	0, 4, 8 months
A4	AUGM	5C_DG-516	Nutrient solution P. chrysosporium Rice hulls	2.0 g/L KH2PO4, 0.3 g/L MgSO ₄ •7H ₂ O 0.4 g/L CaCl ₂ H ₂ O Malt extract <i>P. chrysosporium</i> 10% w/w rice hulls	No	0, 4, 8 months
A5	СОМВ	5C_DG-516	Nutrient solution P. chrysosporium Soya lecithin Rice hulls	2.0 g/L KH2PO4 0.3 g/L MgSO ₄ •7H ₂ O 0.4 g/L CaCl ₂ H ₂ O Malt extract P. chrysosporium 1.5% w/w soya lecithin 10% w/w rice hulls	No	0, 4, 8 months
A6	UNAA	5C_DG-516	None	None	No	0, 4, 8 months
A7	STER	5C_DG-516	Gamma irradiation	25 kilograys	Yes	0 and 8 months


Microcosm Soil Amendments, Cont'd.

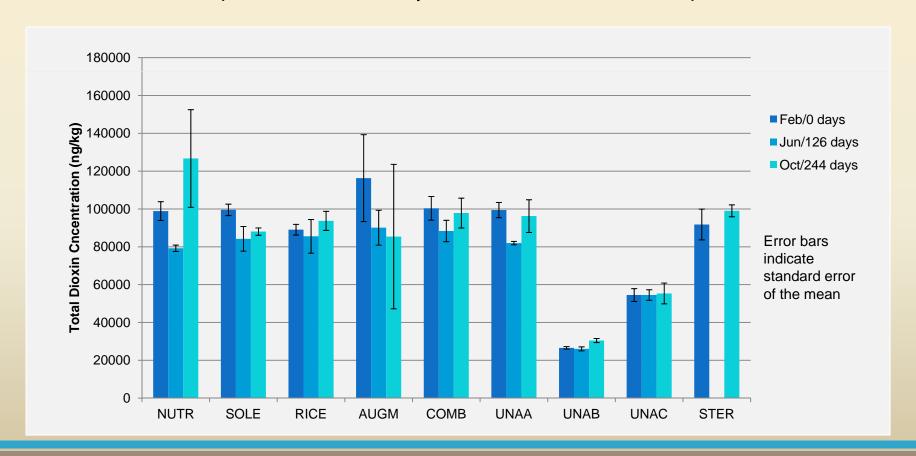
Microcosm ID	Abbreviation	Collection Location	Amendments	Amount Amendment Added	Sterilized	Sample Collection
A6	UNAA	5C_DG-516	None (Unamended)	None	No	0, 4, and 8 months
В6	UNAB	PUBS 1044	None (Unamended)	None	No	0, 4, and 8 months
C6	UNAC	5C_DG-755	None (Unamended)	None	No	0, 4, and 8 months


Microcosm Results: Extractable Fuel Hydrocarbons (EFH)

- Soy lecithin caused high EFH readings
- EFH decreased in 126 days:
 - 40% reduction for Soil A
 - No significant change for Soils B & C
- EFH measurement at 244 days in progress/ under investigation


Microcosm Results: Polyaromatic Hydrocarbons (PAH)

- Little or no PAH biodegradation observed
- Remaining PAHs mostly 4-6 aromatic rings
- Lack of degradation may be due to low bioavailability


Microcosm Results: Polychlorinated Biphenyls (PCBs)

- PCB soil concentrations (Aroclor 1260) decreased
- Sterile control PCB concentration also decreased
- PCB adsorption onto glass is a possibility

Microcosm Results: Chlorinated Dioxins/Furans

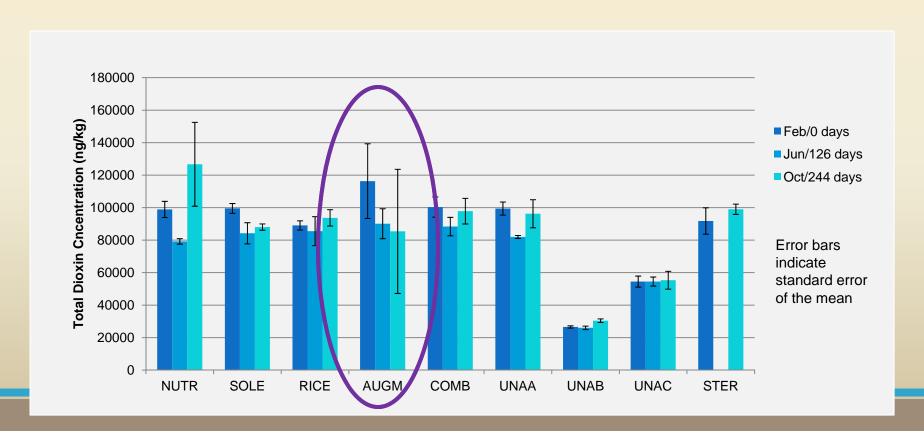
- Bioaugmented sample (fungi): Decrease in dioxin concentrations observed
- Other treatments: Dioxin concentration stayed the same or increased (due to variability of soil concentrations)

Microcosm Results: Biostimulation

Fertilizer Addition:

- Little or no effect of fertilizer (N&P) addition on biodegradation rates of any of the COIs
- Either adequate fertilizer is already available, or biodegradation stalled for some other reason

Bulking Agent Addition

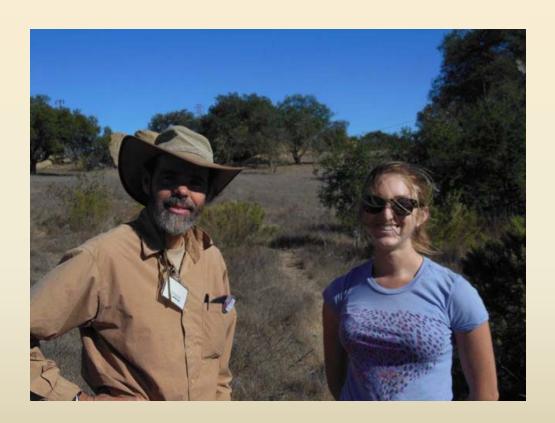

- Rice hulls did not improve biodegradation rates
- Soil is already aerobic, so aeration provided by rice hulls was not helpful

Surfactant Addition:

- No observable effect of surfactant on biodegradation of most of the COIs
- Slight improvement for chlorinated dioxins (but not statistically significant)

Microcosm Results: Effect of Bioaugmentation with Fungi

- No observable effect of bioaugmentation with the white-rot fungi
 Phanerochaete chrysosporium on biodegradation of most of the COIs
- Bioaugmentation appeared to increase biodegradation of dioxins
 - However, bioaugmentation in combination with other additives did not improve dioxin biodegradation


Conclusions

- Field microbial assays indicate the presence of bacteria and fungi in SSFL Area IV soils which are capable of biodegrading the COIs.
- Laboratory microcosm experiments suggest slow biodegradation rates for all of the COIs
 - Slight decreases in COI concentrations observed over 8 months
 - Decreases were not statistically significant at 95% confidence
 - Additional incubation time may be necessary
- Biostimulation with fertilizer and bulking was not effective.
- Biostimulation with surfactant had limited effect.
- Bioaugmentation with the white-rot fungi *Phanerochaete* chrysosporium is somewhat promising for dioxins.

More Conclusions

- COIs at SSFL appear to be highly weathered most of the readily biodegradable compounds have already biodegraded or volatilized, and remaining compounds are likely to be sequestered in the soil, reducing their bioavailability.
- Bioremediation could be considered for areas with low contaminant concentrations.
- Field trials could be used for future testing of biostimulation and/or bioaugmentation, although these approaches were not very promising in the laboratory microcosm experiment.

Questions?

