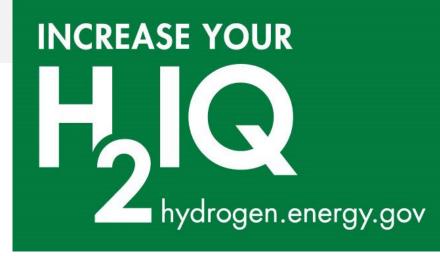



# The #H2IQ Hour

# **Today's Topic:** Overview of Electrolyzer Operation at Nine Mile Point Nuclear Station

This presentation is part of the monthly H2IQ hour to highlight hydrogen and fuel cell research, development, and demonstration (RD&D) activities including projects funded by U.S. Department of Energy's Hydrogen and Fuel Cell Technologies Office (HFTO) within the Office of Energy Efficiency and Renewable Energy (EERE).


# This webinar is being recorded and will be available on the <u>H2IQ webinar archives</u>.

# **Technical Issues:**

- If you experience technical issues, please check your audio settings under the "Audio" tab.
- If you continue experiencing issues, direct message the host, Cassie Osvatics

# **Questions?**

- There will be a Q&A session at the end of the presentation
- To submit a question, please type it into the Q&A box; do not add questions to the Chat



# The #H2IQ Hour Q&A

| Please type your questions<br>into the <u>Q&amp;A Box</u>                                            | V Q&A All (0)                                                                                           |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Open the Q&A panel                                                                                   |                                                                                                         |
| To open the Q&A panel, click Panel options (Windows) or More options (Mac) and select <b>Q&amp;A</b> | Select a question and then type your answer here, There's a 256-character limit.<br>Send Send Privately |





# June 2023 H2IQ Hour Presentation

Demonstration of electrolyzer operation at a nuclear plant to allow for dynamic participation in an organized electricity market and in-house hydrogen supply

Bob Beaumont, Project Manager, Constellation 6/28/2023

Project ID TA028

This presentation does not contain any proprietary, confidential, or otherwise restricted information

# Project Goals and scope

### Goals/Objectives

- Install a 1MW Polymer Electrolyte Membrane (PEM) electrolyzer and supporting infrastructure at an Constellation nuclear power plant
- Provide economic supply of in-house hydrogen consumption at the plant
- Simulate a scale-up operation of a larger electrolyzer participation in power markets

### Questions, challenges

Site Selection

What are the criteria for site selection?

Regulatory

•What are the relevant regulations that affect nuclear H2 production?

Market-related

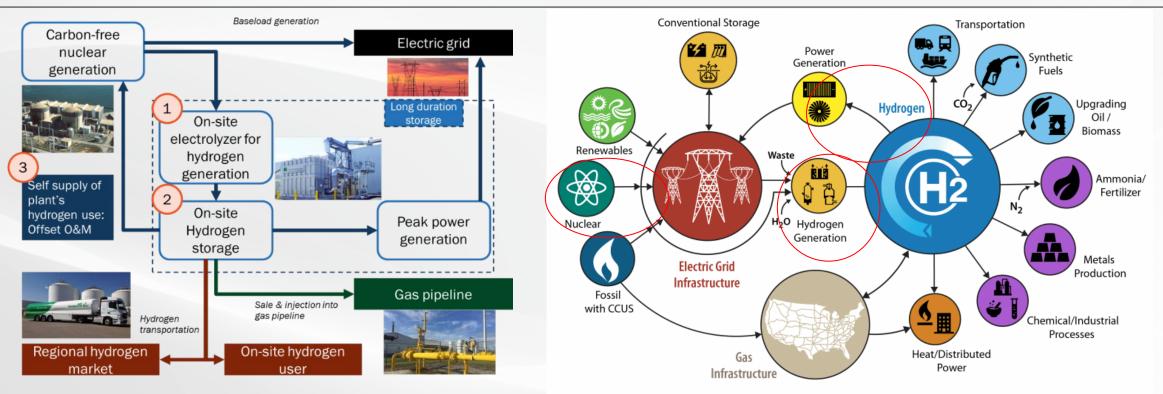
What is the effective electricity price that the electrolyzer pays?

### Timeline and budget

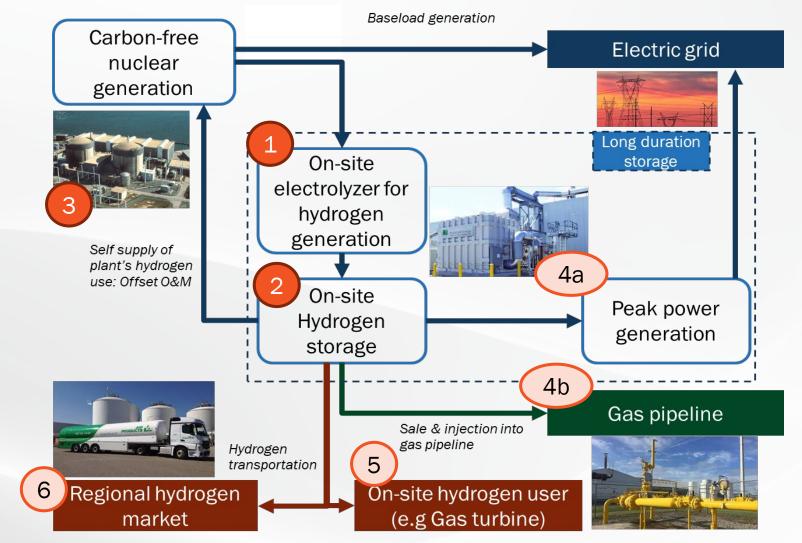
- Conditional award: 10/01/2019
- Removal of condition: 04/01/2020
- Go/No-Go decision made: 07/30/2021
- Project End Date: 10/01/2023
- Total Project Forecast: \$14.4M

### Partners

- Constellation Energy Corporation
- Idaho National Laboratory
- National Renewable Energy Laboratory
- Argonne National Laboratory
- Nel Hydrogen







# Relevance: The project demonstrates nuclear hydrogen pathway described in H2@scale vision

### **Technical Goals and Objectives**

- Install a 1MW PEM electrolyzer and supporting infrastructure at an Constellation NPP
- Provide economic supply of in-house hydrogen consumption at the plant
- Simulate a scale-up operation of a larger electrolyzer participation in power markets







# Approach: Exploring hydrogen production as a way to enhance the value of NPPs

The project will demonstrate pathways 1-3. In budget period 2, the team will implement installation, operation and scale-up analysis. #4 is being pursued with a state grant

# **Tasks and Milestones**

| Task # | Task                                                              | Description                                                                                                            | Verification                     | Month from start |
|--------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|
| 1.0    | Successful selection of an optimal site.                          | Site selection is announced to project partners                                                                        |                                  | 1                |
| 2.0-A  | 30% conceptual engineering design<br>complete                     | 30% Engineering report is completed                                                                                    |                                  | 11               |
| 4.0    | Demonstrate dynamic operation of a ~1 MW electrolyzer             | Perform factory acceptance testing and demonstrate<br>MW electrolyzer.                                                 | e dynamic operation of a ~1      | 11               |
| 4.0    | Simulation model of electrolyzer<br>operation                     | Verified by inspecting the results of a simulation mo<br>including interactions between the grid and the nuc<br>system | _                                | 9                |
| 5.0    | Identification of optimal sites for scale-<br>up.                 | Verified by a technical report comparing candidate si optimal location for future scaleup.                             | tes and down selecting the       | 11               |
| 2.0-В  | Site specific Final Engineering design                            | 100% design engineering is completed with input fro                                                                    | m Nel                            | 18               |
| 6.0    | Economic feasibility assessment of scale-<br>up                   | Verified by a technical report assessing the economic                                                                  | c feasibility of future scaleup. | 35               |
| 8.0    | Start of steady state operation of<br>electrolyzer                | Verified by the steady state hydrogen production                                                                       |                                  | 29               |
| 9.0    | Demonstration of dynamic operation<br>at site                     | Verified by the demonstration of remote connection a installed 1 MW electrolyzer.                                      | and dynamic operation of the     | 35               |
| 10.0   | Perform a project specific assessment of<br>cyber security issues | A report documenting a project specific assessment accordance with recommendations                                     | of cyber security aspects in     | 35               |



7

# **NMP: Hydrogen Pilot Demonstration Project**

Project Manager – Robert Beaumont

### **Current Status**

- Electrolyzer and compressor installed
- System integration testing is complete
- Working through punch list of non-critical items to complete installation
- System has supplied Nine Mile Point since March 7, 2023

### **Next Steps**

- Complete installation punch list activities 6/30/23
- Complete financial analysis

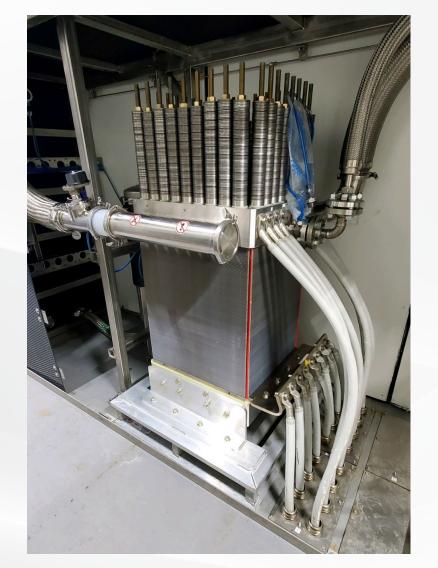


### **Remaining risks**

 Financial – total costs were within original budget, but some budget categories need to be realigned based on actual costs compared to estimates.

6/30/23

• Schedule - none






Pouring concrete for electrolyzer on left, rigging power supply into place on right







Electrolyzer Area to left: backup generator, power supply, and electrolyzer

Cell stack installed to right.





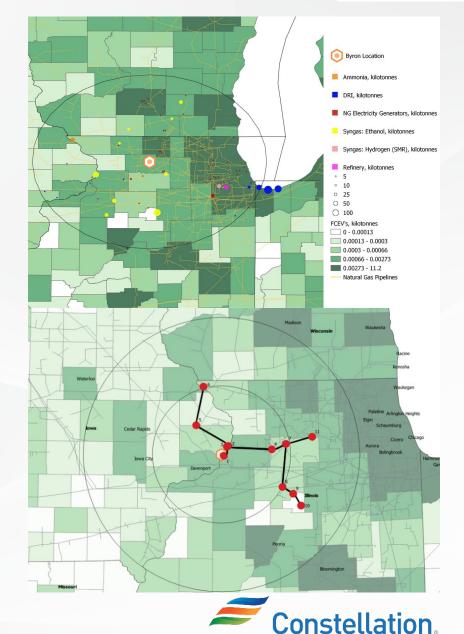
Electrolyzer and cooling unit to left Compressor below





Electrolyzer and cooling unit to left Compressor and tanks to right




# ANL: Market demand, GHG emissions and delivery cost evaluation for Nuclear H<sub>2</sub>

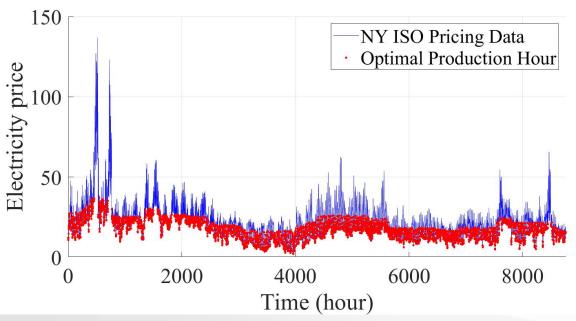


H<sub>2</sub> markets and potential demand estimates for following generating station were evaluated:

- 1) Dresden GS
- 6) La Salle GS 2) Quad Cities 7) Braidwood GS
- 3) Clinton GS 8) Byron GS
- 9) Calvert Cliffs GS 4) Limerick GS
- 5) Ginna GS

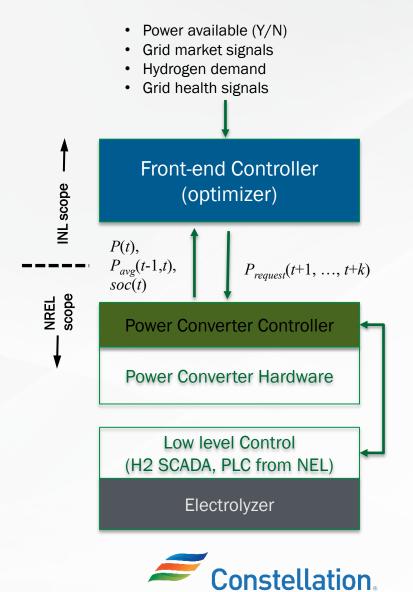
- The potential H<sub>2</sub> market demand was calculated for near-term and longterm opportunities of refinery operations, ammonia production,  $H_2/NG$ electricity generators, synthetic fuels (synfuels) near CO<sub>2</sub> sources, direct reduction of Iron and in proximity to these nuclear power plants.
- Life cycle emissions were calculated for nuclear produced  $H_2$ .
- Emissions associated with end use applications are evaluated and compared to conventional technologies.
- Delivery costs were evaluated by simulating a pipeline network and using Hydrogen Delivery Scenario Analysis Model (HDSAM).
- Transportation and storage are major cost drivers for utilizing  $H_2$
- Cost of avoided CO<sub>2</sub> was estimated for different end use applications using nuclear- $H_2$ .
- Nuclear hydrogen can qualify for the highest production tax credits under
- IRA provision 45V.




# Simulations of Scaled Economic Dispatch Using Front-End Controller

### **Accomplishments**

 Developed and tested front-end controller that uses data from power markets, grid, and the electrolyzer to optimize dispatch of hydrogen production


### <u>Results</u>

 With fixed H<sub>2</sub> demand, electrolyzer daily capacity factor is ~constant and buffered by storage. Cost projections enable using lowest cost electricity for H<sub>2</sub> production to maximize system profits

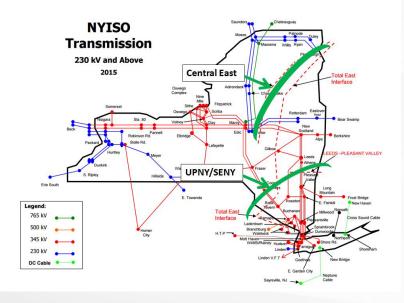


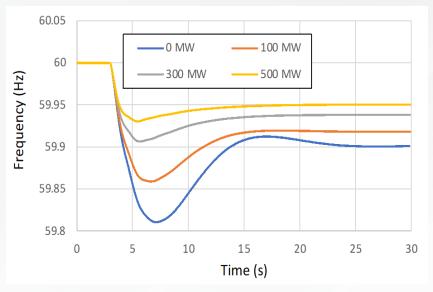
Simulated hydrogen annual production assuming electrolyzer is operated 14 hrs/day with H<sub>2</sub> storage capacity of 5 tonnes.





# Simulations of Scaled Electrolyzer Demand-Response Dispatch





#### **Accomplishments**

- Performed transient grid analyses that indicate dynamic operation of scaled PEM system can decrease grid max. frequency delta due to generator fault.
  - Simulation used IEEE 39-bus standard (New-England Power System)
  - PEM system was located at bus 39, connected to a 1 GW nuclear power plant. A droop-based controller provided autonomous demand response
  - A generator fault (N-1 contingency) was simulated at generator 10 (250 MW) on bus
     2 to create frequency transients.

#### <u>Results</u>

 Max. frequency delta decreased from 0.189 Hz without PEM system to 0.069 Hz for 500 MW PEM

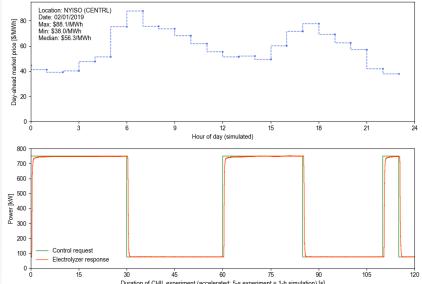




| Scenario | Max. Freq. Delta (Hz) |
|----------|-----------------------|
| 0 MW     | 0.189                 |
| 100 MW   | 0.141                 |
| 300 MW   | 0.093                 |
| 500 MW   | 0.069                 |





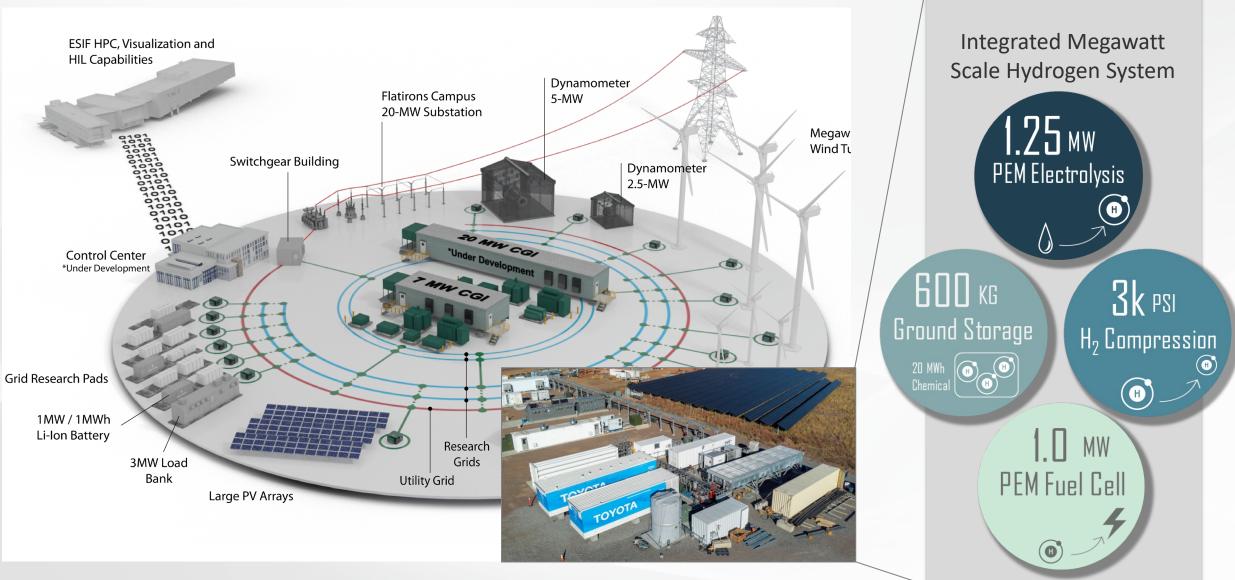

### **Accomplishments and Progress: NREL**

### **Accomplishments**

- Established a communication link between the front-end controller (FEC) and NREL's electrolyzer testbed with a 750-kW stack
- Refined the power-to-current conversion model with temperature effects
- Performed HIL tests of the electrolyzer system using dynamic control signals from FEC while maintaining operational constraints for hydrogen systems (completed Milestone 4.2)
- Shared lessons learned regarding water in systems that can freeze and cause damage before systems are ready for operation

#### **Future Work/In Progress**

- Provide hardware validation tests at Flatirons Campus if needed
- Host a site visit NREL Flatirons Campus for the Constellation team to compare operational experience and know-how between the two similar systems






## MW Scale Hydrogen Systems Capabilities at NREL



Constellation



## **Collaboration and Coordination**

| Partner       | Role                                                                                                                                                      |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Constellation | Lead applicant responsible for overall project, design, installation and operation of the 1MW electrolyzer.<br>Licensing, regulatory market deliverables. |
| Nel           | Vendor supplier for prototype test unit.<br>Providing support for prototype electrolyzer testing                                                          |
| INL           | Development of front end controller, dynamic operation of prototype electolyzer                                                                           |
| NREL          | Development of front end controller, dynamic operation of prototype electolyzer                                                                           |
| ANL           | Analysis for scaled-up hydrogen production, hydrogen market analysis                                                                                      |









70 YEARS OF SCIENCE & INNOVATION

## Personnel requirements

#### Electrolyzer

- Automatic operation load following
- Vendor quarterly maintenance filter changes, sensor calibrations, and safety checks 20 person hours/quarter
- Weekly operations checks air compressor blow downs, filter checks 4 person hours/week

#### Compressor

- Automatic operation sensing trailer pressures to start/stop charging
- Vendor annual maintenance oil change, sensor calibrations, filter changes, and safety checks 20 person hours/year
- Biweekly operations checks head priming if needed 1 person hour/week

#### Remote monitoring

• System added to business network (noncritical) to allow remote monitoring from control room.



# Summary of progress and future work

### Project achievements

- 100% Final Engineering design completed
- Installation and start of steady state operation of electrolyzer (started operation on 3/7/2023)
- ANL has completed mapping hydrogen demand and infrastructure for potential scaleup sites
- Successfully kicked-off \$12.5M follow-on NYSERDA grant to install hydrogen fuel cell at NMP as a long duration storage
- Submitted hydrogen hub application for Mach H2 based on learnings from the project
- Received Nuclear Energy Institute's Top Innovative Practice (TIP) award in 2023
- Lessons learned
  - Compressor factory acceptance testing needed to be reperformed due to poor set up
  - Temperature bands for upstate NY required specialized valve seal materials which had long lead times
  - Many long lead time components were identified and were challenged due to supply chain issues.
- External events/communication
  - Organized in-person launch event at NMP in January 2023. Continue media engagements on local and national level: S&P Global, World Nuclear News, Nuclear Engineering International, RTO insider, Utility Dive, Power Engineering, Axios, Oswego County today, The eagle tribune, Power Magazine,
  - Continue to attend Conferences, industry events to knowledge share: IAEA, EPRI, ANS, Hydrogen Americas, MIT CANES
  - Prepare technical publications in research journals: IEEE
- Future work
  - Demonstration of dynamic operation on site



### Acknowledgments

- Financial support from DOE EERE Fuel Cell Technology Office under award #DE-EE0008849
- DOE program manager: Michael Hahn
- Constellation team and project manager: Robert Beaumont
- National lab teams
- Nel Hydrogen team

