BE-SATED: Building Energy Storage At The Edges of Demand

Otherlab, Inc.; Channing Street Copper Company Joshua Land, VP, Co-Founder josh@otherlab.com, 209.352.2357 DE-EE0009698

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY &

CHANNING STREET

COPPER Co.

29

1

Project Summary

Objective and outcome

Develop and validate battery-integrated appliances, enabling residential battery storage at significantly lower costs per kilowatt-hour than other options, and provide the potential to utilize a 120V electrical outlet without requiring home electrical service upgrades. This effort will also increase electrical appliance cost by no more than 25%.

Team and Partners

Stats

Performance Period: October 2020- April 2024 DOE budget: \$2,210,992 Cost Share: \$552,748 Milestone 1: Appliance based demand response at TOU Milestone 2: Acceptance testing in line with cert standards Milestone 3: Iteration, Deployment, and Certification testing

Problem

There are half a billion fossil fuel burning machines in homes in the US. They all need to be retired in the **next 25 years.**

Problem Solving

We start by focusing on the most pressing needs of families: a healthy way to cook inside their homes.

Gas Stoves are:

X

Bad for our health

42% increase in childhood asthma for children living in home with a gas stove.

X Clunky, outdated performance

Longer to heat food, less precise, dangerous, and hot.

Bad for the planet

X The gas appliances in the Bay Area contribute more NOx pollution than all of the passenger vehicles.

Alignment and Impact

Appliance	Direct	Fugitive on-site	Fugitive upstream	Marginal grid	Total
Stove	7.02	2.41	6.81	25.73	41.96
Water heater	61.16	7.05	61.98	34.89	165.08
Clothes dryer	2.09	0.25	2.20	34.97	39.51
Total	70.27	9.71	70.99	95.58	246.55

Table 1: Residential sector emissions estimates, in millions of metric tons of CO_2e per year.

Appliance	Direct	Fugitive on-site	Fugitive upstream	Marginal grid	Total
Stove	6.96	2.39	7.70	6.91	23.96
Water heater	22.47	2.59	24.86	4.71	54.63
Clothes dryer	1.61	0.19	1.78	2.04	5.61
Total	31.04	5.17	34.34	13.65	84.20

Table 2: Commercial sector emissions estimates, in millions of metric tons of CO_2e per year.

The annual emissions reduction potential of Copper's Energy Storage Enabled appliance technology is roughly 330 million metric tons (MMTs). Of this, roughly 30% comes from direct combustion, 5% from on-site fugitive emissions, 33% from upstream fugitive emissions, and 32% from marginal grid emissions.

These emission reductions are play a significant part in BTO's 2035 and 2050 emissions reduction goals.

Alignment and Impact

45 million gas ranges are still firing today in American homes. These homes are our beachhead market.

Switching gas ranges to electric is conservatively a **\$100 billion** market. Once established in the ESE range category, we'll build a suite of plug and play, ESE appliances to expand further into the home and electrification market.

Why is the ESE approach novel and more exciting than others?

- Ease of installation. Eliminates soft costs of residential storage by retaining use of 120v instead of 240v installation. "Plug and play".
- Resiliency. The Copper range will have sufficient energy to cook 6 meals after power goes out.
- Makes storage more granular, thereby modular per appliance, not "wasting" or oversizing battery.

Why stoves?

- New research has uncovered the health hazards of cooking with gas.
- Wiring for 240V 50A is a major hurdle to electrification, especially with 100A service.
- A modestly-sized battery enables high performance induction cooktop and oven on an existing circuit.
- This solution is especially well suited to multifamily housing units, which have been historically difficult to electrify.

Task and Milestone Delivery

Energy Modeling

• White Paper written: *Emissions reduction potential of battery*enabled appliances in the U.S.

Hardware Prototyping and Testing

• A series of full sized battery integrated induction ranges, in-thefield stove tests complete, currently implementing "backdoor" methodologies to apply DC current to AC hardware, enabling inverterless power methods.

Software Development

• Full time monitoring of stove energy usage. Implemented TOU rate storage/usage based on energy sources and storage capabilities based on various seasonal rates and times.

Business Development

• Channing St Copper Formation, fundraising, utility partnership development, exploration and mapping of subsidies, partnering with local chefs and retailers. Farmers markets and local events. Showrooms and sales.

Step 1 Build an energy storage system.

Step 2 Integrate it into an appliance.

Step 3

Make it better.

State-of-the art performance, timeless design and the right price make choosing our product a no-brainer.

COMPETITIVE LANDSCAPE

We are the only brand that offers a full range with induction cooktop that plugs into a standard outlet.

We've demonstrated product market fit, and the margins are looking good.

- We demonstrated market demand at \$5999.
- We are now building our OEM
 Range with 50% Margins.

26 DTC pre-orders

person

person waitlist

>1000

LOI for a pilot of 300+ units from SUNCUN

MULTI-FAMILY RESIDENCES

36 units

ordered on CalNext grant in partnership with Redwood Energy

LOI from Amalgamated Housing Co-Op in New York for **500 units**

First home installation of our induction range

Copper's ESE mini-split heat pump, which uses a battery to limit needed amperage. Both appliances have optional inputs for non-interconnection solar installations.

Copper's ESE 120v heat pump water heater, which utilizes a battery to eliminate the need for 240v input without sacrificing performance.

A high level look at the next 18 months at Copper.

Team

We have the right people to build a category defining company

FOUNDING TEAM

Eric Wilhelm, PhD CEO

Tucker Gilman COO

Saul Griffith, PhD Advisor

Sam Calisch, PhD Chief Scientist

Weldon Kennedy CMO

Josh Land VP of Partnerships

FIRST HIRES

David Kosecoff Electrical Engineer Apple

Helen Yamamoto Technical Program Manager Lockheed Martin & Amazon

SOME OF WHAT WE'VE DONE

- **18** Companies founded (acquisitions by Autodesk, Google, Linamar)
- 3 MIT PhDs
- 2 Consumer brands built
- 8 Years gourmet restaurant and bakery experience

Millions of products shipped to customers from supply chains we have created.

Wrote *Electrify,* the book on the electrification opportunity

Led big teams: VP at Autodesk & MD at Change.org

Thank You!

Otherlab, Inc.; Channing Street Copper Company Joshua Land, VP, Co-Founder josh@otherlab.com, 209.352.2357 DE-EE0009698

REFERENCE SLIDES

Project Execution

Q3 2021

	Title	Start date	Due date 1
1	BADD Tasks and Milestones		
2	MS 1: Initial V1 Specs Outlined		12/15/2021
3	MS 2: Low-power Testbed Completion		03/01/2022
4	TASK 2: Energy Modeling	10/01/2021	03/01/2022
5	MS 3: Proof of Concept, Successful Functio		04/18/2022
6	MS 4: TOU charging validated		08/31/2022
7	G/NG 1: System Validation Testing		09/30/2022
8	TASK 3: Hardware Prototyping and Testing	12/15/2021	09/30/2022
9	TASK 4: Software Dev.	03/16/2022	09/30/2022
10	TASK 5: Business Dev.	12/15/2021	09/30/2022
11	MS 5: Customer Device Response Provides		02/15/2023
12	MS 6: Front End SW Control Implemented		05/01/2023
13	DELIV 1: Pilot Plan	06/26/2023	09/29/2023
14	G/NG 2: Acceptance Testing		09/29/2023
15	TASK 6: System Testing	10/03/2022	09/29/2023
16	TASK 7: Regulatory and Cert. Planning	10/03/2022	09/29/2023
12	TASK 8: Business Dev.	10/03/2022	09/29/2023
18	MS 7: Pilot Installed		02/19/2024
19	EOP GOAL: NRTL Testing		03/29/2024
20	TASK 10: Cert. Execution	10/02/2023	03/29/2024
21	TASK 11: Business Dev.	10/02/2023	03/29/2024
22	TASK 9: In-home Pilot and Monitoring	10/02/2023	03/29/2024
+	Add task		

EERE/BTO goals

The nation's ambitious climate mitigation goals

EERE/BTO's vision for a net-zero U.S. building sector by 2050

Greenhouse gas emissions reductions 50-52% reduction by 2030 vs. 2005 levels Net-zero emissions economy by 2050

Power system decarbonization 100% carbon pollutionfree electricity by 2035

Energy justice 40% of benefits from federal climate and clean energy investments flow to disadvantaged communities

ind Gines nec

Support rapid decarbonization of the U.S. building stock in line with economyide net-zero emissions by 2050 while centering equity and benefits to communities

Increase building energy efficiency

Reduce onsite energy use intensity in buildings 30% by 2035 and 45% by 2050, compared to 2005

Accelerate building electrification

Reduce onsite fossil -based CO₂ emissions in

buildings 25% by 2035 and 75% by 2050,

4

Transform the grid edge at buildings

compared to 2005

Increase building demand flexibility potential 3X by 2050, compared to 2020, to enable a net-zero grid, reduce grid edge infrastructure costs, and improve resilience.

Prioritize equity, affordability, and resilience

Ensure that 40% of the benefits of federal building decarbonization investments flow to disadvantaged communities

Reduce the cost of decarbonizing key building segments 50% by 2035 while also reducing consumer energy burdens

Increase the ability of communities to withstand stress from climate change, extreme weather, and grid disruptions

