Real-Time Evaluator to Optimize Installation of Prefab Retrofit Panels

Oak Ridge National Laboratory
Diana Hun, Group Leader | Building Envelope Materials Group
Nolan Hayes, Postdoctoral Research Associate | Building Envelope Materials Group
865-574-5139, hunde@ornl.gov
BTO-03.01.03.12, AOP

Project Summary

Objectives

Develop digital tools that provide real-time feedback to

- Reduce installation time and cost of prefabricated components so that overclad retrofits are more affordable
- Enhance installation quality and hence envelope airtightness and watertightness

<u>Outcome:</u> Prefabricated component installation time and cost is reduced by at least 25%.

Team and Partners

Stats

Performance Period: 10/1/21 to 9/30/24

DOE budget: \$900K

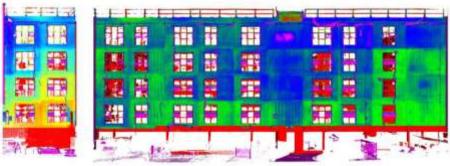
Milestone 1: Develop software to track and record position

Milestone 2: Develop software to compare real-time

position and location in digital twin

Milestone 3: Conduct demonstration of RTE

Problem


- ≥50% of existing residential and commercial buildings were built before 1980*; hence, lack modern energy efficient technologies
- <2% of buildings undergo energy retrofits each year</p>
- Opaque envelopes affect ~25% of building energy use or ~10% of total US primary energy use**
- Retrofits with prefab overclad panels
 - Include most envelope components
 - Less disruptive to occupants than typical retrofit practices
 - Need to reduce cost to facilitate adoption
 - Installation cost (~\$2K per panel) is prime candidate

Overclad panel retrofits

Energiesprong

State of the art: verification of volumetric modules' uneven façade AFTER installation

Tocci B. 2020

^{*}EIA, Residential Energy Consumption Survey 2015 (RECS) and Commercial Building Energy Consumption Survey 2012 (CBECS) **DOE, Research and Development Opportunities Report for Opaque Building Envelopes

State of the Art

Installation Error and Downtime During Overclad Panel Retrofit

Credit: Targo Kalamees, Tallinn University of Technology

Overclad panel installation

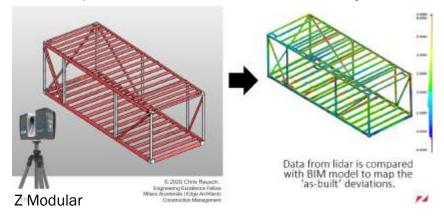
- Crane-installed panels guided to location by workers
- Workers manually measure panel position
- Adjustments made by workers to accurately position
- Overall quality is checked after installation

Challenges

- Installation time is ~30 to ~60 minutes per panel
- Inaccurate dimensions of existing façade
- Out of tolerance connections
- Compounding installation error that leads to rework, downtime

Installation issue discovered at bottom of panel

~2 hr to fix issue


Panel is reset

- Develop a Real-Time Evaluator (RTE) that provides real-time feedback to installers
 - Easy to use
 - Automated
 - Low capital cost using mostly available hardware and a single tracker
 - Accuracy of $\pm 1/8$ " based on industry tolerances
- Lower cost of RTE via wide prefab market applicability
 - Building retrofits with overclads or reclads
 - New construction
 - Buildings: panelized, volumetric
 - Infrastructure
 - Onsite/offsite assembly

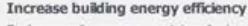
Novelty: Real-time feedback makes onsite prefab assembly a proactive process instead of a reactive process

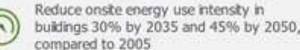
State of the art: verification of modules' plumbness AFTER assembly

Alignment and Impact

Successful RTE

- Reduces installation time and cost of prefab components by ≥25%
- Eliminates installation errors and downtime
- Meets maximum air leakage limits right after panels are installed


Contributions from faster and better overclad envelope retrofits to EERE/BTO goals


- ~0.6 quads decrease in energy use by 2030 from adding R12 to existing residential and commercial buildings*
- Lower operational energy and CO₂ emissions
- Smaller heat pumps
- Smaller thermal energy storage systems
- Accelerate building electrification

*2014 DOE Windows and Building Envelope Roadmap

EERE/BTO's vision for a net-zero U.S. building sector by 2050

Accelerate building electrification

Reduce onsite fossil -based CO₂ emissions in buildings 25% by 2035 and 75% by 2050, compared to 2005

Transform the grid edge at buildings

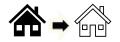
Increase building demand flexibility potential 3X by 2050, compared to 2020, to enable a net-zero grid, reduce grid edge infrastructure costs, and improve resilience.

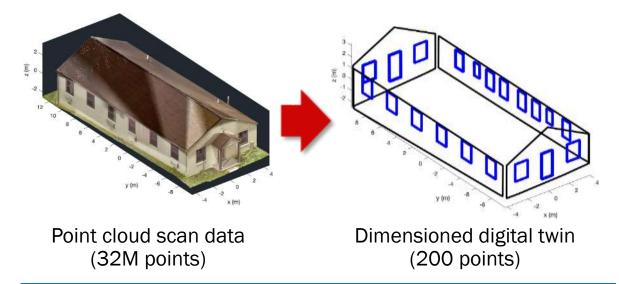
Real-Time Evaluator (RTE) Components

Digital twin generation

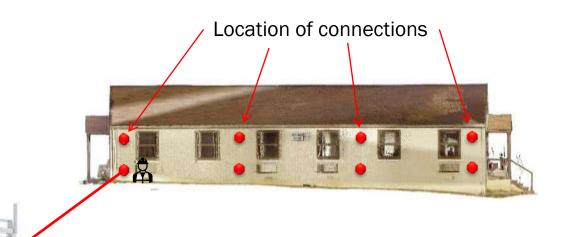
Autonomous tracking system

Installation assistant





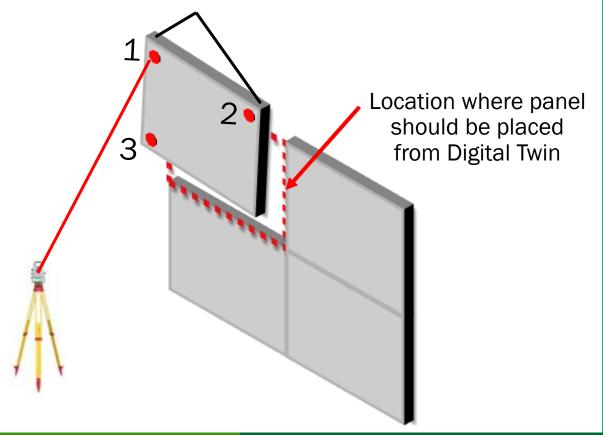
Digital Twin and Connections


- Automated generation of existing façade measurements
- 1/8-inch accuracy
- Designer can use to size and locate panels

- From point cloud to digital twin in minutes
- Reduce by ≥75% human effort to clean point cloud data from 3D scanners
- Part of Advanced Building Construction (ABC) Phase 2 project

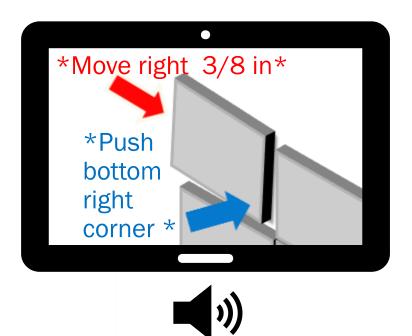
Connection Positioning System 🥖

- Aids installers in positioning connections OR
- Checks the quality of position of connections after installation


RTE points to connection location based on digital twin and worker installs connection

Tracking System and Installation Assistant

Automated Tracking System


- Monitors real-time position of component in 6 Degrees of Freedom (translation/rotation about each axis)
- 1/8-inch accuracy

- Serves as interface between RTE and installer
- Gives visual and auditory cues to installation crew on where to move panel to meet tolerances
- Updates digital twin with as-built component locations

Challenges, Risks, Commercialization, Demonstration

Technical challenges

- Adding new functions to off-the-shelf hardware
- Development of algorithms for automation of monitoring tasks

Risks and mitigation strategies

- New construction technologies have low adoption
 - Continually consulting with end users, including installers, surveyors, erectors, and designers on value proposition
 - Collaboration with prefab manufacturers will demonstrate and document faster installation times and fewer errors
 - Using off-the-shelf hardware and a single tracker to keep cost low

Stakeholder engagement

- Advisory group
 - Manufacturers
 - Installers
- Advise on relevance and requirements
- Ensures meeting end users' needs

Demonstration and validation

2024 – 2025 full-scale demonstration in ABC Phase 2 retrofit project

Progress: Specifications

Advisory Group

Jared Brewe

Steve Brock

Nate Brooks

Chris Winfield

Gary Lentz

Mike Milkovitz **Tindall**

Hans Porschitz

Initial Specifications

- Measurement accuracy: ± 1/8 inch
- Speed
 - 1 sec tracking position
 - 15 sec to measure orientation
- Tracking targets
 - Easily removable or disposable
 - Installable on a wide variety of materials
 - Accommodates limited access to panel sides and surfaces

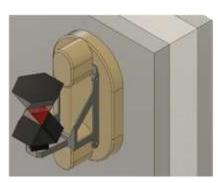
Progress: Hardware

Survey-Grade Laser Scanner/Tracker

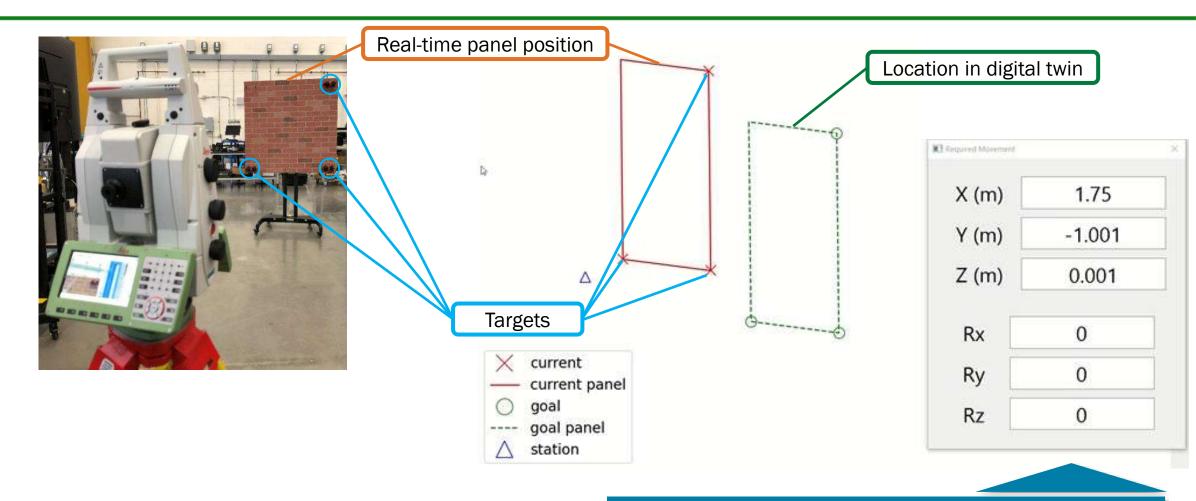
Photo credit: Leica

TargetsReusable, Trackable

Photo credit: Leica
*Approximate Relative Scale


Preliminary Fixture Prototypes

Mechanical clamp for new construction

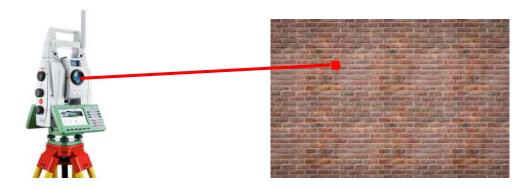

Mechanical clamp for overclad panels

Vacuum fixture

- Modular design for easy part interchangeability
- Design varies with accessibility and required robustness

Progress: Software and Proof of Concept

Proof of concept: Real-time feedback on difference between actual location and location in digital twin

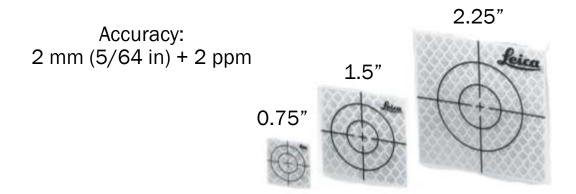

Provisional patent application #63/425823

Progress: Connection Positioning System

Option 1: Real-Time Guidance during Connection Installation

Process

- 1. Digital twin has as-designed connection locations
- 2. RTE laser points to fastener location
- 3. User installs connection

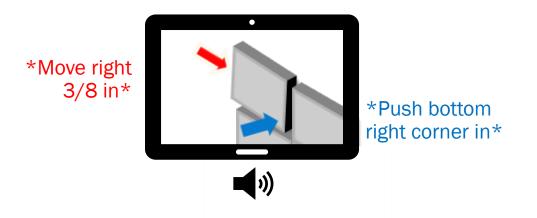


Surface measurement is accurate to 2 mm + 2 ppm.

Option 2: Post-Installation Positioning and Analysis

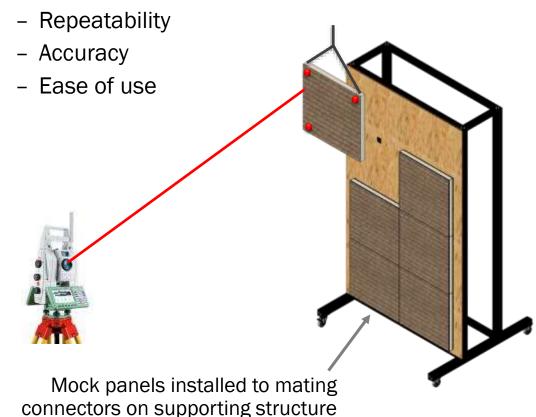
Process

- 1. Tape reflectors/targets attached to connections
- 2. RTE measures locations of connections
- 3. RTE assesses quality of installation



Disposable Tape Reflectors
Cost per piece: \$0.10 - \$3

Future Work: Installation Assistant and Lab-Scale Testing

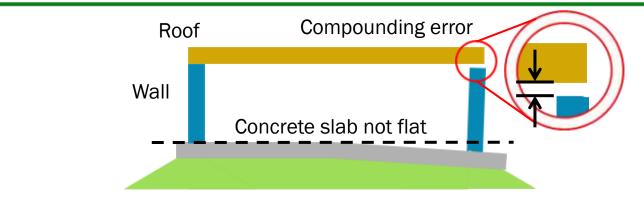

Design of installation assistant system

- Design algorithms to:
 - Compare real-time component position to digital twin
 - Generate installation commands
 - Update digital twin with final position of component
- Test interaction between system and installer
- Gather feedback from stakeholders

Lab-scale testing

 Tests on supporting structure w/ and w/o out-of-plane imperfections

Additional Scope of Work: Flat and Level Analysis Tool (FLAT)


Background


- Concrete slab-on-grade
 - Often not flat or leveled
 - Compounds errors when assembling envelope
- Measurement of floor flatness and levelness
 - Manual: Takes days and thousands of dollars
 - State-of-the-art: Laser scanning techniques require human input and hours to process

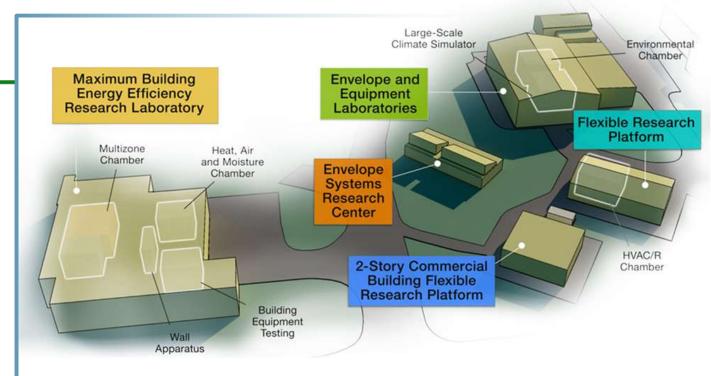
Goal: Reduce envelope installation time and improve quality by providing real-time feedback on flatness and levelness so slab is fixed while concrete is workable.

Outcomes

- Reduce time and human effort to measure floor flatness and levelness by 80%.
- Reduce assembly time of envelope components by reducing fixes.

Automated
Analysis
<10 seconds

Invention disclosure #202305305 High spot Low spot Heatmap Contour


Publications and Intellectual Property

Publications

- Real-time evaluator to optimize and automate crane installation of prefabricated components. 40th Int Symposium on Automation and Robotics in Construction. July 4 – 7, Chennai, India.
- Future papers on
 - Automated segmentation and analysis of concrete floor slab flatness and levelness from point cloud data. To be submitted to Automation in Construction.
 - Demonstration and evaluation of a real-time evaluator to optimize the installation of prefabricated components. To be submitted to *Automation in Construction*.
- Intellectual property
 - Real-Time Evaluator to Optimize Prefab Retrofit Panel Installation. Provisional patent application #63/425823.
 - Flat and Level Analysis Tool (FLAT). Invention disclosure #202305305.

Thank you

Oak Ridge National Laboratory
Diana Hun, Group Leader
Nolan Hayes, Postdoctoral Research Associate
Building Envelopes Materials Group
865-574-5139, hunde@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 60,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

236 publications in FY22 125 industry partners 54 university partners 13 R&D 100 awards 52 active CRADAs

BTRIC is a DOE-Designated National User Facility

REFERENCE SLIDES

Project Execution

	FY2022				FY2023				FY2024			
Planned budget			\$400				\$300					
Spent budget	\$200			\$130				\$0				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
M1.1: Set tracking system requirements	1	<u> </u>										
M1.2: Select tracking equipment and software to build system on		•	•									
M1.3: Develop retroreflector system												
M1.4: Develop software to track and record position data				•								
M2.1: Set requirements for low-cost connection locating system												
M2.2: Design low-cost retroreflector system (<\$5)						•						
Current/Future Work												
M1.5: Develop software to integrate as-built panel data into digital							•					
twin												
M2.3: Build and test low-cost retroreflector system												
M2.4: Develop software that will collect as-built locations of												
connections and compare it with the digital twin	$oxed{oxed}$											
M3.1: Develop software to compare panel positions from the digital												
twin with the real-time panel position	$oxed{oxed}$										<u> </u>	
M3.2: Develop software that provides guidance on how to adjust the									,			
panel placement	Щ											
M3.3: Design physical system and user interface for use in the field to										,		
provide guidance to the installation crew and crane operator	—					_						
M3.4: Build and test the positioning assistant system	—											
M3.5: Develop concepts for robotic installation aids	—							_				
M4.1: Design test wall panels	—										<u> </u>	_
M4.2: Design panel mounting system with integrated locating system	↓										Щ	
M4.3: Construct test wall panels	—					1						_
M4.4: Construct mounting system												

Team

Diana Hun

Bryan Maldonado Nolan Hayes

Peter Wang

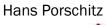
System Design

Software development and software and hardware integration

Jared Brewe

Nate Brooks

Chris Winfield



Jay Lepple

Advisory Group

Manufacturers and installers of prefab panels