Grid-Interactive, Resilient Lighting and Plug Load Management System Using DC Power

Lawrence Berkeley National Laboratory, Legrand Rich Brown (LBNL), David Clothier (Legrand North and Central America) (510) 486-5896, REBrown@lbl.gov WBS # 3.2.6.84

Project Summary

Objective and outcome

- Develop **power distribution and control system based on updated DC power and communication standards**.
- New power distribution architecture allows significantly higher power levels at lower cost than current standards such as PoE.
- Satisfy building occupant and grid needs through predictive modeling and control to manage power flows.

Team and Partners

LBNL – Standards, storage analysis, benchtop demonstration

Legrand North and Central America – Use cases, predictive control, market analysis (**CRADA partner**)

<u>Stats</u>

Performance Period: 3/1/2022–3/30/2024 (**New Project**) DOE budget: \$500k, Cost Share: \$500k Milestone 1: Use Case Report Milestone 2: Standards Review Milestone 3: Benchtop Demonstration

CRADA Partner – Legrand (LNCA)

Global manufacturer of electrical wiring systems, lighting, building controls, and audio-visual, sold under brands such as Legrand, Pass & Seymour, Raritan, Finelite, Wattstopper, and On-Q.

Legrand's interest in this CRADA partnership:

- DC Power Devices
 - Increasing presence in office and consumer equipment
 - Power and control standards increase customer choice
 - Smart interactive devices provide system efficiencies
- Power Distribution and Control Architecture Standards
 - Prepare for Future Energy Markets with Flexibility and Adaptability
 - Provide a common environment for new product development
 - Provide a means of interoperability from different manufacturers
- Predictive Control Algorithm Development
 - Adapting Known Solutions in New Environments
 - Expanding Capabilities of Control System
 - Moving from Device Efficiency to Systemic Efficiencies

OFFICE OF ENERGY EFFICIENCY &

Problem – Today's DC Power Systems Limit Progress

- Integrating "modern" loads, energy storage and solar into legacy AC grid has drawbacks
- Direct DC power distribution has many advantages resilience, grid stability, improved payback through efficiency and reduced costs

BUT

- Existing standards for DC power with communications (e.g., Power-over-Ethernet or USB) are limited to niche applications
 - **Optimized for high-speed data**, not power distribution
 - Require **expensive** cabling, high energy losses
 - Limited power capacity
 - Limited network topologies (point-to-point power links from a single power hub)
 - No way to plug-and-play solar and storage

Solution: Digitally managed DC power, optimized for power distribution

OFFICE OF ENERGY EFFICIENCY &

Alignment and Impact – Project & BTO Goals

BTO Goal	Project Goal					
Energy Efficiency	Reduce power conversion losses by >10%					
	Integrate predictive controls to manage loads					
Electrification	Transmit up to 1kW of power per circuit using low-voltage DC, to serve most loads in occupied spaces					
	Avoid oversizing infrastructure by managing capacity constraints					
Transform Grid Edge	Provide grid-edge flexibility through predictive controls					
	Facilitate plug and play operation of generation, storage, and loads					
Equity	Reduce cost of integrating PV and storage in buildings to improve access for low-income and disadvantaged communities					

Approach – Learn From Existing DC Solutions

- Review existing power link standards for digitally managed DC power
 - Mainly USB (especially USB-C) and Power-over-Ethernet (PoE)
 - Limited review of other standards/technologies
 - Identify limitations, and areas to leverage for new standard
- Factors considered (particular focus)
 - Topologies supported
 - Connectors
 - Cabling
 - Voltages
 - Current
 - Grounding
 - Arcing
 - Capacity
 - Communication (Physical layers, power distribution management, Internet Protocol data)
 - Relevant organizations

Approach – Define a New Building Power Architecture

Approach – New DC Link Standard

Approach – DC Network Power Management

Approach – Barriers and Mitigation Strategies

Barriers, technical challenges, project risks	Mitigation strategies					
Achieving target power level at low-voltage with affordable/acceptable cabling infrastructure & grid controllers	Dynamic capacity management ensures safe operation					
Auto-detection of cabling infrastructure for dynamic capacity management	Will develop prescriptive system specification if auto-detection is not feasible					
Efficient usage of energy storage in the system	Distributed storage analysis will explore cost benefits of distributed storage					
Developing prototype devices that implement new standard	Extend existing products (e.g., Domatic) to implement the new link standard					

Approach – Commercialization

- Test benchtop-scale prototype system to show feasibility of core concepts
 - Implement key use cases such as emergency lighting
 - Demonstrate grid controller and several loads implementing electrical and communication aspects of standard
- Contribute proposed standard "outline" to standards organization

Progress – Defining Use Cases

Electrical Load Use Cases		System Application Use Cases				
•	Distributed Loads - Including Demand	•	Diverse Energy Sources			
	Response	•	On-site Renewable Power			
•	Life-safety: Emergency Lighting	•	Open Space Distributed Power			
•	Other Life-safety Loads	•	Flexible space utilization			
•	Telecom Closets	•	Residential Applications			
•	Power Reliability and Redundancy					

Focus on building applications that have:

- High concentration of DC loads (e.g., LEDs, electronics, variable-speed motors)
- High reliability needs
- Primarily commercial buildings, but standard should apply to residential also

Progress – Benchtop Demonstration Plan

Test several use cases

- Emergency lighting & other life-safety
- Telecom closet
- Open space distributed power and battery storage
- Residential

Develop prototypes of several devices that implement digitally managed DC power

- Grid controller with battery
- Several loads

120V

AC

Upcoming Work

Remainder of Project

- Finish sketching out proposed standard
- Demonstrate prototypes and evaluate results
- Present standard and demo results to standards organization (probably IEEE 802.3 and Emerge Alliance)
- Develop market adoption plan
- Beyond the end of this project
- Standardization: Published standard
- Promote through trade group (e.g., Ethernet Alliance) ethernet alliance
- Develop test & certification protocols
- Work with device and component manufacturers to produce products
- Demonstrate in real buildings (ideally involving high-profile purchasers like GSA, other portfolio managers)

EE	802.3 Ethernet
David L	aw 2.3 Working Group Chair aw@3Com.com

Thank You

Lawrence Berkeley National Laboratory / Legrand North and Central America Rich Brown, Research Scientist REBrown@lbl.gov WBS # 3.2.6.84

OFFICE OF ENERGY EFFICIENCY &

REFERENCE SLIDES

Project Execution

		FY2	2022			FY2	2023			FY2	.024	
Planned budget		\$125k			\$250k				\$125k			
Spent budget	\$80k											
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
Milestone 1.1: DC Power Use Case and Requirements Report												
Milestone 2.1: DC Power Standards Landscape Report												
Milestone 3.1: Energy Storage Analysis Report												
Current/Future Work												
Milestone 4.1: Predictive Controls Requirements and Design Memo												
Milestone 5.1: Prototypes for Testing												
Benchtop testing												

• Project start delayed 2 quarters to negotiate CRADA agreement

Team

LBNL (Standards, storage analysis, benchtop demonstration)

- Rich Brown, Pl
- Bruce Nordman, Power architecture and standards
- Daniel Gerber, Storage analysis and demonstration lead

Legrand (Use cases, predictive control, market analysis)

- Pete Horton, Project lead
- David Clothier, Technical lead

Domatic (Demonstration partner)

• Jim Baldwin, Founder

Approach – Full System Architecture

Progress – Defined Functional Requirements

Link	Load	Grid Controller
 Link must be able to communicate: Electricity prices Information to manage capacity constraints Identifying information from a load to a grid controller (e.g., unique identifier, voltage requirements, etc.) "Energy Reporting information, including voltages observed from loads to GC (for power quality purposes) Link must support: Hot plugging and unplugging of loads Energy Reporting by loads Carry a power level up to 1 kW Define a standard connector for each end of the link 	 Loads must be able to: Receive price signals and use prices for Demand Response Receive and act on emergency load reduction commands Send requests for power capacity and comply with grants of capacity and subsequent changes to that On initial connection with a power link, send limited identifying information, including emergency load shed priority Do Energy Reporting, including sending instantaneous measured voltage Facilitate users setting DR priorities / policies / preferences 	 Grid controllers must be able to: Compute and communicate the local electricity price Manage capacity constraints of individual circuits and the whole controller by taking in requests from loads, granting capacity to loads, revising those grants, and changing the price Take in identifying information from a load during link startup and any adjustments during link operation Request Energy Reporting information from loads and track usage over time Coordinate with BEMS for predictive control

Progress - Distributed Storage Analysis

- Explore how distributed storage can avoid installation and soft costs of central storage
- Examined AC and DC versions of (a) load-packaged storage, (b) resilient subsystems
- Results show extensive installation and soft cost avoidance
- Also investigated battery sizing in load packaged storage for building electrical infrastructure reduction and resilience

AC Distribution Bus

AC Load

AC/DC

CC PFC

Rectifier