# Monolithic Mesoporous Metamaterials for R-10 to R-15 Glazing



Performing Organization(s): University of Colorado Boulder PI Name and Title: Professor Ivan I. Smalyukh PI Tel and/or Email: <u>ivan.smalyukh@Colorado.edu</u> WBS #, FOA Project # and/or any other Project #: DE-EE0009699

# **Project Summary**

### **Objective and outcome**

Develop manufacturing of thermally-insulating, transparent monolithic mesoporous metamaterials (MMM or MetaAir) for glazing. Demonstrate R-10 IGUs with MetaAir-filled gap between glass panes formfactor of a standard double pane IGU. Demonstrate multi-pane IGUs with MetaAir-based panes of glazing meet R-15/inch insulation targets, under \$1 per square foot manufacturing of MMMs with >99% transparency, <1% haze



### Team and Partners

#### University of Colorado Boulder



University of Colorado Boulder

Partners: iFeather Technologies

### <u>Stats</u>

Performance Period: 10/1/2021-9/302024 DOE budget: \$792k, Cost Share: \$198k Milestone 1: R10—R11 MMM-based glazing Milestone 2: R-15/inch insulation, <1% haze Milestone 3: under \$1 per square foot manufacturing

# Problem: Windows waste energy & money...

### Office & home windows







- $\rightarrow$  20% of building energy lost through windows due to poor thermal insulation
- $\rightarrow \text{Low-income}$  homeowners spend 5-15% of that income on heating and cooling
- $\rightarrow$ Existing products cannot solve the problem as transparent super-insulators do not exist...

# **Alignment and Impact**

 $\rightarrow$ Maintain environment of buildings without energy consumption, or reduce this consumption

 $\rightarrow$ Reduce/mitigate the growth of the energy demand

 $\rightarrow$ Eliminate green house emissions that would be associated with generating energy consumed by buildings

 $\rightarrow$ Help save ~20% of building energy wasted via windows





Greenhouse gas

Power system



#### Energy justice



Consumer Benefits:

 $\rightarrow$ Relative savings (household) \$500-2000 per year

 $\rightarrow$ Extra benefits: comfort, sound proofing, condensation resistance...

## Approach: gas vs (porous) solid IGU fillers

Towards ultra-high-R windows... IGU fillers?

![](_page_4_Figure_2.jpeg)

![](_page_4_Figure_3.jpeg)

 $\rightarrow$ Convection for thick air/gas gaps!!!

- $\rightarrow$  90% air, 10% solid shaped into porous tubes
- $\rightarrow$ 9-11mW/(Km), R-15/inch for our material

# Approach: Templating mesoscale porous tube networks by lyotropic LCs

### Surfactant self-assembly

![](_page_5_Figure_2.jpeg)

### **3D TEM tomography**

![](_page_5_Picture_4.jpeg)

# **Approach: Drying to obtain nano-porous analogs of glass**

#### **MMM Samples Fabrication**

![](_page_6_Picture_2.jpeg)

#### Preparation of MMM samples

![](_page_6_Picture_4.jpeg)

#### Fabricated square-foot MMM sample

![](_page_6_Picture_6.jpeg)

New procedure for drying MMM samples using supercritical fluid extractor was developed

- Curing and solvent exchange of large area samples developed
- drying procedure and solvent recycling

MMM sample

![](_page_6_Picture_11.jpeg)

#### U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

# Approach: Meeting stringent requirements for transparency and haze

### **Optical properties of MMM samples**

![](_page_7_Figure_2.jpeg)

![](_page_7_Figure_3.jpeg)

High color rendering index of 99.1% shows that MMM does not affect the optical performance of IGUs, which will be limited by the used glass and low-e coatings

#### **U.S. DEPARTMENT OF ENERGY**

#### **OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY**

### **Approach: Thermal characterization**

#### **Thermal properties of MMM samples**

![](_page_8_Figure_2.jpeg)

#### Heat Flux Measurements

#### Heat Flow Meter Netzsch 446

![](_page_8_Figure_5.jpeg)

**U.S. DEPARTMENT OF ENERGY** 

| Thermal conductivity k | 9-11 mW/(K∙m) |
|------------------------|---------------|
| R-value for 3-12 mm    | 1.5-7.6       |
| R-value per inch       | 12.9-16       |

**OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY** 

### **Progress and Future Work: Designing & Fabricating Square-foot IGUs**

![](_page_9_Figure_1.jpeg)

#### IGU Fabrication from MetaAir and Clear Glass (no coatings)

![](_page_9_Figure_3.jpeg)

# Super Setting Silicone sealant for securing IGU edges

Super spacer for setting the gap

**U.S. DEPARTMENT OF ENERGY** 

#### **OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY**

### Progress and Future Work: R-11 large-area MMM-based IGU

![](_page_10_Figure_1.jpeg)

# Progress and Future Work: switching to quasi-ambient drying

#### **Ambient drying fabrication**

We have been working using both ambient drying and critical point drying methods. These two methods are different in terms of chemistry, solvent exchange process, and cost of drying process

![](_page_11_Figure_3.jpeg)

## **Progress and Future Work: Accomplishments & Risks**

- Fabricated square-foot MMM samples with 97% visible transmission, low 1.6% haze, and a low thermal conductivity 11 mW/(K·m) and lower using supercritical drying
- Measured high color rendering index of 99.1% (required >95%) for fabricated MMM slabs
- Fabricated MMM-based IGUs with a glass-adhered MMM slab showing thermal performance of R=10.92
- Fabricated MMM samples using ambient drying method with T<sub>vis</sub>=95.6% (required >90%)
- Fabricated MMM samples using low pressure subcritical drying method T<sub>vis</sub>=97.1% (required >92%)

#### Parameters of fabricated MMM samples and MMM-based IGUs

|   | Parameter/Metric                   | Target value | Achieved value |              |
|---|------------------------------------|--------------|----------------|--------------|
| 1 | Thermal conductivity of MMMs       | <12 mW/(K×m) | 11 mW/(K×m)    | $\checkmark$ |
| 2 | R value of MMM-based IGU           | ≥10          | 10.92          | $\checkmark$ |
| 3 | Visible light transmission of MMMs | >90%         | 97%            | $\checkmark$ |
| 4 | Haze of MMMs                       | <2%          | 1.6%           | $\checkmark$ |
| 5 | Color rendering index of IGU       | >95%         | 99.1%          | $\checkmark$ |

completed milestones due Q1-Q5 & will continue develop the technology to complete all technical goals, where we foresee no challenges that we cannot overcome

## **Progress and Future Work: Project Schedule & upcoming milestones**

| Milestone<br>Number | Milestone                                                                                                                                                                                                                                                                                                 | SOPO Task/<br>Subtask Number | Planned<br>Completion Date |               |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|---------------|
| 1.1.1               | Fabricate square-foot MMM samples with >92% visible transmission and a low thermal conductivity <12 mW/(K·m)                                                                                                                                                                                              | 1.1                          | 12/31/21                   | <b>√</b> 100% |
| 1.1.2               | Demonstrate/optimize MMM adhesion to glass by means of chemical bonding while retaining optical & thermal properties of the constituents showing neither visible delamination nor haze increase by >0.5%, nor transparency and thermal conductivity decrease by >1%                                       | 1.1                          | 03/31/22                   | <b>√</b> 100% |
| 1.2.1               | Fabricate MMM-based IGUs with a middle pane made of free-standing or glass-adhered MMM slabs showing optical transparency < 3% lower than a double pane IGU with the same glass panes, and R-5 or better R values                                                                                         | 1.2                          | 07/31/22                   | <b>√</b> 100% |
| 1.2.2               | Fabricate a square-foot MMM-IGU with MMM between clear glass panes & 2-pane formfactor showing R-10 insulation or better, >80% visible transparency and >95% color rendering                                                                                                                              | 1.2                          | 10/31/22                   | <b>☑</b> 100% |
| 2.1.1               | Determine parameters for optimal MMM drying with low-surface-tension solvents achieving haze <2%, color rendering >95% and transmission >90%                                                                                                                                                              | 2.1                          | 06/30/22                   | <b>☑</b> 100% |
| 2.2.1               | Design large-scale square-meter, multi-pane subcritical or ambient drying apparatus                                                                                                                                                                                                                       | 2.2                          | 08/31/22                   | <b>√</b> 100% |
|                     |                                                                                                                                                                                                                                                                                                           |                              |                            |               |
| 3.1                 | Vessels machined & dryer assembled from home-built & commercial parts, which allows to fabricate a preliminary subcritical or ambient dried MMM sample showing >90% visible transmission and a thermal conductivity <15 mW/(K·m)                                                                          | 3.0                          | 03/31/23                   | 30%           |
| 3.2                 | Subcritical/ambient MMM dryer yields MMMs of high quality - similar to that with supercritical drying showing >92% visible transmission and a low thermal conductivity <12 mW/(K·m)                                                                                                                       | 3.0                          | 06/30/23                   | 20%           |
| 4.1                 | Fabricate MMM-based triple-pane IGUs with middle panes made of free-standing or glass-adhered MMM slabs, showing visible transparency <7% lower than a double pane with the same glass panes, thermal insulation R-11 or better. Fabricate and characterize multiple-pane IGUs with more than three panes | 4.0                          | 04/30/23                   | 20%           |
| 4.2                 | Design & fabricate MMM-based edge spacer for window frame insulation made from MMM thermal conductivity <12<br>mW/(K·m), and MMM-IGU with such MMM-spacer showing reduced thermal bridging in MMM-IGUs with MMM-spacers as<br>compared to conventional ones                                               | 4.0                          | 09/30/23                   | 10%           |

# Ongoing efforts, future plans & conclusions

- Quasi-ambient drying perfecting procedures
- →Scaling thickness & lateral size simultaneously while keeping haze <1%
- →Reducing cost of production at scale to ~0.3 USD per square foot
- →Meta-Air-based IGUs may enable windows with wall-grade insulation
- →Increase the area of glazing within buildings 20X?

![](_page_14_Figure_6.jpeg)

# **Thank You**

Performing Organization(s): University of Colorado Boulder PI Name and Title: Professor Ivan I. Smalyukh PI Tel and/or Email: ivan.smalyukh@Colorado.edu WBS #, FOA Project # and/or any other Project #: DE-EE0009699

![](_page_15_Picture_2.jpeg)

# **REFERENCE SLIDES**

# **Project Execution**

|                     | FY20 <mark>22</mark><br>340,226<br>340,226 |    |    | FY20 <mark>23</mark><br>329,329 |    |    |    | FY20 <mark>24</mark><br>320,445 |    |    |    |    |
|---------------------|--------------------------------------------|----|----|---------------------------------|----|----|----|---------------------------------|----|----|----|----|
| Planned budget      |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Spent budget        |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
|                     | Q1                                         | Q2 | Q3 | Q4                              | Q1 | Q2 | Q3 | Q4                              | Q1 | Q2 | Q3 | Q4 |
| Past Work           |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q1 Milestone 1.1.1  |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q2 Milestone 1.1.2  |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q3 Milestone 2.1.1  |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q4 Milestone 1.2.1  |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q4 Milestone 2.2.1  |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q1 Milestone 1.2.2  |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Current/Future Work |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q2 Milestone 3.1    |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q3 Milestone 3.2    |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q3 Milestone 4.1    |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q4 Milestone 4.2    |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q1 Milestone 5.1.1  |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q2 Milestone 5.2.1  |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q3 Milestone 5.1.2  |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q3 Milestone 5.2.2  |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q4 Milestone 5.2.3  |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q4 Milestone 5.3.1  |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |
| Q4 Milestone 5.4.1  |                                            |    |    |                                 |    |    |    |                                 |    |    |    |    |

• Go/no-go decision points are milestones in the end of FY 2022 (completed) and FY 2023

# Team

- Prime Recipient: University of Colorado
- Agreement Number: DE-EE0009699
- PI: Prof. Ivan Smalyukh
- NETL Technical Project Officer: Dr. Coriana Hope Fitz & Dr. Marc Lafrance

• Project Team Members:

Dr. Eldho Abraham (100%), Dr. Taewoo Lee (50%), Dr. Vladyslav Cherpak (50%)

 Past Project Team Members:
Dr. Cuiling Meng & Dr. Bohdan Senyuk (moved to new faculty jobs now)

![](_page_18_Picture_8.jpeg)

![](_page_18_Picture_9.jpeg)

100%

50%

50%

![](_page_18_Picture_13.jpeg)

![](_page_18_Picture_14.jpeg)