Ultra-Low Global Warming Potential Fluids to Reduce Carbon Footprint in Data Centers

Oak Ridge National Laboratory PI: Samuel Yana Motta Presenter: Saad Jajja (716) 418 3945 – yanamottasf@ornl.gov WBS 03.02.02.38

Project Summary

Objectives

- Perform heat transfer evaluations of Ultra low GWP fluids for Data Center "immersion" applications
- Performance evaluation of actual equipment (twophase immersion cooling tank) with new fluids
- Energy modeling/simulation of current and future Data center buildings, including LCCP evaluations

outcome

 Thorough evaluation of low environmental impact technologies for data center buildings

Team and Partners

Principal Investigator: Samuel Yana Motta

ORNL Researchers: Saad Ayub Jajja, Cheng-Min Yang

CRADA Partner: Chemours - Gustavo Pottker

<u>Stats</u>

Performance Period: FY23-FY24 DOE budget: \$500k/year, Cost Share: \$300k/year Milestone 1: Pool Boiling Evaluations (FY23 Q3) Milestone 2: Equipment Evaluations (FY24 Q2) Milestone 3: Energy and LCCP analysis (FY24 Q4)

Problem

Alignment and Impact

> Indirect Effect in the power decarbonization due to reduction of Energy consumption

	Typical Air Cooling	Two-Phase Immersion Cooling with High-GWP Fluid	Two-Phase Immersion Cooling with very low GWP fluid
PUE (typical/average in the United States)	1.70	1.03	1.03
GWP of fluid	0	9,500	~10
Total average annual energy consumption per Data Center (GWh)	54.9	32.9	32.9
Average cooling annual energy consumption per Data Center (GWh)	22.6	0.6	0.6
CO_2 emissions due to total energy use per DC (thousand Tons of CO_2)	23.1	13.8	13.8
CO_2 emissions due to cooling energy use (thousand Tons of CO_2)	9.5	0.3	0.3
Total amount of immersion cooling fluid per DC (t)	0.0	55.3	55.3
Total amount of leak fluid from tanks per year per DC (t)	0.0	1.1	1.1
CO ₂ emissions due to leaks per year per DC (kTons of CO ₂)	0.0*	10.5	0.0
Annual CO ₂ emissions per DC (kTons of CO ₂)	23.1	24.3	13.8
Percent change in CO ₂ total annual emissions (%)	Baseline	+6%	-40%

> Direct reduction of GHG emissions by using new ultra low GWP heat transfer fluids

New fluids developed by CRADA partner have very low GWP

> Indirect effect on Energy justice by accelerating the sustainable deployment of IoT.

Approach – Why?

		Commercially Ava	New Fluid		
		FC-3284 / FC-72	HFE 7100	Novec 649	Fluid 1
Thermal Properties	Normal boiling point (°C)	50/56	61	49	~50
	Heat of vaporization at normal boiling point (kJ/kg)	100/88	118	88	100-120
	Estimated heat transfer coefficient (kW/m ² K)	10.6/10.0	11.6	10.3	10-12
Electric Properties	Dielectric strength (kV, 0.1 in. gap)	~40	~40	~40	>40
	Volume resistivity (Ohm-cm)	1.0E+15	1.0E+8	1.0E+12	>1.0E+14
	Dielectric constant	1.8	7.4	1.8	<2.0
Environmental	GWP – 100 years	>9,000	297	1	~10
Reliability	Sensitivity to common contaminants	ok	ok	Poor	OK

Limitations of some of the current options:

- High GWP (FC-3284 / FC-72)
- Poor dielectric properties (HFE 7100)
- Reliability (Novec 649) High sensitivity to common contaminants present in immersion cooling (moisture), requiring very stringent contaminant controls

Approach – How?

Fundamental Heat Transfer Characterization of the Working Fluid (verify good thermal properties)

Server Level Testing

(thermal Performance of equipment)

Energy Modeling (environmental impact)

Approach: Design of Fundamental setup - Calculations

Design Characteristics:

- 2 kW cooling capacity
- Water flow rate 1.5 gpm and temperature of 10 C
- Finned Copper tube
- 4 passes ~ 40 cm pass length (see attached pdf for calculation details)
- Capable of changing the heat transfer surface orientation

Test Section Design using fundamental conduction calculations

Approach: Chamber Design (3-D)

Approach: Testing of actual equipment

Test Setup Concept and Plan

- Fully instrumented 6 kW immersion tank
- Use actual immersion server with boiler plates to simulate the load
- Testing planned with at least one current fluids and one or two alternative fluids.
- Fluid chemical analysis (GC, ions, acidity, residues) by CRADA partner
- Measurement of main parameters (Energy consumption) at a wide range of operating conditions will allow validation of a system model
- System model can be used to extrapolate performance of larger systems

Actual two-phase Immersion Server

Actual 2P Immersion Tank

Approach: Modeling of Data Centers

Current type of buildings

- Designing and sizing a standard <u>air-cooled</u> data center facility
 - Different types of air cooling systems under consideration. Will pick at least one.
 - Include exterior walls, roof, and facility cooling systems
- Design and sizing a <u>two-phase immersion</u> <u>cooled data</u> center facility with same total installed IT power
- Consider about 3 different geographical locations (climates), variable IT load

Techniques proposed for modeling

- Lump-parameter physics-based model to obtain the 2-PIC tank performance. Validation using experimental data
- Energy-plus type model (or similar) for energy building simulation
- Engineering "catalog" performance data for auxiliary components, fans, pumps, chillers (air cooled data center), others to be used as needed
- Temperature bin-approach to integrate for yearly energy consumption and PUE
- Estimate CO2 equivalent emissions (LCCP, direct and indirect) for both data center cooling technologies

Progress: Fundamental Pool Boiling

Status: 1) Fabrication of the below pool boiling has been completed, 2) Installation ongoing, 3) test to start in May 2023

Progress: Test surface and mechanism to change angle

Progress: Testing Plan

- Operating Conditions for fundamental tests
 - Pressure condition: 1 atm
 - Heat Flux range: 0 to 300 kW/m² (until CHF)
 - Surfaces: Smooth, Enhanced (TBD)
 - Fluids: HFE-7100, Novec-649, and New fluid.
 - Orientation of the test sample: 0°, 30°, 45°, 60°, and 90°.

Thank you

Oak Ridge National Laboratory Samuel F. Yana Motta 716 4183945 yanamottasf@ornl.gov WBS 03.02.02.38.NS05

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 50,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

236 publications in FY22
125 industry partners
54 university partners
13 R&D 100 awards
52 active CRADAs

BTRIC is a DOE-Designated National User Facility

Backup Slides

Control Plan – Next Steps

		Year 1			Year 2				
Task	Months \rightarrow	1–3	4–6	7–9	10–12	13–15	16–18	19–21	22–24
1: Fundamental heat transfer evaluations									
Task 1.1: Develop a detailed test plan									
Task 1.2: Build a setup for pool-boiling heat transfer									
Task 1.3: Test new fluids w/smooth surfaces									
Checkpoint 1: Report for smooth surfaces					Х				
Task 1.4: Modify to evaluate enhanced surfaces									
Task 1.5: Test fluids with enhanced surfaces									
Checkpoint 2: Report for fundamental work							Х		
2: Application testing with immersion fluids									
Task 2.1: Specify/purchase immersion tank, servers									
Task 2.2: Prepare immersion tank for testing									
Task 2.3: Develop test matrix									
Task 2.4: Evaluate performance of multiple fluids									
Task 2.5: Measure fluid losses									
Task 2.6: Evaluate suitability to retrofit									
Task 2.7: Prepare a partial report and publications									
Checkpoint 3: Report for application testing									Х
3: Data center building modeling and LCCP evaluation									
Task 3.1: Develop the physical model a data center									
Task 3.2: Develop/validate Energy model									
Task 3.3: Simulate data center performance/LCCP									
Task 3.4: Develop recommendations for improved design									
Task 3.5: Prepare a partial report and technical publication									
Checkpoint 4: Report for modeling/simulation									Х
4: Publication in scientific journals, magazines									
Task 4.1: Produce publications and a final report									