A Grid-Interactive Modulating Air Distribution Manifold

IBACOS Andrew Poerschke apoerschke@ibacos.com DE-SC0021875

Project Summary

Objective and outcome

Develop and demonstrate an affordable zoned airflow distribution manifold. The product will improve the comfort and energy efficiency of homes, while offering greater satisfaction for occupants during demand response events.

Team and Partners

IBACOS

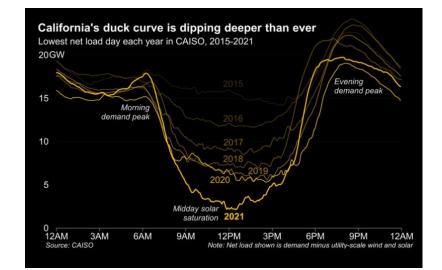
Rheia

Art and Logic

Essential Design

<u>Stats</u>

Performance Period: 6/28/2021 – 8/21/2023 DOE budget: \$1,356,250.00 Cost Share: \$0

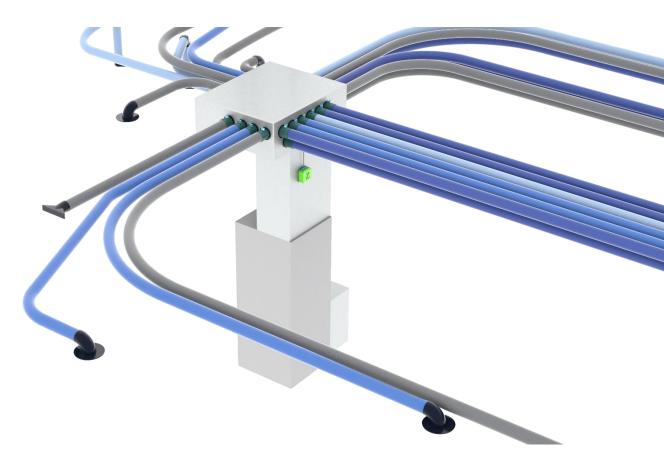

Milestone 1: Design and engineering process documented. Updates to engineering calculation engine completed.

Milestone 2: Control algorithm software developed, tested and ready to be embedded in firmware of controller hardware.

Milestone 3: Demonstrate Product Performance in Test Houses, Months

Problem

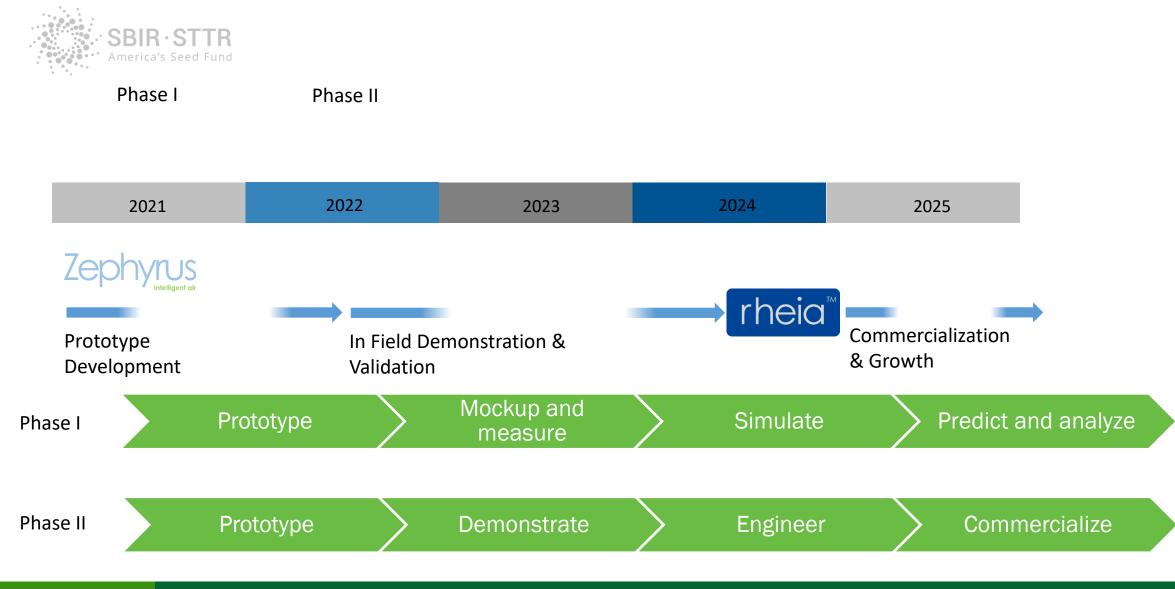
- Electric utilities are facing GW+ of resource gaps, especially for winter net peaking utilities*.
- DSM is a critical piece to economically addressing this gap.
- Current thermostat setback programs reduce occupant comfort, and are of limited duration.
- New homes can have comfort challenges with 10°F temperature stratification, but conventional zoning is restrictive and expensive.
- An affordable automatically modulating airflow distribution manifold can address all these challenges.



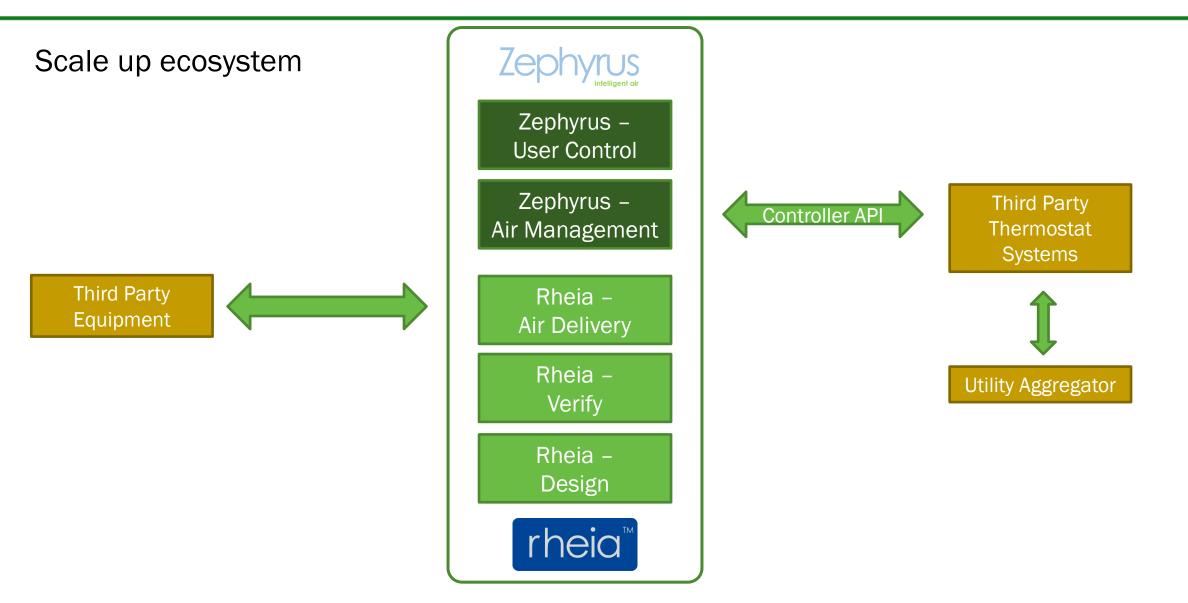
* Duke Energy Progress 2020 Integrated Resource Plan

Alignment and Impact

- More affordable zoning solution. Installed for <\$1,000 vs >\$2,000 for current two zone solutions.
- Product target is to have wide applicability as opposed to being a niche high end offering (as zoning often is today).
- Creates greater HVAC load flexibility to enable more adoption of renewables on grid. Provides 4-6 hours of load flexibility per device as opposed to 2 for current thermostats.
- Give consumers an easy way to manage HVAC energy use in their homes, and a choice in how significantly to prioritize efficiency.
- Project will be successful if comfort, energy efficiency, and load flexibility is demonstrated in real world test homes, and technical hurdles identified or overcome.
- Product will be successful if it is scaled up and commercialized, and installed in a significant number of new homes following the Rheia sales channel.


- Current approaches to zoned comfort control are typically expensive and difficult to install.
 Once installed they are not reconfigurable as occupant needs change.
- Conventional smart thermostats control the whole house with one switch and offer limited duration demand response with reduced occupant comfort.
- 'Zephyrus' is a modulating air distribution manifold that affordably integrates with the Rheia snap fit air distribution fittings and provides automated whole house airflow balancing on single stage and multi-stage equipment.

Energy Efficiency


Load Flexibility

Comfort

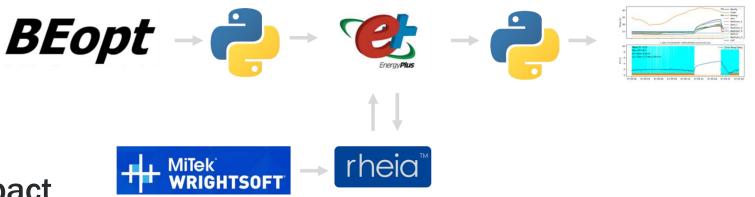
Barriers, challenges, risks:

- Integration into existing smart home ecosystem
 - Working closely with software consultant to evaluate current ecosystem.
 - Discussions with OEMs on integrations with their platforms.
- Code approvals
 - Will work closely with UL and others to identify relevant code compliance and testing for UL 181 and UL 2043 approvals.
- Growing commercial sales
 - Follow Rheia's established beachhead market with national builders and contractors
- Integration with utility programs
 - Ongoing discussions with electric utilities on the development of the technology and how to best deliver grid value

Phase I Prototype

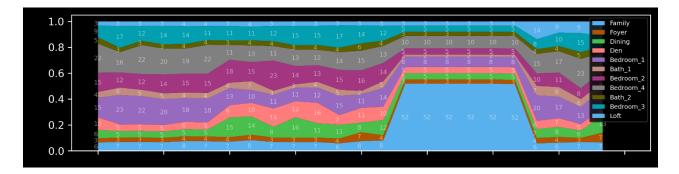
- Flowmeter in every duct run
- Whole system airflow
- Manifold static pressure
- Continuous damper control
- Integrated measurement and control software

70


60

Theta

20


- Duct system calibrated to measured data
- 1000 Randomized samples vary fan speed damper angle
- Model airflow prediction: RMSE 1-2 CFM

Phase I Simulation

HVAC Daily Impact

- 1-3.3°F ΔT Improvement
- 39-77% Peak Load Reduction (6 hrs)
- 10-26% HVAC kWh Reduction
- 10-32% CO2 Reduction
- Annual Impact (PHX 4 stage)
 - 4% kWh Reduction (433 kWh)
 - 4% CO2 Reduction (0.14 MT)


Phase II – Test Homes

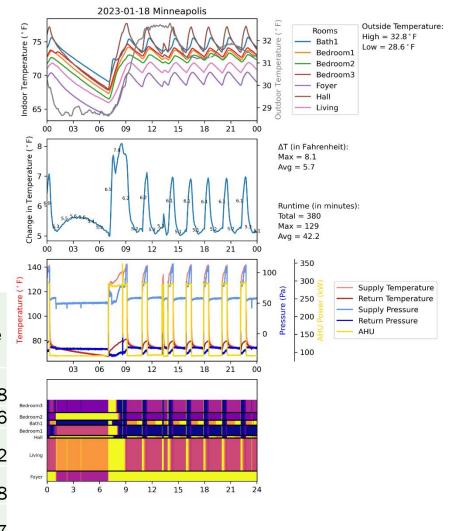
Cold Climate

Minneapolis, MN

2-story town home

Hot Climate Phoenix, AZ

2-story detached


- Prototype dampers and controller
 - Sensors in every room

Cold Climate Lessons Learned

Progress and Future Work

- Baseline stratification due to slab on grade construction.
- ACCA Manual J does not adequately account for infiltration location and heat loss through slab.
- Dialed in control algorithm to best adjust airflow while controlling static pressure.
- Active control and continuous fan operation helped reduce stratification.

Operation Mode		Туре	Outdoor Temperature (F)	Runtime (m)		Runtime	Average Temperature Delta (F)	Temperature (
	3/11/2023	Cool	29	454	140		8.8	P
Static	3/2/2023	Cold	24	672	221		13.6	Be
	2/27/2023	Cool	33	407	110		5.2	Be
Auto	1/13/2023	Cold	19	514	150		6.8	
	3/27/2023	Cool	32	345	1	. 99%	6.7	
Setback	2/26/2023	Cold	21	. 420	90	40%	7.5	

- Wrap up cold climate testing
- Finish commissioning of hot climate test home (once construction is complete).
- Run hot climate test home through test scenarios this summer.
 - Quantify uniform comfort improvement, room by room setpoint control, load flexibility and energy savings.
 - Dial in control algorithms.
- Investigate alternate options for active damper location.
- Develop user app mockups and software requirements.
- Showcase technology to stakeholders.
- Conduct DFM engineering of plastic and electro-mechanical parts.

Thank You

Performing Organization(s) PI Name and Title PI Tel and/or Email WBS #, FOA Project # and/or any other Project #

REFERENCE SLIDES

		FY2022		FY2023				FY2024					
Planned budget Spent budget						\$515,304				\$498,773			
						\$259,142							
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Current/Future Work													
1. Develop Design and Engineering Process and Calculations													
2. Control algorithm software developed													
3. Final damper location hardware topology selected													
4. Test Homes Underway													
5. Software and hardware requirements documented													
6. All component designs finalized and ready to be released to	toolm	naker											
7. Installation and commissioning methodology documented													

Team

Andrew Poerschke Pl

Ari Rapport Business Lead

Mark Tilley CEO

Anthony Grisolia Senior Project Specialist

Bruce Dickson Senior Specialist

EERE/BTO goals

The nation's ambitious climate mitigation goals

Greenhouse gas emissions reductions 50-52% reduction by 2030 vs. 2005 levels

Net-zero emissions economy by 2050

Power system decarbonization 100% carbon pollutionfree electricity by 2035

Energy justice 40% of benefits from federal climate and clean energy investments flow to disadvantaged communities

EERE/BTO's vision for a net-zero U.S. building sector by 2050

Support rapid decarbonization of the U.S. building stock in line with economyide net-zero emissions by 2050 while centering equity and benefits to communities

Increase building energy efficiency

Reduce onsite energy use intensity in buildings 30% by 2035 and 45% by 2050, compared to 2005

Accelerate building electrification

Reduce onsite fossil -based CO₃ emissions in

buildings 25% by 2035 and 75% by 2050,

4

Transform the grid edge at buildings

compared to 2005

Increase building demand flexibility potential 3X by 2050, compared to 2020, to enable a net-zero grid, reduce grid edge infrastructure costs, and improve resilience.

Prioritize equity, affordability, and resilience

Ensure that 40% of the benefits of federal building decarbonization investments flow to disadvantaged communities

Reduce the cost of decarbonizing key building segments 50% by 2035 while also reducing consumer energy burdens

(\$)

Increase the ability of communities to withstand stress from climate change, extreme weather, and grid disruptions