
Dual-Evaporator, Variable-Capacity Refrigerator, Coupled with Thermo-electric Freezer

Oak Ridge National Laboratory PI & Speaker: Bo Shen 865-574-5745, shenb@ornl.gov WBS #3.2.6.47

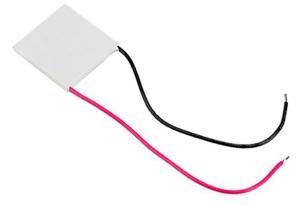
Project Summary

Objective and outcome

- Develop an innovative refrigerator with a thermoelectric cooler cascaded with a vapor compression system
- Optimize energy usage with a coordinated control strategy and new defrosting mechanism
- Verify performance, achieve >15% electricity savings,
 >30% utility cost reduction, and conduct a field demonstration.
- Solar powered refrigerator driven by thermoelectric modules and thermal energy storage

Team and Partners

ORNL:


Bo Shen

Hanlong Wan

EPRI:

Sreenidhi Krishnamoorthy

Don Shirey

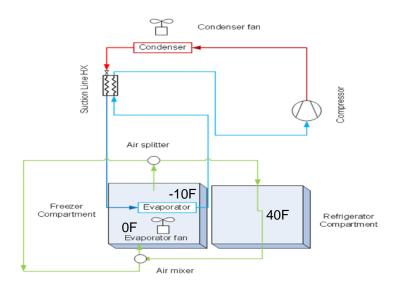
Thermo-electric module having a max cooling capacity of 150 Watts, Dimensions: 40mm x 40mm x 3.2mm

Stats

Performance Period: 10/2022 - 09/2025

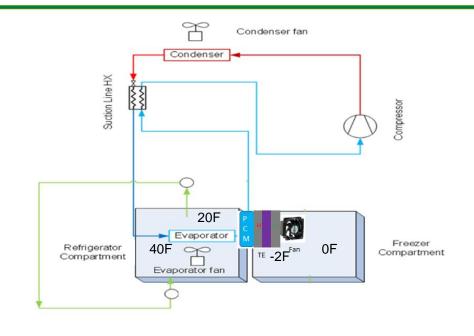
DOE budget: \$900K; \$300K per year.

Milestone 1: Market and technology assessment


(12/22)

Milestone 2: TE heat pump verification (09/23)

Milestone 3: Shakedown test (06/24)


Problems

- Refrigerators in the US consume 121 billion kWh of electricity annually;
- Fresh food compartment temperature@40°F, freezer compartment temperature@0°F. However, the single evaporator temperature is -10°F. The project aims to address energy inefficiency in mainstream single-evaporator refrigerators
- Refrigerator can't provide grid-responsive energy storage to use low-cost electricity.
- Most refrigerators use electric resistance for defrosting.
- → Develop an innovative refrigerator with a thermoelectric cycle integrated with a vapor compression system
- →Aim to improve defrosting operation via reversing TE heat pump cycle
- →Independent temperature controls in the two compartments for better food preservation quality.

Alignment and Impact

- <u>Power system decarbonization:</u> Success defined by achieving project objectives, including an innovative refrigerator with cascading a thermoelectric cycle and vapor compression system, new defrosting mechanism, and grid-interactive control; PCM/ice storage enables grid-responsive energy storage.
- Energy justice: Targets include energy savings >15%, utility cost reduction >30%, and verifying energy performance through AHAM tests; Estimated impact includes energy savings of up to 18.1 billion kWh in the US and reduced emissions from reduced electricity demand.
- Greenhouse gas emissions reductions: solid state cooling doesn't use refrigerant.
- <u>Energy justice:</u> Separate chambers' control and flexible DC voltage input address energy justice concerns and improve food preservation quality.

Greenhouse gas emissions reductions 50-52% reduction by 2030

vs. 2005 levels Net-zero emissions economy by 2050

Power system decarbonization

100% carbon pollutionfree electricity by 2035

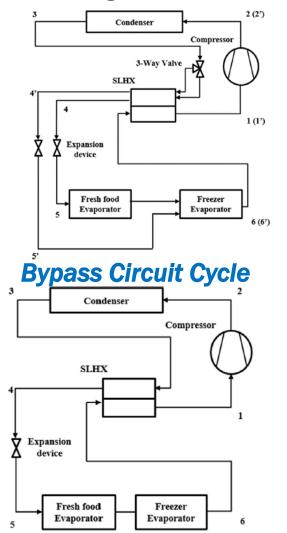
Energy justice

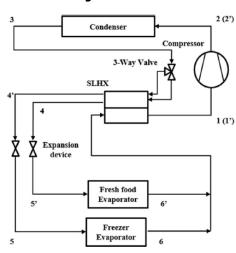
40% of benefits from federal climate and clean energy investments flow to disadvantaged communities

Approach – Market and Technology Survey

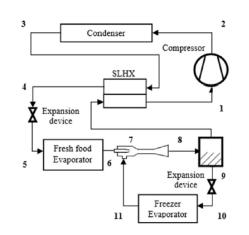
	Durand	Capacity in original	Capacity [cu.	Price	Cost per cu.
	Brand	units	Ft.]	[\$/Piece]	Ft. [\$/cu. Ft.]
	AstroAl Mini Fridge	4 Liter/6 Can	0.14	49.99	357.07
	AstroAl Mini Fridge	15 Can/10 Liter	0.35	99.99	285.69
	Koolatron	20 Bottle	0.54	199.99	370.35
TE	ICECO JP50	50 Liter	1.77	559.00	315.82
TE	Koolatron	34 Liter	1.20	149.99	124.99
	AstroAl	6 Liter	0.21	69.99	333.29
	Ivation	8 Bottle	0.21	179.99	857.10
	Ivation	12 Bottle	0.36	269.99	830.74
	Frigidaire	N.A.	3.20	168.32	52.60
	Frigidaire	N.A.	4.60	268.00	58.26
	BANGSON	N.A.	3.20	149.99	46.87
	Midea	N.A.	3.10	239.99	77.42
VCC	RCA	N.A.	3.20	254.99	79.68
VCC	COMFEE	N.A.	3.30	191.00	57.88
	Galanz	N.A.	10.00	599.99	60.00
	kalifon	N.A.	49.00	2789.00	56.92
	HCK	N.A.	5.12	1049.99	205.08
	Frigidaire	N.A.	17.4	1199.00	68.91

VCC Refrigerator

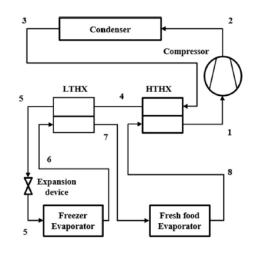


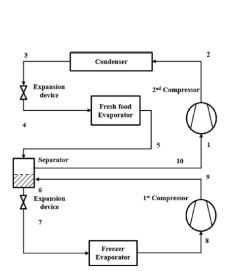

TE Refrigerator

- TE refrigerator has a low initial price but with low capacity;
- TE refrigerator is much more expensive than VCC refrigerator per unit cu. Ft.
- The cost per cu. Ft. of one TE module is only **0.24** \$ (Amazon purchased TE modules).


Progress - Technology Survey

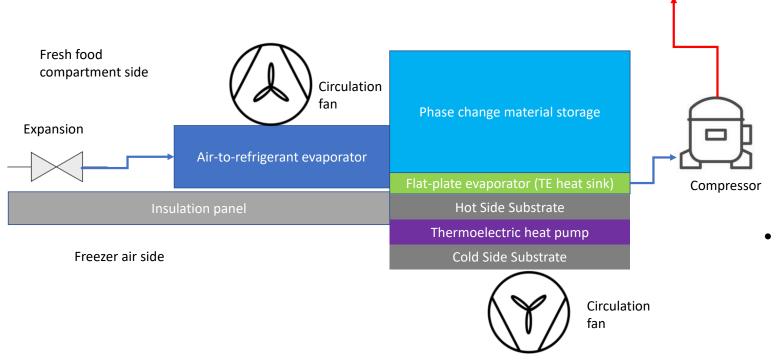
Working Mechanisms of Different Cycles

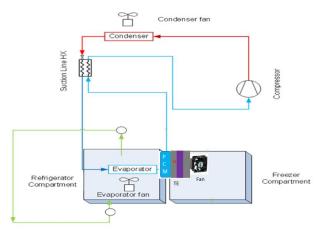



Parallel Circuit Cycle

Ejector cycle

Lorenz-Meutzer Cycle

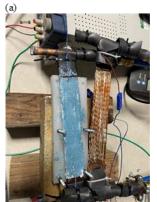



 Efficiency improvements focus on differentiating evaporating temperatures for freezer and fresh food compartments.

Serial Circuit Cycle

Approach – Dual Evaporator. TE cascaded with vapor compression system

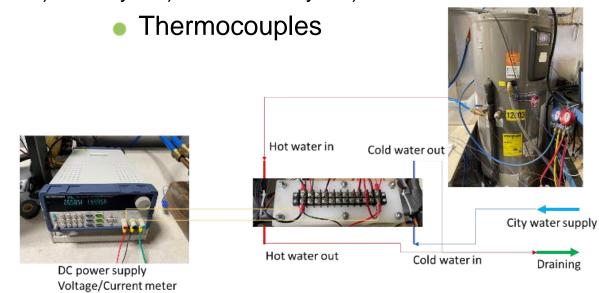
- Engage with industry partners and stakeholders to promote technology adoption and transform the market.
- Demonstrate and validate expected benefits through energy factor tests and field demonstration of the prototype in a real-world setting.
- Conduct extensive modeling and simulation to optimize technology performance.



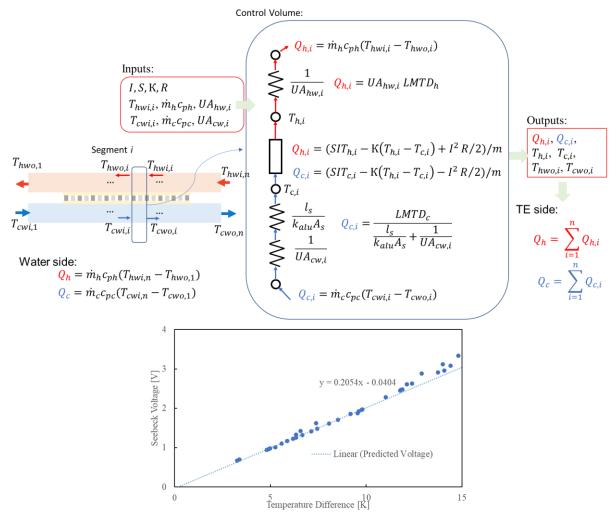
- A thermoelectric cooler cools the freezer compartment, cascaded with a vapor compression cycle that discharges its heat to the VC system's evaporator. A PCM storage layer balances the capacities between the TE freezer and VC evaporator.
- Assembly of Serial evaporators, upstream fin-and-tube evaporator to cool Fresh food compartment, and downstream flat plate evaporator to remove condenser heat of the TE heat pump

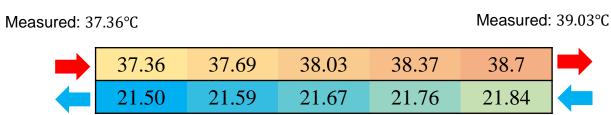
Progress – TE performance characterization

TE heat pump fabrication

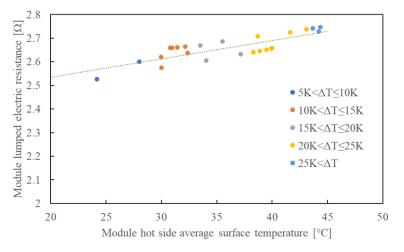


TEHP a) tube layer b) TE module layer c) outlook


- A water heater was used to supply hot water. The cold side inlet water is the city water.
- Thermocouples to measure inlet/outlet water and tube surface temperatures.

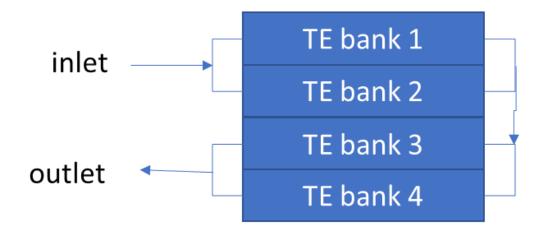

Progress – Model Development of TE Heat Exchanger

TEHP model structure



Seebeck Coefficient (S)

TEHP model validation



Measured: 21.34°C Predicted water temperature in tubes [°C] Measured: 21.84°C

Electric Resistance (R)

Progress: TEHP Assemble

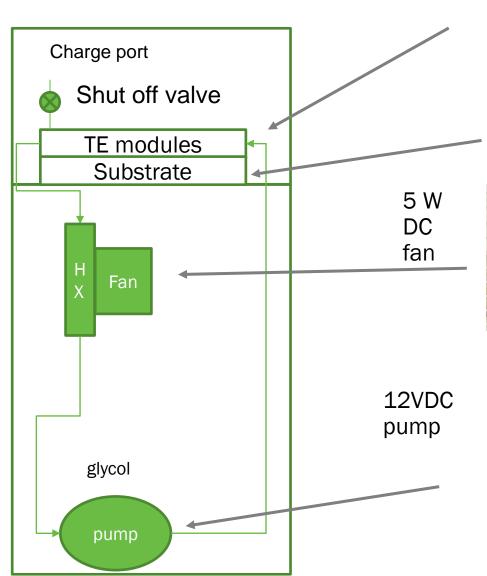
TEHP assembling

- TEHP has been assembled with 28 TEC12706 modules;
- Modules were placed on 4 banks;
- The bank was made with 10 capillary tubes (covered with thermal paste) to improve heat transfer.

Items	Geometry parameters
Capillary tubes	2.54 mm in ID, and 4.00 mm in OD

TEHP - 1 bank

TEHP - 28 modules



TEHP – hot side melts ice

Progress: Prototype Assemble

Fresh food compartment

Freezer compartment

TEHP

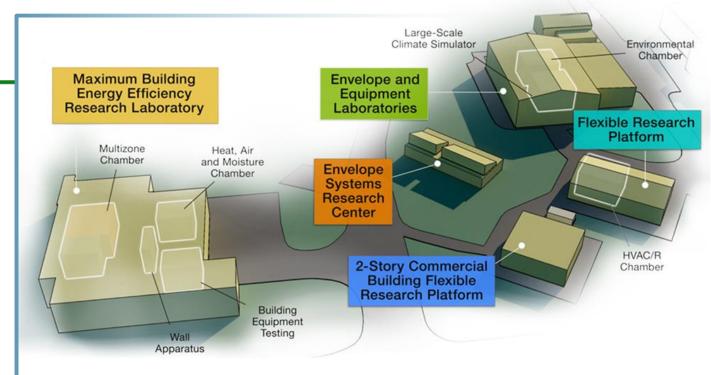
Glycol

Substrate

HX and Fan

Progress and Future Work

Conclusions


- Market Assessment
 - TE refrigerator has a low initial cost but much higher cost per unit capacity compared with VCC refrigerator
 - TE module has low cost, so the TE refrigerator has great potential to decrease the cost
- Experiments setup for Thermoelectric Heat Pump
 - TEHP sample has been successfully assembled
 - A math model was developed to predict the system's performance
 - Property parameters (R and S) are validated

Future works

- TE Heat Pump Prototype Evaluation and Improvement
- Refrigerator system integration and config optimization
- Field performance demonstration

Thank you

Oak Ridge National Laboratory Bo Shen 865-574-5745, shenb@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 60,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

236 publications in FY22 125 industry partners 54 university partners 13 R&D 100 awards 52 active CRADAs

BTRIC is a DOE-Designated National User Facility

REFERENCE SLIDES

Project Execution

	Task	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
1	Market and technology survey												
2	Acquire and evaluate a baseline residential refrigerator												
3	Develop a TE heat pump module												
4	Develop a phase change storage module												1
5	System integration and evaluation												
6	Unit level control development												1
7	Standard Energy Factor Test												1
8	Development of TE cascaded refrigerator modelling and design tool												1
9	Development of Grid-responsive supervisory control												
10	Start a field demonstration												
11	Final Report												
Milestone													
1	Baseline refrigerator evaluation												
2	TE heat pump verification: We will develop a TE heat pump to reach a >2.5 cooling COP corresponding to a temperature lift around 20 R, and the surface temperature at the cold side around 0°F				Go	 /No-0 	 Go 						
3	Shakedown test of an integrated system												
_	Breadboard unit performance verification: The prototype refrigerator tested in our appliance chamber following the AHAM refrigerator standard to verify the performance goals i.e., reaching a 24-hour								Go/No-Go				
4	energy factor, 15% higher than the baseline refrigerator												
5	Initialize field demonstration		-										
6	Final report												

- Go/no-go decision points
 - TE heat pump verification: We will develop a TE heat pump to reach a >2.5 cooling COP corresponding to a temperature lift around 20 R, and the surface temperature at the cold side around 0°F;
 - The prototype refrigerator tested in our appliance chamber following the AHAM refrigerator standard to verify the performance goals i.e., 15% higher efficiency than the baseline refrigerator

Team

ORNL:

- •Dr. Bo Shen is a senior R&D stuff, the author of the DOE/ORNL Heat Pump Design Model, he graduated from Purdue University, and worked at Trane Commercial Systems before joining ORNL. He has 20+ years' experience in vapor compression system development and modelling. He collaborated with the Whirlpool team to develop dual-evaporator refrigerator using a linear compressor in a prior collaboration. He leads the prototype design, fabrication and laboratory tests, as well as development of unit level and supervisory controls.
- •**Dr. Hanlong Wan** is a postdoctoral research associate in ORNL. He conducted the TEHP prototype field tests and TEHP modeling.

Team

EPRI:

- •Sreenidhi Krishnamoorthy, Engineer/Scientist III (Principal Investigator). Dr. Krishnamoorthy has 10 years of technical and project management experience in building space heating and cooling system research including laboratory and field testing of heat pump systems, market potential analytics of electrification of residential and commercial HVAC systems, component and system level modeling, and thermoelectric heat pump prototype design. He leads the market and technology assessment in the project.
- •Don Shirey, Sr. Project Manager. Mr. Shirey has over 30 years of experience with research and development of cooling, heating, dehumidification, and ventilation technologies for both residential and commercial buildings across multiple climate regions. He was a member of the EnergyPlus development team for over 10 years, primarily adding models for conventional and emerging HVAC technologies. He has extensive experience in field testing of heat pumps. He leads the field demonstration in the project.